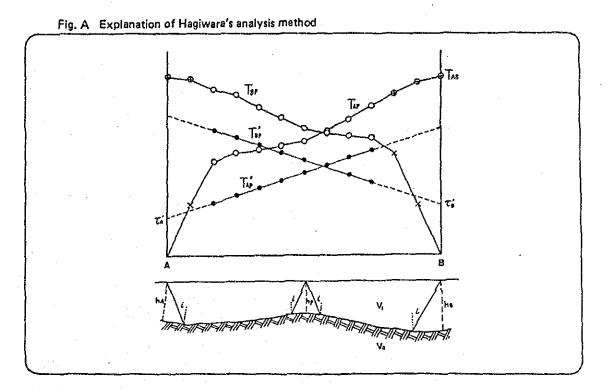
3-12 Seismic Prospecting

* Hagiwara's analysis method:


As shown in Fig. A, this method considers the ground to be a two layered structure, with velocity in the upper layer V_1 and velocity in the lower layer, V_2 . T_{AP} is travel time of refracted wave from shot point A, received at P; T_{BP} is travel time of the refracted wave from B to P; and T_{AB} is travel time of the refracted wave from A to B (The white circles in the figure represent travel times of refracted waves received at P. The X marks represent travel times of direct waves-those waves received at P that are propagated in the first layer only.) Here, T_{AP} , T_{BP} and T_{AB} are quantities obtainable through direct observation. The quantity t_0 , where

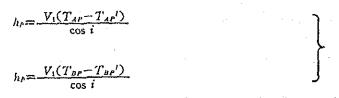
$$t_0 = T_{AP} + T_{BP} - T_{AB} \tag{a}$$

is called zero travel time. The quantities T_{AP} and T_{BP} , where

$$T_{AF}' = T_{AF} - t_0/2 = (T_{AF} - T_{BF} + T_{AB})/2$$

$$T_{BF}' = T_{BF} - t_0/2 = (T_{BF} - T_{AF} + T_{AB})/2$$
 (b)

are called velocity travel time (the black circles in the figure indicate velocity travel time). The curve that successively joins the velocity travel times determined for each receiving point is called the velocity travel time curve. Theoretically, this is a straight line, and its slope indicates velocity V_2 of the lower layer. Velocity V_1 of the upper layer is determined from the travel time of the direct wave mentioned above.

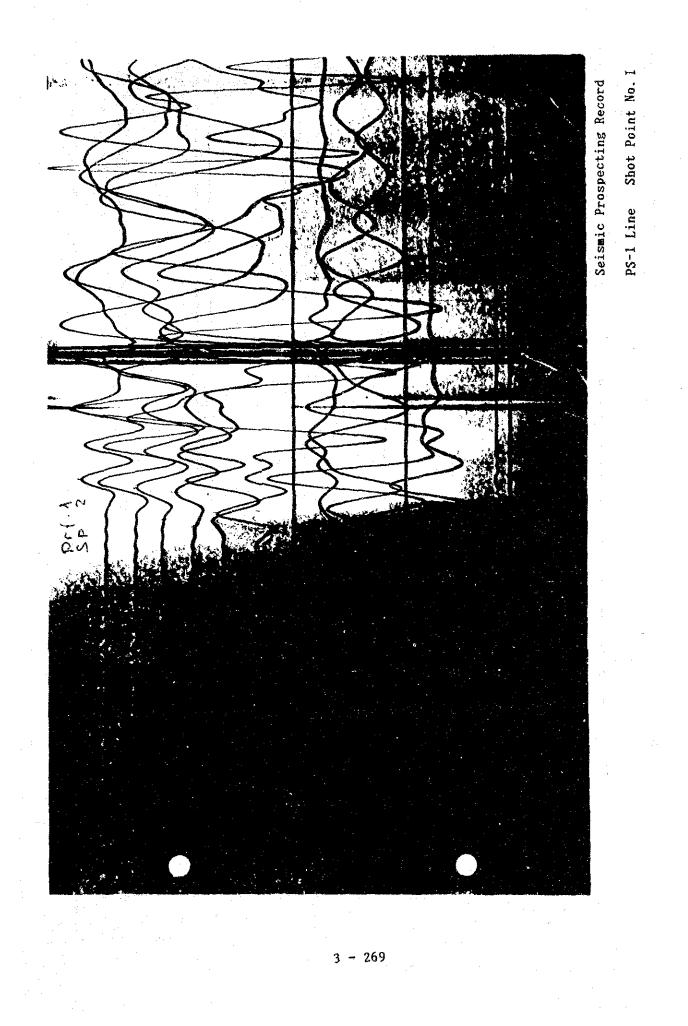

If we designate the length of a perpendicular line drawn from receiving point P to the surface of the lower layer (depth of the lower layer) $h_{\rm P}$,

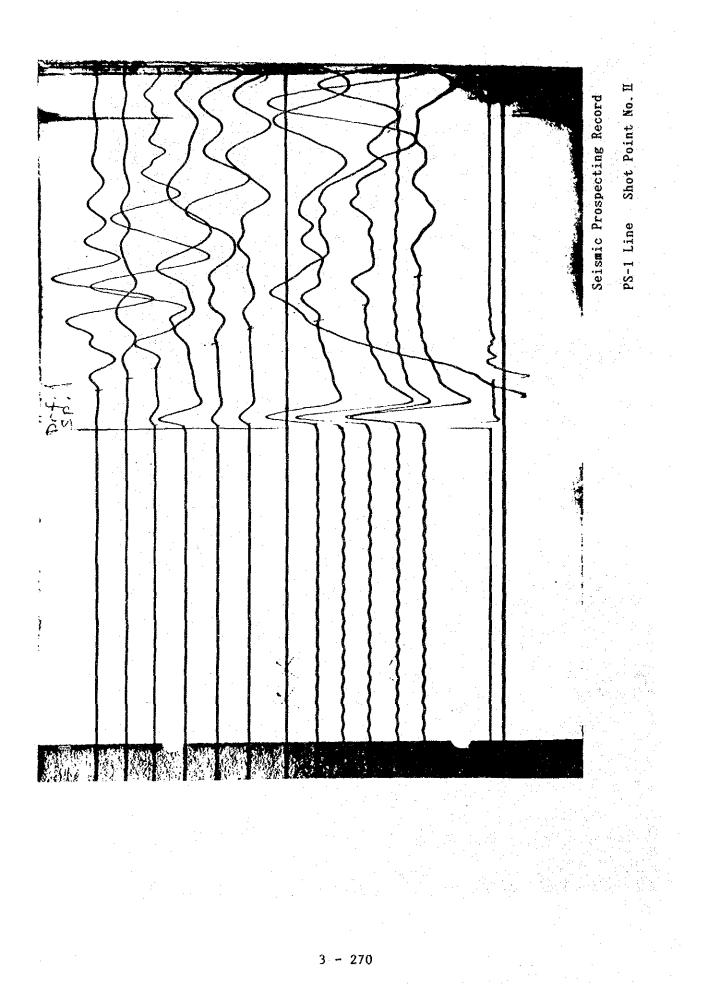
(0)

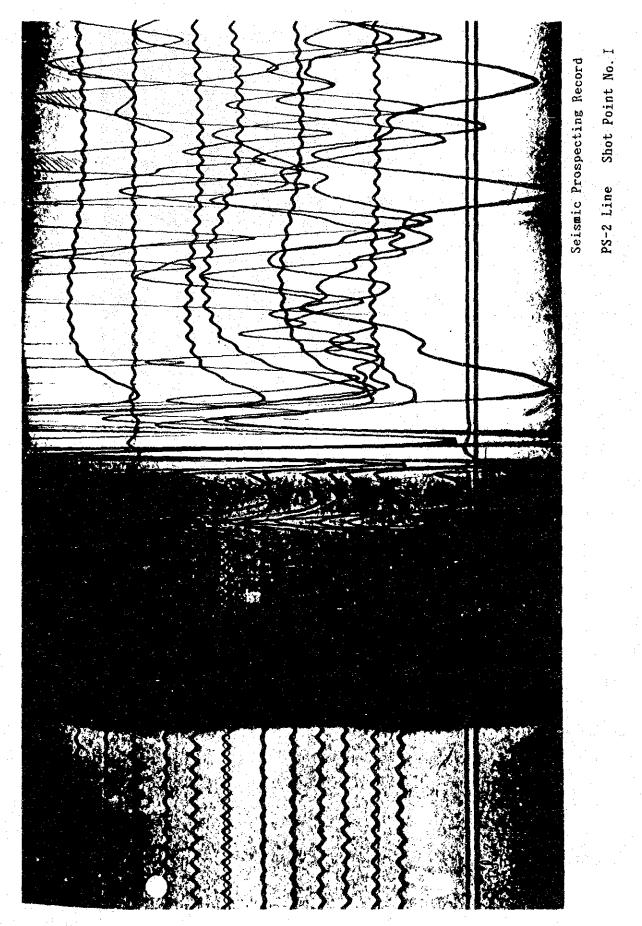
(d)

$$h_P = \frac{V_i(T_{AP} + T_{BP} - T_{AB})}{2\cos i}$$

where $\sin i = V_1/V_2$, meaning that h_P may be determined. We have seen that where T_{AP} and T_{BP} are both known for the receiving point, depth of the lower layer can be determined using Formula (c). However, for the points marked \oplus in the figure, only one of the values, T_{AP} or T_{BP} is known. For these receiving points, Formula (b) is substituted into Formula (c), giving us:

