

Fig. C-4-3 (1) Probability of Z4hours Haximum Rainfall at LEJANIAS

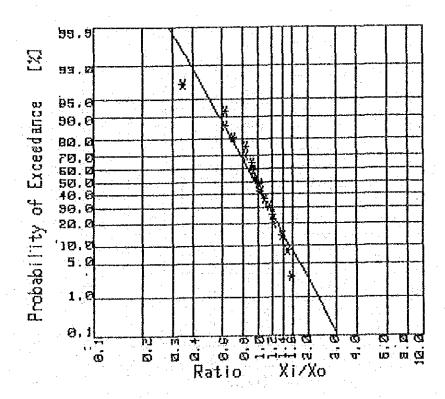
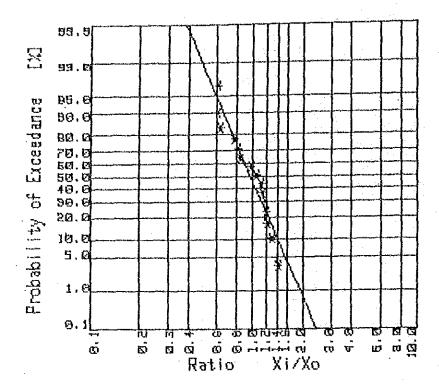



Fig. C-4-3 (2) Probability of 24hours Maximum Rainfall at PLERTO LIMON

. Fig. C-4-3 (3) Probability of 24hours Maximum Rainfall at HESH IE YNNINES

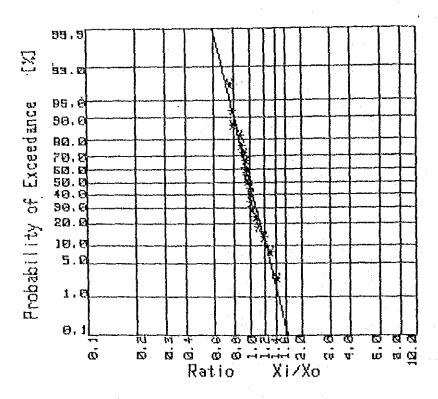


Fig. C-4-3 (4) Probability of Z4hours Haximum Rainfall at SPN LUIS DE CLUPRANL

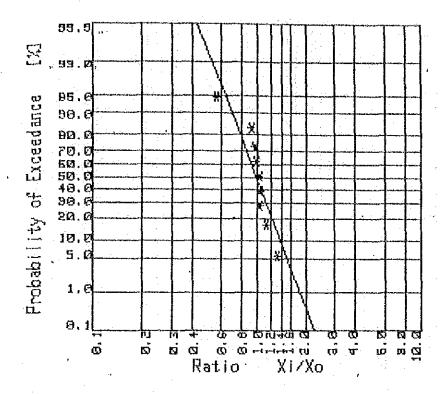


Fig. C-4-3 (5) Probability of 24hours Naxioum Rainfall at CALINE

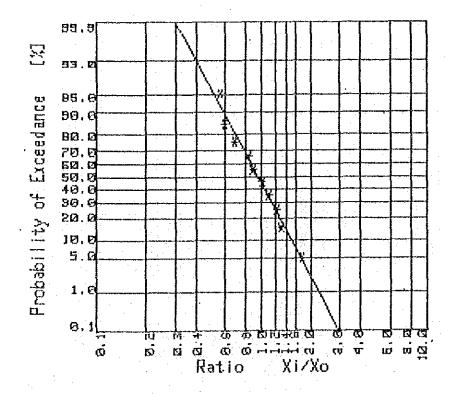


Fig. C-4-3 (6) Probability of 24hours Maximum Rainfall at PINPLITO

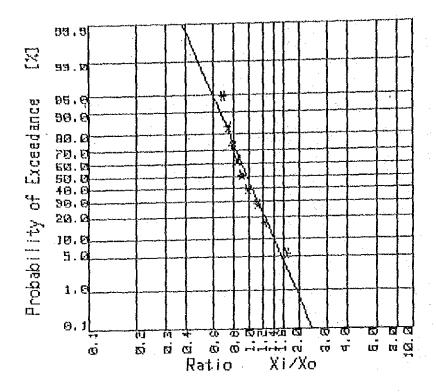


Fig. C-4-3 (7) Probability of 24hours Maximum Rainfall at PLERTO LLERRS

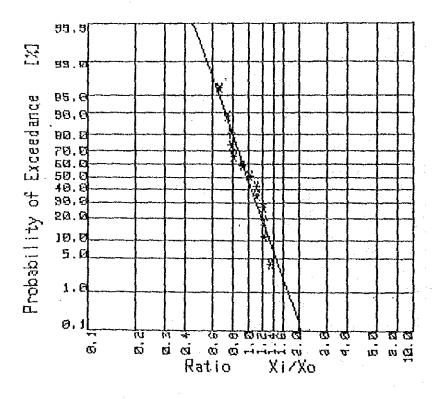


Fig. C-4-3 (8) Probability of 24hours Maximum Rainfall at LOG NERFINJOS

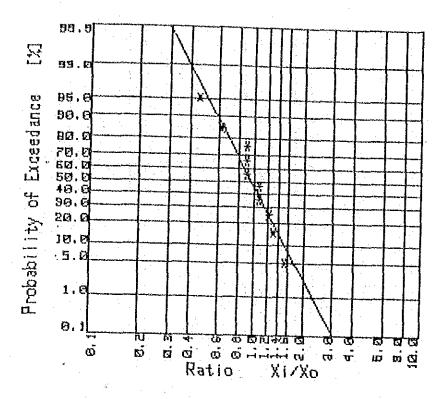


Fig. C-4-3 (9) Probability of 24hours Maximum Rainfall at LA HOLANDA

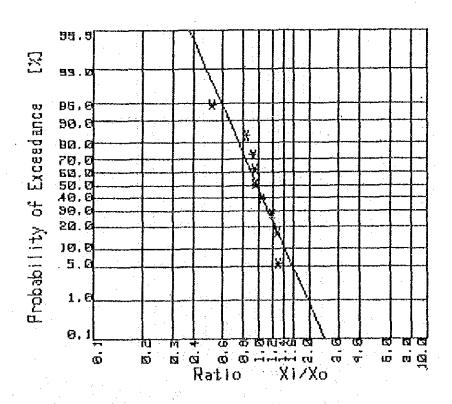


Fig. C-4-3 (10) Probability of 24hours Maximum Rainfall at PUERTO RICO

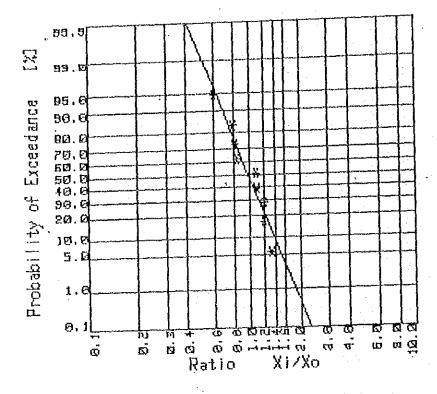


Fig. C-4-3 (11) Probability of 24hours Maximum Rainfall at CFMPO FLECRE

Ь50₩

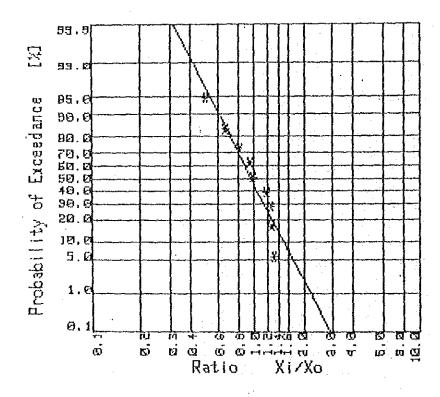


Fig. C-4-3 (12) Probability of 24hours Maximum Rainfall at LRS MICOS

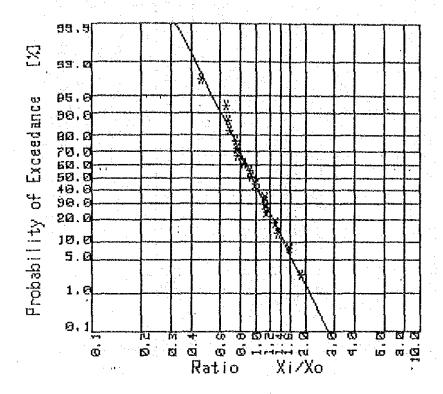


Fig. C-4-3 (13) Probability of 24hours Maximum Rainfall at VISTHHERMOGR

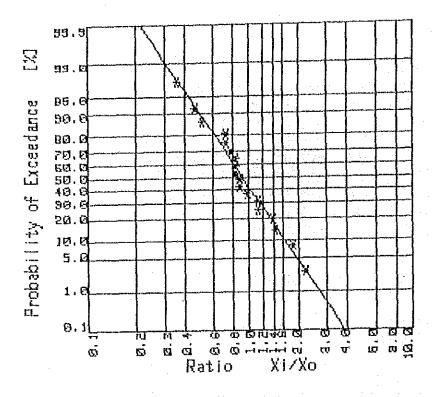


Fig. C-4-4 (1) Probability of Continuous Drought Days

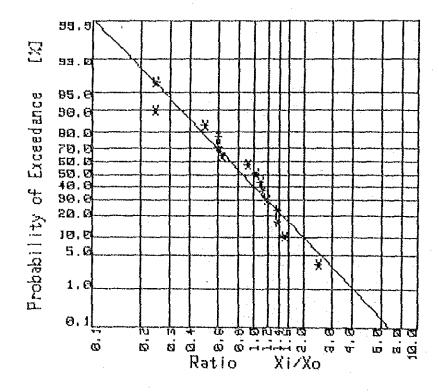


Fig. C-4-4 (2) Probability of Continuous Brought Bays

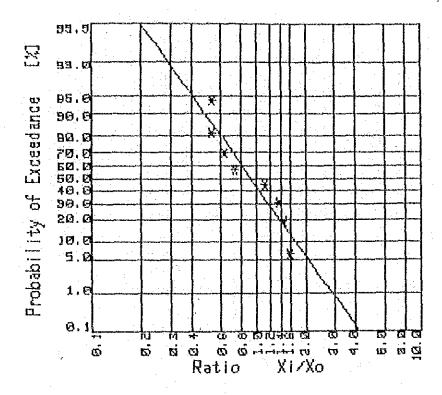


Fig. C-4-4 (3) Probability of Continuous Drought Days

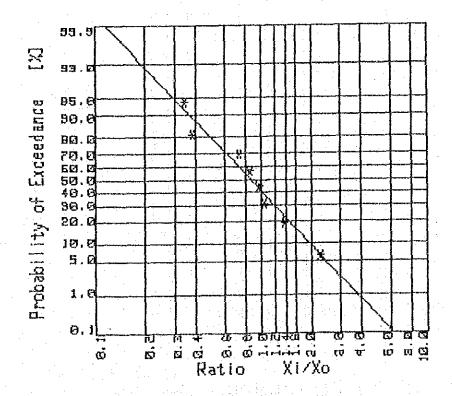


Fig. C-4-4 (4) Probability of Continuous Drought Days

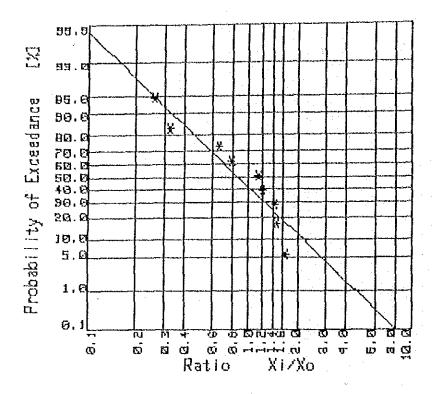


Fig. C-4-4 (5) Probability of Continuous Brought Days

Ь50₩

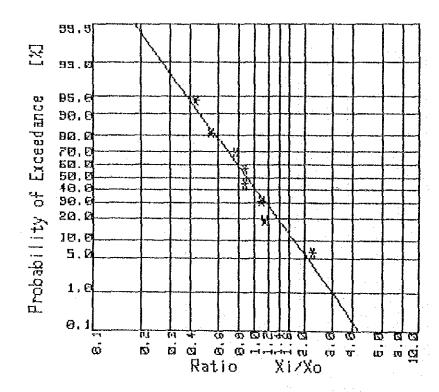


Fig. C-4-4 (6) Probability of Continuous Drought Days

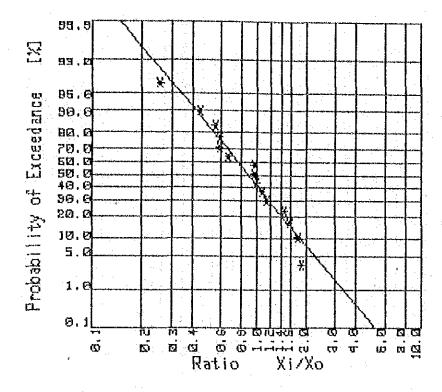


Fig. C-4-4 (7) Probability of Continuous Drought Days



Fig. C-4-4 (8) Probability of Continuous Brought Days

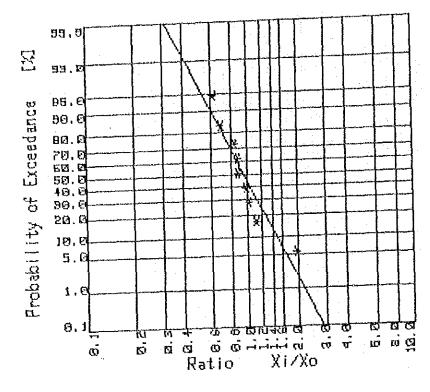


Fig. C-4-4 (9) Probability of Continuous Drought Days

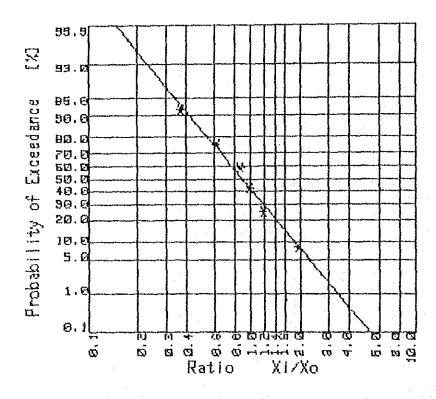


Fig. C-4-4 (10) Prubability of Continuous Brought Bays

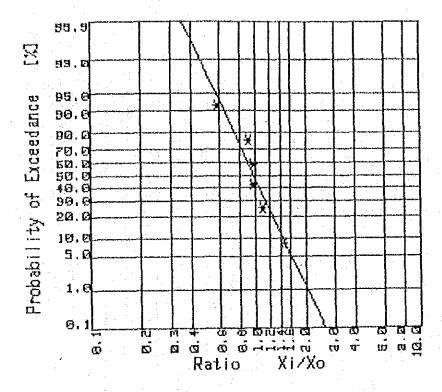


Fig. C-4-4 (11) Probability of Continuous Drought Days

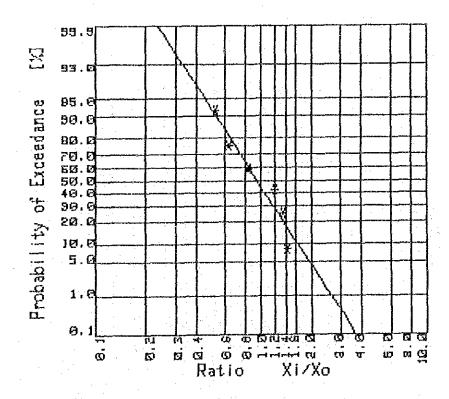


Fig. C-4-4 (12) Probability of Continuous Drought Days

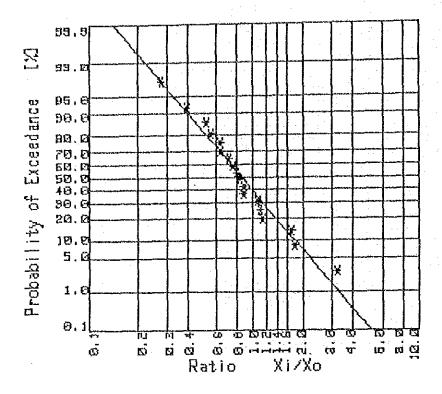
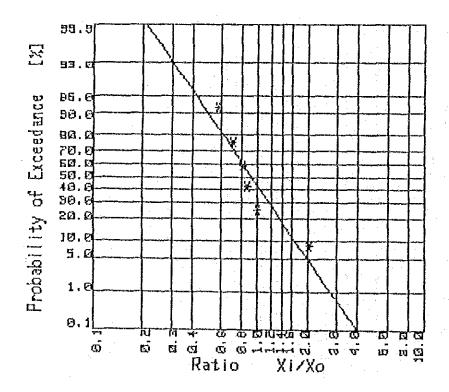



Fig. C-4-4 (13) Probability of Continuous Drought Days

Pig. C-4-4 (14) Probability of Continuous Brought Days

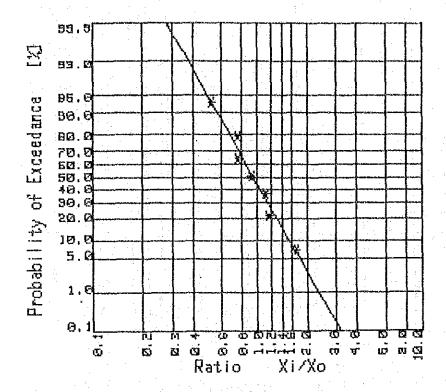


Fig. C-4-4 (15) Probability of Continuous Drought Days

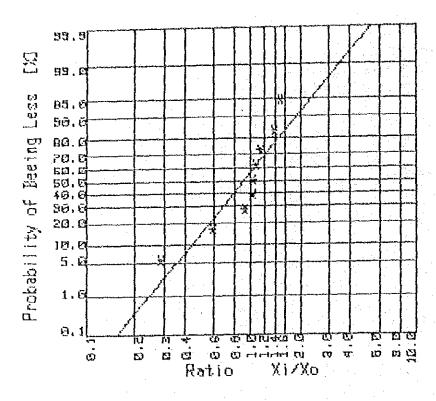


Fig. C-4-5 (1) Probability of Minimum Discharge at PUERTO RICO

Fig. C-4-5 (2) Probability of Minimum Discharge at LEJANIAS

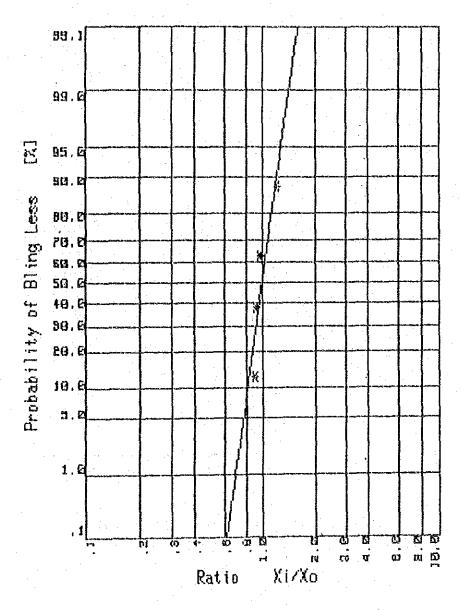
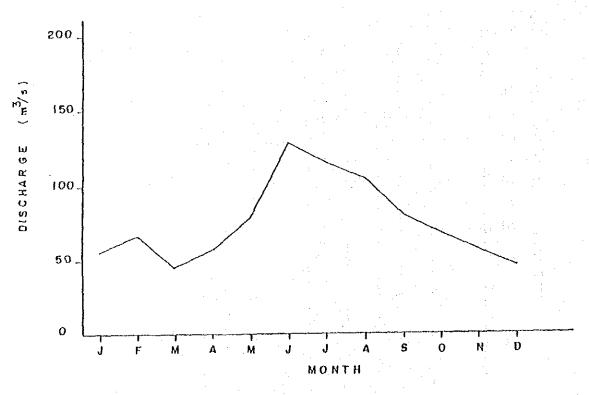



