KINGDOM OF THAILAND MINISTRY OF AGRICULTURE AND COOPERATIVES ROYAL IRRIGATION DEPARTMENT

MASTER PLAN STUDY

ON

THE WATER MANAGEMENT SYSTEM AND MONITORING PROGRAM

THE CHAO PHRAYA RIVER BASIN

MAIN REPORT

ANNEX-1 METEOROLOGY/HYDROLOGY

ANNEX-2 WATER MANAGEMENT PLANNING

ANNEX-3 WATER MANAGEMENT MODEL PROJECT

ANNEX-4 MONITORING/COMMUNICATION/DATA MANAGEMENT SYSTEM ANNEX-5 IRRIGATION AND DRAINAGE FACILITIES ANNEX-6 LAND USE/AGRICULTURE ANNEX-7 SOCIAL SYSTEM/ECONOMY

JUNE 1989

JAPAN INTERNATIONAL COOPERATION AGENCY

,9191

THE KINGDOM OF THAILAND

ROYAL IRRIGATION DEPARTMENT

MASTER PLAN STUDY

ON

THE WATER MANAGEMENT SYSTEM AND MONITORING PROGRAM IN

THE CHAO PHRAYA RIVER BASIN

FINAL REPORT

ANNEX-2 WATER MANAGEMENT PLANNING

JUNE 1989

JAPAN INTERNATIONAL COOPERATION AGENCY

国際協力事業団 19791

ANNEX-2 WATER MANAGEMENT PLANNING

TABLE OF CONTENTS

Page

CHAPTER 1	PRESENT WATER MANAGEMENT SYSTEM	2-1
1.1	Background	2-1
1.2	Basic Concept of the Present System	2-2
1.3	Structure of the Present System	2-4
1.4	Procedure of the System Operation	2-10
1.5	Development of Supporting Sub-Program	2-11
CHAPTER 2	EVALUATION OF WATER RESOURCES	2-17
2.1	Hydrological Characteristic	2-17
2.2	Study on Dam Operation by Water Balance Simulation	
	Mode1	2-19
2.3	Irrigation Water Use	2-23
CHAPTER 3	IMPROVEMENT PLAN OF WATER MANAGEMENT SYSTEM	2-29
3.1	Basic Concept for Improvement Plan	2-29
21 - C		2-30
3.2	Outlines of Improved Water Management System	220

LIST OF TABLES

Table No.

2-1	NON-EXCEEDING PROBABILITY OF ANNUAL RAINFALL	2-36
2-2	SUMMARY OF RUN-OFF IN CHAO PHRAYA BASIN	2-38
2-3	NON-EXCEEDING PROBABILITY OF ANNUAL RUN-OFF	2-39
2-4	PROBABILITY OF SIDEFLOW AT NAKHON SAWAN IN WET SEASON	2-40
2-5	SEASONAL INFLOW TO RESERVOIRS	2-41
2-6	CATCHMENT AREA BY RIVER BASIN	2-42
2-7	MONTHLY POTENTIAL EVAPOTRANSPIRATION IN EACH BASIN	2-43
2-8	INVENTORY OF MAJOR REGULATORS IN THE BASIN	2-44
2-9	INVENTORY OF MAJOR DAMS AND REGULATORS	2-44
2-10	PADDY PLANTED AREA IN CHAO PHRAYA DELTA	2-45
2-11	IRRIGATED AREA BY RIVER BASIN	2-46
2-12	COMPARISON BETWEEN REQUESTED RELEASE AND ACTUAL	
	RELEASE FROM BOTH DAMS	2-47
2-13	AVAILABLE WATER IN CHAO PHRAYA DELTA	248
2-14	SIDEFLOW IN WET SEASON AT NAKHON SAWAN	2-49
2-15	WATER BALANCE STUDY IN CHAO PHRAYA DELTA	2-50
2-16	CURRENT WATER USE CONDITION IN WET SEASON	2-51
2-17	CURRENT WATER USE CONDITION IN DRY SEASON	2-52
2-18	WATER USE AND YIELD IN WET SEASON	2-53
2-19	WATER USE AND YIELD IN DRY SEASON	2-54
2-20	RELATION BETWEEN WATER SUPPLY AND YIELD IN DELTA (WET	
	SEASON)	2-55
2-21	RELATION BETWEEN WATER SUPPLY AND YIELD IN DELTA (DRY	,
	SEASON)	2-56
2-22	WATER SUPPLY PER YIELD IN WET SEASON	2-57
2-23	" IN DRY SEASON	2-58

LIST OF FIGURES

Figure No.

÷

1-1	INFORMATION FLOW IN WATER OPERATION CENTER	2-61
1-2	COMPUTER SYSTEM	2-62
1-3	PRESENT WATER MANAGEMENT MODEL SCHEMATIC	2-63
1-4	OUT OF KILTER ALGORITHM SCHEMATIC	2-65
1-5	EXAMPLE SCHEMATIC	2-65
1-6	STRUCTURE OF WATER USE SIMULATION	2-66
1-7	RESULTS OF MODIFICATION	2-67
1-8	WEEKLY DEMAND TO BHUMIPOL & SIRIKIT RESERVOIRS	2-15
1-9	DISCHARGES IN CHAINAT-PASAK CANAL	2-68
1-10	WATER LEVELS IN CHAINAT-PASAK CANAL	2-68
х.		
2-1	MONTHLY RAINFALL BY SUB-BASIN	2-69
2-2	ANNUAL RAINFALL AND RUN-OFF BY SUB-BASIN	2-70
2-3	RELATION BETWEEN RAINFALL AND RESERVOIR INFLOW	2-71
2-4	RELATION BETWEEN ACCUMULATED RAINFALL AND INFLOW	2-72
25	MONTHLY SIDELFOW BETWEEN BOTH DAMS AND NAKHON SAWAN	2-73
2-6	MONTHLY SIDEFLOW BETWEEN NAKHON SAWAN AND CHAINAT	2-74
2-7	MONTHLY SIDEFLOW AND RAINFALL IN NAN RIVER	2-75
2-8	SCHEME OF SUB-BASIN IN CHAO PHRAYA BASIN	2-76
2-9	SCHEMATIC DIAGRAM OF SIMULATION MODEL	2-77
2-10	LOCATION OF RAINFALL STATION	2-78
2-11	LOCATION OF RUN-OFF OBSERVATION STATION	2-79
2-12	EXAMINATION OF PAST DAM OPERATION AND SIDEFLOW	2-80
2-13	COMPARISON OF MONTHLY WATER DISCHARGE AT NAKHON SAWAN	2-81
2-14	MONTHLY AVAILABLE WATER IN DELTA	2-82
2-15	AVAILABLE WATER AND ACTUAL WATER USE IN WET SEASON	2-84
2-16	AVAILABLE WATER AND ACTUAL WATER USE IN DRY SEASON	2~85
2-17	AVAILABLE WATER AND ESTIMATED CONSUMPTION IN DELTA	2-86
2-18	ACTUAL AVERAGE INTAKE IN DELTA	2-87
2-19	IRRIGATION WATER SUPPLY DIAGRAM IN WET SEASON	2-88

Figure No.

220	IRRIGATION WATER SUPPLY DIAGRAM IN DRY SEASON	2-89
2-21	RELATION BETWEEN WATER SUPPLY AND CONSUMPTIVE USE IN	
	LOWER WEST BANK	2-90
2-22	WATER LEVEL IN LOWER WEST BANK IN THE CREEK	291
2-23	COMPONENT OF IRRIGATION WATER SUPPLY	2-92
2-24	COMPONENT OF WATER SUPPLY PER YIELD	2-93
3-1	BASIC CONCEPT OF WATER MANAGEMENT SYSTEM	294
3-2	THE WATER MANAGEMENT SYSTEM IN CHAO PHRAYA RIVER	
e Se a	BASIN - SYSTEM DIAGRAM	2-95
3-3	SYSTEM FORMATION OF WATER DISTRIBUTION MANAGEMENT	2-97

CHAPTER 1 PRESENT WATER MANAGEMENT SYSTEM

1.1 Background

The water management in the Chao Phraya River Basin has been practised in the neatly pyramidal organization with the O & M Head Office in the RID Headquarters as its top followed by field offices (regional offices, project management offices) and respective terminal organizations.

The RID 0 & M Head Office, receiving water management data/information from the field offices via radio in oral communication, makes analysis and judgement on the data/information to give necessary instructions back to each field office on water distribution at the irrigation canals and operation of the facilities in keeping close coordination with the offices and organizations concerned.

The project engineers are assigned to each project office as fully responsible personnel to control several branch offices. In each branch, a water master is assigned to be responsible for the fields of about 100,000 rai, and several zonemen are deployed subordinately to assist the water master. And one zoneman covers in principle the areas in a range between 1,000 rai and 1,500 rai.

The water master has responsibility to give guidance of general farming works to the farmers in his own area, and to keep various records and data on water management on the respective canals. The zoneman, on the other hand, has responsibility to carry out maintenance of diversion works and other related irrigation facilities as well as to keep records and data of on-farm level water management so as to make report to the water master.

The present water management system was developed by Canadian Consultants, Messrs. Acres & Co., Ltd. on the base of the aforesaid field level system, and the system has been operated since 1982.

This system, in taking into consideration the effective employment of the ready provided staffs, has enabled to concentrate the data/information available on the zonemen level to the Water Management Center of the RID Headquarters. (See Figure 1-1)

The staffs of the said Center put the data concentrated thereto into the computer files. The input data are processed by computer with the Model Simulation Program available at present.

The results of the processing are utilized as references of decision-making by the Water Management Center. Recently, however, smooth processing has come to be hindered in congestion.

The Master Plan Study, therefore, will try to review the existing water management system to grasp its general conditions at present and to study the methodology of the system improvement.

1.2 Basic Concept of the Present System

In a specific area, when a water source would have such abundance as to excessively meet water demand, only facilities could be desirably provided to take the water in necessity in keeping the source water in natural flow rather than a complete water management system under specified operation rule would be provided.

Contrarily, however, when a water source would have insufficiency to meet water demand, a complete water management system would become necessary. As tension in the relation of demand and supply of water has grown larger under the present water management system in the Chao Phraya River basin, the function of the said system has come to be necessarily evaluated in appropriate manners. The system must be operated in the premise of rational water distribution to satisfy not only irrigation water supply but power generation, river navigation, municipal water supply, flood control, saline water intrusion prevention, etc.

The existing irrigation areas in the basin are divided into 106 irrigation blocks. The irrigation water requirements by blocks can be obtained by computer with existing model; however, the computation of the dependency upon the dam in the upstream will require to place the following several restrictive conditions on the flow of the water and to have better understanding in the process.

i) Flow Constraint (Maintenance flow)

Minimum discharges required for navigation, pump operation, salinity protection, etc. at the specific point of the river.

ii) Water Loss (Water use other than the above)

The amount of water unreturnable as municipal and industrial consumption

iii) Side Flow

The inflow into the irrigation areas in the Chao Phraya River basin, which can be utilized as irrigation water, although cannot be controlled in discharge.

The abundant side flow was recorded by the Nakhon Sawan observatory on those discharges in the downstream of the Pin River, as the total discharge of those rivers of Wan, Yon and the downstream of Nam River, and by the Kaeng Koi observatory on the discharge of the Pasak River,

iv) Minimum Discharge for Power Generation

It is in September and October when the water released from dams for irrigation becomes minimum, because there will be much side flow available for irrigation in these two months. In other respect, in January the irrigation water requirements become minimum in the year.

For those three months, however, EGAT has to release the possibly least amount of water from dams to generate the minimum power.

The favourable effects expected by employing the present system are to wastelessly utilize the released water from dams in the most thorough and effective use of rainfall runoff and side flow of the related tributaries and branches, and to discharge the water through the regulating gates more precisely in its amount to meet the requirements of the beneficiary areas.

1.3 Structure of the Present System

The structure of the present water management system can be explained as follows: 1) Data reporting, 2) Computer system, and 3) Output interpretation, the water management data cover rainfall, runoff, cultivated area, field moisture condition and so forth which are informed to the Water Operations Center (WOC).

1.3.1 Computer System

The computer plays an important part of present water management system, because it can manage many data at high speed to do complicate calculation an irrigation water requirement and movement of water in the management system.

This computer system is operated as following process. (See Figure 1-2)

- i) Data processing
- ii) Calculation of irrigation water requirement
- iii) Calculation of return flow
- iv) Execution of water use simulation model
 - v) Output of the simulation result

(1) Data processing

Rainfall, where level and discharge data are daily coded on computer coding sheet form, and then raw data are filed in the computer. The data for a total of 21 days are stored in the file at a time and the old data will be erased out when the new ones are stored. The data in the file will relate to a number of observation stations and the data in five digits.

Weekly crop data are coded on computer coding sheet form, and then, raw data are filed in the computer. The data in the file will relate to each irrigation block. Fixed data are many coefficient data for each irrigation block needed in the computation of irrigation demand and return flows.

(2) Irrigation demand calculations

The computation of irrigation demands and return flows in each irrigation block is done on the weekly basis. The general equations used in computing irrigation demand are as follows.

(1)

$$IW = \frac{CU - EFFR - DS}{EFFY} + \frac{LP}{LPEF}$$

where,

IW	==	irrigation water required
CU	=	consumptive use of the crop
EFFR	=	effective rainfall
DS	55	ponding depth in paddy field (a positive DS
		indicated water available in storage)
EFFY	=	Growing period irrigation efficiency
\mathbf{P}	=	land preparation water requirements
LPEF	=	land preparation irrigation efficiency
CU		WCRCF x PETP

where,

WCRCF = weighted crop coefficient PETP = potential evapotranspiration

(3) Return flow calculations

Return flow is the unconsumed water which reappears in the drainage system of an irrigation block and is available for reuse farther downstream. The theoretically available return flow is computed from a water balance in the irrigation block as follows.

TRF = TRC + IW - CU + DS + TRU = ETU - LP(3)

where,

TRF	=	theoretical return flow
TRC	=	total rain on the cropped area
ÌW	H	irrigation water delivery
CU	-	consumptive use
DS	=	ponding depth in paddy field
TRU	=	total rain on uncropped area
ETU	ŧ	evapotranspiration from uncropped area
LP	-	land preparation water requirement

The actual return flow, which is the amount to reappear in the drainage system for reuse, is somewhat less than the theoretical value. The equation used in computing actual return flow is

 $RF = RFT \times TRF$

(4)

where,

RF = actual return flow RFT = return flow factor (RFT 1.0)

(4) Execution of water use simulation model (Refer to Figure 1-3)

The water use simulation model is a weekly simulation of the major water use components of the Meklong and Chao Phraya River

basins. The major structures of the irrigation system are defined as the main lateral and main drain level. The solution procedure of the simulation model solves the water requirements in this schematic in three sections which have been assigned different basin numbers.

Basin 1 - The Meklong River below Kanchanaburi
Basin 2 - The Chao Phraya River below Nakhon Sawan
Basin 3 - The Meklong and Chao Phraya Above Kanchanaburi and Nakhon Sawan respectively.

These sections are usually solved as a group in sequence, but can be solved independently if the appropriate input data are provided.

The first two sections constitute the central plain region of Thailand and contain complex irrigation and drainage systems.

The water requirement solution to these areas uses a flow network optimization technique based on the out-of kilter algorithm.

The third area listed above is the area between the major reservoirs and the central plain and the main purpose of a solution in this area is to determine reservoir operating requirements.

1.3.2 The Method of the Simulation

(1) Out-of kilter algorithm

The backbone of the simulation model is the solution of water requirements in the central plain area using a network flow optimization technique known as the out-of kilter algorithm. This technique was selected since it is extremely flexible in allowing the programmer to make structural and operational changes to the model as part of the basic input data. Eight different components have been defined to represent the specific characteristics. (Refer to Figure 1-4)

These components are listed below.

- Irrigation Block
- Check Storages
- Regulators
- Flow Constructions (e.g. navigation, water quality)
- Drain Points
- Supply Points (e.g. pumps)
- Water Losses (e.g. Bangkok water supply)
- Side Flow (e.g. tributary inflow)

Simulation of the system is achieved by modeling each of the above component types and their characteristics with channels and nodes.

A channel connects two nodes and is composed of one or more "arcs", each of which has specific flow properties. An arc is a directed line segment which can transfer flow from one node to another. A node is used to represent a spatial junction of channels. (Refer to Figure 1-5)

(2) The flow of the simulation

The flow of the simulation is explained in Figure 1-6. The solution procedure in the program is described as follows.

DEFIN:

Main routine 'DEFIN' reads all the general description data of the water use components (irrigation block, channel, return flows, check storages, regulators, flow constraints, side flow, water losses, drain points, supply points)

DMAND: Main routine 'DEMAND' compute irrigation water requirements and return flows which are eliminated ava 'able rainfall plus ponding depth in paddy field from consumptive use of the crops.

GNGRD: Main routine 'GNGRD" generates a flow network grid either from cards or from data on existing disk files.

BOUND: Main routine 'BOUND' generates the upper and lower flow bounds to be imposed upon the flow network grid generated by GNGRD.

