recorded in a series of annual maximum peak discharges, while the basin mean rainfall is unable to estimate for those floods because of no rainfall data in the upstream basin.

In the Study, probable rainfall depth of 5-day basin mean was estimated to enlarge the recorded hourly hyetographs.

The recorded hyetographs during the flood in December 1983, December 1984 and November 1986 were enlarged up to the 5-day rainfall depth with the selected return period from which the simulated peak discharge corresponding to the probable peak discharge is derived at Guillemard Bridge.

The probable rainfall depth and probable flood peak discharges at storage damsites, Kuala Krai and Guillemard Bridge are enumerated in Table II.5.2.

According to the probable distribution of annual peak discharge at Guillemard Bridge, the peak discharge of 15,589  $m^3$ /sec in 1967 corresponds to the probability of once in about 50-year. The simulated 50-year probable flood hydrograph is verified with the flood hydrograph recorded at Guillemard Bridge in 1967 as shown in Fig.II.5.2. The concurrent 50-year probable flood hydrographs at the storage damsites are also simulated as shown in Figs.II.5.3 to II.5.6.

#### 5.4.2 Magnitude of 1967 Flood

The following methods are applied to verify additionally the magnitude of 1967 flood, namely;

(i) Method-1

To estimate the basin mean rainfall in the upstream basin during 1967 flooding referring to the recorded rainfall data in and around the river basin, and

(ii) Method-2

To compare the magnitude of simulated flood peak discharge with the flood mark in 1967 at water level gauging station.

Method-1 is to generate the basin mean rainfall depth on the basis of the correlation analysis among the stations in and around the basin. In case the rainfall data are missing, those data are obtained by multiplying the correlation coefficient between stations. Five-day rainfall depth at the representative fourteen rainfall stations are collected on the basis of the date when the annual maximum peak discharge occurred at Guillemard Bridge. The observation of water level at Guillemard Bridge, however, commenced in 1960 by DID, and the observation of rainfall in the upstream basin has carried out since 1960's. The basin mean five-day rainfall depth during flooding is then calculated for the period from 1960 through 1986. The basin mean five-day rainfall depth during is summarized in Table II.5.3. The data show that the basin mean rainfall depth of more

than 500 mm occurred in 1966 (during 1967 flood ).

Shown in Fig.II.5.1 is the probable distribution of 5-day rainfall depth estimated by the hyetographs of three types and the estimated 5-day rainfall depth corresponding to the plotting position of concurrent annual maximum peak discharge at Guillemard Bridge. Among three types of hyetographs, the probable distribution of 5-day rainfall depth of 1984 type is well fitted with the plotting position of estimated five-day rainfall depth in 1966 (January, 1967). Besides, the 50-year probable flood hydrograph at Guillemard Bridge simulated by enlarging the hyetograph in 1984 is also well fitted with recorded flood hydrograph in 1967 as shown in Fig.II.5.2.

The recorded hyetograph in 1984 is therefore enlarged up to the estimated rainfall depth of 510.3 mm in 1967 flooding. The simulated 1967 flood hydrograph at Guillemard Bridge and the concurrent flood hydrograph at storage damsites are then simulated by using river basin model as shown in Fig.II.5.7.

Furthermore, Method-2 is applied to verify the magnitude of 1967 flood. According to the water level record during flooding, the maximum water levels during 1967 flooding at Kuala Krai and Guillemard Bridge were surveyed by DID. The highest water levels during the flooding in 1967 were 31.9 m (15,900 m<sup>3</sup>/sec) at Kuala Krai and 22.5 m (15,600 m<sup>3</sup>/sec) at Guillemard Bridge.

The peak discharges of 50-year probable flood are compared with the simulated 1967 flood by using Method-1 and recorded flood peak discharges by Method-2.

| Station      | Simulated<br>Probable |                 | Simulat<br>Flood ( | ed 1967<br>Method-1) | Recorded<br>Peak                 |
|--------------|-----------------------|-----------------|--------------------|----------------------|----------------------------------|
| Statton      | Peak<br>(cms)         | Volume<br>(MCM) | Peak<br>(cms)      | Volume<br>(MCM)      | Discharge<br>(Method-2)<br>(cms) |
| Nenggiri     | 4,668                 | 845             | 4,317              | 814                  |                                  |
| Kemubu       | 4,624                 | 1,658           | 4,471              | 1,617                |                                  |
| Lower Pergau | 2,698                 | 1,062           | 2,653              | 1,041                | <b>→</b>                         |
| Dabong       | 7,648                 | 2,845           | 7,422              | 2,780                |                                  |
| Lebir        | 7,102                 | 1,509           | 6,734              | 1,453                |                                  |
| Kuala Krai   | 17,490                | 5,416           | 16,799             | 5,261                | 15,900                           |
| G/Bridge     | 16,369                | 5,397           | 15,732             | 5,243                | 15,600                           |

enumerated. ( refer to Table II.5.2 )

The simulated 1967 flood peak discharges by Method-1 and recorded peak discharges in 1967 by Method-2 are smaller slightly than the simulated 50-year peak discharges. The magnitude of 50year probable flood therefore covers the safety against 1967 flood.

### 5.5 Probable Maximum Flood for Storage Dams

Probable maximum flood for storage dam was estimated on the basis of the probable maximum precipitation as described in Section 4.6. The magnitude of probable maximum flood is evaluated referring to the following modified Creager's equation:

 $q = C \cdot A^{b} \cdot \dots \cdot (Eq.5.1)$   $b = A^{-0.05} - 1 \cdot \dots \cdot (Eq.5.2)$ where, q: specific discharge in  $m^{3}/sec/km^{2}$ , A : catchment area in  $km^{2}$ , and

C : Coefficient depending upon the characteristic of the basin.

The envelope curve for C = 100 gives the general trend of all the world maximum flood records with a few exceptions, while it is known that the maximum floods recorded in a region covering Malaysia, Indonesia and Thailand correspond to the envelope curve for C = 34. The Creager's coefficient of the probable maximum flood for storage damsite is enumerated below:

| Proposed<br>Damsite | С.д.<br>(km <sup>2</sup> ) | PMF<br>(Cms) | Creager's<br>Coefficient |
|---------------------|----------------------------|--------------|--------------------------|
| Nenggiri            | 3,690                      | 6,394        | 27                       |
| Kemubu              | 5,630                      | 10,325       | 38                       |
| Lower Pergau        | 1,280                      | 4,339        | 29                       |
| Dabong              | 7,480                      | 12,061       | 40                       |
| Lebir               | 2,480                      | 10,247       | 55                       |

#### 5.6 Spillway Design Flood for Storage Dams

The probable maximum floods for storage dams are, however, less reliable since the heavy rainfall data in the upstream basin are limited. The magnitude of probable maximum floods is then evaluated under the following criteria:

- (i) recorded maximum peak discharge
- (ii) 200-year probable peak discharge, and
- (iii) peak discharge referring to the largest Creager's coefficient in and around the basin.

The largest peak discharge among the above three floods is adopted to the spillway design flood of concrete gravity dam, while the safety factor of 1.2 is multiplied by the peak discharge for the rockfill type dam according to the dam construction code in Japan.

The comparison of above three peak discharges is given in Table II.5.4. The largest value was adopted for the spillway design flood as follows:

| Proposed                                              | Spillway Desig                                | yn Flood                                  |
|-------------------------------------------------------|-----------------------------------------------|-------------------------------------------|
| Damsite                                               | Peak Discharge<br>(cms)                       | Volume<br>(MCM)                           |
| Nenggiri<br>Kemubu<br>Lower Pergau<br>Dabong<br>Lebir | 15,500<br>15,000<br>9,900<br>16,600<br>12,400 | 2,367<br>4,747<br>4,158<br>6,057<br>2,933 |

The spillway design flood hydrographs for storage dams are shown in Fig.II.5.8. These specific peak discharges for spillway design flood are compared with those of the other dam schemes in the Peninsular Malaysia and other asian countries as shown in Fig.II.5.9.

5.7 Inundation Depth in the Urban Area

#### 5.7.1 Probable Rainfall

The annual maximum rainfall depth at Kota Bharu for various durations are enumerated in Table II.5.5. The 5-day heaviest rainfall of more than 1,000 mm occurred in January 1967, December 1981 and December 1986 for the period from 1956 to 1986. The heaviest rainfall of about 1,500 mm occurred in 1986.

The frequency analysis of annual maximum rainfall for various durations was made as enumerated below.

| Return<br>Period | Prol  | bable Raini | fall Depth | ( mm ) |       |
|------------------|-------|-------------|------------|--------|-------|
| (years)          | 1-day | 2-day       | 3-day      | 5-day  | 7-day |
| 50               | 596   | 981         | 1,303      | 1,699  | 1,940 |
| 30               | 542   | 887         | 1,173      | 1,354  | 1,399 |
| 20               | 498   | 812         | 1,069      | 1,237  | 1,171 |
| 10               | 422   | 682         | 888        | 1,033  | 922   |
| 5                | 343   | 546         | 700        | 820    | 706   |
| 2                | 223   | 340         | 415        | 496    | 453   |

#### 5.7.2 Inundation Depth at Urban Area

The inundation depth at urban areas in the coastal plain are estimated on the basis of the heighest water level data at Kota Bharu water level gauging station for Kota Bharu and those of Pasir Mas pumping station for Pasir Mas. Those data are enumerated in Table II.5.6.

The inundation depth at urban areas are plotted referring to the probable distribution of the annual peak discharge at Guillemard Bridge. The heighest inundation depth in the urban areas were recorded at El.11.58 m at Pasir Mas in 1947 and El.6.28 m at Kota Bharu in 1983. As shown in Fig.II.5.10, the dotted line indicates the envelope curve of heighest inundation depth for various probabilities. The data shows the inundation depth is constant against more than 10-year probability.

#### REFERENCES

- 1. "Hydrological Data ; Rainfall Records : 1959-1965, 1965-1970, 1970-1975, 1975-1980, 1980-1985", Bahagian Parit dan Taliair, Malaysia
- 2. "Hydrological Data ; Streamflow Records : 1960-1965 ; 1965-1970 ; 1970-1975 ; 1975-1980", Bahagian Parit dan Taliair, Malaysia
- 3. "The Kelantan River Basin Study, Main Report, Vol.1 ; Hydrology", Tonkin & Taylor/ENEX, 1977
- 4. "The Kelantan River Basin Study, Quarterly Report", ENEX, 1974
- 5. "National Water Resources Study, Malaysia, Sectoral Report, Vol.2 : Meteorology and Hydrology", JICA, 1982
- 6. "Feasibility Study on Nenggiri Dam Project", ELC, 1986
- 7. "Feasibility Study on Pergau Hydroelectric Project, Vol.3 : Hydrology", SMEC, 1987
- 8. "Manual for Estimation of Probable Maximum Precipitation, (Operational Hydrology Report No.1)", WMO, 1973
- 9. "Estimation of the Design Rainstorm in Peninsular Malaysia (revised and updated)", Bahagian Parit dan Taliair, Malaysia, 1982
- 10. "Feasibility Study on Lebir Dam Project ( Interim Report )", JICA, 1986
- 11. "Kota Bharu Flood Mitigation Scheme ( Final Report )", MINCO, 1986

| No. | Name of Station | Whole<br>C.A.<br>(sq.km) | e Basin<br>Weight | Guillem<br>C.A.<br>(sq.km)                                                                                      | ard Bridge<br>Weight |
|-----|-----------------|--------------------------|-------------------|-----------------------------------------------------------------------------------------------------------------|----------------------|
| 1   | Blau            | 1,740                    | 0.116             | 1,740                                                                                                           | 0.144                |
| 2   | Gua Musang      | 704                      | 0.047             | 704                                                                                                             | 0.058                |
| : 3 | Upper Chiku     | 868                      | 0.058             | 868                                                                                                             | 0.072                |
| 4   | Kg. Aring       | 1,698                    | 0.114             | 1,698                                                                                                           | 0.141                |
| 5   | Gemala          | 1,969                    | 0.132             | 1,969                                                                                                           | 0.163                |
| 6   | Bertam          | 887                      | 0.059             | 887                                                                                                             | 0.073                |
| 7   | Dabong          | 869                      | 0.058             | 869                                                                                                             | 0.072                |
| 8   | Lubok Bungor    | 840                      | 0.056             | 840                                                                                                             | 0.070                |
| 9   | Kg. Lalok       | 917                      | 0.061             | 917                                                                                                             | 0.076                |
| 10  | Kuala Krai      | 591                      | 0.040             | 591                                                                                                             | 0.049                |
| 11  | Kg. Jeli        | 439                      | 0.029             | 373                                                                                                             | 0.031                |
| 12  | Kuala Pertang   | 441                      | 0.029             | 415                                                                                                             | 0.034                |
| 13  | Machang         | 441                      | 0.029             | 74                                                                                                              | 0.006                |
| 14  | Lawang          | 481                      | 0.032             | 135                                                                                                             | 0.011                |
| 15  | Pasir Puteh     | 432                      | 0.029             |                                                                                                                 |                      |
| 16  | Kg. Tandak      | 224                      | 0.015             |                                                                                                                 |                      |
| 17  | To' Uban        | 358                      | 0.024             |                                                                                                                 |                      |
| 18  | Melor           | 303                      | 0.020             |                                                                                                                 |                      |
| 19  | Rantau Panjang  | 83                       | 0.006             |                                                                                                                 |                      |
|     | Bachok          | 170                      | 0.011             | 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - |                      |
| 21  | Kuala Jambu     | 185                      | 0.012             |                                                                                                                 |                      |
| 22  | Kota Bharu      | 310                      | 0.021             |                                                                                                                 |                      |
|     | Total           | 14,950                   | 1.000             | 12,080                                                                                                          | 1.000                |

## Table II.3.1 Area of Thiessen's Polygon

Note : "Whole Basin" corresponds to the land area of the State of Kelantan of 14,950 sq.km, while the catchment area at Guillemard Bridge is 12,080 sq.km.

| Blau G.Musang Chiku Aring Gemala Bertam Dabong L.Bungor Lalok K.Kerai Jeli         719       136         719       136         719       136         718       136         719       136         388       10         388       136         18       225         667       318         667       318         125       358         318       109         551       16         251       16         251       16         251       16         251       16         251       16         253       353         318       36         125       358         318       109         251       16         264       347         253       194         170       281         264       299         100       344         100       344         100       353         264       299         264       299         264       299         93       93 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| G.Musang Chiku Aring Gemala Bertam Dabong L.Bungor<br>10<br>10<br>136<br>18<br>225<br>633<br>607<br>318<br>109<br>358<br>358<br>379<br>251<br>16<br>156<br>156<br>156<br>16<br>156<br>16<br>156<br>16<br>156<br>16<br>188<br>353<br>188<br>347<br>353<br>140<br>194<br>194<br>194<br>194<br>194<br>194<br>194<br>194                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| G.Musang Chiku Aring Gemala Bertam<br>10<br>10<br>136<br>136<br>136<br>136<br>136<br>136<br>109<br>358<br>87<br>318<br>96<br>109<br>318<br>251<br>251<br>251<br>269<br>619<br>279<br>264<br>299<br>66<br>66<br>100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| lau G.Musang Chiku Aring Gem<br>719<br>508 10<br>388 10<br>388 18<br>18<br>18<br>18<br>251 16<br>264 230<br>264 230<br>264 230                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| lau G.Musang Chiku<br>719 10<br>388 10<br>388 18<br>125 358 87<br>318 96<br>251<br>254                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| lau G.Musang<br>719<br>388<br>125<br>318<br>318<br>318<br>318                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Blau G.Musang<br>719 508 10<br>388 18<br>125 358 18<br>125 318                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

| ÷.        |        |          |                         |                 |                         |          |                         |                   | -<br>-<br>-             |                         |              |
|-----------|--------|----------|-------------------------|-----------------|-------------------------|----------|-------------------------|-------------------|-------------------------|-------------------------|--------------|
| Station   | Weight | Jepth We | 3-day<br>Depth Weighted | day<br>bepth We | 4-day<br>bepth Weighted | Depth We | 5-day<br>Depth Weighted | 6-day<br>Depth We | 6-day<br>Depth Weighted | 7-day<br>Depth Weighted | y<br>eighted |
| Blau Blau | 0.144  | 109:0    | 15.7                    | 140.2           | 20.2                    | 146.7    | 21.1                    | 146.7             | 21.1                    | 146.7                   | 21.2         |
| G.Musang  | 0.058  | 190.9    | 1.1                     | 260.3           | 15.1                    | 278.3    | 16.1                    | 281.3             | 16.3                    | 281.3                   | 16.3         |
| Chiku     | 0.072  | 278.7    | 20.1                    | 440.5           | 31.7                    | 464.2    | 33.4                    | 475.2             | 34.2                    | 475.2                   | 34.2         |
| Aring     | 0.141  | 435.5    | 61.4                    | 617.4           | 87.1                    | 643.3    | 5.06                    | 657.3             | 92.7                    | 657.3                   | 92.7         |
| Gemala    | 0.163  | 191.7    | 31.2                    | 250.4           | 40.8                    | 254.4    | 41.5                    | 256.9             | 41.9                    | 256.9                   | 41.9         |
| Bertam    | 0.073  | 263.3    | 19.2                    | 389.8           | 28.5                    | 505.7    | 36.9                    | 505.7             | 36.9                    | 505.7                   | 36.9         |
| Dabong    | 0.072  | 378.0    | 27.2                    | 602.0           | 43.3                    | 648.0    | 46.7                    | 683.0             | 49.2                    | 683.0                   | 49.2         |
| Bungor    | 0.070  | 505.5    | 35.4                    | 591.4           | 41.4                    | 639.1    | 44.7                    | 639 J             | 44.7                    | 639.1                   | 44.7         |
| Lalok     | 0.076  | 435.0    | 33.1                    | 633.0           | 48.1                    | 701.0    | 53.3                    | 716.0             | 54.4                    | 716.0                   | 54.4         |
| K.Krai    | 0.049  | 564.4    | 27.7                    | 774.4           | 37.9                    | 790.2    | 38.7                    | 797.2             | 39.1                    | 797.2                   | 39.1         |
| Jeli      | 0.031  | 465.2    | 14.4                    | 544.3           | 16.9                    | 588.3    | 18.2                    | 620.3             | 19.2                    | 621.3                   | 19.3         |
| Pertang   | 0.034  | 574.2    | 19.5                    | 663.1           | 22.5                    | 683.1    | 23.2                    | 683.1             | 23.2                    | 683.1                   | 23.2         |
| Machang   | 0.006  | 610.0    | 3.7                     | 827.0           | 5.0                     | 892.0    | 9<br>4                  | 893.5             | 5.4                     | 893.5                   | 5.4          |
| Lawang    | 0.011  | 447.9    | 4.9                     | 523.9           | 5.8                     | 566.4    | 6.2                     | 610.4             | 6.7                     | 4.4Ið                   | с,<br>8      |
| Total     | 1.000  | 5,449.3  | 324.6                   | 7,257.7         | 444.3                   | 7,800.7  | 476.2                   | 7,965.7           | 485.0                   | 7,970.7                 | 485.1        |
| Average   |        | 389.2    | 23.2                    | 518.4           | 31.7                    | 557.2    | 34.0                    | 569.0             | 34.6                    | 569.3                   | 34.7         |

|       | 1984 Flood                | • |
|-------|---------------------------|---|
|       | during 1                  |   |
|       | Depth                     | • |
|       | y <b>Rainfall Depth</b> d |   |
|       | ail                       |   |
| · · · | Accumulated D             |   |
|       | Table II.3.4              |   |

|          | <br>   |                   |                         |                         |              | 6<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8 | D<br>I<br>I<br>I<br>I<br>I<br>I | 8 · · · · · · · · · · · · · · · · · · · | 1<br> <br> <br> <br> <br> <br> <br> <br> |                         | ,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>, |
|----------|--------|-------------------|-------------------------|-------------------------|--------------|--------------------------------------------------------------------------------------------------|---------------------------------|-----------------------------------------|------------------------------------------|-------------------------|-------------------------------------------|
| Station  | Weight | 3-day<br>Depth We | 3-day<br>Depth Weighted | 4-day<br>Depth Weighted | y<br>eighted | 5-day<br>Depth We                                                                                | 5-day<br>Depth Weighted         | 6-day<br>Depth We                       | 6-day<br>Depth Weighted                  | 7-day<br>Depth Weighted | y<br>eighted                              |
| Blau     | 0.144  | 53.5              | 7.7                     | 60.5                    | 8.7          | 76.6                                                                                             | 11.0                            | 76.6                                    | 11.0                                     | -76.6                   | 11.0                                      |
| G.Musang | 0.058  | 137.0             | 6. 2                    | 137.0                   | 7.9          | 137.0                                                                                            | 2.9                             | 137.0                                   | 2.9                                      | 137.0                   | 7.9                                       |
| chiku    | 0.072  | 206.6             | 14.9                    | 218.1                   | 15.7         | 239.0                                                                                            | 17.2                            | 239.0                                   | 17.2                                     | 239.0                   | 17.2                                      |
| Aring    | 0.141  | 286.0             | . 40.3                  | 338.9                   | 47.8         | 381.0                                                                                            | 53.7                            | 381.0                                   | 53.7                                     | 381.0                   | 53.7                                      |
| Gemala   | 0.163  | 189.2             | 30.8                    | 215.2                   | 35.1         | 222.7                                                                                            | 36.3                            | 222.7                                   | 36.3                                     | 222.7                   | 36.3                                      |
| Bertam   | 0.073  | 207:3             | 15.1                    | 259.1-                  | 18.9         | 269.2                                                                                            | 19.7                            | 276.2                                   | 20.2                                     | 276.7                   | 20.2                                      |
| Dabong   | 0.072  | 231.4             | 16.7                    | 264.0                   | 19.0         | 273.0                                                                                            | 19.7                            | 310.0                                   | 22.3                                     | 310.0                   | 22.3                                      |
| Bungor   | 0.070  | 266.5             | 18.7                    | 343.0                   | 24.0         | 349.0                                                                                            | 24.4                            | 378.5                                   | 26.5                                     | 378.5                   | 26.5                                      |
| Lalok    | 0.076  | 403.4             | 30.7                    | 475.9                   | 36.2         | 498.2                                                                                            | 37.9                            | 501.2                                   | 38.1                                     | 501.2                   | 38.1                                      |
| K.Krai   | 0,049  | 285.7             | 14.0                    | 586.6                   | 28.7         | 607.7                                                                                            | 29.8                            | 667.7                                   | 32.7                                     | 676.2                   | 33.1                                      |
| Jeli     | 0.031  | 419.5             | 13.0                    | 465.2                   | 14.4         | 497.2                                                                                            | 15.4                            | 501.2                                   | 15.5                                     | 515.2                   | 16.0                                      |
| Pertang  | 0.034  | 573.3             | 19.5                    | 617.7                   | 21.0         | 624.7                                                                                            | 21.2                            | 702.7                                   | 23.9                                     | 702.7                   | 23.9                                      |
| Machang  | 0.006  | 336.6             | 2.0                     | 558.7                   | 3.4          | 619.2                                                                                            | 3.7                             | 742.2                                   | 4.5                                      | 769.2                   | 4.6                                       |
| Lawang   | 0.011  | 494.4             | 5.4                     | 575.3                   | 6.3          | 643.8                                                                                            | 7.1                             | 740.8                                   | 8.1                                      | 746.8                   | 8.2                                       |
| Total    | 1.000  | 4,090.4           | 236.8                   | 5,115.2                 | 287.2        | 5,438.3                                                                                          | 305.0                           | 5,876.8                                 | 318.0                                    | 5,932.8                 | 319.1                                     |
| ATT 0    |        | 000 0             | 0<br>9<br>1             | 265 4                   | с<br>С С     | 200 5                                                                                            | 0                               | a 01.7                                  | C C C C .                                | 672 8                   | 22 00                                     |

