

Fig. II -2-2 Distribution Map of Geochemical Elements in Surmai Area (Ba, Mg, S)

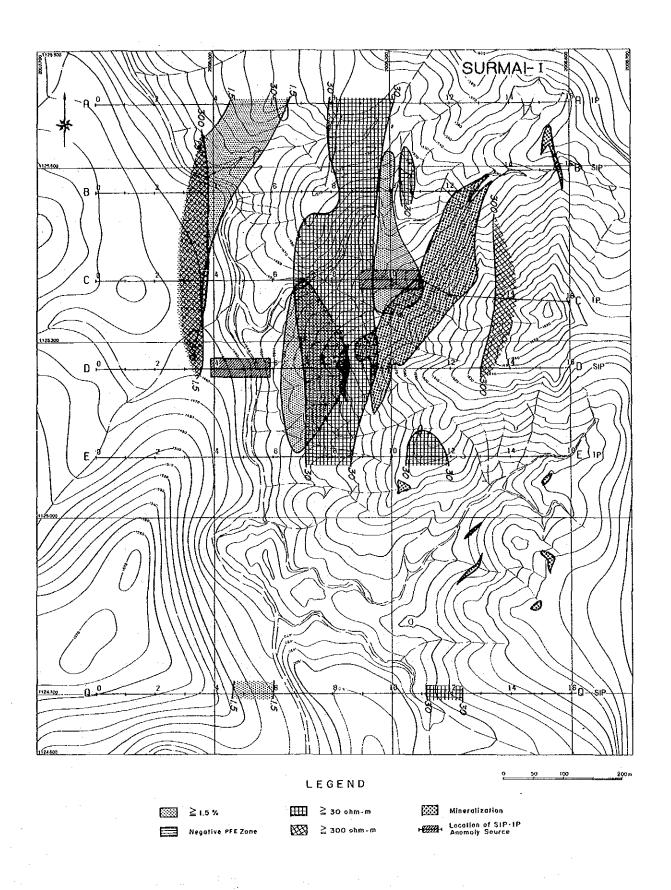
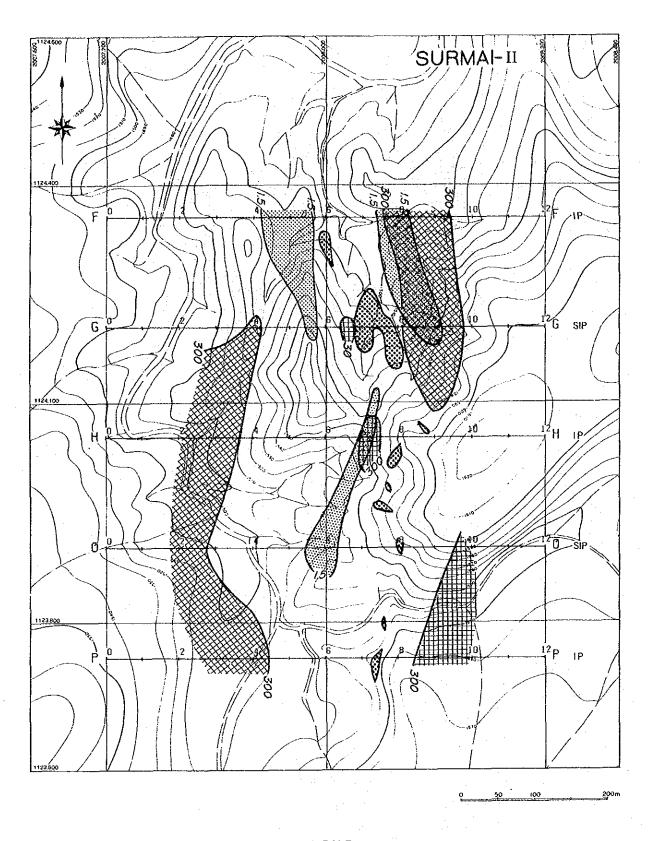



Fig. II-2-3 Interpretation Map of Geophysical Prospecting at Surmai-I Area

LEGEND

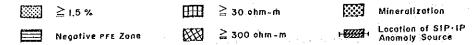


Fig. II-2-4 Interpretation Map of Geophysical Prospecting at Surmai-II Area

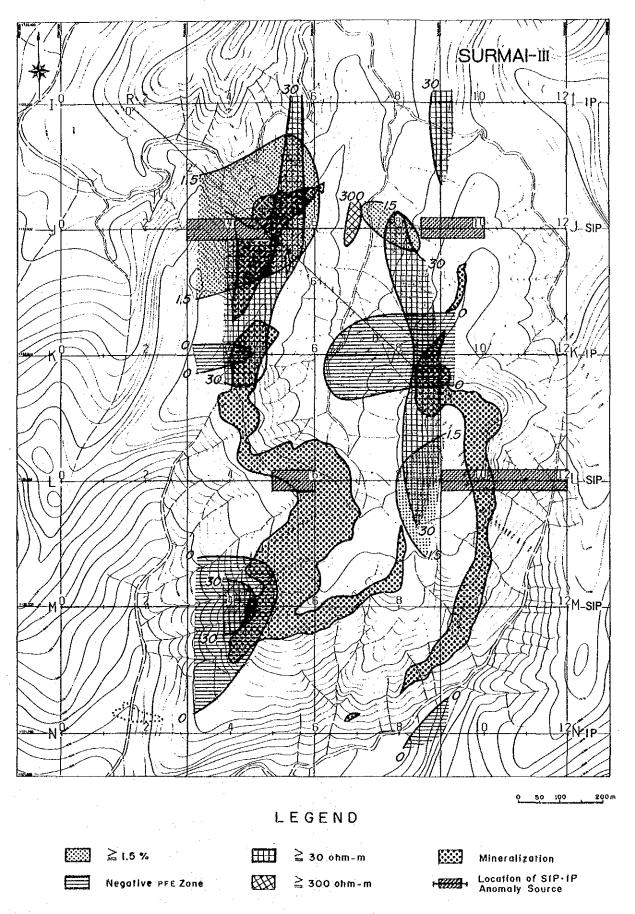


Fig. II-2-5 Interpretation Map of Geophysical Prospecting at Surmai-III Area

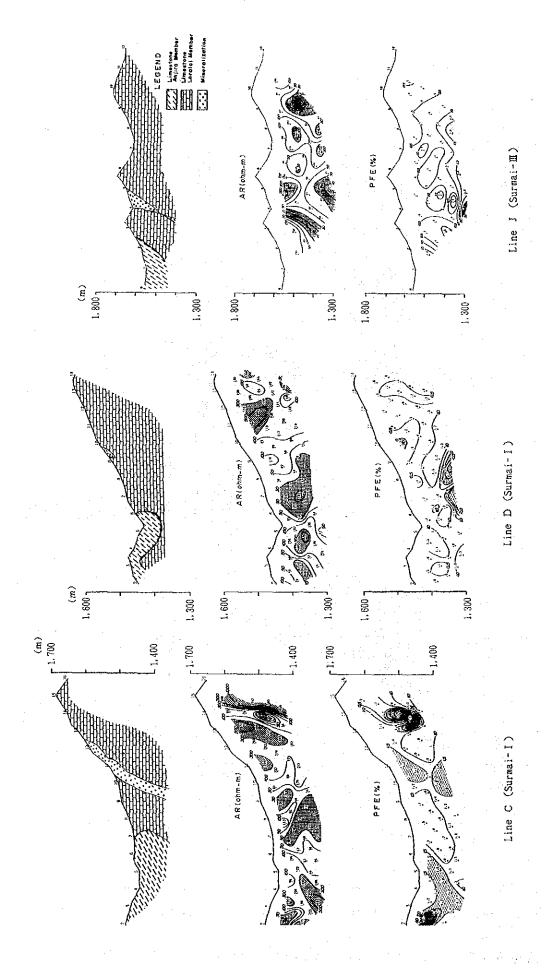


Fig. II-2-6 Interpretation Profiles of Geophysical Prospecting at Survey Line (Line C.D.J)

Fig. II-2-7 Interpretation Profiles of Geophysical Prospecting at Survey Line (Line L, S, T)

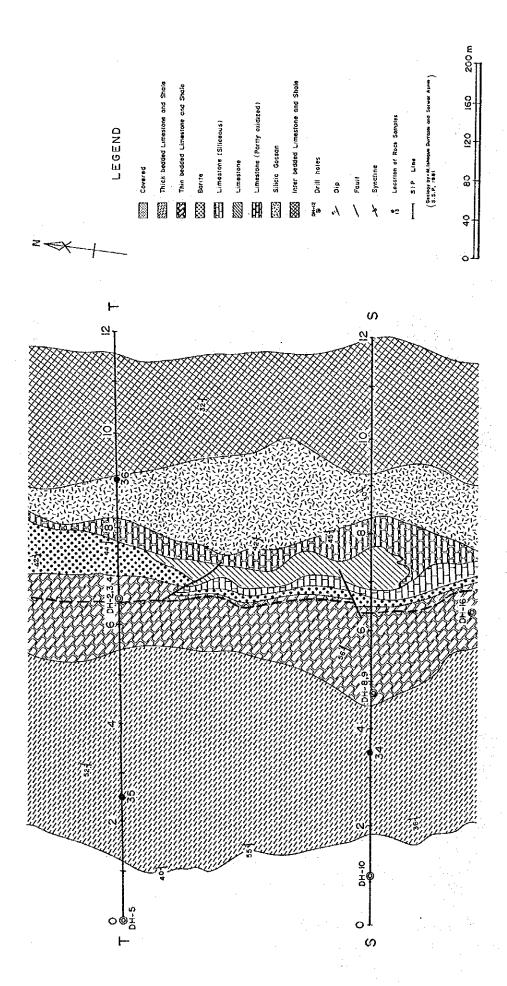


Fig. II-2-8 Location Map of Survey Lines in Gunga Mine Area

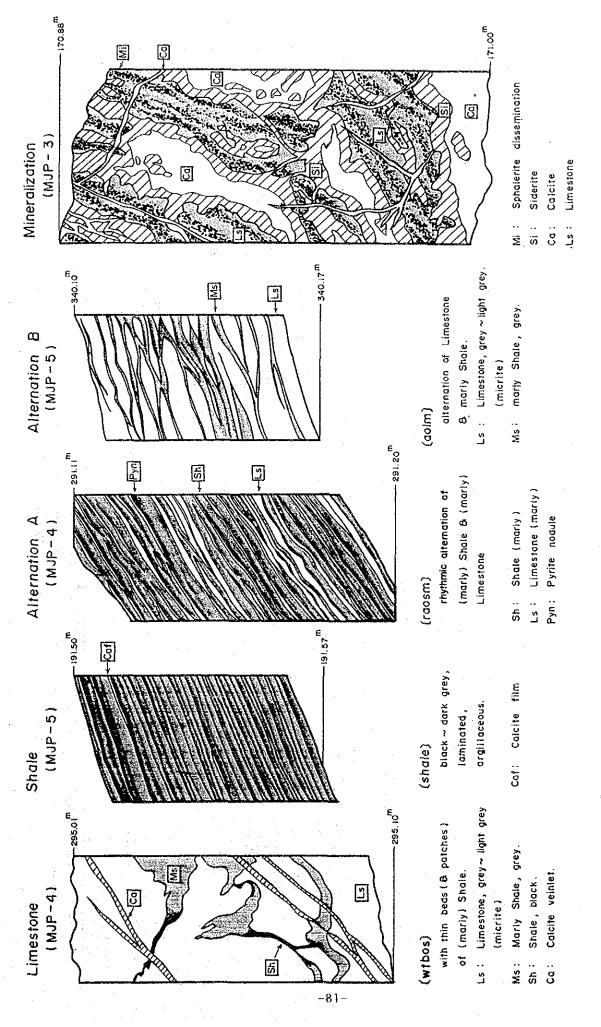



Fig. II-2-9 Sketch of Drilling Cores

Scale 1:1

-82-

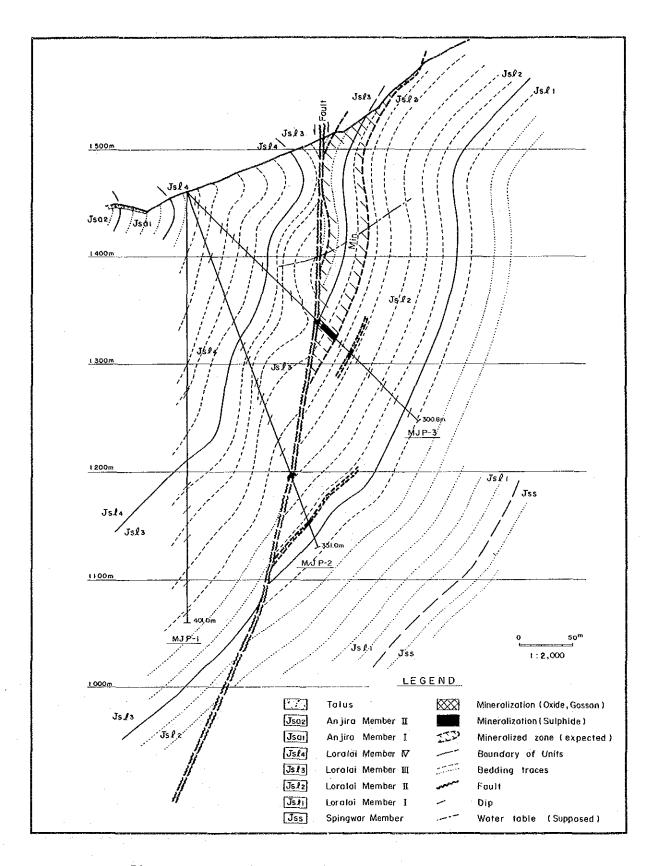


Fig. I-2-11 Geological Profile of Surmai-I (MJP-1, 2,3)

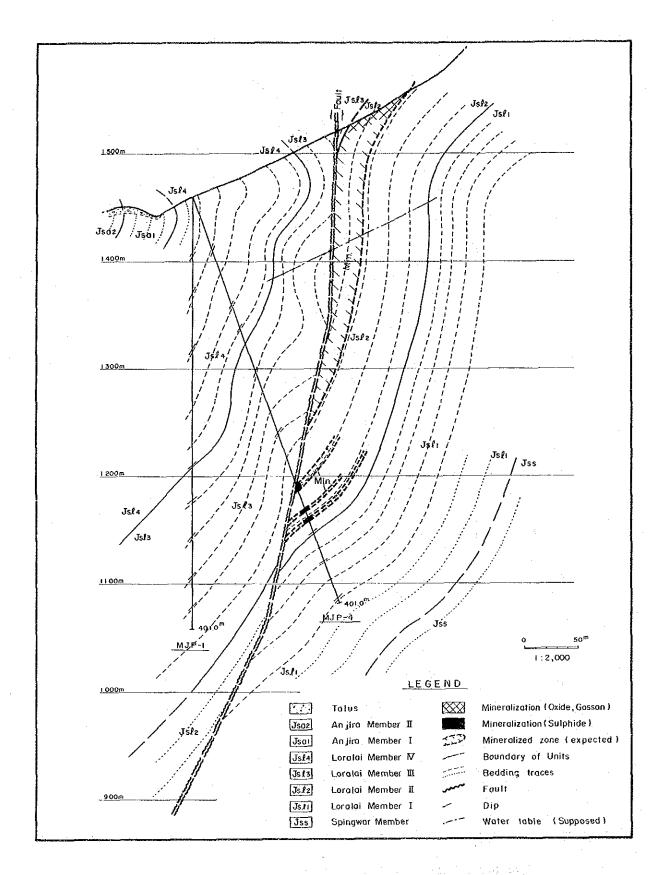


Fig. I-2-12 Geological Profile of Surmai-I (MJP-1,4)