PREP:

Main routine 'PREP' prepares the problem definition for the out-of kilter algorithm (OKA) by initializing the OKA solution variables.

SOLVE:

Main routine 'SOLVE' initializes the working storage for use by KILTE routines (which are the basis of the out-of-kilter algorithm) and then links to main routine KILTE.

KILTE:

Main routine 'KILTE' is a network flow optimization package known as the out-of kilter algorithm. It is used to solve the network flow problem defined by main routines DEFIN, GNGRD, BOUND.

OUTPT: Main routine 'OUTPT' is used to control the program direction after KILTE has solved or tried to solve the problem definition.

REDIS: Main routine 'REDIS' checks the network solution for the following conditions in order.

SUMRY: Main routine 'SUMRY' produces six summary reports of the solution of the network flow problem.

- INTERP: Main routine 'INTERP' calls subroutine WINIT to read monitoring arc flow, fore cast arc flow, initial arc bounds, control parameter, run indicator and title card.
- WBLAN: Main routine 'WBLAN' produces seven water balances of the solution of the network flow problems.
- SIMUL: Main routine 'SIMUL' initializes the variables that are used in the program and then calls subroutines INPUT, DCRE and DMRE to determine the water demand.

REPOT: Main routine 'REPOT' initializes variables for output routines. It calls subroutine OUTP1 and OUTP2 for summary output.

1.4 Procedure of the System Operation

The simulation of present water management model is executed to verification for last week and forecast for next week and week after next (which three week calculation is one unit).

1.4.1 Calculation Week

All rainfall and stream-flow data will be up-to-date to the Tuesday of this week and all crop data for the week prior (monitoring week) will be reported to the WOC by Monday afternoon of the calculation week. Three computer runs of the WMS' are done on Wednesday and Thursday one each for the three weeks.

1.4.2 Monitoring Week

This is the week prior to the Calculation Week. The results of the WMS for this week serve to monitor the water use in the irrigation system. For this week, only observed data on crop areas, rainfall and side-flow are used in the calculation.

1.4.3 Forecast Week

This is the week immediately following the calculation week. The WMS is run to determine water allocations to the main regulator in the irrigation network. The calculation is based on forecasted cropped areas which have been projected from crops data received for the monitoring week along with historic planting calendars in each irrigation project. Long-term average rainfall is used in the calculation, and uncontrolled side-flow is forecasted based on a correlation with known side-flow and rainfall.

1.4.4 Forecast + 1 Week

This is the second week following the calculation week, i.e. it immediately follows the forecast week. Since there is a 5-day lag in the river system from the time, the water is released from the Bhumibol and Sirikit reservoirs to the time when the water arrives at the Central Plain. And it is necessary to base the reservoir release requests or irrigation demands in the Forecast + 1 Week.

1.5 Development of Supporting Sub-Programs

For improvement of the present model, supporting sub-programs have been developed under the following concepts. (See Program Manuals; Supporting Sub-Programs of the Present Simulation Model.)

- Rearrangement of procedures for parameter modification such as irrigation efficiency and system parameters for water transfer from Meklong basin.
- Study on weekly demand calculation method to the both dams.
- Hydraulic analysis of Chainat-Pasak Canal

1.5.1 Modification of Parameter

(1) Study on the modification of the parameters

Modification of only irrigation efficiencies could not improve calculation results so much because of the model characteristic. Then the return flow factor should also be modified too. The results are as follows.

1) Calculation cases

Used data are the same as those used in the last verification study, (dry season's data in 1986), and following cases were calculated.

Case	Remarks
CASE-0	Return Flow Factor = 0.75 (same value to the present model Irrigation Efficiencies = Observed value/Monitoring Ca. value * present value
CASE-1	^o Phitsanulok Project RTFA = 0.65 EFFY = 0.10 ^o Chainat-Pasak, Chainat-Ayutthaya, Raphiphatana Canal Area ETFA = 0.30 EFFY = 0.10
CASE2	The case-1 value of EFFY is smaller than the present value, so EFFY = 0.5*(case-1 (0.1 + present value (0.50 - 0.55)) ° Phitsanulok Project RTFA = 0.65 EFFY = 0.10 ° Chainat - Pasak, Chainat-Ayutthaya, Raphiphatana Canal Area RTFA = 0.30 EFFY = 0.30
Note:	RTFA: Return Flow Factor EFFY: Irrigation Efficiencies

2) Results of modification study

i) Intake water volume in Chainat-Pasak Canal Area

Concerning the intake water volume, to modify EFFY is not so meaningful. One of the reasons is that water for other purposes than irrigation is led to the area. So values of EFFY, which was available for the Raphiphatana Canal area, was applied (Case-1). ii) Intake water volume in Raphiphatana Canal Area

The value of EFFY in Case-1 calculation showed good fitness of the calculated regulator flow to observed one.

iii) Demand water volume for Phitsanulok Project

In this area value of Case-0 was applied.

vi) J

Intake water volume within Chainat-Ayutthaya Area

Observed values are greater than calculated ones. These results are more remarkable than the results of Chainat-Pasak Canal Area. For value of the parameters of EFFY and RTFA, Case-1's value may be applied.

v) Modified regulator flow at each regulator

The results show the considerable improvement. Results of reservoir release and regulator flow at Manorom and Koke Kathlem Regulators are, for instance, shown in Figure 1-7.

(2) Method of modification

The method is composed of three steps as follows.

i) The first step is to examine values of parameters EFFY and RTFA.

ii) The second step is to decide calculation cases.

iii) The third step is to calculate the cases.

Supporting computer programs prepared for carrying out the above steps are as follows.

- A program to calculate demand and return flow corresponding to modified EFFY using outputs of the present computer program "EMRFC" (say "MDFY"). Parameter RTFA is held unmodified. (for the steps 1 and 111)
- A program to calculate demand and return flow corresponding to both modified EFFY and RTFA using output as mentioned above (say "MDFYA"). (for the step 111)
- A program to calculate demand corresponding to modified EFFY using output as mentioned above (say "MDFYB"). Water volume of return flow is held unchanged. However, parameter RTFA is calculated corresponding to modified demand and unmodified return flow. (for the step 1)

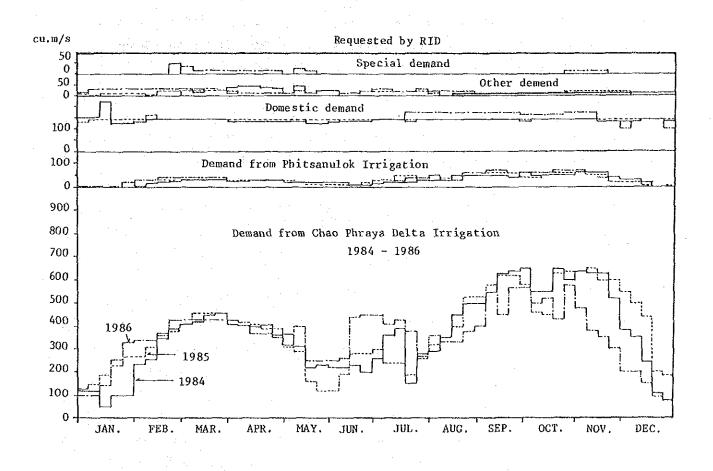
The computer program mentioned above writes the results (modified demand and return flow) to the present file No. 21. Then the simulation carries out more easily by executing the present programs (DMAND, GNGRD and SIMUL).

- A program to calculate demand, return flow and consumptive use (demand-return flow) in any area corresponding to several combination of EFFY and RTFA (say "MDFYC"). (for the step i)
- 1.5.2 Analysis for Weekly Demand Calculation Method to the dams (After 1984)

Demand to the dams by Weekly Model is calculated in comparison of demand calculation results in irrigated areas with power generation release. However, WOC have employed a simple method for demand calculation since 1984 as follows.

Water Demand to Dams (WDD) = Irrigation demand for Chao Phraya Delta + Irrigation demand for Phitsanulok Project + Domestic water demand + Other demands + Special demands) = Side inflow (m³/s) ----1

If WDD < 0then WDD = 0


l--(Equation-1)

Weekly Model have been operated in 1982, 1983 and 1986, therefore Weekly Model was operated together with (Equation-1) only in 1986. Irrigation demands calculated during dry season show approximately same pattern in three years (1984 - 1986).

Experience for Weekly Model in 1982 and 1983 were applied to estimation of irrigation demand in the delta in 1984 and 1985. RID has re-operated the Weekly Model in 1986 to examine the propriety of the model use.

It can be said that the calculation for irrigation demand in wet season in 1986 have contributed to the estimation of available rainfall, so that demand water in 1986 is smaller than that in 1984 and 1985. (Figure 1-8)

Figure 1-8. WEEKLY DEMAND TO BHUMIPOL AND SIRIKIT RESERVOIRS

1.5.3 Hydraulic Study on Chainat-Pasak Canal

In order to study hydraulic behavior of Chainat-Pasak Canal, longitudinal and cross sections, dimensions, water levels, gate opening and discharges of every three-hours at regulator were collected and analysed.

Flow capacity in the canal between each regulator is studied from water level records. A period and places of steady water flow have been selected.

			(recor	d on Jan. 14	th, '87)
			Upstream	Downstream	
Regulator Name	Location	Distance	Water Level	Water Level	Discharge
	(km)	(km)	(m)	(m)	(cu.m/s)
	· · · ·				
Manorom	0.00	0.00	14.980	13.920	19.0
Chong Kae	46,58	46.58	13,550	11.080	19.0
Koke Kathiem	86.10	39.52	9,660	8.610	19.0
Reong Rang	120.00	33.90	8,550	6.750	19.0

Hydraulic gradient between Chong Kae Regulator and Koke Kathiem Regulator is steeper than that between Manorom Regulator and Chong Kae Regulator and between Koke Kathiem and Reong Rang Regulators.

For the analysed period, flow is comparatively small so that significant differences have been found in hydraulic gradients. The tendency has been found even when flow is abundant.

Meanwhile, lag time of water in canal from Manorom Regulator to Reong Rang Regulator is estimated by numerical unsteady flow method with assumed coefficient of roughness of canal 0.0225.

Comparison of calculated value with the observed value has been made for the period from March 6th to March 20th, during which three regulators are fully opened. The results are shown in Figures 1-9 and 1-10.

When flow in the canal is increasing and three regulators are fully opened, about two days are required as lag time from Manorom Regulator to Reong Rang Regulator. When the discharge in the canal is increasing and three regulators as partly opened, about a week is required as lag time between the same.

CHAPTER 2 EVALUATION OF WATER RESOURCES

2.1 Hydrological Characteristic

2.1.1 Rainfall Characteristic

Annual rainfall in Chao Phraya River basin fluctuates from 1,000 to 2,000 mm and its difference in upper, middle and lower basins is not significant. Wet season is from May to October. Peak rainfall occurs in August or September, and there has little rainfall from November to March. Monthly rainfall at major station in the basin are shown in Figure 2-1. Results of study on probability of annual rainfall are also shown in Table 2-1.

2.1.2 Run-off Characteristic

(1) Run-off characteristic in the basin

Run-off characteristics in sub-basin are shown in Table 2-2. Annual run-off from sub-basins shows 150 to 400 mm out of annual rainfall 1,000 to 1,200 mm, so run-off percentage shows 15 to 30%. Annual run-off at Sirikit Dam shows 440 mm, and Bhumipol shows 230 mm. Run-off percentages are 37% and 20%, respectively. Annual run-off yield at Bhumipol Dam has been decreasing, though amount of annual rainfall are almost constant. It means that water consumption in the basin is increasing because of basin development.

Annual mean flow at Nakhon Sawan amounts to 24,000 MCM, out of which release from dams is 45%. On the other hand, annual flow in Pasak River shows 2,100 MCM and annual mean yield of the basin is 140 mm. This yield is the lowest in the all Chao Phraya basin.

Study on probability of annual run-off at major station has been made as shown in Tables 2-3 and 2-4.

(2) Inflow to reservoirs

Forecasting of inflow at both reservoirs is significant for annual cropping plan. Preliminary study on forecasting is conducted as follows.

Annual average inflows of Bhumipol and Sirikit reservoirs from 1972 to 1986 are 6,000 MCM and 5,800 MCM, respectively. Most of inflow appears from April to October in wet season as shown in Table 2-5. Summary of annual inflow and basin rainfall of both reservoirs from 1972 to 1986 are as follows.

• • • •	Annual Rainfall	Av	erage Inflow (M	ICM)
Dam	(mm)	Nov Mar.	Apr Oct.	Total
Bhumipol	1,170	1,380	4,620	6,000
Sirikit	1,180	740	5,070	5,810
Total	2,350	2,120	9,690	11,810

Many rainfall observation stations are located in the basin. In this study, some stations are selected provisionally and relation between basin rainfall and inflow of reservoir has been examined so as to prepare a forecarting system of inflow.

Forecasting of inflow from April to October in wet season is difficult because inflow is much dependent on amount of basin rainfall. Therefore, forecast of inflow to reservoirs has to be derived from statistic analysis of accumulated inflow data in the past. On the other hand, inflow in dry season may be easily forecasted from basin rainfall in wet season or inflow data in the past. Relation between rainfall in wet season and inflow in the next dry season from 1972 to 1986 are as follows.

Average Ra	infall (mm)	Average Inflow (MCM)
Jul Nov.	Sep Nov.	Nov Mar.
776	429	1,380
756	280	740
	Jul Nov. 776	776 429

Details are shown in Figures 2-3 and 2-4.

(3) Forecast of side flow

Water allocation to project areas through major regulators shall be planned to meet with actual reservoir release, forecast side flows and intake water requirements at major regulators derived from filed water demands. Among them, forecasting of side flow shall be made in/at the following basins and locations.

> side flows between the both dams and Nakhon Sawan side flow between Nakhon Sawan and Chainat flow of Pasak River

Forecasting side flows have been made by using rainfall and discharge data monitored in each basin and the relation previously studied on the past trend.

Study results show that sideflow is dependent on basin rainfall. During February - August, it appears as water losses along channel including consumptive use in the basin, while during September - January it appears as runoff caused by rainfall. Monthly side-flow in each basin are shown in Figures 2-5, 2-6 and 2-7. In these Figures, basin areal rainfall is calculated by average method based on the selected observation stations in each basin.

2.2 Study on Dam Operation by Water Balance Simulation Model

2.2.1 Water Balance Simulation Model

A computer simulation model for calculation of water balance in the basin has been produced so as to examine water availability for irrigation and potentiality of water resources development. In this study, past dam operation has been examined by this computer simulation model.

(1) Composition of model

For water balance study, Chao Phraya Basin is divided into fourteen sub-basins, as shown in Figure 2-8. Area of divided sub-basin are shown in Table 2-6.

Location of each sub-basin, each water requirement and its relation to storage reservoirs and river systems are considered in the simulation model. Schematic diagram of the model as shown in Figure 2-9 is used to simulate the water balance along river system.

Water balance is calculated on the basis of water requirements, inflow and outflow including return flow from each sub-basin. Water requirements are based on consumptive use by crops and rainfall in each sub-basin.

Water balance is computed in each month of the simulation period, considering monthly cropped area, planted area and their growing stages.

(2) Hydrology data

Hydrology data are used in the schematic diagram to estimate the amount of water resources in the basin.

- Rainfall

Raingauge stations in the basins are selected as shown in Figure 2-10. In this model, basin areal rainfall is estimated by average method.

- Stream flow

Monthly flows recorded at main stream gauging stations are used in this model. Selected gauging stations are shown in Figure 2-11. Stream flows at adjacent site is also calculated by using specific run-off at where is necessary.

(3) Control factors

The water balance model assumes following control factors.

Effective rainfall

From 65% to 90% of monthly rainfall in simulation month are assumed to be effective for planted crop as shown below.

Effective Rainfall

(Unit: percent)

iye a kara i	Jan.	Feb.	Mar.	Apr.	<u>May</u>	Jun.	Jul.	Aug.	Sep.	Oct.	<u>Nov.</u>	Dec.
Effective Rainfall	90	90	80	75	75	75	75	75	65	65	80	90

Return flow

Irrigation water and rainfall not effectively used in irrigation area become return flow. This return flow is effective for reuse in downstream areas. In the simulation, 30 - 90% values of return flow rates by month are employed against total of flows and rainfalls into/on a sub basin.

Irrigation efficiency

Constant efficiencies are employed to represent influences of canal seepage, percolation, evaporation and operation losses. Values of 50 to 60% are assumed in the simulation and influences of the values are examined.

Land preparation

Land preparation water requirements are assumed as follows.

Wet	season	÷	280 1	mm
Dry	season		350 1	mm

Land preparation water is supplied continuously through the land preparation period.

Consumptive use

Consumptive use is defined as a water loss through evapotranspiration of crops. Amount of consumptive use is calculated from crop coefficient and potential evapotranspiration. Potential evapotranspiration used in the simulation is presented in Table 2-7.