Table II.3.5 Accumulated Daily Rainfall Depth during 1986 Flood

| Station   | Weight |         | 3-day<br>Depth Weighted | 4-day<br>Depth Wei | 4-day<br>Depth Weighted | 5-day<br>Depth Wei                                                                          | 5-day<br>Depth Weighted | 6-day<br>Depth We | lay<br>Weighted   | 7-day<br>Depth We | 7-day<br>Depth Weighted               |
|-----------|--------|---------|-------------------------|--------------------|-------------------------|---------------------------------------------------------------------------------------------|-------------------------|-------------------|-------------------|-------------------|---------------------------------------|
| Blau      | 0.144  | 13.0    | 1.9                     | 16.5               | 7 6                     |                                                                                             |                         |                   |                   |                   |                                       |
| G. Musano |        |         |                         |                    | + +<br>1                | 0.22                                                                                        | 7.0                     | C.12              | 4.0               | 27.5              | 4.0                                   |
| Ch ; Tru  |        |         | 5 (<br>5) (             | n<br>0<br>7        | 0.0                     | 108.3                                                                                       | 6.3                     | 111.3             | 6.5<br>0          | 111.3             | ور<br>10                              |
|           |        |         | 10.3                    | 162.4              | 11.7                    | 192.2                                                                                       | 13.8                    | 202.2             | 14.6              | 207 2             |                                       |
| ALING     | 0.141  |         | 35.9                    | 288.4              | 40.7                    | 341.3                                                                                       | 48.1                    | 367 8             | - L2              | 1                 | η ι<br>• ·<br>• ·                     |
| semala    | 0.163  | 120.0   | 19.6                    | 151.0              | 24.6                    | 154 0                                                                                       | 5                       |                   | 1 U<br>4 U<br>7 C |                   | 0.10                                  |
| Bertam    | 0.073  |         | 17.5                    | 309.7              | 22 E                    | 0.00                                                                                        |                         |                   | 0.02              | D.201             | 26.4                                  |
| Jabono    | 0.070  |         | i li<br>c               |                    | 2 i<br>2 i<br>1 i       | 1.474                                                                                       | 77.17                   | 401.0             | 29.7              | 411.0             | 30.0                                  |
|           |        |         |                         | 0.022              | 7-07                    | 289.5                                                                                       | 20.8                    | 299.5             | 21.6              | 319.0             | 23.0                                  |
| TORTING   | 0.0.0  |         | 17.3                    | 299.5              | 21.0                    | 377.0                                                                                       | 26.4                    | 393.5             | 27.5              | 1 2 2 7           |                                       |
| alok      | 0.076  | 419.5   | 31.9                    | 502.0              | 38.2                    | 5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5 | 1 64                    |                   |                   |                   |                                       |
| C.Krai    | 0.049  |         | 0 00                    | C YUS              |                         |                                                                                             | t<br>• 4                |                   | 4.04              | 2.2/0             | 0* 5 5                                |
|           |        |         | 44.3                    | 7 . 400            | 1.17                    | 6/J.J                                                                                       | 32.9                    | 691.1             | 33.9              | 717.6             | 35.2                                  |
|           | T50.0  | 9.502   | 6.7                     | 328.0              | 10.2                    | 433.4                                                                                       | 13.4                    | 461 Q             | 5 71              | 5.00              |                                       |
| Pertang   | 0.034  | 349.0   | 0.II.                   | 419.0              | 14.2                    | 0.004                                                                                       | 0 21                    |                   |                   | N 0 0 0           | + + + + + + + + + + + + + + + + + + + |
| Machang   | 0.006  | 351.4   | 2.1                     | 450.8              | 10                      | 2 2 2 2                                                                                     | 0 - 0<br>- 0<br>-       |                   | 0.04              | 2.14              | 20.4                                  |
| Lawano    | 110 0  | 0 315   | 6                       |                    | - 1                     |                                                                                             | +<br>•                  | 2000              | 0 • 4             | 727.8             | 4.4                                   |
| 9111111   |        | ו<br>1  |                         | ก<br>              | 4.7                     | 562.8                                                                                       | 6.2                     | 604.3             | 6 <b>.</b> 6      | 614.3             | 6.8                                   |
| Total     | 1.000  | 3,433.1 | 199.9                   | 4,242.8            | 242.3                   | 5.177.9                                                                                     |                         | 5.530 4           | 1111111<br>200 A  |                   |                                       |
| Average   |        | 245.2   | 14.3                    | 303.1              | 17.3                    | 369.9                                                                                       | 20.6                    |                   | 21.6              | 0,020.U           | 0 10<br>0 10<br>0 10                  |

Table II.3.6 Duration of Design Rainfall

(Unit:mm)

| ¥7   | Peak               | · ·   | Daily | Rainfall | Depth |      |
|------|--------------------|-------|-------|----------|-------|------|
| rear | Discharge<br>(cms) | 3-day | 4-day | 5-day    | 6-day | 7-da |
| 1960 | 3,610              | 120.9 | 152.6 | 168.6    | 174.8 | 177. |
| 1961 | 2,700              | 95.4  | 120.5 | 133.1    | 138.0 | 140. |
| 1962 | 3,410              | 115.1 | 145.3 | 160.5    | 166.4 | 169. |
| 1963 | 2,790              | 106.2 | 134.0 | 148.1    | 153.6 | 155. |
| 1964 | 1,610              | 75.6  | 95.4  | 105.4    | 109.3 | 111. |
| 1965 | 6,170              | 170.8 | 215.6 | 238.2    | 247.0 | 250. |
| 1966 | 16,000             | 365.9 | 461.8 | 510.3    | 529.2 | 537. |
| 1967 | 8,280              | 201.3 | 254.1 | 280.8    | 291.2 | 295. |
| 1968 | 1,700              | 73.6  | 92.9  | 102.7    | 106.5 | 108. |
| 1969 | 6,650              | 141.8 | 178.9 | 197.7    | 205.0 | 208. |
| 1970 | 8,800              | 160.8 | 203.0 | 224.3    | 232.6 | 236. |
| 1971 | 5,550              | 107.2 | 135.3 | 149.5    | 155.0 | 157. |
| 1972 | 10,260             | 248.3 | 313.4 | 346.3    | 359.1 | 364. |
| 1973 | 11,130             | 286.5 | 361.6 | 399.6    | 414.4 | 420. |
| 1974 | 4,490              | 123.5 | 155.8 | 172.2    | 178.6 | 181. |
| 1975 | 5,247              | 117.6 | 148.4 | 164.0    | 170.1 | 172. |
| 1976 | 2,610              | 67.1  | 84.7  | 93.6     | 97.1  | 98.  |
| 1977 | 2,525              | 58.9  | 74.3  | 82.1     | 85.1  | 86.  |
| 1978 | 3,291              | 122.5 | 154.7 | 170.9    | 177.2 | 180. |
| 1979 | 10,400             | 261.0 | 329.4 | 364.0    | 377.5 | 383. |
| 1980 | 1,711              | 75.8  | 95.7  | 105.7    | 109.6 | 111. |
| 1981 | 2,028              | 67.1  | 84.7  | 93.6     | 97.1  | 98.  |
| 1982 | 7,172              | 170.6 | 215.3 | 237.9    | 246.7 | 250. |
| 1983 | 12,007             | 324.7 | 444.3 | 475.7    | 485.0 | 485. |
| 1984 | 7,744              | 236.8 | 287.2 | 300.6    | 318.0 | 319. |
| 1985 | 1,722              | 82.0  | 103.4 | 114.3    | 118.5 | 120. |
| 1986 | 6,901              | 199.9 | 242.3 | 289.7    | 302.5 | 315. |
| Ave. | 5,797              | 154.7 | 195.7 | 215.9    | 223.9 | 227. |
| c.c. |                    | 0.933 | 0.955 | 0.962    | 0.961 | 0.96 |

Note : C.C. means the correlation coefficient between peak discharges and daily rainfall depth.

| Damsite<br>River<br>L.A.(sq.km) | Nenggiri<br>Nenggiri<br>3,690 | Dabong<br>Galas<br>7,480 | Lebir<br>Lebir<br>2,480 |
|---------------------------------|-------------------------------|--------------------------|-------------------------|
| Year                            |                               |                          |                         |
| 1972                            | 1255                          | _                        | . · · · ·               |
| 1973                            | 1,925                         | -                        | - <u>-</u>              |
| 1974                            | 524                           | • • •                    |                         |
| 1975                            | 1,655                         | 1,740                    | -                       |
| 1976                            | 436                           | 1,663                    | 951                     |
| 1977                            | 438                           | 1,705                    | 661                     |
| 1978                            | 787                           | 2,244                    | 1,190                   |
| 1979                            | 3,219                         | 6,200                    | 3,940                   |
| 1980                            | 591                           | 1,007                    | 514                     |
| 1981                            | 410                           | 1,450                    | 536                     |
| 1982                            | 1,187                         | 4,736                    | 3,518                   |
| 1983                            | 1,864                         | 5,920                    | 3,903                   |
| 1984                            | 1,184                         | 4,250                    | . –                     |
| 1985                            | 813                           | 1,868                    |                         |
| 1986                            | 560                           | 3,378                    | -                       |

Table II.3.7 Annual Maximum Peak Discharge at Storage Damsites

| No.         | Year | Peak<br>Discharge<br>(cms) | No. | Year        | Peak<br>Discharge<br>(cms) |
|-------------|------|----------------------------|-----|-------------|----------------------------|
| 1           | 1941 | 2,030                      | 24  | 1964        | 1,610                      |
|             | 1942 | 11,480                     | 25  | 1965        | 6,170                      |
| 3 .         | 1943 | 4,630                      | 26  | 1966        | 16,000                     |
| 2<br>3<br>4 | 1944 | 5,230                      | 27  | 1967        | 8,280                      |
| 5           | 1945 | 12,850                     | 28  | 1968        | 1,700                      |
| 6           | 1946 | 3,970                      | 29  | 1969        | 6,650                      |
| 7           | 1947 | 13,580                     | 30  | 1970        | 8,800                      |
| 8           | 1948 | 3,420                      | 31  | 1971        | 5,550                      |
| 9           | 1949 | 7,050                      | 32  | 1972        | 10,260                     |
| 10          | 1950 | 8,090                      | 3.3 | 1973        | 11,130                     |
| 11          | 1951 | 2,600                      | 34  | 1974        | 4,490                      |
| 12          | 1952 | 1,970                      | 35  | 1975        | 5,247                      |
| 13          | 1953 | 4,060                      | 36  | 1976        | 2,610                      |
| 14          | 1954 | 4,550                      | 37  | <u>1977</u> | 2,525                      |
| 15          | 1955 | 2,310                      | 38  | 1978        | 3,291                      |
| 16          | 1956 | 2,580                      | 39  | 1979        | 10,400                     |
| 17          | 1957 | 6,050                      | 40  | 1980        | 1,711                      |
| 18          | 1958 | 1,500                      | 41  | 1981        | 2,028                      |
| 19          | 1959 | 3,440                      | 42  | 1982        | 7,172                      |
| 20          | 1960 | 3,610                      | 43  | 1983        | 12,007                     |
| 21          | 1961 | 2,700                      | 44  | 1984        | 7,744                      |
| 22          | 1962 | 3,410                      | 45  | 1985        | 1,722                      |
| 23          | 1963 | 2,790                      | 46  | 1986        | 6,901                      |

Table II.3.8 Annual Max. Peak Discharge at Guillemard Bridge

Note : Data from 1941 to 1974

--- "The Kelantan River Basin Study (ENEX)", 1977

Data from 1975 to 1986

---- Observed data by D.I.D.

| Base                                                                                             | FLOW     | (cms.)    | 36.0                                                    |           | 26.0     |          | •                | 52.U                             |       | · •    | 88: 0 |         |         |             |            | 28.0    |            | 31.0    | 14.0     | 1 B.    | 25.0  | 33.0   | L09.0    | 63.0 | 14.0  | 21.0 | 86.0  |
|--------------------------------------------------------------------------------------------------|----------|-----------|---------------------------------------------------------|-----------|----------|----------|------------------|----------------------------------|-------|--------|-------|---------|---------|-------------|------------|---------|------------|---------|----------|---------|-------|--------|----------|------|-------|------|-------|
| <br>6                                                                                            | TL       | (hours) ( | 1.0                                                     | 0         | 2.0      | <b>.</b> | 0 0              |                                  | 0     | 0.     | 0     | 0       | •       | 0           | 0          | 0.      | ٠          |         | •        | •       | • •   | 1.0    |          | л, О | •     | · •  | - C 🔹 |
| 1<br>9<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1 | ъ        | <u> </u>  | 1 . •                                                   | . •       | 0.500    | •        | •                |                                  | tî, # |        | •     |         | ٠       |             | . •        | •       | •          | . •     |          | 0.500   | •     | 0.500  | 0.500    | ŝ    | 0.500 | റ    | ŝ     |
| •<br>•<br>•                                                                                      | М        | · · ·     |                                                         |           | 20.5     |          |                  |                                  |       |        |       | •       | ٠       | 34.8        | 48.4       | 48.4    |            | 42.9    |          | 30.9    | ÷.    | 21.5   | •        | 41.0 | ٠     | 34.8 | ٠     |
| н                                                                                                | ient     |           | 30                                                      | 200       | 350      | 07       | 0<br>2<br>2<br>2 | 0 <del>6</del><br>0 <del>6</del> | 02    | 35     | 120   | 20      | 20      | 60          | 20         | 20      | 50         | 30      | 35       | 06      | 50    | 300    | 00<br>00 | 35   | 70    | 60   | 60    |
| River                                                                                            | Gradient |           | 1/1                                                     | 1         | <u> </u> |          |                  |                                  | नि    | 1/     | 1/    | 1       | 1       | <i>ו</i> ר/ | 1/         | 7       | 1/         | L)      | 1/       | Ч/<br>Н | Ч     | 1/     | 1        | 1    | 1/    | 1    | ר/    |
| River                                                                                            | Length   |           | 4 0 4                                                   | 23.6      | 55.4     | •        | 3 6              | 40.04<br>24 8                    | 5     | 28.6   | 61.2  |         | 26.0    | ٠           | 24.6       | 18.0    | 22.0       | 34.4    | 18.4     |         | 77.6  | 22.8   | 22.4     | 28.8 | 18.8  | 34.0 | 31.4  |
| C.A.                                                                                             |          | (sq.km)   | -612                                                    | 518       | 524      | 242      | 683              | 240                              | 570   | 570    | 450   | 433     | 277     | 754         | 530        | 140     | 309        | 619     | 283      | 421     | 464   | 663    | 545      | 313  | 140   | 424  | 389   |
| L '<br>}<br>!<br>!<br>!<br>!                                                                     | of Basin |           | L<br> <br> | roh       |          |          |                  |                                  | Galas | Galas  |       | Galas I | Galas 2 | Pergau      | βų         | Pergau  | 3°<br>• .  | Lebir   | sar      |         |       |        |          |      |       |      |       |
| 8                                                                                                | Name     |           | Berok                                                   | Chenderol | Betis    | cnepuan  | Ferias           | ruran<br>Wise                    | ц.    | Middle | Chiku | Lower ( | Lower ( | Upper ]     | <b>a</b> ) | Lower 1 | Teku       | Upper ] | Klelinsa | Aring   | Relai | Chalil | Rek      | Pahi | Taku  | Nalu | Sokor |
|                                                                                                  | No.      | . 1       | i 'r- <br> <br>                                         | 2         | ິຕິ      | \$ I     | n I              | D r                              | αġ    | Q)     | 10    | 11      | 12      | 13          | 14         | 15      | <u></u> те | 17      | 18       | 5       | 20    | 21     | 22       | 23   | 24    | 25   | 26    |

Table II.3.10 Runoff Parameter for Sub-divided River Channel

| Remarks                   | E<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 |                 |                |             | 0<2,500        | 0>2,500 | 0<2,500          | 0>2,500 | Q<1,800         | 0>1,800 | 0<1,800      | 0>1,800 |                |             |             |               |               | Q<6,000    | 0>6,000 | 000,7>0       | Q>7,000     |
|---------------------------|--------------------------------------------------------------------------------------------------|-----------------|----------------|-------------|----------------|---------|------------------|---------|-----------------|---------|--------------|---------|----------------|-------------|-------------|---------------|---------------|------------|---------|---------------|-------------|
| TL<br>(hours)             | 1.0                                                                                              | 1.0             | 1.0            | 1.0         | 1.0            | 1.0     | 0.0              | 1.0     | 1.0             | 2.0     | 0.0          | 0:0     | ч.<br>С.<br>Г. | 0.0         | 1.0         | 1.0           | 1.0           | 1.0        | 0.1     | 0.1           | л, о<br>, г |
| <b>Р</b> ч                | 0.50                                                                                             | 0.65            | 0.75           | 0.60        | 0.76           | 0.95    | 0.76             | 0,95    | 0.85            | 1.10    | 0.85         | 1.10    | 0.71           | 0.74        | 0.79        | 0.70          | 0.72          | 0.60       | 0.75    | 0.60          | 0.75        |
| M                         | 34.0                                                                                             | 42.0            | 58.0           | 63.0        | 106.0          | 53.0    | 85.0             | 45.0    | 108.0           | 26.0    | 110.0        | 28.0    | 87.0           | 142.0       | 150.0       | 114.0         | 125.0         | 142.0      | 0.17    | 152.0         | 76.0        |
| River<br>Gradient         | 1/ 600                                                                                           | 1/ 800          | 1/ 1000        |             | I/ 1900        | ·       | 1/ 2300          |         | 1/ 4000         |         | 1/ 4000      |         |                | 1/ 540      |             |               | 1/ 4000       | 1/ 5000    |         | J/ 5800       |             |
| River<br>Length (<br>(km) | 49.2                                                                                             | 30.4            | 32.0           | 45.0        | 41.4           |         | 25,0             |         | 18.6            |         | 15.0         |         | 36.8           | 26.0        | 39.6        | 16.4          | 20.4          | 18.8       |         | 25.4          |             |
| Name of Channel           | Upper Nenggiri                                                                                   | Middle Nenggiri | Lower Nenggiri | Upper Galas | Middle Galas 1 |         | 6 Middle Galas 2 | -       | 7 Middle Pergau | ۱       | Lower Pergau | •       | Lower Galas    | Upper Lebir | iddle Lebir | Lower Lebir-1 | Lower Lebir-2 | Kelantan-l |         | 15 Kelantan-2 |             |
| No. P                     | n<br>T                                                                                           | 2 M             | ω<br>Γ         | 4<br>0      | 5 M            |         | 6 M              | •       | - W             | •       | 8<br>7       |         | ੱਧ<br>6        |             | JI W        | 12 Lc         | 13 Lc         | 14 Xe      | •       | 1.5 Ke        |             |

Table.II.4.1 Annual Rainfall Depth in the State of Kelantan

•

.

|            | ******** |        |        |        |                 |        |       |                  |                |        |              |                   |                   |                   |        |        | BACREK N. JABOU  |                   | 9 1010 'V      |
|------------|----------|--------|--------|--------|-----------------|--------|-------|------------------|----------------|--------|--------------|-------------------|-------------------|-------------------|--------|--------|------------------|-------------------|----------------|
| 1948       |          |        |        |        |                 |        |       |                  | 2, 049         |        |              |                   |                   |                   |        |        |                  |                   |                |
| 1949       |          |        |        |        |                 |        |       |                  | 3,109          |        |              |                   |                   |                   |        |        |                  |                   |                |
| 1950       |          |        |        |        |                 |        |       |                  | 2,864          |        |              |                   |                   | 2,507             |        |        |                  |                   |                |
| 1951       |          |        |        |        |                 |        |       |                  | 2,684          |        |              | •                 |                   | 3, 539            |        |        |                  |                   |                |
| 1952       |          |        |        |        |                 |        |       |                  |                |        |              |                   |                   |                   |        |        |                  |                   |                |
| 1953       |          |        |        |        |                 |        |       |                  | 2,703          |        |              |                   |                   |                   |        |        |                  |                   |                |
| 1954       |          |        |        |        |                 |        |       |                  | 2,679          |        |              |                   |                   | 2,571             |        |        |                  |                   |                |
| 1955       |          |        |        |        |                 |        |       |                  | 2,205          |        |              |                   |                   | 2,416             |        |        |                  |                   |                |
| 1956       |          |        |        |        |                 |        |       |                  | 2,903          |        |              |                   |                   | 2,500             |        |        |                  |                   |                |
| 1957       |          |        |        |        |                 |        |       |                  | 3, 363         |        |              |                   |                   | 3,012             |        |        | 3,002            |                   | 2,668          |
| 1958       |          |        |        |        |                 |        |       | 2, 683           | 2,082          |        |              |                   |                   |                   |        |        | 2,155            |                   | 2,558          |
| 1959       |          |        |        | 2,856  | 2,301           |        | 1,550 | 3,997            | 2,588          | 1,410  |              | 2,703             |                   | 2,089             |        | 2,769  |                  | 1,884             | 3,216          |
| 1960       |          |        |        | 1, 731 |                 |        | 1,467 | 2, 988           | 2,695          | 1,378  |              | 2,652             | 3,433             |                   |        | 2,187  |                  | 813<br>8          | 3, 105         |
| 1961       |          |        |        | 2,602  | 2,173           |        | 1,860 | 2,569            | 2,759          | 2,135  |              | 3, 391            | 3,300             |                   |        | 4,084  | 2,998            |                   | 3,657          |
| 1962       |          |        |        | 2,297  | 3,274           |        | 2,059 |                  | 2,713          | 1,888  |              | 1,527             | 3,196             | 3,100             |        | 3,157  | 2,581            |                   | 2,900          |
| 53         |          |        |        | 2,190  | 3,046           |        | 2,099 |                  | 2,931          | 2,521  |              | 2,365             | 3,178             |                   |        | 2, 123 |                  | ,                 | 2,012          |
| 64         |          |        |        | 2, 323 | 2, 830          |        | 1,734 |                  | 2,476          |        |              | 2,733             | 3,500             | 2,750             |        | 2,230  | 2,079            | 2,976             | 2,230          |
| 65         |          |        |        | 2,943  | 3,484           |        |       |                  | 2,766          |        |              |                   | 3, 352            | 2,784             |        |        | 3,726            | 3,079             | 3,546          |
| 1966       | 1,923    |        | 2,546  | 3,528  | 3, 594          |        |       | 4,576            | 2,997          | 3,702  |              |                   | 3,970             | 3, 764            | 3, 650 |        | 3, 207           | 3,036             | 3,486          |
| 67         |          |        | 2,729  |        |                 |        |       |                  |                | 4,010  |              |                   |                   |                   | 3,710  | 3, 053 | 3,296            |                   | 3,695          |
| 1968       |          |        | 1,991  | 2,005  | 3,120           |        |       |                  | 2,204          | 2,692  |              |                   | 1,559             | 2,580             | 2,873  | 2,275  | 2,494            | 2,309             | 2,509          |
| 1969       |          |        |        | 2,676  | 3,779           |        | 2,198 | 3,175            | 2,349          | 2,582  |              |                   | 2,640             | 2,918             | 2,835  | 2,513  | 2,634            | 2,179             | 2,541          |
| 1970       | 2,318    |        |        | 2,806  | 3,407           |        | 1,918 | 3,168            | 1,998          | 2, 721 |              |                   | 2,322             | 1,670             | 2,753  | 2,942  | 2,494            |                   | 2,581          |
| 1971       |          |        | 2,159  |        | 3,898           |        | 2,768 | 3,467            | 2,980          | 2,948  |              |                   | 2,926             | 2,339             | 3,167  | 3, 138 | 2,724            | 2,001             | 2,667          |
| 1972       | 2,006    |        | 2,138  |        | 3, 743          |        | 2,148 |                  | 2,572          | 3,034  |              |                   | 2,493             | 2,394             | 2,360  |        | 2,102            | 1,186             | 2,081          |
| 1973       |          |        |        | 2,903  | 4,454           | 2,992  |       | 3,782            | 3,800          |        |              |                   | 4,818             | 3, 532            | 3,632  |        | 3, 325           |                   | 3,700          |
| 1974       |          |        |        |        | 1,438           | 2,280  |       |                  | 2,278          | 2,850  |              |                   | 4,748             | 2, 631            | 3, 193 |        | 2,603            | 1,939             | 2,506          |
| 1975       |          |        |        |        | 3,161           |        |       |                  | 3,691          | 3,640  |              |                   | 4,444             | 3,048             |        |        | 3,283            |                   | 3, 104         |
| 1976       |          |        |        | 2,230  | 3,183           |        |       |                  | 2,847          | 2,952  |              |                   | 2,957             | 3,149             | 3, 026 |        | 3, 236           | 2,923             | 2,901          |
| 1977       |          |        |        |        | 2,590           |        |       |                  | 2, 131         | 2,782  |              | 3,274             | 2,705             | 2,453             | 2,729  |        | 2,735            | 2,180             | 2,736          |
| 1978       | 2,841    |        |        | 1,938  | 3,310           | 1,963  | 1,839 | 2,494            | 2,395          |        |              | 2,247             | 2, 632            | 2,021             | 2,734  | 1      |                  | 1,745             |                |
| 1979       | 2,145    |        |        | 1,836  | 3,717           | 2,285  |       | 2,948            | 2,265          |        |              |                   | 2, 405            |                   |        | 2,875  | 2,632            |                   |                |
| 1980       | 1        |        |        |        |                 |        |       |                  |                |        |              |                   | Z, 4/1            | Z, 592            | 2,/19  |        | 66/ '2           | 2,837             |                |
| 1861       | 7,15/    |        |        | 1,309  | 2,411           | I, /U1 |       |                  |                |        | -            |                   | /10/7             | 4, 757<br>0 0 0 0 | 171 17 | 000 0  | 101 (1           | £17 (7            |                |
|            |          | 2,612  | 2,101  | 2,127  | 3, 202          |        | 1,849 | 2,831            | 2,400          | 704 7  | 3,0/4        | 1,643             | 2,391             | 2,508             | 2,636  | 2,803  | 160.7            | 1,017             | 102 0          |
| 1963 2,200 |          | 2,/1/  |        |        |                 | 105 17 | 2//17 | 920 C            | 4,170<br>2 53A | 241 40 | 117 6        | 050 C             | 2 050             | 100 0             | 3, 56K | 2 056  | 01110            | 51 17<br>51 17    | 20012<br>20012 |
|            | 2, 339   |        |        | 010 0  | 6, 427<br>0 200 |        | C10'7 | 3,5,5<br>2,000 c | 10,004         | 147 0  | 010<br>0 010 | 4,000             | 6, 7.47<br>5 9.67 | 2006              | 100 c  | 200    | 2, 100<br>2, 02( | 397 (S            | 020 6          |
| 1985       |          | Z, 9U3 | Z, 126 | 2,873  | 3, 293          | 1,882  | 67C47 | 3, 867           | 100.0          | 500 °  | C/# 57       | 61 407<br>6 4 407 | 167 0             | 20217             | 414 S  | 007'Y  | 172 47           | 2, 170<br>2 2 7 0 | 364            |
| 1986       | 2,822    | 2,935  | 1,620  |        | 3, 208          | 1,911  | 2,328 | 3, 847           | 2, 902         | 2, 128 | 2,646        | 2, 441            | Z, 919            | Z,653             | Z40 'Z | Z, 391 | 2, 139           | n/c'z             | 1/217          |
| Hax. 2,207 | 2,939    | 2,935  | 2,729  | 3,528  | 4,454           | 2,992  | 2,815 | 4,576            | 3,800          | 4,010  | 3,849        | 3,590             | 4,818             | 3,764             | 3,710  | 4,034  | 3,825            | 3, 302            | 3,700          |
| Hin. 2,290 |          | 2,403  | 1,620  | 1,359  | 1,438           | 1,701  | 1,467 | 2,494            | 1,998          | 1,378  | 2,475        | 1,527             | 1,559             | 1,670             | 2,129  | 2,123  | 2,079            | 873               | 1,951          |
| No. 2      | 6        | 4      | æ      | 8      | 24              | α      | 14    | 5                | ų              | ~      | ur           | S                 | č                 | 2                 | ç      | ç      | ž                | 5                 | 25             |
|            |          |        |        | 1      | i               | 2      | 2     | :                | 3              | ;      | 2            | 3                 | 07                | 27                | 11     | 1      | 27               | 44                | ŕ              |

.