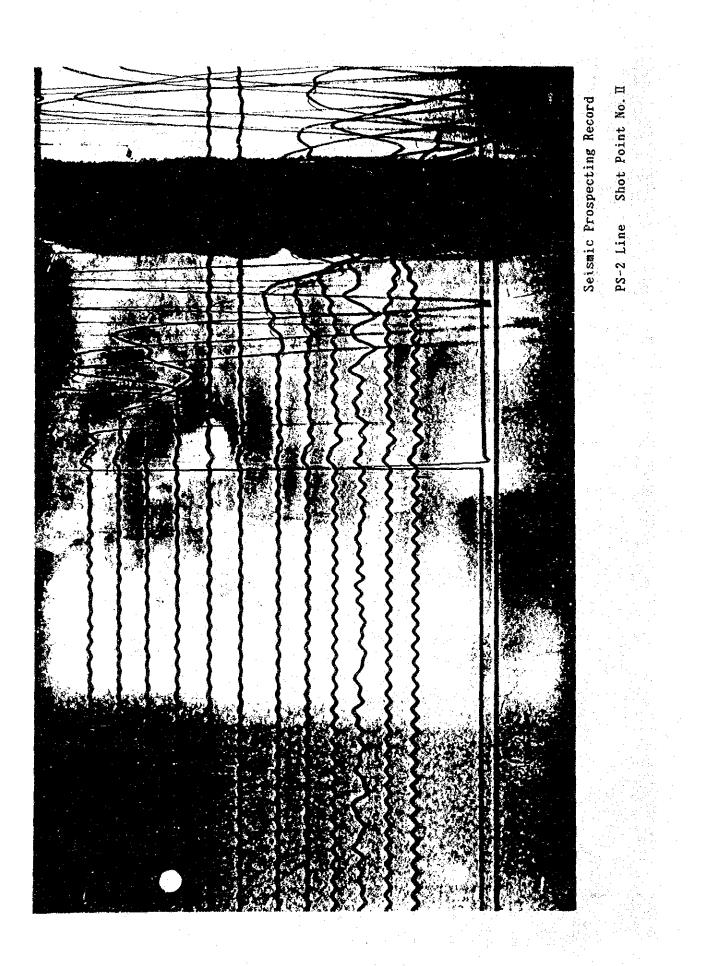


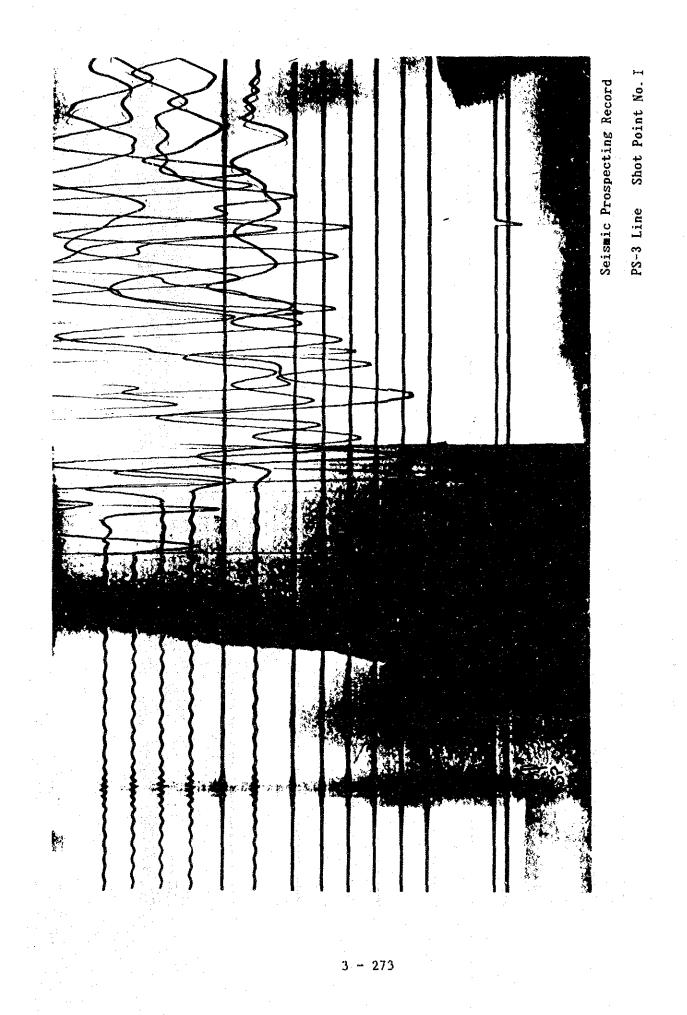

Here, the values T_{AP}' or T_{BP}' extend the velocity travel time curve. The values at P read off from this extended curve may be used.

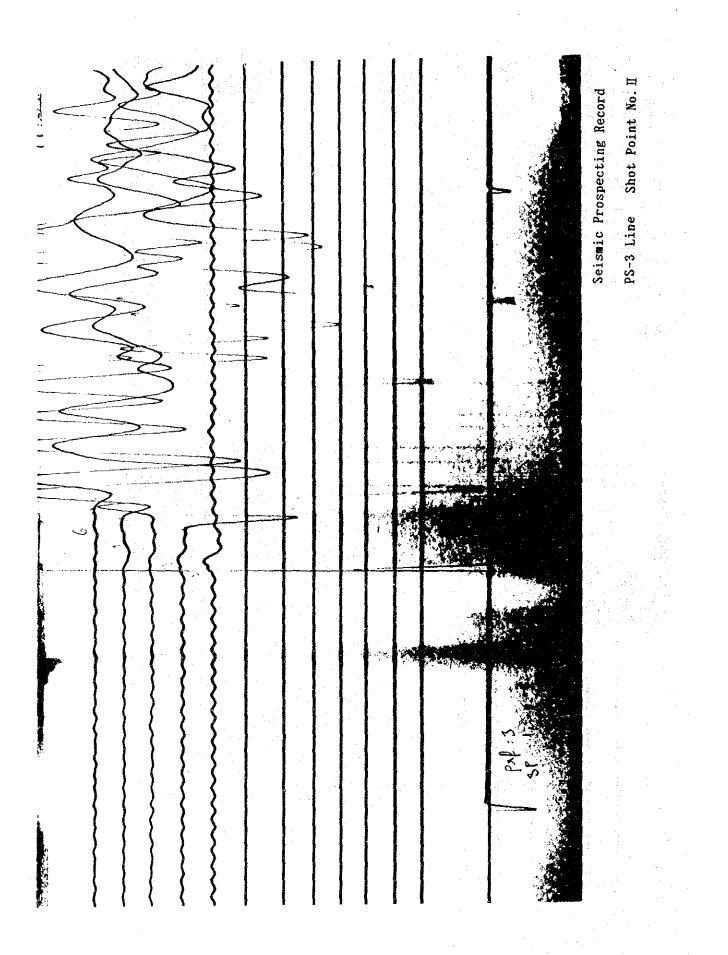

Also, if we designate the value of the point where velocity travel time curve T_{AP} intersects the vertical axis at shot point A as τ_A and the point where T_{BP} intersects the vertical axis at shot point B as τ_B , the following formulas are obtained:

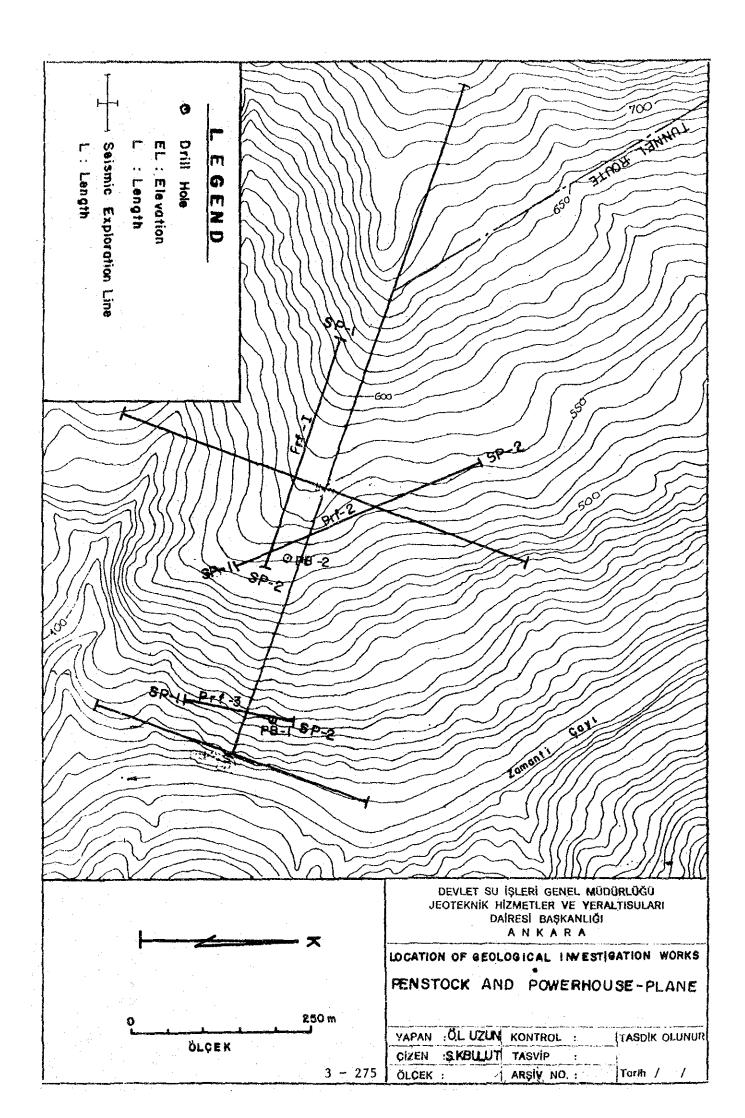
$$h_{A} = \frac{V_{1}\tau_{A}^{t}}{\cos i}$$