(4) Water balance calculation

Water balance is calculated by sub-basin, taking account of water requirement based on the above-mentioned control factors and amount of available side flows. Minimum flow constraint is also considered at some particular location in river systems.

3.2.2 Study on Dam Operation

Dam operation under precise release control in dry season since 1978 have been simulated. For study of water resources in the basin from view-points of both demand and supply irrigated area and cropping pattern in the basin are applied as shown in Tables 2-10 and 2-11. The results of simulation study are as follows.

Satisfactory dam operation is entirely carried out to meet with water demands in the Chao Phraya Delta as judged from simulated water storage shown in Figure 2-12. In this figure, estimated dam operation presents the variation of water storage simulated by computer program model. In comparison with estimated dam operation and actual one, both variations of water storage are nearly same except at some years.

As these dams are consecutive storage dams, influence of excessive release partially contributes to long-term decrease of dry season crop area. Especially, excessive release in wet season in 1981 and May to July in 1986 is one of causes of decrease of dry season crop area in draught year since then.

Dam storage was decreased during wet season in 1979 till dry season in 1980. Side flows in this wet season account for 30% of that in normal year; equivalent to 20-year return period. Annual rainfall in Chao Phraya Delta was about 800 mm as compared with 1,000 to 1,200 mm in normal year. Therefore, wet season crop in 1979 was much more dependent upon the dam storage. Furthermore, a large volume of release was carried out to maintain 1.3 million rai in the dry season in 1980. It therefore becomes necessary to establish systems for annual crop and release planning in case of such draught years.

Comparison of monthly water flow at Nakhon Sawan in the simulation is shown in Figure 2-13.

2.3 Irrigation Water Use

2.3.1 Present Conditions of Water Resources

Water resources for Chao Phraya Delta are composed of water release controlled by both huge reservoirs, uncontrolled side flows and direct rainfall in the delta. Kiu Lom Reservoir in Wang River and other reservoirs in the basin only function to supply water to their own irrigation areas, and therefore do not help any water supply to the delta.

Amount of water resources from 1977 to 1986 for Chao Phraya Delta is shown as follows.

Amount of Water Resources

	. 1		(unit: MCM)	
Season	Release from Dams	Side Flow ^{*1}	Available Water	
Wet ^{*2}	3,800	14,700	18,500	
Dry ^{*2}	6,200	1,200	7,400	
Total	10,000	15,900	25,900	
Note:	*2 From	flow at Nakhon July to Decembo January to Juno		Brrg.

Water release from dams amounts to 3,000 to 6,200 MCM or 25 to 92% of available water. Available water in Chao Phraya Delta are shown in Table 2-13 and Figure 2-14. Uncontrolled side flows from Yom, Nan and Ping rivers are also shown in Table 2-14.

Side flows are not expected during dry season especially from January to April, and most of irrigation water during this period is dependent on water release from the dams.

Meanwhile, water use conditions of water resources in current 10 years are as follows.

Release *2					
Season	*1 Intake	Flow Constraints	Unavailable Release	Irrigated Area	Rainfall
	(MCM)	(MCM)	(MCM)	(10 ⁶ rai)	(MCM)
Wet	6,700	2,000	10,760	6.1	8,900
Dry	4,200	2,000	1,060	2.7	3,900

Note: *1 ... Intake at Chainat and Rama VI Barrage. *2 ... Release from Chao Phraya and Rama VI Dams.

Average available water at Nakhon Sawan and Rama VI Barrage is 7,400 MCM in dry season. Intake of 4,200 MCM is 57% of the above available water. Unavailable water released from Chao Phraya Dam and Rama VI barrage is only 1,060 MCM theoretically during dry season. Intake of 4,200 MCM corresponds to 0.6 lit/s/ha in dry season. It is considered that the amount of available intake water is at minimum level and water release is well controlled.

2.3.2 Water Balance

Relation between available water and water consumption in the delta is shown in Figure 2-17. In this figure, consumptive use and effective rainfall for crops are estimated in the simulation model. Seen from its relation, available water is fully consumed in dry season. Storage of river flow and rainfall in wet season is effective for extension of dry season crops. River flow in 1979 was less then that in the other years even in wet season. Water use condition of wet season in 1979 was the same as that of the other dry season.

Water balance study in the Delta from 1977 to 1986 are summarized as follows.

Season	Consumptive Use	Effective Rainfall	Water Requirement	Actual Intake	Estimated Storage in Delta
Wet	8,632	4,447	4,185	6,703	+ 2,518
Dry	5,709	893	4,816	4,184	- 632
-					

Note: *1 ... Including unavailable groundwater flow

Results of yearly balance study are shown in Table 2-15. Seen from this balance study, it is considered that well-stored water during wet season is consumed in the next dry season.

Actual intake water in each irrigation area in the delta is calculated based on the amount of river flow at major regulators, as shown in Figure 2-18. Seen from relation between intake discharge and irrigation area, the intake discharge in water conservation area is less than in gravity irrigation area especially in dry season. Water intake in dry season is 0.2 - 0.5 lit/s/ha in the conservation area while 1.0 - 1.5 lit/s/ha in the gravity area, respectively. On the other hand, those in wet season are 0.2 - 0.7 lit/s/ha in the both areas because of effective rainfall. Amount of supplied water in 1985 is illustrated in Figures 2-19 and 2-20, as an example of water supply diagram.

Relation among actual water intake, rainfall and estimated consumptive use for planted crops in the lower west bank are shown in Figure 2-21. The relation indicates that water stored during wet season is effectively used for the next dry season crops.

Irrigation water is consisted of surface flow from head regulator, return flow from upper basin as a groundwater and storage water in the creeks which is well-developed in the water conservation area. Example of water level records in the creeks is shown in Figure 2-22.

2.3.3 Water Release from Reservoirs and Irrigated Area

Relation between water supply and rice yield in the delta has been studied for crop diversification and annual cropping plan. Summary of water use conditions from 1978 to 1986 are shown in Tables 2-16 and 2-17. Tables 2-18 and 2-19 show relation between value of water supply, irrigated paddy area and rice yield. Supplied water including effective rainfall for six month is 1,826 m^3/rai and 1,850 m^3/rai in wet and dry season, respectively. Water supply is consisted of water release from dam, side flow and effective rainfall. Among them, water release is controllable and forecast of effective rainfall may be difficult under the present conditions.

Side flows are not controllable, however some portion of them may be effectively used of their run-offs are forecast and reservoir releases are so adjusted.

Components of irrigation water supply to cropping area are summarized as follows.

	Average	Irrigatio	Irrigation Water Supply (m ³ /rai)			
Crop	Irrigated Area (10 ⁶ rai)	Effective Rainfall	Reservoir Release	Side Flow	Total	
Wet Paddy	6.1	751	283	792	1,826	
Dry Paddy	2.7	330	1,260	260	1,850	

Note: (1) Wet paddy: from July to December (2) Dry paddy: from January to June

On the other hand, components of paddy yield to water supply is estimated as follows.

		Component of	Production	Yield(kg/rai)
Crop	Yield (kg/rai)	Effective Rainfall	Reservoir Release	Side Flow
Wet Paddy	348	143	54	151
Dry Paddy	587	105	400	82
			1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	2 A

Note: Details are shown in Tables 2-20 and 2-21.

Those relation are also illustrated in Figure 2-23.

Taking into account of effects of water management activities, relation of water release and side flow to production yield is important. Both relations are as follows.

1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	Water Supp	<u>ly (m³/rai)</u>	Water Supp	ly per Yiel	<u>d (m³/kg)</u>
Crop	Reservoir Release	Side Flow	Reservoir Release	Side Flow	Total
Wet Paddy	283	792	0.81	2.28	3.09
Dry Paddy	1,260	260	2.15	0.44	2.59

Note: Details are shown in Table 2-22 and Figures 2-23 and 2-24.

Volumes of water released from reservoirs to yield rice production are 0.81 m^3/kg and 2.15 m^3/kg in wet and dry seasons, respectively.

Dry season paddy is almost dependent on reservoir release. Release for wet paddy is only supplemental. In 1979, however, reservoir release of $2.14 \text{ m}^3/\text{kg}$ was supplied for wet paddy. In this year, water supply from reservoirs in wet season was extremely much and almost equal to that in dry season. In drought year, release operation at reservoirs in wet season are under the same situations as that in dry season. Annual cropping plan is therefore very useful for water release control.

2.3.4 Examination on Available Water

Judging from the present situation of irrigation water use, it is necessary for effective use of water resources to ease water stress to the dams in dry season by making better use of side-flows in wet season and return-flows in dry season.

Effective use of water resources, though the degree is much dependent on completeness of water management system, may be achieved by well equipped information management through improved monitoring/communication systems, which enables improved side-flow forecasting and easy and prompt understanding of water behaviors in project areas.

After the completion of improvement system, water use efficiency of side flow and within project area will be able to be raised by 5 to 10%, in accordance with extension of improvement until at main canal level.

Amount of availed water is estimated about 1,000 MCM, which enables additional some 80,000 ha of dry season irrigation, judging from the relation between the amount of water supply and irrigation area.

For realization of effective use of available water;

Release operation of Bhumibol and Sirikit reservoirs be carried out in accordance with water release plan based on an annual cropping plan.

Water operation be managed by making full use of improved monitoring/communication facilities.

Amount of sideflow be forecasted based on developed software by using the introduced hardware.

CHAPTER 3 IMPROVEMENT PLAN OF WATER MANAGEMENT SYSTEM

3.1 Basic Concept for Improvement Plan

It may simply be said that purpose of water management is effective management on reservation, supply and use of water. Water management system is a large system of various activities to secure water sources, to supply water to users on prompt timing and in necessary volume as required, to secure conveniences and benefits by water and to control water uses in most efficient and effective manners.

There appears some factors which make operation of the current water management system difficult. Aside from factors such as natural phenomena (flood, drought, high tide, etc.), financing and human resources, followings may be pointed out. (See table 3-1)

> Both hard- and softwares for information flow sequences from sensing of information till operation through transmission, processing, judgement and instruction are not satisfactory.

Water use facilities for irrigation and drainage in the delta are hose constructed tens of years ago, and the water duty for design of canal system is small as compared with modern design standard. Therefore, capacity of water use facilities now at work becomes insufficient when cropping pattern changes from traditional supplementary wet paddy irrigation to modern dry season irrigation.

Neat control of water at rivers and canals is so difficult and complicated task due mainly to flow travel time lag caused by long reaches of canal network everywhere in the delta.

Therefore, it consequently requires maintenance and further improvement of the current water management system by lessening/eliminating these constraints in both hard- and soft-wares in step-wise manners from integrated and strategic viewpoints. Water management system will be divided into four categories, taking account of the above situations in the basin.

- (1) Management of water resources
 - Basin water management
 - Water distribution management
 - 1) Water release management
 - ii) Water distribution management to the target area
 - On-farm management

(2) Management of water use facilities

(3) Institutional management

(4) Information management

Relation between water management category and management concept is shown in Figure 3-1.

3.2 Outlines of Improved Water Management System

3.2.1 Management of Water Resources

System diagram of water resources management in the Chao Phraya basin is described in Figure 3-2.

(1) Basin water management

In order to manage water resources in the basin, establishment of improved basin water management system furnished with the following basic idea is herein proposed.

- Chao Phraya and adjacent Mae Klong River basins are divided into 14 sub-basins and 5 sub-basins, respectively, taking account of Regional boundary of RID and natural boundary. Basin water management system for water resources will be considered on this sub-basion basis.
- Every development project in each sub-basin are reviewed and evaluated from view point of use of limited water resources in the whole basin.

Basin development projects may affects the long-term trend of run-off discharge. From this view point, proper countermeasures for conservation of water resources are programed.

Water resources developments may cause serious natural and social problems. Allocation of developed water resources is well coordinated.

(2) Water distribution management

1) Water release management from resources

In order to plan annual cropping schedule and water release from the both reservoirs, data management system are improved for provision of the following data/information.

Records of planted area, yield, amount of water release and intake and other hydrology data

- Past trends of reservoir storage and side flow

- Forecast side flow and storage or reservoirs on the basis of planned annual cropping schedule.

2) Water distribution management to project area

In order to properly distribute available water to project areas through major regulators, following activities are carried out at management levels.

Forecasting of water demand and reporting to RID Head Office.

- Water allocation by RID Head office supported by use of improved data management system.

RID Head office requests amount of water release to EGAT, and instructs distribution major regulators through Regional offices as same as present. Head office monitors actual situation of water distribution in the delta by using the improved monitoring system.

System formation of the above-mentioned water distribution management is shown in Figure 3-3.

3)

Water distribution within the project area

In order to secure equitable distribution of water within a project area, improved water management is as follows.

Irrigation water is precisely distributed by each section or zone defined by RID. Project office adjusts water allocation among sections or zones for the equitability.

 Calculation of water demand is made by each zone.
 Forecast water demand and observed intake discharge are recorded and utilized for the next adjustment.

(3) On-farm management

Improved management shall be that for precise control of water and water use facilities by beneficiaries in conformity with detailed provisions of guidelines for water operation and 0 & M of water use facilities. Such guidelines will firstly be established.

3.2.2 Management of water use facilities

In order to meet requirements for water management, protection and improvement of water use facilities and their functions from deterioration are so important that improved management of these facilities shall be in the following manners.

- To employ an improved system for data custody and retrieval of information on any water use facilities.

To identify needs for maintenance/rehabilitation/ improvement of water use facilities by use of the above retrieval system and in accordance with some guidelines on standard level of functions of facilities to be equipped with.

To formulate implementation of maintenance/rehabilitation/ improvement works of water use facilities in accordance with some criteria for improvement and by taking account of other constraints in practical ways.

3.2.3 Institutional management

Water management is barely significant if inter-related activities of concerned organization are not systematically performed. Improved management shall be in the following manners.

Improvement in quality of activities at levels of concerned organizations.

Improvement in equitable quality of activities among organizations concerned in conformity with some guidelines on standard quality of activities.

For achievement of the above, training activities are programed and carried out to the levels of organizations. some educational and training activities composed of the following contents will also be programed for establishment and encouragement of farmers' organization.

> Present situation of limited water resources and water use in the delta.

Optimum water use by growing stage of crop.

Proper method for repair and maintenance of farm ditch and field structures.

General information about agriculture.

 $2 \rightarrow 33$

3.2.4 Information management

Improved management of information includes management of not only those for the current water allocation/operation but also those of water use facilities and agro-socio-economy.

The improved system is composed of a cental system at the Head office, sub-systems at Regional office and division of the Head office level and terminal systems at project office and division of the Regional office level. The system is designed so as that any level of component system can approach to any information of different level or of different office through an universal Information Bus Line (IBL).

3.2.5 Water management level

Improvement of overall water management involves many fields of works and requires time, financing, planning and implementation programing. Target levels of improvement may differ by significance of improvement subjects. Therefore, a concept of "Water management Level" is herein proposed for formulation of improved water management. The water management level demotes target level of improvement ranging from Level 0 (zero) to level 4 as follows.

- Level 0 implies continuation of the present activities without substantial changes in water operation activities and 0 & M of water use facilities.
- Level 1 implies improvement of the present communication system at basin level, while improvement of other systems/activities is suspended.
- Level 2 implies introduction of improved monitoring system until at main canal system level in addition to the improvement of Level 1.

Level 3 implies improvement of water use facilities of canal systems and overall water management system until at FIO level.

Level 4 implies improvement of overall water management system until at on-farm level including implementation of intensive land consolidation.