·

Table II.4.2 Monthly Mean Rainfall Depth in the State of Kelantan

| Station     | Та<br>Г | ц<br>0<br>1                                              | Mar                                          | Anr                             | Mav                        | Trin.                                | 1.11                                                                                             | Alle                                | Sen.     | 0rt                                  | NOW  | Der                                                                                                        | 70701                         |
|-------------|---------|----------------------------------------------------------|----------------------------------------------|---------------------------------|----------------------------|--------------------------------------|--------------------------------------------------------------------------------------------------|-------------------------------------|----------|--------------------------------------|------|------------------------------------------------------------------------------------------------------------|-------------------------------|
|             |         | -<br>                                                    |                                              |                                 |                            |                                      |                                                                                                  | D                                   | <b>L</b> |                                      |      |                                                                                                            |                               |
|             |         | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | <br> <br> <br> <br> <br> <br> <br> <br> <br> | )<br>9<br>1<br>8<br>0<br>1<br>8 | 1<br>!<br>!<br>!<br>!<br>! | /<br>/<br>/<br>/<br>/<br>/<br>/<br>/ | F<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I | +<br> <br> <br> <br> <br> <br> <br> |          | 5<br>8<br>8<br>8<br>8<br>8<br>8<br>8 | <br> | L<br>A<br>D<br>L<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I | <br> <br> <br> <br> <br> <br> |
| Blau        | 69      | 103                                                      | 169                                          | 138                             | 270                        | 151                                  | 230                                                                                              | 68                                  | 204      | 267                                  | 236  | 157                                                                                                        | 2.062                         |
| Gua Musang  | 85      | 107                                                      | 100                                          | 140                             | 238                        | 183                                  | 181                                                                                              | 209                                 | 297      | 272                                  | 233  | 207                                                                                                        | 2,252                         |
| Arine       | 60      | 78                                                       | 21                                           | 114                             | 270                        | 158                                  | 205                                                                                              | 232                                 | 289      | 328                                  | 228  | 378                                                                                                        | 2,424                         |
| Bertam      | 90      | 96                                                       | 69                                           | 136                             | 206                        | 90                                   | 197                                                                                              | 178                                 | 242      | 266                                  | 137  | 280                                                                                                        | 1,956                         |
| Dabong      | 63      | 78                                                       | 72                                           | 171                             | 158                        | 138                                  | 200                                                                                              | 203                                 | 193      | 247                                  | 315  | 311                                                                                                        | 2,179                         |
| ibok Bungor | 06T     | 132                                                      | 136                                          | 137                             | 231                        | 179                                  | 179                                                                                              | 200                                 | 241      | 372                                  | 435  | 560                                                                                                        | 2,992                         |
| alok        | 85      | 94                                                       | 93                                           | 111                             | 216                        | 153                                  | 188                                                                                              | 200                                 | 273      | 258                                  | 274  | 444                                                                                                        | 2,389                         |
| Kuala Krai  | 106     | 166                                                      | 1.53                                         | 108                             | 160                        | 121                                  | 124                                                                                              | 168                                 | 231      | 175                                  | 188  | 191                                                                                                        | 2,461                         |
|             | 152     | 133                                                      | 115                                          | 184                             | 252                        | 187                                  | 199                                                                                              | 229                                 | 294      | 332                                  | 433  | 682                                                                                                        | 3,192                         |
| ala Pertang | 201     | 107                                                      | 63                                           | 105                             | 166                        | 138                                  | 172                                                                                              | 195                                 | 274      | 261                                  | 379  | 548                                                                                                        | 2,639                         |
| tchang      | 170     | 60                                                       | 128                                          | 16                              | 190                        | 175                                  | 187                                                                                              | 216                                 | 307      | 253                                  | 451  | 533                                                                                                        | 2,761                         |
| awang       | 86      | 157                                                      | 140                                          | 129                             | 246                        | 218                                  | 264                                                                                              | 255                                 | 306      | 303                                  | 271  | 589                                                                                                        | 2,976                         |
| Pasir Puteh | 140     | 71                                                       | 16                                           | 81                              | 170                        | 1.34                                 | 199                                                                                              | 198                                 | 289      | 260                                  | 493  | 639                                                                                                        | 2,765                         |
| Tandak      | 161     | 71.                                                      | 74                                           | 95                              | 201                        | 193                                  | 265                                                                                              | 277                                 | 352      | 368                                  | 456  | 583                                                                                                        | 3,096                         |
| To' Uban    | 146     | 85                                                       | 11                                           | 73                              | 180                        | 178                                  | 216                                                                                              | 246                                 | 288      | 297                                  | 435  | 571                                                                                                        | 2,786                         |
| Melor       | 207     | 74                                                       | 62                                           | 86                              | 155                        | 186                                  | 208                                                                                              | 242                                 | 292      | 297                                  | 534  | 654                                                                                                        | 3,027                         |
| Bachok      | 138     | 60                                                       | 106                                          | <u>6</u> 3                      | 122                        | 126                                  | 182                                                                                              | 192                                 | 211      | 310                                  | 624  | 603                                                                                                        | 2,773                         |
| Kuala Jambu | 82      | 34                                                       | 61                                           | 21                              | 101                        | 121                                  | 178                                                                                              | 192                                 | 208      | 248                                  | 483  | 464                                                                                                        | 2,223                         |
| Cota Bharu  | 70      | 36                                                       | 66                                           | ሪ<br>ሪ                          | 106                        |                                      | 177                                                                                              | 142                                 | 000      | 257                                  | 702  | 743                                                                                                        | 2.673                         |

111

111

|          |       |       |        |       |       |       |           |                | :     |      |       |      |       |      | -   |       |       |       |       |       |       |       |        |       |       |         |       |        |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |           |
|----------|-------|-------|--------|-------|-------|-------|-----------|----------------|-------|------|-------|------|-------|------|-----|-------|-------|-------|-------|-------|-------|-------|--------|-------|-------|---------|-------|--------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-----------|
| ·        |       | ÷     |        |       | •     |       |           |                |       |      |       |      |       |      |     |       |       |       |       |       |       |       |        |       |       |         |       |        |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |           |
|          |       |       |        |       |       |       | :         |                |       |      |       |      | -     |      |     |       |       | •     |       |       |       |       |        |       |       |         |       |        |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |           |
| Lawang   |       |       |        |       |       |       | •         |                |       |      |       |      |       |      |     |       |       | •     |       |       |       |       |        |       |       |         | :     |        |       |       |       |       |       |       |       |       | 161.8 | 204.0 | 295.7 | 104.5 | 181.0 | 295.7 | 104.5 | 189.4     |
| Machang  |       |       | ÷,     |       | ۰.    |       | •*        |                | •     | •    |       | ·    |       |      |     |       | • .   |       | .1    | ·     | 304.8 | 419.6 | 106.9  | 188,0 | 149.6 | 243.8   | 329.7 |        | 402.5 | 447.5 | 113.5 | 104.5 | 115.0 | 155.0 |       | 65.5  | 97.5  | 290.0 | 383.1 | 190.0 | 201.8 | 447.5 | 65.5  | 226.8     |
| Pertang  | 241.3 | 147.3 | 1,99.4 | 152.9 | 134.9 | 107.7 | 146.1     | 167.6          | 105:2 | 87.9 | 143.5 | 62.7 | 87.6  | 0.00 |     | 140.0 | 212.9 | 185.4 | 137.7 | 181.4 | 128.0 | 157.5 | 24.9   | 154.7 | 103.4 | 333.2   | 320.0 | 346.7  | 212.0 | 218.0 | 120.0 | 96.0  | 147.0 | 121.0 | 76.0  | 87.5  | 273.0 | 263.0 | 325.0 | 100.0 | 559.0 | 559.0 | 62.7  | 175.0     |
| Kg.Jeli  |       | · ·   | •      |       |       |       |           | •              |       | ·    |       |      |       |      | . ' | -     |       |       |       |       |       |       |        |       |       |         |       | 246.9  | 298.0 | 283.0 | 97.0  | 88.0  | 125.0 | 131.5 | 94.0  | 196.0 | 171.0 | 180.1 | 269.5 | 94.0  | 160.8 | 298.0 | 88.0  | 172.0     |
| K.Krai   |       | :     |        |       |       |       |           |                |       |      |       |      |       |      |     |       |       |       |       |       | •     | 281.2 | 63.5   | 162.8 | 2 06  | 335.5   | 181.6 | 95.0   | 183.0 | 92.0  | 82.5  | 63.0  | 134.0 | 159.0 |       | 63.0  | 274.2 | 275.7 | 88.5  | 90.0  | 227.3 | 335.5 | 63.0  | 154.9     |
| Lalok    |       | 1:    |        |       |       |       |           |                |       |      | •     |      | :     |      | • . | 2     |       |       |       |       |       |       |        |       |       |         |       | 202.9  | 82.0  | 137.0 | 100.0 | 95.0  | 81.0  | 288.0 | •     | 0.96  | 164.0 | 243.0 | 213.0 | 0.02  | 218.0 | 288.0 | 81.0  | 154.6     |
| L.Bungor |       | · .   |        |       |       |       |           |                |       | 93.0 | 88.9  | 79.8 | 112 5 | 61.0 |     | 0 0 0 | 43.2  | 114.0 | 91.4  | 101.6 | 109.2 | 235.5 | 1.99.1 | 165.6 | 137.7 | 2.191.5 | 197.9 | 427.2  | 78.5  | 226.0 | 85.5  | 90.0  | 159.0 | 384.0 | 69.0  | 122.0 | 206.0 |       | 205.5 | 104.0 | 108.5 | 427_2 | 40.6  | 140.9     |
| Dabong   |       | :     |        |       | •     |       |           | •              |       |      |       |      |       |      |     |       |       |       |       |       |       |       | 121.4  | 158.2 | 95.8  | 126.2   | 110.0 | 150.9  | 84.0  | 162.0 | 123.0 | 69.0  | 104.0 | 241.0 | 60.0  | 75.0  | 102.0 | 98.0  | 131.0 | 106.0 | 127.8 | 286.3 | 60.0  | 118.1     |
| Ветташ   |       | •     |        | •     |       | . •   |           |                |       |      |       |      | :     |      |     |       |       |       |       |       |       |       |        |       | 67.3  | 117.6   | 100.6 | 148.6  | 91.7  | 100.6 |       |       | 107.5 | 199.5 |       | 81.0  | 151.0 | 54.5  | 170.6 | 86.5  | 106.5 | 199.5 | 54.5  | 0.001     |
| Gemala   |       |       |        |       | 1     |       | ;         |                |       | •    |       |      |       |      |     |       |       |       |       |       |       |       |        |       |       |         |       |        |       |       |       |       | 96.5  | 99.5  | 111.5 |       | 100.5 | 97.8  | 89.0  | 70.5  | 70.0  | 111 5 | 70.07 | 0.10      |
| Aring    |       |       |        |       | •     | •     | ::.<br>:. |                | -:    | : -  |       |      |       |      |     |       |       |       |       |       |       |       |        |       |       |         |       |        |       |       |       | 68.0  | 69-0  | 265.5 |       | 103.0 | 136.0 | 257.1 | 204.6 | 135.0 | 120.3 | 265 5 | 68°.0 | 350.9     |
| Chiku    |       |       |        |       |       |       |           |                | · .   |      |       |      |       |      |     |       |       |       |       |       |       |       |        |       |       |         |       |        |       |       |       |       | 86.0  | 107.5 |       |       | 110.0 | 224.6 | 148.5 | 88.0  | 68.0  | 204 F | 68°.0 | 0.00<br>0 |
| G.Musang |       | •     |        |       | •     | •     | •         | н<br>1914<br>1 | :     |      |       |      |       |      | • • |       |       |       |       |       |       |       |        |       |       |         | 1001  |        | 74.0  | 92.0  | 110.0 | 88.0  | 94.0  | 164.0 | 71.0  | 102.0 | 86.0  | 125.6 | 105.0 | 0-16  | 82.6  |       | 104-0 |           |
| Blau     |       |       |        |       |       | •     |           |                |       |      |       |      |       |      |     |       |       |       |       |       |       |       |        |       |       |         |       |        |       |       |       |       |       | 88.5  | 110.0 |       | 89.0  | 85.3  | 65.0  | 106.5 | 94.0  | 0.000 |       |           |
| Year     | 1947  | 1948  | 1949   | 1950  | 1951  | 1952  | 1953      | 1954           | 1955  | 1956 | 1957  | 1958 | 1959  | 1960 | 200 | 1061  | 1962  | 1963  | 1964  | 1965  | 1966  | 1967  | 1968   | 1969. | 1970  | 1971    | 1972  | .573 J | 1974  | 1975  | 1976. | 1977  | 1978  | 1979  | 1980  | 1981  | 1982  | 1983  | 1984  | 1985  | 1986  |       | Nin.  |           |

380.0 448.5 161.0 273.5 448.5 161.0 312.3 1111 298.5 1 Fertang Machang Lawang (Unit:mm) 756.9 118.1 331.6 118.1 167.3 525.0 501.8 204.7 397.2 548.0 543.0 166.0 133.0 135.0 213.0 756.9 153.9 235.0 239.0 238.1 528.3 406.4 Table II.4.4 Annual Maximum 2-Day Rainfall Depth in the State of Kelantan 621-5 104.7 261.5 366.8 110.0 247.6 Kg.Jeli 346.0 131.0 110.0 366.8 341.0 474.2 79.0 232.9 400.6 79.0 210.0 404.1 340.6 158.7 233.0 233.5 83.5 93.5 279.0 80.5 386.2 474.2 122.5 156.0 418.4 K.Krai 413.0 100.0 217.0 138.0 413.0 108.0 245.0 367.0 285.0 130.0 336.0 326.9 149.0 100.0 120.0 Lalok 736.3 79.8 211.9 102.9 81.0 83.6 83.6 83.6 83.6 83.6 1110.2 1110.2 1110.2 126.3 215.9 215.9 215.9 235.1 235.2 736.3 95.0 299.0 122.5 136.0 263.0 548.0 102.0 149.0 298.5 282.0 128.0 197.5 136.7 254.2 79.8 136.6 Dabong L.Bungor 134.1 213.1 213.1 213.1 200.4 200.4 200.0 1114.0 126.0 2206.0 2206.0 126.0 302.0 82.0 127.0 143.0 143.0 143.0 143.0 1281.0 202.7 468 4 82.0 162.8 107.7 183.4 151.9 228.1 103.1 125.0 157.5 350.5 93.7 210.0 98.5 98.5 222.4 151.0 115.5 350.5 93.7 157.1 1111 Bertam 115.0 71.0 83.0 171.5 71.0 118.4 171 5 144 0 111.5 110.0 140.8 i Gemala 400.5 89.0 216.8 0.411 89.0 309.0 146.0 221.4 103.0 211.0 357.1 Aring 1111 89.5 186.5 286.3 89.5 161.1 167.0 286.3 183.5 118.5 118.5 Chiku 104.0 110.0 111.0 126.0 202.0 89.0 202.0 89.0 124.9 122.2 164.0 113.0 163.3 115.0 138.0 G.Musang 91.0 111.0 95.3 105.4 0.LIL 0.011 111.0 95.3 95.5 106.5 108.8 Blau 1951 1952 1955 1956 1955 1955 1955 1959 1959 1962 1966 1966 1966 1969 1971 1972 1973 1976 1976 1977 1976 1979 646T 1950 1961 1963 1964 1965 1978 1980 Year 1947 1948 1981 1982 1983 1984 1985 1986 1111 Max. Min. Ave. 

| Lawang    |                                      | •       |                | ·<br>· |         |       |      |           |       | ÷     |       |     |                  |       |       |        |       |        |                         |                        |                | •     |       |        | ·     |       |       |       |       |       |       |       |       | ·· .  |       |       |       |             |       | 351.0 | 501.0  | 478.5  | 200.1 | 309.0 |                                         |                | + • • •   |
|-----------|--------------------------------------|---------|----------------|--------|---------|-------|------|-----------|-------|-------|-------|-----|------------------|-------|-------|--------|-------|--------|-------------------------|------------------------|----------------|-------|-------|--------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------------|-------|-------|--------|--------|-------|-------|-----------------------------------------|----------------|-----------|
| Machang   | •                                    |         | •              |        |         |       |      |           |       |       |       |     |                  |       |       |        |       |        |                         |                        |                |       | (<br> | 505.5  | 877.6 | 185.6 | 247.7 | 248.9 | 330.9 | 638.0 |       | 612.5 | 603.0 | 226.0 | 179.0 | 224.5 | 298.0 |             | 126.1 | 179.8 | 742.0  | 530.0  | 257.3 | 522.2 |                                         | 0-770<br>- 961 | 7 · 7 7 T |
| Fertang   | i                                    | 486.9   | 182.1          | 368.8  | 760.9   | 2.000 |      | 184.2     | 286.8 | 240.0 | 181 4 |     |                  | 590.9 | 14T.U | 196.6  | 217.6 | 210.0  | 722 6                   | 0.004<br>0.004<br>0.40 |                | 7-767 | 431.4 | 260.0  | 354.4 | 151.3 | 258.6 | 246.4 | 389.4 | 685.8 | 708.4 | 389.0 | 286.0 | 227.0 | 142.0 | 314.0 | 234.0 | 129.0       | 225.0 | 456.0 | 645.0  | 529.0  | 238:0 | 613.0 |                                         |                | 2.21      |
| Kg.Jeli   |                                      |         | • .            |        |         |       |      |           |       |       | •     |     |                  |       |       |        | .,    |        |                         |                        |                |       |       |        |       |       |       |       |       |       | 425.7 | 368.0 | 361.0 | 193.0 | 173.0 | 276.0 | 254.5 | 190.0       | 259.0 | 309.0 | 502.9  | 372.0  | 213.0 | 345.8 |                                         | 5. 70C         | 0.c/T     |
| K.Krai    |                                      |         |                |        |         |       |      |           |       |       |       |     |                  |       |       |        | •     |        |                         |                        |                |       |       |        | 468.9 | 97.0  | 247.6 | 232.9 | 408.7 | 410.5 | 166.8 | 270.0 | 113.5 | 101.5 | 99.5  | 242.5 | 323.0 |             | 98.0  | 405.5 | 659.4  | 133.5  | 184.5 | 516.1 |                                         | 4.900          | 2.7       |
| Lalok     |                                      |         | •              | · .    |         | •     |      |           | ;     |       |       | •.  |                  |       | ·     |        |       |        |                         |                        |                |       |       |        |       |       |       |       |       |       | 418.8 | 138.0 | 184.0 | 100.0 | 144.0 | 143.0 | 462.0 |             | 108.0 | 299.0 | 422.0  | 291.0  | 148.0 | 0.014 |                                         | 402.0          | 0.00T     |
| L. Bungor |                                      | •       |                |        |         |       |      |           |       |       | -     |     | 5 7 7 7 7        | 160.5 | 101 6 | 138.4  | 133.4 | 108.4  | 1 0 0 0 0<br>1 0<br>1 0 | C . 577                | 2-2-7<br>2-2-1 | 2.011 | 284.5 | 222.7  | 528-7 | 144 8 | 281.9 | 246.4 | 217.4 | 529.2 | 791.9 | 108.0 | 315.0 | 144.0 | 142.5 | 327 0 | 584.0 | 0.111       | 170.0 | 368.0 |        | 294.0  | 173.0 | 250.5 |                                         | 7 . TV.        | 0.171     |
| Dabong L  | 1                                    | •       | ı              | •••    |         |       |      | . *<br>.* |       |       |       |     |                  |       |       |        |       |        |                         |                        |                |       |       | ·      |       | 134.1 | 248.4 | 229.1 | 268.2 | 261.9 | 199.1 | 144.0 | 216.0 | 126.0 | 84.0  | 138 0 | 353.0 | 95.0        | 154.0 | 213.0 | 195 0  | 241.0  | 121.0 | 240.5 |                                         | 2.510          | 24.0      |
| Bertam    |                                      | •       | -              |        |         |       |      | :         |       |       |       |     |                  |       |       |        |       |        |                         |                        |                |       |       |        |       |       |       | 124.2 | 202.2 | 163.8 | 258.1 | 103.1 | 139.5 |       |       | 162.5 | 353.0 |             | 105.6 | 244.5 | 5 65   | 232.5  | 151.0 | 156.3 |                                         | 353.C          | 0.24      |
| Gemala    | 5<br>6<br>1<br>2<br>2<br>2<br>7<br>1 |         | -              |        | • • • • | :     |      | :-        |       | ÷.    | •     |     |                  |       |       | -      |       |        |                         |                        |                |       |       |        |       |       |       |       |       |       |       |       |       |       |       | 177.5 | 146.0 | 111.5       |       | 118.5 | 233.2  | 122.5  | 111.5 | 124.0 |                                         | 233.2          |           |
| Aring     |                                      | 1.<br>1 | •              |        |         |       |      |           |       |       | -,    |     |                  | •     |       |        |       |        |                         |                        |                |       |       |        |       |       |       |       |       |       |       |       |       |       | 115.0 | 0.92  | 416.0 |             | 120.0 | 247.0 | 524.3  | 336.6  | 163.0 | 284.3 | 1<br>1<br>1<br>1<br>1<br>1              | 524.3          | 0.66      |
| Chiku     |                                      |         | •              |        |         |       |      |           |       |       |       | . : |                  |       |       |        |       |        |                         |                        |                |       |       |        |       |       |       | -     |       |       |       |       |       |       |       | 135.5 | 186.5 | -<br>-<br>- |       | 180.0 | 202    | 197.9  | 137.5 | 107.5 |                                         | 395.5          | 107.5     |
| G.Musang  |                                      |         |                | :      | •       |       |      |           |       |       |       |     |                  |       |       |        |       |        | 11                      |                        |                |       |       |        |       |       |       |       |       | 174.3 |       | 104.0 | 133.6 | 113.0 | 102.0 | 141.0 | 235.0 | 106.0       | 164.0 | 0 101 | 235.1  | 115.0. | 145.0 | 125.0 | F L L L L L L L L L L L L L L L L L L L | 235.1          | 0000      |
| Blau G    |                                      |         | N <sup>2</sup> |        | :       | •     | • .  |           |       | :     |       |     |                  |       |       |        |       | ۰.     |                         |                        |                |       |       |        |       |       |       |       |       |       |       |       |       |       |       |       | 119.0 | 112.5       |       | 2 611 | 2 00 F | 0.001  | 100.5 | 122.5 |                                         | 122.5          | 100.8     |
| Year      |                                      | 1947    | 1948           | 1949   | 1050    |       | TCAT | 1952      | 1953  | 1954  | 100   |     | ם<br>ה<br>ה<br>ה | 1957  | 1958  | 1959 C | 1960  | - 1901 |                         | 1962                   | 1963           | 1964  | 1965  | 1966 · | 1967  | 1968  | 1969  | 1970  | 176   | 1972  | 1973  | 1974  | 1975  | 1976  | 1977  | 1978  | 1979. | 1980        | 1981  | 1080  | 1001   | 7984   |       | 1986  | Ē                                       | Max.           | 1.5       |