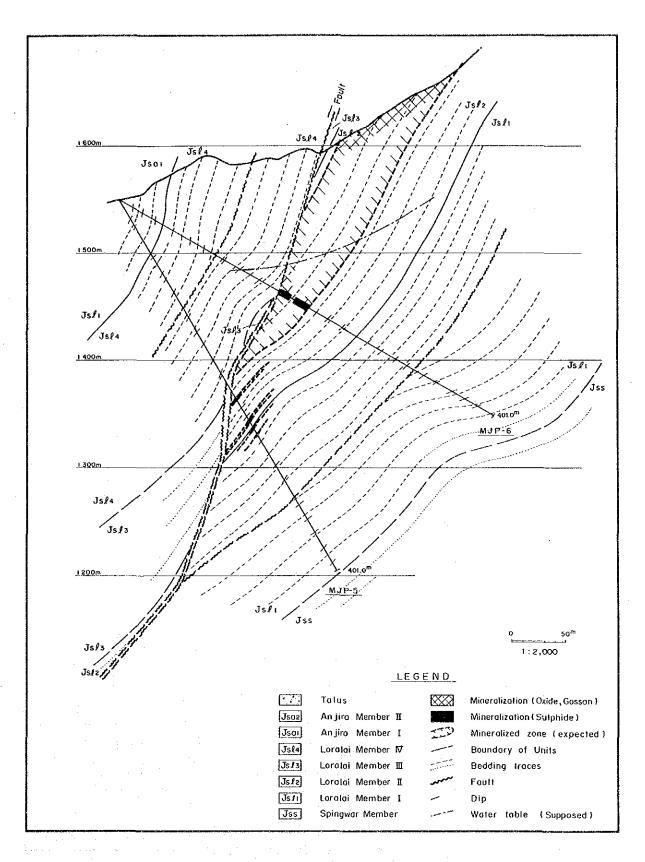


Fig. II-2-13 Geological profile of Surmai-II(MJP-5,6)

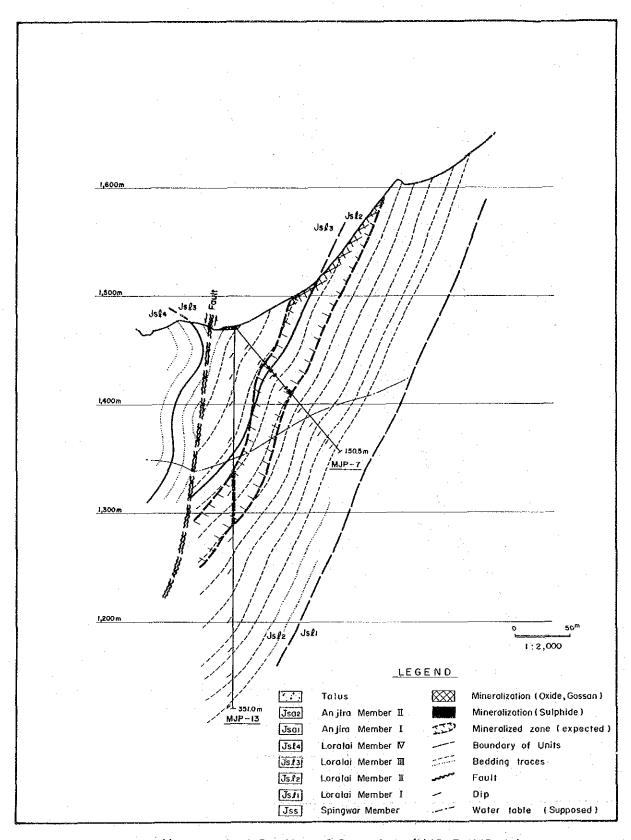


Fig. II-2-14 Geological Profile of Surmai-I (MJP-7, MJP-13)

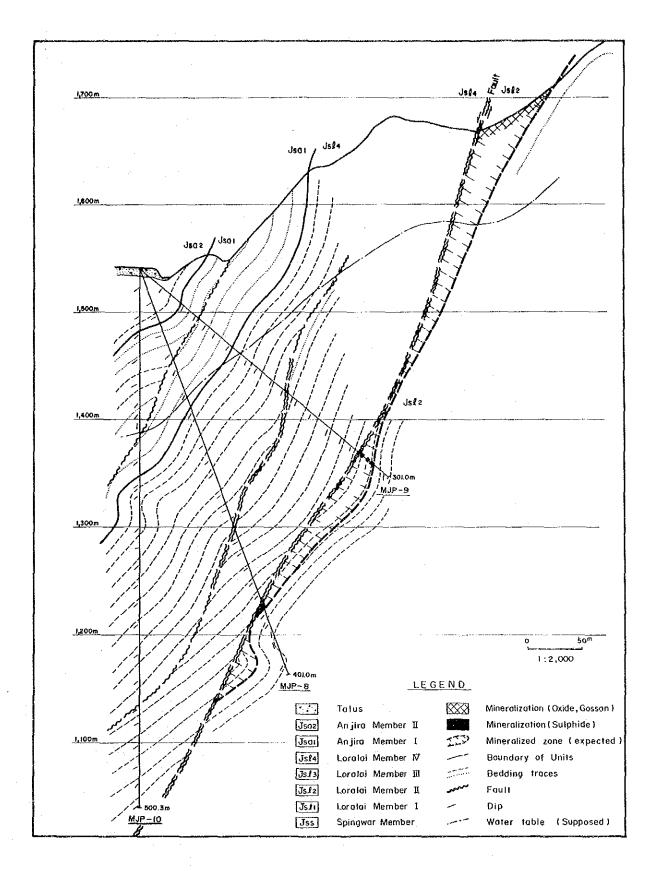


Fig. II-2-15 Geological Profile of Surmai-II (MJP-8,9,10)

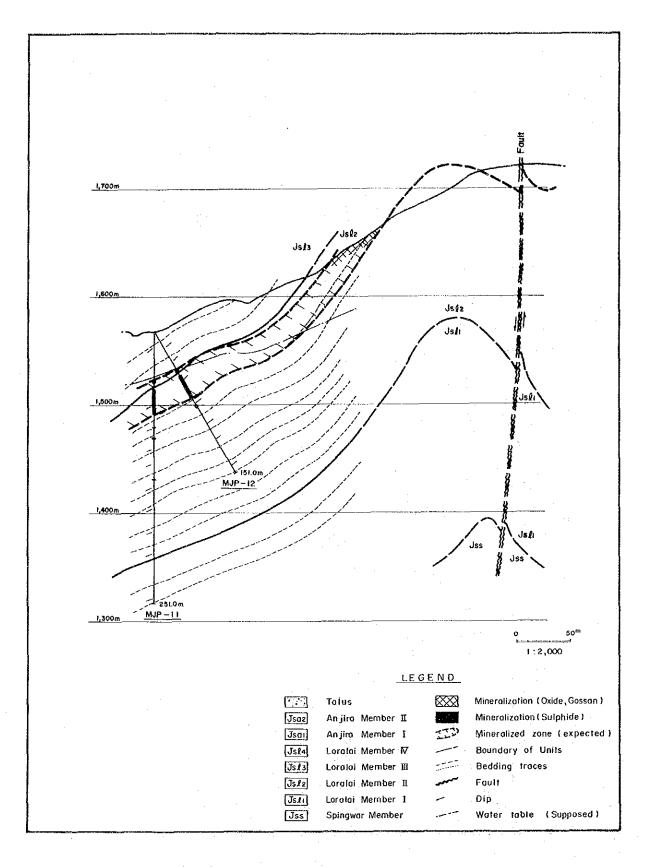


Fig. II-2-16 Geological Profile of Surmai-II (MJP-11,12)

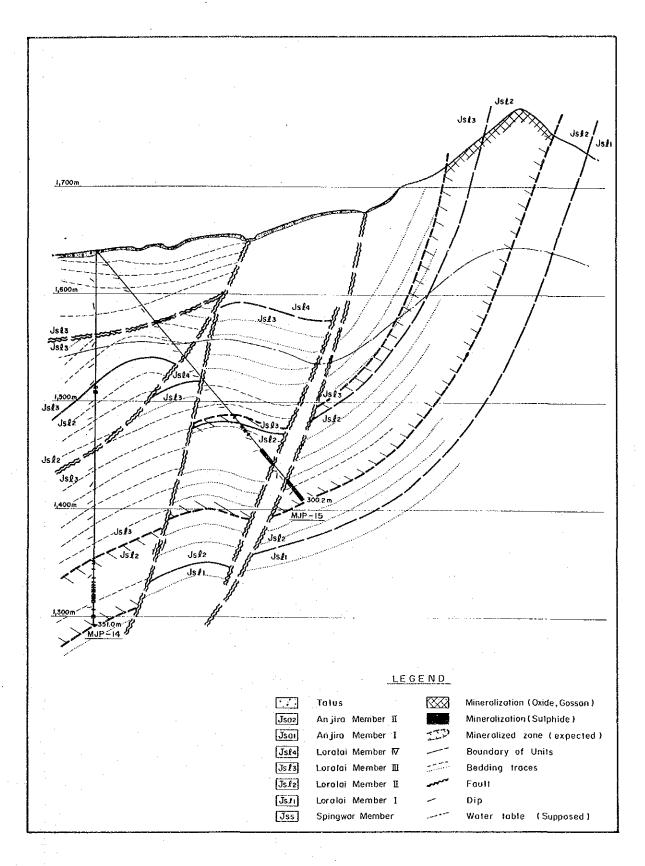


Fig. I-2-17 Geological Profile of Surmai-II (MJP-14,15)

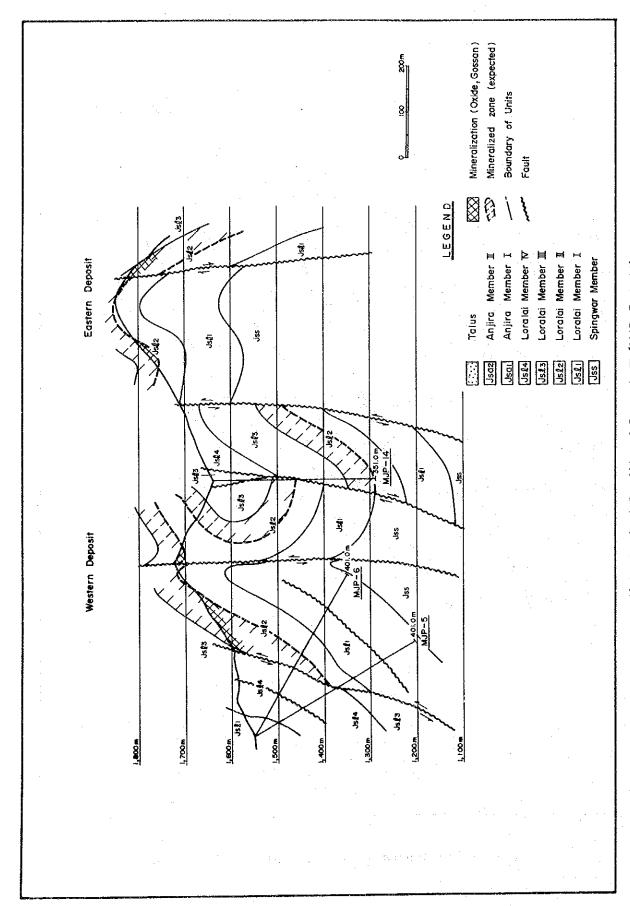


Fig. II-2-18 Geological Profile of Surmai-III (MJP-5 6,14)

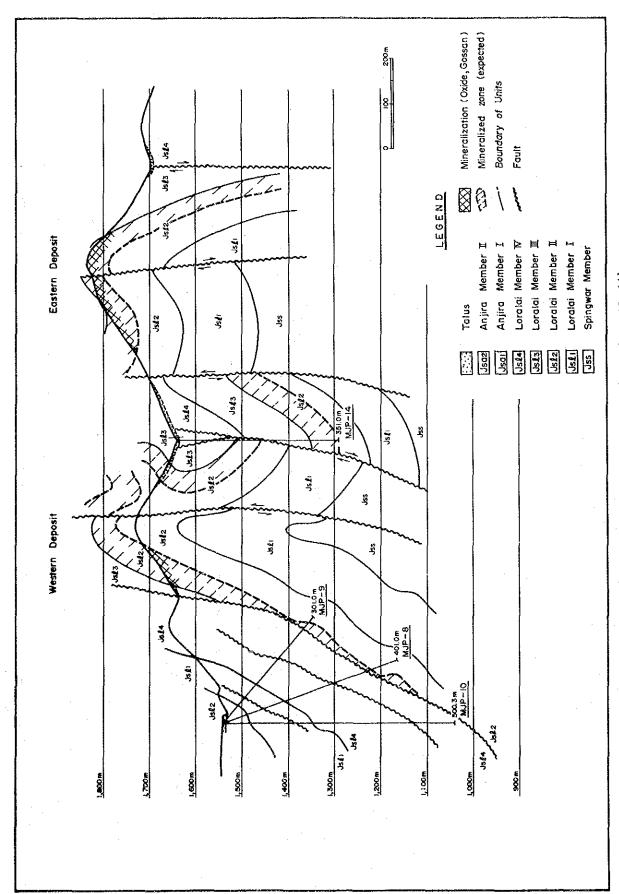


Fig. II-2-19 Geological Profile of Surmai-III (MJP-8,9,10,14)

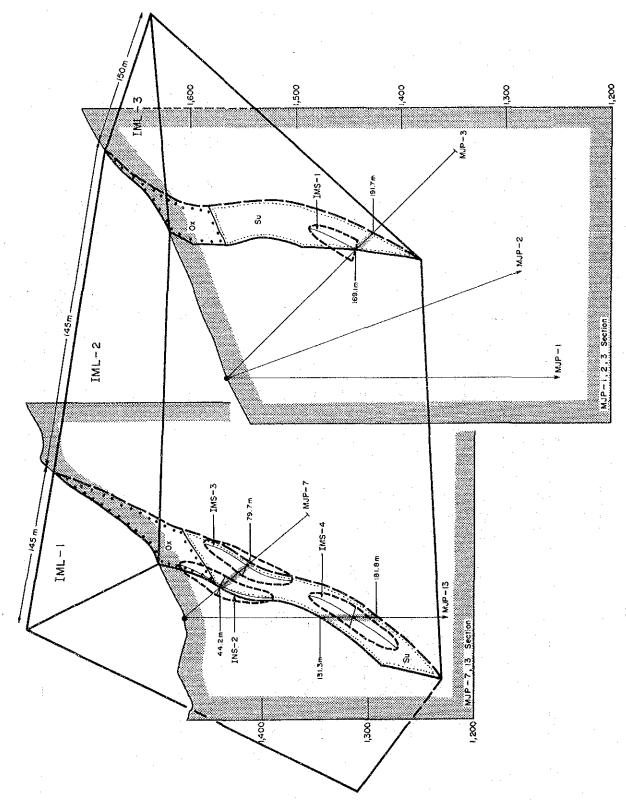


Fig. II-2-20 Schematic Illustration of Mining Blocks of Surmai-I Main Orebody

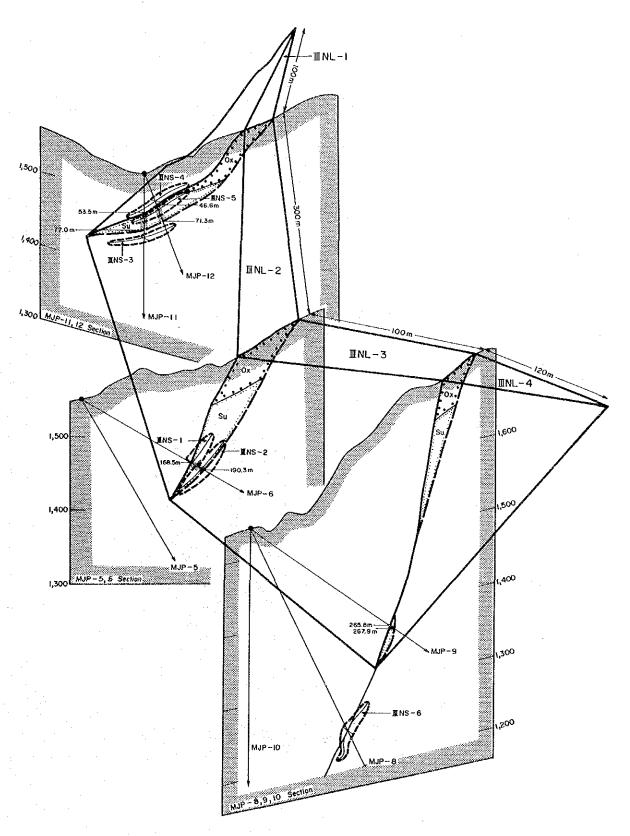


Fig. II-2-21 Schematic Illustration of Mining Blocks of Surmai-II Northern Orebody

Fig. II-2-22 Schematic Illustration of Mining Blocks of Surmai-Ⅲ W~E Deposit Area Orebody

PART III

CONCLUSIONS

AND

RECOMMENDATIONS

PART III CONCLUSIONS AND RECOMMENDATIONS

CHAPTER 1 CONCLUSIONS

- 1-1 Southern and Northern Khuzdar District
- 1-1-1 Geological Survey
- (1) The Jurassic limestone in this area is the Shirinab Formation which is of Early Jurassic age. This formation comprises, in ascending order, Spingwa Member consisting mainly of calcareous sandstone, Loralai Member composed of limestone-shale alternation and Anjira Member.
- (2) The Shirinab Formation is distributed largely in 11 zones, and the blocks making the zones extends in east-west direction protruding northward. The members have complex folded structure of anticlines and synclines.
- (3) Prosepects Malkhor, Ranj Laki, East Sekran and Sekran as well as Gunga and Surmai occur in a narrow zone extending 25 km in the central part. All of these showings crop out as gossan, but it is inferred that primary sulfide ores exist below the water table. All mineral showings are combinations of bedded mineralization replacing the host rock along the bedding planes and those filling the fissures and faults. Of the bedded mineralization, that of Gunga occur in the Anjira Member and those of other areas in Loralai Member, while the fissure-filling type occur throughout the Shirinab Formation. From the grade and size, the bedded type seems more promising.
- (4) There are four mineral showings in the Malkhor~Sekran mineralized zone. These all show evidences of intense mineralization and some parts appear to have promising lower portions. But the structures are very

complex and the subsurface continuity is not clear.