The above 4 levels of improved water management are thus proposed to formulate ways to the final goal of "Level 4" for the lower level. It may be formulated in a way that several target levels of improvement for the respective improvement components are combined to ease various constraints. Table 2-1 NON-EXCEEDING PROBABILITY OF ANNUAL RAINFALL (1)

765 Unit ; mm 498 633 649 603 797 611 741 200 659 641 650 778 705 656 677 654 831 810 667 575 821 870 694 20 709 209 820 756 696 683 664 683 Return Period (year) 762 977 793 932 761 888 20 726 834 742 807 Annual Rainfall from 1952 to 1986 868 100 824 953 1,062 812 906 786 945 768 읽 l,068 1,039 960 903 1,128 879 1,167 995 842 824 ហ 1,064 1,028 1,374 1,136 1,234 l,529 l,224 1,173 962 951 \sim • Note (28102) (28131) (07252) (07182) (17062) (16013) (63042) (59121) (10151) Chiang Mai (07013) Station Lower Ping Upper Ping Sukhothai Uttaradit Upper Nan Lamphun Lampang = F Nan Wang Yom Tak =

						4		·	·					·				
	Unit ; mm	•	200		936	679		402		662	·	583	916	534	814	651	417	401
			100		974	732		466		696		609	847	569	871	707	480	439
RAINFALL (2)		ar)	20	•	1,017	794		539	·	738		638	883	610	935	769	552	485
OF ANNUAL I		Return Period (year)	20		I,084	892		652	·	TO8		686	941	677	1,034	864	658	557
PROBAB IL ITY		Retur	입		1,147	986		758	• • • •	860		73 1	966	745	1,124	951	755	627
NON-EXCEEDING PROBABILITY OF ANNUAL RAINFALL (2)		-	س ا		1,227	1,110		894		936		792	1,068	840	1,236	1,058	873	719
Table 2-1 NO			2		1,392	1,379	• • •	1,178	*. • .	1,093		926	1,225	1,063	1,463	1,271	1,102	918
H H			Station	Lower Nam	Uttaradit (70013)	Phichit (38012)	Nakhon Sawan	Nakhon Sawan (26013)	Pasak	Phetchabun (36013)	Chaophraya Delta	Chai Nat (04361)	Ang Thong (01012)	Ayutthaya (42012)	Bangkok (41013)	Samut Sakhon(52012)	Nakhon Pathom (23012)	Suphan Buri(60022)
								••• • •	2-3	37								

Note : Annual Rainfall from 1952 to 1986)

Table 2-2 SUMMARY OF RUN-OFF IN CHAO PHRAYA BASIN

	started on
Basin Rainfall 1,170 1,180 1,080	
	e operation of
Specific Annual Run-off (mm) 230 440 230 230	0 0 192 192 192 192 192 192 1936, because
2 A 2	72 to 198
Average Annual Run-off (MCM) 6,090 5,800 630	5,590 5,130 13,600 10,720 24,320 24,320 24,320 26,410 26,410 26,410
Ave: Ann Run 6, (M	- 5,590 - 5,130 71,000 13,600 39,500 10,720 110,600 224,320 14,400 22,090 14,400 22,090 26,410 Estimation based on run-off f
Catchment Area (km ²) 26,400 13,100 2,700	71,000 39,500 10,600 14,400 hation based
Catchme Area (km ²) 26,400 13,100 2,700	71,000 39,500 110,600 14,400 Estimation 2
	No te te te te te te te te te te te te te
Station Inflow to Dam Bhumibol Sirikit Kue Lom	Dam Release Bhumibol Sirikit Discharge at Nakhon Sawan Side Flow Sub-total Sub-total Available Water at Nakhon Sawan No
었 뭐	

Apr. in 1971. But average rainfall calculated from 1952 to 1986.

· ·									
		•		200	1,449	2,807	563	265	560
		Unit : MCM		100	l,522	2,987	697	305	6 5 7
				20	1,614	3,199	8 8 8	354	TLL
			Feriod (year)	20	1,778	3,544	1,116	441	976
· · · · · · · · · · · · · · · · · · ·	•		Return B	01	1,959	3,884	1,376	533	1,193
			· .	<u>ا</u> م	2,232	4,342	l,728	668	1,509
·				2	2,975	5,377	2,540	710'I	2,324
			Catchment	<u>Area (Km²)</u>	14,023	10,335	13,583	10,507	14,374
			· · · ·	Station	Upper ping (P19A)	Upper Nan (N35)	Yom (Y3A)	Lower Wang (W4A)	Pasak (S9)

Table 2-3 NON-EXCEEDING PROBABILITY OF ANNUAL RUN-OFF

Note : Annual run-off from 1967 to 1986

2 - 39

*

Table 2-4 PROBABILITY OF SIDEFLOW AT NAKHON SAWAN IN WET SEASON

Unit : MCM

	eedance	583 11,583	489 17,417	862 21,396	728 25,284	642 30,433	015 34,400	501 38,449		
Probability of	non-exceedance	11,583	7,489	5,862	4,728	3,642	3,015	2,501	•	

Sideflow from 1967 to 1986 in wet season (Jul - Dec)

Note :

Period (year) 2

Return

10 20 20 20 20

MCM						1.14	• •	, -		-							
Unit: MCM	Total	16,416	10,275	17,863	11,680	10,411	14,028	7,655	11,786	12,775	11,193	9,195	11,946	9,661	10,340	ļ	
Both Dam	Apr - Oct	14,134	8,301	14,728	8,928	7,855	11,981	6,195	11,123	11,223	8,867	7,787	9,041	8,221	7,177	e u	
	Nov - Mar	2,282	1,974	3,135	2,752	2,556	2,047	1,460	663	1,552	2,326	1,408	2,905	1,440	3,163	1,159	
	'l'otal	6,601	4,492	8,303	6,224	4,523	6,527	3,904	6,182	7,658	5,021	5,222	6,598	5,213	4,898	 1 	
Sirikit Dam	Apr - Oct	5,942	3,726	7,600	5,280	3,510	5,800	3,233	5,725	7,066	4,251*	4,615*	5,712	4,479	4,014	n a	
	Nov - Mar	659	766	703	944	1,013	727	671	457	592	770	*209	886*	734	884	543	
	'Potal	9,815	5,783	9,560	5,456	5,888	7,501	3,751	5,604	5,117	6,172	3,973	5,348	4,448	5,442	I	
Bhumibol Dam	Apr - Oct	8,192	4,575	7,128	3,648	4,345	6,181	2,962	5,398	4,157	4,616	3,172	3,329	3,742	3,163	N. A.	
	Nov - Mar	1,623	1,208	2,432	1,808	1,543	1,320	189	206	096	1,556	801	2,019	706	2,279	616	
	Year	1972/73	1973/74	1974/75	1975/76	1976/77	1977/78	~ 1978/79	1979/80	1980/81	1981 / 82	1982/83	1983 / 84	1984/85	1985 / 86	1986/87	

.

		Catchment
Name	Basin Number	<u>Area (sq. km)</u>
Chao Phraya Basin		
Ping Basin		
Upstream of Bhumipol	(1)	26,400
Downstream of Bhumipol	(4)	13,120
Wang Basin		
Upstream of Kiu Lom	(2)	2,700
Downstream of Kiu Lom	(3)	7,810
Yom Basin		
Upstream basin	(5)	9,190
Downstream basin	(6)	11,920
Nan Basin		
Upstream of Sirikit	(7)	13,200
Downstream of Sirikit	(8)	26,230
Sub-total (at Nakhon Sawan)		<u>110,570</u>
<u>Pasak Basin</u>	(10)	13,780
Chao Phraya		
Nakhon Sawan	(9)	6,860
Upper East	(11)	8,060
Lower East	(12)	6,840
Upper West	(13)	6,290
Lower West	(14)	4,280
Sub-total	a series Alternational Alternational	<u>32,330</u>
Total (Chao Phraya Basin))	<u>156,680</u>

Table 2-6 CATCHMENT AREA BY RIVER BASIN

			Tab1	Table 2-7 MC	MONTHLY PC	POTENTIAL E	EVAPOTRAN	EVAPOTRANSPIRATION	IN EACH	BAS IN	· · ·	а.		
			• • •	:		·				· ·		Unit	Unit; mm/month	
•	•		·				Month		•			·		
Basin	a <u>Station</u>	Jan	Feb	Mar	Apr	May	<u>Jun</u>	Jul	Aug	Sep	Oct	Nov	Dec	
Ö	Chaing Mai	104	136	172	188	164	143	135	122	124	121	109	3 3	
0	Lampang	113	145	182	198	170	152	147	133	128	123	114	101	
0	- do -	۰.			:		- op -	-			· ·			
•	Nakon Sawan	132	164	201	208	. 179	162	152	141	133	133	130	122	
0	Phrae	119	150	192	208	180	157	149	135	131	128	120	107	
©	Phitsanulok	112	138	168	181	162	143	136	126	127	129	119	106	
© 2-/	Phrae	119	150	192	208	180	157	149	135	131	128	120	127	
@ 43	Phitsaunlok	112	138	168	181	162	143	136	126	127	129	119	106	
0	Nakon Sawan	132	164	201	208	179	162	152	141	133	133	130	122	
9	- do -						op -	-						
⊜	Lopburi	143	165	197	201	175	160	150	139	134	137	138	133	
0	Don Muang	137	154	179	180	164	156	149	142	141	137	133	128	
٩	Suphan Buri	148	165	200	210	187	176	167	156	145	145	144	139	
Ð	Don Mung	137	154	179	180	164	167	149	142	141	137	133	128	

Catchment	Average Annual			n an
Area (km²)	Inflow (MCM)	Gross (MCM)	Effective (MCM)	Purposes*
26,400	8,600	12,200	8,600	I, F, P
13,100	7,000	10,550	8,800	l, F, P
2,700	570	112	106	1, F
3,700	5,200	7,500	4,800	i, F, P
10,900	4,600	17,700	7,500	1, F, P
1,200	165	390	200	I, F
1,300	400	n. a.	n.a.	I, F, P
570	250	n. a.	n.a.	1, F
	Area (km ²) 26,400 13,100 2,700 3,700 10,900 1,200 1,200	Area Annual Area Inflow (km²) (MCM) 26,400 8,600 13,100 7,000 2,700 570 3,700 5,200 10,900 4,600 1,200 165 1,300 400	Area Annual Inflow Gross (MCM) 26,400 8,600 12,200 13,100 7,000 10,550 2,700 570 112 3,700 5,200 7,500 10,900 4,600 17,700 1,200 165 390	Area Inflow (km2)Annual Inflow (MCM)Gross (MCM)Effective (MCM)26,4008,60012,2008,60013,1007,00010,5508,8002,7005701121063,7005,2007,5004,80010,9004,60017,7007,5001,2001653902001,300400n. a.n. a.

Table 2-9 INVENTORY OF MAJOR DAMS AND REGULATORS

Note * 1 ; Irrigation, F ; Flood Control, P ; Power Generation

Table 2-8 INVENTORY OF MAJOR REGULATORS IN THE BASIN

Name of Diversion Weir	Catehment Area (km²)	Storage Capacity (MCM)		Design Discharge (m ³ /s)
Chainat	n.a.	 130		3,300
Rama VI Barrage	n. a	 n. a		35 35
Vajiralongkom	25,600	 6		n.a.
Nare suan	n.a.	 n. a.	• •	n. a.

Table 2-10 PADDY PLANTED AREA IN CHAO PHRAYA DELTA

· · ·		- 			•								
	1.	Dry	320.8	356.1	339.0	483.3	211.4	503.7	531.9	514.6	514.4	461.6	421.3
(Unit = 10 ³ ha)	Total	Wet	977.1	988.5	968.5	971.7	982.6	984.1	979.9	580.1	1,001.9	1,008.5	981.1
(Unit =	West	Dry	134.1	122.9	142.2	152.9	137.1	149.9	153.O	146.6	156.6	144.2	141.4
	Lower West	Wet	6.16	103.6	94.0	73.8	69.7	89.2	90.6	113.4	122.6	139.3	135.2
	East	DrY	80.6	102.9	107.9	120.8	55.4	145.7	144.7	144.1	132.5	125.8	121.2
	LOWEY E	Wet	315.7	321.6	306.4	350.6	349.6	336 6	340.7	325.5	324.3	318.9	314.1
	West	Dry	9.66	114.3	76.6	170.4	18 . 4	173.8	195.2	203.1	176.6	161.9	132.7
	Upper West	Wet	357.1	352.4	346.1	338.4	351.2	345.5	336.6	330.0	341.9	335.7	335.4
· .	East	Dry	6. 5	16.0	12.3	39.2	0.5	34.3	39.0	20.7	48.7	29.7	26.0
	Upper East	Wet	212.4	210.9	220.0	208.9	212.1	212.8	212.0	211.2	213.1	214.6	196.4
		Year	1976	1977	1978	1979	1980	1981	1982	1983	1984	1985	1986

Lower East = Nakhon Luang, Pasak Tai, Rangsit Nua, Rangsit Tai, Khlong Dan, Phra Ong Chai-ya-nu-chit Lower West = Chao-ched-Bang-Yihon, Phraya Banlue, Phra Phimon, Phasi Charoen, Bang Ban ••• Note

Upper East = Maharat, Manorom, Chong Khae, Khoke Kathiem, Roeng Rang

Upper West = Phonlathep, Thabote, Sam Chook, Pho Phaya, Don Chedi, Borommathat, Channasutr, Yang Manee, Phak Hai

Table 2-11 IRRIGATED AREA BY RIVER BASIN

	·	Pasak	III, VIII	10		22	22	24	24	24	31	31	32	32	32	32	· · · · ·
	Sakae-	krang	JIA	თ	·	сų	14	14	14 1	14	14	Ø	30	30	30	30	
	LOWER	Nan	III	ω		69	84	85	85	85	85	80	85 5	85	1.67	167	
	LOWER	Yom	TTT	V		Q	10	10	10	10	TO	TO	TO	10	IO	τ1	
ha)	Lower	Ping	TII	- 7 '		29	47	47	47	50	53	53	с С	57	73	73	
(Unit : 10 ³ ha)	Upper	Nan	Η	2		17	17	17	17	13	50 T	с С	18	18	18	18	
·	Upper	MoY	н	ហ		37	38	38	80	38	38	38	38	30	6E	39	
		Wang	н	т		ЭГ	16	16	16	16	25	52	25	25	26	26	
	Upper	Ping	н	-1		139	143	144	144	J44	145	149	149	150	158	158	
			Region	Basin Number	Year	1976	1977	1978	1979	1980	1961	1982	1983	1984	1985	1986	

Source : Water Resources Development in Thailand completed to the end of 1985 and Under construction in 1986 (RID)

Table 2-12 COMPARISON BETWEEN REQUESTED RELEASE AND ACTUAL RELEASE FROM BOTH DAMS

Unit = MCM

1936	Request Actual <u>by RID Release</u>	406	1,178	1,647	1,433	1,196	1,221	1,078	732	537	806	1,280	445	12,061
म	Request	333	1,175	1,680	1,540	783	229	1,172	704	514	1,063	1,447	399	11,039
ارد	Actual Release	737	1,169	1,657	1,510	962	489	469	487	350	108	147	200	8,235
1985	Request Actual by RID Releas	786	1,178	1,690	1,547	989	579	613	488	441	60	36	0	8,407
41	Actual Release	323	1,142	1, 609	1,501	1,001	456	648	1,053	913	272	131	273	9,922
1984	Request Actual <u>by RID</u> <u>Releas</u>	276	1,192	1,668	1,698	968	259	778	1,166	873	389	726	233	10,226
ml	Actual Release	ល ភ ខ	1,251	1,658	1,673	1,260	645	696	506	165	59	73	56	a, 196
1983	Request Actual by RID Release	813	1,301	1,671	1,615	1,312	458	λ, σ ξο	631	4 6	0	O	o.	8,885
21	Actual Release	713	1,209	1,663	1,428	1,129	759	1,251	1,428	434	357	607	495	11,473
1982	Request by RID	469	1,300	1,747	1,496	1,074	736	1,331	1,702	674	0	206	200	10,935
1	Actual Release	639	126	1,287	1,480	1,332	1,333	548	1,187	719	649	861	515	174,11
1981	Request by RID	156	879	1,343	1,438	782	0	0	60	0	542	700	161	6,061
ol	Actual Release	535	461	616	586	545	929 1939	366	265	329	342	320	417	5,137
1980	Request Actual by RID Release	•	466	683	604	447	433	670	0	o	0	o	O	3, 303
ହା	Actual Release	794	956	1,660	1,618	1,447	1,011	1,234	1,337	847	638 63	1,409	853	14,104
1979	Request Actual by RID Release	295	921	1,590	1,723	1,180	503	734	1,464	828	884	1,683	386	12,691
· ·	Month	Jan.	Feb.	Mar.	Apr.	Мау	Jun.	Jul.	Aug.	Sep.	oct.	Nov.	Dec.	Total

 \sim

Note ; [_____ indicates much difference between requested release and actual one

Table 2-13 AVAILABLE WATER IN CHAO PHRAYA DELTA

Unit : MCM

	Pasak Pasak	River	N.A.	219	115	113	226	210	168	103	147	173	184	140	234	143	176	191	148	308	263	294	187	
Season	Discharge at Nakhon	Sawan	N.A.	4,607	3,016	4,624	5,403	4,688	5,194	5,775	6,677	9,419	8,625	5,453	8,874	4,847	8,093	7,263	7,409	7,350	7,016	9,147	6,503	
Dry S	รัฐล ม	Dam	N.A.	2,663	2,349	3,473	3,691	4,762	4,318	5,632	5,836	8,273	8,189	4,961	7,456	3,097	6,825	6,901	7,340	6,059	6,516	7,077	5,548	
	Run-off except	Dam	N.A.	1,944	667	1,151	1,712	ı	876	143	841	1,146	436	492	1,418	1,750	1,268.	362	69	1,291	500	2,070	955	y in 1971.
	Pasak 1:::	JOATH	831	116	1,786	2,610	2,541	1,968	974	1,125	2,980	2,649	1,233	4,950	714	2,675	2,138	2,695	2.454	2,443	3,221	857	2,087	oth Dam had been started on July in 1971
Season	Discharge at Nakhon	sawan	14,418	9,983	17,002	30,729	18,731	10,746	16,756	15,447	28,514	21,714	13,977	24,664	11,037	23,563	17,173	12,637	16,649	11,409	16,470	10,922	17,126	th Dam had bee
Wet Se	Release*1 from	nam	3, 569	3,060	2,216	3,430	6,790	5,095	4,189	4,824	7,451	6,022	6,131	3,636	6,618	2,039	4,479	4,572	1,851	3,889	1,735	5,578	4,358	Operation of bo
	Run-off except n-m	nam	10,849	6,923	14,786	27,299	11,914	5,651	12,567	10,623	21,063	15,692	7,846	21,028	4,419	21.524	12,694	8,065	14,798	7,520	14,735	5,344	12,768	ين * :- مي
		TEAL	1967	1968	1969	1970	1971	1972	1973	1974	1975	1976	1977	1978	1979	1980	1981	1982	1983	1984	1985	1986	Average	Note

Before 1971, only Bhumibol Dam had been operated.