•

. **II − 38**g Antonio de la constante de la **II − 38**g

619.5 208.5 456.6 388.4 580.5 619.5 208.5 486.0 Machang Lawang (Unit:mm) 182.6 227.0 892.0 682.0 264.0 760.9 1028.9 175.0 467.8 261.0 334.0 777.0 701.0 293.5 175.0 470.7 1028.9 195.0 263.0 261.9 333.4 785.9 1 836.0 115.8 348.4 445.0 292.0 197.0 355.0 355.0 355.0 282.5 176.5 282.5 282.5 836.0 836.0 641.5 262.0 635.0 425.0 283.1 395.8 395.8 283.1 1115.8 147.3 2267.3 2267.5 2271.6 2271.6 2271.6 2271.6 2271.6 2353.1 172.7 772.7 772.7 772.8 Pertang 508.9 2507.0 261.5 261.5 261.5 261.5 261.5 261.5 261.5 261.5 261.5 261.5 261.5 261.5 27.2 27.2 27.2 27.2 522.0 194.0 357.9 Kg.Jeli 378.0 258.0 251.0 340.0 340.0 3289.0 3524.0 71.5 71.5 478.5 263.5 790.0 298.7 410.2 492.8 192.2 297.0 136.5 117.0 790.0 162.0 173.0 672.0 145.0 i K.Krai 125.0 308.0 495.0 306.0 170.0 546.0 546.0 117.0 285.1 263.1 303.3 473.9 473.9 197.0 1121.0 1121.0 1122.0 509.0 1 Lalok 107.5 203.3 2203.3 228.9 328.9 328.9 3351.7 3351.7 927.3 927.5 927.5 927.5 927.5 927.5 927.5 927.5 927.5 203.0 665.5 203.0 723.0 2236.0 2236.0 2236.0 2236.0 2236.0 2236.0 2236.0 2236.0 2236.0 2236.0 2236.0 2236.0 2236.0 226.0 226.0 226.0 226.0 226.0 226.0 237.0 235.0 235.0 235.0 235.0 240.0 235.0 240.0 235.0 240.0 240.0 240.0 240.0 240.0 240.0 240.0 240.0 240.0 240.0 240.0 240.0 240.0 240.0 226.0 240.0 226.0 226.0 226.0 226.0 226.0 226.0 226.0 226.0 226.0 226.0 226.0 226.0 226.0 226.0 226.0 226.0 226.0 226.0 226.0 226.0 226.0 226.0 226.0 226.0 226.0 226.0 226.0 226.0 226.0 226.0 226.0 226.0 226.0 226.0 226.0 226.0 226.0 226.0 226.0 226.0 226.0 226.0 226.0 226.0 226.0 226.0 226.0 226.0 226.0 226.0 226.0 226.0 226.0 226.0 226.0 226.0 226.0 226.0 226.0 226.0 226.0 226.0 226.0 226.0 226.0 226.0 226.0 226.0 226.0 226.0 226.0 226.0 226.0 226.0 226.0 226.0 226.0 226.0 226.0 226.0 226.0 226.0 226.0 226.0 226.0 226.0 226.0 226.0 226.0 226.0 226.0 226.0 226.0 226.0 226.0 226.0 226.0 226.0 226.0 226.0 226.0 226.0 226.0 226.0 226.0 226.0 226.0 226.0 226.0 226.0 226.0 226.0 226.0 226.0 226.0 226.0 226.0 226.0 226.0 226.0 226.0 226.0 226.0 226.0 226.0 226.0 226.0 226.0 226.0 226.0 226.0 226.0 226.0 226.0 226.0 226.0 226.0 226.0 226.0 226.0 226.0 226.0 226.0 226.0 226.0 226.0 226.0 226.0 226.0 226.0 226.0 226.0 226.0 226.0 226.0 226.0 226.0 226.0 226.0 226.0 226.0 226.0 226.0 226.0 226.0 226.0 226.0 226.0 226.0 226.0 226.0 226.0 226.0 226.0 226.0 226.0 226.0 226.0 226.0 226.0 226.0 226.0 226.0 226.0 226.0 226.0 226.0 226.0 226.0 226.0 226.0 226.0 226.0 226.0 226.0 226.0 226.0 226.0 226.0 226.0 226.0 226.0 226.0 226.0 226.0 226.0 226.0 226.0 226.0 226.0 226.0 226.0 226.0 226.0 226.0 226.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 20 375.0 269.5 377.0 847.3 92.5 300.2 146.5 149.0 Dabong L.Bungor 52.4 65.2 60.0 73.4 1 134.1 278.1 278.1 2296.6 2295.9 225.9 225.9 225.0 225.0 225.0 225.0 225.0 225.0 188.0 11.19.0 11.70.0 11.70.0 11.70.0 2253.0 2253.0 2253.0 2253.0 2253.0 2253.0 2253.0 2253.0 2253.0 2253.0 2253.0 2253.0 703.4 95.0 240.5 171.2 228.8 187.9 293.2 293.2 106.1 175.6 162.5 429.0 115.2 255.0 123.0 243.0 193.0 402.0 429.0 106.1 207.7 Bertam 1 118.5 252.2 122.5 92.0 154.0 177.5 181.0 111.5 92.0 92.0 151.2 Gemala 1119.0 2559.0 641.0 381.0 184.0 341.6 136.0 115.0452.5 641.0 115.0 292.1 Arìng 218.0 461.3 232.9 123.0 192.2 138.5 259.0 461.3 123.0 232.1 Chiku 154.0 309.0 127.0 278.0 177.0 134.0 205.2 121.0 149.6 150.0 148.0 132.0 196.0 309.0 121.0 174.1 G.Musang 206-0 112.5 97.0 167.0 206.0 97.0 140.0 Blau 1954 1955 1955 1958 1958 1958 1959 1950 1978 1979 1979 1981 1982 1983 1983 1983 1983 Year 1962 1963 1950 1951 1952 1953 Max. Min. Ave. 1947 1948 1949 

Table II.4.6 Annual Maximum 5-Day Rainfall Depth in the State of Kelantan

II

39

Table II.4.7 Probable Maximum Daily Rainfall Depth (1/2)

| مان هذه جد تأسر شم دين 196 لدة بينة 105 لك عن دين 196 من م | Return            | • ••• ••• ••• ••• ••• ••• ••• ••• ••• | ainfall d | epth (mm) | هم ورون الله مريد بري الله الله الله |
|------------------------------------------------------------|-------------------|---------------------------------------|-----------|-----------|--------------------------------------|
| Station                                                    | Period<br>(years) | 1-day                                 | 2-day     |           | 5-day                                |
| Blau                                                       | 200               | 167                                   | 231       | 287       | 336                                  |
|                                                            | 100               | 156                                   | 216       | 268       | 308                                  |
|                                                            | 50                | 145                                   | 201       | 249       | 279                                  |
|                                                            | 20                | 130                                   | 180       | 223       | 241                                  |
|                                                            | 10                | 119                                   | 165       | 204       | 235                                  |
|                                                            | 5                 | 107                                   | 148       | 184       | 211                                  |
| Gua Musang                                                 | 200               | 207                                   | 271       | 346       | 432                                  |
|                                                            | 100               | 191                                   | 250       | 317       | 395                                  |
|                                                            | 50                | 175                                   | 228       | 287       | 357                                  |
|                                                            | 20                | 154                                   | 200       | 248       | 307                                  |
|                                                            | 10                | 138                                   | 178       | 217       | 268                                  |
|                                                            | 5                 | 121                                   | 155       | 186       | 227                                  |
| Upper Chiku                                                | 200               | 389                                   | 509       | 679       | 805                                  |
|                                                            | 100               | 350                                   | 459       | 609       | 722                                  |
|                                                            | 50                | 311                                   | 409       | 538       | 639                                  |
|                                                            | 20                | 259                                   | 341       | 444       | 528                                  |
|                                                            | 10                | 218                                   | 289       | 371       | 443                                  |
|                                                            | 5                 | 176                                   | 235       | 295       | 354                                  |
| Kg. Aring                                                  | 200               | 515                                   | 781       | 981       | 1,165                                |
|                                                            | 100               | 462                                   | 699       | 876       | 1,039                                |
|                                                            | 50                | 409                                   | 617       | 771       | 912                                  |
|                                                            | 20                | 339                                   | 508       | 630       | 743                                  |
|                                                            | 10                | 284                                   | 423       | 522       | 612                                  |
|                                                            | 5                 | 227                                   | 335       | 408       | 476                                  |
| Gemala                                                     | 200               | 165                                   | 282       | 355       | 409                                  |
|                                                            | 100               | 155                                   | 259       | 324       | 372                                  |
|                                                            | 50                | 144                                   | 235       | 294       | 334                                  |
|                                                            | 20                | 130                                   | 203       | 253       | 284                                  |
|                                                            | 10                | 119                                   | 179       | 221       | 246                                  |
|                                                            | 5                 | 107                                   | 153       | 188       | 206                                  |
| Bertam                                                     | 200               | 279                                   | 445       | 461       | 601                                  |
|                                                            | 100               | 254                                   | 403       | 419       | 544                                  |
|                                                            | 50                | 229                                   | 361       | 377       | 486                                  |
|                                                            | 20                | 196                                   | 305       | 320       | 410                                  |
|                                                            | 10                | 171                                   | 261       | 277       | 350                                  |
|                                                            | 5                 | 144                                   | 216       | 231       | 288                                  |
| Dabong                                                     | 200               | 331                                   | 488       | 627       | 730                                  |
|                                                            | 100               | 300                                   | 441       | 564       | 659                                  |
|                                                            | 50                | 269                                   | 393       | 502       | 587                                  |
|                                                            | 20                | 227                                   | 329       | 418       | 491                                  |
|                                                            | 10                | 195                                   | 280       | 353       | 417                                  |
|                                                            | 5                 | 161                                   | 229       | 286       | 340                                  |

| Station                                                                                                            | Return<br>Period | و هنه دین و بر ا | Rainiali   | depth (mm)   |              |
|--------------------------------------------------------------------------------------------------------------------|------------------|------------------|------------|--------------|--------------|
| DEGLION                                                                                                            | (years)          | 1-day            | 2-day      | 3-day        | 5-day        |
| هو آوهی کاری خلک کاری رکند (کلی خلک کاری ویک کاری دیده خری دری)<br>این این کاری کاری کاری کاری کاری کاری کاری کاری | 200              | 518              | 835        | 946          | 1,071        |
|                                                                                                                    | 100              | 463              | 744        | 844          | 958<br>845   |
| ubok Bungor                                                                                                        | 50<br>20         | 408              | 652<br>530 | 742<br>606   | 694          |
|                                                                                                                    | 10               | 277              | 436        | 501          | 578          |
|                                                                                                                    | 5                | 217              | 338        | 391          | 456          |
| والمراجع وال    | 200              | 483              | 748        | 884          | 979          |
|                                                                                                                    | 100              | 435              | 671        | 792          | 878          |
| (g. Lalok                                                                                                          | 50<br>20         | 387<br>323       | 594<br>490 | 670<br>577   | 776<br>641   |
|                                                                                                                    | 10               | 274              | 410        | 482          | 537          |
|                                                                                                                    | 5                | 223              | 327        | 382          | 428          |
| n yaar inna tina maa inna inna inna ana ana ana ana ana an                                                         | 200              | 537              | 819        | 1,001        | 1,213        |
|                                                                                                                    | 100              | 481              | 733        | 895          | 1,083        |
| Kuala Krai                                                                                                         | 50<br>20         | 425<br>351       | 648<br>533 | 788<br>646   | 952<br>777   |
|                                                                                                                    | 10               | 293              | 445        | 536          | 643          |
|                                                                                                                    | 5                | 233              | 353        | 422          | 502          |
| ین میں میں بنیا کے بیار میں نے میں جس میں جس میں میں ا                                                             | 200              | 516              | 641        | 749          | 876          |
|                                                                                                                    | 100              | 466              | 584        | 685          | 801          |
| ig. Jeli                                                                                                           | 50<br>20         | 416<br>350       | 526<br>450 | 619<br>533   | 725<br>624   |
|                                                                                                                    | 10               | 298              | 391        | 465          | 546          |
| · .                                                                                                                | 5                | 245              | 329        | 395          | 465          |
| . <b>Bir 440 Ch 440 Ch</b> and the <b>Ch Sh and Ch Sh 450 th</b>                                                   | 200              | 577              | 807        | 943          | 1,105        |
|                                                                                                                    | 100              | 518              | 727        | 851          | 994          |
| uala Pertang                                                                                                       | 50<br>20         | 459<br>380       | 647<br>540 | 758<br>634   | 883<br>735   |
|                                                                                                                    | 10               | 319              | 458        | 539          | 620          |
|                                                                                                                    | 5                | 256              | 371        | 439          | 501          |
|                                                                                                                    | 200              | 743              | 1,165      | 1,376        | 1,701        |
| · •                                                                                                                | 100              | 667              | 1,043      | 1,233        | 1,521        |
| lachang                                                                                                            | 20               | 590<br>489       | 922<br>759 | 1,090<br>899 | 1,341        |
|                                                                                                                    | 10               | 410              | 633        | 751          | 914          |
| - · · · · · · · · · · · · · · · · · · ·                                                                            | 5                | 328              | 502        | 597          | 720          |
|                                                                                                                    | 200              | 571              | 908        |              | 1,357        |
|                                                                                                                    | 100              | 516              | 823        | 949          | 1,228        |
| awang                                                                                                              | 50<br>20         | 461<br>388       | 737<br>622 | 851<br>720   | 1,098<br>924 |
|                                                                                                                    | 10               | 331              | 533        | 619          | 790          |
|                                                                                                                    | 5                | 272              | 441        | 514          | 650          |

Table II.4.8 Probable Maximum Daily Rainfall Depth (2/2)

|                                           | ( |                     |         |         |                                                | · .   |       |       |                 |       |          |           |        |       |       |       |       |       |       | •••   |       |       |       |       |       |       |       |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |
|-------------------------------------------|---|---------------------|---------|---------|------------------------------------------------|-------|-------|-------|-----------------|-------|----------|-----------|--------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
|                                           |   | 4.)***<br>*         | •       |         | :                                              |       |       | •     | ÷               |       |          |           | ·      |       | ;     |       | ·     |       |       |       |       |       |       |       |       |       |       |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |
|                                           |   | Accumulated         | Ratio   |         | 0.027                                          | 0.062 | 0.103 | 0.147 | 0.193           | 0.237 | 0.278    | 0.307     | 0.355  | 0.408 | 0.451 | 0.497 | 0.537 | 0.602 | 0.670 | 0.729 | 0.777 | 0.811 | 0.843 | 0.870 | 0.910 | •     | 0.969 | 1.000 | F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 F 1 4 |      |
| Å                                         |   | Ratio A             |         |         | 0.027                                          | 0.035 | 0.041 | 0.045 | 0.046           | 0.044 | 0.041    | 0.030     | 0.047  | 0.054 | 0.043 | 0.046 | 0.041 | 0.064 | 0.068 | 0.060 | 0.047 | 0.034 | 0.032 | 0.027 | 0+0.0 | 0.029 | 0.030 | 0.031 | 1.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      |
| urly Rainfall Records More Than 300mm/day |   | R.Panjang<br>1986   | Nov.29  | Nov. 30 | 5.2                                            | 5.2   | 5.2   |       | . •             | 5.2   | 8.6<br>8 | 12.2      | 12.2   | 12.2  | 20.2  | 27.0  | 30.6  | 34.9  | •     | 19.9  | 19.9  |       |       | 5.5   | •     | 5.5   | 5.5   | 5.5   | 318.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      |
| rds More Th                               |   | Kg . Tandak<br>1986 | Nov.29  | Nov.30  |                                                |       | 9.8   | 19.4  | 19.4            | 17.5  | 16.6     | 16.6      | 27.9   | 31.5  | 20.8  | 20.8  | 12.9  | 10.6  | 10.6  | 10.6  | 4.8   | 4.5   | 1.9   | 1.6   | 12.8  | 15.3  | 15.3  | 5.0   | 319.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ŝ    |
| infall Reco                               |   | B.Nyior<br>1984     | Dec. 22 | Dec.23  | 2.7                                            | 16.7  | 26.5  | 18.3  | 18.2            | 14.1  | 20:0     | 6.4       | 18.9   | 4.1   | 0.5   | 8.0   | 6.2   | 36.7  | 22.2  | 42.4  | 28.0  | 26.7  | 17.8  | 10.6  | 22.3  | 17.0  | 5.9   | 28.7  | 418.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 42.4 |
| Hourly Rai                                |   | Machang<br>1984     | Dec.22  | Dec.23  | 29.9                                           | 29.0  | 27.4  | 29.6  | 27.0            | 21.0  | 21.0     | 4.1       | 1.0    | 6.6   | 13.3  | 10.6  | 13.3  | 31.0  | 32.4  | 30.5  | 23.0  | 19.7  | 18.5  | 12.0  | 12.0  | 12.0  | 12.0  | 9.4   | 446.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 32.4 |
| Table II.4.9                              |   | A.Lanas<br>1984     | Dec.22  | Dec.23  | 0.6                                            | 11.1  | 7.11  | 12.8  | 17.8            | 24.1  | 68       | 11.9      | 22.3   | 37.9  | 19.1  | 13.3  | 7.9   | 7.6   | 15.4  | 12.2  | 14.4  | 4.0   | 18.1  | 21.6  | 22.9  | 4.9   | 14.8  | 11.7  | 355.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 37.9 |
| 13                                        |   | Station<br>Year     | From    | To      | 5<br>8<br>8<br>1<br>8<br>1<br>8<br>1<br>8<br>4 |       |       | • .   |                 |       |          |           | ·      |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       | \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |
|                                           |   |                     | Hour    |         | <br>  <br> <br> <br> <br>                      | 5     | ന     | 4     | <b>ن</b> م<br>ا | y     | 2        | <b>80</b> | б<br>С | 0T    | TT    | 12    | е Г   | 14    | 15    | 9T    | 17    | 18    | 6T    | 20    | 21    | 22    | 23    | 24    | Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Max  |

n in 1945. An thair the phile Tha an thair tha an the phile

| Station                 | Thiessen<br>Area<br>(sq.km) | 1-day<br>P.M.P.<br>(mm) | Area<br>Reduction<br>Factor | P.M.P. | 1-day<br>100-year<br>(mm) |       |
|-------------------------|-----------------------------|-------------------------|-----------------------------|--------|---------------------------|-------|
| Blau                    | 1,740                       | 490                     | 0.38                        | 186    | 156                       | 1.194 |
| Gua Musang              | 704                         | 599                     | 0.41                        | 246    | 191                       | 1.286 |
| Upper Chiku             | 868                         | 1,098                   | 0.39                        | 428    | 350                       | 1.223 |
| Kg. Aring               | 1,698                       | 1,449                   | 0.38                        | 551    | 462                       | 1.192 |
| Gemala                  | 1,969                       | 489                     | 0.38                        | 186    | 155                       | 1.199 |
| Bertam                  | 887                         | 816                     | 0.38                        | 310    | 254                       | 1.221 |
| Dabong                  | 869                         | 883                     | 0.38                        | 336    | 300                       | 1.118 |
| Lubok Bungor            | 840                         | 1,493                   | 0.39                        | 582    | 463                       | 1.258 |
| Kg. Lalok               | 917                         | 1,365                   | 0.38                        | 519    | 435                       | 1.192 |
| Kuala Krai              | 591                         | 1,669                   | 0.43                        | 718    | 481                       | 1.492 |
| Kg. Jeli                | 373                         | 1,462                   | 0.56                        | 819    | 466                       | 1.757 |
| Kuala Pertang           | 74                          | 1,489                   | 0.90                        | 1,340  | 518                       | 2.587 |
| Machang                 | 135                         | 2,067                   | 0.82                        | 1,695  | 667                       | 2.541 |
| Lawang                  | 415                         | 1,619                   | ·                           | ÷      | 516                       | 1.663 |
| Total<br>Weighted Avera | 12,080<br>Ige               | 1,013                   |                             | 423    | 321                       |       |

Table II.4.10 Derivation of Probable Maximum Precipitation

•

Table II.4.11 Basin Mean Probable Maximum Precipitation

| Station      | · ·     | Rainfall | Depth ( | mm)     |         | Total          |
|--------------|---------|----------|---------|---------|---------|----------------|
| Station      | lst day | 2nd day  | 3rd day | 4th day | 5th day | TOUAL          |
| Blau         | 24      | 71       | 186     | 62      | 24      | 367            |
| Gua Musang   | 50      | 86       | 246     | 76      | 50      | 508            |
| Upper Chiku  | 69      | 184      | 428     | 133     | 69      | 883            |
| Kg. Aring    | 96      | 281      | 550     | 211     | 97      | 1,235          |
| Gemala       | 28      | 124      | 185     | 78      | 29      | 444            |
| Bertam       | 76      | 182      | 310     | 77      | 19      | 664            |
| Dabong       | 53      | 158      | 336     | 138     | 53      | 738            |
| Lubok Bungor | 73      | 350      | 582     | 126     | : 73    | 1,204          |
| Kg. Lalok    | 51      | 281      | 519     | 145     | 51      | 1,047          |
| Kuala Krai   | 140     | 376      | 718     | 242     | 140     | 1,616          |
| Kg. Jeli     | 102     | 209      | 819     | 177     | 102     | 1,409          |
| Kuala Pertan | 185     | 541      | 1,340   | 321     | 185     | 2,572          |
| Machang      | 366     | 955      | 1,695   | 483     | 366     | 3 <b>,</b> 865 |
| Lawang       | 231     | 511      | 858     | 231     | 209     | 2,040          |

\*\*\*\*

| · · · · · · ·                  | Water       | Level Gau  | uging Stat | ion      |
|--------------------------------|-------------|------------|------------|----------|
| Description                    | Chegar Atas | Dabong     | Tualang    | G.Bridge |
| River                          | Nenggiri    | Galas      | Lebir      | Kelantan |
| C.A. (sq.km)                   | 3,690       | 7,480      | 2,480      | 12,080   |
| Mean Rainfall (mm)             | 2,250       | 2,550      | 2,750      | 2,700    |
| Mean Annual Runoff             |             | ( 4 )      |            |          |
| Discharge (cms)                | 119         | (*)<br>555 | 113        | 600      |
| Volume (MCM)                   | 3,770       | 17,500     | 3,564      | 18,900   |
| Runoff depth (mm)              | 1,010       | 2,340      | 1,440      | 1,590    |
| Specific Runoff<br>(l/s/sq.km) | 32          | 74         | 46         | 50.      |
| Runoff/Rainfall                | 0.45        | 0.92       | 0.52       | 0.59     |

# Table II.5.1 Mean Annual Runoff

Note : Discharge data at Dabong are not reliable.

| Return            | Basin                                                                                            |                            | Hyetograph       | h'n                   |                                                                                                                 | μ.                                                                                               | Probable Flood    | l Peak Discharge                                                                                 | trge (cms)                              |                                                                                                  |                                                                                            |
|-------------------|--------------------------------------------------------------------------------------------------|----------------------------|------------------|-----------------------|-----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-------------------|--------------------------------------------------------------------------------------------------|-----------------------------------------|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|
| reriod<br>(years) | mean -<br>Rainfall<br>(mm)                                                                       | Type                       | Depth<br>(mm)    | Ratio of<br>Expansion | Nenggiri<br>Damsite                                                                                             | Kemubu<br>Damsite                                                                                | Pergau<br>Damsite | Damsite                                                                                          | Lebir<br>Damsite                        | Kuala<br>Krai                                                                                    | Guillemard<br>Bridge                                                                       |
|                   | :<br>;<br>;<br>;<br>;<br>;<br>;<br>;<br>;<br>;<br>;<br>;<br>;<br>;<br>;<br>;<br>;<br>;<br>;<br>; | 1<br>5<br>5<br>7<br>7<br>8 | )<br>}<br>]<br>] |                       | +<br>8<br>3<br>4<br>1<br>8<br>4<br>1<br>8<br>4<br>1<br>8<br>4<br>1<br>8<br>1<br>8<br>1<br>8<br>1<br>8<br>1<br>8 | -<br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+ |                   | 3<br>7<br>7<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 2<br>2<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | \$<br>{<br>{<br>{<br>{<br>{<br>{<br>{<br>{<br>{<br>{<br>{<br>{}}}}}}}}}<br>{<br>{<br>{}}}} |
|                   | 699                                                                                              | 1983                       | 475.7            | 1.47                  | 4,204                                                                                                           | 5,597                                                                                            | 3,462             | 9,451                                                                                            | 6,231                                   | 18,841                                                                                           | 18,33                                                                                      |
| 00T               | •                                                                                                | 1984                       | 300.6            |                       | 5,527                                                                                                           | 5,255                                                                                            | 2,961             | 8,559                                                                                            | 8,052                                   | 19,669                                                                                           | 18,373                                                                                     |
|                   | 695                                                                                              | 1986                       | 289.7            | •                     | 3,432                                                                                                           | 5,205                                                                                            | 3,084             | 8,626                                                                                            | 7,039                                   | 18,806                                                                                           | 18,382                                                                                     |
|                   | 633                                                                                              | 1983                       | 475.7            | 1.33                  | 3.482                                                                                                           | 4,943                                                                                            | 3,145             | 8,431                                                                                            | 5,561                                   | 16,831                                                                                           | 16,383                                                                                     |
| .50               |                                                                                                  | 1984                       | 300.6            |                       | 4,668                                                                                                           | 4,624                                                                                            | 2,698             | 7,648                                                                                            | 7,102                                   | 17,490                                                                                           | 16,369                                                                                     |
|                   | 626                                                                                              | 1986                       | 289.7            | 2.16                  | 2,959                                                                                                           | 4,559                                                                                            | 2,837             | 7,682                                                                                            | 6,201                                   | 16,696                                                                                           | 16,314                                                                                     |
|                   | 576                                                                                              | 1983                       | 475.7            | 1.21                  | 2,901                                                                                                           | 4.352                                                                                            | 2.907             | 7.557                                                                                            | 4,997                                   | 15,110                                                                                           | 14,714                                                                                     |
| 30                |                                                                                                  | 1984                       | 300.6            |                       | 3.957                                                                                                           | ÷ •                                                                                              | 2,519             | 6,911                                                                                            | 6,342                                   | 15,758                                                                                           | 14,768                                                                                     |
| : -               |                                                                                                  | 1986                       | 289.7            |                       | 2,556                                                                                                           | 4,078                                                                                            | 2,666             | 6,995                                                                                            | 5,539                                   | 15,092                                                                                           | 14,749                                                                                     |
|                   | 533                                                                                              | 1983                       | 475.7            | 1.12                  | 2,486                                                                                                           | 3,939                                                                                            | 2,715             | 6,918                                                                                            | 4,559                                   | 13,826                                                                                           | 13,468                                                                                     |
| 20                | •                                                                                                | 1984                       | 300.6            |                       | 3,248                                                                                                           | 3,796                                                                                            | 2,392             | 6,402                                                                                            | 5,604                                   | 14,318                                                                                           | 13,437                                                                                     |
|                   |                                                                                                  | 1986                       | 289.7            | 1.81                  | 2,212                                                                                                           | 3,716                                                                                            | 2,503             | 6,444                                                                                            | 4,983                                   | 13,777                                                                                           | L3,466                                                                                     |
|                   | ı                                                                                                | 1983                       | 475.7            | ł                     |                                                                                                                 | ł                                                                                                | 1                 | ł                                                                                                | 1                                       | ł                                                                                                | 1                                                                                          |
| 10                | 395                                                                                              | 1984                       | 300.6            |                       | 2,327                                                                                                           | 3,152                                                                                            | 2,159             | 5,497                                                                                            | 4,626                                   | 12,095                                                                                           | 11,422                                                                                     |
| ·                 | 452                                                                                              | 1986                       | 289.7            | 1.56                  | 1,584                                                                                                           | 3,102                                                                                            | 2,248             | 5,542                                                                                            | 4,104                                   | 11,685                                                                                           | 11,429                                                                                     |
|                   | ı                                                                                                | 1983                       | 475.7            |                       | 1                                                                                                               | T                                                                                                |                   | 1                                                                                                | <b>I</b>                                | ł                                                                                                | 1                                                                                          |
| Ŋ                 | 316                                                                                              | 1984                       | 300.6            | 1-05                  | 1,204                                                                                                           | 2,409                                                                                            | 1,791             | 4,383                                                                                            | 3,259                                   | 9,184                                                                                            | 8,665                                                                                      |
|                   |                                                                                                  | 1                          | -                |                       |                                                                                                                 | 0 V C C                                                                                          |                   |                                                                                                  |                                         | ()<br>()                                                                                         | 004                                                                                        |

Note : The above values are calculated on the basis of the return period at Guillemard Bridge.