(5) The mineral showings in the Southern and Northern Khuzdar District are distributed around the ophiolite zone in the southwestern part of the Southern Khuzdar District in the Surmai~Sekran Zone. The Northern Khuzdar District lies to the north, outside, of this zone.

1-1-2 Geochemical Prospecting

(1) The results of geochemical prospecting show that elements Pb, Zn, Hg have high positive correlation to each other and form anomalous zones around gossan while Ba forms anomalous zone outside of the Pb, Zn, Hg zone. Lead, zinc, mercury anomalous zones of A-rank were found in Surmai Area and also in the vicinity of Malkhor—Sekran mineralized zone. The study of all geochemical data, obtained by this project clearly shows that the promising geochemical anomalies all exist in the Surmai—Sekran Zone and the vicinity of it, in the Southern Khuzdar District.

1-2 Surmai Area

1-2-1 Geological Survey

- (1) In this area, three members of the Shirinab Formation are distributed and the Loralai Member is divided into I \sim IV Units and the Anjira Member into three, I \sim III Units.
- (2) The structural trend of this area is north-south and the eastern half is the uplifted zone with anticlinal structure while the western part is the subsided zone with synclinal structure.
- (3) There are three mineral showings consisting of gossan, the weathered product of lead-zinc mineralization, along the uplifted zone. They are called Surmai-I, II, III from the north. These showings are considered to be of Mississippi Valley type mineralization. The mineralization of these showings is a combination of replacement along the bedding of host rock

and fissure filling. The bedded type is seen in Surmai-[, M and large-scale mineralization is developed in Loralai Units II and M. The fissure filling type is distributed in Surmai-II and in the vicinity of the bedded type, but they are of small scale and not promising.

1-2-2 Geochemical Prospecting

(1) The results of geochemical prospecting show high positive correlation among Pb, Zn, Hg in the high anomalies around gossan and with Ba on its outerside. This is similar to the results of the Southern and Northern Khuzdar District.

1-2-3 Geophysical Prospecting

- (1) Geophysical prospecting showed A-rank anomalies believed to be caused by sulfide minerals in the lower parts of the Main Orebody of Surmai-I and the Northern Orebody of West Deposit of Surmai-II.
- (2) The location of the mineralized zones confirmed by the drilling coincides with the geophysical (IP,SIP) PFE anomaly zones with the exception of the traverses where the electrode intervals were excessive.

1-2-4 Drilling

- (1) The horizons confirmed by the drilling range from the lower part of Unit-I of Loralai Member to the upper part Unit-II of Anjira Member. The lithology of these units is mainly limestone and shale. They form alternation of unit beds of $0.2\sim10\text{m}$ thickness. The structure of the survey area is complex with folds and faults of varying dimensions.
- (2) Of the 15 holes drilled during the project, lead-zinc sulfide mineralization was confirmed in 13 holes. The mineralized horizons are classified into three, namely A, B and C Horizons from the uppermost one. These horizons all occur in Units-II ~ III of Loralai Member. The mineralized zones are distributed in these horizons with varying vertical positions.

The mineralized zones which are evaluated to be promising from both size and grade occur in A-Horizon.

- (3) The mineralization is composed of powdery to granular sphalerite and galena which are disseminated replacing the limestone host rock and siderite and calcite veins and veinlets which intersect the disseminated ore. Minor amount of pyrite and chalcopyrite is associated. Microscopic studies confirmed the existence of lead-zinc carbonates and electrum and also although too minute to identify with certainly, indicated the probable existence of Pb-Bi and Pb-Sb silver minerals.
- (4) The level of the water table is estimated to be approximately 100 m below the surface. The boundary between the oxide and sulfide ores is inferred to be at approximately 50 m below the surface.
- 1 Main Orebody, Surmai-III Northern Orebody of West Deposit and Surmai-III Intermediate Orebody between West and East Deposits. These are possible reserves and the total reserves are 30,513,000t (Pb:0.66%, Zn:2.13%, Ag: 7.4 g/t) of which 22,700,000t are sulfide and the balance of 7,813,000t oxide ores. The reserves of the small blocks (sulfide) within the above are 870,000t (Pb:2.03%,Zn:6.51%,Ag:23.4g/t). These reserves and grades are considered to be insufficient for commercial development at current world metal market.
- (6) There are three promising zones which warrant further exploration. They are vicinity of Surmai-M East Deposit, the zone between Surmai-M West and East Deposits and area east of Surmai-H.

CHAPTER 2 RECOMMENDATIONS FOR THE FUTURE SURVEY

2-1 Southern and Northern Khuzdar District

It is desirable that exploration with emphasis on geophysical prospect-

ing and drilling be carried out in the Malkhor~Sekran mineralized zone that has high resource potential same as the Surmai Area. It is concluded that gold should be added to the objective of exploration.

2-2 Surmai Area

The economic feasibility of the reserves calculated on the basis of the work of the past three years and laid out in 1-2-4-(5), is cosidered to be low at present, but there are possibilities of more high grade ores being found by future prospecting. Therefore, it is desirable that drilling be continued in the mining blocks in order to ascertain the shape, grade, continuity and spatial extension of the mineralized zones and also that exploration with emphasis on drilling be carried out in the three zones with high resource potential, vicinity of Surmai-III East Deposit, the zone between Surmai-III West and East Deposits and area east of Surmai-II (Fig.2). It is concluded that gold should be added to the objective of exploration.

REFERENCES

 $\langle \dot{\gamma} \rangle$

References

[Geological and Geochemical Survey]

- Ahmed, W., et al. (1983): Brief report on evaluation of Gunga Pb-Zn-Ba deposit.

 PAK/79/016, Unpublished report. GSP.
- Asad, J. & Subhani, A. N., et al. (1986): Zinc-lead prospect of Surmai-Garri, Khuzdar,
 Baluchistan, GSP.
- Cowan, D. S. (1974): Deformation and metamorphismofthe Franciscan subduction zone complex, nortwest of pacheoPass, California, Geol. Soc. Am. Bull., 85, 1623-1634
- Durrazai, M. I., et al. (1983): Lead-zinc-barite deposit, Gunga district, Khuzdar, Baluchistan. GSP.
- Fatmi, A. N., et al. (1986): Stratigraphy of "Zidi formation" (Ferozabad group) and "Parh group" (Mona Jhal group) Khuzdar district, Baluchistan, Pakistan, GSP.
- Govett, G. J. S. (1983): Handbook of Exploration Geochemistry. Elsevier Scientific Publishing Company.
- GSP. (1964): Geological map of Pakistan. GSP.
- GSP (1977): Stratigraphy of Pakistan, GSP.
- GSP. (1979): Geodynamics of Pakistan. GSP.
- GSP. (1982): Tectonic map of Pakistan. GSP.
- Heyl, A. V. (1968): The Upper Mississippi Valley Base-Netal District. Ore Deposits of the United States, 1933-1967. vol-1, 431-459. USGS.
- Hunting Survey Co., Ltd. (1961): Reconnaissance geology of part of west Pakistan

 (A Colombo plan co-operative project). Published for the
 government of Pakistan by the government of Canada.
- Igarashi, T., Fujinuki, T. (1978): Autogenous Quartz in Carbonate Rocks., Studies on Geology. No. 15, 61-80
- Isihara, S. (1985): Mississippi Vally Type Deposit in Tennessee State. Chisitu News, vol. 375, P6-19. GSJ. (in Japanese)
- Jankovic, S. (1983): Final Report on exploration & preliminary evaluation, lead-zinc-barite deposits, Lasbela-Khuzdar district, Baluchistan.
 United Nations.
- Jankovic, S. (1984) : Preliminary evaluation of the lead-zinc-barite deposit at

Gunga,

Jenkyns, H. C. (1986) :Plelagic Environments in H. G. Reading ed., Sedimentary Environments and Facies, 343-398

JICA and NMAJ(1987): Report on the cooperative mineral exploration in the Khuzdar area of Baluchistan, the Islamic Republic of Pakistan, Phase I.

Lepeltier, C. (1969): Simplified statistical treatment of geochemical data by graphical representation. Econ. Geol. 64, 538-550.

MMAJ. (1974~1977): Report on The Overseas Geotectonic Survey (Central Iran).

MMAJ. (in Japanese)

MMAJ. (1975): Report on The Overseas Mining Circumstances. MMAJ. (in Japanese)
Nakajima, T. (1986~1987): Himalayan Sea and Its Disappearance(1~3). Chisitu News.
vol. 376, 387, 389. GSJ. (in Japanese)

OTCA. (1971): Report on The Plane of Mineral Resources Development in West Pakistan, OTCA. (in Japanese)

Rankama, K. K., and Sahama, T. G., (1950) : Geochemistry. Univ. Chicago Press, 912p.

Sellwood, B. W. (1986): Shallow-marine Carbonate Environments., ibid., 283-342.

Sinclair, A. J. (1974) :Serection of Threshold Values in Geochemical Data Using Probability Graphs. J. Geoch. Explor. 3, 129-149.

TAGCJ. (1987) : Chigaku jiten(Geological Glossary, in Japanese)

TAO. (1988) : Rika nenpyo(Chronogical Scientific Tables, in Japanese)

Tucker, M. E. (1981): Limestone, in SedimentaryPetrology an Introduction., 96-157
United Nations(1984): Strengthening the Geological Survey of Pakistan. United
Nations,

Vredenburg, E. W. (1909): Report on the goelogy of Sarawan, Jhalwan, Makran and the State of Lasbela. Ibid., Recs., v. 38, pt. 3, 189-215.

Williams, M. D. (1959): Stratigraphy of the Lower Indus Basin, West Pakistan. World Petroleum Cong., 5th, New York, Proc., sec. 1, Paper 19, 377-390.

GSJ : Geological Survey of Japan

GSP : Geological Survey of Pakistan

JICA: Japan International Coperation Agency

MMAJ: Netal Mining Agency of Japan

OTCA: Overseas Technical Cooperation Agency

TAGCJ: The Association for the Geological Collaboration in Japan

TAO : Tokyo Astoronomical Observatory

USGS: United States Geological Survey

APPENDICES

App. 1 Microscopic Observation of Thin Section of Surthern Khuzdar District

Sample			Rock	Allochems	Orthochems	
No.	Locality	Name	Facies	/Grain	/Matrix	Unit
				bioclasts,		
Λ-2	Sur- I	Ls.	biomicrite	gastropd, d:1mm,	micrite.	An-I
				ooids, bioclasts.		
λ-20	Sur-II	Ls.	oomicrite.	limo, d:0. 2mm.	micrite>sparite	Lo- II
			:	bioclasts.		
A-23	Sur-II	Ls.	biomicrite	bivalve.d: #1mm.	micrite.	Lo- II
			limy		fine cal, clay,	
A-37	Sur- I	S. s.	sandstone	qz, d:0.1mm.	opaque min.	Sp
			limy shale			
A-38	Sur- I	Sh.	(siltstone)	fine qz, cal.	clay, dolc.	Lo- I
				bioclasts.d:1mm.		
B-3	Sur-II	Ls.	biomicrite	sparry cal.	micrite.	Lo-IV
				bioclasts, d:1mm.		
B-5	Sur-II	Ls.	biomicrite	sparry cal.	micrite.	Lo-III
		:	cherty	radioraria.d:0.1mm.	micrite, limo,	
B-10	Sur-III	Ls.	biomicrite	qz, cal.	dolc.	An-I
			cherty	radioraria, d:0.1mm.	micrite, limo,	
B-21	Sur II ~ III	Ls.	biomicrite	qz, cal.	dolc.	Λn-II
			cherty	radioraria, d:0, 1mm.	micrite.limo,	
B-22	Sur II ~ III	Sh.	biomicrite	qz, cal.	clay, dolc.	An- II
B-35	Sur- I	Ls.	oosparite	ooids, d:0.4mm.	sparite.	An-III
				bioclasts, d:lmm,		
c-7	Sur-II	Ls.	biomicrite	sparry cal.	micrite.	Lo-IV
				bioclasts.d:0.5mm.	micrite, dolc,	
D-1	Sur II ∼ II	Ls.	biomicrite	sparry cal.	opaque min.	Lo-III
				ooids, bioclasts.	·	
D-22	Sur-III	Ls.	oomicrite	d:0.3mm.micrite.	micrite, clay.	Lo-II
D-60	Sur-III	Ls.	oosparite	ooids, d:0, 3mm.	sparite.	Lo-II
				ooids d:0,2mm.	micrite.,	
E-9	Sur- I	Ls.	oomicrite	sparry cal.	dolc.	Lo-III
				bioclasts.d:lmm.		
E-12	Sur- I	Ls.	biomicrite	sparry cal.	micrite.	Lo-IV
E-22	Sur- I	Ls.	oosparite	ooids d:0.2mm	sparite.	Lo- II
				(sparry cal vein		
E-23	Sur- I	Ls.	micrite	wd:0.3mm)	micrite.	Lo- I
				bioclasts.d:0.5mm.		
E-48	Sur- I	Ls.	biomicrite	gastropod.	micrite.	Lo-IV
				1 **	J	

Sur:Surmai

d:diameter

min:mineral

An:Anjira

Ls.:Limestone

limo:limonite

dolc:dolomitic

Lo:Loralai

Sh.:Shale

qz:quartz

S.s.:Sandstone

cal:calcite

Sp:Spingwar

App. 2 Microscopic Observation of Thin Section of Northern Khuzdar District

Sample	Locality		Rock	Allochems	Orthochems	
No,	(Sheet No)	Name	Facies	/Grain	/Matrix	Unit.
26-40	34/8	Ls.	Oomicrite	ooids, bioclasts.	micrite.	An
			,	Sparry calcite.		
2G-113	34/8	Ļs.	Sparite	Fe-oxide.	·	An
				ooids : 0.1mm		÷
2G-169	34L/11	Ls.	oomicrite	bioclasts:0.35.	micrite/sparite.	Lo
				bioclasts :0.53mm		
2G-171	34L/11	Ls	biomicrite	calcite vein, Fe-oxide	micrite	Lo
2G-172	34L/11	Ls.	sparite -	sparry cal(0.06mm).	sparite)micrite	Lo
	-			bioclasts.		
2G-176	34L/11	Ls.	biomicrite	hematite	micrite.	Lo
	-			bioclasts.		
2G-191	34/8	Sh.	limy shale	fine Quartz, cal.	clay	An
				Quartz.d:0.1mm.		
2G-192	34/8	Ss.	sandston	hematite, mica.		Sp
· ·			cherty	bioclast.d:lam.		
2F- 26	34/8	Go.	gossan	opaque mineral.	micrite	Lo
				bioclast.d:0.1mm.		
2F-160	34L/11	Ls.	biomicrite	opaque mineral	micrite	Lo
			V ₂ :	ooids, d:0. 2mm		
2F-173	34L/11	Ls.	oomicrite	ooiclast,	micrite.	An
TY-880				hornblende		
11-001		Dio.	diorite	pyroxen, biotite.	carbonate.	

