A																													

> rogan Missi

Sec. 11.

Table 9.4.4 Cost Eslimates of Alternatives for TIA Master Planning

			Unit : US	\$1000
WORK ITEM	A-1	A-2	В	C
PREPARATORY WORK	30,070	27,310	31,750	35,170
EARTHWORK	38,830	31,210	43,790	41,680
PAVEMENT	34,640	34,840	34,250	42,740
DRAINAGE	3,290	3,260	3,290	3,580
LANDSCAPING	2,120	2,110	2,100	4,100
DEMOLITION	520	520	520	910
FENCE & GATE	520	520	520	520
MISCELLANEOUS	20	20	20	20
SEWAGE DISPOSAL	840	840	840	840
LIGHTING FOR CARPARK	60	60	60	60
CABLE DUCT	420	420	420	600
SUB TOTAL	111,330	101,110	117,560	130,220
CONTINGENCY	8,250	7,500	8,700	9,620
TOTAL	122,460	111,240	129,340	144,550

Appendix to Section 9.4.5 Consideration of Hydrant System for TIA

Appendix to Section 9.4.5 Consideration of Hydrant System for TIA

The project of fueling facilities is not included in this study because it will be constructed by NOC. Following consideration as a general was taken into layout planning of TIA.

There are two methods for fuel supply; one is a hydrant system and other is a fuel truck system.

Generally, a hydrant system is adopted at large airports especially where large quantities of fuel are provided, because continuous supply is available in a short time, fuel is safely carried underground, and traffic of fuel trucks is eliminated from the apron.

A hydrant system is commonly considered to be appropriate in the case that two B-747's are fueled simultaneously. The operation cost of a hydrant system is smaller than a fuel truck system in case that annual quantity of fuelling is more than about four million liters.

As for TIA, the number of large aircraft departing in a peak hour will be only one, and annual fuel consumption will be 80 thousand liters in 2010. Construction cost of the hydrant system at TIA is estimated at nearly US\$ 15 million. Furthermore, long distance and difference of ground level between the apron and POL are unfavorable for construction of hydrant system.

Consequently, a fuel truck system is to be adopted instead of a hydrant system taking into consideration a the future fuel demand and construction/operation cost.

. . .

Appendix to Chapter 11 Result of CBR Test and Laboratory Test

Table. 11.4.4 (1) Laboratory CBR test (4 days soaking)

Name of the location	CBR	at	Swell	% Swell
	2.5cm	5 cm	mm	
Lukala runway	5.43	5.88	0.63	0.494
Lukala-1 runway	5.59	6.08	0.65	0.510
Simikot-10 runway	17.8	22.4	0.20	0.157
Simikot-28 runway	6.77	8.21	1.330	1.044

Table. 11.4.4 (2) Grain size analysis test results (wet method)

Name of the location		Perce	nt passi	ng throu	gh IS-si	eves	MACCHEO CONTRACTOR
Maine of the location	4.75mm	2.36mm	1.18mm	600mcr	300mcr	150mcr	75mcr
Lukala runway	92.9	90.8	86.6	83.2	73.0	61.7	53.2
Lukala-1 runway	69.9	67.8	63.7	60.8	50.3	38.8	29.6
Simikot-10 runway	62.0	59.6	55.3	52.1	41.0	27.6	17.5
Simikot-28 runway	71.5	67.8	63.6	61.0	52.9	41.8	31.4

Appendix Table. 11.4.4 Result of CBR test and Laboratory test



Fig. 11.4.4 Grain Size Curves

Appendix to Section 17.3 Project Cost for Phase II Development of TIA

Table 17.3.2 Project Cost Phase II Development of TIA

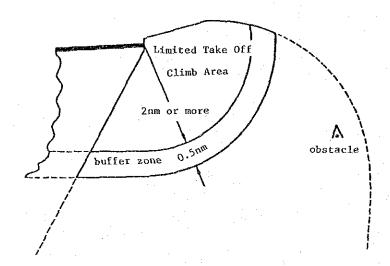
		Unit: U	IS\$1,000
Iten	Nepal	Foreign	Total
	Portion	Portion	
A. Land Acquisition Cost	10,013	0	10,013
B. Construction Cost			
1. Civil Works			
Dom. terminal	16	13	29
Cargo terminal	1,082	2,752	3,834
Hangar	4,400		16,949
Apron	17,461		68,638
Parallel taxiway	22,127	44,800	66,927
Total of 1.	45,086	111,291	156,377
2. Architectural Works			
Don. terminal	443	1,916	2,359
Cargo terminal	830	5,267	6,097
Hangar	3,730	30,277	34,007
Apron	3,435		23,418
Work shop	845	3,379	4,224
Total of 2.	9,283	60,822	70,105
3. Air Navigation Systems			
AFL	594	1,408	2,002
NAV, etc.	557	6,403	6,960
Total of 3.	1,151	7,811	8,962
4. Utilities			40
Power supply	2	38	40
Telecommunication	10	190	200
Water supply	0	170	0
Sewage treatment system	45	179	224
Incinerator	19	173	192
Total of 4.	64	352	416
5. Rescue & Fire Fighting Vehicles	0	632	632
6. Boarding Bridge	0	1,920	1,920
7. Lighting for Car Parks	80	1,520	1,600
Total of B.	55,664	184,348	240,012
C. Engineering Services Cost	2,388	32,413	34,801
A.+ B.+ C.	68,065	216,761	284,826
Contingency (approx. 10 %)	6,807	21,676	28,483
Total of Project Cost	74,872	$\frac{21,676}{238,437}$	313,309
TOOM OF TIMBORD AND			