Table II.5.3 Five (5) Days Rainfall Depth during Annual Maximum Peak Discharge

|         |           |              |           |          |              |           |               |                 |        |            |          |            | :<br>;<br>;<br>; | <br> <br> <br> |      |
|---------|-----------|--------------|-----------|----------|--------------|-----------|---------------|-----------------|--------|------------|----------|------------|------------------|----------------|------|
| •       | Å.        | 4            | ÷         | m.       | ò            | ŗ.        | •             | ŝ               | 4      | <b>.</b>   | 15.      | <b>*</b> * | 'n               | 7.             | Ave. |
| 82.1    | 44.5      | 90.7         | 53.0      | 97.0     | 58.5         | 72.2      |               | 40.2            | 10.1   | 12.5       | 115.0    |            | 21.6             | 14.5           | Min. |
| 510.    | o.        | ω.           | ~         | ÷.       | 0            | 2         | 10 <b>a</b> 1 | . <del></del> . | 5      |            | 41.      | 1é -       |                  | 0              | Max. |
|         | 1 555 574 | 567.0*       | +0.024    |          | 656.0*       | 558.5*    | 77            | .68<br>         | 402.0* | 154.0*     | 341.1*   | 192        | 109.             |                | 8    |
| 114     | 4         | 237.0*       | 53.0*     | 04       | 85.0*        | 88.0*     | 269 5*        | 157.0*          | 36.5*  | 8          | 209.0*   | 2.5*       | 134 0*           | 82.5*          | 1985 |
| 300.    | 00        |              | H         | 00.      | ~            | 98.<br>•  | 49.0          | 73.             |        | 5          | н.       | 232.       | 137.             | ω.             | 38   |
| 475.    | 567       | à.           |           | ω        | 0.06         | 701.0*    | 89<br>99      | 648.0*          |        | 254.0*     | -        | 461.       | 278.             | 6              | 86   |
| 237.    | 362       | ŝ.           | 477.0*    | 2        | ά            | 08        | 37.           | ບໍ່             | . e.   | ŵ          | ດ້       | 218.       | 138.             | ŝ.             | 86   |
|         | 206       |              | 225.0*    |          | 60           | +O.16     | N.            | <u>.</u>        | 62.6*  | ~          | <u>.</u> | 71.        | 34.              |                | 98   |
| 105.    | 159       | ń.           | 176.5*    |          | n<br>N       | 9<br>2    | 0             | <u>.</u>        |        | 0          | ഹ്       | 80.        | 91.              | 6              | 98   |
| 364.    | 261       | ×.           |           |          | 42           | 60        | ດົ            | <u>.</u>        |        | <b>o</b> . | ò        | 186.       | 309.             | <u>ю</u>       | 6    |
| 170.    |           | 483.9*       | 287.0*    | 20       | 298.5*       | 144.0*    | 339.0*        |                 |        | ÷          | m.       | .49L       | 49.              | a'             | 26   |
| 82.     | 131       | ~            |           |          | 5            | é<br>t    |               | 4               |        | г.         | ഹ        | 58         | 35               |                | 5    |
| 93.     | 115       | ~            |           |          | 8            | d<br>d    | Ċ.            | <u>.</u>        |        | 30.        | in.      | 60         | 42.              | ഗ്             | 6    |
| - 49T   | 432       | ٠ <u>م</u> ٠ |           |          | 40           | ς<br>Ω    | <u>,</u>      | <b>m</b>        |        | <u>о</u>   | ഹ്       | 80.        | 118.             | ഹ്             | 97   |
| 172.    | 385       |              |           |          | 6            | 8         |               | 4               |        | ~          | <i></i>  | 152.       | 44               | ~              | 5    |
| 399.    | 692       |              |           |          | 71           | 74        | ~             | m               |        | 88.        | <u>.</u> | 323.       | 253              | 29.            | 6    |
| 346.    | 729       | _            |           |          | 35           | 00        | <u>~</u>      |                 |        | 36.        | -i       | 277.       | 206.             | -              | 97   |
| 149.    | 00<br>0   | ~            |           |          | 30           | 5         | . ÷           |                 |        | 49.        | 5        | 69         | 86.              | i m            | 57   |
| 224.    | 258       | <u> </u>     |           |          | 80           | ŝ         | á             | ~               |        | ŝ          | <b></b>  | 164.       | 204.             | <u>_</u>       | 5    |
| .197.   | 272       |              |           |          | 5            | ω<br>φ    | -             | ~               |        | 29.        | m        | 140.       | 120.             | ~              | 96   |
| 102.    | 139       | *            |           |          |              | 72.2      |               |                 |        | 94.        | ~        | 26.        | 56.              | ~              | 96   |
| 280.    | 331       |              |           |          | 68.          | 39        |               |                 |        | 40.        | ~        | 263.       | 190.             |                | 96   |
| 510.    | 724       |              |           |          | m.           | 31.       | ·             |                 |        | 81.        | ~        | 402.       | 247.             | 27.            | 96   |
| 238.    | 476       | . *          |           |          | ູ່           | ŝ         | ~             | ~               |        | 42.        | .+       | 261.       | 21.              | m              | 96   |
| 105.    | 85        |              |           |          | ~            | 91.2      |               | <u></u>         |        | +          | ~        | 38.        | 71.              | ~              | 96   |
| 148.1   | -         | e.           | 201.9*    |          | <u> </u>     | 78.       |               |                 | 124.6  | 12.        | <u></u>  | 94         | 98.              | m.             | 96   |
|         | 217.      |              |           |          | г.           | 07.       |               | <u> </u>        |        | 19.        | å        | 113        | 107.             |                | 96   |
|         |           | 9.           |           |          | 143.6        | 145.9     | 1             |                 |        | ÷.         | ~        | 73.        | 88.              | .+             | 96   |
|         | 2         | <u>.</u>     |           | 236.8    | 221.7        | -10<br>-1 | 1             | 193.5           |        | 21.        | 276.9    | .911       | 110.             | <b>…</b>       | 96   |
| Average | Lawang    | achang       | ertang Ma | g.Jeli P | K.Krai K<br> | Lalok     | Bungor        | Dabong L        | Bertam | Gemala     | Aring    | Chiku      | G.Musang         | Blau           | Year |

II - 47

Remarks : Mark '\*' means recorded rainfall data.

|                                       |                                                                                                                           | Sto                                                                                              | Storage Dam                     |                                                                                                       |                                       |
|---------------------------------------|---------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|---------------------------------|-------------------------------------------------------------------------------------------------------|---------------------------------------|
| Criteria<br>                          | Nenggiri                                                                                                                  | Kemubu                                                                                           | Lower Pergau                    | Dabong                                                                                                | Lebir                                 |
| Catchment Area ( sq.km )              | 3,690                                                                                                                     | 5,630                                                                                            | 1,280                           | 7,480                                                                                                 | 2,480                                 |
| <pre>(1) Recorded Largest Flood</pre> | 5<br>1<br>3<br>3<br>8<br>4<br>8<br>4<br>1<br>8<br>1<br>8<br>1<br>8<br>1<br>8<br>1<br>8<br>1<br>1<br>8<br>1<br>1<br>1<br>1 | a<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | 5 2 8 3 2 4 5 4 5 4 5 5 8 5 3 4 | L<br>F<br>J<br>Z<br>Z<br>Z<br>Z<br>Z<br>Z<br>Z<br>Z<br>Z<br>Z<br>Z<br>Z<br>Z<br>Z<br>Z<br>Z<br>Z<br>Z | · · · · · · · · · · · · · · · · · · · |
| Simulated ( 1967 Flood )              | 4,317                                                                                                                     | 4,471                                                                                            | 2,653                           | 7,422                                                                                                 | 6,734                                 |
| - Recorded                            | 2,177                                                                                                                     | 1                                                                                                | ł                               | 6,200                                                                                                 | 4,728                                 |
| 200-year Probable Flood               |                                                                                                                           |                                                                                                  |                                 |                                                                                                       |                                       |
| 1983 type                             | 7,200                                                                                                                     | 7,237                                                                                            | 4,264                           | 10,284                                                                                                | 5,849                                 |
| 1984 type                             | 10,820                                                                                                                    | 9,536                                                                                            | 4,483                           | 12,588                                                                                                | 10,380                                |
| <b>1986 type</b>                      | 5,954                                                                                                                     | 7,914                                                                                            | 3,814                           | 10,152                                                                                                | 8,256                                 |
| Creager's coefficient (C=55)          | 15,500                                                                                                                    | 15,000                                                                                           | 0,900                           | 16,600                                                                                                | 12,400                                |

Annual Maximum Rainfall Depth at Kota Bharu

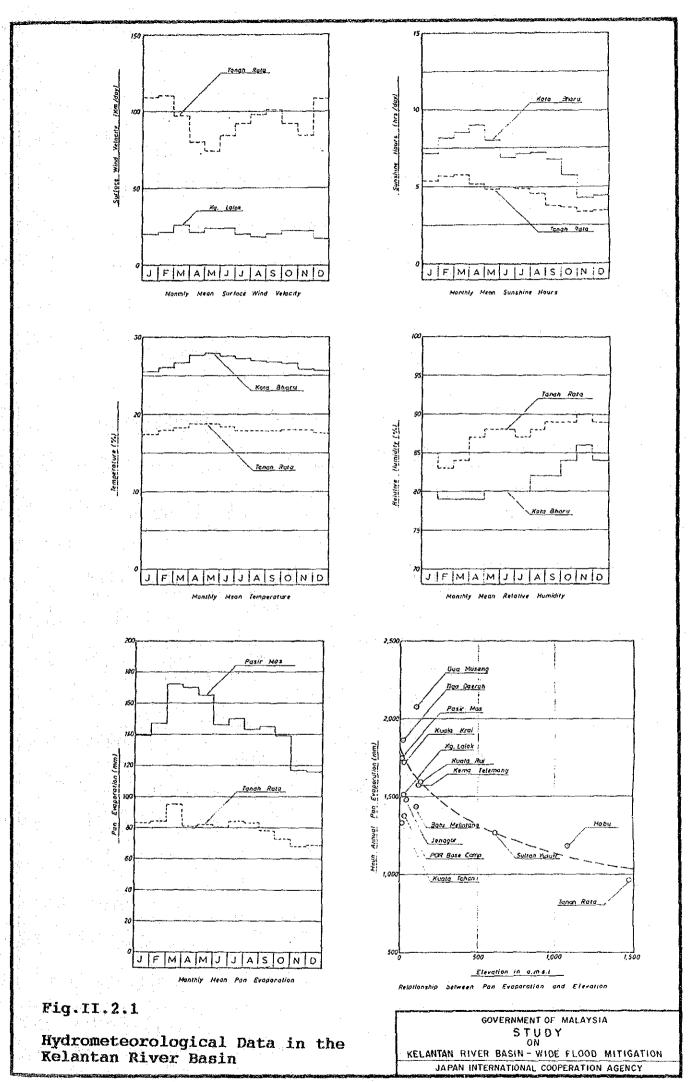
Table II.5.5

(Unit:mm)

|         |       | -     |         |         |         |
|---------|-------|-------|---------|---------|---------|
| Year    | 1-day | 2-day | 3-day   | 5-day   | 7-day   |
| 1956    | 195.6 | 356.9 | 407.7   | 519.2   | 700.8   |
| 1957    | 109.5 | 163.8 | 236.0   | 365.5   | 386.8   |
| 1958    | 153.7 | 263.9 | 360.7   | 525.7   | 607.5   |
| 1959    | 263.4 | 469.6 | 675.3   | 837.1   | 924.3   |
| 1960    | 195.6 | 312.4 | 356.1   | 443.9   | 503.3   |
| 1961    | 204.5 | 255.3 | 278.2   | 333.4   | 466.9   |
| 1962    | 148.6 | 231.2 | 325.4   | 386.7   | 419.8   |
| 1963    | 115.3 | 140.2 | 149.1   | 224.3   | 283.8   |
| 1964    | 175.3 | 238.8 | 242.6   | 242.6   | 242.9   |
| 1965    | 310.4 | 414.5 | 550.1   | 743.4   | 907.7   |
| 1966    | 167.6 | 292.6 | 330.1   | 371.5   | 391.6   |
| 1967    | 585.0 | 984.3 | 1,238.6 | 1,384.6 | 1,397.8 |
| 1968    | 160.5 | 268.2 | 283.9   | 375.3   | 453.1   |
| 1969    | 326.1 | 559.0 | 594.8   | 607.8   | 698.2   |
| 1970    | 228.6 | 268.7 | 279.9   | 288.5   | 309.3   |
| 1971    | 187.7 | 300.5 | 313.5   | 393.7   | 460.0   |
| 1972    | 132.3 | 177.5 | 242.5   | 296.6   | 332.4   |
| 1973    | 302.3 | 431.6 | 522.3   | 658.9   | 715.6   |
| 1974    | 235.5 | 287.5 | 332.5   | 380.5   | 414.5   |
| 1975    | 194.0 | 269.5 | 329.5   | 386.5   | 404.0   |
| 1976    | 351.0 | 470.0 | 535.0   | 629.0   | 687.5   |
| 1977    | 176.5 | 261.5 | 290.5   | 378.5   | 388.0   |
| 1978    |       |       |         | · · ·   |         |
| 1979    | 230.0 | 380.0 | 446.0   | 504.5   | 671.0   |
| 1980    |       |       |         |         |         |
| 1981    | 431.4 | 787.3 | 1,042.5 | 1,122.5 | 1,178.5 |
| 1982    | 162.5 | 253.5 | 257.5   | 265.5   | 341.5   |
| 1983    | 212.8 | 393.5 | 535.2   | 722.2   | 732.5   |
| 1984    | 228.0 | 290.0 | 402.0   | 438.5   | 450.0   |
| 1985    | 1     |       | · .     |         |         |
| 1986    | 555.0 | 852.0 | 1,235.5 | 1,463.0 | 1,614.5 |
| Average | 240.7 | 370.5 | 456.9   | 546.1   | 610.1   |
| Maximum | 585.0 | 984.3 | 1,238.6 | 1,463.0 | 1,614.5 |
| Minimum | 109.5 | 140.2 | 149.1   | 224.3   | 242.9   |
| Minimum | 109.5 | 140.2 | 149.1   | 224.3   | 242.9   |

| 17    |                    | Guillema           | ard Bridge                   | Highest Wate                          | er Level                                       |
|-------|--------------------|--------------------|------------------------------|---------------------------------------|------------------------------------------------|
| lear  | Peak               | Discharge<br>(cms) | Exceed. Pro-<br>Bability (%) | Kota Bharu<br>(El:m)                  | Pasir Mar<br>(El:m)                            |
| 1941  |                    | 2,030              | 83.0                         |                                       | که هند میرد دیک کمل است کری همه خبر میرد :<br> |
| 1942  |                    | 11,480             | 10.6                         |                                       |                                                |
| 1943  |                    | 4,630              | 46.8                         |                                       |                                                |
| 1944  |                    | 5,230              | 44.7                         |                                       |                                                |
| 1945  |                    | 12,850             | 6.4                          |                                       |                                                |
| 1946  |                    | 3,970              | 55.3                         |                                       |                                                |
| 1947  |                    | 13,580             | 4.3                          | 5.78                                  | 11.58                                          |
| 1948  |                    | 3,420              | 63.8                         | - "                                   |                                                |
| 1949  | · · ·              | 7,050              | 29.8                         | :                                     |                                                |
| 1950  |                    | 8,090              | 23.4                         |                                       |                                                |
| 1951  |                    | 2,600              | 76.6                         |                                       |                                                |
| 1952  |                    | 1,970              | 87.2                         | i.                                    |                                                |
| 1953  | ,                  | 4,060              | 53.2                         |                                       |                                                |
| 1954  | ۰.                 | 4,550              | 48.9                         | 1.<br>1. 1.                           |                                                |
| 1955  |                    | 2,310              | 80.9                         |                                       |                                                |
| 1956  |                    | 3,580              | 59.6                         |                                       |                                                |
| 1957  |                    | 6,050              | 38.3                         | 4.87                                  | 9.14                                           |
|       |                    |                    | 97.9                         | 4.01                                  | 2.14                                           |
| 1958  |                    | 1,500              |                              | · · · · · · · · · · · · · · · · · · · | <b>T</b> 01                                    |
| 1959  |                    | 3,440              | 61.7                         | 4.41                                  | 7.01                                           |
| 1960  | •                  | 3,610              | 57.5                         |                                       | C C Q                                          |
| 1961  |                    | 2,700              | 72.3                         |                                       | 6.68                                           |
| 1962  |                    | 3,410              | 66.0                         | 4.41                                  | 6.89                                           |
| 1963  |                    | 2,790              | 70.2                         | ~ ~ ~ ~                               | 6.19                                           |
| 1964  |                    | 1,610              | 95.7                         | 2.68                                  | 4.71                                           |
| 1965  |                    | 6,170              | 36.2                         | 5.27                                  | 8.47                                           |
| 1966  |                    | 16,000             | 2.1                          | 6.21                                  | 10.18                                          |
| 1967  |                    | 8,280              | 21.3                         | 5.60                                  | 9.17                                           |
| 1968  |                    | 1,700              | 93.6                         | 2.98                                  | 5.18                                           |
| 1969  |                    | 6,650              | 34.0                         | 5.41                                  | 8.73                                           |
| L970  | · ·                | 8,800              | 19.2                         | 5.72                                  | 9.42                                           |
| 1971  |                    | 5,550              | 40.4                         | 5.18                                  | 8.34                                           |
| 1972  | ÷                  | 10,260             | 17.0                         | 5.94                                  | 9.83                                           |
| 1973  |                    | 11,130             | 12.8                         | 6.03                                  | 10.06                                          |
| 1974  |                    | 4,490              | 51.1                         | 4,99                                  | 8.14                                           |
| 1975  |                    | 5,247              | 42.6                         | 5.27                                  | 8.32                                           |
| 1976  | · .                | 2,610              | 74.5                         | 3.81                                  | 6.33                                           |
| 1977  |                    | 2,525              | 78.7                         | 3.67                                  | 6.52                                           |
| 1978  | ан.<br>1914 - Алар | 3,291              | 68.1                         | 4.66                                  | 7.42                                           |
| 979   |                    | 10,400             | 14.9                         | 6.24                                  | 11.38                                          |
| 1980  |                    | 1.711              | 91.5                         |                                       | 5.67                                           |
| 1981  |                    | 2,028              | 85.1                         | 3.88                                  | 6.39                                           |
| 1982  |                    | 7,172              | 27.7                         | 5.80                                  | 9.80                                           |
| 1983  |                    | 12,007             |                              | 6.28                                  | 10.60                                          |
| 1984  |                    | 7,744              | 25.5                         | 5.97                                  | 9.89                                           |
| 1985  |                    | 1,722              | 89.4                         | 5.51                                  |                                                |
| 1986  |                    | 6,901              | 31.9                         | 5.70                                  | 5.70                                           |
| - 200 |                    | 0,301              | 27+2                         | 5.70                                  | 9.60                                           |

# Table II.5.6 Inundation Depth in the Urban Areas


II - 50

4

. . . .

.