Sur :Surmai

An:Anjira

d :diamater

Ls. :Limestone

Lo:Loralai

cal:calcite

Sh. :Shale

Sp:Spingwar

Go :gossan

S. s. : Sandstone

Whole Rock Composition of the Carbonate Rocks in Southern Kuzdar District App. 3

	-	9				
	Remark	Lora-1, Shale	13 Anji-I, Ls	98.16 Lora-f, Ls	Lora-W, Ls	44 Lora-1, Ls
Total	%	99.94	99.13	98.16	97.44	98.44
Ba	ndd	180	190	0.2	09	40
Fe0	96	1.23	1.81	0.29	39 0.60	\$5 0.14
TOI	96	38	29.96	41.22	39, 39	42.86
Mn0	%		2 0.10 0.11	0.08	0.08	0.01
P205	36	2.12 0.45 0.17 0.05	0.10	0.04	0.05 0.06 0.08	0.14 0.01 0.05 0.01
$Ti0_2$	3 €	0.45	0.22	0.01		0.01
Na ₂ O K ₂ O TiO ₂ P ₂ O ₅ MnO	% 2	2.12	0.38 0.81	0.08	0.21	0.14
Na ₂ 0	>₹	0.14	0.38	0.02	0.04	0.02
Ca0	%	26. 22	34.57	50.59	47.51	52.72
Mg0	≫ ₹	1.67	1.30	0.42	0.53	0.35
Fe203	34	2.89	1.17	0.88	0.99	0.14
A1203	ж	10.74	3.94	0.29	1.14	0.51
SiO2	%	27.86	24.76	4.23	6.83	1.66
Sample	NO.	A - 38	B - 21	25 - 0	E - 12	H - 148

Whole Rock Compositions of the Carbonate Rocks in Northen Khuzdar District

	Remark	Lora, Ls	99.86 Anji, Ls	Lora, Ls	99. 53 Anji, Sh	5.15 0.06 0.02 100.05 Spin, Ss
Total.	%	1 100.25	99.86	99.94	99. 53	100.05
Ba	mdď	<0.01	0.04	<0.01	0.01	0.02
le0	%	0.38	0.25	0.22	0.67	0.06
101	3 6	41.12	41.96	43.34	24.38	5.15
MnO	96	0.04	0.14	0.01	0.03	3, 73 0, 27 2, 18 0, 34 0, 19 0, 03
TiOz PzOs Mn0	26	0.11	0.12	0.10	0.15	0.19
TiOz	%	0.05	0.03	0.02	0.43	0.34
K20	96	1.40	1.13	1.26	2.80	2.18
CaO Na20 K20	%	0.26	0.30	0.27	0.51	0.27
Ca0	%	48.73	55 50. 22 0. 30 1. 13 0. 03 0. 12 0. 14 41. 96 0. 25 0. 04	50.49	24.31	3, 73
NgO.	35	0.78	0.55	1.70	1.82	0.50
Fe203	96	0.89	1.08	0.52	2.36	1.46
A1203	%	1.53	0.66	0.42	7.62	6.06
SiO2	≫	4.92	3.34	1, 55	34.36	80.02
Sample	NO.	2F-160	26- 40	26-172	26-191	26-192

Rock SiO ₂ Al ₂ O ₃ Fe ₂ O ₃ NgO CaO Na ₂ O K ₂ O TiO ₂ P ₂ O ₅ MnO LOI FeO Ba Total Remark Ls 5.2 0.8 0.5 0.05 0.3 0.07 0.09 0.05 42.4 ** 99.95 ** Ss 78.7 4.8 1.1 1.2 5.5 0.5 1.3 0.25 0.04 0.01 6.6 0.3 100.30 *² Pel 16.7 2.8 2.6 2.2 1.6 3.6 0.77 0.16 0.1 6.3 3.7 99.43 *³	verage	Composi	werage Composition of Mainl	Mainly	y Sedime	imentary Rocks		in the	the World (Reference)	(Refer	(epuce)					
ane % % % % % % % % % % % % % % % % % % %	Rock	SiO2	A1203	Fe ₂ 0 ₃	Ngo	CaO	Na ₂ 0	L	$Ti0_2$	P 205	MnO	107	Fe0	Ва	Total	
5.2 0.8 0.5 0.05 42.6 0.05 0.3 0.07 0.09 0.05 42.4 ** 99.96 78.7 4.8 1.1 1.2 5.5 0.5 1.3 0.25 0.04 0.01 6.6 0.3 100.30 1 58.9 16.7 2.8 2.6 2.2 1.6 3.6 0.77 0.16 0.1 6.3 3.7 99.43	Name	%	%	≫	<i>ح</i> د	%	≥ €		<i>></i> €	%	%	≥ ₹	9€	mdd	%	Remark
1 78.7 4.8 1.1 1.2 5.5 10.5 1.3 0.25 0.04 0.01 6.6 0.3 100.30 1 58.9 16.7 2.8 2.6 2.2 1.6 3.6 0.77 0.16 0.1 6.3 3.7 99.43	L'S	5.5	0.8	0.5	0.05	42.6	0.05	0,3	0.07	0.09	0.05	42.4	*		98.66	*
1 58.9 16.7 2.8 2.6 2.2 1.6 3.6 0.77 0.16 0.1 6.3 3.7 99.43	Ss	78.7	4.8	1:1	1.2	5.5	0.5	1.3	0.25	0.04	0.01	١ ا	0.3		100.30	*2
	Pel	58.9	16.7	2.8	ŀ	2.2	1.6	Ι-,	0.77	0.16	0.1	6	ა. .~			*3

*1 :Average of 345 Samples, Clarke (Chronological Scientific Tables, 1986)

*2 :Average of 253 Samples, Clarke (Chronological Scientific Tables, 1986)

*3 :Average of 277 Samples, Wedepohl (Chronological Scientific Tables, 1986)

** :Contained in Fe₂0₃ Unit of Loralai Member Pelitic Rock Limestone Sandstone Lora-i Ls Ss Pel

App. 5 Chemical Analyses of Gossan Samples of Southern Khuzdar District and Surmai Area

			·	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
Sample No.	Formation	Locality	Pb (%)	Zn (%)	Ba (%)	Ag (g/T)
A - 6	Loralai - II	Surmai III	0.18	0. 42	0. 02	3. 3
A - 10	Loralai II	Surmai II	0.48	4. 92	<0.01	6. 5
A - 11	Loralai - II	Surmai III	0. 34	1, 22	0.01	3. 9
A - 33	Loralai - II	Surmai II	0.09	2. 77	0. 01	1. 9
B ~ 13	Loralai - II	Surmai III	0. 19	2, 32	<0.01	2. 3
C - 10	Loralai - IV	Surmai II	2. 90	2. 66	<0.01	24. 0
C - 15	Loralai - IV	Surmai II	0. 57	4. 60	<0.01	12. 0
C - 20	Anjira - I	Surmai II	1.63	1. 92	0. 02	8. 0
D - 29	Loralai - II	Surmai III	0, 93	1. 30	<0.01	33. 0
D - 41	Loralai - II	Surmai M	0. 63	3. 05	0. 02	8. 5
D - 55	Loralai - II	Surmai IV	tr	tr	<0.01	5. 5
D - 68	Loralai II	Surmai III	1, 34	0. 35	0. 02	21. 5
E - 5	Loralai - II	Surmai I	0. 57	1. 59	<0.01	6. 5
E - 8	Loralai - II	Surmai I	0. 23	5, 64	0. 01	4. 1
E - 29	Loralai - III	Surmai I	0. 26	0.13	<0.01	3. 3
E - 35	Loralai - I	Surmai I	0.13	<0. 01	<0. 01	2. 3
E - 42	Loralai I	Surmai I	<0.01	0.43	<0.01	1. 7
K - 12	Loralai	Sekran	0. 02	3. 15	<0.01	1.7
M - 1	Loralai	Nalkhor	0. 02	0. 59	<0. 01	2. 3
N - 14	Loralai	Ranj Laki	0.30	2. 61	<0.01	7. 0

Ditection Limit : Pb 0.01%, Zn 0.01%, Ba 0.01%, Ag 0.1g/t Analytical method : Atomic Absorption and Common Assey

6. X-ray Diffraction Analyses of Gossan Samples of Southern Khuzdar District and Surmai Area (1)

	and Su	I IIId	I AI	ψa	<u>\ </u>																
Sample	Locality						Ж	í	n	e	Γ	a .	l s		T				,		Note
No.	Locality	Ca	Q	Do	Ka	Se	E	Ch	Fe	Ge	Fl	Sp	111	lle	Es	Gy	Cr	Ce	Sm	Mg	
A - 2	Surmai-I	(i)	•																		Ls.,Anj-i
A - 6	Surmai-L	Δ			<u> </u>				0	•											Ore.(l.o-1)
A - 10	Surmai-D		(O)		<u> </u>				0	0					ļ.,						0re,(l.o-1)
A = 11	Surmai-E	0	0						0	0											0re, (l.o-1)
A - 20	Surmai-1	0	•		?					Δ							λ				Ls.,Lo-I
A - 23	Surmai-1	0	•	?	<u> </u>										<u> </u>						l.s.,Lo-I
A - 26	Surmai-1~1	0	0	?	Δ				0												Ore,(Lo-1)
A - 33	Surmai-D	•	•	0					0	•											Ore,(Lo-1)
A - 35	Surmai-l	0	•																		Ls., Lo-i
A - 37	Surmai-l	0	0		Ω																S.s.Spi
A - 38	Surmai-l	0	0		Δ	Δ							<u> </u>		<u> </u>				<u> </u>		Ls.Lo-I
A - 40	Surmai-l	0	•	?						<u> </u>					<u> </u>		<u> </u>				ls.,lo-1
B - 3	Surmai-1	0		•								1									Ls.,Lo-li
B - 5	Surmai-1	0	•		Δ								:								Ls., Lo-I
B - 10	Surmai-E	©	•	Δ																	Ls., Anj-H
B - 13	Surmai-L	Δ	0	o					O	•											0re(Lo-1)
B - 21	Surmail~L	0	0	Δ	Δ		?														Ls. Anj-1
B - 22	Surmail-1	0	0	Δ	•	٠	?														Sh.Anj-1
B - 35	Surmai-l	0	•								-										Ls.,Anj-1
C - 5	Surmai-1	Δ	0						©	•											Ore(Anj-1)
C - 7	Surmai-1	0	0																		Ls.,Lo-N
C - 10	Surmai-1	Δ	(3)						0							ľ	:				Ore(Lo-li)
C - 15	Surmai-t	•	0						0				Δ								Ore(Lo-N)
C - 17	Surmai-I	Δ	0						0		:										Ore(Anj-1)
C - 20	Surmai-i	•	O						(<u>©</u>)	0					-						Ore(Anj-i)
D - 1	Surmail~1	0	•	Δ																	Ls.,Lo-I
D - 22	Surmai-1	0			Δ					1		Ī									Ls.,Lo-l
D - 27	Surmai-1								0	Δ			•		0						Ore(Lo-1)
D - 29	Surmai-1		Ō	_					0			-	Δ	О			-				0re(l.o-1)
D - 38	Surmai-1	0	0						Ō	0		!				!				!	0re(Lo-1)
D - 41	Surmai-1	Δ	0						(Ö)	0			1								0re(Lo-1)
D - 46	Surmai-1	?	<u>. </u>			<u> </u>		<u></u>	-	0	i					-		-			Ore(Lo-i)
D - 53	Surmai-1		Ŏ			-			 -	•	!		!		:			<u> </u>		-	Ore(Lo-1)
D - 55	Surmai-1	Δ				<u> </u>				O									-	\vdash	Orc(Lo-f)
D - 60	Surmai-1	(g)	<u>: </u>	. 🛆					, e		-	-	:		 		:				Ls.,Lo-i
D - 68	Surmai-I	•	(0)						0										İ		0rc(Lo-1)
E - 5	Surmai-1	•	Ŏ						0					•	<u> </u>					1	Ore(Lo-I)
E - 8	Surmai-l	?	0		-					0			1							1	Ore(l.o-1)
E - 9	Surmai-I	(3)			-	-			Ť												Ls.,Lo-I
E - 12	Surmai-I	0	•	<u> </u>	 -								!-	_					-	1	Ls.,Lo-N
E - 19	·	<u> </u>	Ō		<u> </u>				0		-		Δ	_	 -	 -	 	 		 	Ore(Lo-li)
C - 19	Surmai-l		<u>. U</u>		<u> </u>			<u> </u>	<u> </u>		<u> </u>	<u></u>	: /_\	<u> </u>	<u>. </u>	<u> </u>		<u>. </u>	┶	<u> </u>	OLG COO NO

Abbreviation

🕖 : very Abundant

O : Abundant

O : Common

• : A Few

△ : Rare

? : Unclear

Shirinab Formation

Anj : Anjira Member

Lo-N : Loralai Member N

Lo-I : Loralai Member 1

Lo-1 : Loralai Member 1

Lo-1 : Loralai Member 1

Ca : Calcite E : Eurite Sp : Sphalerite Cr : Cristobalite Ls : Limestone Q : Quartz Ch : Chlorite Hf : Hemimorphite Ce : Cerussite Sh : Shale Do : Dolomite Fe : Oxide Iron He : Hematite Sm : Smithsonite Ss : Sandstone

Ka : Kaolinite Ge : Goethite Es : Esperite Mg : Magnesite

Se : Sericite F1 : Fluorite Gy : Gypsum

6. X-ray Diffraction Analyses of Gossan Samples of Southern Khuzdar District and Surmai Area (2)

	and Su				~															1	
Sample	;			r	T	r- <u>-</u>	<u> </u>	r i	n	e		a	l s		1 6	Γ	1 0	10	_	111	
No.		Ca	Q	Do	Ka	Se	Е	Ch	Fe	Ge	Į F I	Sp	111	He	ES	Gy	Cr	Ce	2m	Mg	
E - 22	Surmai-l	0	Δ	<u> </u>	ļ	<u> </u>		<u> </u>		<u> </u>	<u> </u>	.			ļ <u>.</u>	ļ	ļ	<u>;</u>			Ls., Lo-i
E - 23	Surmai-l	(0)		•	ļ					<u> </u>	ļ			<u> </u>	<u></u>		ļ <u>-</u>	<u> </u>			Ls., Lo-i
E - 26	Surmai-l		0		ļ	<u>. </u>		<u> </u>	0		<u> </u>					<u> </u>	<u> </u>	<u> </u>			0re.(lo-1)
E - 29	Surmai-[Δ	<u> </u>				0	•							<u> </u>	<u> </u>			Ore, (Lo-1)
E - 35	Surmai-l		•		<u> </u>				(<u>©</u>)		ļ	L	ļ	Δ			<u> </u>	<u> </u>			Ore,(Lo-1)
E - 42	Surmai-1	•	•		<u>: </u>	ļļ				•				<u></u> _				<u> </u>	-		Ore.(Lo-1)
E - 43	Surmai-1	•		Δ	<u> </u>				0	•						<u> </u>	<u> </u>				Ore.(Lo-1)
E - 48	Surmai-l	0	•		ļ					<u> </u>						<u> </u>	<u>. </u>	 			Ls.,Lo-N
E - 51	Surmai-l	0		•	Δ																Ls. Lo-l
K - 3	Sekran	0	Δ		<u> </u>																Ls.,Lo
k - 4	Sekran	0			<u> </u>	<u> </u>			()	•											0re, (Lo)
K - 6	Sekran	0			<u> </u>																Ls.,Lo
K - 12	Sekran	0			<u> </u>	ļ		•	0	•											0re.(Lo)
K - 15	Sekran		<u> </u>						0	•		•									Ore (Lo)
K - 16	Sekran	<u> </u>																			Ls., Lo
K - 23	Sekran	0	0																		S.s. Spi
K - 24	Sekran	0			?				0	•											Ore (Lo)
K - 25	Sekran	(O)																<u> </u>			Ls., Lo
k - 26	Sekran	()		Δ																	ls., lo
M - 1.	Malkhor	•	0		Δ				0					•							0re, (Lo)
M - 2	Malkhor	Δ	О						0	9											Ore,(Lo)
M - 3	Malkhor	0	•																~		Ls.,Lo
N - 4	Malkhor	(i)	•																		ls. Lo
N - 6	Malkhor		(6)		Δ				•	Δ				Δ							Ore (Lo)
M - 7	Malkhor	(<u>0</u>)	•	Δ		Δ															Ls.,Lo
M - 8	Malkhor	0	•																		Ls.,Lo
<u>y</u> - 9	Ranj Laki	•	0.						()	•	•			•							Ore,(Lo)
¥ - 10	Ranj Laki	0	•								4									7 4	Ls.,Lo
M - 11	Ranj Laki	Δ			?				0	•				•							Ore,(Lo)
M - 12	Ranj Laki	0																			Ls.,Lo
<u>k</u> - 13	Ranj laki	Δ						?	0	Δ											0ге(Lo)
M - 14	Ranj Laki		ŏ						0	,											0re, (Lo)
M - 15	Ranj Laki	•	O					?	0	·			•								Ore.(Lo)
N - 17	Ranj Laki	(Ĝ)						Ė													Ls. Lo
M - 18	Ranj Laki	ŏ	O	-				?	<u>©</u>				•								Ore,(Lo)
M - 20	Ranj Laki	0			-			Ė	Ť								-				Ls.,Lo
M - 21	Ranj Laki	Δ	(<u>0</u>)		 				•				0							?	Ore,(lo)
<u>الا</u> - 22	Ranj Laki	(Ô)								<u> </u>											S.s.,Sp
N - 23	Ranj Laki	0																			Ls. Lo
N - 24		- (S)			-	1			(<u></u>		?	-	_			Ore,(Lo)
N - 54	Ranj Laki		_		<u>: </u>	:			. W	: -			<u> </u>	 -				<u> </u>			L

Abbreviation

: very Abundant O : Abundant O : Common

: A Few △ : Rare

:Unclear

Do : Dolomite

Sc : Sericite

Ca : Calcite E : Eurite Q : Quartz

Ch : Chlorite

Fe : Oxide Iron He : Hematite Ka : Kaolinite Ge : Goethite F1 : Fluorite

Es : Esperite Gy : Gypsum

Sp : Sphalerite

Mg : Magnesite

Shirinab Formation

Anj : Anjira Member Lo-N : Loralai Member N Lo-I : Loralai Member I Lo-I : Loralai Member I Lo-1 : Loralai Member !