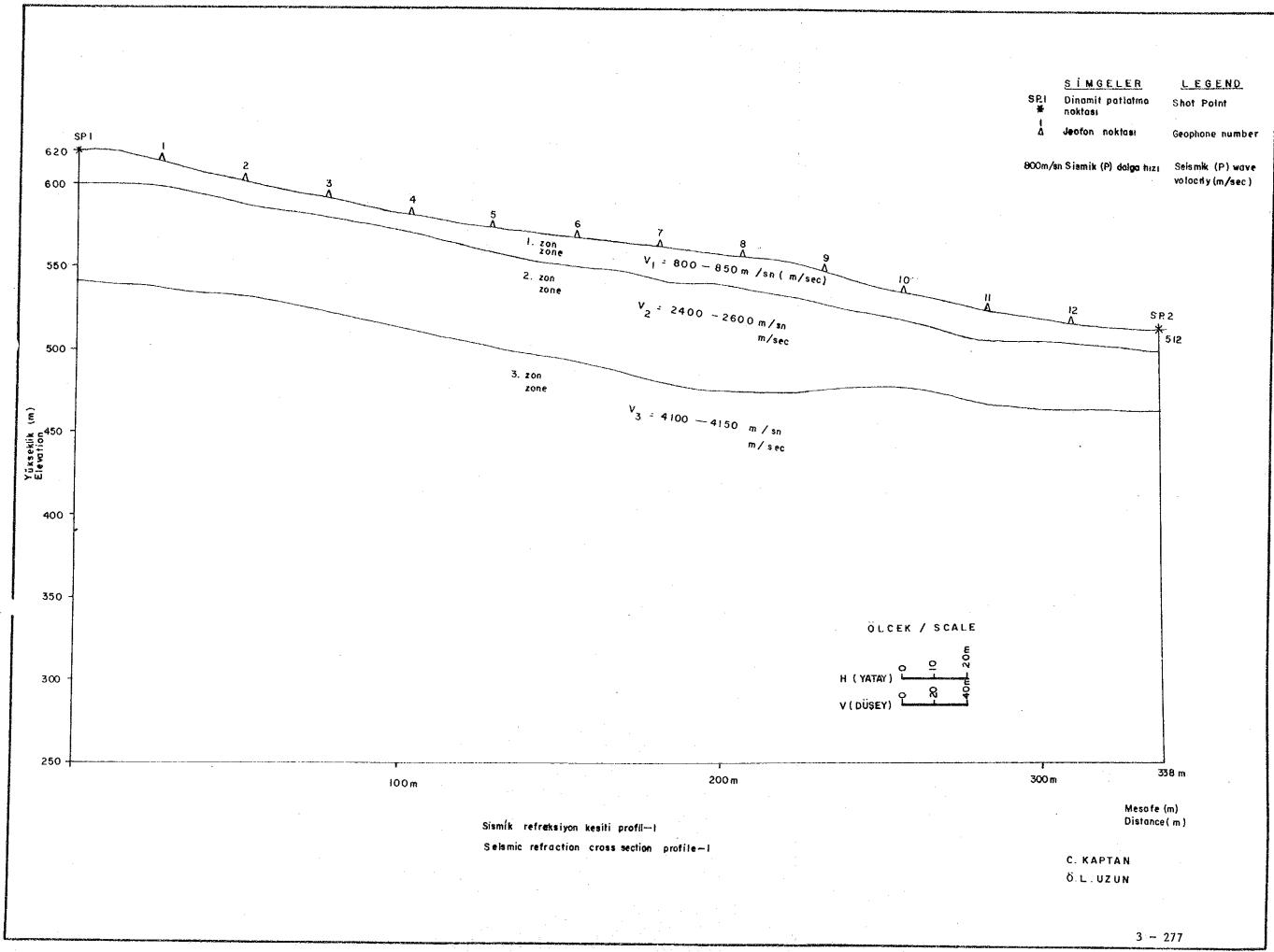
cos i

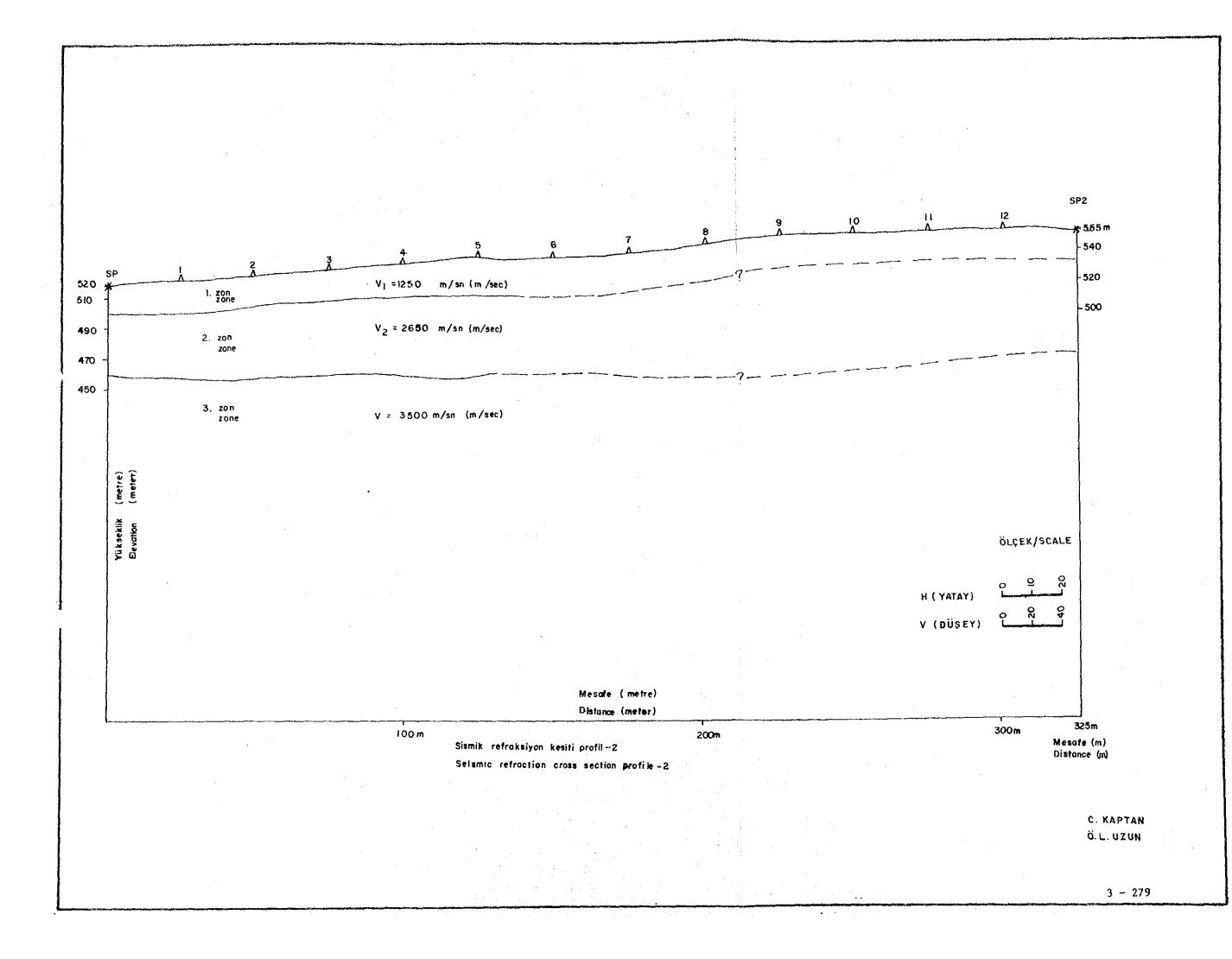


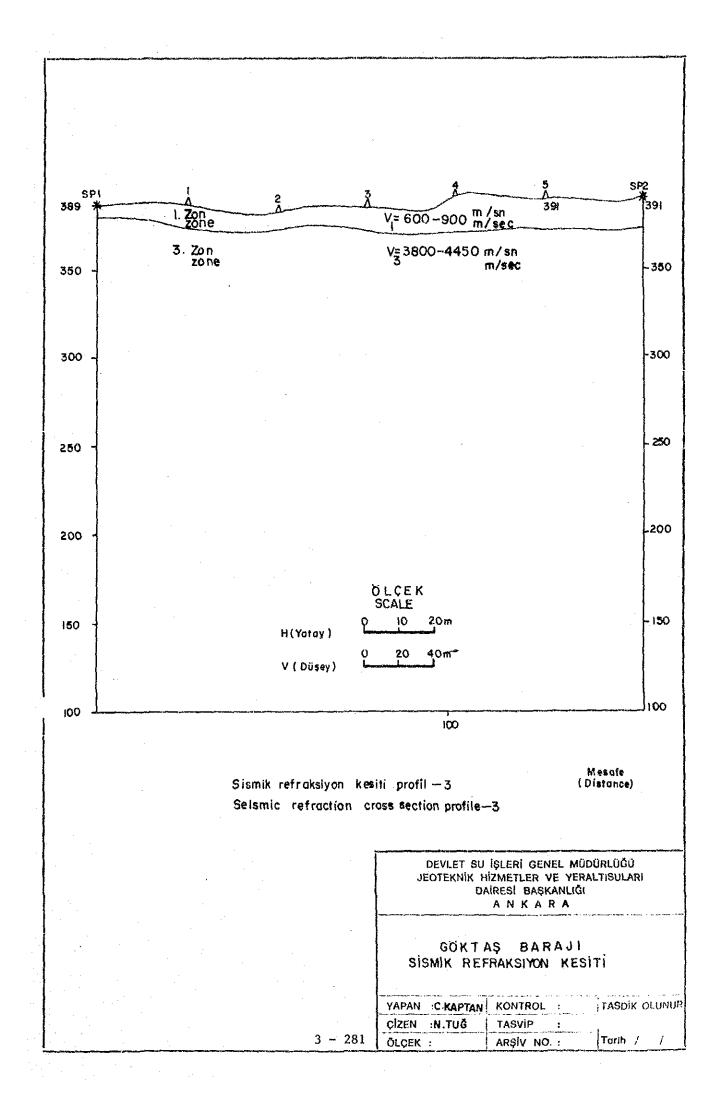


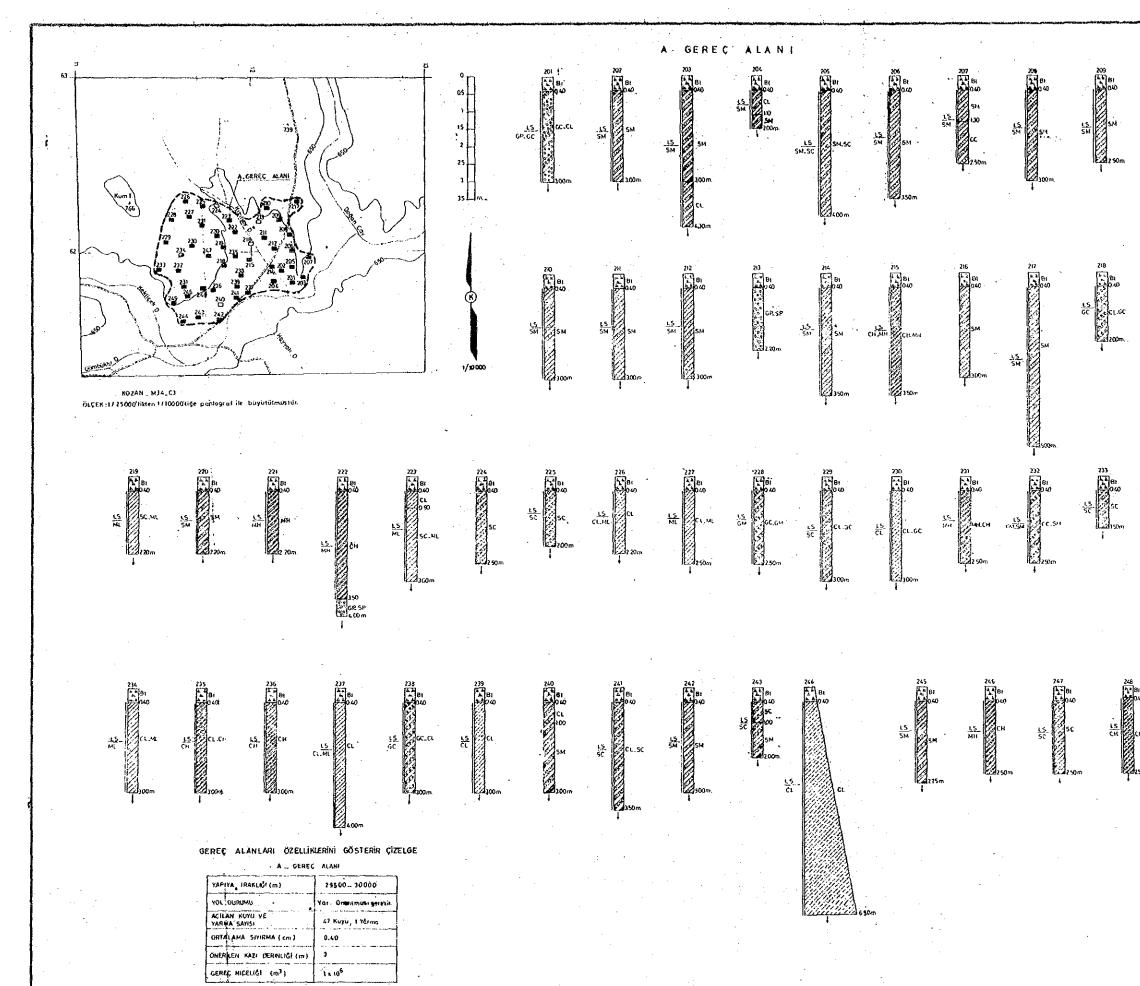



3 - 271


• • • •

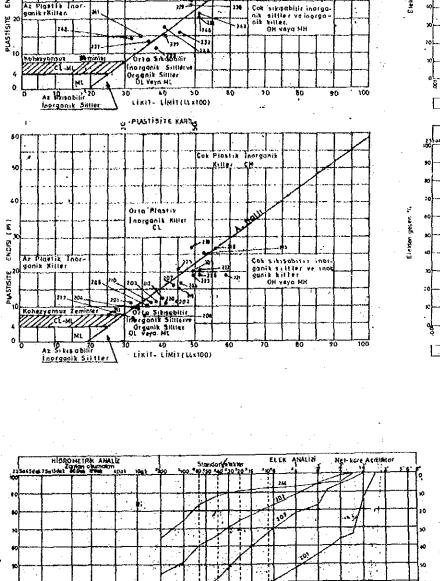





٢	(Optieve soisture												e content)			
l lites	N 1	с. с.т.•	d i n'g		Atter	berg limit:	5	Soll	Specific	Çoepa	ction	Triaxial		Coefficient		
				1	· (%)			cont.	gravity					to		
			11			classifi-		Ţe	s l	Shear s	lrealth	Perseability				
$\{ X^* \}$	SIIt		STAVOI	Hex					[
Sample/	-clay	Sand	1640	sraia	LL	PL	Ρĺ	Cation	C2	pd ses	wopi	C	¢	ĸ		
Satable/	usder	26144	5.05	size					(1/m)	(g/al)	(%)	(lastel)	(*)	(au/sec)		
Na	0.074			(m)												
A- 201	10	32	58	50	31.8	21.3	10.5	6P-60	2.14	1.80	19.3	1.05	20	6.4 ×10-1		
A- 202	44.5	43.5	12	25	41.1	35.4	11.4	SX -	2.89	1.58	19.6	-	-	-		
A- 203	23	55	22	38	38.4	21.2	11.2	SH	2.65	1.89	10.2	-	-			
A- 204	22	55.5	21.5	38	34.0	24.9	9.1	SN	2.18	1.75	11.0					
A- 205	25.5	37.5	38	50	49.4	29.2	20.2	SH-SC	2.51	1.54	24.0	1.6	20	7.1 ×10-7		
A- 208	29	62	9	20	35.5	21.0	1.9	\$8	2.65	. 1.68	20.3					
A- 207	24	37	39	33	44.2	28.1	16.1	5M	2.66	1.87	20.1	-				
A- 203	30	51	18	31	35.5	28.1	10.5	SX	2.11	1.55	20.0	1.3	20	4.5 ×10"		
A- 209	28	59	13	- 34		-	-	SX	2.75	1.54	20.5	~		<u> </u>		
A- 210	31	52	10	31	\$7.1	26.0	11.4	SX	2.17	1.52	22.4	-		-		
A- 211	32	55	13	38	39.1	25.5	7.6	SH	2.11	1.11	18,9	-	-			
A- 212	48		\$	19	40.5	28.3	12.3	SX .	2.71	1.61	23.8	1.2	20	-		
A- 214	28	\$0.5	13.5	38	-	-	-	\$X	2.76	1.67	20.0			_		
A- 215	64	33	3	30	52.4	26.7	25.7	KK KX	2.73	1.57	23.0	2.0	13 .	8.6 ×10-7		
A- 217	18	\$1	21	38	32.3	25.3	7.0	S.H	2.11	1.85	15.0	-		_		
A- 218	22	30	48	53	55.5	28.6	26,9	6 0	2.65	1.62	20.4	1.25	12	un		
A- 219	57	39	4	19	(5.1	30.0	15.1	XL .	2.84	1.52	27.0	-		••		
A ~ 220	40	45	14	52	- u.s	30.4	n.i	. SH	2.87	1.55	22.2	-	-	-		
A- 125	54	15	21	50	51.0	38.9	11.1	88	2.64	1.38	30.2	-		-		
A- 222	40	[\$	L	19	\$1,4	30.4	10.4	KR .	2.55	1.43	27.0	1.1	24	5.9 ×10-2		
A- 223	68	27	4	15	19.8	31.1	18.1	XL -	2.10	1.48	25.0	- 1.7	21	3,3 ×10-7		
A- 125	46	54	-	5	45.0	24.2	20.4	sc	2.67	1,59	23.0	-				
A - 226	57	43	-	15	- 45.1	28.1	19.7	CL~XL	2.59	1.8	21	1,15	81	, -		
A- 227	53	45	2	- 1\$	41.6	28.5	15.1	ЯL	2.64	1.57	22			- 		
A- 228	- 20	33	- (1	15	38,1	28.5	11.6	GM	2.71	1.62	20	-	**	***		
A - 229	38	\$2.5	1.5	9.5	(1.1	24.2	21.9	sc	2.61	1.51	23	1,10	14	2.4 ×10-7		
A - 230	53	25	81	38	(1.2	24.9	24.3	CL	2.11	1,61	22			-		
A- 231	58	21	21	19	51.9	35.6	26.3	89	2.74	1.42	23	-	-			
A- 232	. 38	58	28	38	45.3	29.0	18.3	CH-5H	2.11	1.50	27		-	-		
A- 233	44	33.5	11.5	31	49.6	11.2	12.1	sc	2.65	1.66	38	2.0	- 18	-		