÷



(El:m) 0.735 0.691 ----- HWL 1/

0.259 MSL at Tumpat 0.000 MSL established by L&S 2/ -0.062 LWL 3/ -0.275 Datum level at Tumpat

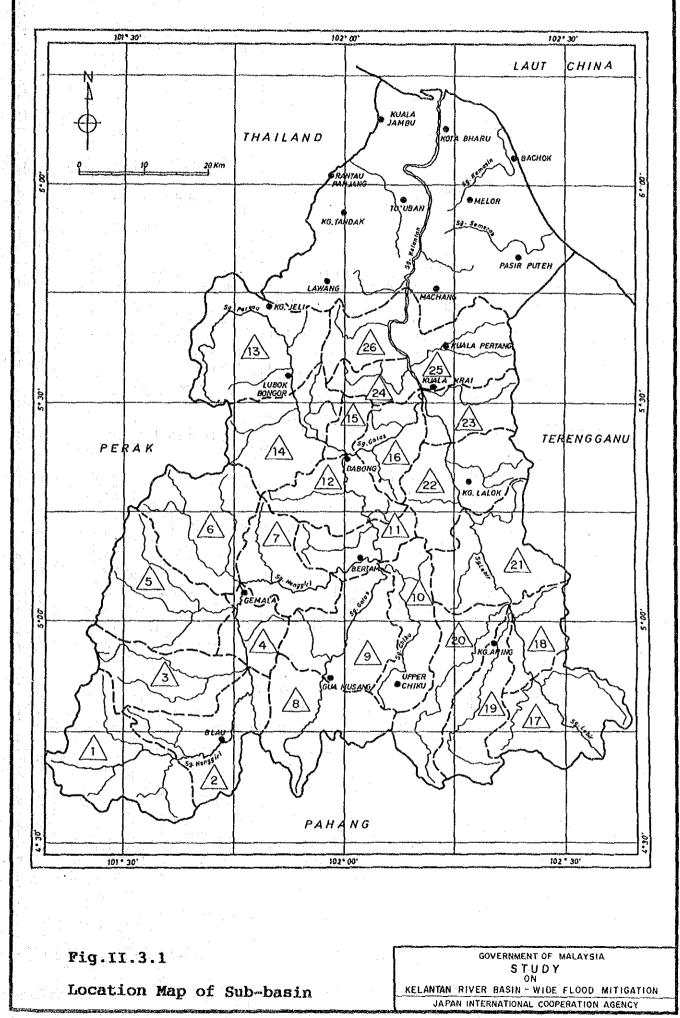
Note :

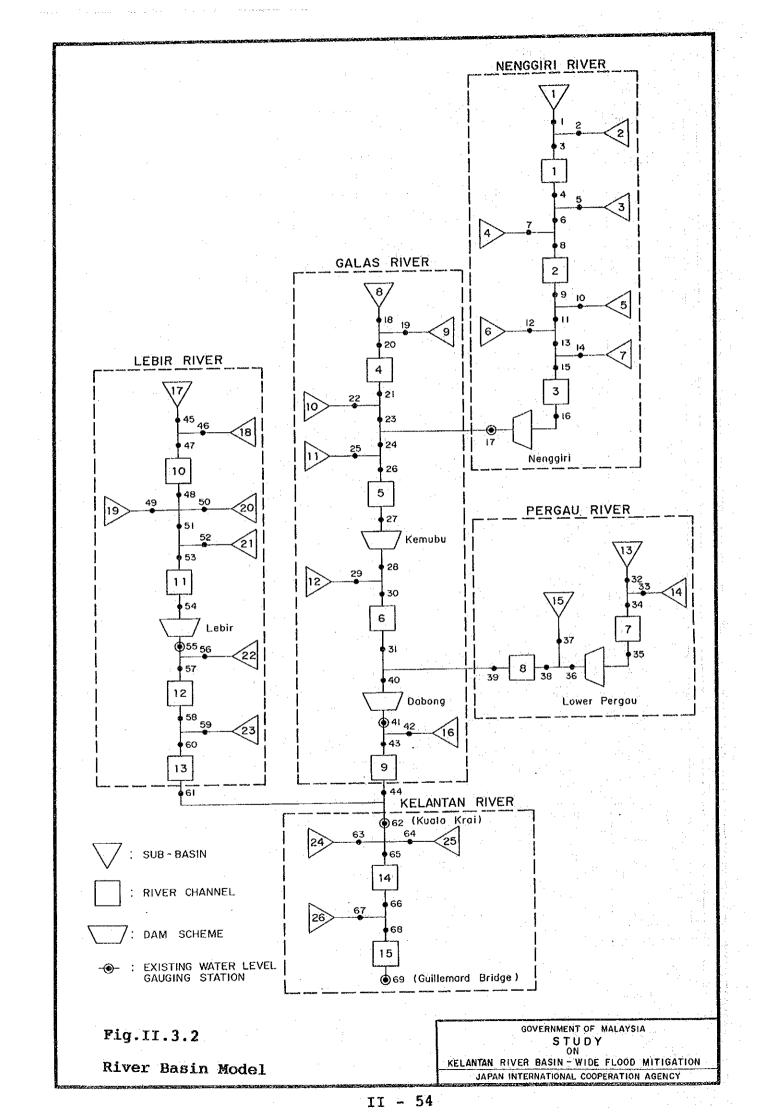
1/

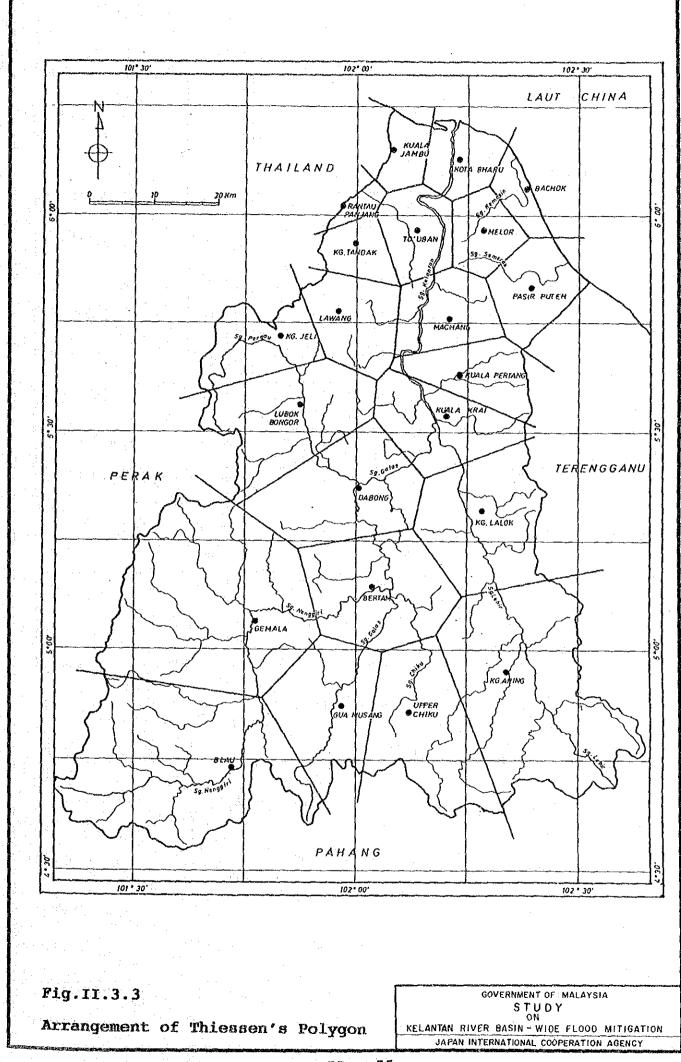
HWL is determined at the average of Highest Sea Level at the date of new moon throughout the year of 1988.

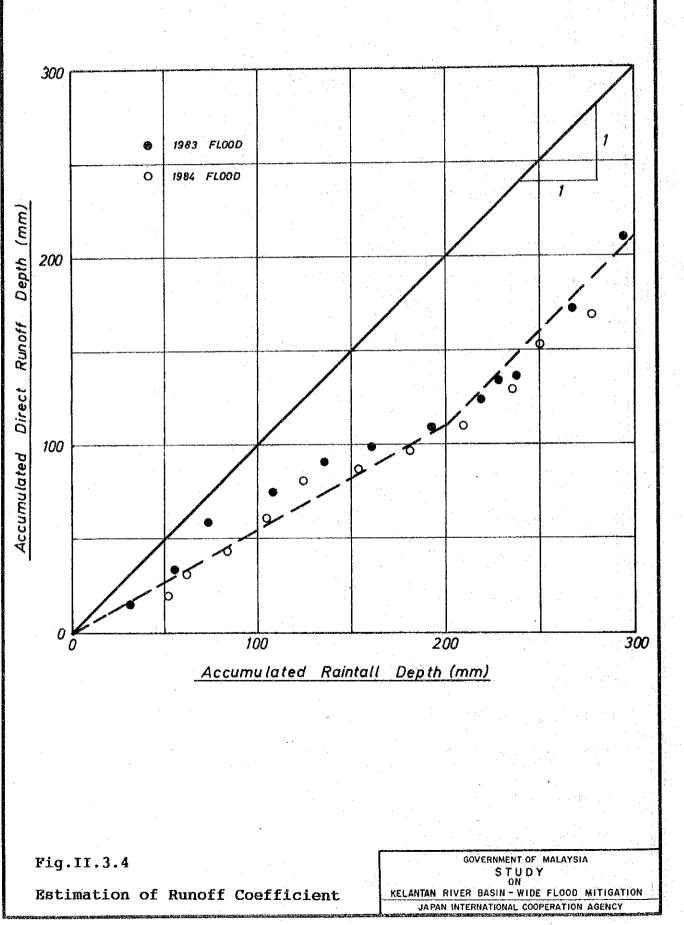
2/ MSL of the above is derived from the MSL at Tumpat established by DMS subtracting the difference between MSL by L&S and MSL by DSM at Kuala Terengganu.

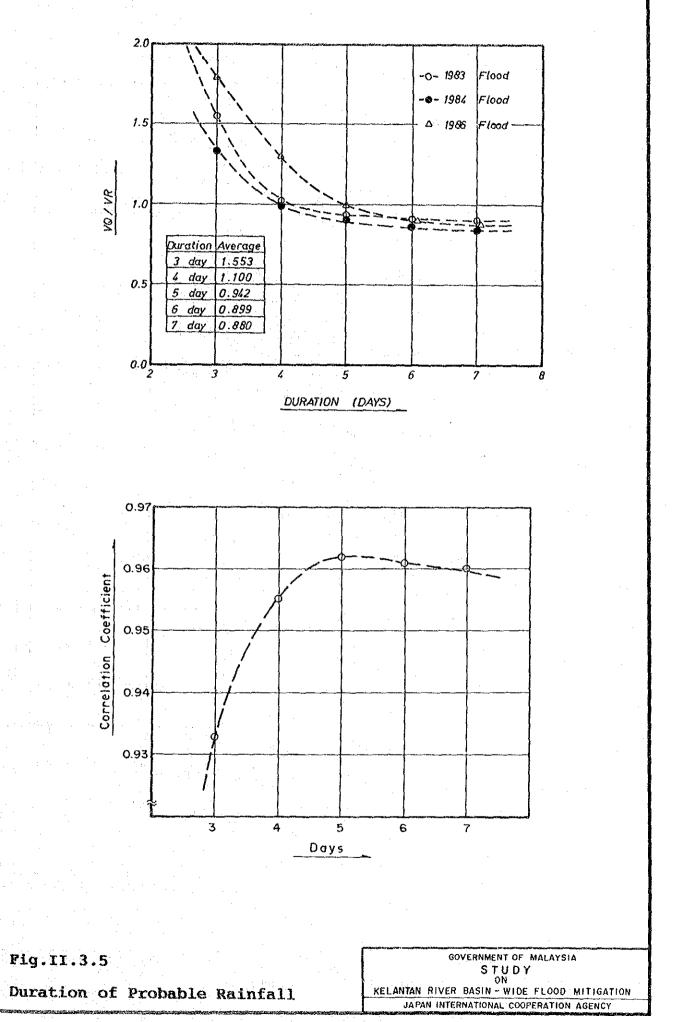
3/ LWL is determined at the average of Lowest Sea Level at the date of new moon throughout the year of 1988.


Remarks L&S : Land and Survey Dept. DSM : Dept. of Survey and Mapping


Fig.II.2.2


Tidal Range at Tumpat


STUDY ON KELANTAN RIVER BASIN - WIDE FLOOD MITIGATION JAPAN INTERNATIONAL COOPERATION AGENCY


GOVERNMENT OF MALAYSIA



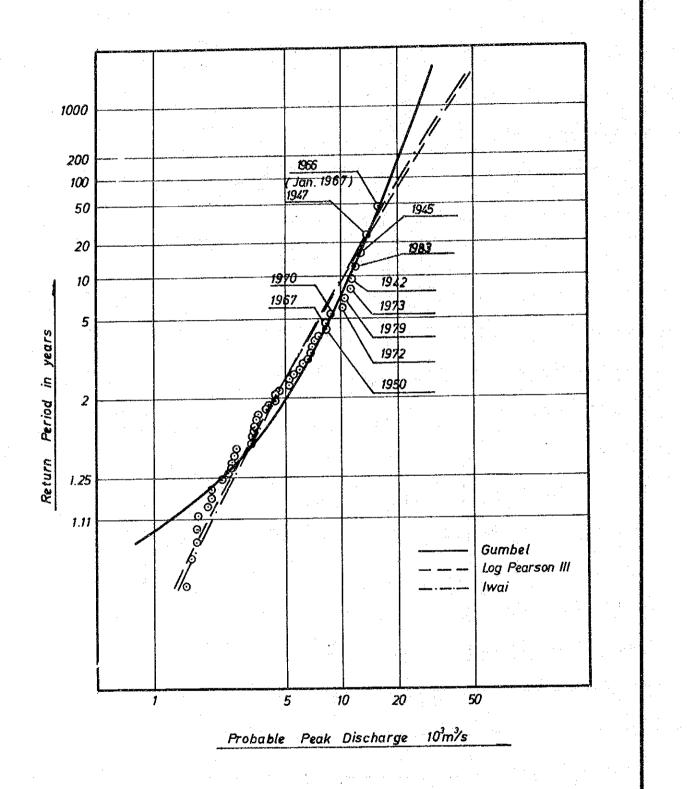
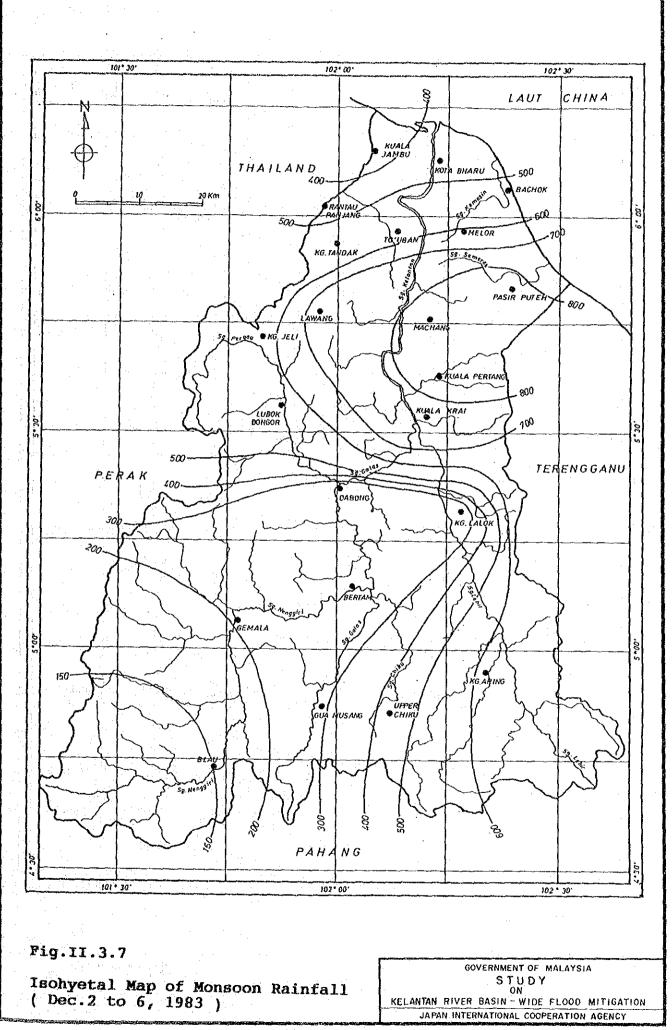
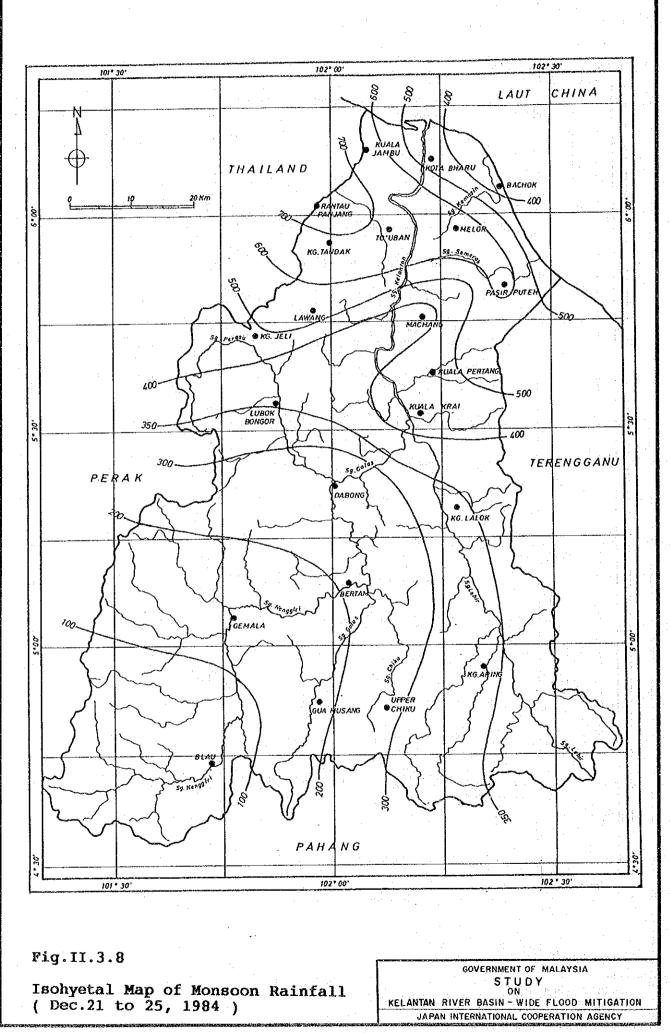
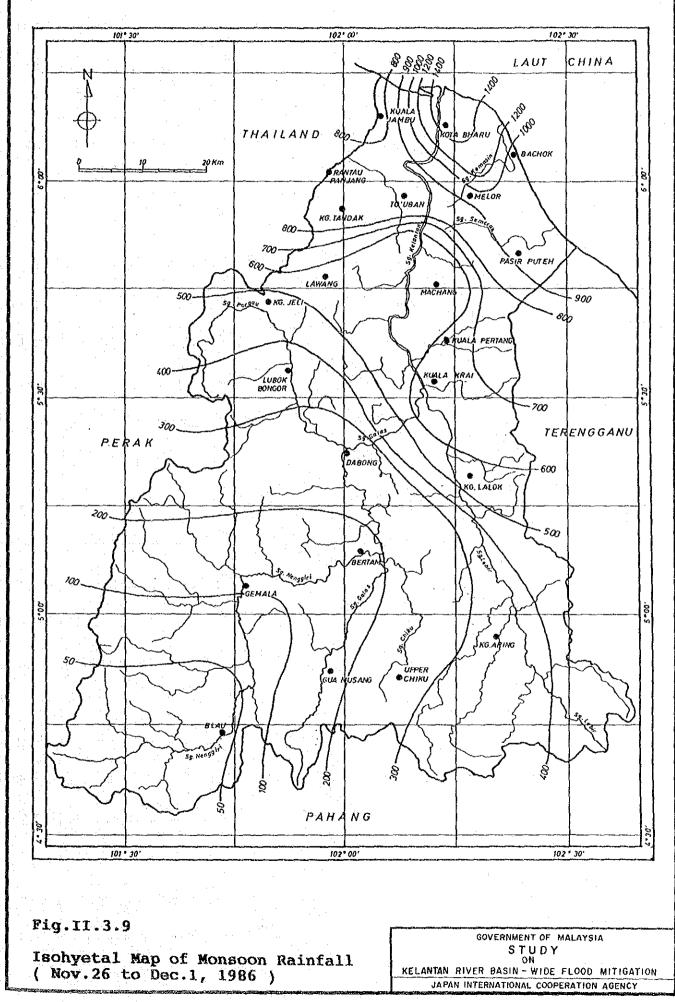