Ls : Limestone Cr : Cristobalite lif : Hemimorphite Ce : Cerussite Sh : Shale Sm : Smithsonite Ss : Sandstone

6

X-ray Diffraction Analyses of Gossan Samples of Southern Khuzdar District and Surmai Area (3)

	und Oc	.,	*																		
Sample							M	i	ħ	e	r	a l	s								
No.	Locality	Ca	Q	Do	Ka	Se	E	Ch	Рe	Ge	Fl	Sp	Hf	lle	Es	Сy	Cr	Ce	Sm	Иg	Note
S - 1	C-D Section	0	0		•																S.s.,Spi
5 - 8	C-D Section	0	O		Δ	Δ															Ls.,Spi
S - 14	C-D Section	(Q)	8																		Ls., Lo- I
S - 17	C-D Section				?						<u>.</u>			<u> </u>							Ls.,Lo-l
S - 20	C-D Section	(i)	•											<u> </u>							ls.,Lo-l
\$ - 40	C-D Section	0	•	Δ	Δ								Ĺ	<u> </u>							Ls.,Lo-f
\$ - 48	C-D Section	0	•		Δ									<u> </u>	<u> </u>						Ls.,Ļo-I
S - 54	E-F Section	(i)	•									1		<u> </u>							Ls., Lo-III
S - 57	E-F Section	(Ô)	•							<u> </u>				<u>j</u>							Ls.,Lo-IV
S - 58	E-F Section	0	•																		Ls.,Lo-∦
S - 59	E-F Section	0	•									<u> </u>									Ls.,Anj
S - 60	R-F Section	0	٠				?							İ	<u>. </u>						ls.,Anj
S - 64	A-B Section	0	0		•									<u> </u>							S.s.,Spi
S - 67	A-B Section	0	•			Δ								<u> </u>			Ĺ		<u> </u>		Ls.,Spi
S - 70	A-B Section	(O)	٠	-Δ						<u> </u>				<u> </u>			<u> </u>				Ls.,Lo-l
S - 72	A-B Section	(C)		9								•						i		i	Ls.,Lo-1
S - 78	A-B Section	(i)	•												-						Ls.,Lo-l
S - 90	A-B Section	0	O		Δ															-	Ls.,Lo-I
S - 99	A-B Section	0															1				Ls.,Lo-E
S - 102	A-B Section	@																			Ls.,Lo-P
S - 104	A-B Section			i										<u> </u>							ls.,lo-f
S - 105		(O)					?														Ls.,Lo-N
S - 106							?	-										-			Ls.,Anj
	A-B Section						?														Ls _o Anj

Abbreviation

6 : very Abundant

O : Abundant

o : Common : A Few

Rаге Δ

:Unclear

Shirinab Formation

Anj : Anjira Member

Lo-N : Loralai Member N

Lo-1: Loralai Member 1

Lo-1 : Loralai Member 1

Lo-1 : Loralai Member 1

Cr : Cristobalite Ls : Limestone E : Eurite Sp : Sphalerite Ca : Calcite Hf: Hemimorphite Ce: Cerussite Ne: Hematite Sm: Smithsonite Sh : Shale Q : Quartz Ch : Chlorite Do : Dolomite Fe : Oxide Iron Ne : Nematite Ss : Sandstone

Mg : Magnesite

Ka : Kaolinite Go : Goethite Es : Esperite

Se : Sericite Fl : Fluorite Gy : Gypsum

App. 7 Statistic Parameters of Khuzdar District for Basic Statistical Analysis

	***************************************	<u> </u>	by Henbe	c of Shiri	ոսե Բ.		Ь	Blo	ak No	inber				·····		:
		Total	Anjira	Loralai	Springwar	i	11	ш	N	V	И	٧ī	\ 1	1X	х	ΧI
Number	of Sample	4,633	1,287	2,914	405	265	731	874	505	339	142	58	905	184	580	50
	aia	1	1	1	1	l	1 .	ı	1	ι	ı	ı	ı	ı	1	1
	B-3X	10,000	10,000	10.000	950	33.0	10,000	4,600	10,000	27	13	2	54	7	30	48
РЬ	σ	0.459	0.348	0.489	0.478	0.279	0.736	0.330	0.722	0.302	0.194	0.055	0.134	0.134	0.117	0.235
(ppa)	ave.(H)	1.49	1.38	1.43	2.6t	1.35	3.13	1.40	2.21	1.46	1.20	1.02	1.04	1.08	1.05	1,08
1	K+σ	4.3	3.1	4.40	7.84	2.6	17.0	3.0	11.6	2.9	1,8	1.2	1.4	1.5	1.4	1,9
	H•2 σ	12 4	6.8	13.58	23.56	4.9	93.1	6.4	61.5	5.9	2.9	1.3	1.9	2.0	1.8	3.2
	nin	1	3	1	1	4	1	1	1	3	5	6	3	4	3	6
	XAC	10,000	10,000	10,000	5,509	215	10,000	3,340	10,000	90	54	66	2,400	110	96	38
Zn	σ	0,422	0.308	0.461	0.422	0.314	0.640	0.365	0.574	0.309	0,266	0.246	0.299	0.262	0.260	0.200
(ppa)	ave.(H)	14.50	16.57	13.73	14.13	11.36	20.74	13.17	20.09	14.73	12.88	14.64	12.17	14.63	12.4	10.37
	N·σ	38	34	40	37	23	90	30	75	30	23	26	24	27	22	16
	H+2 σ	101	68	114	99	48	394	68	282	61	43	45	48	49	41	26.1
	min	10	10	10	10	10	10	10	10	10	10	100	10	10	10	100
	MAX	55,000	4,500	55,000	1,640	1,660	55,000	2,000	29,000	540	90	500	5,500	150	900	220
Ng	σ	0.495	0.406	0.535	0.393	0.392	0.507	0.443	0.559	0.295	0,222	0.141	0.477	0.237	0.394	0.084
(րբե)	ave.(H)	32.\$7	29.14	36.38	23.10	22.75	23.90	27.14	25.68	17.55	14.57	159.13	86.17	32.38	28.40	146.80
	H• o	103	74	124	57	56	76	75	73	35	24	220	258	56	-70	178
	M+2 σ	321	189	428	141	138	246	209	212	68	40	305	775	97	174	216
	∌in	10 -	10	10	20	10	30	20	50	10	100	10	10	80	10	10
	MEX	6,890	5,800	6,800	6,400	1,720	5,800	2,706	6,400	6,800	2,800	60	6,200	5,800	1,800	80
Ba	σ .	0.481	0.387	0.501	0.301	0.328	0.287	0.200	0.271	0.276	0.244	0.200	0.550	0.310	0.415	0.255
(pp#)	ave.(N)	131.99	202.18	101.69	226.12	148.43	226.36	194.16	231.65	201.49	211.95	16.34	38.23	242.58	126.17	17.49
	N·σ	400	492	323	453	316	437	307	432	380	371	26	138	495	378	32
	H:2σ	1,210	1,199	1023	906	673	\$47	487	807	718	651	41	496	1,011	853	57
	nin	300	450	320	300	1,200	320	300	350	800	1,900	1,800	600	700	1,200	1,950
	жэх	92,500	48,500	92,500	\$5,000	70,000	70,000	90,000	80,000	52,000	21,000	13,500	92,500	37,500	62,500	17,500
Нз	ø	0.290	0.211	0.287	0.455	0.359	0.343	0.306	0.272	0.249	0.209	0.175	0.270	0.247	0.219	0.165
(ppa)	ave.(N)	3,604	3,892	3,402	4,297	4,678	3,266	3,129	4,114	4,502	4,094	3,464	3,480	3,649	3,673	3,121
	H+ 0	7,29	6,331	6,588	12,244	10,696	7,200	6,335	7,687	7,985	6,629	5,237	6,448	6,438	6,080	4,563
	H+2 σ	13,709	10,300	12,757	34,890	24,454	15,877	12,828	14,385	14,163	10,734	7,917	12,619	11,360	10,064	6,673
	min	0.0005	0.0005	0.0005	0.0005	0.0005	<0.001	0.0005	<0.001	0.0005	0.001	0.0005	0.0005	0.0005	0.0005	0.0005
	max	1.21	1.21	0.86	0.64	0.167	0.862	0.123	1,210	138.0	0.301	0.023	0.229	0.313	0.394	0.187
\$	ď	0.659	0.637	0.638	0.678	0.627	0.661	0.607	0.675	0.604	0.512	0.604	0.643	0.805	0:656	0.665
(%)	ave.(H)	0.003	0.006	0.003	0.004	0.003	0.004	0.003	0.005	0.005	0.007	0.002	0.002	0.004	0.002	0.003
	H+σ	0.015	0.024	0.011	0.017	0.013	0.017	0.012	0.024	0.022	0.022	0.003	0.010	0.023	0.011	0.016
	K-2 a	0.068	0.105	0.048	0.083	0.058	0.079	0.049	0.112	0.087	0.079	0.038	0.043	0.144	0.049	0.072

App. 8 Coefficiency Correlation of Geochemical Analyses in Khuzdar District

	Рb		To	tal (N:4	, 633)
Zn	0.634	Zn			
Ba	0.155	0.139	Ва	:	
Ng	-0.037	0.049	0.067	Mg	
Нg	0. 232	0. 301	~0. 550	-0.085	Н д
S	0. 187	0. 247	0. 240	0.162	0.071

Zn.

Вa

Pъ

0.485

0.131

0.150

0.141

0.165

Z n

0.211

0.321

0.234

0.239

Loralai N. (N:2, 914)

	Рb				Ng
Zn	0.698	Zn			Hg
Ва	0.157	0. 107	Ва		S
Ng	-0.098	-0.043	0.003	Мg	
Нg	0.279	0. 331	-0.629	-0.093	Нд
S	0. 209	0. 239	0.156	0.125	0.09

Spingwar N (N: 405)

Ва

0.120

-0. 363

0.252

Anjira M. (N:1,287)

Мg

-0.061

0.175

Нg

0.110

	·	-1 - 0			
	Рb				
Zn	0. 521	Zn			
Ва	0. 027	0. 105	Ва		
Mg	-0. 041	0. 182	0. 109	Мg	
llg	0. 251	0. 324	-0.068	0. 034	Нg
S	0. 177	0. 236	0. 345	0. 214	0. 081

App. 9 Statistic Parameters of Khuzdar District for Principal Component Analysis
(1) Correlation Matrix

	Pb	Zn	Hg	Ba	Ng	S
Pb	1.000	0.634	0. 231	0.155	-0, 037	0. 187
Zn	0. 634	1. 000	0. 001	0. 139	0. 050	0. 248
llg	0, 231	0. 301	1.000	-0. 550	-0. 085	0. 071
Ba	0. 155	0.139	-0. 550	1.000	0.067	0. 240
Ng	-0. 037	0.050	-0. 085	0. 067	1.000	0. 162
S	0. 187	0. 248	0.071	0. 240	0. 162	1.000

(2) Eigenvector

	1	2	3	4	5	6
Pb	0.600	0. 021	-0. 257	-0. 259	-0. 709	0.042
Zn	0.632	0.008	-0.092	-0, 225	0. 630	-0. 382
Hg	0. 319	-0. 618	-0. 251	0. 151	0. 166	0.655
Ba	0. 102	0, 698	-0. 251	0.008	0. 232	0. 621
Ŋg	0. 050	0. 236	0.823	-0. 504	-0.060	0.088
S	0. 352	0. 275	0. 386	0.778	-0. 127	-0.173
Eigenvalue	1. 921	1.610	1.042	0.777	0. 362	0, 288
Cumulative Con- tribution Ratio	0. 320	0. 589	0. 762	0.892	0. 952	1. 000
Standard * Deviation	1. 386	1. 269	1.021	0.882	0.602	0.537

*: Score Standard Deviation

(3) Factor Loading

	1	2	3	4	5	6
Pb	0.834	0, 027	-0. 263	-0. 228	-0. 426	0. 022
Zn	0. 875	0.010	-0, 094	-0.198	0. 379	-0. 205
Hg	0.443	-0. 784	0. 196	0.133	0.100	0. 352
Ba	0. 141	0.885	-0. 256	0.007	0. 140	0, 333
Mg .	0.069	0. 299	0.839	-0. 444	-0. 035	0.047
S	0.488	0. 349	0.394	0.686	-0.076	-0. 093

App. 10 Microscopic Observation of Polished Section of Surumai Area Gossan

Sample	Localty			M	i	n	e	r	a	1		 Note
No.		Ge	Na	Ру	lle			Q	Ca	Do	111	
A - 6	Surmai-II	0	•					0	0			Lo- II
A - 10	Surmai-III	0						0				 Lo- II
A - 11	Surmai-III	0	Δ					0	0			Lo-II
A - 33	Surmai-III	0	Δ					•	•	0		Lo- II
B - 13	Surmai-M	0		Δ				0	Δ	0		Lo- II
C - 10	Surmai-H	0			·			0	Δ			LoIV
C - 15	Surmai-II	0	Δ		Δ			0	•		Δ	ro-1A
C - 20	Surmai-II	0						0	•			Anj-I
D - 29	Surmai-II	0						0	•		Δ	Lo- II
D - 41	Surmai-II	0			•			0	•			Lo- II
D - 46	Surmai-II	0						0			9	Lo- I
D - 53	Surmai-II	0	٠.					0	•			Lo- I
D - 55	Surmai-II	0			-			0	0			Lo- II
D - 68	Surmai-II	0		Δ				0	0			Lo- II
E - 5	Surmai-I	0			•			0	•			Lo-Ш
E - 8	Surmai-I	0	2 -					0	Δ			Lo-II
E - 26	Surmai-1	0						0	0			Lo- I
E - 29	Surmai-I	0	Δ					0	•			Lo-III
E - 35	Surmai-I	0		Δ				Δ	0			Lo- I
E - 42	Surmai-I	0		Δ				0	0			Lo- I

Abbreviation

O: Common

• : A Few

△ : Rare

Shirinab Formation

Anj : Anjira Member

Lo-IV: Loralai Member IV

Lo-III: Loralai Member III

Lo-II: Loralai Member II

Lo-I: Loralai Member I

Ge : Goethite Ma : Marcasite Py : Pyrite He : Hematite Q : Quartz Ca : Calcite Do : Dolomite Hf : Hemimorphite