A- 234	57	45	2	9.5	45.1	24.8	16.9	M.	2.67	1.53	23	-	-	-		
A- 235	\$6.5	9.5	()	19	11.0	26.4	50.2	СЯ	2.71	1,48	25	-	-	-		
A - 235	\$2	11	1	15	\$2.3	29.0	\$3.3	R)	2.66	1.38	28	1.45	10	4.2 ×10-7		
A- 231	68	26.5	\$.5	38	37.2	23.9	13.3	CL-XL	2.64	1.65	19	-	-	·		

Result of Laboratory Test for Core Material(1/2)

.


·····	r								I		/ 0.011	ua moistura			
lien		Gra	dias		Atteri	berg limit	(%)	Soil	Specific gravity	Compac Te	llon	Triaxial Shear s		Coefficient of Fermesbility	
Saupte Na	Silt -clay Under 0.074==	Sand	gravel over Saw	Kux grain sizo (ma)	LL	PL	91	classifi- cation	65 (1/n7)	od uax (g∕oł)			¢ (°)	K (ca/sec)	
A- 238	21	25	54		50.8	30.2	30,6	00	2.75	l.63	. 21	· ~			
A~ 239	62	28 '	12	38	11.8	25.9	22.9	cL	2.63	1.64	18	2.35	19 .	2.1×10-7	
A~ 241	41	32	1	9.5	34.8	19.7	15.1	SC	2.71	1.89	18				
A - 242	17	44.5	8.5	19	51.0	29.2	21.8	SH	2.66	1.63	18		-		
A- 243	42	32	25	38	32.2	17.3	i4.9	sc	2.12	1.83	14	1.37	L5 -		
A - 244	\$5	28.5	6.5	28	42.0	24.1	17.9	CL	8.73	1.57	20	_		-	
A- 245	16.5	42	41.5	50	-	-	-	SX	2.19	1.84	.15	0.9	23		
A- 248	53	37	10	19	\$1.3	30.6	20.1	પ્રક્ર	2.51	1.51	, 24				
A- 247	29	43.5	27.5	38	43.0	24.0	25.0	sc	2.15	1.10	20	-	·		
A- 248	57	12.5	20.5	38	15.2	30.1	45.1	CB	2.74	1.40	29				
B- 301	55.5	31	12.5	38	58.2	30.8	27.4	HL.	2.58	1.58	22.5	+	_		
B- 302	38	51	. 11	.38	45.1	25.1	20.3	SC	2.13	1.66	20.5				
B- 303	\$3	30	17	38	61.3	29.9	31.4	сн — ян	2.13	1.49	25.8	-	-		
B- 304	30	55	14	9.5	49.2	25.3	23.9	sc	2.71	1.63	19.0	_	-		
B 305	55	22	23	38	45.0	28.4	19.5	sc-sx	2.71	1.54	19.7	1.5	20		
B- 306	44	39	17	38	60.0	29.8	30.2	ĊN	2.74	1.53	25.3	-	-		
B- 307	65	13	22	38	\$0.8	29.5	51.3	CH .	2.56	1,45	28.2	1.55	8		
B- 308	54	36	10	- 19	38.3	23.2	15.1	CL	2.58	1.73	18.9	-	-	-	
B- 309	51	11	38	15	18.1	30.1	48.0	68	2.33	1,49	26.1		-		
B- 310	43	52	5	9.5	58_D	30.7	25.3	SX	2.59	1.52	26.1	-	-		
B- 311	- 29	24	-17	53	54.4	34.1	30.3	GX	2.14	1.11	19.0	2.15	17	2.9 ×10-7	
B- 312	34	34	32	38	48.0	25.6	20.4	SC .	2.73	1.68	22.3	-		-	
B- 313	51	25	21	52	50.2	22.1	26.1	CH	2.13	1.61	22.1		-		
B- 314	42	30	28	19	49.3	24.9	24.4	sc	2.18	Ľ.ŤI	18.0	-	-		
B- 315	87	8	5	38	\$7.2	32.3	34.9	сн — хн	2.59	1.\$1	24.5	2.1	15	2.3 ×10-7	
B- 316	90.5	8.5	1	19	65.1	24.6	41.\$	CH	2.70	1.52	23.2		-		
8- 217	92	1	1	15	59.8	29.1	40.1	CH	2.59	1.56	20.\$	2.1	17		
B- 318	53.5	18.5	30	38	\$9.7	27.1	23.5	сн-ян	2.15	1.66	.16.0	-	-		
B 319	36	44	20	19	49.5	26.3	23.3	sc	2.67	1.59	22.8	-	-	-	
B- 320	52	- 38.5	9.5	19	56.7	30.2	26.5	ся-кн	2.69	1.52	25.4		-		
B- 321	10	18	42	50	51.5	21.9	29.9	CC	2.68	1.59	23.0				

Result of Laboratory Test for Core Material(2/2)