Exchange Rate: US\$ 1.00 = NRs 25.00 Cost estimate based on 1988 price

																				Cri		

Appendix to Section 19.5.4 Take Off Minima in accordance with Japanese Criteria

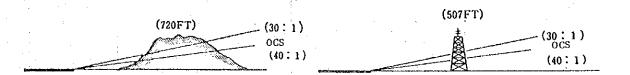
The following is an extraction from the Japanese Criteria for Establishment of Instrument Approach Procedure, Standard Instrument Departure, and Weather Minima.


Take Off Minima

- I. When a Departure Alternate Airport is established for the operations of multi-engined aircraft:
 - a) The Take Off Minima described in Table 19.5.1 shall be applied when:
 - i) No obstacle projects through the Obstacle Clearance Surface (OCS) on the Take Off Climb Area.
 - ii) The slope of the approach surface of the runway strip which is published officially is steeper than a slope of 1 in 50 (50:1).
 - b) The Take Off Minima described in Table 19.5.2 shall be applied when:
 - i) No obstacle projects through the OCS on the Take Off Climb Area.
 - ii) The approach surface slope of the runway strip which is published officially is clearly a slope of 1 in 50 (50:1).
 - c) Take Off Minima shall be applied in accordance with the Table 19.5.1 and Table 19.5.2 when:
 - i) Obstacles project through the OCS.
 - ii) The surface with a slope of 1 in 30 (30:1) originating at the end of runway is clear of obstacles.

In this case, a 200 feet or less ceiling and 800 metres or less ground visibility shall not be applied as the Take Off Minima and furthermore, the minimum climb rate which must be maintained in the climbing configuration shall be noted in the Standrad Instrument Departure.

- d) Take Off Minima shall be applied in accordance with the Table 19.5.3 when:
 - i) On the Take Off Climb Area, obstacles project through the surface with a slope of 1 in 30 (30:1) originating at the end of runway.
 - ii) Complete turning within Limited Take Off Climb Area is assigned.


In this case, obstacles shall be examined for complience with the Take Off Minima not only on the Limited Take Off Climb Area but also on the buffer zone with 0.5m in width as illustrated below.

- e) When obstacles project through the surface with a slope of 1 in 30 (30:1) which is originated at the end of runway (excluding those relating to item d), take off minima shall be established taking into account the followings:
 - i) Take off minima shall not be lower than the minima described in item a).
 - ii) Check the kind of obstacles. Obstacles on man-made structures such as steel towers, smoke stacks, poles, etc. on the Take Off Climb Area are usually judged as the objects which are avoided easily by turning.

In this case, the ceiling shall be an equivalent height or more to the altitude of obstacle and ground visibility shall be 1,600 metres.

iii) In case other than i), the ceiling shall be an equivalent height or more to the altitude of obstacles and ground visibility shall be 2,400 metres.

II. Others

Ceiling shall be applied the equivalent height to the Decision Altitude or Minimum Descent Altitude of Instrument Approach Procedures which are established for the airport. Ground visibility shall be applied the equivalent value to flight visibility which is established in IAP.

Note: Departure Alternate Airport

A suitable airport which is able to reach and land safely within one hour by two engined and within two hours by more than three engined aircraft respectively under no wind conditions when one engine is inoperative after take off.

Table 19.5.1

Lighting Facilities and Markings to be installed	Ceiling (Feet)	Ground Visibility (Metre)	RVR (Metre)
Runway Centre Line Marking	300	1,200	1,200
High Intensity Runway Edge Lights or Runway Centre Line Lights	300	1,000	1,000
High Intensity Runway Edge Lights and Runway Centre Line Lights	300	800	800

Table 19.5.2

Lighting Facilities and Markings to be installed	Number of RVR	Ceiling (Feet)	Ground Visibility (Metre)	RVR (Metre)
Runway Centre Line Marking	1	O	800	800
High Intensity Runway Edge Lights or Runway Centre Line Lights	1	0	600	600
High Intensity Runway	1	0	400	500
Edge Lights and Runway Centre Line Lights	2	0		300
	3	0		200

Table 19.5.3

Radius of limited Take Off Climb Area (nm)	Ceiling (feet)	Ground Visibility (m)
2.	500	1,600
2.5	400	1,200
3	300	800