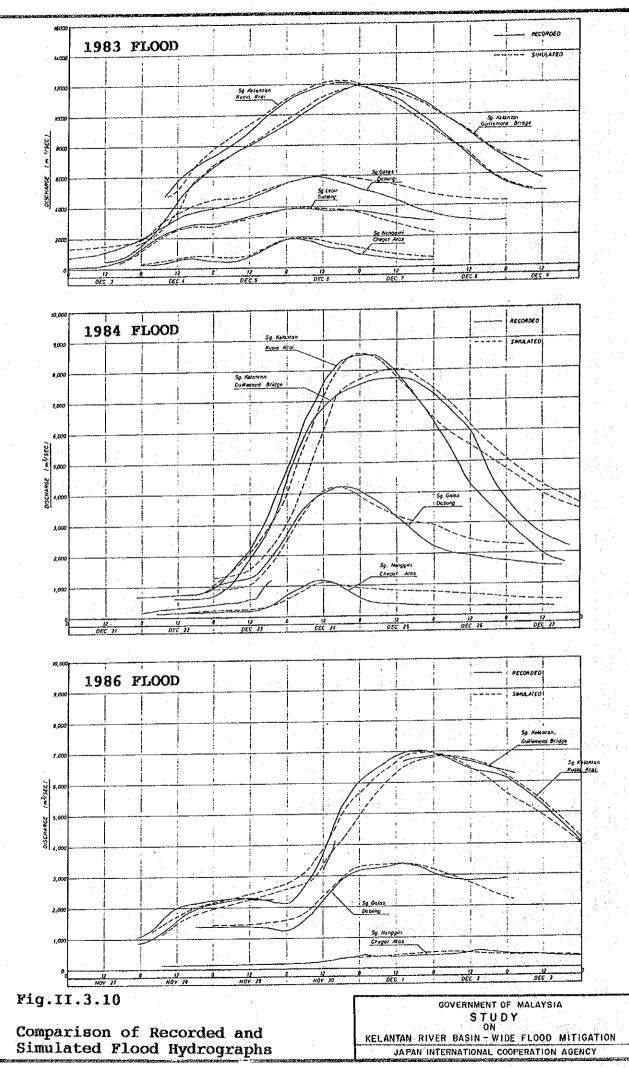


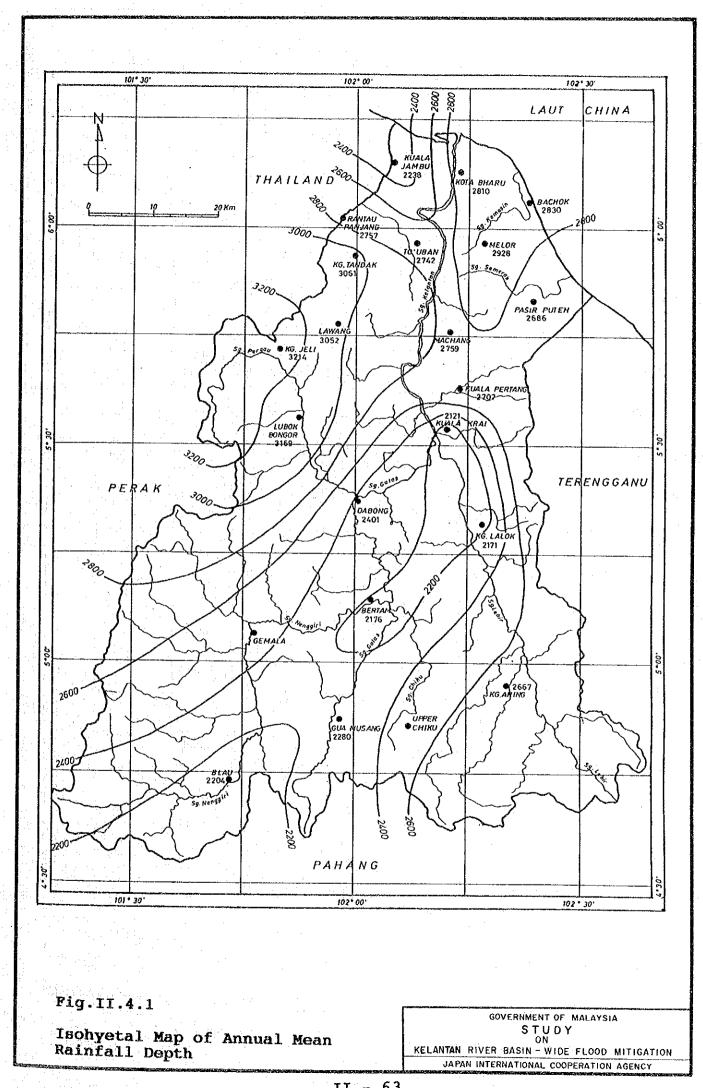


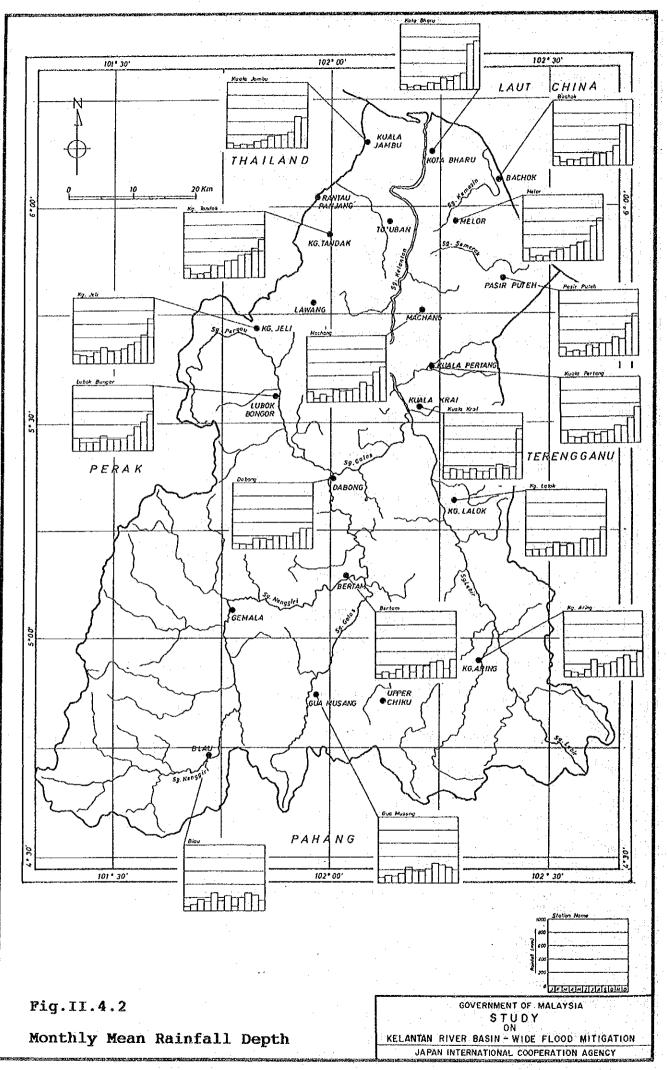


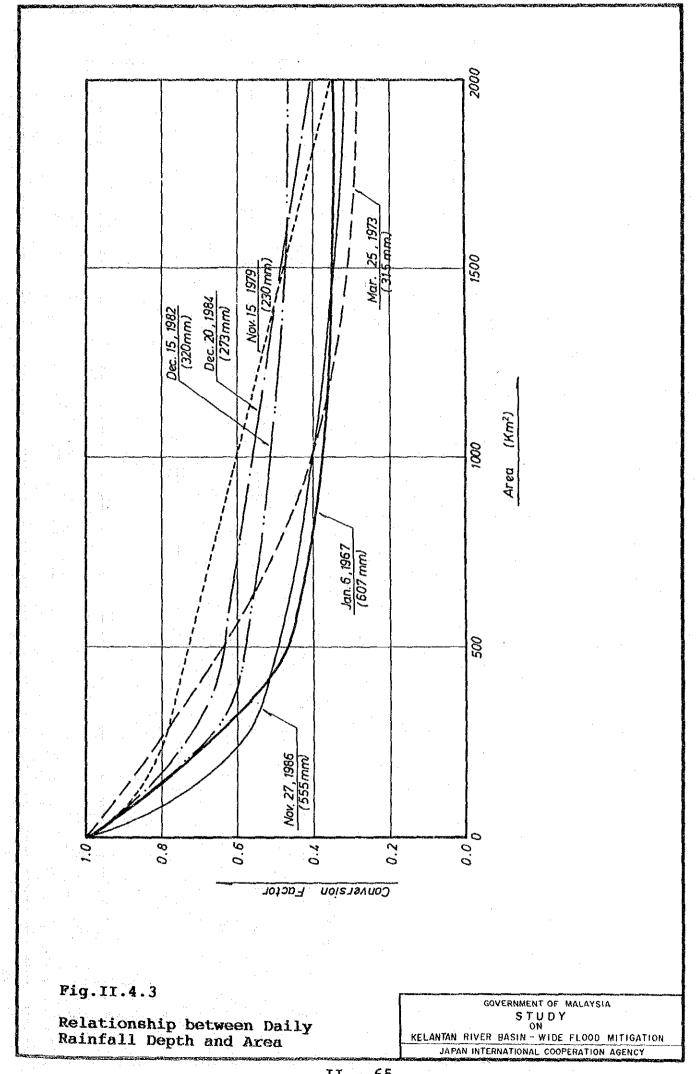
II - 57

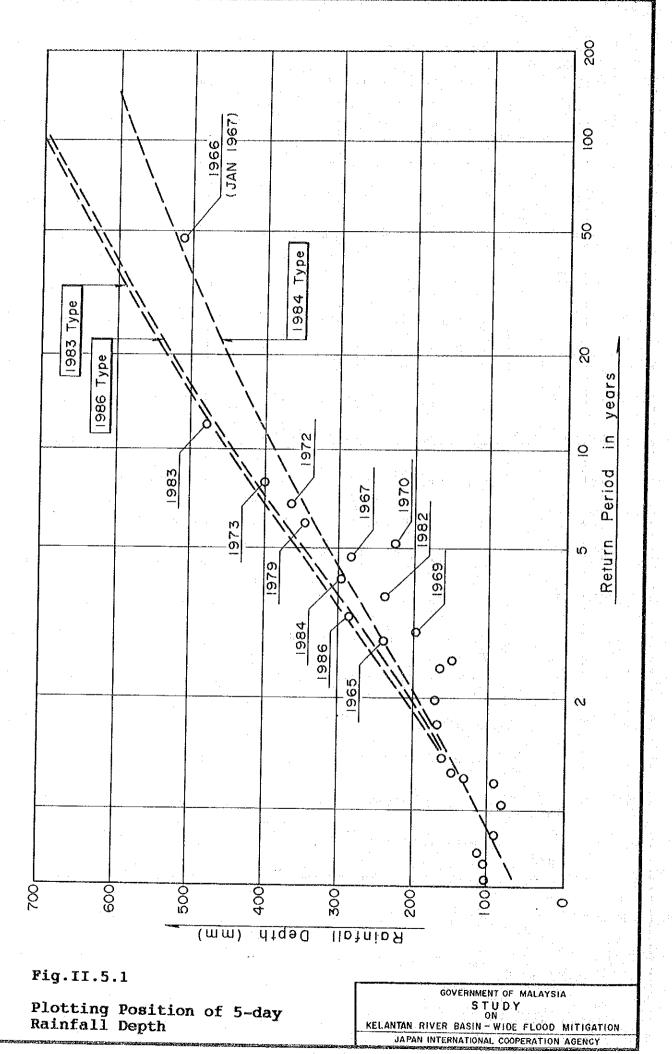





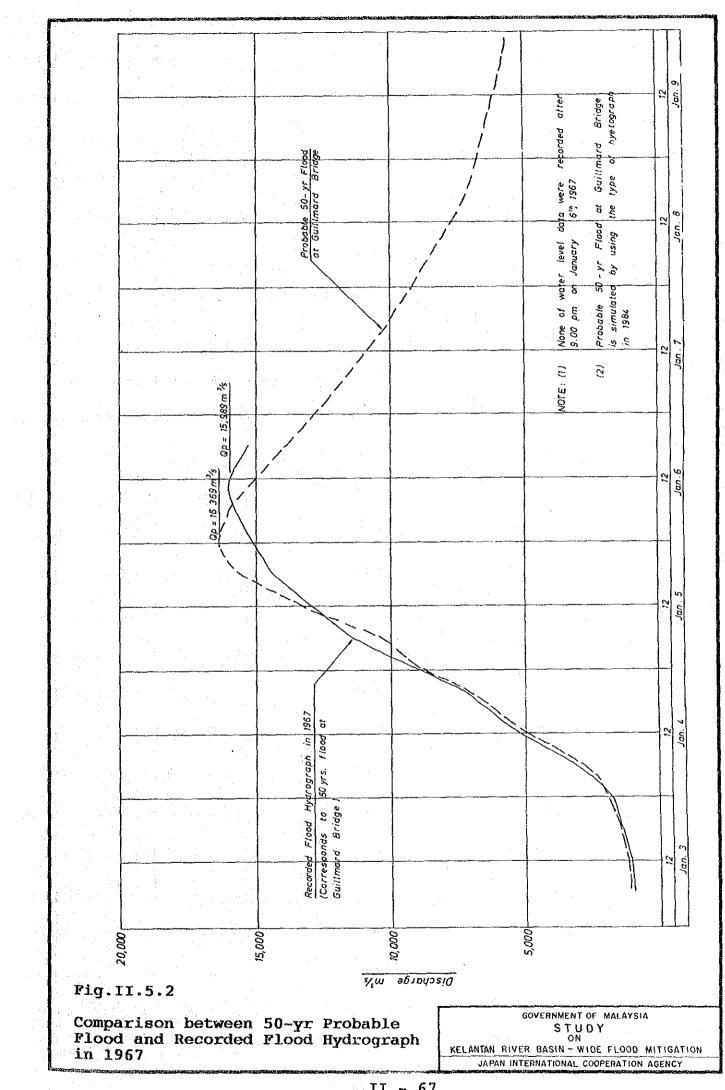


Fig.11.3.6

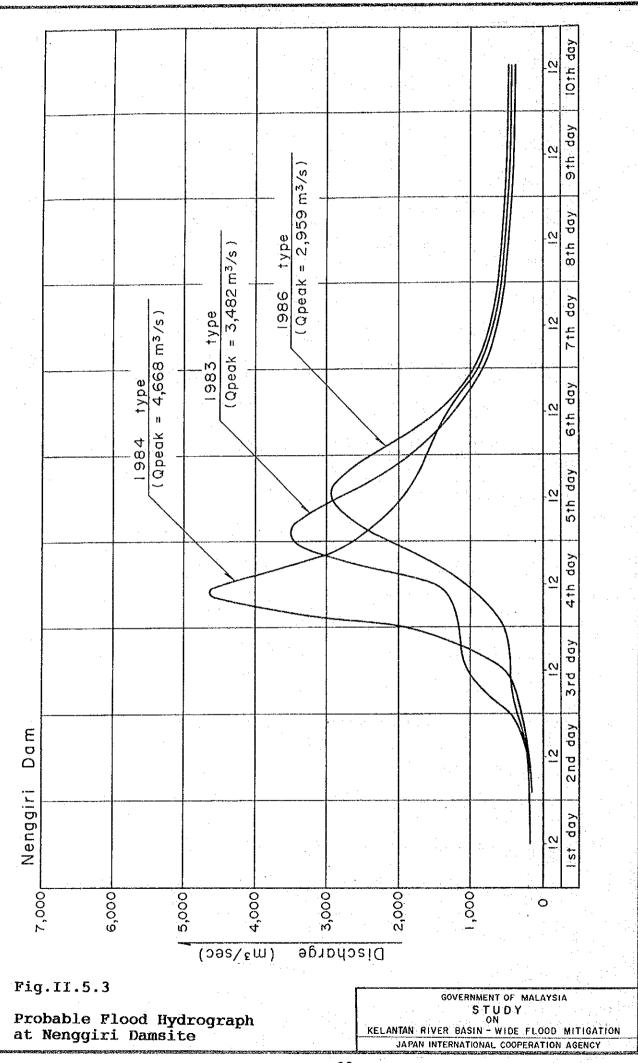

Probable Distribution of Annual Maximum Peak Discharge at Guillemard Bridge GOVERNMENT OF MALAYSIA STUDY ON KELANTAN RIVER BASIN - WIDE FLOOD MITIGATION JAPAN INTERNATIONAL COOPERATION AGENCY

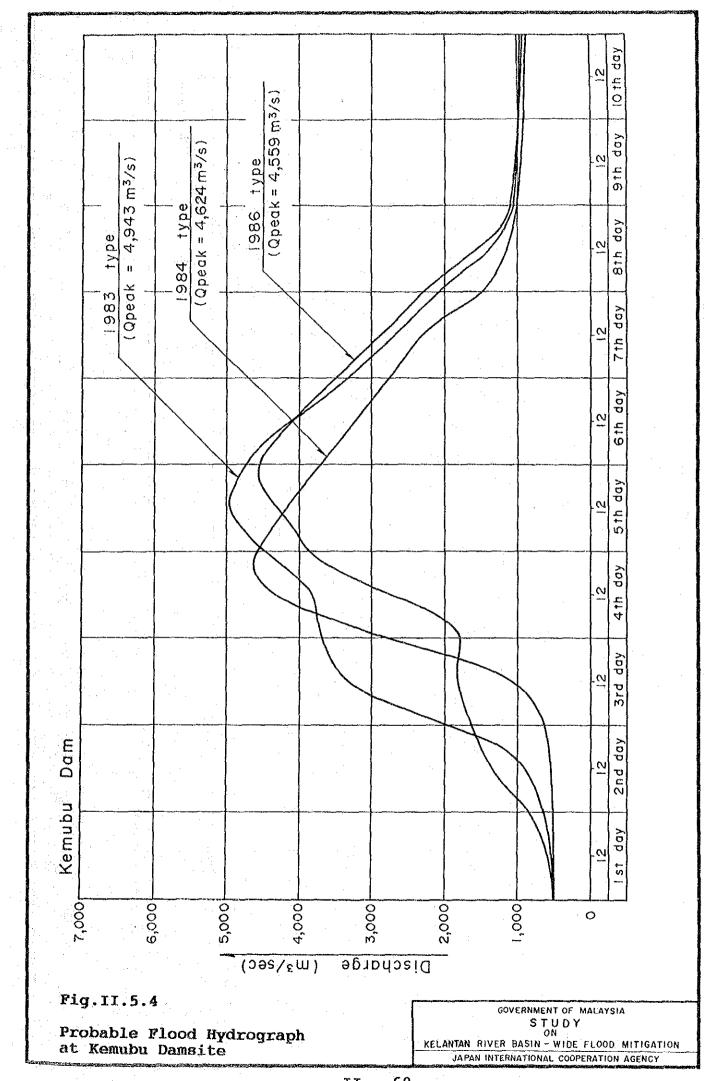


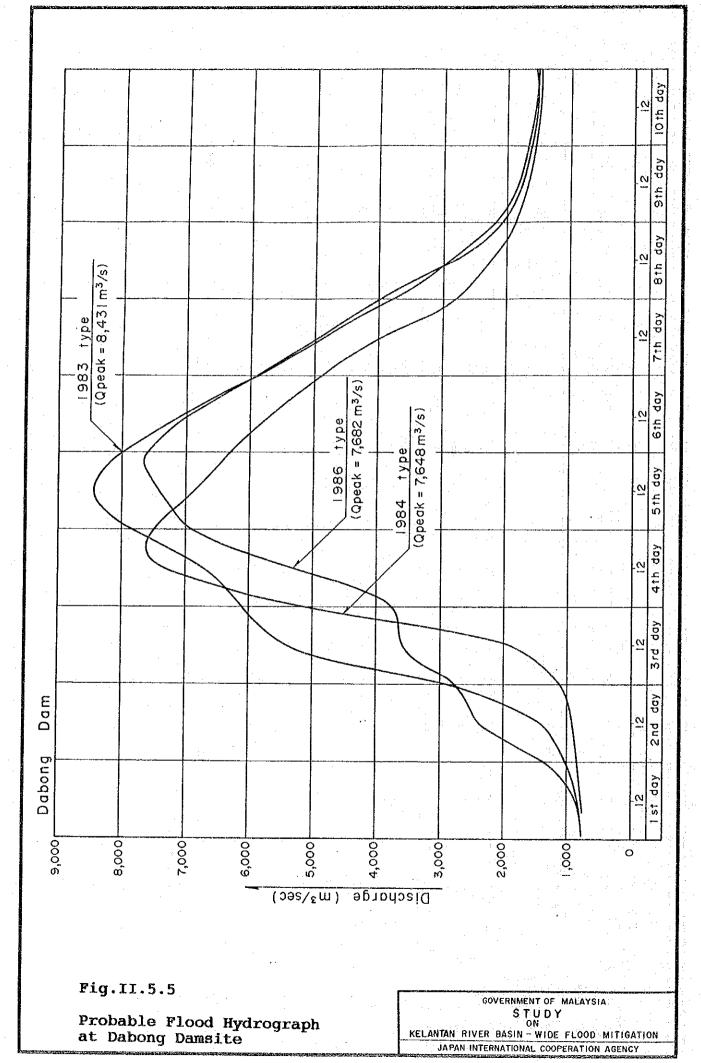



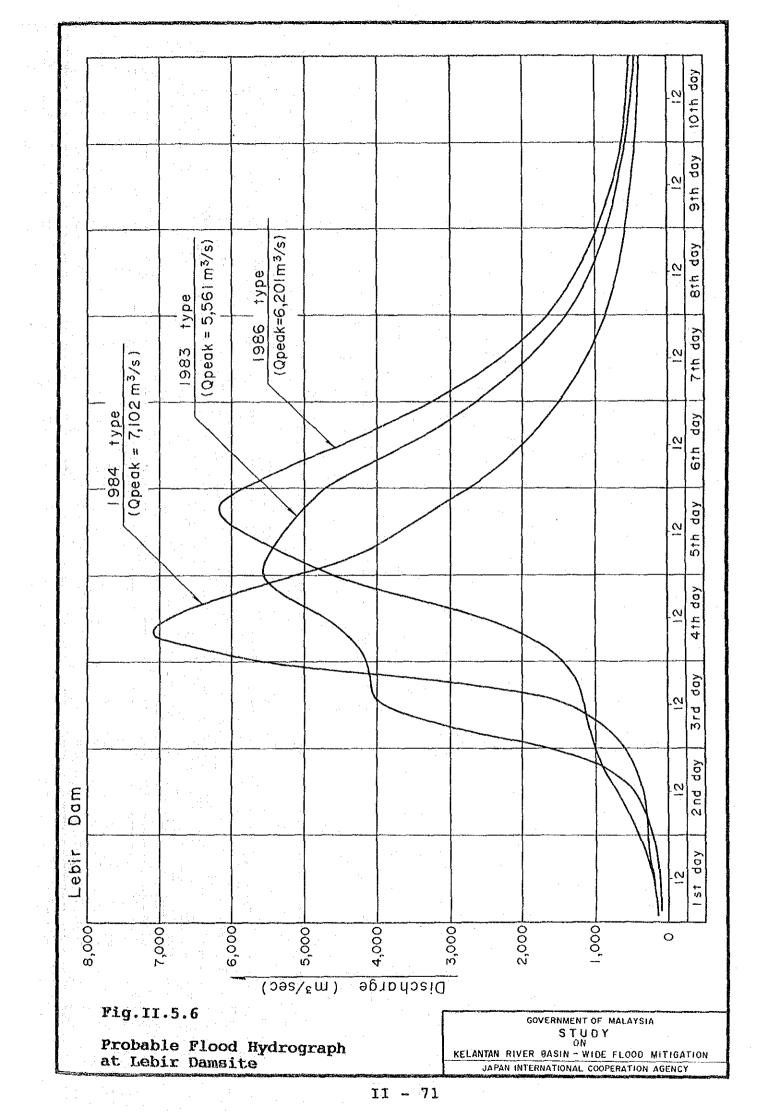



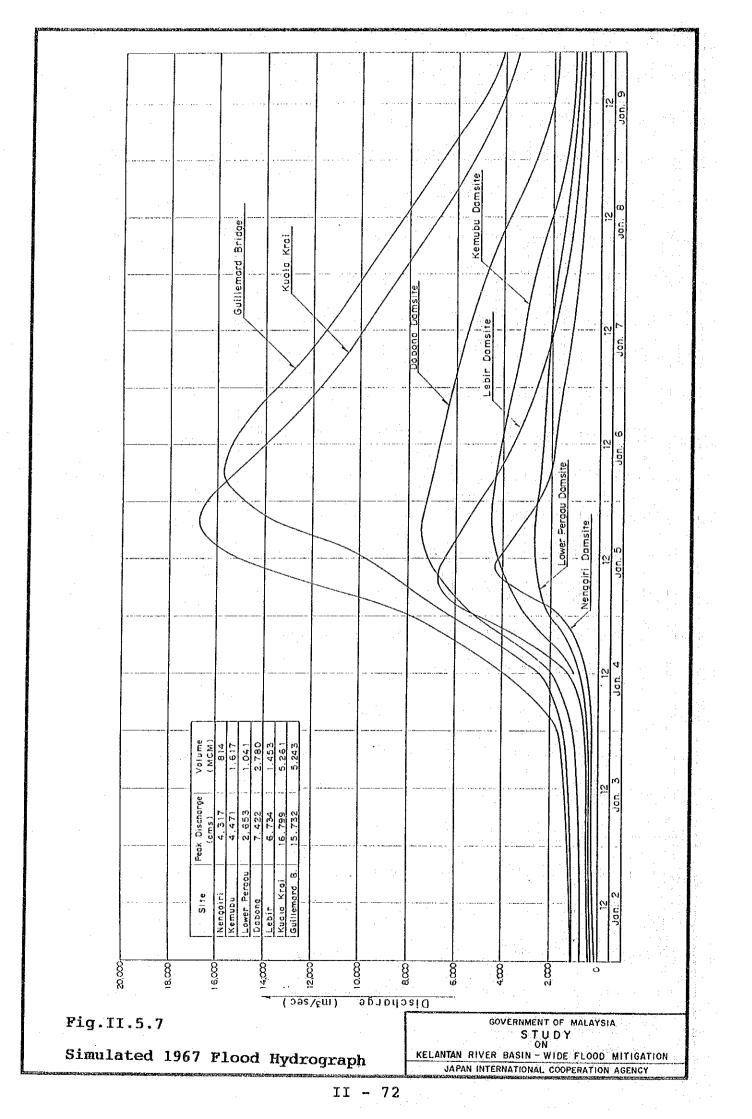



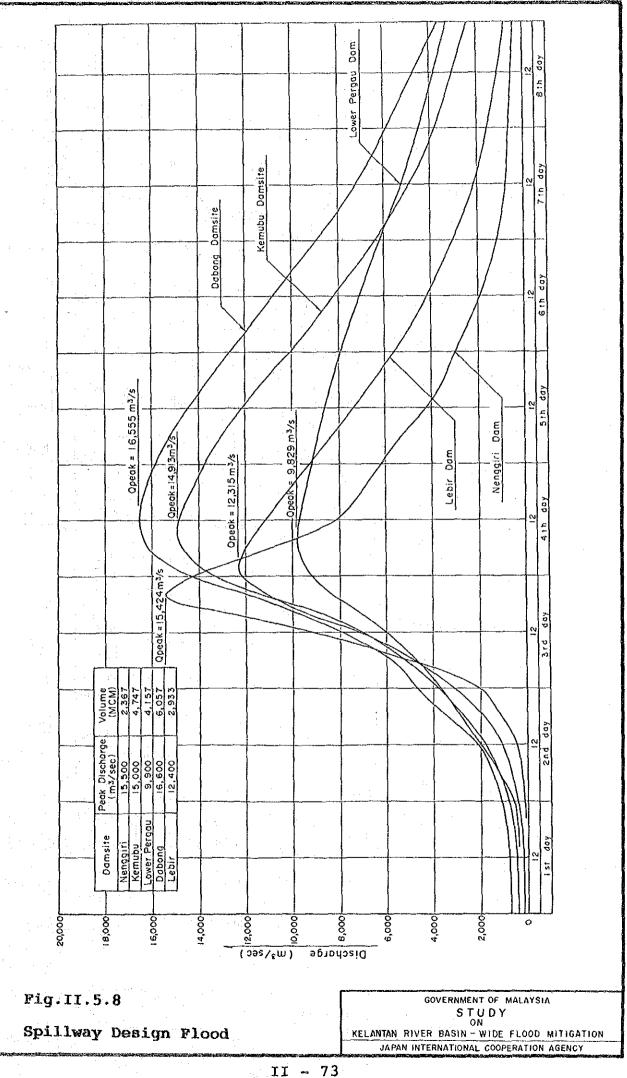



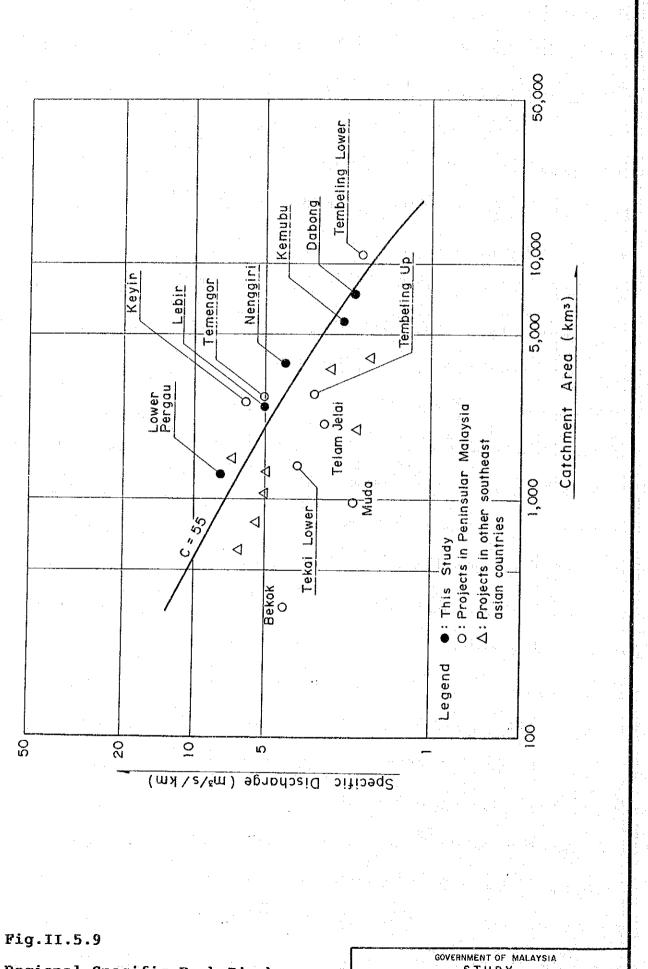





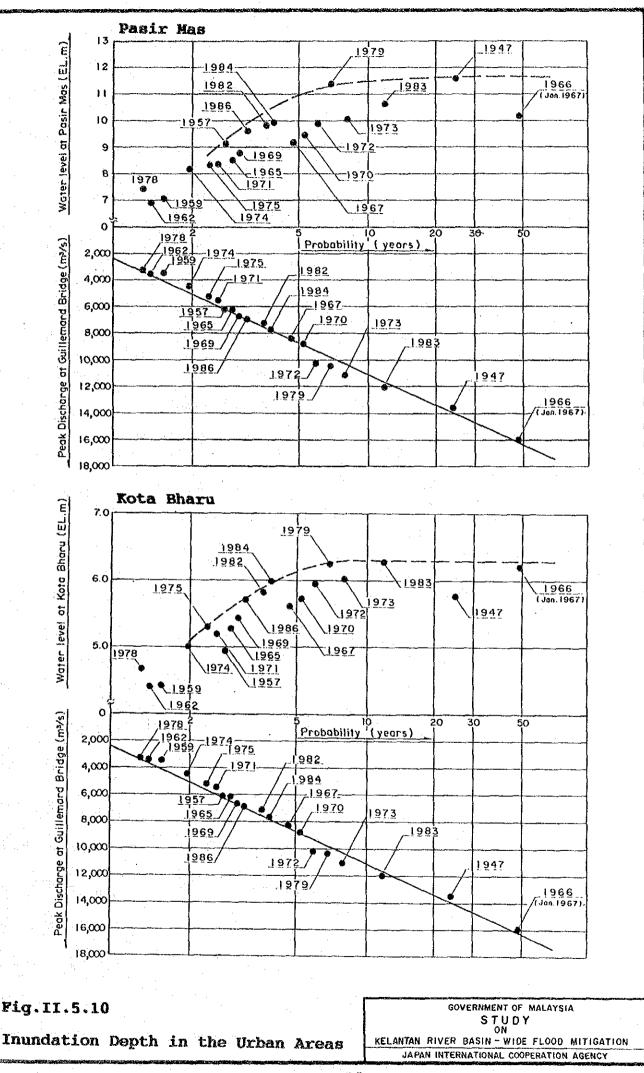




II - 70










Regional Specific Peak Discharge for Spillway Design Flood GOVERNMENT OF MALAYSIA STUDY ON KELANTAN RIVER BASIN - WIDE FLOOD MITIGATION JAPAN INTERNATIONAL COOPERATION AGENCY



#### APPENDIX

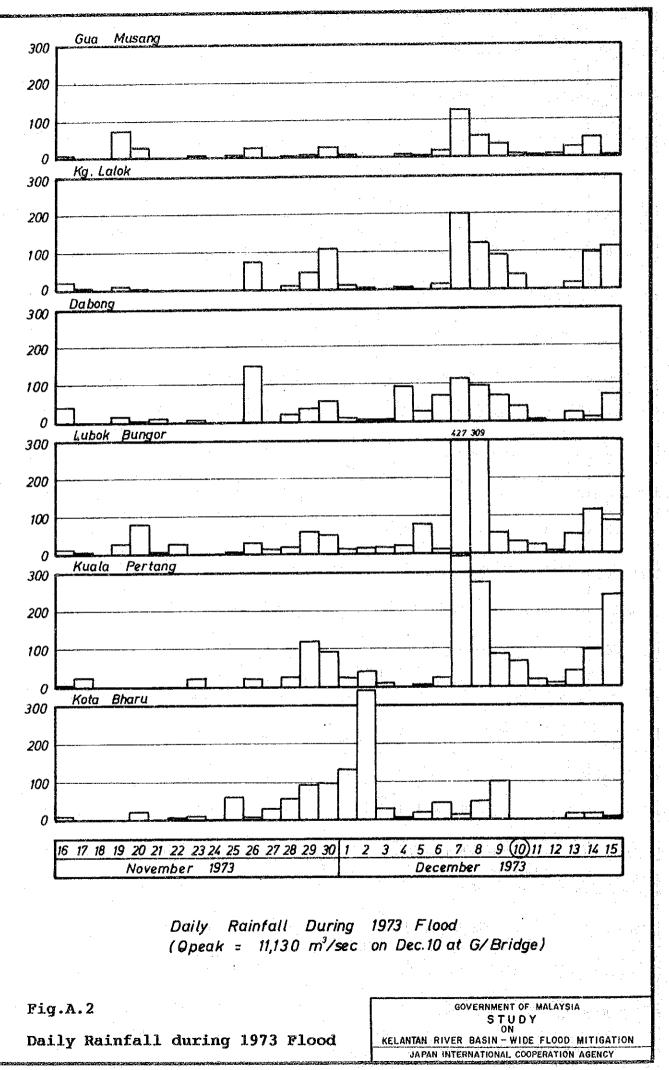
## Calculation of the Travelling Time of Flood

Although several empirical formula have been proposed to estimate the travelling time of flood, the following two methods are adopted to the Study.