			ŀ
	SIMGE	LER	
	8t	Bilgisel loptak	.
	SM SM	Silili kum, kõtu dereceli kum,silt korisvalori.	
	STATE GC	Nilli çakılı fötü dereceli çakıt.kum, kit karışım jarı	
	Ш	botganik silt ve çok ince kum az pløst#	
	U	inorganık sill, kumlu silt. Ekstik Sillter,	
	sc	Kali kum, kidiù dereceli kum_kil kurisimkan.	
	GN GM	Sahli cakıl, kötü dereceli çakılı. hum, silt karışmı Kaşı	
	a	horganik kil;çakilb, kumlu kil; siltli kil; oz arta plastik.	
	CH	horganik kit: cok plastik (yağlı killer)	
	60.6C -	Kölü dereceli çakıl. küli çokıl karışımları	
	5777 SM. SC	Kali kum, stilt kum, kötu dereceli kum, sut-kit kerişimi,	
	GP.5P	Kötü dereceli çıkıl, kum karışımları.	
	СН. МН	Kills cokil lie inorganik shif, kumlu siil, elastik siltief.	
	<u>ст.</u> м	inorganis kil ile silli, ince kumlu az_ orta plostik, kil karışımları.	
	GH. SM	Silli çakıt ile kölü dereceli kum_silt karışımları	
	۵ ۳	Geres argshima kuyusu (dinek ainmanis)	
	# ,	Gereç atastirma kuyusu (öröek alinmis)	
		Gereç kuyusu kestti. (örnek abinmamis)	
		Gerec kuyusu kesiti. Gerec devom ediyor (dinek aliamiş)	
		· · ·	
1 40	Π	Yarma késíti (örnek alarmış)	
	1 <u></u> _		Į.
н		Gères alam sinuti.	
50	'n	.	-
			l
1	DEVLET	SU ISLERI GENEL MÜDÜRLÜĞÜ VI BILGE MÜDÜRLÜĞÜ	ł
	.: PL/	VI BACE MUDURIUGU Inlama sube Müdürlüğü JADA'NA	
		ARAJE VE HES PROJEST	ļ
	KESITLERI ve L	ABARATUWAR SCHADCLARI	1
	CIZEN" BEKIR S UGUA TARIH: 1988	PAFTA NO: 1	
	OLCEN: 1/10000	ARSIV NO:	1
	A _ GEÇİRİMSİZ KESİTLERİ ve L Varam v raradığı Andığı Gizen : Berir S üğur Yarih: 1988	GEREC ALANI HARITASI KUYU ABARATUVAR SONI CLARI DELETIM CANNER ON CLARI ONATUA HACAN HETI PRATA NO: 1	

			GEÇİRİ	MSIZ		-	ANM											
	Kuyu Derin	Örgöl Ağır	Sikisti		Lim	v que il eri		000 	e Boy		M		su is		3. 1	e optimus		Grup Sim-
10 10	113)	-11k 1917 3 6m7)	¥K max (gelsm ³)	¥6рt (Чь)	u	ы.	Pl	K (1 (1/4)	Kum (*/")	Calit (%)	لاسم 1/11	m opt (*/a)	000 1814	¥ 0 ₹	a v Laika	Geringen- lik cm/s	Boskk Oran: E min	gesi
A 201		2.742	1.860	19.30	u .	213	105	10	32	58	1 80	19	1.05	20:		6.4 = 107 .		6 9.60
202		2.693	3.582 -	19.60	448	334	ń.	445	435	12	+58	19						SM
263		2659	1804	10.23	384	21.2	۲17	23	55	22	1 80	10						SM -
29.4-		2763	1.754	17.00	360	249	91	22	56-5	ทร	175	11						sh
205		2615	1540	2400	49.5	292	242	265	37.5	34	154	2.	1.6	20	,			SH-SC
205		2565	168D	20 30	35.9	280	7.9	29	\$1	9	1.69	20						SH
207		2152	1670	20 10	442	20.1	15 T	24	31	3.9	167	20	<u> </u>					SH
208		2689	1 560	20060	36.6	76 1	10.5	30	54	1.6	166	20	11	20		65x 10-6		s M
209		2764	1681	20 50	x	x	x	28	59	13	j	20		·				.SH
230		2111	1.622	12 40	37.6	260		38	52	10	162	122						SHE
211		2 117	1722	10.90	301	255	76	33	55	11	172	18		<u> -</u>				SH
212		2215	1.518	23.80	105	183	12 3	48	46	6	161	11	120	10				5H
214 214		2 160	1.670	20 00	×	×	X	26	50 5	135	167	20	-				•	SH SH
215		2739	1 573	23 6 6	52.4	28.7	25.7	54	33	5	157	10	25	13	<u>}</u>	8.6 x 16-7		CH -M
217		2774	1850	1500	323	253	10	18	5.6	24	185	15	<u> </u>	h				5 M
				<u> </u>		ZA6	<u> </u>	22	30		1.61	20	1.25	12		· · · · · · · · · · · · · · · · · · ·		GC
218		2654	1.627	27.00	55.5 45.1	300	26,9	57	39	48	<u> </u>	27						 781
215		2642	<u> </u>	<u>↓</u>		┞─				t	152		{					S M
225		2 6 76	1556	22.25	61.5	304	11.5	40	46	1.5	155	22				<u> </u>		RR.
221	<u> </u>	2662	1 3 #3	36 20	520	19.9	18.1	54	25	11	136	30						
222		2 553	1.430	27.05	51.4	30.8	206		19		143	.27	1.7	24		5.9x10 ⁷ 33x10 ⁻⁷		<u>.</u> нн н1
223		2.704	1.688	25.00	49.8 65.0	24.2	18.1 20 8	46	27		159	23	<u> </u>	i				50
225		267)	1.591	2300	458	261	19.7	57	4.3		151	21	1.15	24			╞╾╧╴	CL-HL
226		2598	1600			┣		.53		<u> </u>	1.57	22				· · · · · ·	·i	ML
227		2549	1.5 7 0	22.60	\$1.8	265	15.1		45	<u> </u>		<u> </u>				····		·
228		2.714	1.627	20 50	30.1	265	11.6	28	33	47	1.62	20	1.10	18		2155	·	5 M 2 Z
2 29		2 675	1.818	13 20	483	26.2	21.9	<u>↓</u>	625	15	1.61	23	1.10	10				
230		2.10	1.612	12.10	49.2	24 9	24-3	53	26	21	141	22						ti
231	ļ	2.748	1426	25 80	\$1.5	35.6	263	50	21	2	1.82	25						HA
232		2.719	1.50 3	27.56	45.3	29.0	16.3	38	34	76	1.50	27						6H-SH
233		3687	1.665	1899	49.6	27.2	22.2	44	33.5	22.5	1.64	18	20	16				sc
234		2612	1.536	·	45.7			57	41	1	453	23				·····		HL
235		2.713	1.466	25.60	77.0	26.0	50.2	66.5	9.3	4	1.46	25	⁻			;		CH
236		2 5 6 5	1.388	2840	813		53.3		117	<u> `</u>	138	28	1.85	10		4.1x30 ⁷		
237		2 6 4 0	, . 1.656	19.60			13.3	64 -	26.5	35	1.65	19						CL_ML
238		2.755	1635	2140	69.8	302	906	21	23	34	3.63	21						80
(39		2639	1.64.6	18.70	4.00	259	22.9	02	25	1.2	144	18	235	19		21x10 -		<u>.</u>
241		1717	1.692	186.0	369	197	15.1	47	52	<u> 1</u>	1.67	18	<u> </u>			*	<u>-</u>	<u>sc</u>
142		2664	1.6 38	1840	54.0	14.7	21.8	47	44-5	8.5	1.93	10				مستيسمه		SH
24.3		2728	1.83.6	14.80	322	17.3	169	42	32	26	14J	24	137	13				<u>, ș (</u>
44	┝╍╧╍┥	2 739	1-67e	20 40	620	24.5	17.9	65	28.5	65	1.47	2,0		÷.				<u>, C L</u>
45		2.797	1843	15 50	×	×.	×	145	ž	415	141	.13	0.9	23		- 	•	SH 7
46	•	2658	1510	26.10	513	306	201	53	37	.4	151	24		÷			<i></i>	١Ħ
	.	2153	1708	20.30	690	24.0	220	17.	43.5	27.5	1.70	ŹØ	1.1	•				
		· · · · · ·							t								f	CH.

Elekten HIDROMETRIK ANALIZ Zoman olumokun Elseiseat 600st silasi 40a

HIDROMETRIK ANALIZ ZOMON OKUMONU 1954434915 all des CORas HDDs. 4Des

1. T fil (Plastik) - Sill (Plastikotmeyon) Jar Teslar 1 100

· • •

- 22

• 7

· .