*2 = Discharge be estimated until 1972

Table 2-14 SIDEFLOW IN WET SEASON AT NAKHON SAWAN

Unit : MCM

	(Observed Run-	-off Discharg	*1 e	Sideflow
Year	Yom	Nan	Ping	Total	at Nakhon Sawan
1967	1,880	1,949	1,431	5,260	10,849
1968	863	1,405	1,267	3,535	6,923
1969	1,391	2,750	3,338	7,479	14,786
1970	3,755	3,406	4,175	11,336	27,299
1971	3,924	3,173	2,779	9,876	11,941
1972	1,448	1,148	1,908	4,504	5,651
1973	3,970	2,989	3,525	10,484	12,567
1974	2,524	2,522	2,893	7,939	10,623
1975	3,650	5,562	3,551	12,763	21,063
1976	2,249	4,686	2,633	9,568	15,692
1977	2,068	3,322	1,722	7,112	7,846
1978	3,940	6,327	2,650	12,917	21,028
1979	801	1,898	1,077	3,776	4,419
1980	2,423	5,732	2,132	10,287	21,524
1981	3,585	4,154	2,253	9,992	12,694
1982	1,212	3,144	1,085	5,441	8,065
1983	2,232	3,670	2,929	8,831	14,798
1984	1,883	2,529	1,103	5,515	7,520
1985	2,105	5,413	1,857	9,375	14,735
1986	1,571	2,413	1,513	5,497	5,344
Average	2,374	3,410	2,291	8,075	12,768

Note

*1 = ;

Observation station are as follows Yom Y3A (13,580 km²)

Nan N7A - N12 (13,430 km^2) Ping ... P7 - P12 (16,300 km²)

$$2 - 49$$

Table 2-15 WATER BALANCE STUDY IN CHAO PHRAYA DELTA

	·									÷					н	•		•					
	Storage	(MCM)	2,198	-970	1,104	17	1,034	-784	2,187	- 545	3,915	- 988	2,550	- 995	2,005	- 685	3,837	-760	3,167	25	3,184	- 632	2,518
Require	- ment	(MCM)	5,592	3,742	4,906	5,326	6,084	2,751	4,002	5,080	3,404	5,416	4,824	5,958	1,382	5,591	3,961	5,103	3,887	4,373	3,806	4,816	4,185
liffective	Kainfall	(MCM)	3,060	855	3,554	816	2,469	432	4,571	1,295	5,241	1,263	3,797	535	7,227	910	4,834	827	4,933	1,106	4,782	893	4,447
Consumptive	Use .	(MCM)	8,652	4,597	8,460	6,142	8,553	3,183	8,573	6,375	8,645	6,679	8,621	6,493	8,609	6,501	8,759	5,930	8,820	5,479	8,588	5,709	8,632
	Release	(MCM)	6,299	2,217	24,771	3,268	3,890	3,370	22,507	3,627	15,009	2,750	8,747	2,413	20,332	2,636	6,528	2,424	14,701	4,802	4,813	3,056	12,760
Actual	Intake	(MCM)	7,790	2,772	6,010	5,343	7,118	1,967	6,189	4,535	7,319	4,428	7,374	4,963	3,387	4,906	861,7	4,343	7,054	4,398	6,990	4,184	6,703
Irrigated	Area	(10 ⁶ rai)	6.2	2.1	6.0	3.0	6.1	1.3	6.1	3.1	6.1	3.3	6.1	3.2	6.1	3.2	6.2	2.8	6.3	2.7	6.1	2.7	6.1
	Season		w	D	M	D	W	Q	M	a	M	С Д	M	a 1	M	Q	M	đ	M	α	M	Q	W
	Year		1977	1978		1979		1980		1861 2	- 50	1982	* • • •	1983	· · ·	1984	•	1985		1986		Average	

	·*:	••				Unit :	MOM
	Ava	Available Water		Water us	Water use in Delta	Estimated* ³	
Year	Dam Release	Side* ¹ Flow	Total	Actual Intake	Actual Release* ²	EFF. Rainfall in Delta	- - -
1978	3,636	25,978	29,614	6,010	24,771	3,554	
61979	6,618	5,133	11,751	7,118	3,890	2,469	
1980	2,039	24,199	26,238	6,189	22,507	4,571	
1981	4,479	14,832	19,311	7,319	15,009	5,241	
1982	4,572	10,760	15,332	7,374	8,747	3,797	
1983	1,851	17,252	19,103	3,387	20,332	7,227	
1984	3,889	9,963	13,852	7,798	6,528	4,834	
1985	1,735	17,956	19,691	7,054	14,701	4,933	
1986	5,578	6,201	11,779	6,990	4,813	4,782	
Average	3,822	14,697	18,519	6,582	13,478	4,601	

Table 2-16 CURRENT WATER USE CONDITION IN WET SEASON

Note

E

*¹ : Accumulated un-controlled flow at Nakhon Sawan and Pasak

Released water from Chao Phraya Dam, Rama VI, Phophaya and Pakhai Regulators. .. ~* 3

(3) *³ : Effective Rainfall

(4) Wet season from Jul. to Dec.

Table 2-17 CURRENT WATER USE CONDITION IN DRY SEASON

Unit : MCM EFF. Rainfall Estimated*³ Released water from Chao Phraya Dam , Rama VI, Pho phaya and Pakhai Regulators in Delta 1,263 535 910 1,106 893 855 816 ,295 432 827 Actual Release*² 2,413 2,636 2,424 3,056 3,370 2,750 2,217 3,268 3,627 4,802 : Accumulated un-controlled flow at Nakhon Sawan and Pasak Water Use in Delta Intake Actual 4,906 5,343 4,535 4,428 4,184 1,967 4,343 2,772 4,963 4,398 7,483 7,279 8,269 7,454 Total 9,108 4,990 7,557 7,658 9,441 5,593 Dry season from Jan. to Jun. Side* Flow Effective Rainfall Available Water 1,235 632 1,599 763 2,364 l,652 1,893 1,444 553 217 Dam Release 6,248 6,516 7,340 7,456 6,825 6,901 6,059 3,097 7,077 4,961 Note () Э 3 3 Average Year 1979 1982 1983 1984 1985 1978 1980 1981 1986

2-18 WATER USE AND YIELD IN WET SEASON	Water use in Delta	Actual*1EffectiveWater useperIntakeRainfallTotalper raiWater use(MCM)(MCM)(MCM)(m ³ /rai)(kg/m ³)	1,594	2,469 9,587 1,572	4,571 10,760	12,560 2,060	11,171 1,831	10,614 1,740		•	6,990 4,782 11,772 1,930 0.201	6,582 4,601 11,183 1,826 0.191	
<u>~</u>		Yield Actu <u>per rai</u> Inta (kg/rai) (M(295 6,01	307 7,11	Ψ	352 7,3.	1	Ŋ	364 7,79	4	387 6,99	348 6,58	
		Planted Area (10 ⁶ rai)	6.0	6,1	6.1	6.1	6.1	6.1	6.2	6.3	6.1	6.1	
	· · · · · · · · · · · · · · · · · · ·	Year	1978	1979	1980	1981	1982	1983	1984	1985	1986	Average	Note

: Except release from Chao Phraya Dam, Rama VI, Phophaya and Pakhai Regulator (I) *¹

(2) Wet season from Jul. to Dec.

Table 2~18 WATER USE AND YIELD IN WET SEASON n5R J

Table 2-19 WATER USE AND YIELD IN DRY SEASON

Yield	er s ure	(kg/m ³)	16	71	96	37	37	26	43	0.338	00	0.318	
Υi	μ t t	(kg/)	0.316	0.271	0.296	0.337	0.337	0.3	0.343	0.3	0.300	0.3	· · ·
	Water use	(m ³ /rai)	1,727	2,053	1,845	1,880	1,725	1,718	1,818	1,846	2,039	1,850	
	+ + - 	(WCM)	3,627	6,159	2,399	5,830	5,691	5,498	5,816	5,170	5,504	5,077	
Water use in Delta	Effective	(WCM)	855	816	432	1,295	1,263	535	016	827	1,106	893	
Wat	Actual*1	(MCM)	2,772	5,343	1,967	4 ,535	4,428	4,963	4,906	4,343	4,398	4,184	· · · · · · · · · · · · · · · · · · ·
	Yield	(kg/rai)	545	556	546	633	582	560	623	624	612	587	
	Planted	(10 ⁶ rai)	2.1	3.0	1.3	3.1	3,3	3.2	3.2	2.8	2.7	2.7	
	*co>	rcar	1978	1979	1980	1981	1982	1983	1984	1985	1986	Average	Note

*¹: Except release from Chao Phraya Dam, Rama VI, Phophaya and Pakhai Regulator

Ð

Dry season from Jan. to Jun.

3

2 -- 54

Table 2-20 RELATION BETWEEN WATER SUPPLY AND YIELD IN DELTA (WET SEASON)

Fotal Yield (kg/rai) per rai 295 307 340 352 358 368 348 364 364 387 Component of Yield (kg/rai Flow 163 66 181 157 166 106 162 195 ISI 121 Dam Release (kg/rai) 109 54 23 129 61 ŝ 48 63 20 Ц Effective Rainfall (kg/rai) 109 143 144 147 122 251 139 150 79 157 Total Supply per rai (m³/rai) 1,826 1,572 1,831 1,740 1,903 1,930 1,594 1.764 2,060 2,037 Component of water supply Side Flow (m³/rai) (792 879 510 936 603 849 1,021 922 501 904 Dam Release (m³/rai) 283 123 658 353 543 79 278 360 54 66 Effective Rainfall (m³/rai) 751 592 404 749 860 622 1,185 780 783 784 Area (10⁶ rai) Planted 0.0 6.3 6.1 6.2 6.1 6.1 6.1 6.1 6.1 6.1 Average 1979 Year 1986 1978 1980 1983 1985 1982 1984 1981

2-55

Note

Dam release and side flow be estimated, based on the proportion of available water to the actual intake. •••

Table 2-21 RELATION BETWEEN WATER SUPPLY AND YIELD IN DELTA (DRY SEASON)

Total Yield (kg/rai) per rai 587 556 560 612 545 546 633 582 623 624 (kg/rai) Component of Yield Side Flow 122 52 110 170 5 82 87 86 33 47 Dam Release (kg/rai) 400 370 395 420 416 469 367 278 406 49T Effective Rainfall (kg/rai) 105 128 100 129 123 74 98 54 141 97 Total Supply Side*¹ Total Supr Flow per rai (m³/rai) (m³/rai) 1,850 1,880 1,718 1,818 1,846 1,845 1,725 2,053 2,039 1,727 Component of Water Supply 260 149 323 573 256 163 407 66 321 45 Dam*¹ Release (m³/rai) 1,260 I,388 1,206 1,506 1,213 1,171 940 1,244 1,222 1,458 Effective Rainfall (m³/rai) 284 295 410 330 272 332 418 382 167 407 Planted Area (10⁶rai) 2.8 2.7 2.7 3.0 3.3 3.2 3.2 2. I 1.3 3.1 Average 1982 1983 1984 1985 1979 [.] 1981 1986 Year 1978 1980

Note

Dam release and side flow be estimated, based on the proportion of available water to the actual intake.

Table 2-22 WATER SUPPLY PER YIELD IN WET SEASON

(m[°]/kg) T tal Yield 3.40 3.80 2.99 3.38 3.09 3.08 2.96 3.413.45 1.51 Water Supply per Yield Side $\frac{Flow}{(m^3/kg)}$ 2.98 1.66 2.75 2.62 L.36 2.48 1.56 2.28 2.37 2.81 Dam Release (m³/kg) 1.40 0.81 0.42 2.14 0.24 0.79 0.15 1.01 0.97 0.27 (kg/rai) per rai Yield 295 340 358 348 307 352 368 364 364 387 Total Supply (m³/rai) 1,075 1,002 1,168 1,146 1,015 1,200 1,209 1,120 555 1,257 Side*¹ Flow (m³/rai) Water Supply 879 510 792 936 922 603 849 501 904 1,021 $\frac{\text{Dam}^{*1}}{\frac{\text{Release}}{(\text{m}^{3}/\text{rai})}}$ 283 123 278 360 353 543 658 79 66 **S**4 Average 1980 1983 Year 1979 1981 1982 1986 1978 1984 1985

Dam release and sideflow be estimated, based on the proportion of available water to the actual intake. . H ---*

Note

WATER SUPPLY PER YIELD IN DRY SEASON Table 2-23

Total Yield (m³/kg) 2.42 3.20 2.31 2.59 2.46 2.48 2.66 2.77 2.31 2.77 Water Supply per Yield $\frac{\text{Side}}{\frac{\text{Flow}}{3}/\text{kg}}$ 0.26 0.58 1.05 0.40 0.08 0.66 0.44 0.27 0.17 0.51 (m³/kg) Release 2.15 2.00 2.15 Dam 1.72 2.14 2.69 1.95 2.22 2.62 16.1 (kg/rai) Yield per rai 545 556 546 633 587 582 560 623 612 624 Supply (m³/rai) ,513 1,520 , 320 ,462 1,343 Total l,629 ,781 ,551 ,534 1,551 Side*¹ Flow (m³/rai) Water Supply 260 149 323. 163 573 256 99 4 5 321 407 (m³/rai) Release 940 1,213 1,171 1,458 1,206 l,244 1,506 1,388 1,260 1,222 Dam*¹ Note: Average Year 1978 1979. 1980 1983 1984 1985 1986 1982 1981

= Dam release and side flow be estimated, based on the proportion of available ----*

water to the actual intake

Table 3-1 COMPARISON TABLE ; PRESENT AND IMPROVED WATER MANAGEMENT SYSTEM

M	anagement Category	Present Water Management System	Problems in the Present System	Improved Water Management System	Strategies by the Study
{A. N	ANAGEMENT OF V	YATER RESOURCES			
(1) B	Basin Management	 No mutual coordination in management between indivi- dual projects 	 Shortage of available water resources 	- Establishment of a system to survey, research and evaluate development/conservation of water resources in the basin	 Preparation of framework of th Preparation of basin-wide water
				 Coordination and recommendation activities in accordance with outcomes of analyses of 	model Recommendation of projects to
(2) E	Stribution Manageme	nt		the system	 Preliminary study on new water
-	Reservoir Release Aanagement	 Planning of dry season crop- ping area from reservoir sto- rages at the end of wet season 	 Decrease of cropping area in drought year 	Reservoir operation in accordance with annual cropping plan derived from statistical analyses of hydrology and information of farming/agri-	 Preliminary analyses and to iden (Crop Diversification/Information)
•		 Irrigation of whole areas in wet season 		culture	
ь) С	Distribution Manageme	nt in the Delta (See "B")			
-)istribution Manageme n Project Area	nt - Judgment by experience	 Improper distribution Excessive intake 	 A system to proceed from prediction, observation till verification at management levels 	 Preparation of framework Recommendation for implement
			- Partial inundation damage	 Data processing by management purposes and by groups of computer application programs 	
(3) C	Dn-farm Management	- Empirical management	- Operation loss by poor on- farm facilities and their	 Preparation of manual for proper diversion and management of on-farm facilities 	- Preparation of guidelines to est - Proposal for Model Project
are Lindar R		- Individual management	Wauagement	- Implementation of management by the manuals	
(B, I	NFORMATION MAN	AGEMENT: Ref above (2)]			
(1) F	Reservoir Release and D	Distribution Management in Project Area			· · · ·
a) N	feasurement	- Water level/flow, rainfall	 Calibration of water level-flow Error data/information 	 Measurement of water quality, soil moisture/water logging 	 Preparation of observation network
				- Automatic measurement of a part of them	
ь) С	Collection	 Voice communication by radio or telephone 	 Error by insufficient communi. system 	 By improved system by voice communication Partial introduction of automatic collection system 	 Preparation of monitoring/com improvement plan
:			- Delay by busy line		
c) +	landling/filing	 Manual processing and hand writing onto file 	Not systematic to do with processing	 Systematic compilation of data by purpose Data management system by Data-Base 	 Preparation of master plan for i management system
2.1		- Partially computerized			
d) P	rocessing	- Empirical	- Error of judgment	- Decentralized at project office level	 Preparation of plan for develop application programs
		 Centralized by use of RID's simulation model 	 Voluminous data compilation Delay by long computer run-time 	 Processing by purposes and by groups of computer application programs 	- Preparation of supporting prog present simu, model
	nstruction and	 Voíce communi. by radio and telephone 	 Information error and instruction delay by communi. system 	 Quick communi. by improvement of communi. system for instruction 	- Preparation of plan for improv communi. system
		- Manual operation			
	Aonitoring/verifi- ation	- Manual graphic board at Head Office without veri. system	 Difficulty in proper water distribution 	 Introduction of display panel system and verifi- cation system 	 Development of softwares for a system
	AANAGEMENT OF F	ACILITIES] - Partial repair/rehabili. by individual project management	- Functional deterioration	 Preparation of operation and maintenance manual for the management 	 Preparation of guidelines to es Preparation of plan for improv
ក្រើម	STITUTIONAL MAI				
1. n . 11		- Training and education	 Insufficient activities of farmers' organization 	 Formulation of education and training programs to reinforce farmers' and water management organizations 	 Preparation of guidelines for the Proposal for implementation of
				- Implementation of the programs	