App. 11 Statistic Parameters of Surmai Area for Basic Statistical Analysis

	Group	Total	Anjira	Lora	lai Memb	er	Spingwar	Minerali-
	arvap	101	Member	1 . 0 . 10	ĮV	total	Member	zed Zon
Elements	N	169 *	39	93	34	127	3	36
	min	1	1	1	1	1	9	4
-	max	900	68	900	430	900	74	10,000
Рь	σ	0.781	0.629	0.795	0.797	0.811	0.374	1.050
- * · · · ·	ave.(H)	11,12	6.08	16.34	7.23	13,14	25.19	1,626
}-	N+ a	67	25	101	45	85	59	18,241
	M+2 o	406	110	636	284	550	140	204,549
f	M+3 o	2,454	470	3,972	1,782	3,562	333	2,293,713
	min	9	12	13	9	9	20	19
<u> </u>	лах	8.630	490	8,630	1,080	8,630	44	10,000
Zn	0	0.519	0.326	0.568	0.47	0.558	0.147	0.861
ľ	ave.(M)	70,42	48.13	96.21	49.78	80.63	31.93	2,676
ľ	M+ σ	232	101	355	146	291	44	19,415
	M ÷ 2 σ	770	215	1,317	431	1,053	62	140,845
-	M+3 σ.	2,546	456	4.873	1,268	3,805	88	1,021,752
	nin	10	10	10	10	10	20	20
Ĭ	лах	4,000	4,000	1,500	260	1,500	30	29,000
Hg	σ .	0.477	0.597	0.438	0.372	0.438	0.08	0.899
T t	ave.(N)	35,90	37.69	35.74	42.28	22.58	22.89	1,000
-	H+ O	107	149	115	53	98	27	7.939
·	M+2 σ	322	589	317	125	269	33	62,972
F	₩+3 σ	969	2,332	871	295	738	40.62	499,490
	min	100	160	120	100	100	180	50
. [лах	1,400	980	1,400	1,240	1,400	220	1,620
Ва	σ	0.200	0.185	0.203	0.213	0.208	0.037	0.307
-	ave. (N)	226.67	243.16	222.53	222.82	222 60	195.95	123.14
Ī	M+ 0	359	372	354	364	357	213	249
	H+2 o	569	569	585	595	569	232	509
	M+3 σ	902	872	902	974	921	253	1,030
	nin	600	2,200	1,700	1,200	1,200	600	1,050
Ī	max	38,500	16,000	38,500	35,500	38,500	20,000	61,000
Mg	σ	0.279	0.173	0.294	0.267	0.288	0.690	0.304
[ave.(H)	4,671	4,520	4,849	4,306	4,698	5,646	3,255
	N÷σ	8,882	6,725	9,547	7,965	9,120	27,674	6,559
	M+2 o	16,888	10,005	17,706	18,798	14,735	135,649	13,219
Ţ	¥+3 σ	32,112	14,887	39,003	27,257	34.374	664,884	26,641
	min	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
	max	0.04	0.025	0.04	0.02	0.004	0.005	1.21
s	σ	0.553	0.535	0.545	0.563	0.554	0.429	0.793
-	ave.(H)	0.003	0.0039	0.002	0.003	0.003	0.002	0.009
<u> </u>	M÷σ	0.009	0.013	0.008	0.011	0.009	0.005	0.056
<u> </u>	M+2 σ	0.035	0.046	0.029	0.044	0.033	0.014	0.344
-	N+3σ	0.128	0.157	0.100	0.159	0.116	0.038	2.135

N : Number of Samples except mineralized zone

 σ : log.

App.12 Drilling Machine and Equipment Used

Drilling Machine Model "L-38"	1 set
Specifications: Capacity	700m (BQ-WL)
Dimensions L X W X H	2, 150mm×1, 170mm×1, 450mm
Hoisting capacity	4,000kg
Spindle speed	Forward 211, 438, 803, 1, 000rpm
Engine Model "F3L912"	41ps/1,800rpm
Drilling Pump Model "WLMG-15h" Specifications:	l set
Piston diameter	68 m m
Stroke	100 m m
Capacity	discharge capacity 1000/min
Dimensions L X W X H	2,350mm×720mm×1,120mm
Engine Model "NS-130C"	13ps/2,200rpm
Wire line Hoist Model "SK-1-110" Specifications:	1 set
Rope capacity	500m
lloisting speed	8~105m/min
Engine Nodel "NF-110"	11ps/2,200rpm
Mud mixer Model "HM-250"	1 set
Specifications:	
Capacity	2000/600rpm
Engine Model "NS-65C"	7ps/2,400rpm
Generator Model "YSG-10E"	1 set
Specifications:	
Capacity 700 1200	10KVA 8KW 100~200V
Engine Model "NS-130C"	13ps/2,200rpm
Generator Model "YDG30008"	1 set
Specifications:	
Capacity	2.7KVA 100V
Generator Model "YSG2000B"	1 set
Specifications:	4000
Capacity	1.7KVA 100V
Water supply pump Model "U-40KI"	2 set
Specifications:	1
Capacity	discharge capacity 300 l/min
Yanmar set Pump Model "PA25-35L	1 set
Capacity	discharge capacity 1801/min
Derrick	1 set
Specifications: Height	9.5m
Max load capacity	4,000Kg
Drilling tools	
Drilling rod	NQ-WL 3m 100 pcs BQ-WL 3m 167 pcs
Casing pipe	BQ-\L 3m 167 pcs HX 1m 10 pc
casing bibe	NX 1m 2 pcs
	NX 3m 21 pcs
	BX 3m 85 pcs

Working Time Analysis of the Drilling Operation in Phase-II Survey App. 1 3

	4) 10		(h)	,00		0	è	.00	.00.	,00.	,00.	30,	.00	,00	.30,	,00	,00,	,00	,00,	.00.	.00.	.00	.00	4.00	.30,	.00,	30,	2 00
	G. Tot			9	1	153	482	26	224 00	161	41.1	67	284	201	532	23	211	166	4001	6	274°(211	484	54	9	218	532	2,852
	Road con- struction	and	(H)	ı	-			t	1	1	,		1	-	1	1	ŧ	t	ŧ		1	,		1	1	l	•	-
	aterrans	tation	(H)				(149°00')				(210,007)				(305,00,)				(87,00')				(121,00,)				(234.00.)	(1,113*00')
Time	Removing		(h)	9.00.6	1	.00.6	18.00	18.00	1	.00.9	24.00	59 30,	1	.00.6	.08.89	18.00	,	7.00	25°00′	5.00	1	27.00	32.00	48 30	'	4.00	52.30	220.00
Working	Total		(h)	7, 00,	~	144°00'	464.00	8 00,	24.0	155 00'	387°00′	8,00,	4	192 00	464°00′		211,00		375 00	4,00,		9	4.6.2, 0.0	5 30	260°00′	214°00′	480,00	2,632°00′
	Recove-	ring	(F)	ı	9°30'		9°30′	ŀ	j	3,00,	3.00,	ı	ł	ı	ļ	-	5*30′		5*30	1	3		. +	1	ı	1		18.00
		working	Œ	5, 10,	· vc	40°40′	175° 40'		67°30'	49°40′	122.40	5,30	91,40	84°00′	181,10,		75°20′	60 40	138,00,	2,30,		69.3	200 30	3.00,	÷	103°10′	246*40	1,059~40
	Drilling		(F)	1.50	<u>ر</u> ي		278°50	2 30	156°30	102,20	261 20	2 3		08.0	282, 50,	2,00,		98°20′	230,30	1,30.	ណ	, 1,4,	261°30′	2 30	126°00′	0	.239,50	1,554*20
ив шап	#orker	-	(man)	12	152	82	246	30	109	82	221	69	110	87	266	3.0	105	95	230	6	(1)	125	270	99	121	117	304	1,537
Workin	£	ه د د	(man)	4	52	2.7	83	10	37	28	7.5	28	43	36	107		34	3.1					9.1		4.2	en en	103	534
ift	Total		(shift)	61	3.9	6	9.0	e2	58 7	2.0	5.1	2-	33	2.5	6.5	3	9 2	2.0	4.9	4		2.6	6.1		3.2	2.2	85	351
Sh	۶u	1188	(shift)		35	1.7	53		28	∞.	47			2.2		1	5.6	18	4.5	•-1	32		54	1	29	24	54	308
	0	length	(m)		3.5	160.00	<u>ان.</u>	3.00	4	139.60	347.00	- 0	; t	120.40	296.10	0.2	233.30	ω ∞	394.10	9	220.10	69.4	390.10	∼.	6	۳.	391.00	2,213,40
Drilling	r i 1 1	length	(H)	4.10	್	160 50	401.00	4.10	0.90	140.90	351.00	[~		20,7	300.80	-		ιΩ	401.00	1		69.5	401.00	4.10	06.4	190.50	401.00	2,255.80
	B. i.t	2100		ЖЖ	O'	30	Total	HX	30	BQ	Total	ΧH	S.	BQ	Total	НX	9	30	Total	XΗ	Ö,	ω.	Total	HX	χO	80	Total	Total
		0			¥JP-1				MJP-2				MJP-3				4.1P-4				N.P-5				9-41#:			Grand

Phase-II Survey Working Time Analysis of the Drilling Operation in App. 1 4

App. 15 Microscopic Observation of Thin Section of Cores

Sample	Drill, No.	Rock		Allochems	Orthochems	Member
No.	Position	Name	Facies			& Unit
DH14-AA	NJP-14	Sh	Biomicrite	Bioclasts, Q.	Micrite,	Lo-III
4.	33. Om				Q, Clay mineral.	
DH14-BB	MJP-14	Ls	Biomicrite	Bioclasts,	Micrite.	Lo-III
	39.5m			sparry Ca.		
DH14-CC	MJP-14	Sh	Biomicrite	Bioclasts, Q,	Micrite, Q,	Lo-III
	67. 8m			sparry Ca,	Clay mineral,	
DH14-DD	NJP-14	Ls	Sparite	Ca-Q-Cn-Wo vein,	Micrite	Lo-II
	131.4m			Siderite.	< Sparite.	:
DH14-EE	MJP-14	Ls	Biomicrite	Bioclasts,	Micrite	Lo-III
	238. 2₪			Ca vein.	> Sparite	
DH14-FF	NJP-14	Sh,	Biomicrite	Bioclasts,	Micrite>>Sparite	Lo-III
	240. 3m	limy		sparry Ca, Ca vein.	Clay mineral.	
DH14-GG	NJP-14	Ls	Micrite	Sparry Ca, Ca vein,	Micrite	Lo- II
	317. 8m			(bioclasts, Q)	> Sparite	
DHJ4-HH	NJP-14	Sh	Micrite	Opaque mineral, Q,	Micrite, Q,	Lo-II
	322. 4m			(Bioclasts).	Clay mineral.	
DH15-AA	MJP-15	Ls	Pelsparite	Sparrry Ca,	Sparite	Lo-II
	214.9m			Bioclasts, Peloids.	> Micrite	
DH15-BB	MJP-15	Ls	Biomicrite	Sparrry Ca, Bioclast,	Sparite	Lo-II
	216.7m			opaque mineral, Ca vn.	> micrite	

Legend

Ls : Limestone

Ca : Calcite

Sh : Shale

Q : Quartz

Lo : Loralai Nember

Cn : Chalcedony

Wo : Wollastonite

lumber	Drill	lorizos	Sample	Dopth	Width		Grade				Hother	Nineralization
	No.		No.			Pb #	Zn 🕺	Ba \$	Ag*/.	Си ори	rock	
1			DH3-1	169.1~171.5	2.4	0.02	4.26	<0.01	3.5	44	l-I Ls	Sp)Ga dis,Ca+Si vn\ntwk
2		_	-2	~171.9	0.4	0.59	0.15	<0.01	8.9	24	L-1 Sh	
3		A-3-	-3	~172.9	1.0	1.17	7.68	0.01	17.0	132	l-1 Ls	Sp:Ga dis.Cs+Si vn\ntuk
		¥4		(Average)	3.8	0.38	4.73	<0.01	7.6	65		
4			-4	176.3-177.1	0.8	0.20	8.86	<0.01	15.2	100	L-1 Ls	Sp>Ca dis.Si>Ca va^ntwk
5			-5	~178.0	0.9	0.15	0.96	<0.01	5.0	32	L-I ls	Sp)Ga dis,Si>Ca va≤nt⊌k
6			-6	~178.3	0.3	0.02	0.01	<0.01	<0.5	12	l-1 Ls	Ca vnt
7			-7	~179.4	1.1	0.34	0.01	<0.01	5.7	68	l- Ls	Ga dis.Cu>Si ntwk
8	က	.	-8	~180.1	0.7	0.16	0.01	<0.01	3.0	580	L-I Ls	Ga dis,Ca>Si vnt,Cp?,Py
9	1		-9	180.9	0.8	0.02	0.01	<0.01	<0.5	8	l-I ls	Ca vnt
10	Д	~	-10	\183.7	2,8	0.24	0.37	<0.01	3.7	36	l∙I Ls	Sp)Ga dis,Si+Ca vn~ntwk,Py
11	1	1 1	-11	~184.2	0.5	0.01	0.01	<0.01	₹0.5	Tr -	L-ILs	Ca vnt
12	,,	(n)	-12	~186.3	2.1	0.43	0.01	<0.01	5.4	12	L- Ls	Ga dis,Si+Ca vn~ntwk.Py
13	M	·*	-13	~187.3	1.0	0.10	0.01	<0.01	2.3	20	L-ILs,Sh	Py dis
14	_		-14	~189.1	1.8	0.50	0.07	<0.01	7.4	20	L- Ls	Ga dis,Si+Ca va~ntwk,Py
15			-15	\191.0	1.9	0.02	0.01	<0.01	<0.5	12	L-ILs,Sh	Ca vnt
16			-16	~191.7	0.7	0.63	4.52	<0.01	15.3	20	L-I Ls	Sp)Ca dis.Si>Ca vn~nt#k
				(Average)	15.4	0.25	0.80	<0.01	4.9			
17			-17	210.1-211.8	1.7	0:54	2.02	<0.01	5.7	29	L-1 Ls	Sp>Ca dis,Si>Ca vu\ntwk
		3-3								<u> </u>		
18			0H2-1	285.2\289.7	1.5	0.01	0.05	<0.01	<0.5		L-1 Ls	Si,Ca vnt
19			-2	~290.4	0.7	0.01	<0.01	<0.01	<0.5		t-1 Sh	
20		63	-3	~291.0	0.6	0.23	5.74	<0.01	3.9		L-1 Ls	Sp.Ga dis,Si>Ca vat,Py dis
21	Α,	B :	-4	~292.3	1.3	0.01	0.09	<0.01	<0.5		L-1 Sh	Sp.Ga,Si wk dis,Ca vat
	2			(Average)	4.1	0.04	0.89	<0.01	1.0			
22	Д		-5	323.2~323.4	0.2	0.01	0.03	<0.01	<0.5		t-its	Si dis
23	M J	7	-6	~323.9	0.5	0.01	0.41	<0.01	<0.5		L-[Ls,Sh	
24	4	1	-7	-326.0	2.1	0.01	0.56	<0.01	₹0.5		L- i Ls	Sp.Ca dis,Si>Ca vat
25		ပ	-8	~328.6	2.6	0.06	1.54	<0.01	0.8		l-1 Ls	Sp.Ga dis,Si>Ca vnl
				(Average)	5.4	0.03	1.00	<0.01	0.6			
26	·		DH4-1	283.4~284.6	1.2	<0.11	0.19	<0.01	<0.5		L-1 Sh	Cp wk dis,Ca ntwk
27			-2	~285.6	1.0	0.02	0.18	<0.01	<0.5		l-1 ls	Sp reb+Ga dis,Ca alwk
28		4	-3	~286.9	1.3	0.36	0.06	<0.01	2.5		L-1 Sh	Py>Ca dis.Si>Ca vnt
29		,	-4	~289.0	2.i	0.75	0.54	<0.01	7.4		l-i Ls	Sp>Cp.Ga dis,Ca>Si vnt
30	4	æ	-5	~289.6	0.6	0.16	4.11	\$0.01	2.8		1-1 ls	Sp:Ca dis,Si dis,Ca vnt
31	7		-6	~290.1	0.5	0.02	0.05	<0.01	<0.5		L-1 Sh	Si,Ca vnt,Si>Ca vnt
,,,,,,,,,	ı]]		(Average)	6.7	0.33	0.62	<0.01	3.3		ļ .	
32		1	-7	308.5~309.6	1.1	0.01	0.03	<0.01	<0.5		L-I Ls	Py dis,Ca vnt
33	4	C-4-	-8	-310.4	0.8	0.01	0.03	<0.01	<0.5		l-Ils	Ca,Si vnt
	} ~~	ပ		(Average)	1.9	0.01	0.03	<0.01	(0.5			
34			-9	316.2-317.1	0.9	0.01	<0.01	<0.01	<0.5		L-I Ls	Si)Py dis
35	M		-10	~318.1	1.0	0.01	0.02	<0.01	<0.5		l-Ils	Sp dis,Ca vn.Si dis
36		C-4-2	-11	-319.9	1.8	0.08	0.72	<0.01	0.5		l-1 Ls	Sp>Ga dis.Si dis~vn.Ca vn
37		3	-12	~320.2	0.3	0.06	11.10	<0.01	5.6	1	L- Ls	Si>Py>Ca dis
38			-13	~320.4	0.2	\$0.0	0.12	<0.01	0.5		L-[Ls	Si)Py dis,Ca vat
				(Average)	4.2	0.04	1.11	<0.01	0.9			