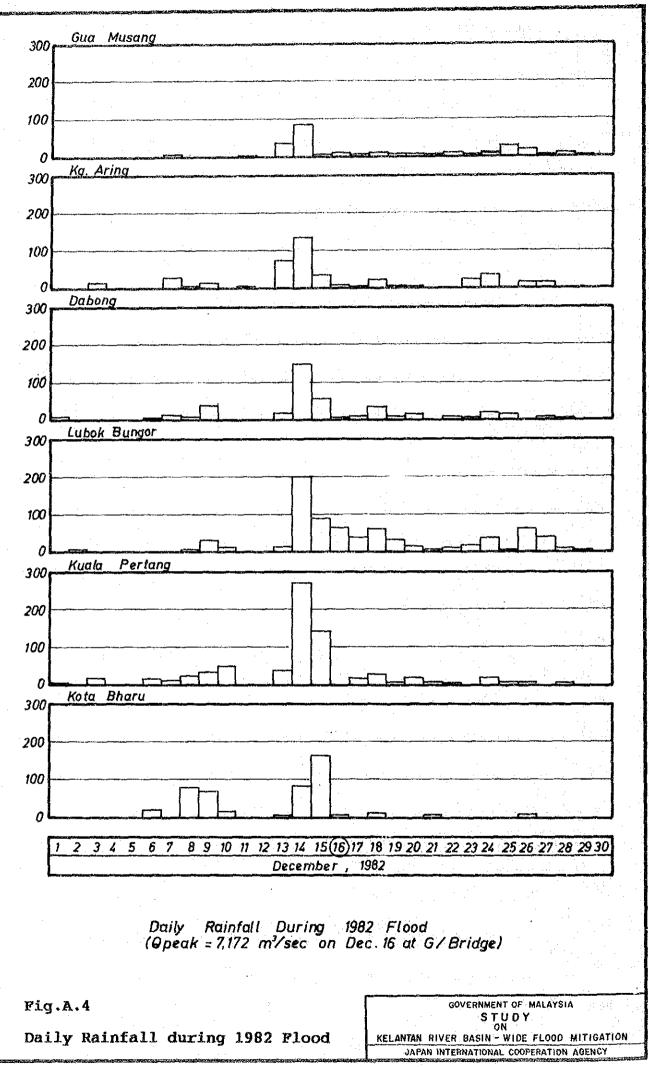
#### (1) Kraven's equation

The travelling time of flood is calculated by the equation; T = L / W ..... ( Eq.A.1 ) where, T : travelling time (sec), L : length of river channel (= 250 km), and W : velocity of flood wave propagation (m/sec).

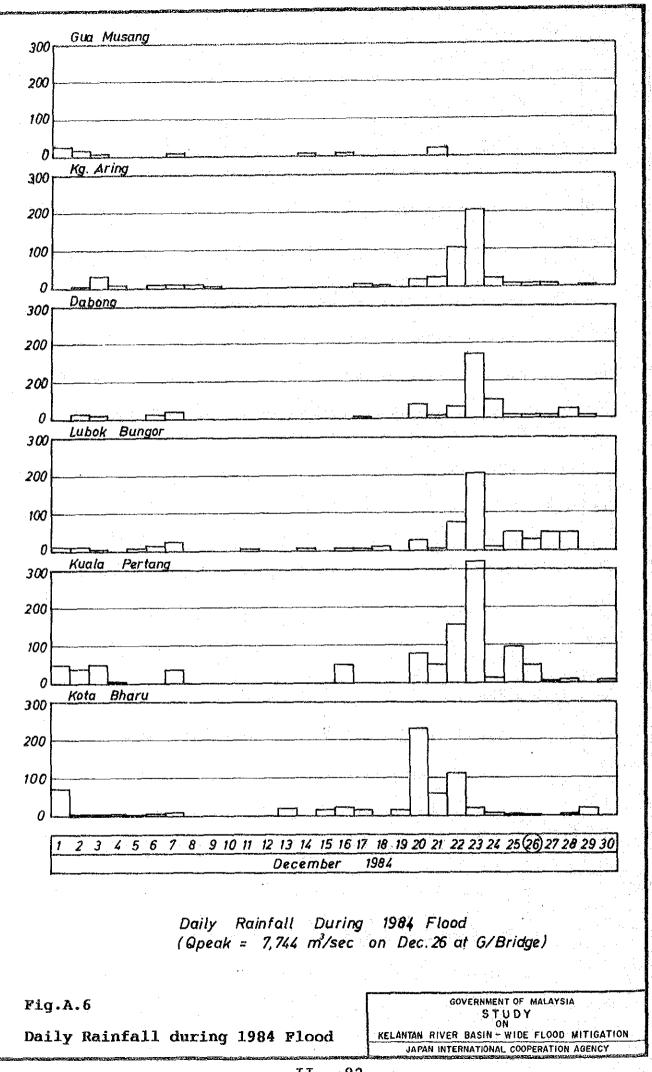
in which, the velocity of flood wave propagation is defined by the river bed gradient (I) as follows;


W = 3.5 m/sec for I > 1/100 3.0 m/sec for 1/100 < I < 1/200 2.1 m/sec for I < 1/200

The travelling time of flood is estimated at 1.378 days.


(2) Empirical equation (Ministry of Construction, Japan )  $T = 1.67 \times 10^{-3}$  (L / S<sup>0.5</sup>) <sup>0.7</sup> ..... (Eq.A.2 ) where, T : travelling time (hrs), S : average gradient of river bed (= 1/1500), and L : river length (= 250,000 m).

The travelling time of flood is estimated at 5.404 days.


Merapoh 300 200 100 0 Kg. Lalok 300 200 No data..... No data Г 100 0 Bertam 300 200 100 0 Dabong 300 200 100 0 Kuala Pertang 300 200 100 0 Kota Bharu 399 607 300 200 100 Ó 18 19 20 21 22 23 24 25 26 27 28 29 30 31 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 December 1966 January 1967 Daily Rainfall During 1967 Flood  $(Opeak = 16,000 \text{ m}^3/\text{sec} \text{ on } Jan. 6 \text{ at } G/Bridge)$ GOVERNMENT OF MALAYSIA Fig.A.1 STUDY KELANTAN RIVER BASIN - WIDE FLOOD MITIGATION Daily Rainfall during 1967 Flood JAPAN INTERNATIONAL COOPERATION AGENCY







| 300 <u>Gua Musang</u>                                      |                                                                                                                 |  |  |  |
|------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|--|--|--|
| 200                                                        |                                                                                                                 |  |  |  |
| 200                                                        |                                                                                                                 |  |  |  |
| 100                                                        |                                                                                                                 |  |  |  |
| 0                                                          |                                                                                                                 |  |  |  |
| 300 Kg. Aring                                              |                                                                                                                 |  |  |  |
| 200                                                        |                                                                                                                 |  |  |  |
| 100                                                        |                                                                                                                 |  |  |  |
|                                                            |                                                                                                                 |  |  |  |
| 0 L                                                        |                                                                                                                 |  |  |  |
|                                                            |                                                                                                                 |  |  |  |
| 200                                                        |                                                                                                                 |  |  |  |
| 100                                                        |                                                                                                                 |  |  |  |
|                                                            |                                                                                                                 |  |  |  |
| 300 Kg. Jeli                                               |                                                                                                                 |  |  |  |
| 200                                                        |                                                                                                                 |  |  |  |
| 100                                                        |                                                                                                                 |  |  |  |
|                                                            |                                                                                                                 |  |  |  |
| 300 Machang                                                |                                                                                                                 |  |  |  |
| 200                                                        |                                                                                                                 |  |  |  |
| 200                                                        |                                                                                                                 |  |  |  |
|                                                            |                                                                                                                 |  |  |  |
| 0 Kota Bharu                                               |                                                                                                                 |  |  |  |
| 300                                                        | na ya taka mana kata mana kata mana kata mana kata na kata na mana kata na kata na ya taka na ya taka na ya tak |  |  |  |
| 200                                                        |                                                                                                                 |  |  |  |
| 100                                                        |                                                                                                                 |  |  |  |
|                                                            |                                                                                                                 |  |  |  |
| 17 18 19 20 21 22 23 24 25 26 27 28 29 30 1 2 3            | 4 5 6 (7) 8 9 10 11 12 13 14 15 16                                                                              |  |  |  |
| November 1983                                              | December 1983                                                                                                   |  |  |  |
|                                                            | ala de la construction de la constituent de la defension de la constitue de la constitue de la constitue de la  |  |  |  |
| Daily Rainfall During 1983 Flood                           |                                                                                                                 |  |  |  |
| (Qpeak = 12,007 m <sup>3</sup> /sec on Dec. 7 at G/Bridge) |                                                                                                                 |  |  |  |
|                                                            |                                                                                                                 |  |  |  |
| Fig.A.5                                                    | GOVERNMENT OF MALAYSIA                                                                                          |  |  |  |
| Daily Rainfall during 1983 Flood                           | STUDY<br>ON<br>KELANTAN RIVER BASIN - WIDE FLOOD MITIGATION                                                     |  |  |  |
| an a                   | JAPAN INTERNATIONAL COOPERATION AGENCY                                                                          |  |  |  |



| 300 r                                                                 | Gua Musang                                                                                                     |  |  |  |  |
|-----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|--|--|--|--|
| 200 -                                                                 |                                                                                                                |  |  |  |  |
| 100 -                                                                 |                                                                                                                |  |  |  |  |
|                                                                       |                                                                                                                |  |  |  |  |
| 0 L<br>300 m                                                          | Ka, Aring                                                                                                      |  |  |  |  |
| 200 -                                                                 |                                                                                                                |  |  |  |  |
| 100                                                                   |                                                                                                                |  |  |  |  |
| 0                                                                     |                                                                                                                |  |  |  |  |
| 300                                                                   | Dabong                                                                                                         |  |  |  |  |
| 200 -                                                                 |                                                                                                                |  |  |  |  |
| 100 -                                                                 |                                                                                                                |  |  |  |  |
| oL                                                                    | Lubok Bungor                                                                                                   |  |  |  |  |
| 300                                                                   |                                                                                                                |  |  |  |  |
| 200                                                                   |                                                                                                                |  |  |  |  |
| 100                                                                   |                                                                                                                |  |  |  |  |
| 0 L<br>300 m                                                          | Kuala Pertang                                                                                                  |  |  |  |  |
| 200 -                                                                 |                                                                                                                |  |  |  |  |
| 100 -                                                                 |                                                                                                                |  |  |  |  |
| οL                                                                    |                                                                                                                |  |  |  |  |
| 300                                                                   | Kota Bharu 555 384                                                                                             |  |  |  |  |
| 200                                                                   |                                                                                                                |  |  |  |  |
| 100                                                                   |                                                                                                                |  |  |  |  |
| οL                                                                    |                                                                                                                |  |  |  |  |
| Ē                                                                     | 2 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 1 2 3 4 5 6 7 8 9 10 11<br>NOVEMBER 1986 DECEMBER 1986 |  |  |  |  |
|                                                                       | DECEMBER 1300                                                                                                  |  |  |  |  |
| Daily Rainfall During 1986 Flood<br>(Opeak = 6,901 m³/sec on Dec. 1 ) |                                                                                                                |  |  |  |  |
| (wpeak = 0, yul mysec on Lec. 1 )                                     |                                                                                                                |  |  |  |  |
| Fig.                                                                  | A. 7 GOVERNMENT OF MALAYSIA                                                                                    |  |  |  |  |
| Dail                                                                  | STUDY<br>ON<br>Y Rainfall during 1986 Flood KELANTAN RIVER BASIN - WIDE FLOOD MITIGATION                       |  |  |  |  |
| JAPAN INTERNATIONAL COOPERATION AGENCY<br>II - 83                     |                                                                                                                |  |  |  |  |

ANNEX III

# **GEOTECHNICAL INVESTIGATION**

# TABLE OF CONTENTS

|       |                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Page                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|-------|-------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.    | INTRO                                                                                                             | DDUCTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | III-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 2.    | GE                                                                                                                | OLOGY IN THE KELANTAN RIVER BASIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | III-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 2.1   | Gene                                                                                                              | ral                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | III-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 2.2   | Upst                                                                                                              | ream Reaches                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | III-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 2.3   | Mid-                                                                                                              | stream Reaches                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | III-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 2.4   | Down                                                                                                              | stream Reaches                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <b>III4</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 3.    | GEOTI                                                                                                             | ECHNICAL CONSIDERATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | III-6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 3.1   | Gene                                                                                                              | ral                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | III-6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 3.2   | Conce                                                                                                             | eivable Damsites in the Mid-stream Reaches                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | III-6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 3.2.  | 1                                                                                                                 | Lebir damsite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | III-6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 3.2.2 | 2                                                                                                                 | Dabong damsite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | III-8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 3.2.3 | 3                                                                                                                 | Lower Pergau damsite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | III-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3.2.  | 1                                                                                                                 | Kemubu damsite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 111-12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3.2.  | 5                                                                                                                 | Nenggiri damsite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | III-14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|       |                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 3.3   | Downs                                                                                                             | stream Reaches                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | III-16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3.3.  | 1                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 3.3.  | 2                                                                                                                 | Alluvial plain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 111-17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|       | 2.<br>2.1<br>2.2<br>2.3<br>2.4<br>3.<br>3.1<br>3.2<br>3.2<br>3.2<br>3.2<br>3.2<br>3.2<br>3.2<br>3.2<br>3.2<br>3.2 | <ol> <li>GE0</li> <li>GE0</li> <li>General</li> <li>General</li> <li>GE0</li> <li>GE</li></ol> | 2.       GEOLOGY IN THE KELANTAN RIVER BASIN         2.1       General         2.2       Upstream Reaches         2.3       Mid-stream Reaches         2.4       Downstream Reaches         3.       GEOTECHNICAL CONSIDERATION         3.1       General         3.2       Conceivable Damsites in the Mid-stream Reaches         3.2.1       Lebir damsite         3.2.2       Dabong damsite         3.2.3       Lower Pergau damsite         3.2.4       Kemubu damsite         3.2.5       Nenggiri damsite         3.3       Downstream Reaches |

# REFERENCES

(i)

# LIST OF FIGURES

| Fig.No  | Title                                       | Page   |
|---------|---------------------------------------------|--------|
| III.2.1 | Location Map of Project Area                | III-20 |
| 111.2.2 | Topographic Map of the Kelantan River Basin | III-21 |
| 111.2.3 | Geological Map of the Kelantan River Basin  | III-22 |
| III.3.1 | Location Map of Lebir Dam                   | III-23 |
| 111.3.2 | Location Map of Dabong Dam                  | III-24 |
| III.3.3 | Location Map of Lower Pergau Dam            | III-25 |
| 111.3.4 | Location Map of Kemubu Dam                  | III-26 |
| III.3.5 | Location Map of Nenggiri Dam                | 111-27 |

# III. GEOTECHNICAL INVESTIGATION

## 1. INTRODUCTION

This Annex III, Geotechnical Investigation, deals with the results of geotechnical investigation on the Kelantan River Basin-wide Flood Mitigation Study performed at the study level of master plan. Major work carried out in this study is as follows:

- (1) Analysis of geological data collected from DID and GSD,
- (2) Field survey at and around the conceivable damsites, i.e. Lebir, Dabong, Lower Pergau, Kemubu and Nenggiri dams, and along the downstream reaches of the Kelantan River, and
- (3) Geotechnical consideration for the conceivable damsites and river improvement works of the downstream reaches.

III - 1

## 2. GEOLOGY IN THE KELANTAN RIVER BASIN

#### 2.1 General

The Kelantan River is located in the north-eastern part of Peninsular Malaysia and originates from the mountain ridge which is the border with the State of Perak. Meandering the hilly areas in the middle reaches and flat plains in the downstream reaches northwardly, the Kelantan River drains into the South China Sea. A total catchment area of the Kelantan River basin is 13,100 km<sup>2</sup>, which is 85% of the Kelantan State. A location map of the Kelantan River basin is shown in Fig.III.2.1.

The topographic features of the Kelantan River basin are characterized by geological strata running from the south to the north direction as shown in Fig. III.2.2. High mountain ranges located at the eastern, western and southern sides of the basin make a border with the State of Terengganu and the State of Perak and Thailand, respectively.

A geological map of the Kelantan River basin is given in Fig. III.2.3. High mountains running from east to west through the southern part of the basin consist mainly of granites which are intruded at the Palaeozoic-Tertiary age. The granites, being massive and sound, shape the steep mountain slopes.

The hilly areas extended in the middle reaches are predominated by the Palaeozoic-Mesozoic rocks comprising sandstones, shales, limestones, tuffs and volcanics, which are very often metamorphosed regionally into phyllites and slates and further into crystalline schists. Thermal metamorphism due to the granite intrusion is often observed in the formation of hornfels. Particularly, phyllites, slates and schists are deeply weathered because of plenty of cracks and foliations.

Limestones having strong resistance to weathering form the high pinnacles with some caves in these bodies. Granitic masses intruded sporadically in the hilly areas are generally small in size and without tendency to expand.

Geological structure runs north-south or northwestsoutheast. The axes of folding and major faults also orient these directions, but are sometimes intersected by other groups of faults tending northeast to southwest.

The flat areas of downstream reaches situated in about 40 km long endmost river stretches consist of the alluvial deposits comprising mainly sand, silt and clayey soil, and form the soft ground. Dunes formed with coarse sands carried by the westward littoral current are developed with the 10 km wide band from the coastline, especially at the estuary of the Kelantan River.

#### 2.2 Upstream Reaches

Most parts of the upstream reaches forming high mountainous

### III - 2

ranges (refer to Figs. III.2.2 and 2.3) consist mainly of granites except for the southern part dominated by the Palaeozoic-Mesozoic rocks. These granites are massive and sound, shaping the steep mountain slopes with waterfalls and rapids.

Granitic activities have been indicated in four periods at least by Rb/Sr radiometric datings. The earliest one is in the Late Carboniferous (300-285 million years), followed by two granite emplacements occurred in the Triassic; the Early Triassic ( $230 \pm 6$  million years) and Late Triassic ( $199 \pm 2$  million years). The latest granites intruded at the beginning of the Tertiary ( $75 \pm 1$  million years) occur as isolated stocks and dykes.

The granite is often sheared and gneissic, particularly near its contact with the adjoining rocks. Sheared planes generally strike in a northerly direction. On the other hand, weathering of the granites is not supposed to develop intensively except for the gentle slopes around the border with the hilly areas.

# 2.3 Mid-stream Reaches

Out of five conceivable damsites, Dabong, Lower Pergau, Kemubu and Lebir damsites are located in the hilly area as shown in Figs. III.2.2 and 2.3. The Nenggiri damsite is, on the other hand, situated at the border between the mountainous and hilly areas.

The hilly area consists mainly of the Permian and Triassic rocks, comprising phyllite, slate, shale, limestone, tuff, volcanics and metamorphic rocks. Due to metamorphism widely spread in the region, most of the Permian and Triassic rocks are deformed slightly to moderately. In general, the older rocks show a greater degree of metamorphism than the younger ones.

The distribution of Permian and Triassic rocks is complicated. These strata, however, have almost same direction of north-south or northwest-southeast.

The Permian rocks are classified into four groups; arenaceous rocks, argillaceous rocks, volcanic rocks, and metamorphic rocks. Metamorphic rocks consisting mainly of schists with developed foliation are distributed in the strip area from the vicinity of Terowong 20 km southeast of Dabong to Tanah Merah 30 km downstream of Kuala Krai. These schists named "Taku schists" comprise mica-garnet schist, quartz schists and amphibole schists.

Volcanics consist of acid volcanics and basic volcanics. Acid volcanics comprising tuffs, agglomerates and rhyolites together with subordinately intercalated shale and quartzite predominate in the southeastern part of mid-stream reaches. Basic volcanics consisting mainly of tuffs, andesite and agglomerate with minor interbedded shale are distributed in the western part of hilly area and form long and narrow strips. Argillaceous and arenaceous rocks occur mainly in the centre of hilly areas with limestones. These rocks due to metamorphism develop many foliations.

Limestones predominating in the area between the Lebir and Galas rivers form spectacular cliffs standing vertically or overhanged. Near the contact with granite masses, limestones are changed to crystalline marbles showing considerable variation in the grain size.

On the other hand, the Triassic rocks consist mainly of shales with mudstones. Sandstones/metasandstones, conglomerates, tuffaceous varieties and limestones are sporadically included in these Triassic rocks. The shales with grey to black colour are generally thinly laminated and strongly fissile.

Dykes formed from quartz porphry, aplite, pegmatite and microgranite sporadically occur in the schists and sedimentary rocks, being massive and sound in general. Faulting is common in all rocks.

Major faults strongly trend in the north-south or northwestsoutheast direction, but are sometimes intersected by other groups of faults trending in the northwest to southwest direction. One of long-ranged major faults with a northnorthwesterly trend is located on the right bank of the Lebir River, running parallel to the river course. Minor faults are commonly found in association with foldings.

#### 2.4 Downstream Reaches

The downstream reaches shown in Figs. III.2.2 and 2.3 are characterized by lower hilly area from Kuala Krai to Kg. Kemubu and flat alluvial plain area from Kg. Kemubu to the river mouth. The lower hilly area consists of Permian-Triassic sedimentary rocks and granites which have same geological conditions as the rocks distributed in the mid-stream reaches.

Flat alluvial plain area consists of alluvial deposits classified into marine deposits and fluviatile deposits, although it is not always possible to demarcate two types of deposits. The underlying bed rock consists mainly of the Permian sedimentary rocks and granites. The depth from the ground surface to the bed rocks is in 100 to 200 m at the estuary of the Kelantan River and gradually shallow towards the upstream area of the river.

Marine deposits are composed of coarse sand containing shell fragments. Rised beaches and dunes, which are one of marine deposits and characterize the coastline, are formed by the westward littoral current. Around the mouth of the Kelantan River, many swamps are formed behind the ranging dunes due to poor drainage. Clayey soils with soft ground are predominant as the top soil of swamp areas.

#### III - 4

On the other hand, fluvial deposits are composed of gravel, sand, silt, clay and their alternation. Medium-coarse sand with gravel is occasionally observed at the dunes in the river bed or at the inner bank where the Kelantan River largely bends, but the river alluvium is more commonly represented by bands of stiff clay, thinner bands of silt and irregular beds of decayed vegetation. The change of river courses due to flooding causes the considerable complication in the river alluvium.

III - 5