- Implementation of the programs

idy Team

the system formation ter balance simulation

to prevent soil erosion ter resources development

dentify future direction ation Center)

nentation of Model Project

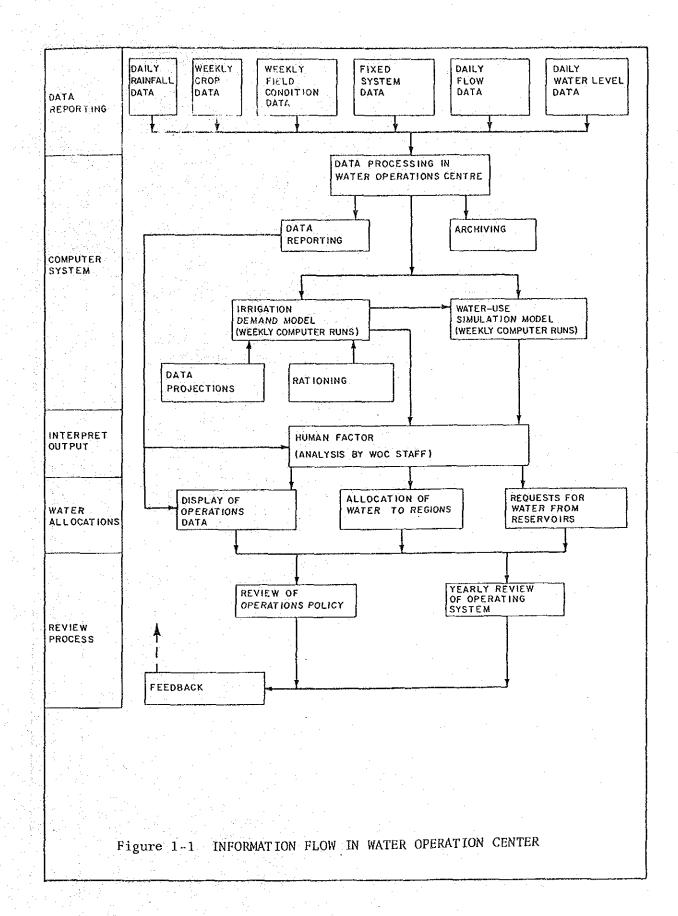
stablish manuals

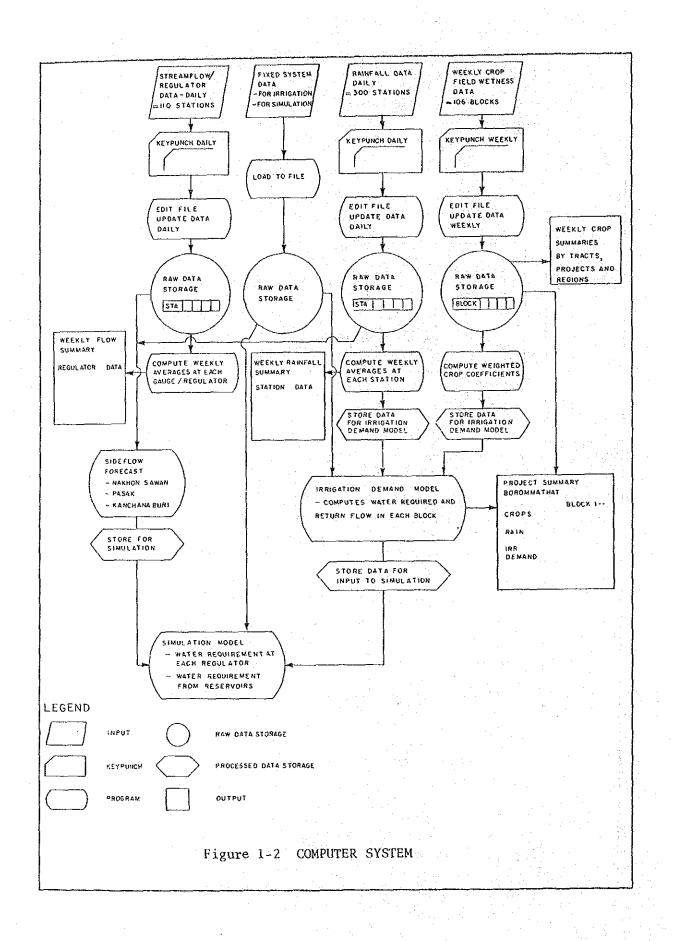
etwork improvement plan

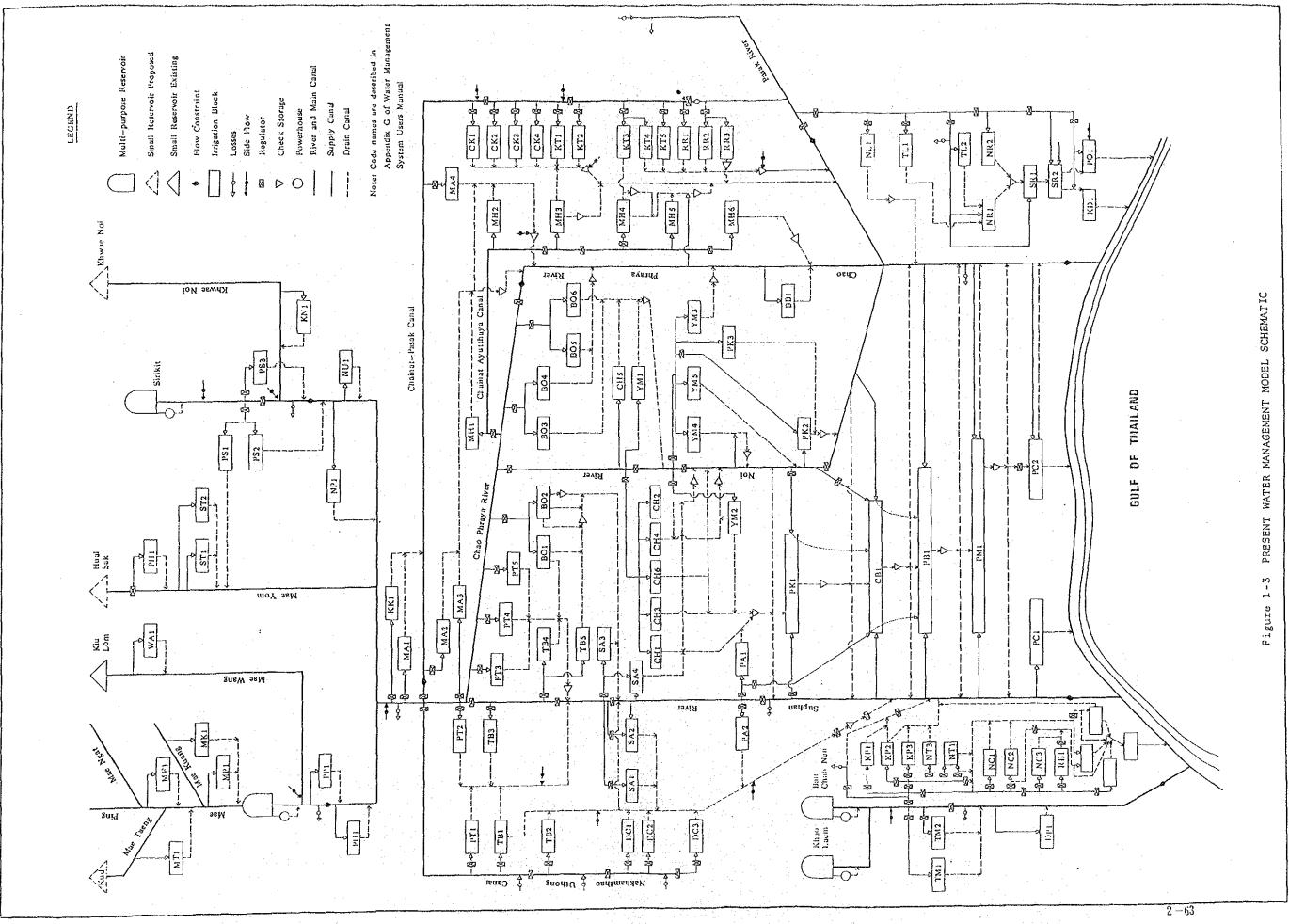
ommuni, system

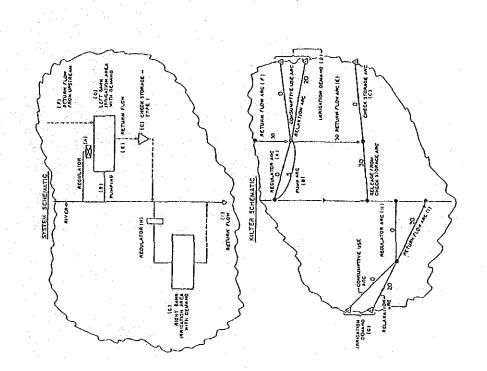
or improved data

opment of computer


ograms for the


ovement of monitoring/


r use of display panel


establish:manuals ovement of facilities

the formulation of Model Project

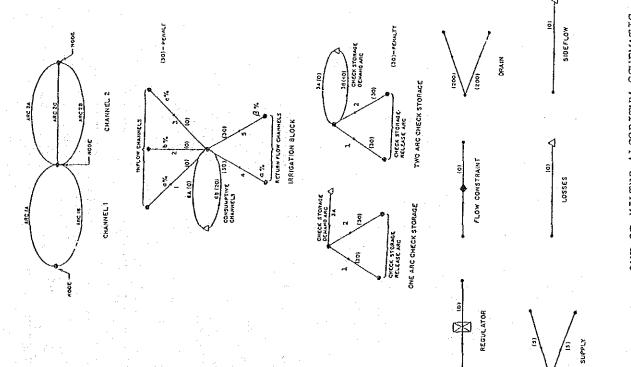
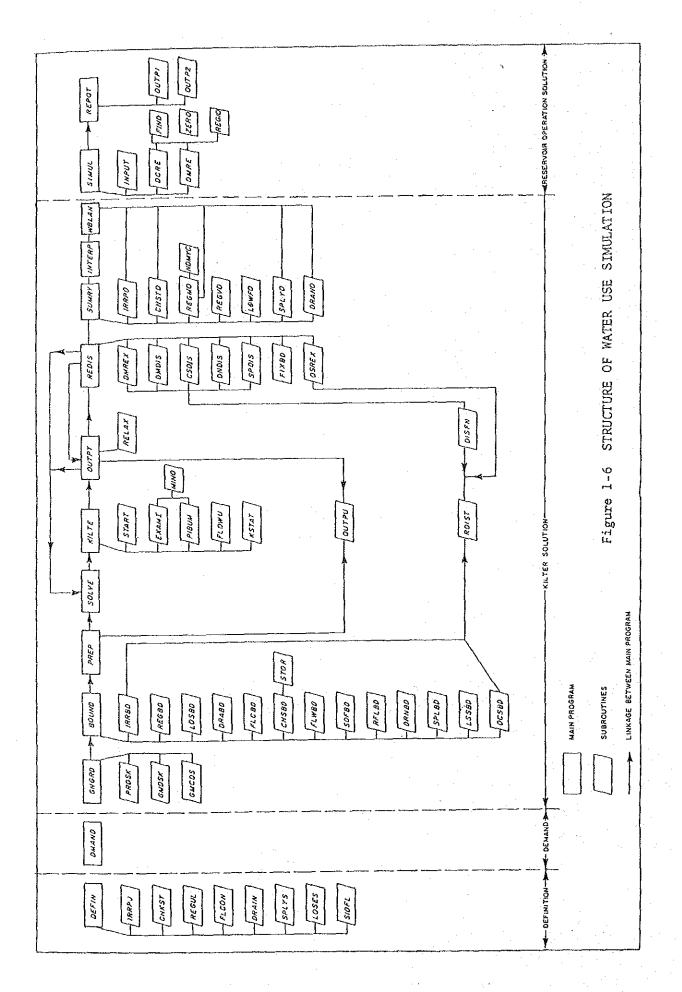



Figure 1-5 EXAMPLE SCHMATIC

Figure 1-4 OUT OF KILTER ALGORITHM SCHEMATIC

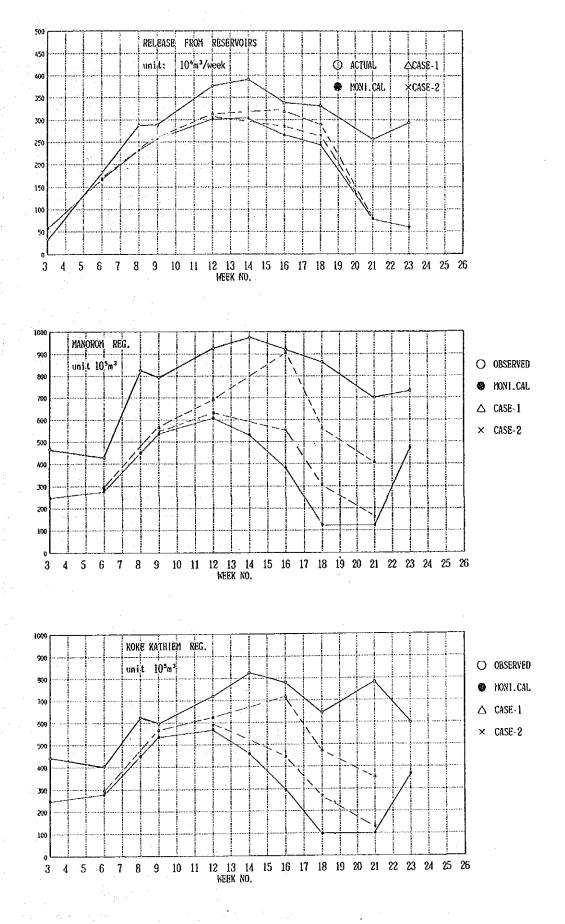
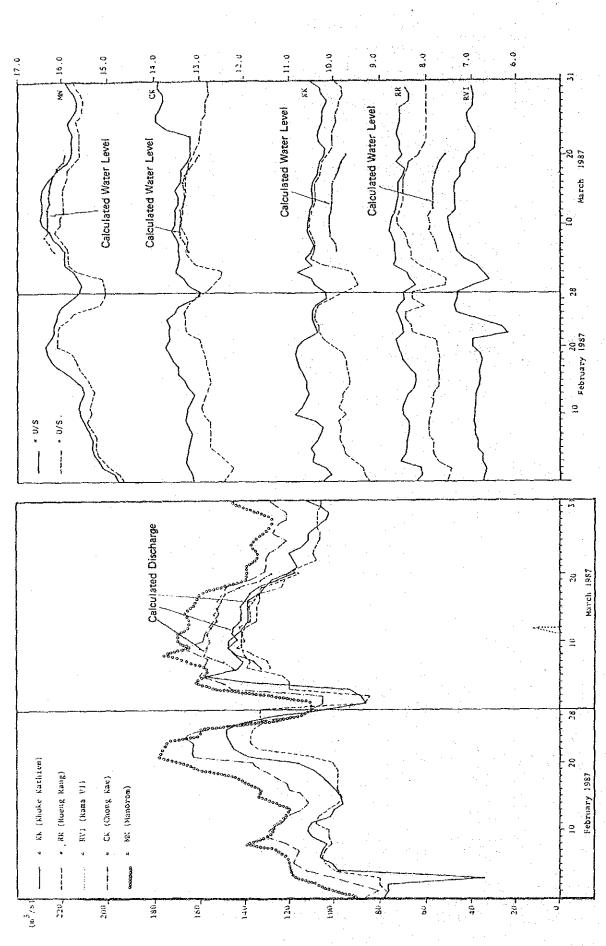