lumber	Drill	Horizon	Sample	Depth	Width			Grade		Hother	Kineralization		
	No.	į .	No.			РЬ ≭	Zn S	Şi ‡	As*/.	Cu ppe	rock		
39			DH6-1	168,5~169.5	1.0	0.13	4.26	<0.01	2.0	57	l-ILs	Sp dis,Si+Ca vnt	
40			-2	~170.3	0.8	<0.01	0.04	<0.01	0.5	20	L-I-Sh	Si vnt.wk Sp dis	
41			-3	~172.4	2.1	1,81	13.90	<0.01	16.8	154	L- Ls	Sp)Ca dis,Si>Ca vn-vat	
42			-4	·173.3	0.9	0.97	0.57	<0.01	7,5	16	l- Ls	Sp>Ga dis	
43			-5	~173.9	0.6	0.11	0.04	<0.01	1.0	31	L-1 Sh	arg	
44			-6	~174.6	0.7	0.82	2.96	<0.01	5.8	41	l-1 ls	Si dis,Si vat	
			-7	~176.2	1.6	1.22	0.51	<0.01	11.0	21	L- Ls	Ca>Sp dis,Si>Ca vnt	
45					0.6		0,03	<0.01	1.0	32	L-1 Sh	ely	
46		į	-8	-176.8		0.14						Sp.Ca wk dis.Si>Ca atwk	
47		မ	-9	179.2	2.4	0.37	0.69	<0.01	3.8	15	L-1 Ls		
48		1	-10	179.4	0.2	₹0.01	0.01	<0.01	(0.5	. 33	l-1 Sh	cly	
49		¥	-11	~180.8	1.4	0.09	1.11	<0.01	8.0	19	t-lis	CalSi varatuk	
				~181.3	0.5	-		(Non eo					
50			-12	~181.5	0.2	0.02	0.01	<0.01	0.8	35	L-ISh	cly.	
51			-13	-182.4	0.9	0.31	3.84	<0.01	2.5	. 49	L-I Ls	Sp dis,Ca,Si vat	
				(Average)	13.9	0.66	3.25	<0.01	6.0	45		· · · · · · · · · · · · · · · · · · ·	
52	ယ		-14	-184.8	2.4	0.02	0.04	<0.01	<0.5	11	L-I Ls		
53			-15.	-185.6	0.8	0.02	0.02	<0.01	<0.5	30	L-1 Sh	arg	
54			-16	~186.0	0.4	0.06	1.22	.0.01	0.5	25	L- Ls	Sp dis,Ca vn,Si vnt	
55	1	2	-17	-186.6	0.6	0.34	20.90	<0.01	8.5	224	L-1 Ls	Sp,Sg dis,Si dis Sp,Ga dis,Si vnt	
58		1	-18	-187.8 -188.4	0.6	0.29 <0.01	2.96 0.04	<0.01 <0.01	3.0 <0.5	37 15	L-1 Ls L-1 Sh	39,58 015,31 Vat	
57 58		9	-19 -20	-188.8	0.4	0.66	0.24	<0.01	5.8	19	L-1 Ls	Si Ca vnt	
59		1	-21	~189.3	0,5	0.05	0.01	<0.01	1.0	35	L-1 Sh		
60	Д	¥	-22	~190.3	1.0	1.51	0.50	<0.01	14.0	17	i-Ils	Ca dis.Si>Ca vnt	
				(Average)	4.7	0.51	3.66	00.01	5.5	51			
61			-23	-191.5	1.2	0.05	0.01	<0.01	₹0.5	10	L-I Ls		
62]	-24	-191.8	0.3	0.01	0.01	₹0.01	1.0	36	L-1 Sh	ely	
) ,		0.5	~193.8	2.0	0.10	1.59	<0.01	0.8	23	L-j Ls	Sp}Ca dis,Ca,Si vnt	
63 64			-25 -26	~194.0	0.2	0.18	0.01	<0.01	2.0	15	L-1 Sh		
65		- 3	-27	~196.2	2.2	0.44	0.06	<0.01	3.3	10	L-1 Ls	Ga dis,Ca,Si vat	
66		9	-28	~196.4	0.2	0.10	0.01	(0.01	7.5	18	i-iSh		
67	Z	ı	-29	~197.5	1.1	0.20	0.05	40.01	1.3	-11	L- Ls	Ga dis,Ca≻Si vn	
68		A	-30	-197.9	0.4	· 0.01	1.32	0.02	<0.5	29 21	L-ISh	arg	
			21	(Average)	0.2	0.24	0.64	<0.01 <0.01	0.7 <0.5	9	i-lis	Ca dis,Si,Ca vnt	
59 70			-31 -32	~198.1 ~199.3	1.2	<0.01 0.03	0.11	<0.01	(0.5	12	L-I Ls		
71		A-6-4	-33	~199.7	0.4	<0.01	4.79	<0.01	<0.5	38	L-I Ls	Sp dis,Si,Ca vnt,Py	
72			-34	-200.2	0.5	:0.01	0.06	∢0.01	< 0.5	14	L-I ls		
73			-35	~201.1	0.9	<0.01	0.02	<0.01	.∢0.5	30	L- Sh	arg	
74		<u> </u>	-36	~202.1	1.0	<0.01	<0.01	<0.01	₹0.5	11	l-ils	Ca,Si vnt	
				16 3.43	33.6	A 90	1.99	<0.01	3.7	34	ļ		
75			-37	(Ground Av)	0.4	0.38 <0.01	(0.0L	0.23	<0.5	10	Ls	Si,Ca vnt	
73	٠.		31	5.0.7 0.1.1	_ <u>```</u>	 					 		
76	2	L	DH5-1	215.0~215.2	0.2	0.12	<0.01	<0.01	1.3		L-1 Sh	Si>Ca vnt	
77	1	ις.	-2	~215.8	0.6	0.39	1.89	<0.01	3.7		L-1 Ls	Sρ>Ga dis,Si,Ca vnt	
78	Q,		-3	~216.8	1.0	0.09	0.40	<0.01	0.8		l-1 Ls	Sp>Gs dis,Si,Ca vnt	
	<u>-</u>	<u> </u>		(Average)	1.8	0.19	0.85	<0.01	1.8	ļ	 		
	22				L	L	<u> </u>	<u> </u>		L			

App. 17 Chemical Analyses of Cores of Phase-III Survey (1)

Drill	Posi-	Sample	Depth	Width		Gra	d e	·····
No.	tion	No,	(m)	(m)	Рь %	Zn %	Ba %	Ag g/t
		DH7-1	44.2~ 45.1	0. 9	0, 09	1, 04	< 0.01	2. 5
		-2	~ 45.8	0, 7	0, 69	10. 30	0.12	2. 5 3. 3
	T4	-3	~ 46.8	1.0	0.83	18, 00	< 0.01	6.5
		-4	~ 47.8	1. 0	0.02	0. 32	< 0.01	1.0
	,	-4 -5	~ 48.3	0.5	0. 20	0.81	< 0.01	1.5
1	~ ~	-6	~ 49.2	0. 9	0.15	0, 09	< 0.01	3.3
	·	-7	~ 50.0	0.8	3.48	1.49	< 0.01	50.0
	1	-8	~ 51.4	1.4	0.05	0.08	0.12	1.0
		-9 -10	$\begin{array}{ccc} \sim & 53, 0 \\ \sim & 53, 4 \end{array}$	1.6	0, 21	0. 94	< 0.01 < 0.01	3.3
	. 44		$ \begin{array}{c} \sim & 53.4 \\ \sim & 54.0 \end{array} $	0, 4 0, 6	0. 56 0. 04	0, 90 5, 30	< 0.01	6. 0 2. 8
		11	44. 2~ 54. 0	9.8	0. 52	3. 40	0.03	6.8
	A-7-2	-12	57. 7~ 58. 3	0.6	0. 27	0. 10	< 0.01	2. 5
<u>A</u>	11 1 2	-13	64.1~ 65.1	1.0	1.84	0. 94	< 0.01	29. 0
) 1		-14	~ 65.7	0.6	0.05	0. 27	< 0.01	0.8
		-15	~ 65.9	0. 2	Ŏ. Ŏ4	11.40	< 0.01	8.0
'n	ုက	-16	~ 66.8	0. 9	0.08	0. 36	< 0.01	2. 3
		-17	~ 68.0	1. 2	0.57	1.64	< 0.01	9.5
	'	-18	~ 68.5	0. 5	< 0.01	0. 07	< 0.01	< 0.5
X	t	-19	~ 68, 8	0.3	0.86	0, 31	< 0.01	8. 5
	•	-20	~ 70.0	1.2	0. 01	0. 02	< 0.01	< 0.5
	t	-21	~ 71.6	1.6	0. 24	1. 84	< 0.01	2.8
		-22	~ 72.5	0. 9	< 0.01	0.01	< 0.01	< 0.5
	Ą	-23	~ 74.9	2. 4	0, 42	2, 60	< 0.01	3.8
		-24	~ 76.6	1, 7	< 0.01	0.03	< 0.01	< 0.5
		-25	~ 79.7	3. 1	2. 50	7. 65	< 0.01	53.0
		DH10 1	64.1~ 79.7	15.6	0.77	2.49	< 0.01	14.4
	. * .	DH13-1	131. 3~132. 2	0. 9	0.02	0. 18	0.05	0.5
		-2	~ 132.7	0.5	0. 96 0. 31	5, 09 1, 76	0.02 < 0.01	6. 0 2. 5
		-3 -4	~133.6	0. 9 2. 4	0, 31 0, 05			1.5
	÷		~136.0 ~140.1	4.1	0. 05	0, 10 1, 73	< 0.01 < 0.01	1.5
		-5 -6	~ 140.1 ~ 140.5	0.4	0. 07	0.03	< 0.01	1 2
		-7	~141.2	0.7	0.77	9. 33	< 0.01	6.0
		-8	~ 141.6	0.4	< 0.01	< 0.01	< 0.01	< 0.5
		-9	~ 147.0	5. 4	0. 15	1.01	< 0.01	1.3
60		-10	~ 148.0		0.06	0. 02	< 0.01	1.3
1		-11	~151.5	1. 0 3. 5	2. 68	1. 91	< 0.01	32. 0
		-12	~ 152.4	0. 9	0. 96	0. 12	0.13	12.0
	13	-13	~154.0	Ĭ. 6	0. 27	5. 53	< 0.01	4.0
	_	-14	~155.5	1.5	0.211	0. 34	< 0.01	2.3
		-15	~155.9	0.4	0.41	0, 03	< 0.01	7.5
<u>L</u>		-16 -17 -18 -19	~157.4	0.4 1.5	0.41 6.85 0.62	0, 03 0, 21	< 0.01	4. 0 2. 3 7. 5 96. 0 9. 5 0. 8
	ì	-17	$ \begin{array}{r} \sim 157.4 \\ \sim 160.8 \end{array} $	3. 4	0.62	0. 20	< 0.01	9, 5
		-18	~ 162.5	1. 7 2. 1	0.02	0.02	0.02	0.8
J.	₩	-19	~164.6	2. 1	0.12	5. 37	<0.01	1.0
		-20	~168.6	4.0	0, 11	0.07	< 0.01 < 0.01 < 0.01	1.3
M		-21 -22	~ 170.1	1. <u>5</u> 1. 3	0.06	0.02	< <u>0</u> . <u>01</u>	<u> </u>
		-22	~ 171.4	1. 3	< 0.01	0, 02	< 0.01	1. 0 0. 5 0. 8
		-23	~ 172.4	1. 0 0. 6	0.06	0.02	< 0.01	υ. δ 9 n
		-24	~173.0	0, 6	0.06	4, 71	> V. VI	3, 0
		-25	~174.6	7. D	< 0.01	< 0.01 < 0.01	< 0.01 < 0.01 < 0.01	< 0.5
		20 07	~ 177.1	<u>4. 0</u>		0.01	< 0.01	0.5 < 0.5
		-26 -27 -28	$ \sim 178.9 \\ \sim 180.1 $	1.6 2.5 1.8 1.2	< 0.01 < 0.01	< 0.01	< 0.01	< 0.5
		-20 -29	~ 180.1 ~ 181.2	1 1	0.01	< 0.01	7 0. 01 7 0. 01	< 0.5
		-30	~ 181.2 ~ 181.8	0.6	0.05	< 0.01	< 0.01 < 0.01	< 0.5
		30	$131.3 \sim 181.8$	50.5	0. 54	1. 10	< 0.01	7. 3
L			101.0	. 00.0	0.03	V	, V. U.I.	

Drill	Horizon	Sample	Dopth	Width			a d e	
No.	I	No,	(m)	(m)	Pb %	Zn %	Ba %	Ag g/t
		nii0 1	991 9-291 4	0.0	0. 23	0. 06	0.14	2, 5
		DH8- 1	$\begin{array}{c c} 331.2 \sim 331.4 \\ \sim 332.0 \end{array}$	0, 2 0, 6	1.00	1.77	0. 02	11, 0
∞		-2 -3	~ 332.7	0.7	0. 02	< 0.01	< 0.01	
MJP-8	B-8	-4	~333, 6	0.9	0.11	0, 02	0, 01	< 0.5 1.5
3.1		-5	~334. <u>I</u>	0.5	0, 09	0.02	< 0.01	1.0 1.5
M		-6	- ~335. I	1.0	0.08	0, 02	0.04	1.5
]		-7 -8	$ \begin{array}{r} \sim 336.5 \\ \sim 337.4 \end{array} $	1.4 0.9	5, 79 1, 00	7, 35 1, 32	< 0.01 < 0.01	58, 0 9, 5
	· · ·		$\frac{\sim 337.4}{331.2 \sim 337.4}$	6. 2	1.60	$\frac{1.32}{2.03}$	0.01	16. 2
	<u> </u>		001. 5 001. 4	0. 1	1.00	D. 00		
		DH9 -1	265.8~266.4	0.6	2, 60	7. 67	0.19	24. 5
	A-9	-2	\sim 267. 2	0.8	0.26	4.42	0.06	4.0
		-3	~ 267.9	$\frac{0.7}{0.1}$	0.83	1.09	0.04	7.5
			$265.8 \sim 267.9$ $267.9 \sim 269.3$	2. 1 1. 4	1. 19 < 0. 01	4. 24 < 0. 01	0.09 < 0.01	0.8
6		-4 -5	~ 270.4	1. 1	0.02	< 0.01	< 0.01	< 0.5
0'		-6	~ 272.6	2, 2	0.09	0. 05	< 0.01	_1.3
	* 2		$267.9 \sim 272.6$	4.7	0.05	0, 02	< 0.01	0.8
		-7.	272.6~275.5	2.9	0.01	0.01	0.14	< 0.5
Д		-8	~ 276.1	0.6	0.17	5. 40	< 0.01	3.0
ה	ת ח	-9	$ \begin{array}{r} \sim 276.5 \\ \sim 277.2 \end{array} $	0.4	0.39 0.15	0.01 < 0.01	< 0.01 < 0.01	3. 0 1. 5
	B-9	-10 -11	$ \begin{array}{r} \sim 277.2 \\ \sim 277.5 \end{array} $	0. 7 0. 3	0. 95	0. 01	< 0.01	6. 0
Z		-12	~278.7	1.2	0.42	0. 34	< 0.01	4.0
		-13	~279.8	1.1	0.14	< 0.01	< 0.01	2.0
		-14	~282.5	2, 7	1, 42	1, 59	< 0.01 < 0.01	8.5
		-15	~283.2	0.7	0, 04	0. 20	< 0.01	1.3
	····		272. 6~283. 2	10.6	0.59	0,77	0.04	3. 5 3. 7
			265. 8~283. 2	17.4	0.45	0, 98	0. 03	3. 1
	A-11-1	DH11-1	44.6~ 46.6	2. 0	0. 22	0. 08	< 0.01	1.8
						0.00	. 0.01	
-	•	DH11-2	53.5~ 58.9	5.4	0.62	3, 68	< 0.01 < 0.01	8. 5 6. 5
	i 11 0	-3	~ 63.3 ~ 66.5	4. 4 3. 2	0, 70 0, 24	1, 99 1, 61	< 0.01	2 8
} '	A-11-2	-4 -5	~ 69. 0	2.5	0. 15	0.62	< 0.01	2. 8 1. 0
ρ,	İ	-6	~ 74.6	5.6	0. 55	1.32	< 0.01	5. 5
		-7	~ 77. 0	2. 4	0.62	0.17	< 0.01	5, 5
, ,			53.5~ 77.0	23. 5	0. 52	1.84	< 0.01	5. 5
Z					2 42		. 0 00	- 60 0
	Λ-11-3	DII11-8	88.0~ 88.9	0.9	3.70	9.64	< 0.02	62. 0 12. 5
	A-11-4	DH11-9	98.0~100.0 136.3~138.0	2. 0 1. 7	1. 18 4. 99	3, 51 0, 06	< 0.01 < 0.01	30. 5
	A-11-5	DH11-10	130. 5~136. 0	1.1	4. 33	0, 00	, v. v1	00.0
		DH12-1	40.4~ 42.4	2.0	1, 12	5, 70	0.04	11.0
	λ-12-1	-2	~ 43.6	1.2	0.93	1.95	0.04	6.0
N			40.4~ 43.6	3. 2	1.05	4. 29	0.04	9, 1
ᆏ				_	0.10		0.00	
]	'	DH12-3	$46.6 \sim 52.0$ ~ 54.4	5.4	0.49	1.61	0.06	5.5
	1 10 0	-/ <u>1</u>	~ 54.4 - 56.2	2.4	0. 94	2. 98 9. 22	0.07 < 0.01	10.0 35.5
ρ,	A-12-2	-4 -5 -6	~ 56.3 ~ 58.3	1. 9 2. 0	3, 22 0, 40	0.23	0.05	11.0
h		-0 -7	~ 59. 0	0.7	1.14	8, 93	< 0.01	12. ŏ
[-8	~ 71.3	0. 7 12. 3	0. 19	3.82	< 0.01	12, 0 3, 5
Z	· 		46.6~ 71.3	24.7	0.61	3, 52	0.02	7.9
		N110 0		17	0. 19	3. <u>06</u>	< 0.01	3.0
IJ	A-12-3	DH12-9	78.7~ 80.4	1.7	0.19	<u> </u>	1 / N. NI	, <u>,,,,</u>