FIG.C-4-6 Probability of Mean River Hischarge (Station ANGOSTURA)

 $_{\rm Fig.~C\text{--}4\text{--}7}$ RIVER DISCHARCHE AT THE ANGOSTURA BRIDGE ON THE GUAPE RIVER

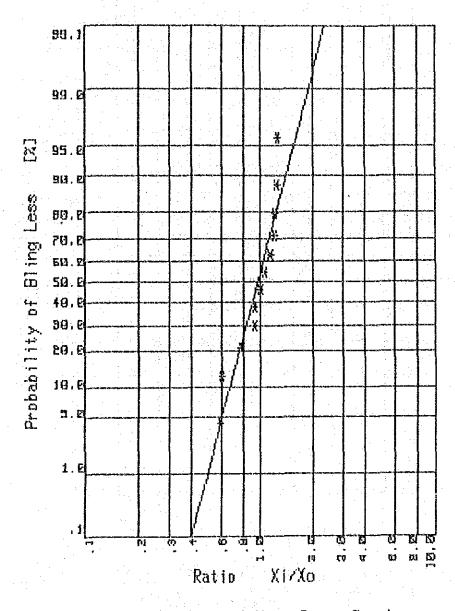


FIG.C-4-8 (1) Probability of Mean River Discharge (Station GUFNAYAS)

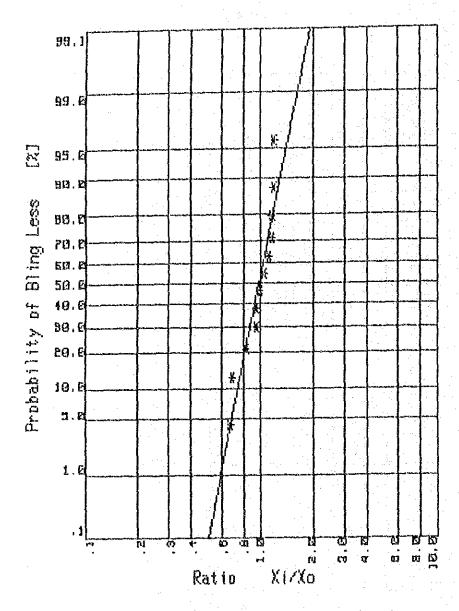


FIG.C-4-8 (2) Probability of Mean River Discharge (Station URICHARE)

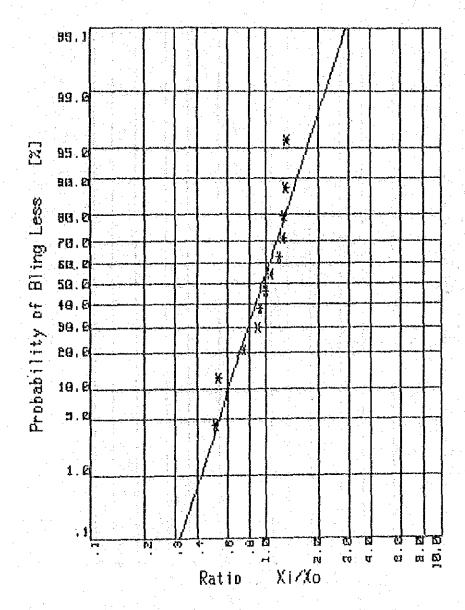


FIG.C-4-8 (3) Probability of Mean River Discharge (Station MUCUYA)

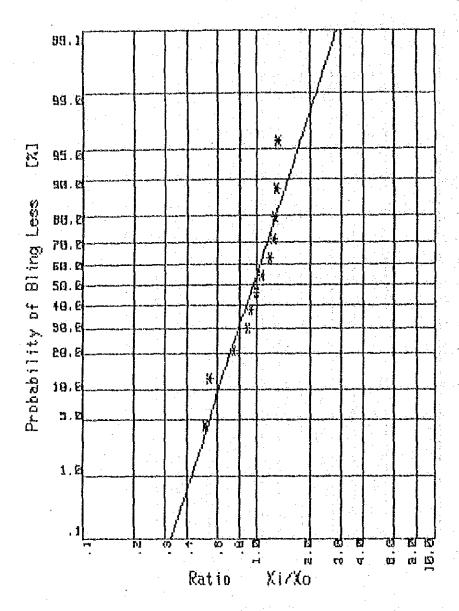
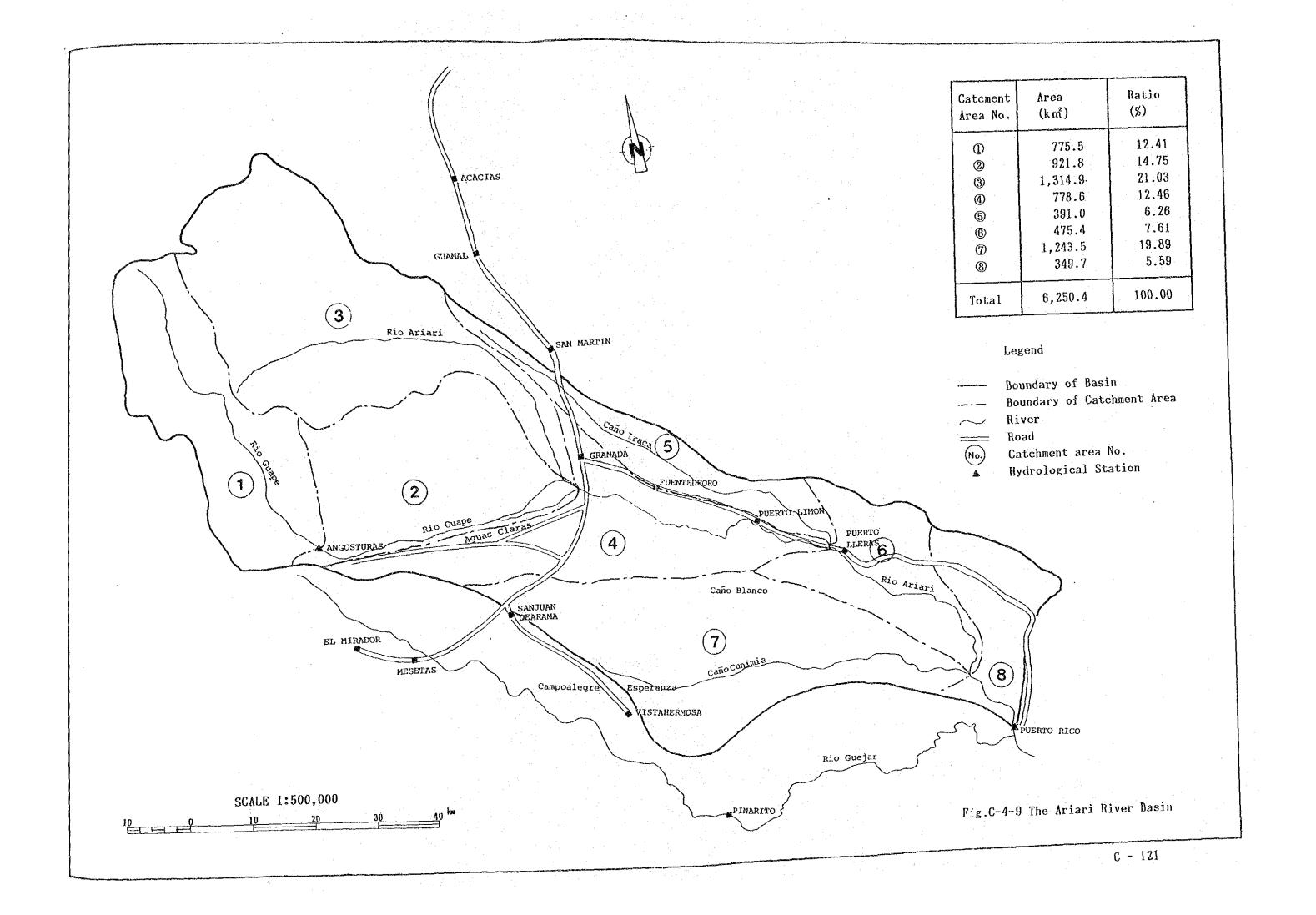



FIG.C-4-8 (4) Probability of Mean River Discharge (Station SARDINATA)

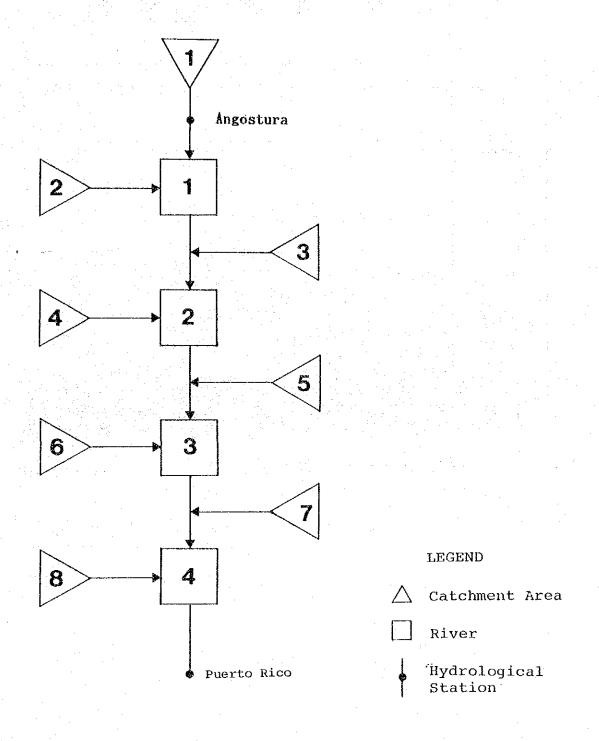


Fig.C-4-10 MODEL OF THE STORAGE FUNCTION METHOD

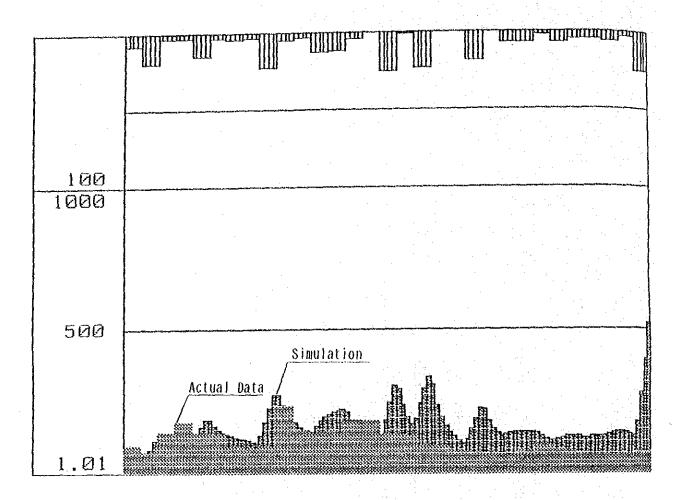


Fig.C-4-11 (1). Comparison of River Discharge Acutual Data and Simulation (at Angostura, June in 1987)

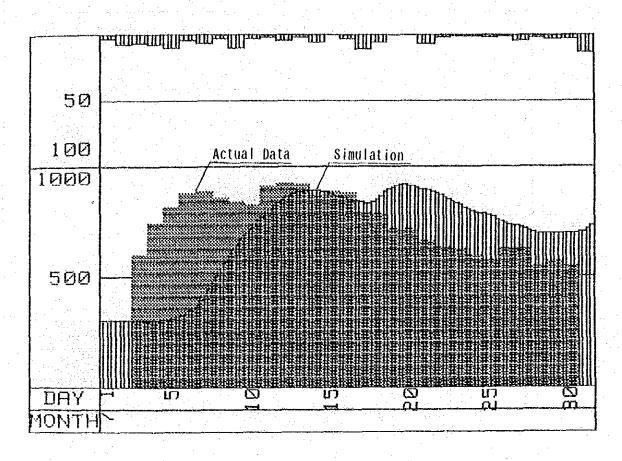


Fig. C-4-11 (2). Comparison of River Discharge Acutual Data and Simulation (at Puerto Rico, June in 1987)

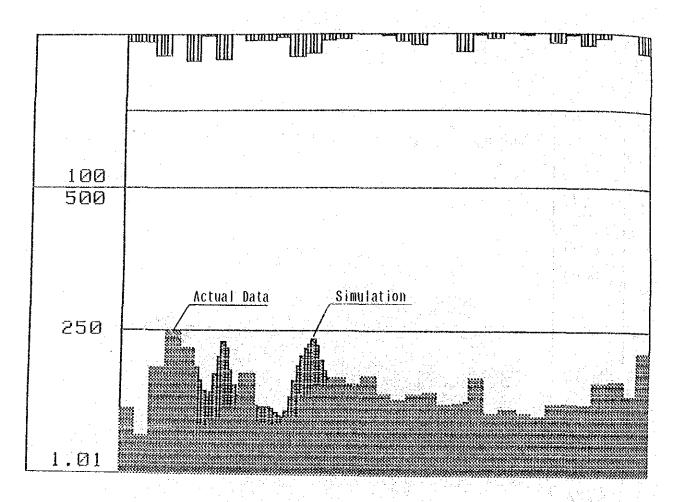


Fig.C-4-11 (3). Comparison of River Discharge Acutual Data and Simulation (at Angostura, May and June in 1985)

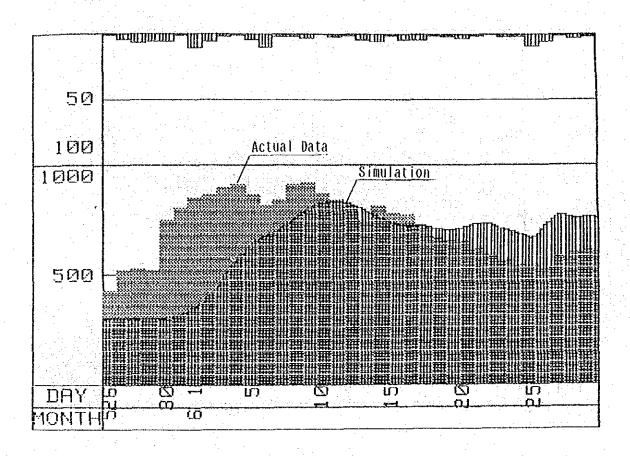


Fig.C-4-11 (4). Comparison of River Discharge Acutual Data and Simulation (at Puerto Rico, May and June in 1985)

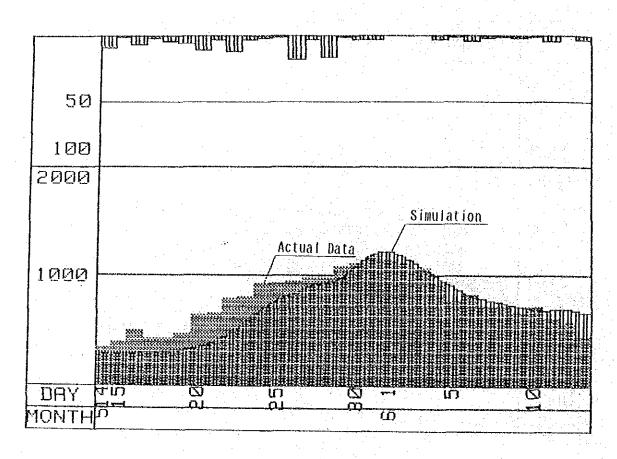


Fig.C-4-11 (5). Comparison of River Discharge Acutual Data and Simulation (at Puerto Rico, May and June in 1982)

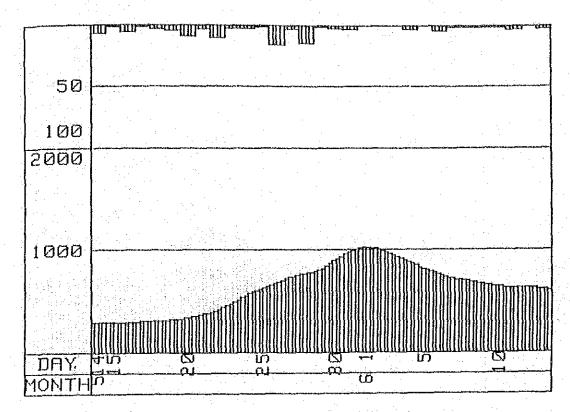


Fig. C-4-12 (1) Result of Flood Analysis (for 2 year Return Period)

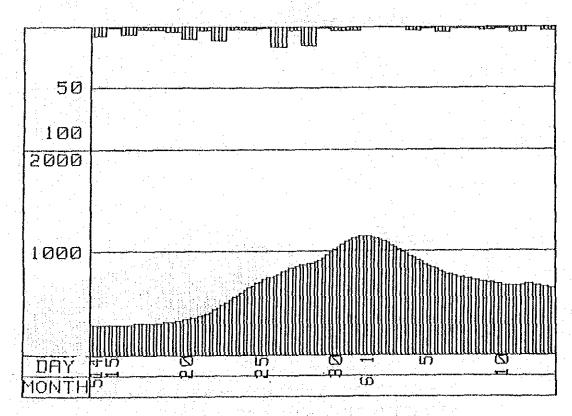


Fig. C-4-12 (2) Result of Flood Analysis (for 5 year Return Period)