· •

Elekte

Çok Plastik inorganil Killer CH

1-20

60 m

<u>\$0</u>

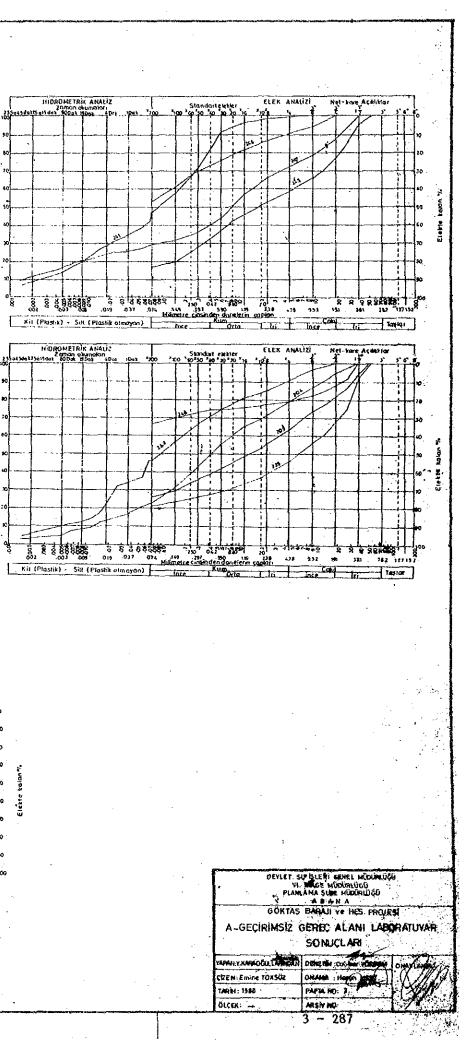
(ia) ENDIS

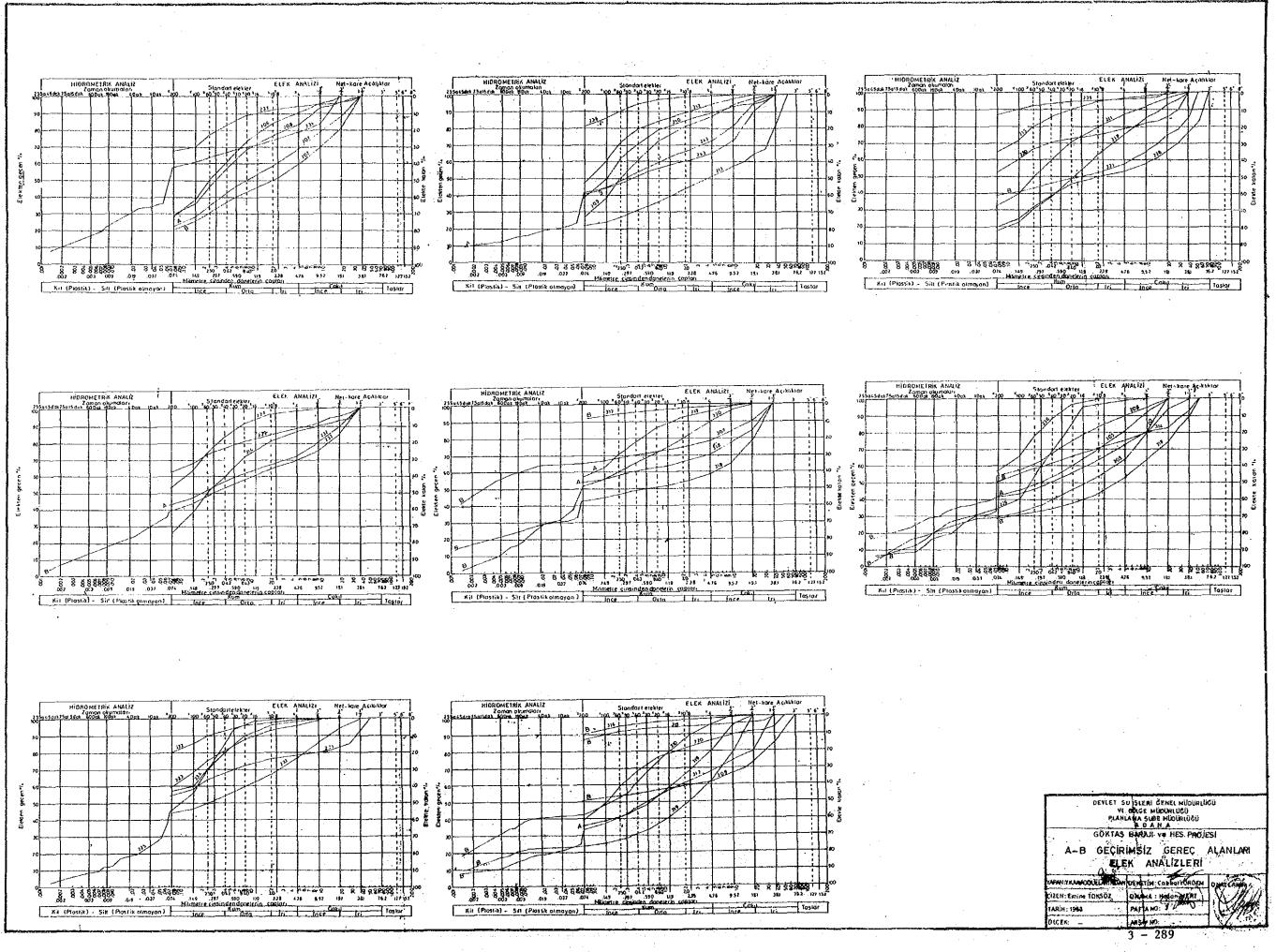
E e

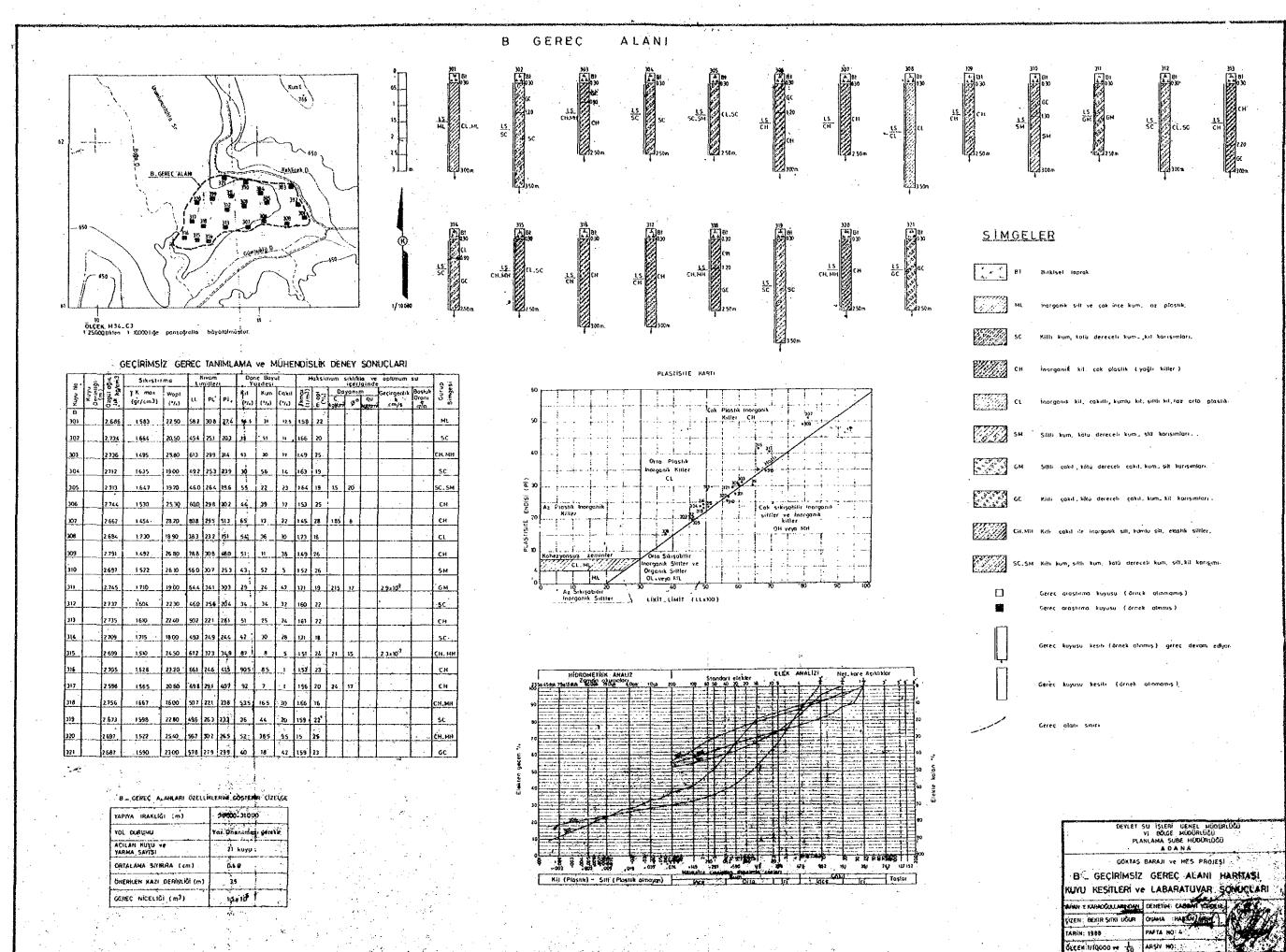
. . .