App. 17 Chemical Analyses of Cores of Phase-III Survey (3)

Drill	Posi-	Sample	Depth	Width	(MAXIII MAXIII PARIA	Gra	d e	
No,	tion	No.	(m)	(m)	Рь %	Zn %	Ba %	Ag g/t
	A-14-1	DH14-1 -2	$126.2 \sim 127.3$ ~ 129.6	1. 1 2. 3	43. 3 1. 00	1, 30 2, 72	< 0.03	670 12. 0
		-3	$ \begin{array}{r} \sim 133.2\\ 126.2 \sim 133.2 \end{array} $	3. 6 7. 0	0. 24 7. 26	2. 68 2. 48	< 0.04 < 0.04	3. 0 110. 8
14	A-14-2	DH14-4 DH14-5	149. 2~151. 5 288. 6~289. 4	2. 3 0. 8	3. 21 0. 91	< 0.01 2.08	< 0. 01 < 0. 01	30. 5 14. 0
<u>ι</u> Δι		DH14-6 DH14-7	290. 3~291. 1 295. 7~296. 9	0.8	0. 10 0. 27	0. 03 0. 38	< 0.01 < 0.01	1. 5 2. 8
h)	∧-14-3	DH14-8 DH14-9	303. 5~305. 0 307. 2~308. 7	1, 5 1, 5	0, 50 0, 25	1, 04 0, 72	< 0.01 < 0.01	4. 8 2. 8
M		DH14-10 DH14-11 DH14-12	$310.0 \sim 312.0$ $312.9 \sim 313.7$ $314.6 \sim 317.3$	2. 0 0. 8 2. 7	0. 29 1. 21 0. 10	0. 10 2. 68 0. 36	< 0.01 < 0.01 < 0.01	2. 5 12. 0 1. 3
		DH14-13 DH14-14	317.8~318.2 319.0~326.4	0. 4 7. 4	0. 23 0. 66	0. 59 0. 20	< 0.01 < 0.01	2. 3 7. 0
		DH14-15 DH14-16	338. 0~341. 0 346. 8~347. 3	3. 0 0. 5	0. 28 < 0. 01	0. 18 1. 69	< 0.01 < 0.02	3.0
	λ-15-1	DH15-1	200. 8~201. 5	0. 7	0. 20	0. 04	< 0.01	2. 5
		DH15-2	211.5~212.1	0.6	0. 61	0. 25	< 0.01	8 N
	A-15-2	-3 -4	$ \begin{array}{c c} & \sim 212.6 \\ & \sim 213.8 \end{array} $	0.5 1.2	0. 15 0. 05	4. 42 < 0. 01	< 0.01 < 0.01 < 0.01	8. 0 7. 5 0. 5
		-5	~214.5 211.5~214.5	0. 7 3. 0	1.71 0.57	0. 01 0. 79	< 0.01 < 0.01	15. 5 6. 7
	A-15-3	DH15-6 -7	216. 4~217. 0 ~218. 0	0.6 1.0	0. 18 0. 02	0. 43 0. 02	< 0.01 < 0.01	1.8 < 0.5
15		-8 -9	$ \begin{array}{r} \sim 221.2 \\ \sim 221.9 \end{array} $	3. 2 0. 7	0. 13 0. 79	< 0.01 0.87	< 0.01	1. 5 8. 0
			216.4~221.9	5.5	0. 20	0.16	< 0.01	2.1
'		Dil15-10 -11	$238.8 \sim 239.4$ ~ 241.5	0. 6 2. 1	0, 03 0, 15	0. 01 0. 07	< 0.01	< 0.5 1.0
<u>A</u>		-12 -13	$ \sim 244.4 \\ \sim 245.5 $	2. 9 1. 1	2. 25 1. 52	1.77 13.90	< 0.01 < 0.01	20. 2 16. 2
ה	A-15-4	-14 -15	$ \begin{array}{r} $	0. 4 0. 8	1. 26 0. 66	1, 77 15, 90	< 0.01 < 0.01	9, 2 7, 2
×		-16 -17	$ \begin{array}{r} $	4. 5 0. 6	0, 94 0, 16	1, 13 0, 13	< 0.01 < 0.01	9.5
-		-18 -19	~ 255.3 ~ 258.4	3. 5 3. 1	1. 15 0. 83	0, 21 0, 75	< 0.01 < 0.01	1. 5 15. 5 9. 2
		-20	$\frac{\sim 258.7}{238.8 \sim 258.7}$	0.3 19.9	0. 48 1. 04	1. 54 2. 15	< 0.01 < 0.01	6. 5 10. 9
		DH15-21	277.1~284.1	7.0	0.05	0.38	< 0.02	0, 8
	A-15-5	-22 -23 -24	$ \begin{array}{r} \sim 285.6 \\ \sim 288.8 \\ \sim 295.1 \end{array} $	1. 5 3. 2 6. 3	0. 09 0. 44 3. 54	0.02 1.96 10.10	< 0.01 < 0.02 < 0.01	1. 3 4. 8 37. 2 27. 2
	v 19_9	-24 -25 -26	$ \begin{array}{r} $	1, 1	2. 47 0. 34	8. 50 5. 55	< 0.02 < 0.01	27. 2 5. 7
		-20 -27 -28	$ \begin{array}{r} \sim 291.3 \\ \sim 298.1 \\ \sim 300.2 \end{array} $	0. 8 2. 1	3, 24 0, 03	6, 14 0, 10	< 0.02 < 0.01	34. 7 0. 5
		40	$277.1 \sim 300.2$	23. 1	1.30	4. 03	< 0.02	14. 0

App. 1 8. Microscopic Observation of Polished Section of Cores of Phase-II Survey

	Ninerals						
Sample No.	Sp	Ga	Ру	Ср	Ma	lle	Position & mineralization
DH3- 1-1	0		Δ				170.0m, Sp>Si dis,Si>Ca vnt.
DH3- 1-2	0		Δ		•		170.5m, Sp>Si dis,Si+Ca vnt.
DH3- 1-3	0	۰	Δ	·	•		170.8m, Sp>>Si dis,Ca>Si vnt.
DH3- 1-4	0		Δ		_		171.3m, Sp dis,Ca>Si vnt.
DH3- 1-5	Δ				0		171.5m, Sp dis,Ca+Si vnt.
DH3- 3	0	Δ	Δ				See Table-II-2-20.
DH3- 4		0	Δ				ditto
DH3- 5	0	Δ	Δ			Δ	ditto
DH3- 7	•	0	Δ				ditto
DH3- 8	Δ		•	0		Δ	ditto
DH3-10	0		Δ				ditto
DH3-12		0	Δ				ditto
DH3-14		0	Δ				ditto
DH3-16	0	Δ	Δ				ditto
DH3-17	0	٠	Δ				ditto

Legend \odot : abundant \bigcirc : common \triangle : a few \bullet : rare

Sp: Sphalerite Ga: Galena Py: Pyrite Cp: Chalcopyrite

Ma: Marcasite He: Hematite Ca: Calcite Si: Siderite

App. 19 Microscopic Observation of Polished Section of Cores of Phase-III Survey

Sample	Posi- Minerals																			
No.	tion(m)	Sp	Ga	Ру	Ср	Li	lle	Сe	Sm	Tn	El	Ma	Si	Ca	Mc	Do	Q	Λb	Λu	Remarks
DH7- A	49.8		0	•		0	Δ	Δ					·	٠		٠	Δ			*
DH7- B	51. 9	Δ	•	•	٠	0	•	٠			•		•	•.	•		Δ			*
DH7- C	53. 9	0	٠	Δ	•	٠			Δ											
D117- D	58. 0		0	Δ	•	•		•	-		• ′									
DH7- E	67. 0			•	•	0					•									
DH7- F.	70.6			•		0	Δ				• 1									
DH7- G	72. 7	Δ		•		0	•		Δ		•									
DH7- H	79. 6	Δ	0	0		0		•	Δ		•			٠			٠			*
DH8- A	335.4	0	0	Δ	•							٠								
DH9- A	266. 3	0	Δ	•					Δ		•									
DH9- B	267. 6	0	0	Δ	Δ						•					L				
DH9- C	275. 9	0	•	0	•		<u> </u>													
DH9- D	281.5	0	Δ	٠	•				•									<u> </u>		
DH11- A	56. 5	0		•	•						• ′		0	Δ	٠		Δ			*
DH11- B	74.5	0		٠					Δ		•		٠	0			•	• '		*
DH11- C	88. 3	0	0	• .					•											
DH12- A	58. 6	0	Δ	٠	•			٠	•		• '		0		٠		Δ			*
DH12- B	. 68. 5		Δ	٠		1.					•		0					L		
DH13- A	140.7	0	0									0	0		Δ		Δ		<u>. </u>	*
DH13- B	148. 1	Δ	0	• '	٠.												<u> </u>	• '		
DH13- C	162.6	0	Δ	٠	. •				٠		•		<u> </u>							
DH13- D	172.5	0		. •	•				٠		•									
DH14- A	126. 4	0	0	٠	Δ					•								• '		
DH14- B	131.0	0	Δ	٠	Δ				•		• '		•							
DH14- C	289. 3		Δ	•			:	Δ			•						<u> </u>	ļ	<u> </u>	
DH14- D	313. 2	0	Δ	٠	•						٠		L			<u> </u>		• ′	L	
DH15- A	245. 3	O	Δ	٠	•				<u> </u>		• '					<u> </u>	ļ		·	
DH15- B	246. 5	0	Δ	•						ļ <u>.</u>	٠							• '		
DH15- C	295. 2	0	Δ		:				•		•						L	<u> </u>	<u> </u>	
DH15- D	297. 5	0	Δ	•	•	L			•		•	l <u> </u>	0		<u> </u>		Δ			*

Legend

: abundant

O: common

∆: a little

• : rare

': uncertain

Sp: Sphalerite Ga: Galena Ma: Marcasite

Py: Pyrite

He: Hematite Ce: Cerussite Sm: Smithsonite

Cp: Chalcopyrite Li: Limonite(Goethite) Si: Siderite

Tn: Tennantite El: Electrum Ca: Calcite

Si: Siderite

Do: Dolomite

Q : Quartz

Mc: High Mg Calcite

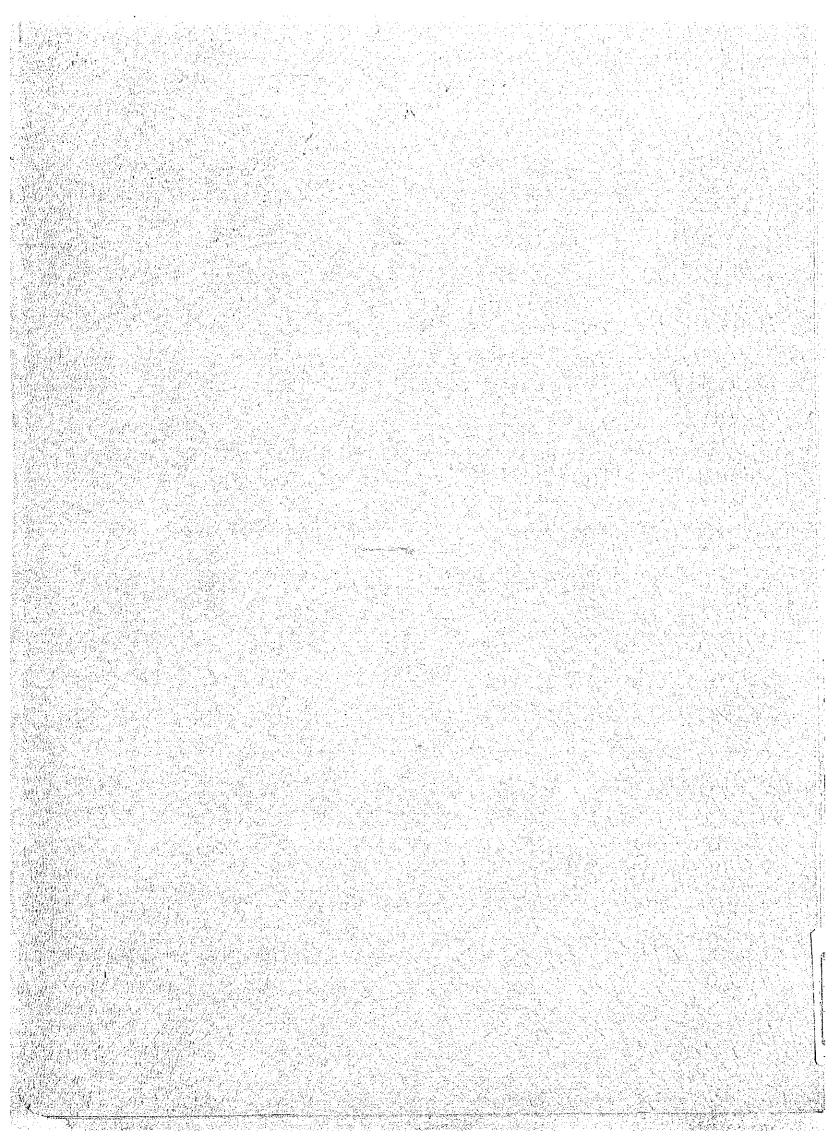
Ab: Ag-Pb-Bi, Ag-Pb-Sb Mineral

Au: Gold

※: Supported by X-ray Detection Analysis

App. 20 X-ray Diffraction Analyses of Cores

					.,, <u>.</u>					
		Ninerals								
Sample No.	Sp	Ga	Ру	Ср	Qz	Si	Ca	Ak	Se	Ch
DH2- 3	0	•			0	0	0	0		•
DH3- 1	Δ				Δ	0	0	Δ		Δ
DH3- 3	0	Δ			0	0	0	Δ,		•
DH3- 4	. 0				0	0	• .			
DH4- 4	•	•	Δ		0	0	•	•		
DH4- 6			• .		0	Δ	Δ	Δ	. •	
DH5- 2	Δ				0.	0	0	0		•
DH6- 3	0	Δ			0	0	•	Δ		
DH6-17	. 0	•	·		Δ	Ο,	•	•		
DH6-20	•	•			0	0	Δ			


Legend \odot : abundant \bigcirc : common \triangle : a few \bullet : rare

Sp: Sphalerite Ga: Galena Py: Pyrite Cp: Chalcopyrite

Qz: Quartz Si: Siderite Ca: Calcite Ak: Ankerite

Se: Sericite Ch: Chlorite

See Table-II-2-20 about the position and mineralization of each samples.