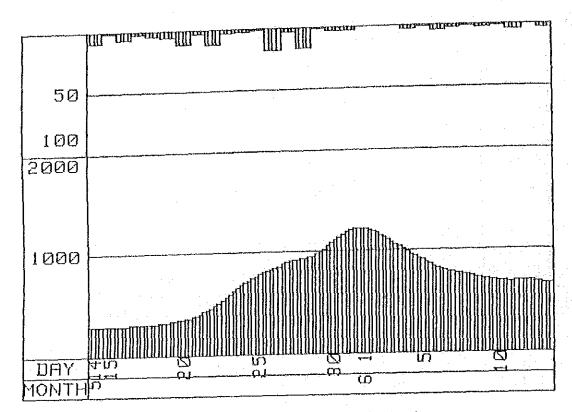


Fig. C-4-12 (3) Result of Flood Analysis
(for 10 year Return Period)

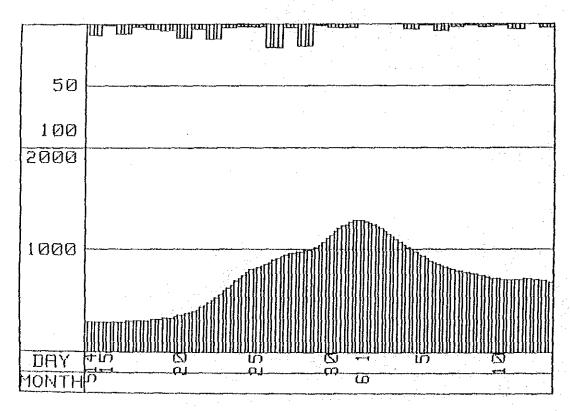


Fig. C-4-12 (4) Result of Flood Analysis
(for 20 year Return Period)

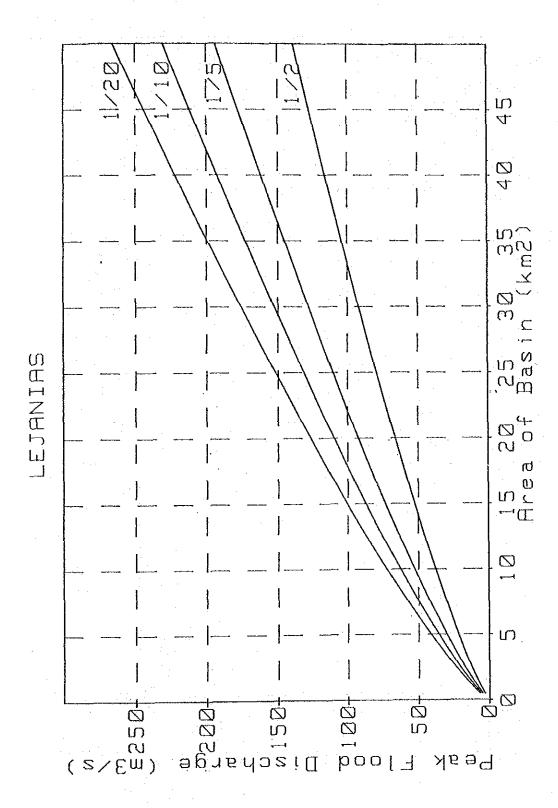


Fig. C-4-13 (1) Peak Flood Discharge (Lejanias Station)

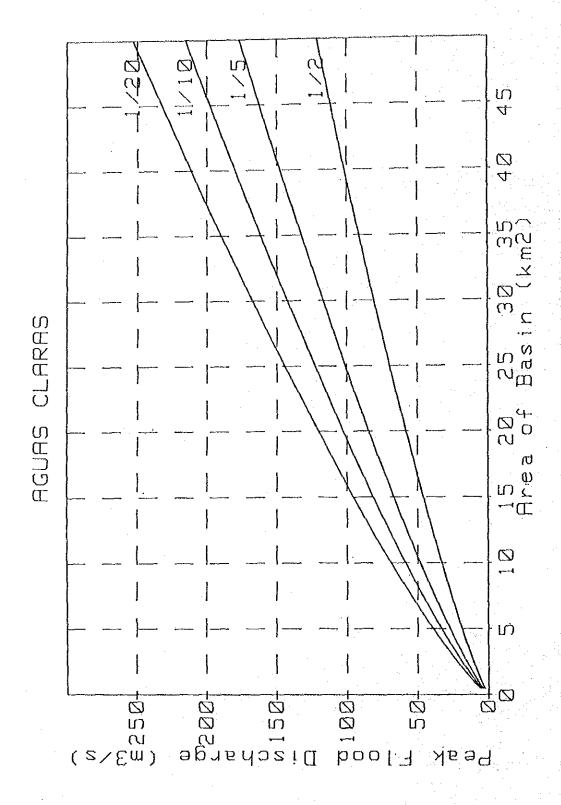


Fig. C-4-13 (2) Peak Flood Discharge (Aguas Claras Station)

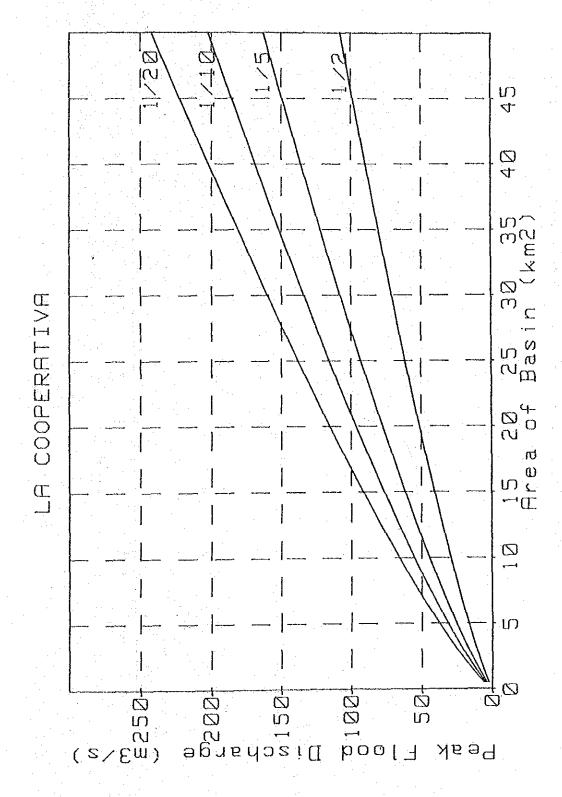


Fig. C-4-13 (3) Peak Flood Discharge (La cooperativa Station)



Fig. C-4-13 (4) Peak Flood Discharge (Puerto Limon Station)

· ANNEX D : SOIL

AND

LAND CLASSIFICATION

ANNEX D : SOIL AND LAND CLASSIFICATION

TABLE OF CONTENTS

	Ì	PA(3E
D.1 GENERAL	D	-	1.
D.2 SOIL CLASSIFICATION	D	-	4
D.3 SOIL CHARACTERISTICS	D	-	5
p.4 SOIL MAP	D		9
D.5 LAND CLASSIFICATION	D	-	16
D.6 LAND USE SUITABILITY	D	-	25
D.7 SOIL PROFILES			
D.8 RESULTS OF SOIL ANALYSIS	D	-	65
LIST OF TABLES			
Table D-2-1 Soil Classification	D	**	4
Table D-3-1 Characteristics of Soil Family	D	-	6
Table D-3-2 Standard of Characteristics	D	-	7
Table D-3-3 Standard of Soil Fertility	D	-	8
Table D-4-1 Soil Association	······])	-	14
Table D-5-1 Land Classification for Crop Suitability	D	-	20
Table D-5-2 Results of Land Classification	D	-	21
Table D-5-3 Area by Land Classification	D	-	22
Table D-6-1 Land Classification and Land Use Suitability	D		29
Table D-6-2 Land Use Suitability	D	-	30
Table D-8-1 Chemical Characteristics of Soil Profiles	D	-	66
Table D-8-2 Fisical Characteristics of Soil Profiles	D	-	67
Table D-8-3 Characteristics of Soil Profiles (by Pre F/S)	D		68
Table D-8-4 Fisical Characteristics of Soil Profiles (by Pre F/S) D	ı -	70
LIST OF FIGURES			
Fig. D-1-1 Location of Soil Survey Points	D	۰-	3
Fig. D-4-1 Soil Map	<u>}</u>)) -	15
Fig. D-5-1 Land Classification for Upland Crops	D) –	23
Fig. D-5-2 Land Classification for Paddy Rice	D) -	24
Fig. D-6-1 Land Use Suitability	D) –	31
Fig. D. 8-1 Toxture and Distribution of Three Phases	[])	65

ANNEX D: SOIL AND LAND CLASSIFICATION

B.1 GENERAL

To collect information on kind, characteristics and distribution of soil in the Study Area, the following soil survey was carried out.

- Soil Survey: 90 points (see Fig. D-1-1) 15 points of the excavating pits, 75 points of the examination by soil auger.
- Physical and chemical analysis: 36 samples

Based on the results obtained and prepared, the kinds of soils and their characteristics were clarified and also land for agricultural use was classified. Thus, the basic data for land use planning was obtained.

The Study Area is located on a plain in the basin of the Rivers Guape and Ariari. The area features shows composite fans and alluvial plains.

Soil in the area is composed of alluvial deposits as parent material, and is categorized as below in accordance with the topographic distribution.

1) Soil of River Reservation (LC)

The soil, distributed over a narrow area along the Guape and Ariari Rivers, occupies 520 ha or 1.3% of the Study Area. The land is flat and is subject to flooding from the river at times. Soil texture is medium moderately coarse and drains well.

The PH level is neutral to moderately acid, effective soil depth is shallow and soil fertility is medium to low, and therefore suitable for pastures and perennial crops.

2) Soil of Fan Land (LR, TL, UP, MC)

The soil is distributed over the greater part of the Upper Zone and occupies 9.810 ha or 23.9% of the Study Area.

The land slope is from below 1% to 3% and occasionally consists of MUCH GRAVEL such as Lejanias. Soil texture is medium moderately coarse and drains well.

The PH level is moderately to strongly acid, and the effective soil depth varies greatly.

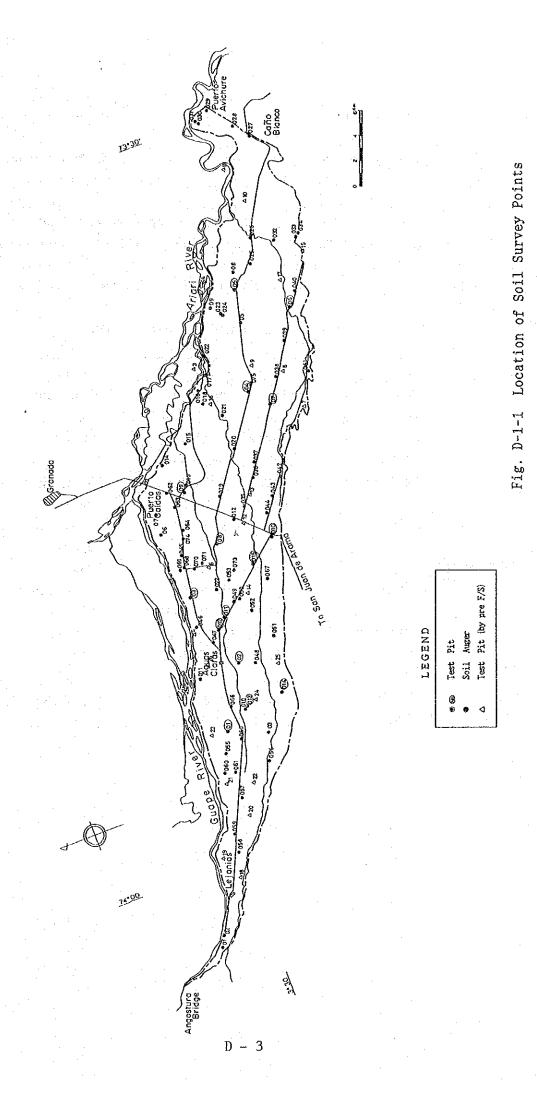
3) Soil of Hollow in Low Terrace (EC, DQ)

The soil is distributed in the Middle Low Zone and occupies 11,350 ha or 27.6% of the Study Area.

The distribution of this zone is principally along the Ca¥o, flooded in the rainy season. Soil texture is medium to moderately fine, and drainage is fairly poor. The PH level is moderately acid, and the effective soil depth is deep. Soil fertility is medium to low.

Thus, this land often has been used as irrigated paddy fields.

4) Soil of Low-Middle Terrace (GF, GU, FO)


The soil is distributed in the Middle-Low Zone and occupies 16,330 ha or 39.7% of the Study Area.

The land is flat. Soil texture is medium to moderately fine, and drain well.

The PH level is neutral to moderately acid, and the effective soil depth is varies. Soil fertility is the highest in the Study Area.

5) Soil of High Terrace (LA, EB)

The greater part of this soil is distributed in the Low Zone and occupies 3,090 ha, 7.5% of the Study Area. Soil texture is medium to moderately fine, and drains poorly. The PH level is strongly acid and density of in iron and aluminum is high.

D,2 SOIL CLASSIFICATION

Soils in the Area are classified as shown in Table D-2-1, according to the Soil Taxonomy of the USDA.

Soils are classified into 4 Orders, 9 Great Groups, and 13 Subgroups by the USDA Guideline, and a further 15 soil families are in use as soil units in the area. 4 Orders are Entisols, Inceptisols, Mollisols and Oxisols. Many of soils belong to the Inceptisols.

Table D-2-1 Soil Classification (USDA)

Order Great	Group	Sub-group	Family
	Tropaquents	Typic Tropaquent	El Condor
	Tropofluvents	Aquic Tropofluvent	Limon
Entisols	Troporthents	Aquic Troporthent	Playon
	Udorthents	Lithic Udorthent	Lejanias
<u></u>	Tropaquepts	Typic Tropaquept	Dos Quebradas
		Oxic Distropept	Los Alpes
	Dystropepts	Fluventic Distropept	Fuente de Oro
			Topacio
Inceptisols		Typic Eutropept	Guape
	Eutropepts	Aquic Eutropept	El Porvenir
		Fluventic Eutropept	Urichare
	Haplumbrepts	Typic Haplumbrept	Guanayas
Mollisols	Hapludolls	Typic Hapludoll	Venada
	·		Macuya
Oxisols	Haplorthox	Typic Haplorthox	El Bosque
4 Orders 1	O Great Groups	13 Sub-groups	15 Families

D.3 SOIL CHARACTERISTICS

Characteristics of each soil family are shown in Table D-3-1. The terms used in describing of soil characteristics are based on the Soil Taxonomy and their standard in shown in Table D-3-2 and D-3-3.

Table D-3-1 Characteristics of Soil Family

soil	fertility	low	l medium		medium	low —medium	Low.		in the	medium	10%	medium			ALC	low
	geable Ai	mode.low		1	low	1	medium		low— mode.low			Low			low	mode.low mode.alt
availab-	Je P	low	medium/ mode.low	1	low /medium	low	Yow	low	low	alt /		medium - low	low — mode.alt	low — alt	low — alt	low
exchan-	geable	mode.low	medium- mode.low	mode.low	low	alt -medium	medium	low	mode.low - alt	medium-	mode, alt	medium- mode.low	mode.low - alt	mode.low - alt	10w - alt	medium - alt
pase -	saturat- ion	alt — mode.low	low,	mode.low	mode.low	mode.alt	mode.low	medium - low	mode.low	alt / medium-	alt	mode.alt	medium	mode.alt	mode,alt	mode.low
total	base	low	alt	mode.low	mode.low	low- mode.low	10%	low	10%	medium-	alt -	medium- mode/low	mode low	medium low	Том	low
	SEC	low mode.low	low	mode.alt	medium	medium	mode.low	medium- mode/low	medium / low	medium	medium- mode/low	alt /medium	medium- mode/low	medium / low	medium mode/low	mode.low
•	acıa	mode. acid	neutality	mode. acid	mode. acid	mode. acid - strong acid	strong acid	mode. acid	strong acid	neutarity	neutarity mode. acid	mode. acid - strong acid	mode. acid - strong acid	mode. acid	mode. acid strong acid	very strong acid
	stoniness		013		medium abundant			<u> </u>			on O					
-	texture				medium				mode. fine -medium		mediun	medium mode. fine			med I bem	
effective	soil depth	deep	shallow — mode. deep	shallow	very shallow	deep	mode. deep	shallow — mode. deep	mode, deep deep	shallow	deep	deep			mode, deep	
	drainability	poor mode. poor	well- mode, poor	-	1194	well- mode. poor	poor - well		well		mode. well		well	mode. poor	well	poor-well
	SOll Tamily	El Condor	Limon	Playon	Lejanias	Dos Quebradas	Los Alpes	Fuente de Oro	Topacio	Guape	El Porvenir	Urichare	Guanayas	Venado	Macuya	El Bosque

1) mode.:moderately 2)/: (I horizon/II horizon)

Table D-3-2 Standard of Characteristics

Characteristics	Standa	rd
	Very deep	> 150 cm
	Deep	150 - 100
Effective Soil Depth	Moderately deep	100 - 50
	Shallow	50 - 25
	Very shallow	25 - 10
	Extremely shallow	< 10
	Coarse	S, LS
	Moderately coarse	SL
Texture	Medium	L, SiL, Si
	Moderately fine	CL, SCL, SICL
	Fine	SC, SiC, C
	Very fine	C
	No	< 0.1 %
	Few	0.1 - 3
Stoniness	Medium	3 - 15
	Abundant	15 - 40
	Extreme	40 - 70
	Miscellaneous	> 70
	Very strongly acid	4.5 - 5.0
•	Strongly acid	5.1 - 5.5
	Medium acid	5.6 - 6.0
i	Slightly acid	6.1 - 6.5
Acid	Neutral	6.6 - 7.3
	Mildly alkaline	7.4 - 7.8
· ·	Moderately alkaline	7.9 - 8.4
	Strongly alkaline	8.5 - 9.0
Soil Fertility	see Table	D-3-3

Table D-3-3 Standard of Soil Fertility

	and the second s		· · · · · · · · · · · · · · · · · · ·				
	pll	Range	<4.5	4.6-5.0	5.1-5.5	5.6-6.0	6.1-7.3
			>8.5	7.9-8.4	7.4-7.8		
	H ₂ 0 1:1	Point	1	2	8	4	5
	Saturation	Range	>60	60 - 30	29 - 15	14 - 5	<5
	% of Al	Point	1	2	3	4	5
	CEC	Range	5	5 - 10	11 - 15	16 - 20	>20
	me/100g	Point	1	2	3	4	5
В	Saturation	Range	<10	10 - 35	36 - 50	51 - 70	>70
a	%	Point	0.5	1.0	1.5	2.0	2.5
s	Total	Range	<4	4 - 8	8.1-12	12.1-16	>16
e	me/100g	Point	0.5		1.5	2.0	2.5
0 C	Cold	Range	<1.3	1.4-2.6	2.7-4.0	4.1-5.2	5.3-6.5
r a	•			>10	8.1-10	8.0-6.6	
gr		Point	1	2	3	4	5
a b	Medium	Range	<0.5	0.6-1.7	1.8-2.9	3.0-4.1	4.2-5.3
n o			• •	>7.6	6.5-7.6	5.4-6.5	
i n		Point	1	2	3	4	5
С	Hot	Range	<0.2	0.2-0.5	0.51-1.7	1.71-2.9	>3.0
		Point	1	2	3	4	5
	Р ррш	Range	<10	10 - 20	21 - 30	31 - 40	>40
		Point	l	2	3	4	5
i	K me/100g	Range	<0.1	0.1-0.2	0.21-0.3	0.31-0.4	>0.4
		Point	1	2	3	4	.: 5 ₂]

Ft = (0.7F1 + 0.3F2)0.285

F1: Total point of topsoil(0-25cm)
F2: Total point of subsoil(25-50cm)

Evaluation of Fertility

Ft	Soil fertility				
More then 8.4	Very high				
8.4 - 6.8	High				
8.7 - 5.2	Medium				
5.1 - 3.6	Low				
Less than 3.6	Very low				

D 4 SOIL MAP

The soil map was worked out by using the associations of the family as map unit, according to the five topographies. There are 12 soil associations, composed of main soil and sub soil families. The soil map is shown in Fig. D-4-1 and the characteristics of associations in Table D-4-1. The associations are described below.