Figure 1-7 RESULTS OF MODIFICATION

Figure 1-9 DISCHARGES IN CHAINAT-PASAK CANAL

Figure 1-10 WATER LEVELS IN CHAINAT-PASAK CANAL

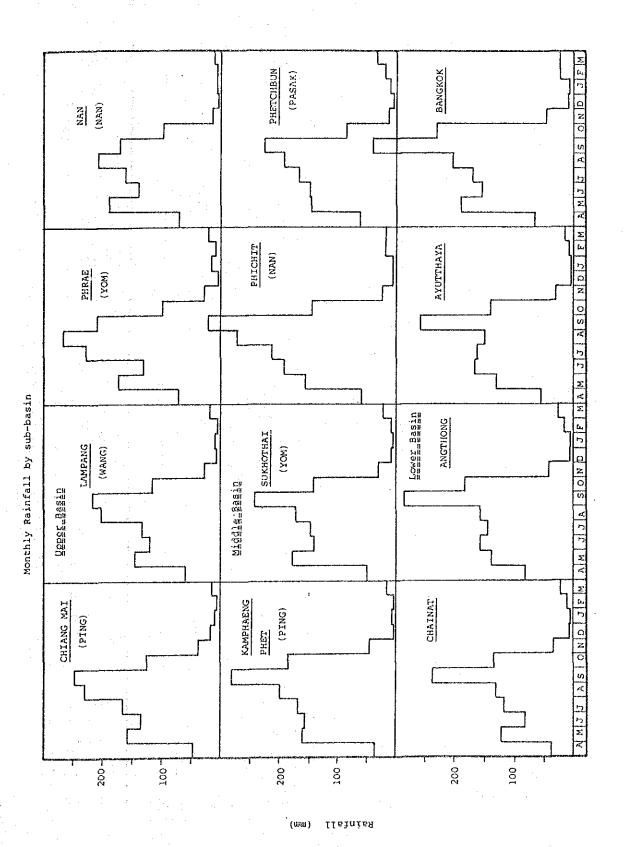


Figure 2-1 MONTHLY RAINFALL BY SUB-BASIN

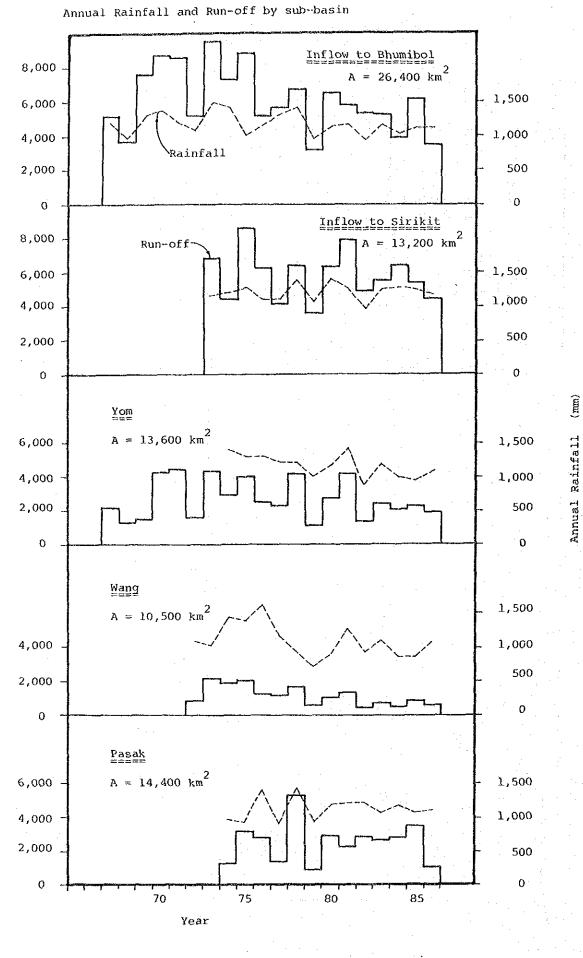


Figure 2-2 ANNUAL RAINFALL AND RUN-OFF BY SUB-BASIN 2-70

Annual Run-off (MCM)

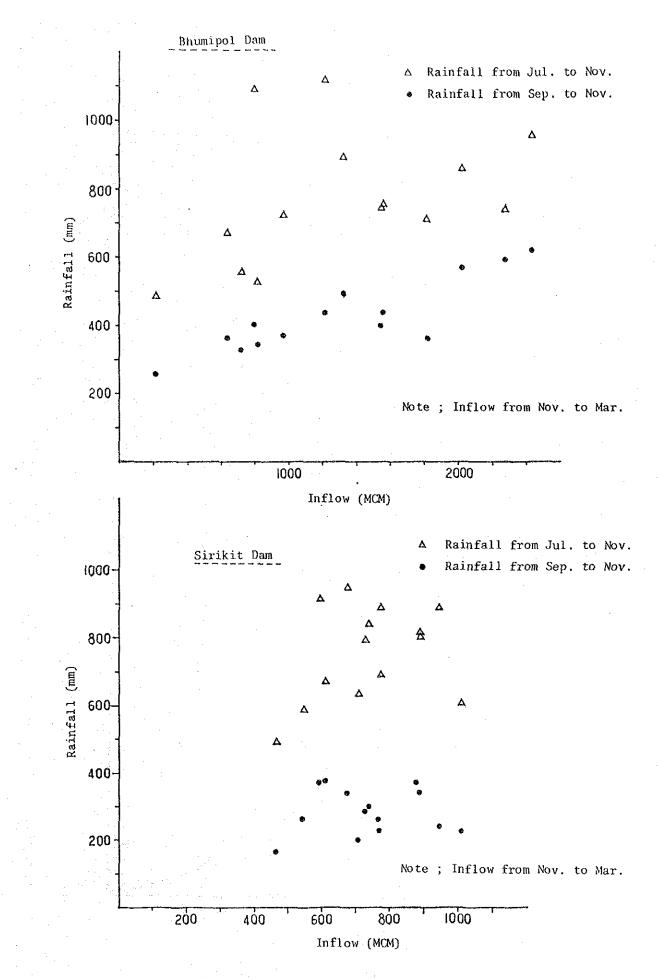
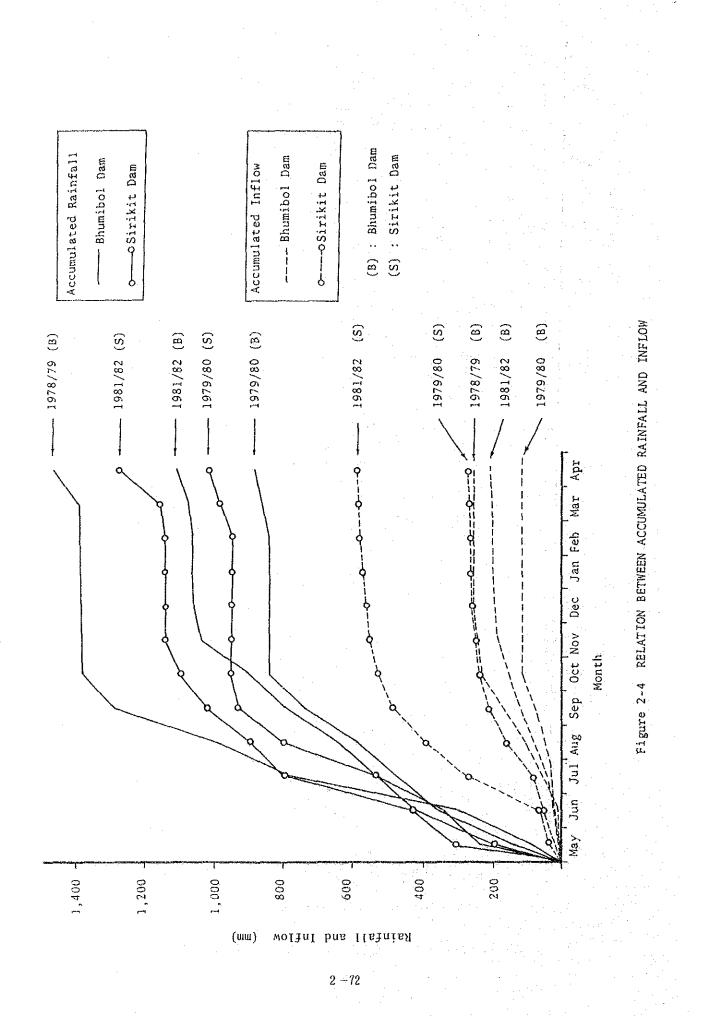



Figure 2-3 RELATION BETWEEN RAINFALL AND RESERVOIR INFLOW

2 -- 71

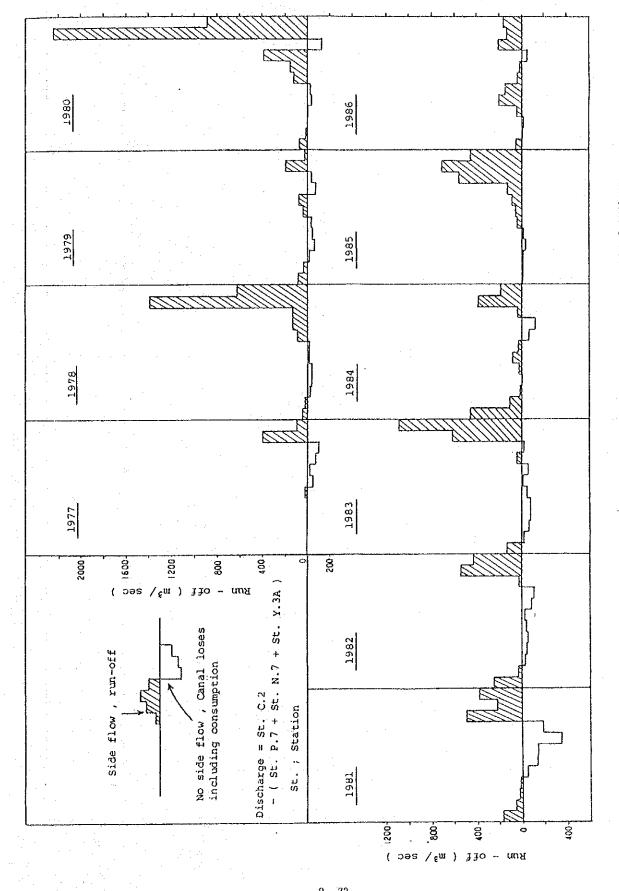
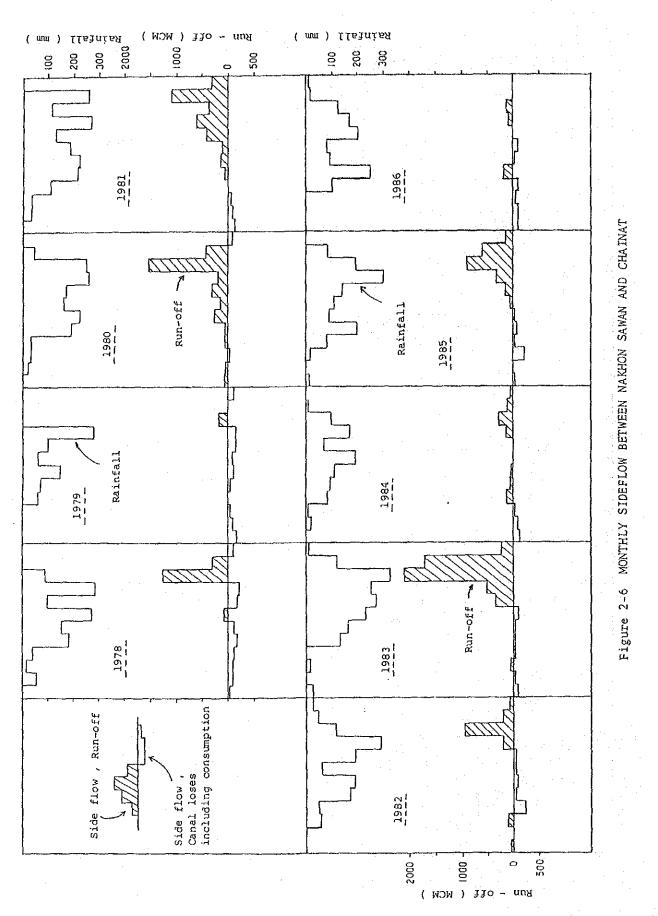



Figure 2-5 MONTHLY SIDEFLOW BETWEEN BOTH DAMS AND NAXHON SAWAN

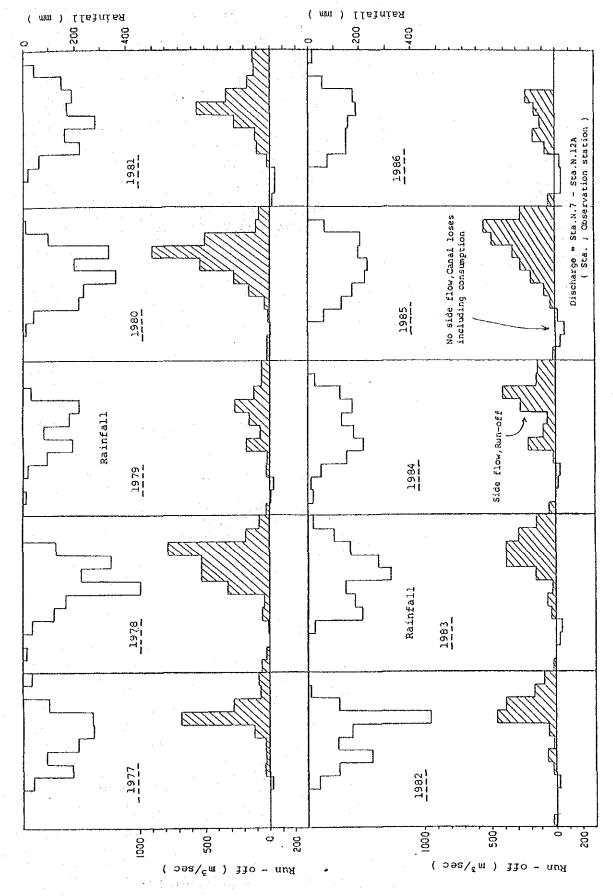
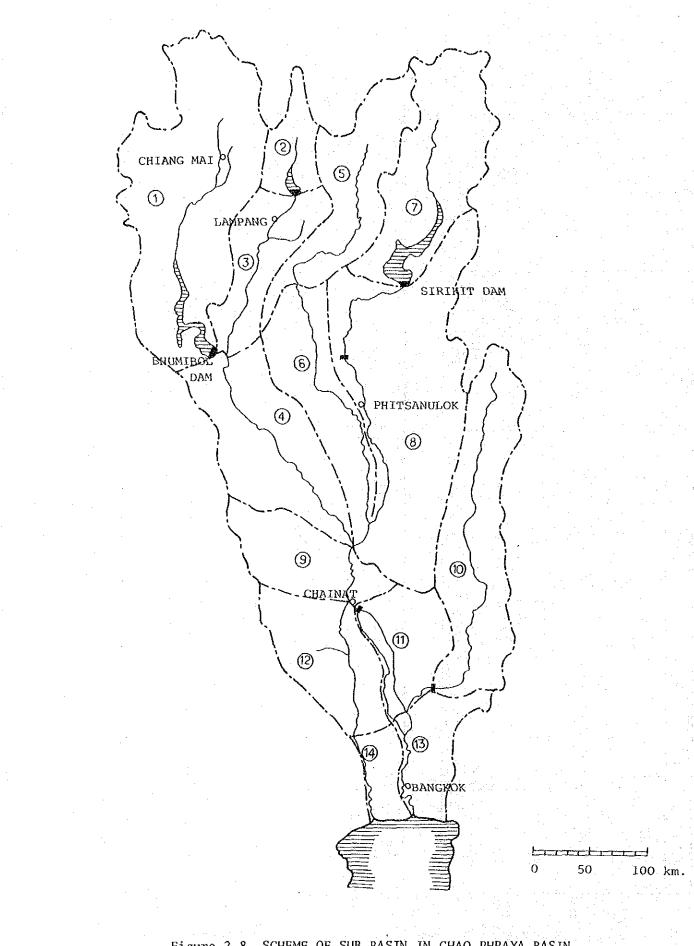