8

Az Plattik Inor egniktKillen

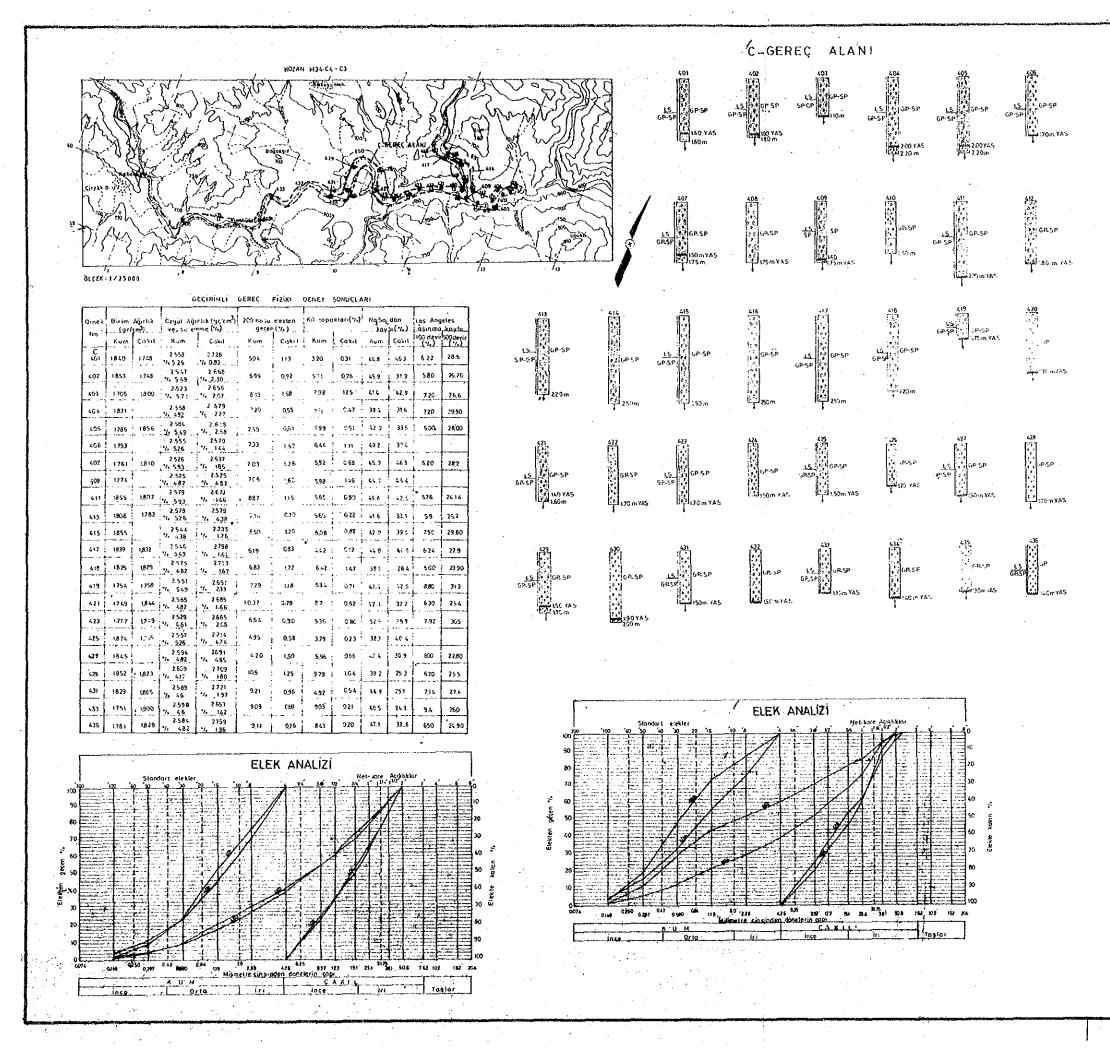

g-PLASTISITE KARTL

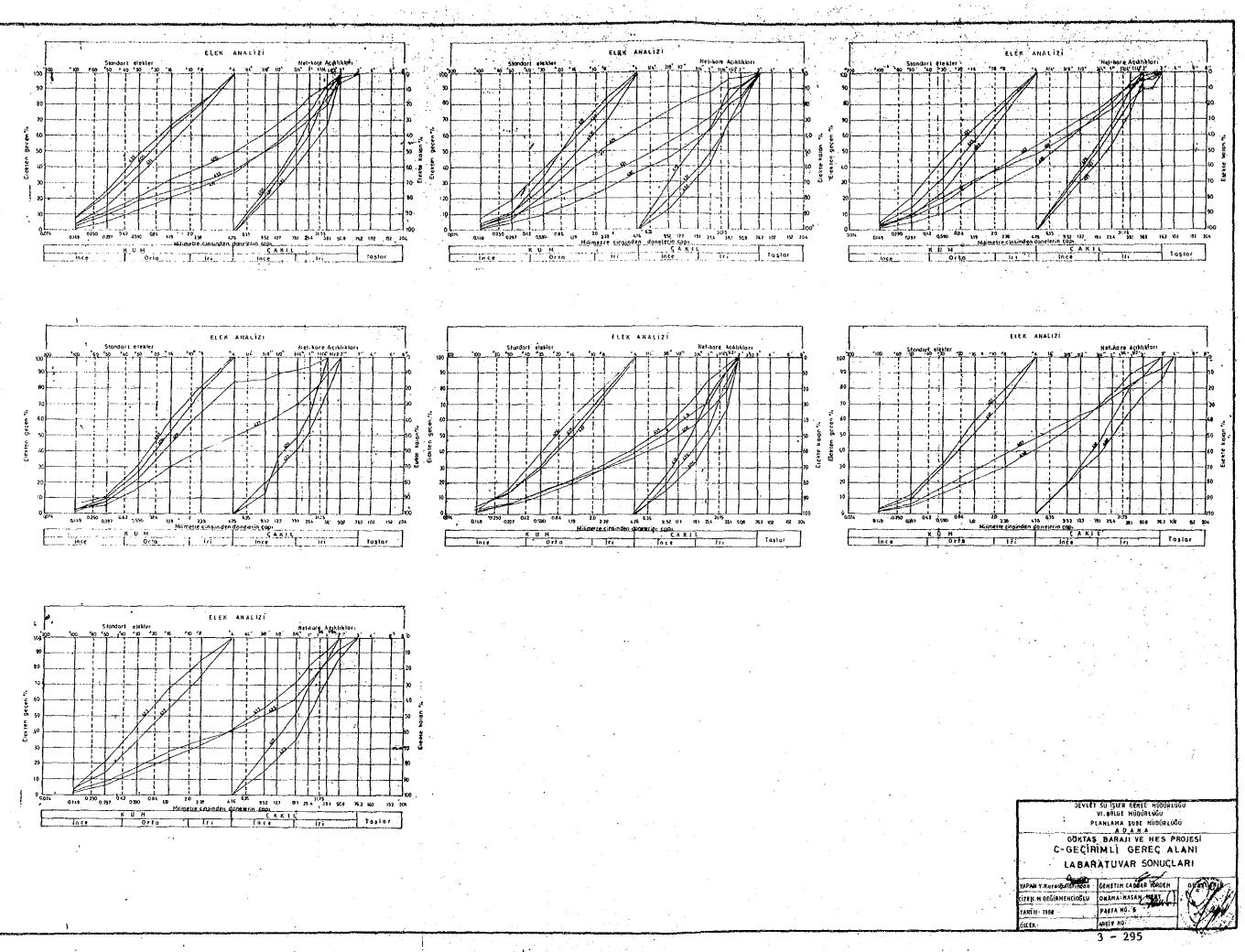

Orto Plasile Inorganik Killer CL


267

111-2

1





.

1 C - 2

SIMGELER GPSP Kölü dereceli çakıt-kum karışımları. SP.6P Koto dereceli kum-cakıl korişimları p Katu derecelennis kumlar, takilli kumlar: Ince daneteri az veya hic olmayan gereçler. Kölu derecelenmis çakıl, kum çakıl karisi veva his otniaven gerecle Gereç araştırma kuyusu (Ornev alınmıştır.) Hari tada Gerec araştırma kayosa (Graek alınmamıştır) lereç kuyusu kesitî (Örnek alinmamiş) Serec keyusu kesiti (Ornek obnimis.) feralty su dureyi. Seren deven ediyor SEREC ALANLARI ÖZELLIKLERINI GÖSTERIR ÇIZELGE A-GEREC ALANI YSPIYA IRAKLIĞI (m.) 30 660 - 32000 Var. Öngritmasi gerekir YAL DURUNU ACICAN KUYU VE YARMA SAVISÍ 36 Kuyu ORTALAMA SIYIRMA (cm.) MERINEN KATI DERINLIĞİ GEREC NiCELIGI(สื) 2×10⁵ DEVLET SU ISLERI GENEL MODORLUGU VI BOLGE MODIRLUGU PLAM ANĂ SUBE MUDURLUGU GOXJAS BARAJI VE HES PROJESI C-GEÇIRIMLI VE AGREGA GEREÇ ALANI. HARITASI. KUYU KESITLERI VE LABARATUVAR SONNELAR APANY Karos THATTACH DENETTH TABOAR YOR DEN ZENH DEĞIRMENCIDĞLU ONAMA HASAN THEAT ARIN 1988 PARTA NO. 5 OLCE K: 1/25.000 - 50 ARSIV NO: 3 - 293 . . .