(1) River reservation

The soil originates from recent fluvial sediment. Slopes are generally flat. This group consists of one association.

1) Association LC

The textures are fine to coarse at the surface and gravely or sandy layers are observed in the sub-soil. Soil moisture is excessive owing to the high level of ground-water. Soil fertility is low to medium. The major limitation of this association for plant productivity is flooding in the rainy season. The association is composed of two soil families, Limon (50%) and Playon (50%).

The land is use for uplands (maize, plantain), orchards (cacao) and pastures. Plantain is a staple product of this land.

(2) Hollow in low terrace

This soil originates from alluvial sediment and is composed of a clay-sand mix. The slope is slightly flat. This group is composed of two associations.

1) Association EC

This association is located in the Lower zone. Texture is medium at the surface, gradually changing to moderately fine in the sub-soil. Owing to the variation of the ground water table, the soil colors change from yellowish brown to grayish depending on the depth in the sub-soil, and mottle is abundant. Pools form in especially hollow reliefs in the rainy season because of the generally poor drainage. Soil fertility is low to medium. This association is

composed of two soil families, El Condor (70%) and Dos Quebradas (30%).

At present the land is used for irrigated paddy fields, upland fields (rice, maize, soybean, sorghum) and pastures.

2) Association DQ

This association is located in the neighborhood of Canaguaro and Aguas Claras in the Middle zone. Texture is medium. The slope is slightly flat. Soil drainability is fair to moderately poor. Soil fertility is medium to high. This association is composed of two soil families, Dos Quebradas (65%) and Venado (35%).

At present, the land is used for irrigated paddy fields, upland field (rice, soybean, sorghum, maize, plantain), orchards (cacao) and pasture.

(3) Low-middle terrace

This group is located principally in the Middle to Low zone and is underlain by medium textured soil. The slope is flat to slightly flat. This group is composed of three associations.

1) Association GF

This association is located in the low terrace. The effective soil depth is fragmented. Soil fertility is medium to low. This association is composed of three soil families, Guape (60%), Urichare (15%) and Lejanias (25%).

At present, the land is used as uplands (rice, sorghum, cotton soybean, maize, plantain), orchards (cacao) and pastures.

2) Association GU

This association is located in the middle terrace at the altitude of 440 to 550 m. Drainability is generally good to moderately good. The soil colors change from brown to gray yellowish brown at deeper layers. The sub-soil contains irregular sandy layers. The effective

soil depth is deep to moderately deep and soil fertility is medium to high. This association is composed of two soil families, El Porvenir (50%) and Guanayas (50%).

At present, the land is used generally for irrigated paddy fields and uplands (rice, soybean, sorghum, maize, plantain), and some parts are used as orchard (cacao) and pastures.

3) Association FO

This association is located in the middle terrace at the altitude of 430 to 500 m. Drainability is good. The soil colors change from dark gray to light olive brown. Sandy layers are observed at different depth in the sub-soil. This association is composed of three soil families, Fuente de Oro (60%), El Porvenir (30%) and Guanayas (10%).

At present, the land is used principally for uplands (rice, soybean, sorghum, maize, sugarcane, plantain) with other parts devoted to orchards (cacao, african palm) and pastures.

(4) The high terrace

This group is underlain by lateritic soils. The soils is composed of clay-sand mix with hard clay or gravel layers in the sub-soil. The sub-soil color is generally reddish. Soil fertility is low because it is highly acid, has poor chemical properties and high content of exchangeable aluminum. The group is composed of two associations.

1) Association LA

This association is principally located along Road No.7 to No.11 in the Low Zone. The slope is moderately flat to undulating. This association is composed of two soil families, El Bosque (55%) and Los Alpes (45%).

At present, the land is used mainly for pastures.

2) Association EB

This association is located in the highest land of the area. The land has isolated hills and it moderately steep. This association is composed of two soil families, El Bosque (80%) and Los Aples (20%).

At present, the land is used only for pastures and forestry.

(5) Fan land

The soils originated in sediments of fan. This land is predominautly sandy. Overall, the slope is slight with gentle relief. This group is composed of four associations.

1) Association LR

The soil is characterized by the abundance of gravel. The effective soil depth is very shallow because of the gravely layers. Drainability is very good to good. Soil fertility is medium. The association is composed of two soil families, Lejanias (75%) and Topacio (25%).

At present, the land is used principally for pastures and orchards (papaya), with a small upland area (plantain, maize). Papaya is an important product.

2) Association TL

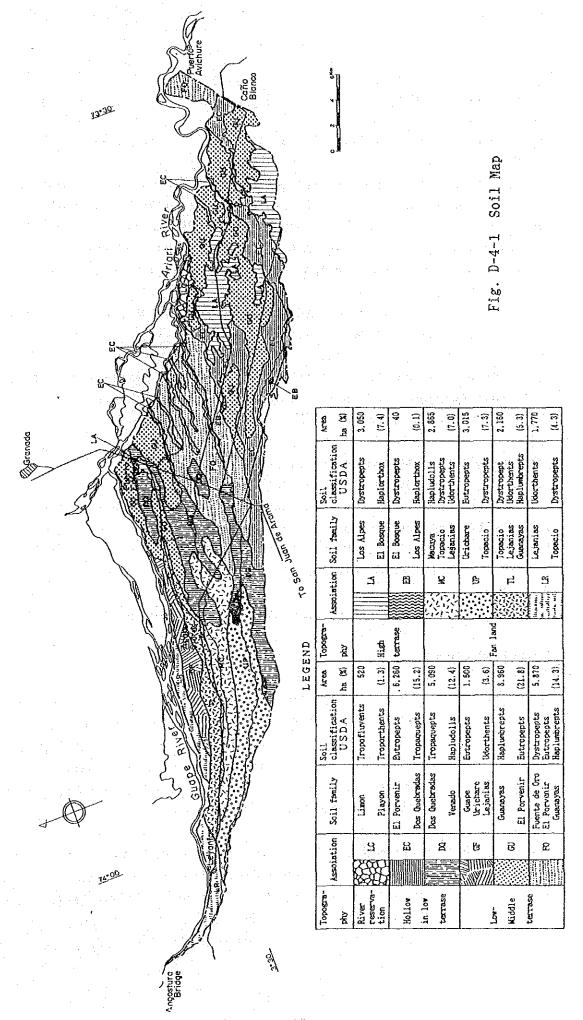
This association is located along Road No.4. The fragmented nature of the land limits its use for cultivation. This association is composed of three soil families, Topacio (50%), Lejanias (40%) and Guanayas (10%). However, those families are distributed at random.

At present, the land is used variously for uplands (rice, maize, soybean, sorghum, plantain), orchards (cacao, papaya) and pastures owing to the distribution of soils having different characteristics.

3) Association MC

The texture is medium and drainability is good. Soil color is yellowish brown. Effective soil depth ismoderately deep to deep; however, some parts are underlain by rounded gravel in the subsoil. The association is composed of three soil families, Macuya (45%), Topacio (45%) and Lejanias (10%).

At present, the land is used for uplands (rice, soybean, sorghum, maize, cotton, plantain), orchards (cacao, african palm) and pastures. The form of land use varies, and with irrigated paddy fields seen in small areas.


4) Association UP

The texture is medium and drainability is good. Effective soil depth is moderately deep to deep, with gravely layer in the subsoil. The association is composed of two soil families, Topacio (55%) and Urichare (45%).

At present, the land is used for uplands (rice, soybean, sorghum, maize, plantain), orchards (cacao) and pastures. The form of land use varies as for the case in association MC.

Table D-4-1 Soil Association

Area	ha %	520	(1.3)	6.260	(15.2)	5,090 (12.4)	1,500	(3.6)	8,960 (21.8)	5,870	(14.3)	3,050 (7,4)	40 (0.1)	2,865	(7.0)	3,015	2,160	(5.3)	1.770	(4.3)
(haractorictice	מושן שטנפן דארונא	flat. distributed along river side, undeveloped soil.	Season,	flat principally fine textured in subsoil, pseudogleysoil.	distributed in hollow and along river.	flat. distributed in hollow in middle zone. pseudogley soil.	moderately flat. distributed in upper-middle zone.	fragments appear under different depth.	flat. distributed in middle-low zone.	sandy layer is irregularly distributed in subsoil.		moderately flat-rolling. distributed in middle-low zone.	Lateritic soil. soil color is redaish in sub-norizon. E B is distributed highly more than L A.	4012	moderacely lac.	distributed in upper zone.	moderately flat.	distributed in upper zone. gravelly soil is irregularly distributed.	moderately flat-rolling.	destributed in upper partand-along the Guape River. undeveloped soil. stony land.
Soil Classification	USDA	Tropofluvents	Troporthents	Eutropepts	Tropaquepts	Tropaquepts Hapludolls	Eutropepts	Udorthents	Haplumbrepts Eutropepts	Dystropepts	curropepts Haplumbrepts	Dystropepts Haplorthox	Dystropepts Haplorthox	Hapludolls	Udorthents	Eutropepts Dystropepts	Dystropept	Udorthents Haplumbrepts	Udorthents	Dystropepts
Soil family	Carrier 1700	Limon	Playon	El Porvenir	Dos Quebradas	Dos Quebradas Venado	edane	Urichare Lejanias	Guanayas El Porvenir	Fuente de Oro	El Forvenir Guanayas	Los Alpes El Bosque	El Bosque Los Alpes	Macuya	Lejanias	Urichare Topacio	Topacio	Lejanias Guanayas	Lejanias	Topacio
ASSOC-	iation	Ç	}	Į L	3	20	į	5	CCD	٤	2	L'A	EB	71.	3	es es		II		S
Topography	Create don	River	reservation		Hollow in	low terrace			Low - Middle terrace				nigh terrace			,	Fan land			

D.5 LAND CLASSIFICATION

(1) Method of land classification

In order to assess suitability for cultivation of all kinds of crops, land classification was worked out for the associations. Because the concept of land classification is divided into suitability for paddy rice and for upland crops, for the following reasons, land classification shall be studied in each case.

- Soil and water requirements crops, there is differ between paddy rice and upland crops.
- For paddy rice, the suitability of land units limits the crop to one type, for upland crops, land classification shown the land suits various kinds of upland crops.

(2) The criterion of land classification

On land capability for upland crops, the land unit was classified by the topography, soil and drainage factors based on the USDA Guideline. Further, by the use of the same factors, new criteria for paddy rice were adopted.

The criteria of each land classification are listed in Table D-5-1

1) Upland crops

- Class I: There are few limitations for land use, and none are major. This land is highly suitable for cultivating upland crops. Intensive farming can be expected by the use of irrigation systems and agricultural mechanization. No land corresponding to this class exists in the area.
- Class II: For land use there are moderate limitations which can generally be compensated for by use of adequate technology for supplying moisture and nutrients. This land is suitable for cultivating upland crops.

 Association GU falls under this class, occupying 22%

of the area.

- Class III: Limitations are stronger than for Class II and more appropriate technology would be required for producing many kinds of crops. This land is moderately suitable for cultivating upland crops. Associations FO, MC, UP and DQ fall under this class, occupying 41% of the area.
- Class IV: Because of strong limitations, only a few kinds of crops can be cultivated. The land is marginally suitable for cultivating upland crops. In addition to very careful management, there is need to select crops such as shallow-rooted plants or perennial crops.

 Associations GF, LA, TL and EC fall under this class, and occupying 32% of the area.
- Class V: There are very strong limitations and more severe selection of plants would be required than for Class IV. This land is arable only for a few uses such as orchards, perennial crops and pastures. Associations LR and LC fall under this class, occupying 5% of the area.
- Class VI: The land is not commonly suitable because of very severe limitations. Association EB steep in land form, and association LC highly prone to flooding fall under this class. The land occupies under 1% than less of the area.

2) Paddy rice

- Class P II: There are some limitations for producing paddy rice, but the land is suitable for paddy fields. Association DQ and the major part of associations EC and GU fall under this class, occupying 43% of the area.
- Class P III: There are moderate limitations for producing paddy rice; the land is moderately suitable for paddy fields. Association FO and some of association GU fall

under this class, occupying 20%.

Class P IV: There are severe limitations for producing paddy rice.

The land is marginally suitable for paddy fields and there are limitations on its utility. High technology for supplying moisture and plant nutrients would be required for cultivation of paddy rice. Associations GF, MC, UP, LA and parts of associations EC and LC fall under this class, occupying 27% of the area.

Class P V: There are very strong limitations for producing paddy rice and the land is not commonly suitable for paddy fields. In addition to association EB, steep in land form, and association LC, highly prone to flooding, associations TL and LR, with stony surface, correspond to this class. The land occupies 10% of the area.

(3) Land classification result

Results of the land classification are listed in Table D-5-2 and Fig. D-5-1 and D-5-2.

According to the results, land for paddy rice is classified as PII - PV and for upland crops as II - VI in the study area.

The utilization for paddy rice in Classes PII and PIII covers 25,970 ha, or 63% of this area, mainly concentrating in the Middle-Low zone. Some 80% of this zone is classified into these classes.

Regarding utilization for upland crops, Classes II and III occupy 25,800 ha, or 63% of this area, same as for paddy fields. Distribution is mainly from the Upper to the Low zone.

Further, from the viewpoint of irrigation adaptability, the land Classes as PII to PIV, and II to IV are generally assessed as cultivable land for paddy rice or upland crops and adaptable for farm irrigation. Classes PV, V and VI are judged inadequate for farm irrigation owing to limited land utilization or non-suitability.

Accordingly, land classes correspond to adaptability for irrigation as follows:

Land Classification Irrigation Adaptability

PII, II High
PIII, III Middle
PV, V, IV Low

The results arranged from the above perspective are listed Table D-5-3.

Irrigation adaptable land for paddy rice and upland crops covers 37,040 ha and 38,770 ha respectively, and both occupy 90% of the study area.

From the viewpoint of utilization for paddy rice and upland crops, 48% of Class PII is irrigation adaptable, compared with 23% for Class II. Thus, irrigation adaptability is especially high for paddy rice in Class II.

Table D-5-1 Land Classification for Crop Suitability

(1) Upland Crops and Others (USDA Method)

			**	TIT	ŢV	VI	VI
factor	land quality	I	II	III			
topography (t)	slope (%)	0-3	3-7	7-12	12-25	3-7	12-25
soil (s)	effective(cm)	>100	>100	>50-100	>25-50	>25	>25
. ,	stoniness (%) of surface- coverage	<3 '' <0.1 '2'	<3 <0.1	3-15 0.1-3	<15-45 3-15	3-15 <3-15	<45-70 <15-40
	soil fertility	>6.8	5, 2-6, 7	3.6-5.1	>3.6	>3.6	>3.6
	acid	5.6-7.8	5.6-7.8	5.6-7.8	1.5-8.4	4.5-8.4	4.5-9.0
	texture	medium-3) mod.fine	mod.coarse mod.fine	mod.coarse fine.	mod.coarse fine.	mod.coarse fine.	coarse
drainage (d)	drainage	well- mod.well	well- mod.poor	well- mod.poor	very well- poor	well- very poor	very well- very poor
, ,	flood	no	no	often	regularly	irregular- ly	irregular- ly

1) : Diam. 2-250mm

2) Diam. >250mm

3) mod. = moderately

Land class I very suitable

class II suitable

class III moderately suitable

class IV marginally suitable

class V arable for defined special use

class VI non-arable

(2) paddy rice

factor	land quality	PΙ	РΠ	PIII	PIV	PV
topography (t)	slope and (%) relief	0-1 flat	>1-2 flat	>2-5 mod. ¹⁾ undulating	>5-7 undulating	3-7 undulating- rolling
soil (s)	effective(cm) soil depth	>75	>50-75	>25-50	>25	>25
	texture 0-30 (cm)	medium- mod.fine ¹⁾	medium- mod.fine	mod.coarse medium	mod.coarse medium	mod.coarse- coarse
	subsoil	medium- mod.fine	medium- fine	mod.coarse- medium	mod.coarse- coarse	mod.coarse- coarse
drainage (d)	drainage	poor- mod, poor	poor- very poor	mod.well- well	well- very well	very well

1) : mod. = moderately

Note: The other land quality is the same as case of the upland crops

Land class P I very suitable for paddy rice

class PII suitable for paddy rice

class PIII moderately suitable for paddy rice

class PIV marginally suitable for paddy rice

class PV non-suitable for paddy rice

Table D-5-2 Results of Land Classification

(1) Upland Crops and Others

Class	Limit	Principal soil		:	Area : ha	1	
2.5 0	factor	association	upper	middle	low ·	total	(%)
II	s	GU	-	2,630	6,330	8,960	(21.8)
Ш	s	FO, MC, UP	4,530	5,100	2,120	11,750	(28.6)
	d	DQ	500	4,590		5,090	(12.4)
IV	S	GF, LA, TL	2,340	1,470	2,900	6.710	(16.3)
	d.	EC	-	1,480	4,780	6.260	(15.2)
ν	s	LR	1,690	80		1,770	(4.3)
	s, d	CL.	_ , ·	<u> </u>	430	430	(1,1)
VI	d d	CL	40	50		90	(0.2)
	s, t	EB	_	-	40	40	(0.1)
Total			9,100	15,400	16,600	41,100	(100, 0)

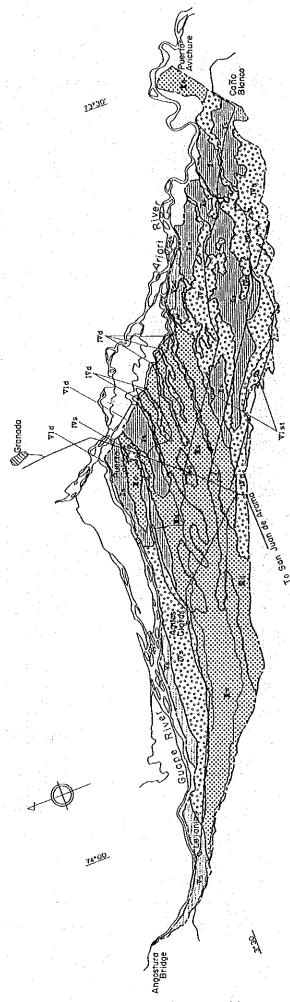
(2) Paddy rice

Class	Limit	Principal soil	Area : ha										
	factor	association	upper	middle	low	total	(%)						
ΡΠ	s	DQ, EC, GU	500	6,330	10,910	17,740	(43.2)						
PIII	d	GU, FO		6,130	2.100	8,230	(20.0)						
PIV	t	EC		1,47	210	210	(0.5)						
	. d	GF, MC, UP	5,380	2,000	4,78	7,380	(18.0)						
	s	LA		140	2,510	2,650	(6.4)						
	s, t	LA	•	1,48	400	400	(1.0)						
	s.d	LC		1,48	430	430	(1.0)						
PV	đ	LC	40	. 50	_	90	(0.2)						
	s. d	TL, LR	3, 180	750	43	3,930	(9.6)						
	s, t	EB	_	· —	.40	40	(0.1)						
Total			9,100	15,400	16,600	41, 100	(100.0)						

Limitat factor

t: topography.

s : soil. d : drainage


Table D-5-3 Area by Land Classification

Paddy rice

		Area (ha)								
Class		Upper zone	Middle zone	Low zone	Total	%				
	PΙΙ	500	6,330	10,910	17,740	43.2 (47.9)				
Suitable land	ΡIII	0	6,130	2,100	8.230	20.0(22.2)				
for irrigation	ΡW	5,380	2,140	3,550	11,070	26.9(29.9)				
Sub total (%)	5,880 (65)	14.600 (95)	16,560 (100)	37,040	90, 1 (100)					
Non suitable land for irrigation	PΛ	3,220	800	40	4,060	9.9				
Total	9,100	15,400	16,600	41,100	100					

Upland crops

			Area (ha)									
Class		Upper	Middle	Low	Total	%						
		zone	zone	zone								
Callable land	П	0	2,630	6,330	8,960	21.7(23.1)						
Suitable land	Ш	5,030	9,690	2,120	16.840	41.0(43.4)						
for irrigation	ŢV	2,340	2,950	7,680	12,970	31.6 (33.5)						
Sub total (%)	7,370 (81)	15,270 (99)	16, 130 (97)	38,770	94.3(100)							
Non suitable	٧	1,690	80	430	2,200	5.4						
land for irrigation	VI	40	50	40	130	0.3						
Total	9,100	15,400	16,600	41,100	100							

Marginally Suitable
Arable for defined special use
Non-arable

s, Sd

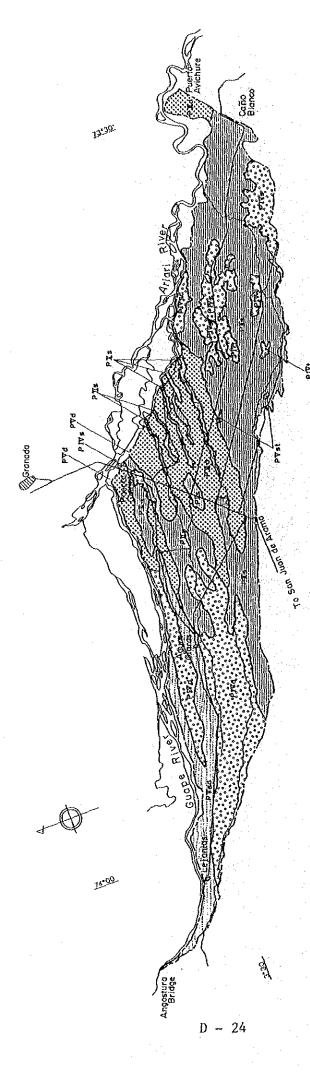
Suitability

Limitation

Class

LEGEND

Moderately Suitable


o v

Ħ

Suitable

Note : Limitation s=soil, d=drainage, t=topography

Fig. D-5-1 Land Classification for Uplad Crops

L E G E N D

7		9)	φ		2
Sultability	Suitable	Moderately Suitable	d.s.t.sd.st Marginally Suitable	Non-suitable	Water this total and a state that the state of
Limitation	Ø	ъ	d.s.t.sd.st	d, sd, st	6 100 100 100 100 100 100 100 100 100 10
Class	Пd	り回	Md	Уď	
	, and the second		, 6, 6		Note
		e .			

ote : Limitation s=soil, d=drainage, t=topography

Fig. D-5-2 Land Classification for Paddy Rice

D.6 LAND USE SUITABILITY

To assess the overall suitability for agricultural land use and to obtain study materials for planning land use, the suitability of land use for paddy fields and uplands is reviewed in this chapter.

On the study of land use, suitability by combination of respective class matrix on the basis of land classification result for paddy rice and upland crops, making clear of land use suitability in the Study Area, and then zoned in 9 class by 1-9 putting importance on paddy production mainly.

Further, in case existents difference of soil or present land use in the same class, more detailed distinction was adopted.

The relations between land classification and land use suitability land use are shown on Table D-6-1. Land use suitability is as shown in Table D-6-2 and Fig. D-6-1. The classes are described below.

- Class 1-1: Distributed in parts of the hollow, nearly flat land in the low terrace. Drainability is poor to fair. Fertility is medium. This class is suitable for irrigated paddy fields and uplands, and double cropping could be feasible through irrigation. However, some parts of the hollow land flood during the rainy season, so surface drainage needs to be improved.
- Class 1-2: Distributed on a nearly flat terrace, in the hollow, and consists of middle textured alluvial soil with moderately good drainability. Fertility is medium to high. It suitable for irrigated paddy fields and uplands and, with irrigation, irrigated paddy crops.
- Class 2: Distributed on a nearly flat terrace, in the hollow.

 Drainability is somewhat poor to poor. The land is suitable for irrigated paddy fields. Fertility is generally low, and fertilizing would be necessary. On account of poor drainage, slightly suitable for uplands, with double cropping of irrigated paddy fields. In the many hollows plagued by poor drainage during the rainy

season, improved surface drainage is needed. Part of this class extending along Cano is suitable for pastures lands.

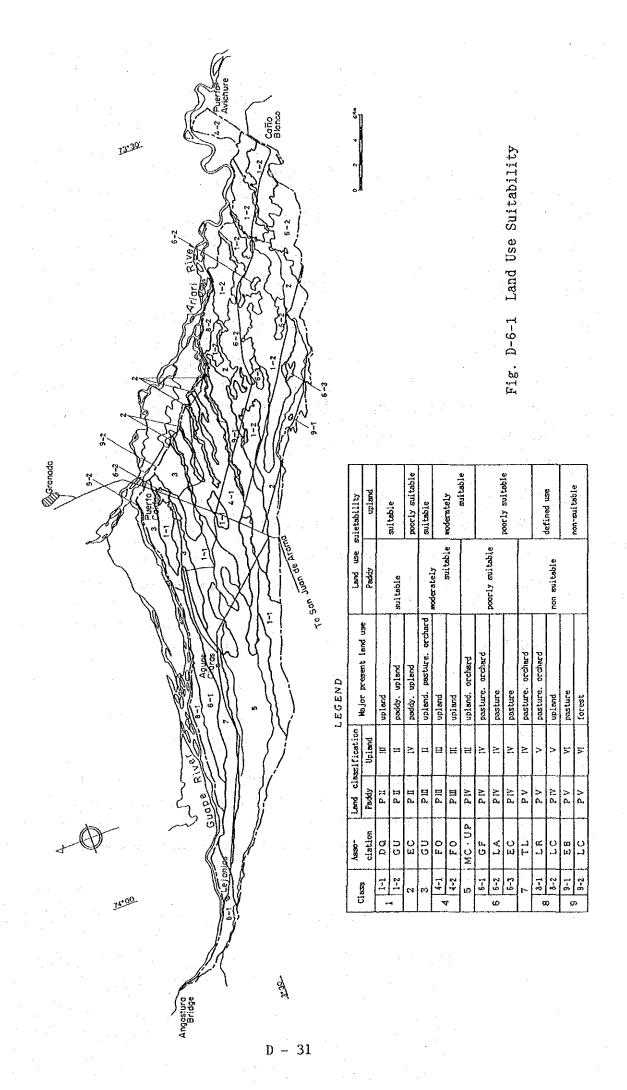
- Class 3: Covers a part of the nearly flat middle terrace located near the Guape River in the Middle zone. Drainability is good to moderately good. It is suitable for uplands and moderately suitable for irrigated paddy fields. With adequate water supply double cropping is feasible in the paddy fields.
- Class 4-1: This class is part of the nearly flat middle terrace and the soil has good drainage. It is moderately suitable for irrigated paddy field and upland. In case it should supply water enough, like class 3, it is possible of double cropping in the paddy field.
- Class 4-2: Suitability of land use is the same as for class 4-1, but use must allow for the flatter topography.
- Class 5: Distributed over a somewhat flat alluvial fan. Soil is medium texture. Good drainability. Fertility is medium to high. Moderately suitable for upland crops. However, the lack of water makes this class less suitable for paddy rice. With adequate water supply, irrigated paddy fields.
- Class 6-1: Distributed on a part of the low terrace in the nearly flat Upper-zone. Soil is medium texture, fertility is low and drainability is good. This class is slightly suitable for upland crops on account of changeable in sub-soil. Further, its good drainage, makes it slightly suitable for irrigated paddy fields. The different depths of gravel must be allowed for when considering land utilization. Where effective soil depth is shallow, perennial crops, orchards and pastures are preferable to irrigated paddy fields.
- Class 6-2: Distributed over a nearly flat to undulating high terrace in Lateritic soil. Drainability is poor to good.

Because the soil is strongly to very strongly acid, it has poor chemical properties and low water retentivity, which mean problems for fertility control. Adaptability for irrigated paddy fields and uplands is assessed as low. Suitable for pasture lands. To convert this class into land with high productivity, manuring, soil improvement and irrigation are required.

- Class 6-3: Distributed over a part of the hollow in the low terrace, with undulating land form. Drainability is poor owing to moderately fine texture. Characteristics of soil are the same as class-2, slightly suitable for uplands. The topographic condition is disadvantageous for water control, but this class is slightly suitable for irrigated paddy fields. Rain-fed paddy fields or pastures is recommended for land use.
- Class 7: Distributed over a belt-like part of the fan land. Not suitable for paddy fields owing to the high content of rounded gravel. It is slightly suitable for general uplands. For land utilization, maize, orchards, perennial crops and pastures are recommended. However, on account of irregular distribution of different soils in this class, the soil characteristics must be considered.
- Class 8-1: Nearly flat to moderately flat land, from the top of the fan to the Guape shore. Medium texture alluvial fan soil. Surface soil is very fine, with much rounded gravel in the sub-soil. Introduction of mechanization would be difficult because of the story surface. Not suitable for irrigated paddy fields and upland crops. Perennial crops such as plantain, orchards and pastures are recommended.
- Class 8-2: Nearly flat land, on river reservation of the Rivers Ariari and Guape. Soil is medium texture alluvial soil originated from recent fluvial sediments. Gravely and sandy layers appear at shallow depths in the sub-soil, and soil moisture is excessive owing to the high ground

water table, so it is not suitable for general upland crops. Further, flooding occurs frequently during the rainy season, and damages agricultural production. Perennial crops such as plantain are recommended for land use. Owing to the excessive moisture content in the soil, irrigation is not so necessary but surface drainage is required.

- Class 9-1: Topographic features in this class are isolated hills with moderately steep slope. Soil is strongly acid and has poor chemical properties, so normal growth of plants is limited. The land is subject to soil erosion. The land use recommended is pastures.
- Class 9-2: The land is an area subject to flooding. Land is used for grass and bush land, and no change is recommended.


Table D-6-1 Land Classification and Land Use Suitability

	П	I	П	Γ	٧	1	7	V	1	
paddy ric	S	đ	s	s	d	s	sd	d	st	
РΠ	s	1-2	1-1			2				
РШ	d	3		4-1 4-2						
	d			5	6-1					
	t					6-3				
PIV	S				6-2					
	st				6-2					
	s d							8-2		
	s d				7		8-1			
PΨ	đ								9-2	
	st]		9-1

Table D-6-2 Land Use Suitability

	Subject		דנ ופקרימוו	inigation, surface drainage in the	Rainy Season		irigation.				glassland improvement	surface drainage in the Painy Season	plowing. land use for pasture or orch- ard	land use for pasture or orchard	surface drainage in the Rainy Season	glassiand improvement	revetment	
	Total (%)	11,690	(28.4)	6,050	(14.7)	2.360 (5.7)	5.870	(14.3)	5.880 (14.3)		4.760	:	2,150 (5.3)	2,200	(5.4)	130	(0.3)	41, 100 (100)
	Sub-total	5,036	6, 600	6.050		2.360	5,360	210	5.880	1.500	3,050	210	2,160	1.770	430	40	08	41,100
(%) eq e	Low zone	Û	6,330	4.560		0	1,610	210	0	O.	2,910	210	G	0	430	40	0	16.600
Are	Middle zone	4,590	270	1.490		2,360	3,750	0	1,350	650	140	0	670	80	0	0	.03	15.400
	Upper zone	200	0			0	0	0	4,530	850	0	0	1,490	1,690	6	0	40	9,100
ability	Ordinary upland field	4	aropy the	poorly	snitable	suitable	moderately	suitable	moderately suitable		poorly suitable		poorly suitable		derined use		Hon-sultation	
Land use suitability	Paddy field with irrigation	(4 c + 1 c	arronthe	suitable		moderately suitable	moderately	suitable	poorly suitable		poorly suitable		non-suitable		non-sultable		Hou-salteate	
	Present land use	paddy field, ordinary upland orchard, pasture.	paddy field. ordinary upland pasture.	paddy field. ordinary upland	pasture.	ordinay upland. pasture.	paddy field, ordinary upland pasture, orchard.	ordinary upland.	paddy field, ordinary upland orchard, pasture.	ordinary upland. pasture. orchard.	pasture.	pasture. ordinary upland.	pasture, orchard, ordinary upland.	pasture. orchard.	ordinary upland.	pasture, orchard.	forest.	Total
fication	Upland crops	Ш	Д	۸		п	Ш	ш	日	λJ	ΔĬ	Δì	Ŋ	۸	>	IA.	ĬĀ	
Land classification	Paddy rice	ΡΠ	шa	E G		四五	Шď	Шd	Νd	Mď	Νď	PIV	A.	۸	≥id	> A	۸۵	
	Association	DQ	αĐ	BC	!	дb	FO	04	MC. UP	£5	LA	EC	ı L	LR	LC	Щ Щ	C	
	Class	1-1	1-2	2		င	4-1	4-2	ເດ	6-1	6 6-2	რ დ	7	8-1	8-2	9-1	9 9 2	

Note " paddy field : paddy field with irrigation. " ordinay upland : annual crops, perennial crops, upland rice.

D.7 SOIL PROFILES

Representative soil profiles are as follows:

PROFILE No. : P - 01

CLASSIFICATION : Lithic Udorthent

UNIT CHARTOGRAPHY: Association TL. Soil family Lejanias

ALTITUDE : 530 m

POSITION OF PHYSICAL GEOGRAPHY: Alluvial fan

RELIEF : Flat

PARENT MATERIAL : Alluvial - fan deposit

EFFECTIVE SOIL DEPTH: Very shallow

DRAINAGE. SURFACE: 1ent SUBSURFACE: medium NATURAL: well

EPIPEDON: Umbric

DEPTH OF GRAND WATER: deep than 0.70 m

NATURAL VEGETATION : Short grass type

LAND USE : Natural pasture

PROFILE DESCRIPTION

Ah 0-23 cm Black(10YR²/₁) sandy loam; moderate fine subangular blocky and medium granular sturucture; many fine pores; friable moist; nonsticky nonplastic; many fine roots; abundante organism active; abrupt wavy boundary; pH 5.9.

Cr 23-X cm Gravel

Projecto Arigria Granulometria Void El Brillante Cross Cross T. Arena T. Limos T. Arcilla Textura 1:1 1:6 T.		R: RUEDA HUMEDAD ',
META	ONES 1.	Y.
Projecto Arigina Granulometria Proposition Propo	ONES 1.	Y.
Completo	ONES 1.	Y.
0-23 62 24 14 FA 5.9 COMPLEJO DE CAMBIO TOE/100 g. SATURAC CCC BT Ca Mg K Na ST SCA 19.8 7.3 5.7 1.2 0,2 0.2 36.9 28.8 MATERIA ORGANICA P PPm Ane/100 g CE		1
CCC BT Cs Mg K Na ST SCa 19.8 7.3 5.7 1.2 0.2 0.2 36.9 28.8 MATERIA ORGANICA P And A MATERIA ORGANICA P And MATERIA P		1.0
COMPLEJO DE CAMBIO me/100 g. SATURAC		1.0
COMPLEJO DE CAMBIO me/100 g. SATURAC		1.0
COMPLEJO DE CAMBIO me/100 g. SATURAC CCC BT Ca Mg K Na ST SCa		1.0
CCC BT Ca Mg K Na ST SCa 19.8 7.3 5.7 1.2 0.2 0.2 36.9 28.8 MATERIA ORGANICA P PPm A1 me/100 g CE		1.0
CCC BT Ca Mg K Na ST SCa 19.8 7.3 5.7 1.2 0.2 0.2 36.9 28.8 MATERIA ORGANICA P PPm A1 me/100 g CE		1.0
CCC BT Ca Mg K Na ST SCa 19.8 7.3 5.7 1.2 0.2 0.2 36.9 28.8 MATERIA ORGANICA P PPm Mallou g CE		
CCC BT Ca Mg K Na ST SCa 19.8 7.3 5.7 1.2 0.2 0.2 36.9 28.8 MATERIA ORGANICA P PPm Mej100 g CE		
CCC BT Ca Mg K Na ST SCa 19.8 7.3 5.7 1.2 0.2 0.2 36.9 28.8 MATERIA ORGANICA P PPm Mej100 g CE		
CCC BT Ca Mg K Na ST SCa 19.8 7.3 5.7 1.2 0.2 0.2 36.9 28.8 MATERIA ORGANICA P PPm Mej100 g CE		
CCC BT Ca Mg K Na ST SCa 19.8 7.3 5.7 1.2 0.2 0.2 36.9 28.8 MATERIA ORGANICA P PPm Mej100 g CE		
CCC BT Ca Mg K Na ST SCa 19.8 7.3 5.7 1.2 0.2 0.2 36.9 28.8 MATERIA ORGANICA P PPm Mej100 g CE		
19.8 7.3 5.7 1.2 0.2 0.2 36.9 28.8 MATERIA ORGANICA P Al me/100 g CE		SK
MATERIA ORGANICA P A1 me/100 g CE		1
MATERIA ORGANICA P A1 me/100 g CE	ì	
MATERIA ORGANICA P Al me/100 g CE		
MATERIA ORGANICA P A1 me/100 g CE		
MATERIA ORGANICA P A1 me/100 g CE		1
MATERIA ORGANICA P Al me/100 g CE	6.1	1.0
7.C 7.N C/N PPm me/100 g CE	0.1	1.0
7.C 7.N C/N PPm me/100 g CE		
7.C 7.N C/N PPm me/100 g CE		
7.C 7.N C/N PPm me/100 g CE		
7.C 7.N C/N PPm me/100 g CE		
7.C 7.N C _{7N} PPm me/100 g CE	SALINIDA	AD
2.62	SNa	CLASE
2.62	<u></u>	
2.62]	
2.62		
2.62		
2.62		,
	ļ	
	1	
	L	
BSERVAGIONES:		FECHA ENTREGA
		Día Mes And
GLORIA DE BENA	√IDES	LITI
	F	13 10 DRMA 823-20/8
D - 33		
$\nu \sim 33$		

PROFILE No.

: Typic Hapludoll CLASSIFICATION

UNIT CHARTOGRAPHY: Association M.C. Soil family Macuya

450 m ALTITUDE

POSITION OF PHYSICAL GEOGRAPHY: Alluvial fan

Flat RELIEF

PARENT MATERIAL : Alluvial - fan deposit

EFFECTIVE SOIL DEPTH: Moderately deep

SUBSURFACE: moderately lent SURFACE: lent DRAINAGE.

NATURAL: moderately poor to moderately well

Molic EPIPEDON

DEPTH OF GRAND WATER: 0.95 m

NATURAL VEGETATION : Totumo, Fique

LAND USE : Rice

PROFILE DESCRIPTION

Ap 0-17 cm Very dark brown (10YR²/₂) silt loam: moderate very fine subangular blocky sturucture; many fine and common medium pores : friable moist : slightly sticky, slightly plastic; many fine roots : abundante organism active ; common filmy color mottling; clear wavy boundary; pll 5.6.

Yellow $(10YR^8/_6)$ 50% - dark olive $(5Y^6/_8)$ 50% silt loam; B₂₁ 17-60 cm moderate fine subangular blocky sturucture; many very fine -fine pores; friable moist; sticky, plastic; many common fine roots; many filmy color mottling, common Fe + Mn concretion; gradual irregular boundary; pH 5.9.

C 60-100 cm Yellowish brown $(10YR^6/8)$ 50% - light gray $(5Y^6/1)$ 50% sandy clay loam; moderate fine subangular blocky - fine granular sturucture; few fine pores; slightly sticky, slightly plastic; many fine filmy color mottling, many Fe + Mn concretion :

INSTITUTO CEOGRAFICO "AGUSTIN CODAZZI"

ANALISIS FISICOQUIMICOS

FECHA RECIBO 2-73.717/718

DIA MES ANO Nos CAMPO:

Seattle State of the State of t	AGUSTIN CODAZZI							P-02 (1.	2)
DEPARTAME	META					niento Agua	is Claras		
INIDAD DE	SUELOS: Proyecte	o Ariari		LOCALIZA Vda Agu	cion : as Claras		FOTO No.	COLECTOR FRANCIS	CO RUEDA
PROFUNDID		GRANULO				н	CaO3		HUMEDAD
Cm	/. ARENA	7. LIMOS	1. ARCILLA	TEXTURA	1:1	1:5	/-		<i>y</i> .
							et e enga	ilan in	
0-17	26	50	24	FL	5.6				1.0
					1				t.ffs.
17-60	26	52	22	FL .	5.9	**:			1.0
							GAESTO AO	IONIDO 1	
		O DE CAMBI Ca	O me/100 g	ĸ	Na	ST	SATURAC SCa	SME	SK
ccc	8T	Ca	Mig						
14.5	8.0	5.3	2.0	0.5	0.2	55.2	36.6	13.8	3.4
14.5	0.0	3.0							
8.6	3.8	1.6	17.6	0.4	0.2	44.2	18.6	18.6	4.7
MAT	ERIA ORGA	NICA	P	1	Al	}	<u></u>	SALINIDA	
/.C	7.N	c/N	PPm		me/100 g		CE	SNa	CLASE
						. 1			
1.68			8		,				
-						·			
0.27			8						
DESERVACIO	NES:	<u> </u>				FIRMA:			FECHA
						GLORIA	DE BENA	VIDES	ENTREGA Día Mes Añ
		<u> </u>			· · · · · · · · · · · · · · · · · · ·	<u></u>		FO	13 10 88

CLASSIFICATION : Lithic Udorthent

UNIT CHARTOGRAPHY: Association T L. Soil family Lejanias

ALTITUDE : 370 m

POSITION OF PHYSICAL GEOGRAPHY: Alluvium

RELIEF : Flat

PARENT MATERIAL: Alluvial deposit

EFFECTIVE SOIL DEPTH : Very shallow

DRAINAGE, SURFACE: lent SUBSURFACE: rapid NATURAL: Well

EPIPEDON: Umbric

DEPTH OF GRAND WATER: 0.50 m

NATURAL VEGETATION : Balso, Olivon, Ensenijo, Guamo, Guasimo

LAND USE : Natural pasture

PROFILE DESCRIPTION

0-12 cm Dark brown (10YR³/₃) silt loam; moderate fine granular sturucture; many fine pores; friable moist; slightly sticky, slightly plastic; many fine roots; abundante organism active; abrupt smooth boundary; pH 5.5.

Cr 12-55 cm Gravel : Dark yellowish brown (10YR⁴/₄) sand : single grain ; many fine pores ; many fine roots : regular organism active :

INSTITUTO GEOGRAFICO "AGUSTIN CODAZZI" DEPARTAMENTO:

ANALISIS FISICOQUIMICOS

FECHA RECIBO 2-73.719
DIA MES ANO NOS CAMPO:
P-03 (1)

	AGUSTIN CODAZZI		y at the	Note 1 Prov	Aormicos		DIA MES ANO	Nos самро : Р=03 (1)	
DEPARTAME Proyecto A	NTO :	META			MUNICIPIO :	grana	L DA		
UNIDAD DE	SUELOS:			LOCALIZA	CION: SARDINA			COLECTOR FRANCIS	CO RUEDA
PROFUNDID	A 1.3	GRANULO	METRIA		P	н	CaOg		HUMEDAD
Cm	/. ARENA	'/. LIMOS	7. ARCILLA	TEXTURA	1:1	1:5	7.		7.
						, ,			
					:				· ·
0-12	26	54	20	FL	5.5				1.0
							6.0010.0	63750 47	
			O me/100 g.		T		SATURAC SC#		sĸ
ccc	BT	Ca	Mt	K	Ne	ST	SUA	SMg	314
	4.		1		_				
15.1	6.0	4.5	0.8	0.5	0.2	39.7	29.8	5.3	3.3
						and the second			
				e en il					
								SALINIDA	
	ERIA ORGAN	NICA	P		Al me/100 g	ì	CE	SN:	CLASE
7.c	/.N	G/N	PPm	<u> </u>					
. *									
		1 7. 1			1.5		[
1.54		3344 - 1 3 1	3		0.2				
DBSERVACIO	NFS:	L		<u></u>		FIRMA:			FECHA
	17 11 11	9 4					•		ENTREGA
						GLORIA	DE BENA	/ IDES	14 10 88
						<u></u>		FO	RMA 623-20/

CLASSIFICATION : Typic Tropaquept

UNIT CHARTOGRAPHY: Association E.C. Soil family Dos Quebradas

ALTITUDE: 320 m

POSITION OF PHYSICAL GEOGRAPHY: Alluvium

RELIEF : Flat

PARENT MATERIAL: Alluvial deposit

EFFECTIVE SOIL DEPTH: deep

DRAINAGE, SURFACE: lent SUBSURFACE: Medium

NATURAL: moderately poor

EPIPEDON: Ochric

DEPTH OF GRAND WATER: 1.00 m

NATURAL VEGETATION : Short grass type

LAND USE : Rice

PROFILE DESCRIPTION

- Ap 0-22 cm Dark yellowish brown (10YR³/₄) loam; moderate fine subangular blocky sturucture; many very fine pores; friable moist; slightly sticky, slightly plastic; many fine roots; abundante organism active; few Fe + Mn concretion; abrupt smooth boundary; pH 5.4.
- B₁ 22-35 cm Brown (10YR⁵/₃) loam; moderate fine subangular blocky sturucture; many very fine pores; friable moisture; slightly sticky, slightly plastic; few very fine roots; fewspeckled color mottling, few Mn concretion; clear smooth boundary; pH 5.8.
- B₂₁ 35-65 cm Light yellowish brown (2.5Y⁶/₄) 50% olive yellow (2.5Y ⁶/₅) 50% loam; moderate fine subangular blocky fine granular; common medium pores; friable moist; common very fine roots; few speckled color mottling, few Fe + Mn concretion; clear wavy boundary; pH 5.5.
- B₂₂ 65-105cm Olive yellow (2.5Y⁶/₆) 50% light gray (2.5Y⁷/₂) 50% sandy loam; moderate very fine granular; few fine-medium pores; friable moist; slightly sticky, slightly plastic; many filmy color mottling, few Fe + Mnconcretion;

MINISTERIO DE HACIENDA Y EREDITO PUBLICO INSTITUTO GEOGRAFICO "AGUSTIN CODAZZI"

ANALISIS FISICOQUIMICOS

FECHA RECIBO 2-73, 720/722

DIA MES ARO Nos CAMPO: P-04 (1-2-3)

T. COLUMN	indutile doublect							P-04 (1-	2-3)
Proyecto	Ariari	META				E DE ORO			
INIDAD DE	SUELOS:			LOCALIZAO VEREDA	CION: GUACAM	AYA.	FOTO No.	COLECTOR FRANCIS	CO RUEDA
PROFUNDID		GRANULO				н	CaO3		HUMEDAD /.
Cm	'I ARENA	'/. LIMOS	'/. ARCILLA	TEXTURA	1:1	1:5	7.		
0-22	40	42	. 18	F	5.4	** .			1.0
									1001
22-35	46	36	18	۴	5.8				1.0
35-65	48	30	22	F	5.5		.*		0.5
						- 12 i - 1	·		
	COMPLES	DE CAMBI	O me/100 g					IONES 1.	
ccc	BT	Ca	Mg	К	Nu	ST	SCa	SMg	SK
•						. **			
7.3	3.2	2.0	0.8	0.2	0.2	43.8	27.4	11.0	2.7
					·				
8.6	3.2	1.6	1.2	0.3	0.1	37.2	18.6	14.0	3.5
9.0	1.8	0.6	0.6	0.4	0.2	20.0	6.7	6.7	4.4
									<u> </u>
7447	TERIA ORGAN	NICA.	P	 	AI.			SALINIDA	.D
7.c	7.N	C/N	PPm		me/100 g		CE	SNa	CLASE
					0.4				
0.47]]		V. 4				
							j -	į	
0.20			: 1						
0.20			3		1.6				
DOPPER	1	<u> </u>	.L		1	FIRMA:	-		FECHA
OBSERVAÇIO	ines :	. *		•		10.00			ENTREGA
			. *		•		DE BENA	VIDES	14 10 88
<u> </u>			··		<u> </u>	L		FC	RMA 623-20/

CLASSIFICATION: Typic Haplorthox

UNIT CHARTOGRAPHY: Association L.A. Soil family El Bosque

ALTITUDE: 330 m

POSITION OF PHYSICAL GEOGRAPHY: Alluvial fan

RELIEF : Flat

PARENT MATERIAL: Alluvial deposit

EFFECTIVE SOIL DEPTH: Moderately deep

DRAINAGE, SURFACE: lent SUBSURFACE: medium NATURAL: well

EPIPEDON : Umbric

DEPTH OF GRAND WATER: 1.05 m

NATURAL VEGETATION : Short grass type

LAND USE : Natural pasture

PROFILE DESCRIPTION

- A 0-7 cm Yellowish brown (10YR⁵/₆)loam; moderate fine subangular brocky structure; many fine pores; friable moist; slightly sticky, plastic; many fine roots; clear smooth boundary; pH 4.6.
- AB 7-20 cm Yellowish brown (10Y5/s) silt loam; moderate fine subangular brocky structure; many fine roots; friable moist; sticky, plastic; common fine roots; many thready color mottling; gradual wavy boundary; pH 4.8.
- B 20-115cm Yellowish red (5YR⁵/₈) silt; moderate fine subangular structure; few fine pores; very sticky, very plastic; few fine roots (till 60cm); many filmy color mottling; oxic B horizon; pH 4.9.

MINISTERIO DE HACIENDA Y CREDITO PULL CO PACTULTO CEDURA-TICC "AGUSTIN CODAZZI"

ANALISIS FISICOQUIMICOS

PECHA RECIBO 2-73, 723/725

OIA MES ASO Nos CAMPO:
P-05 (1-2-3)

Carrier Contraction of the Contr	Jan Barrier	•	· **			٠		P-05 (1-	2~3)
DEPARTAME	NTC :				MUNICIPIO				
	META			,		TE DE ORG		· · · · · · · · · · · · · · · · · · ·	
UNIDAD DE	SUELOS:			LOCALIZA VERED	CION : A LA ESTA	NCIA	FOTO No.	COLECTOR FRANCIS	CO RUEDA
PROFUNDID		GRANULO			P	Н	CaOg		HUMEDAD
Cm	1. ARENA	7. LIMOS	'/. ARCILLA	TEXTURA	1:1	1:6	7		1.
				. 4		· '.			
0-7	34	40	26	F	4.6				0.5
					·		*		
7-20	30	42	28	FAr	4.8				1.0
20~115	22	30	48	Ar	4.9	* •			1.0
202113									
	COMBLEX	DE CAMBI	O me/100 g.	L			SATURAC	IONES 7.	
ccc	BT	Ca CAMBI	Mg	ĸ	Na	ST	SCa	SME	5 K
			0.0	0.4	0.2	32.7	16.3	8.2	6.1
9.8	3.2	1.6	0.8	0.6	0.2	02.7	10.0	V	
9.4	2.4	1.0	0.6	0.4	0.4	25.5	10.6	6.4	4.3
9.4	1.4	0.6	0.4	0.3	0.1	14,9	6.4	4.3	3.2
	221 2221	WO.4	<u> </u>	 	Al			SALINIDA	D
7.C	ERIA ORGAI	C/N	P PPm		me/100 g		CE	SNe	CLASE
7.0	μ.κ.								
1.21			3		0.6				
0.73)		2.2				
0,27					3.0				
0. 2/									
OBSERVACIO	l	L		L		FIRMA:			FECHA
OBSERVACIO	KE3 .					0100	IA DE DEL	17/10/26	Dia Mes An
	e gyangan da					GLOR	IA DE BEN		14 10 8 IRMA 623-20/

PROFILE N_0 : P - 06

CLASSIFICATION : Aquic Eutropept

UNIT CHARTOGRAPHY: Association GU. Soil family El Porvenir

ALTITUDE: 260 m

POSITION OF PHYSICAL GEOGRAPHY: Alluvium

RELIEF : Flat

PARENT MATERIAL: Alluvial deposit

EFFECTIVE SOIL DEPTH: deep

DRAINAGE. SURFACE: pool SUBSURFACE: lent - very lent

NATURAL: very poor

EPIPEDON: Ochric

DEPTH OF GRAND WATER: 1.05 m

NATURAL VEGETATION : Short grass type

LAND USE : Grassland

PROFILE DESCRIPTION

A 0-3 cm Dark gray (10YR⁴/₁) 50% - light gray (10YR⁶/₁) 50% sandy clay loam; many fine roots; smooth boundary.

B₂₁ 3-65 cm Yellow (10YR⁷/₈) 30% - gray (10YR⁶/₁) 30% - light gray (10YR⁷/₁) 30%, clay loam; moderate - strong fine subangular blocky structure; few fine-medium pores; friable moist; sticky, plastic; few fine roots; manyfilmy color mottling; clear wavy boundary; pH 6.6.

B₂₂ 65-84 cm Gray (5Y⁶/₁) 70% - strong brown (7.5YR⁶/₈) 30% clay loam; moderate fine-medium subangular blocky-fine granular structure; many fine-medium pores; friable moist; very sticky, very plastic; few fine roots; common filmy-thready color mottling; clear wavy boundaray;pH 6.4.

B₂₃ 84-117cm Olive yellow (2.5Y⁶/₈) 50% - gray (2.5Y⁶/₁) 50% clay loam: week fine subangular blocky structure; many fine-medium pores; friable moist; sticky, plastic; few fine roots; common filmy color mottling, many Fe + Mn concretion; pH 6.4

MMINIENO DE HACIEND AA EBÉRITO ELICA MALITATIO CEDISVELAS

ANALISIS FISICOQUIMICOS

FECHA No. LABORATORIO: 2-73,726/728

DIA NES ANO Nos CAMPO: 2-21

Transier .	ASVATOS ARTRUBAY							P-06 (1	-2-3)
EPARTAME		META			MUNICIPIO :	FUENT	E DE ORC)	
NIDAD DE	SUFLOS:	•			CION ;		FOTO No.	COLECTOR	
Proyecto	Ariari			VEREDA	BAJO OI			FRANC	ISCO RUEL
ROFUNDID		GRANULO					CaO3	1.	HUMEDAD !.
Cm	7. ARENA	": LIMOS	'). ARCILLA	TEXTURA	1:1	1:5	` <i>1.</i>		24
								· .	
-				j ·					1 T
0-65	24	38	38	FAr	6.6) .			1.0
						1.		- !	, 3.
						1	•		
65-84	28	42	30	FAr	6.4	1			1.0
		•	1			1	-		
	1 1 1		-				·		
84-117	28	38	34	FAr	6.4				2.0
								1000	
	COMPLEJO	DE CAMBI	O me/100 g					IONES 1.	
CCC	BT	Ca	Mg	K	Na Na	ST	SCa	SMg	SK
				1					
	l I			1		1.	į		}
				}					
16.7	-16.0	4.9	10.0	0.5	0.6	95.8	29.3	59.9	3.0
-1		the part of							
12.6	8.2	2.8	4.1	0.4	0.9	65.1	22.2	32.5	3.2
	. 1	4 % 4							0.7
14.7	(15.9)	2.0	12.7	0.4	0.8	-	-	-	2.7
		•						<u></u>	
	ERIA ORGAN	VICA	P		AJ	ļ .	CE	SALINIDA SN#	CLASE
7.C	'/.א	C/N	PPm		me/100 g	 -	CE	SM	CLASE
		A 1				1		}	İ
		:			i				1
0.33		:	1						
	(see j						1	ļ	
	[j
0.27			4		1	ł			Ì
						[
0.13			5						
									1
7 4	V	* * * * * * * * * * * * * * * * * * * *		<u> </u>	<u> </u>	<u> </u>	<u></u>		
	NES:					FIRMA:			FECHA ENTREGA
BSERVACIO									
BSERVACIO						GLOBI	A DE RENI	AMDES	Dia Mes An
BSERVACIO						GLORI	A DE BEN	AVIDES	14 10 88

CLASSIFICATION : Aquic Eutropept

UNIT CHARTOGRAPHY: Association GU, Soil family El Porvenir

ALTITUDE: 340 m

POSITION OF PHYSICAL GEOGRAPHY : Alluvium

RELIEF: Flat

PARENT MATERIAL: Alluvial deposit

EFFECTIVE SOIL DEPTH: deep

DRAINAGE, SURFACE: lent SUBSURFACE: lent NATURAL: moderately poor

EPIPEDON: Ochric

DEPTH OF GRAND WATER: 1.20 m

NATURAL VEGETATION : Short grass type

LAND USE : Natural pasture

PROFILE DESCRIPTION

- Ap 0-22 cm Brown (7.5YR⁵/₂) loam; strong medium angular blocky structure; many medium pores; friable moist; slightly sticky, slightly plastic; many fine roots; gradual smooth boundary; pH 5.4.
- B. 22-38 cm Light brownish gray (10YR⁶/₂) with strong brown (7.5YR⁶/₆) spoted loam; strong fine-medium angular blocky structure; many medium pores; friable moist; sticky, plastic; few very fine roots; many filmy color mottling, few Mn concretion; gradual wave boundary; pH 5.4.
- B₂₁ 38-65 cm Light red (2.5YR⁶/₆) 50% gray (10YR⁵/₁) 50% clay loam; moderate medium angular blocky structure; many fine pores; friable moist; no roots; many filmy color mottling, many Mn concretion; clear wavy boundary; pH 6.6.
- B_{22} 65-120cm Brownish yellow(10YR⁶/₈)50% -light brownish gray(10YR ⁶/₂) 50% clay loam; moderate medium angular blocky structure; many fine-medium pores; friable moist; sticky, plastic; many filmy color mottling, many Mn concretion;

MADIE BIO DE HACIERO LA CHEBITO SAE ACC

ANALISIS FISICOQUIMICOS

PECHA No. LABORATORIO: 2-73.729/731

DIA MESIANO NOS CAMPO: P-07 (1-2-3)

DEPARTAMENTO : MUNICIPIO : **META GRANADA** UNIDAD DE SUELOS: COLECTOR: FRANCISCO RUEDA LOCALIZACION : FOTO No. Proyecto Ariari VEREDA GUACAMAYA HUMEDAD G. ANULOMETRIA PROFUNDID ٦. "I. LIMOS "I. ARCILLA 7. Cm TEXTURA 1:1 1.0 30 50 20 F 5.4 0-22 1.0 F 6,0 22-38 32 50 18 0.5 34 6.6 26 40 FAr 38-65 SATURACIONES 1. COMPLEJO DE CAMBIO me/100 g. SMg sĸ SC. CCC ME K Na ST 8.2 3.1 27.6 12.2 0.4 2.7 1.2 0.8 0.3 9.8 5.7 15.1 0.3 0.2 39.6 15.1 8.0 5.3 2.1 8.0 23.7 50.0 3.4 83.1 0.4 0.7 5.9 9.8 2.8 11.8 SALINIDAD MATERIA ORGANICA Al CE CLASE me/100 g PPm 7.C J.N 0.8 1 0.87 0.20 1 0.20 1 FECHA FIRMA: OBSERVACIONES: ENTREGA Dia Mes Año GLORIA DE BENAVIDES

CLASSIFICATION : Typic Tropaquept

UNIT CHARTOGRAPHY: Association DQ, Soil family Dos Quebradas

ALTITUDE: 350 m

POSITION OF PHYSICAL GEOGRAPHY: Alluvium

RELIEF : Flat

PARENT MATERIAL : Alluvial deposit

EFFECTIVE SOIL DEPTH: deep

DRAINAGE, SURFACE: lent SUBSURFACE: Medium NATURAL: well

EPIPEDON: Umbric

DEPTH OF GRAND WATER: > 1.00 m

NATURAL VEGETATION : Cedro

LAND USE : Harvesting grassland

PROFILE DESCRIPTION

- A₁ 0-30 cm Very dark brown (10YR²/₂) sandy loam; moderate medium subangular blocky granular structure; many very fine pores; friable moist; slightly sticky, slightly plastic; few very fine medium roots; abundante organism active; clear wavy boundary; pH 5.8.
- A2 30-44 cm Dark yellowish brown (10YR³/₄) sandy loam; moderate very fine granular structure; many very fine pores; friable moist; slightly sticky, slightly plastic; common very fine medium roots; clear wavy boundary; pH 6.0.
- B₂₁ 44-76 cm Pale olive (5Y⁵/₃) 80% dark yellowish brown (10YR⁴/₆)
 20% sandy loam; single grain structure; many fine-few
 medium pores; friable moist; few very fine roots; many
 filmy color mottling; clear wavy boundary; pH 6.5.
- B₂₂ 76-105cm Dark yellowish brown (10YR⁴/₆) 50% light gray (2.5Y⁷/₁) 50% sandy clay loam; week fine granular structure; many fine pores; friable moist; slightly sticky, slightly plastic; many filmy color mottling.

No. LABORATORIO; FECHA RECIBO 2-73.732/734 desperance of the second DIA MESANO NOS CAMPO : ANALISIS FISICOQUIMICOS "AGUSTIN CODAZZE" P-08 (1-2-3) DEPARTAMENTO : MUNICIPIO ; META GUANAGUARO UNIDAD DE SUELOS: LOCALIZACION: COLECTOR: FRANCISCO RUEDA FOTO No. Proyecto Ariari HUMEDAD GRANULOMETRIA CaO3 PROFUNDID '/ LIMOS '/ ARCILLA TEXTURA FΑ 28 16 5.8 0-30 56 28 12 FA 6.0 60 30-44 8 FΑ 6.5 36 44-76 56 SATURACIONES 1/. COMPLEJO DE CAMBIO me/100 g. Na ccc 3.3 36.1 0.3 0.2 43.4 0.4 12.2 5.3 14.0 64.9 42.1 0.4 0.1 0.8 3.7 2.4 5.7 39.0 78.0 29.3 0.1 0.3 1.2 1.6 3.2 4.1

1.0

0.5

1.0

SK

2.5

7.0

7.3

14 10 88

 	MAG	ERIA ORGA	NICA	P	+	Al	1		SALINIDA	D
7.0		ERIA URGA	C/N	PPm	. }	me/100 g]	CE	SNa	CLASE
			 		·					İ
	. :									
1.54			-	125						
					1 7		:			
0.47				70		ľ				
0.13	-4	And a second		160						
				1 . 1 .		1				
OBSER	ACIO	NES:	 	. 1	L		FIRMA:			FECHA ENTREGA
							GLORIA D	E BENAV	IDES	Dia Mes Año

CLASSIFICATION : Typic Haplumbrept

UNIT CHARTOGRAPHY: Association GU, Soil family Guanayas

ALTITUDE: 320 m

POSITION OF PHYSICAL GEOGRAPHY: Alluvial fan

RELIEF : Flat

PARENT MATERIAL: Alluvial deposit

EFFECTIVE SOIL DEPTH: Moderately deep

DRAINAGE, SURFACE: lent SUBSURFACE: medium NATURAL: well

EPIPEDON: Umbric

DEPTH OF GRAND WATER: 1.00 m

NATURAL VEGETATION : Guarumo, Matarraton

LAND USE: Natural pasture

PROFILE DESCRIPTION

A 0-30 cm Yellowish brown (10YR3/4) loam; moderate fine subangular blocky structure; many fine and medium pores; friable moist; slightly sticky, plastic; many fine roots; abundante organism active; clear wavy boundary; pH 5.1.

B 30-50 cm Yellowish brown (10YR⁵/₆) loam; moderate fine - medium subangular blocky structure; many very fine -fine pores; friable moist; sticky, plastic; common fine roots; gradual irregular boundary; pH 5.7.

C 50-105 cm Light gray (2.5YR⁷/₁) 70% - Yellowish brown (10YR⁶/₆) 20% - dark yellowish brown (10YR⁴/₄) 10% sandy loam; strucuture - less: few fine pores; few fine roots.

MACHENIA A CHEMITO DE CONTRETOS "AGUSTIN CODAZZE"

ANALISIS FISICOQUIMICOS

FECHA RECIBO 2-73.735/736

DIA MES ARO NOS CAMPO:

(A)	'AGUSTIN CODAZZI			11010 1 10100		ļ	LITA (K.E.S.ANO)	INVO CAMEC	
Carried Street								P-09 (1	- 2·)
EPARTAME	ento :				MUNICIPIO:			`	
	حبية الإستنان	META	<u> </u>	<u></u>	<u> </u>	GRAN	1ADA	94.	
NIDAD DE	SURLOS:		•	LOCALIZA	CION:		FOTO No.	COLECTOR	1:
Proyecto	Ariari			VERED	A SARDINA			FRANC	ISCO RUE
ROFUNDID		GRANULO			 	.11	CaOg		HUMEDAD
Cm	7. ARENA	7. LIMOS	7. ARCILLA	TEXTURA	1:1	1:6	7.		ļ
		Į	ĺ						
									1
- 1				\	,				
0-30	30	50	20	F	5.1				1.0
l		1							
]	* .]]]			
30-50	30	50	20	F	5.7				0.5
** -						. !			
1									
	. ,	1	1		1				
	50180181	6 70 011101	2 - 1200 -	L	L		SATURAC	IONES /.	
	BT	O DE CAMBI	O me/100 g	ĸ	Na.	ST	SCa	SMg	SK SK
ccc	BI		- mg		 				
İ	:	· ·			, , ,	,			
					1				
		•							
			1					000	
11.8	5.5	2.4	2.4	0.6	0.1	46.6	20,3	20.3	5.1
									-
	·			1					
9.4	3.4	1.2	1.6	0.4	0.2	36.2	12.8	17.0	4.3
		į I			1	\ .	1	}	1
	e inte						ļ. ·		
]				
			<u> </u>	<u> </u>				<u> </u>	
		MITCH	_	1	Al			SALINIDA	D
10	ERIA ORGAN	NICA	P PPm		Al me/100 g		CZ	SALINIDA	CLASE
7.C	ERIA ORGAI	C/N	P PPm		Al me/100 g		CZ		
/.C		NICA C/N	4 .				CZ		
7.e		C/N	4 .				CZ		
7.C		C/N	4 .				CZ		
<i>1.</i> c		NICA C _{/N}	4 .				CZ		
		NICA C _{IN}	PPm		me/100 g		CZ		
1.08		NICA C _{IN}	4 .				CE		
		NICA C _{JN}	PPm		me/100 g		CE		
1.08		NICA C _{JN}	13		me/100 g		CE		
		NICA C _{IN}	PPm		me/100 g		CE		
1.08		O C /N	13		me/100 g		CE		
1.08		NICA C _{IN}	13		me/100 g		CZ		
1.08		O C IN	13		me/100 g		CE		CLASE
1.08	//N	O C IN	13		me/100 g	FIRMA:	CE		CLASE
1.08	7.N	NICA C _{JN}	13		me/100 g			SNa	PECHA ENTREGA
1,08 0.13	7.N	NICA C _{IN}	13		me/100 g		CZ CZ	SNa	CLASE

CLASSIFICATION : Fluventic Dystropept

UNIT CHARTOGRAPHY: Association FO. Soil family Fuente de Oro

ALTITUDE: 350 m

POSITION OF PHYSICAL GEOGRAPHY: Alluvial fan

RELIEF: Flat

PARENT MATERIAL : Alluvial deposit

EFFECTIVE SOIL DEPTH: Moderately deep

DRAINAGE, SURFACE: lent~poor SUBSURFACE: medium

NATURAL: well~moderately well

EPIPEDON: Umbric

DEPTH OF GRAND WATER: 0.70 m

NATURAL VEGETATION : Short grass type

LAND USE : Natural pasture

PROFILE DESCRIPTION

Ap 0-20 cm Very dark gray brown(10YR³/₂)80%- strong brown(7.5YR⁴/₆)
20% loam; moderate fine subangular blocky structure; many
very fine pores; friable moist; sticky, slightly
plastic; many fine roots; abundante organism active;
common filmy - threadly color mottling; gradual irregular
boundary; pH 5.8.

B₂₁ 20-32 cm Dark yellowish brown (10YR³/₄) loam; moderate fine subangular blocky - granular structure; many fine -medium pores; friable moist; slightly sticky, plastic; few fine roots; gradual irregular boundary; pH 5.7.

C 32-60 cm Yellowish brown ($10YR^5/8$) sandy loam : single grain structure ; many fine - medium pores ; abrupt smooth boundary

Cr 60- x cm Rounded frangments

PINISTERIO DE PACIENDA Y CAEDITO PUELICO INSTITUTO GEOGRAFICO "AGUSTIA CONAZZI"

ANALISIS FISICOQUIMICOS

PECHA No. LABORATORIO; 2-73,737/738
DIA MES ARO NOS CAMPO:

	STITUTO GENGANF		ANA	LISIS FISIC	OQUIMICOS		DIA MES AND	Nos CAMPO	/
	AGUSTIN CODAZZI		•					P-10 (1-	
EPARTAME	NTO :				MUNICIPIO ;			· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
		META	a tyre to the			GRAN	IADA		
INIDAD DE	SUELOS:			LOCALIZA	CION:		FOTO No.	COLECTOR FRANCISC	SO SUED
Proyecto	Arlari			VEREC	A LA CAB			FRANCIS	
PROFUNDID		GHANULO		· r	 	н	CaO3 /-		HUMEDAD /
Cm	1. ARENA	'/, LIMOS	7. ARCILLA	TEXTURA	1:1	1:5	· · · · · · · · · · · · · · · · · · ·	·	
					1				
İ				Ì					
		"	20	-	5.0			! .	0.5
0-20	40	40	20	F	5.8				0.5
	32	46	22	F	5.7	·		1.	1.0
20-32	JZ	. 40		1. '	J.,				
			}				1		
	4 1								
	* .								
	COMPLEJ	O DE CAMBI	O me/100 g		· · · · · · · · · · · · · · · · · · ·			IONES '/.	
ccc	BT	Ca	Mg	К	Na	ST	SCa	SMg	sĸ
									4.55
								į	
					1				
						4, 4	21.6	14.4	3.6
11.1	4.6	2.4	1.6	0.4	0.2	41.4	21.0	14.4	0.0
,		1							
•				0.5	0.2	37.2	12.8	17.0	5.3
9.4	3.5	1.2	1.6	0.5	0.2	""	'-''		
* *:	- 1	`							
		į		· [l		
		1							
MAT	ERIA ORGA	NICA	P	 	Al			SALINIDA	D
`/.C	7.N	C/N	PPm		me/100 g		CE	SNs	CLASE
·-·									
				1					
1.20			5						
				ĺ					
								İ	
0.47		1	2	1					
			1	1					1
								1	
	<u> </u>	<u> </u>		<u></u>		FIRMA:	1		FECHA
OBSERVACIO	nes:								ENTREGA
				•		GLORIA	DE BENA	/IDES	Dia Mes Ai
		i				1 220			14 10 88
			·			<u> </u>		FO	RMA 623-20

CLASSIFICATION : Typic Hapludoll

UNIT CHARTOGRAPHY: Association DQ. Soil family Venado

ALTITUDE : 380 m

POSITION OF PHYSICAL GEOGRAPHY: Alluvial fan

RELIEF : Flat

PARENT MATERIAL: Alluvial deposit

EFFECTIVE SOIL DEPTH: Moderately deep

DRAINAGE, SURFACE: lent SUBSURFACE: medium NATURAL: well

EPIPEDON: Molic

DEPTH OF GRAND WATER: > 1.10 m

NATURAL VEGETATION : Short grass type

LAND USE : Grassland

PROFILE DESCRIPTION

A 0-20 cm Dark brown (10YR3/3) loam; moderate fine subangular blocky-granular structure; many very fine pores; friable moist; sticky, plastic; many very fine roots; abundante organism active; clear wavy boundary; pH 5.8.

C₁ 20-66 cm Yellowish brown (10YR⁶/₇-⁵/₄) loamy sand; week very fine - fine subangular blocky - single grain structure; few fine pores; friable moist; few fine roots; irregularly thin gravelly layer; clear wavy boundary; pH 5.8.

C₂ 66-110cm Yellowish brown (10YR⁵/₆) 50%-dark yellowish brown (10YR⁴/₄) 50% sandy clay loam; week fine subangular blocky - fine granular structure; few fine pores; sticky, plastic; pH 6.1.

No. LABORATORIO: MINISTERIO DE HACIENDA Y EREDITO PUBLICO FECHA 2-73,739/741 RECIBO INSTITUTO GEOGRAPICO "AGUSTIN CODAZZI" ANALISIS FISICOQUIMICOS DIA MES AND Nos CAMPO : P-011 (1-2-3) DEPARTAMENTO : MUNICIPIO : **META** GRANADA UNIDAD DE SUELOS: COLECTOR: LOCALIZACION: FOTO No. Proyecto Ariari ESCUELA LA FLORIDA GRANULOMETRIA HUMEDAD CsO3 7. '/. LIMOS '/. ARCILLA 7. ARENA TEXTURA 1:1 1:5 1.0 38 18 F 5.8 0-20 44 1.0 78 14 8 AF 5.8 20-66 0.5 32 18 F 6.1 66-110 50 SATURACIONES /. COMPLEJO DE CAMBIO me/100 g. SMg SCR ĸ ST CCC Na 20.3 4.2 37.2 63.6 2.4 0.5 0.2 7.5 11.8 4.4 5.4 8.1 5.4 0.1 21.6 0.2 0.2 0.3 3.7 0.8 22.2 7.4 55.6 22.2 0.2 1.2 0.4 3.0 1.2 5.4 SALINIDAD MATERIA ORGANICA Al CE CLASE SNs $\overline{c_{I_N}}$ PPm me/100 g 7.C '/.N 11 1.48 90 0.13 26 0.20 FECHA FIRMA: OBSERVACIONES: ENTREGA

Día Mes Año

14 10 88 ORMA 623-20/83

GLORIA DE BENAVIDES

CLASSIFICATION : Typic Tropaquept

UNIT CHARTOGRAPHY: Association DQ, Soil family Dos Quebradas

ALTITUDE: 420 m

POSITION OF PHYSICAL GEOGRAPHY: Alluvial

RELIEF : Flat

PARENT MATERIAL : Alluvial deposit

EFFECTIVE SOIL DEPTH: deep

DRAINAGE, SURFACE: lent SUBSURFACE: medium

NATURAL: moderately well

EPIPEDON: Ochric

DEPTH OF GRAND WATER: > 1.05 m

NATURAL VEGETATION : Guarumo, Balso, Matarraton

LAND USE : Rice

PROFILE DESCRIPTION

Ap 0-9 cm Dark yellowish brown(10YR⁴/₄)90%-light brownish gray (10 YR⁵/₂)10% loam; week fine subangular blocky - granular structure; many very fine - fine pores; friable moist; sticky, plastic; many very fine - fine roots; abundante organism active; common filmy color mottling; clear wavy boundary; pH 5.0.

B₂₁ 9-68 cm Light Yellowish brown (2.5Y⁶/₄) 50%-light olive brown (2.5 Y⁵/₈) 50% clay loam; moderate fine subangular blocky - granular structure; many fine - medium pores; friable moist; slightly sticky, plastic; few fine roots; common filmy color mottling, common Fe + Mn concretion; difuso irregular boundary; pH 6.5.

B₂₂ 68-105cm Gray(5Y⁶/₁)60%-yellowish brown(10YR⁶/₈)40% sandy clay loam; week fine-medium subangular blocky structure; manyfine pores; friable moist; sticky, plastic; many fine filmy color mottling, many Fe concretion;

INSTITUTO GEOGRAFICO "AGUSTIN CODAZZI"

ANALISIS FISICOQUIMICOS

FECHA
RECIBO 2-73,742/743

DIA MES ANO Nos CAMPO:
P-012 (1-2)

Ca.	NODOTH COUNCEL	-		. '				P-012	(1-2)
DEPARTAME	: OTN		1		MUNICIPIO:		 		
		META				GRAN	ADA		·
INIDAD DE	SUELOS:			LOCALIZAC			FOTO No.	COLECTOR	
·	Proyec	to Ariari Granulo	MEMBER	I VEREDA	FLORIDA	BAJA		FRANCISC	O RUEDA
PROFUNDID	/. ARENA	'/. LIMOS	'/. ARCILLA	TEXTURA	P	1:5	CaO ₃		'/.
	/. ARENA	7. Lines	/. ARCIULA	IEAIUKA	1:1	1:6			***************************************
				1				,	
			-]					
	·				ļ				
				1					
0-9	30	44	26	F	5.0				1.0
9~68	24	48	28	FAr	6.5	·			1.0
					1				
			<u></u>	<u> </u>	· · · · · ·		6 myr 16	YONDO 44	<u> </u>
		O DE CAMBI				ST	SATURAC	SME	SK
ccc	BT	Ca	Mg	K	Na	51	302	J. J. J. J. J. J. J. J. J. J. J. J. J. J	
,		·	[1.	
				1.					
17.1	1.8	0.6	0.4	0.6	0.2	10.5	3.5	2.3	3.5
				. 1			a 1 1 1 1		
	}	}							
11.4	7.7	1.2	5.7	0.4	0.4	67.5	10.5	50.0	3.6
									•
•]				7		1	
					. :	{			
•			***					L	<u></u>
TAM	ERIA ORGA	NICA	P		Al			SALINIDA	CLASE
1/0	7.N	c/N	PPm	ļ	me/100 g		CE	SNa	CLASE
				1.					
		. .							1
						-			Ì
						•			1
1.81			l. 1		2.0		ŀ		-
		l			-		1		
	1								
0.20			1			: .			
			1						
1 .				1				1	
								1	
									ļ
DESERVACIO	NES:			_1,		FIRMA:			FECHA
ADIO	andr -	•						-	Dia Mes At
*:	,					GLOR	IA DE BEN	AVIDES	171 MES W.
		4.			•				14 10 88
						i	<u> </u>	FC	RMA 623-20/

CLASSIFICATION : Fluventic Dystropept

UNIT CHARTOGRAPHY: Association M.C. Soil family Topacio

ALTITUDE : 490 m

POSITION OF PHYSICAL GEOGRAPHY: Alluvial fan

RELIEF : Flat

PARENT MATERIAL : Alluvial - fan deposit

EFFECTIVE SOIL DEPTH: Moderately deep

DRAINAGE, SURFACE: lent SUBSURFACE: medium NATURAL: well

EPIPEDON: Umbric

DEPTH OF GRAND WATER: > 0.95 m

NATURAL VEGETATION : Weed type

LAND USE : Plantain

PROFILE DESCRIPTION

Ap 0-40 cm Very dark brown (10YR²/₃) silt loam; moderate fine-medium subangular blocky - granular structure; many fine pores; friable moist; sticky, plastic; many fine roots; abundante organism active; clear wavy boundary; pH 5.3.

AB 40-52 cm Dark yellow brown (10YR³/₄) loam; moderate fine - medium subangular blocky-granular structure; many fine-medium pores; friable moist; slightly sticky, slightlyplastic; common fine roots; clear wavy boundary; pH 5.5.

B 52-68 cm Very yellowish brown (10YR⁴/₇) sandy loam; moderate medium subangular blocky structure; many fine pores; friable moist; slightly sticky, slightly plastic; few fine roots; abrupt smooth boundary.

Cr 68- x cm Rounded fragmentes

MINISTERIO DE HACIENDA Y CREDITO PUBLICO INSTITUTO GEOGRAFICO "AGUSTIN CODAZZI"

ANALISIS FISICOQUIMICOS

PECHA RECIBO 2-73.744/745
DIA MES ARO NOS CAMPO :

	'AGUSTIN CODAZZI		9	*,				,	D OLO /	0\
DEPARTAME	NTO :				MUNICIPIO :		Ll		P-013 ((~2)
		META	<u> </u>			LEJAN	IIAS		4	
NIDAD DE	SUELOS:	In a second		LOCALIZA	CION .		FOTO	No.	COLECTOR	
	Proyec	to Ariari		VEREDA	GUANA				RANCISC	O RUEDA
PROFUNDID		GRANULO		Г		н	C₄O3 /.	'		HUMEDAD '/.
Cm	/. ARENA	'/. LIMOS	7. ARCILLA	TEXTURA	1:1	1:5	·		·	
			}						•	
							}			
		**	ļ	ļ			ł i			
			1					. 1		
0-40	28	42	20	FL	5.3					1.0
	<i>.</i>	,		-					ļ	
				1 :						
40-52	42	38	20	F	5.5		1	1		0.5
								ı		
			<u> </u>	<u> </u>	i		1	- 1	53170	
		O DE CAMBI		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			SATU:	RACIO		SK
ccc	ВТ	Ct	Mg	K	Na	ST	50 E		SMg	3.0
	-)	<u> </u>				}	ľ		
		ļ	1 :					- 1		
11.8	2.6	0.8	1.2	0.4	0.2	22.0	6.8		10.2	3.4
						! !	1			'
								[
7.3	3.8	0.8	2.4	0.4	0.2	52.1	11,0		32.9	5.5
			i .					1		
		ļ	-		Į.				*	
]					
]			1		;	
				<u> </u>				1		<u> </u>
MAT	ERIA ORGA		P		A)		 		SALINIDA	
'/.C	'/.N	C/N	PPm		me/100 g		CE		SNA	CLASE
				1	Ī			1		
		Ì						- 1		
])	1				1	1		
1.48			3		1.4					
7	}				}			- 1		1
]]			1]	1		
0.33			3	1	1.4			į		
1 1		()	į					.		Į.
		1				4.4				
				1						
				<u> </u>						ļ ·
BSERVACIO	NES :	<u> </u>				PIRMA:				FECHA ENTREGA
		1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1								Dis Mes A
	•						,, et e est 1	41.05	s.rc	
						GLORIA	DE BEN	AVIL	752	و امدا اددا
						GLORIA	DE BEN	ÁVIE		14 19

CLASSIFICATION : Fluventic Dystropept

UNIT CHARTOGRAPHY: Association UP, Soil family Topacio

ALTITUDE: 460 m

POSITION OF PHYSICAL GEOGRAPHY: Alluvium - fun

RELIEF: Flat

PARENT MATERIAL : Alluvial - fun deposit

EFFECTIVE SOIL DEPTH: moderately deep

DRAINAGE. SURFACE: lent SUBSURFACE: medium - rapid NATURAL: well

EPIPEDON: Umbric

DEPTH OF GRAND WATER: > 1.10 m

NATURAL VEGETATION : Weed type

LAND USE : Grassland

PROFILE DESCRIPTION

- A 0-22 cm Dark brown (10YR3/3) loam; week fine angular structure; many fine -medium pores; friable moist; slightly sticky. plastic; many fine roots; abundante organism active; clear wavy boundary; pH 5.3.
- C 22-52 cm Dark yellowish brown (10YR4/4) silt loam; week fine angular structure; many fine medium pores; friable moist; slightly sticky, slightly plastic; few fineroots; clear wavy boundary; pH 5.7.
- Ab 52-67 cm Dark yellowish brown (10YR3/4 loam; week fine subangular blocky granular structure; many fine medium pores; friable moist; few fine roots; plastic, slightly sticky; clear wavy boundary; pH 5.8.
- C₁ 67-94 cm Light olive brown (2.5Y⁵/₄) loam; week fine subangular blocky granular structure; many fine medium pores; friable moist; slightly sticky, slightly plastic; defuso irregular boundary.
- C_2 94-110cm Dark yellowish brown (10YR⁴/₆) 90%-light olive brown (2.5 Y⁵/₃) 10% sandy loam; week fine subangular blocky granular structure; common filmy color mottling.

MINISTERIO DE HACIENDA Y CREDITO PUBLICO INSTITUTO GEOGRAFICO "AGUSTIN CODAZZI"

ANALISIS FISICOQUIMICOS

FECHA RECIBO 2-73.746/748

DIA MES ANO NOS CAMPO:

(A) "	AGUSTIN CODAZZI	·	,		A OTHER OF	7.2	DIK MESKAO	P-014 (-	1-2-3)
EPARTAME	NTO :				MUNICIPIO .	ا			
EI AIV		META				AN JUAN E	DE ARANA		
NIDAD DE	SUELOS:			LOCALIZA	CION:		FOTO No.	COLECTOR	
PR	OYECTO A				A EL ROSA	L		ERALICIS	CO RHEDA
ROFUNDID		GRANUL	OMETRIA		q	н	CaO3		HUMEDAD
Cm	'/. ARENA	7. LIMOS	7. ARCILLA	TEXTURA	1:1	1:5	٦.		1.
					1				
	· ·				1	1			
			1		1			\ 	
0-22	36	48	16	F	5.3				0.5
0-22	30	70 .	"	,	""				- • •
	P 4 4					·			
20.50	. 07	E0 :	12	FL.	5.7				1.0
22 -52	36	52	12	T L	3.7				,,,
					·				
				-					0.5
52~67	. 38	46	- 16	F	5.8				0,3
			1	ĺ	·	·			
		<u> </u>		[<u> </u>		6484846	IONES 11	L
		DE CAMB			т	500	SATURAC SCa	IONES 1.	SK
ccc	BT	Ca	Mg	К	Ne	ST	504	Smg	
Ì									
			1	\		•	r	ļ	
		. 1.							
						,,,,		4.4	3.3
9.0	1.2	0.4	0.4	0.3	0.1	13.3	4.4	4.4	3,0
	٠							<u>.</u>	
									.,,,,
3.7	1.3	0.4	0.4	0.4	.0.1	35.1	10.8	10.8	10.8
					1				1
	A	1,44							
5.7	1,4	0.4	0.4	0.5	0.1	24.6	7.0	7.0	8.8
			1	1	1	`	1		1
	L	<u> </u>		ļ	Al	 		SALINIDA	D
	ERIA ORGA		P PPm		me/100 z		CE	SNa	CLASE
'/.C	/.N	C/N	PPM	Ì	1,200				
0.70			20		0.6	1]]
0.73			20			l			
			i]		
			100				İ		
0.27	[100				l .		
					1		İ		İ
0.20			55						į
				1	1				
	.		1	1. 1.	1	4.1.		}	
					1]	1
PDPP	<u> </u>	<u> </u>		1	1	FIRMA:			FECHA
BSERVACIO	NES .				÷*				ENTREGA
		•				1			Dis Mes Al
						1			1 1
		ŧ				GLORIA	DE BE NAV	IDES	14 10 88

CLASSIFICATION : Typic Hapludoll

UNIT CHARTOGRAPHY: Association DQ, Soil family Venado

ALTITUDE: 415 m

POSITION OF PHYSICAL GEOGRAPHY: Alluvial

RELIEF : Flat

PARENT MATERIAL : Alluvial deposit

EFFECTIVE SOIL DEPTH: Moderately deep

DRAINAGE, SURFACE: lent SUBSURFACE: medium NATURAL: well

EPIPEDON: molic

DEPTH OF GRAND WATER: > 0.76 m

NATURAL VEGETATION : Guarumo

LAND USE : Plantain, Cassava

PROFILE DESCRIPTION

A 0-14 cm Dark brown (7.5YR³/₄) silt loam; moderate fine - medium subangular blocky - granular structure; many very fine-medium pores; friable moist; sticky, very plastic; many fine roots; abundante organism active; clear wavy boundary; pH 5.4.

 B_{21} 14-32 cm Dark yellowish brown (10YR⁴/₆) silt loam : moderate medium angular blocky structure ; many very fine - medium pores ; friable moist ; sticky, very plastic : many fine roots : few organism active : clear wavy boundary : pH 5.3.

BC 32-76 cm Yellowish brown (10YR⁵/₆) silt loam; week medium angular blocky structure; many fine pores; friable moist; sticky, very plastic; few fine roots; abrupt wavy boundary; pl 5.5.

Cr 76- x cm Rounded fragmentes

MINISTERIO DE NACIENDA Y CREDITO PUBLICO INSTITUTO GEOGRAFICO "AGUSTIN COBAZZI"

ANALISIS FISICOQUIMICOS

FECHA RECIBO 2-73.749/751

DIA MES ARO NOS CAMPO: P-015 (1-2-3)

No. ESTATE OF	AGUSTIN COQAZZI				- 4 02.111000		DIA MESARO	P-015 (1	-2-3)
DEPARTAME	NTO : META	\			MUNICIPIO	GRAI	NADA		
INIDAD DE	SUELOS: PROY	CECTO ARI	ARI	LOCALIZA VE	CION : REDA LA C	ABAÑA	FOTO No.	COLECTOR	CO RUEDA
PROFUNDID		GRANULO				РН	CaOg		HUMEDAD
Cm ,	7. ARENA	/. LIMOS	7. ARCILLA	TEXTURA	1:1	1:5	7.		1.
				i.					
0-14	22	52	26	FL	5.4				1.0
14-32	22	52	26	FL	5,3				0.5
32-76	18	66	16	FL	5.5				0.5
j						2.50			
1	COMPLEM	DE CAMBI	O me/100 g	·	L	ļ	SATURAC	N SENOR	· · · · · · · · · · · · · · · · · · ·
ccc	ВŤ	Ce	Mg	K	Na	ST	ŞCa	SMg	8K
17.0	10.1	6.1	3.2	0.6	0.2	59.4	35.9	18.8	3.5
12.1	4.6	2.0	2.0	0.4	0.2	38.0	16.5	16.5	3.3
5.7	2. i	0.8	0.8	0.4	0.1	36.8	14.0	14.0	7.0
								1.5	
MAT	ERIA ORGAN	VICA	P		A)	 		SALINIDA	D
'1.C	'/.N	C/N	PPm		me/100 g		CE	SNa	CLASE
1.48			12		0.6		·		
1.40			12		0.0				
0.73			2		1.4				
0.40									
0.40				1.	1.0				
BSERVACION	IES :		<u> </u>	1	L	FIRMA:	·		FECHA
			. s.			CIONIA	C DENIANO	DEC	ENTREGA Dia Mes Ah
					· · · · ·	GLORIA D	E REMAY!		14 10 88

ri cterización Físi
ROMBRE DEL PREDIO ación Física PROFUN-PERDINY ORANULOME
Sica GRANULOMETRIA
ENDIEN
TE / ARENA
··· ···
_
-
TENSIONES, Bern
01 9
16,60
18.10
7
15.82
11.21
10.21
11.05
13,26
12.52
13,76
13,79
14.
13,95
13.81
11.91

	at are-	м			1	TOTAL			ACRECT	FRANCES	
Š	AMC		ONO		POROSIDAD.	MACKO T		94 9,784	INDICE DE AGREC.	YOURH F	
FECHA	DIA MES	-	Y TELEFONO		POR	MICKO &			_	COLE	
	Δ.	} 	DIRECCION), #r/cc	P	24.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.	ž i S	ENCIA ENCIA	FLABS	
			1		DENSIDAD, #1/cc	REAL	22.68	ES ISNO	CORPISE	DRAULICALIMITILIMITE INDIC	
MENTO		ä			SUPERTI-			COMPUCT	VIDAD HI	DRAULICA em/m	
departamento		MUNICIPIO			7.	ABCILLA TEXTURA		Generali	JAD, 1.	CHABLE CRATE	
	23.50		Oig		METRIA	ARCILLA		on in	DOME!	CHABLE	
AND CLOSE STANDARD COMMENTED	Continue	ELOS	NOMBRE DEL PREDIO		GRANULOMETRIA	LIMO				18	16,98 14,60 13,43 21,00 8,76 14,94
DETER		LOS SUELOS	NOMBRE			ARENA				10	18,13 14,29 14,29 22,35 22,35 15,89
DE LAS		FISICAS DE			P.			I de la companya de l	•	٥	
RESULTADO DE		FISI				DIDAD	00-22 22-52 52-67 52-67 00-14 14-32 32-76	TENSIONES	1000	-	
			Ariari		- IMORE	ZONTE				6.3	31,89 26,58 24,51 38,55 15,57 27,13
ETPRIO DE HACIERDA Y CREDITO PUBLICO	INSTITUTO GEOGRAFICO	CODAZZI	3	rkbo:	TAXONOMIA	No. PREFIL	P-014			3	
DE HACIEBOA Y		"AGUSTIR CODAZZI	ADO: Pr	ANALISTS SOLICITADO	}	- 1		NA PUNTO	- SATURA	, vois	49.25 34.44 61.86 47.34 38.59
. OI W 1. O			INTERESADO	ANALIST	LABORA	TOR10	2-73,746 747 748 748 750 751	RUNERODE	LABORA -	TORIO	746 747 748 749 750 751