Figure 2-7 MONTHLY SIDEFLOW AND RAINFALL IN NAN RIVER

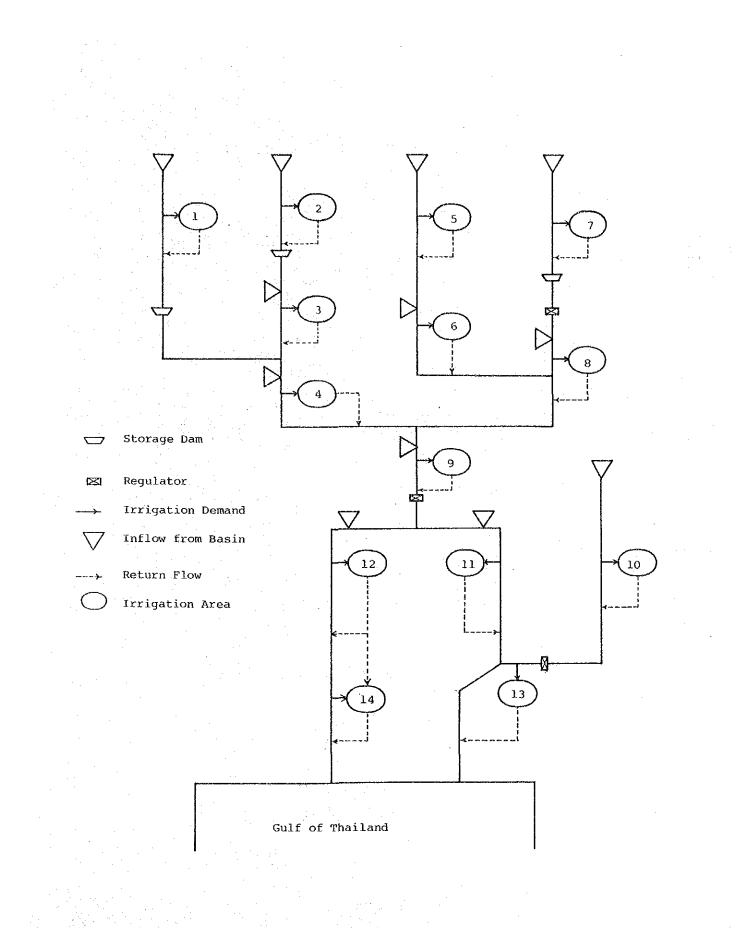


Figure 2-9 SCHEMATIC DIAGRAM OF SIMULATION MODEL

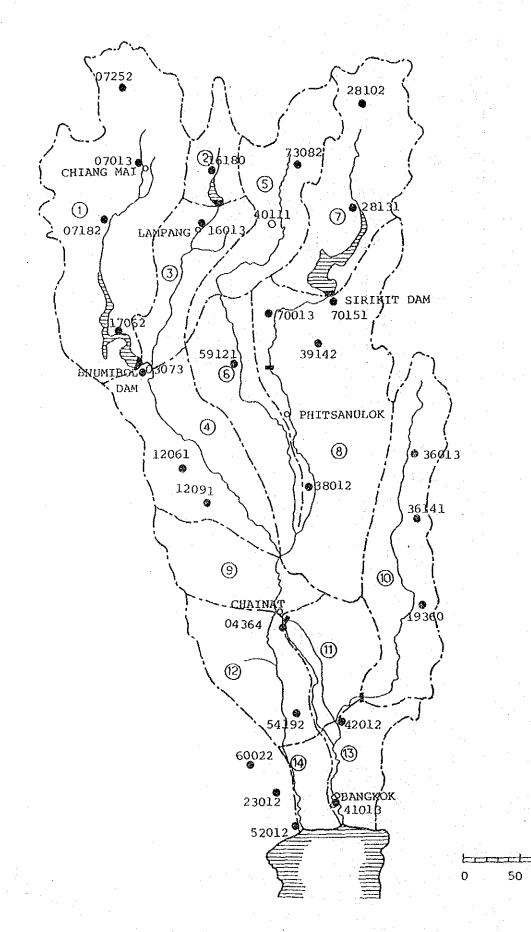
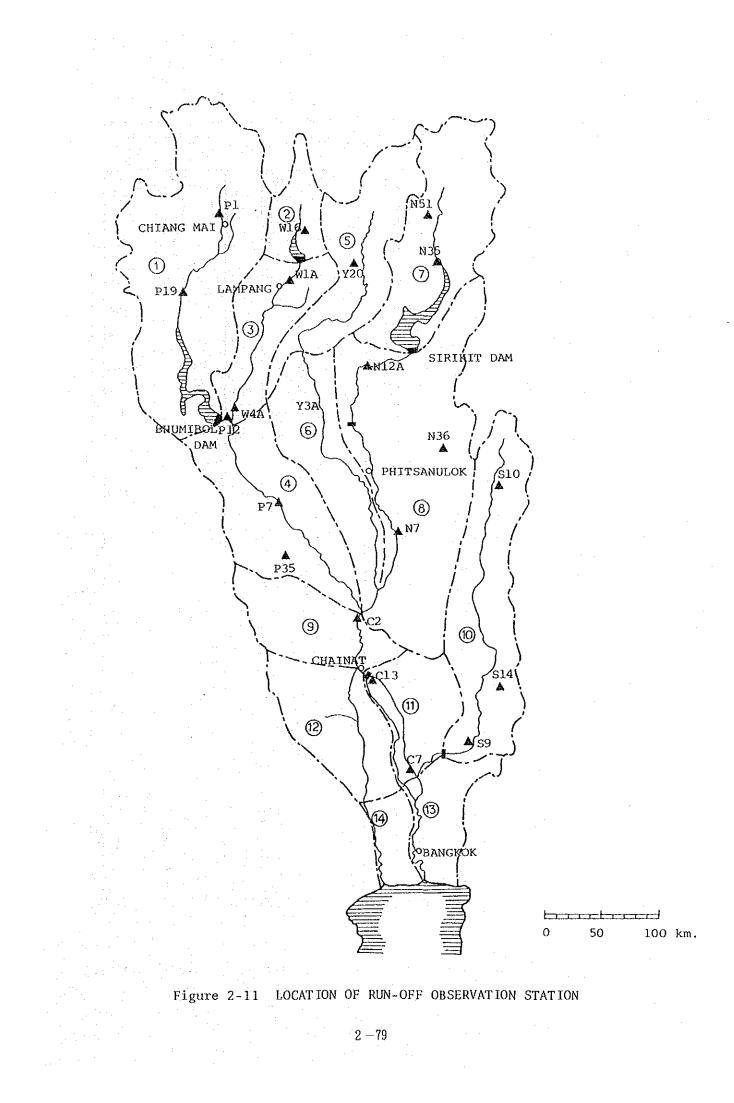
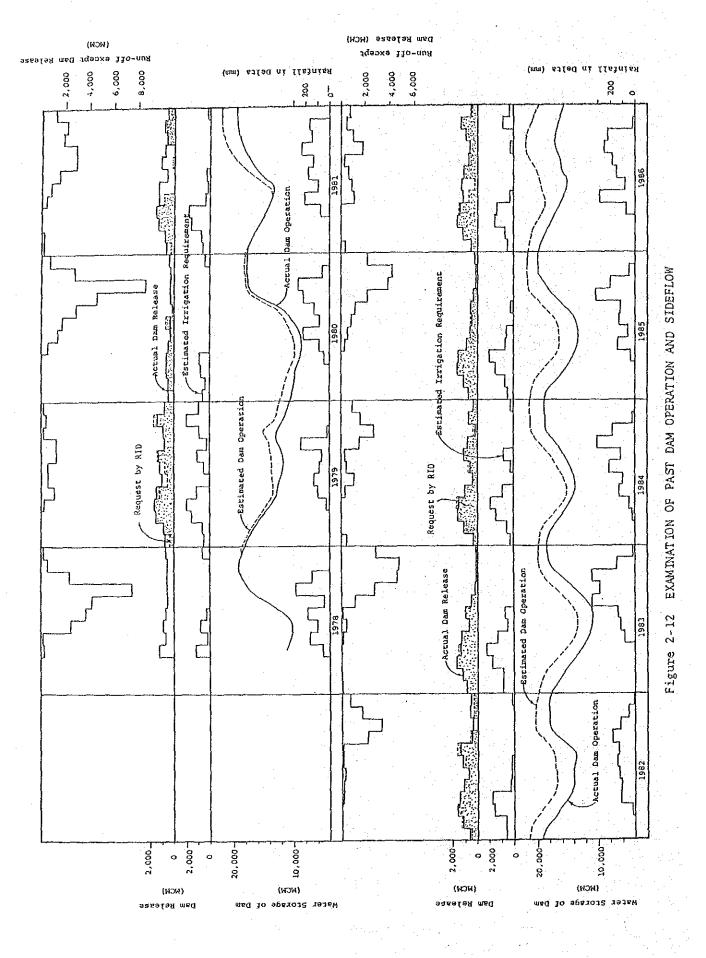




Figure 2-10 LOCATION OF RAINFALL STATION

100 km.

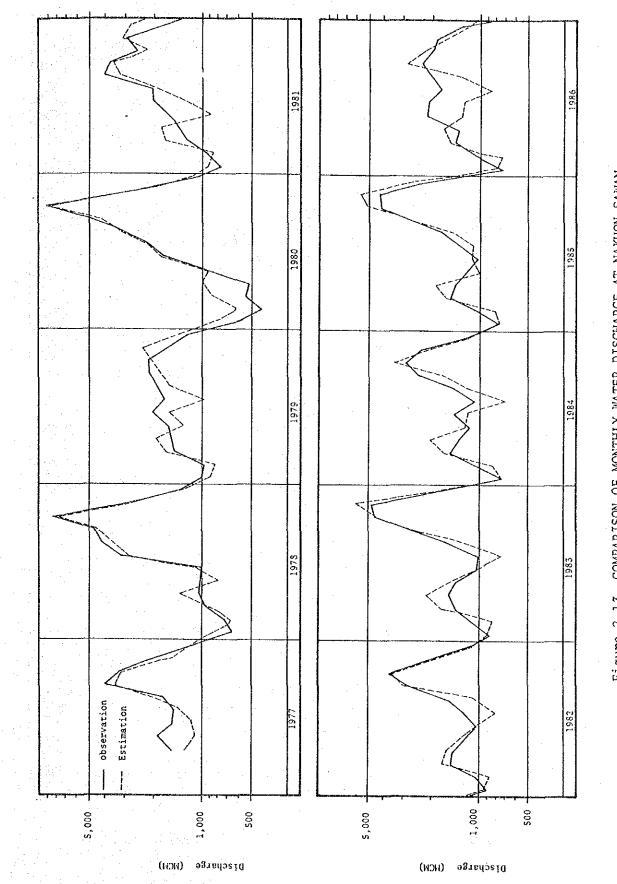
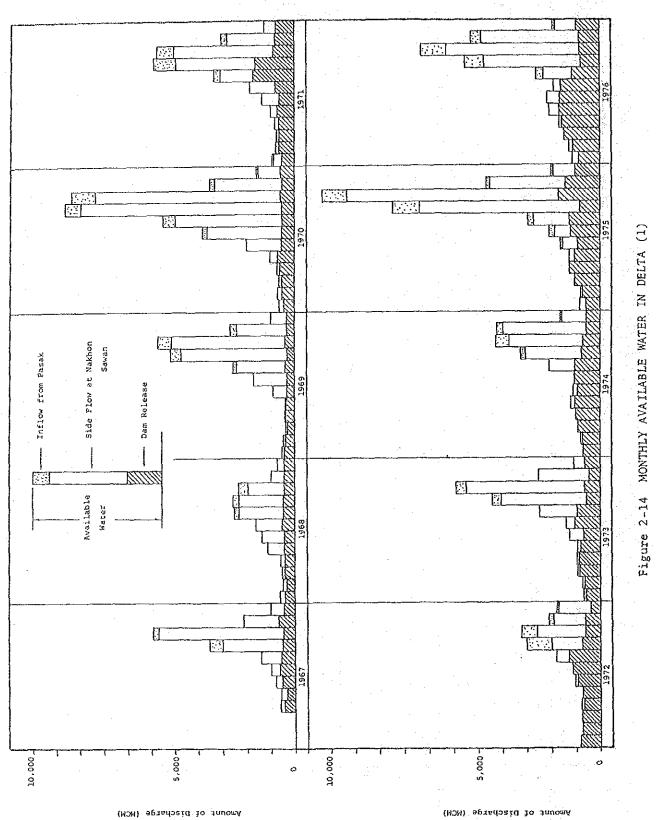
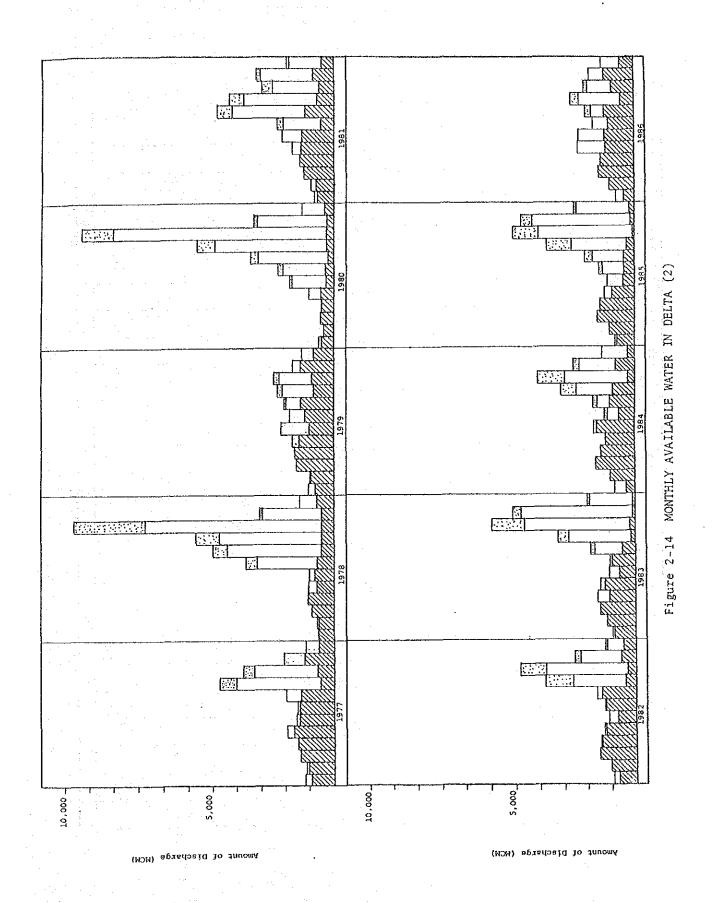
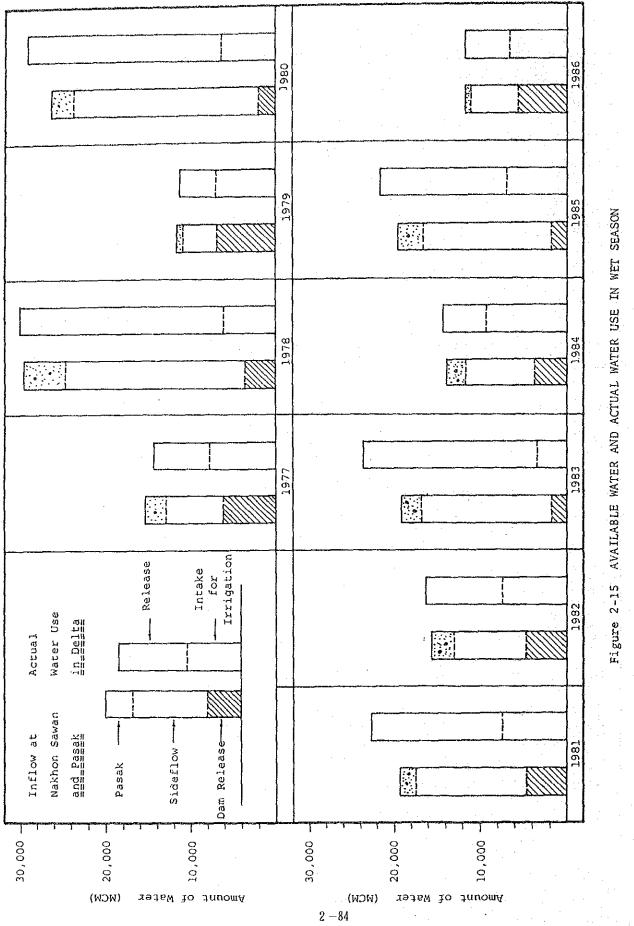





Figure 2-13 COMPARISON OF MONTHLY WATER DISCHARGE AT NAKHON SAWAN

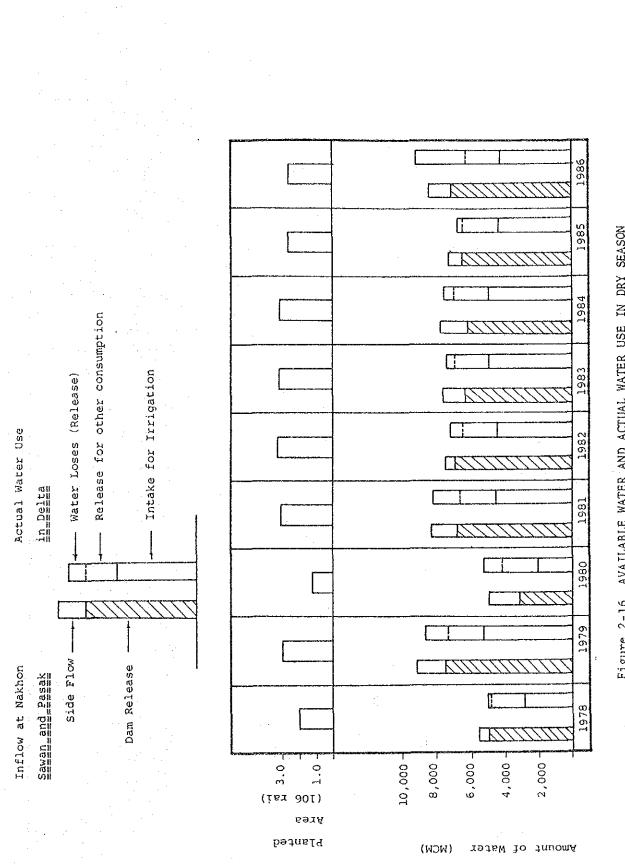
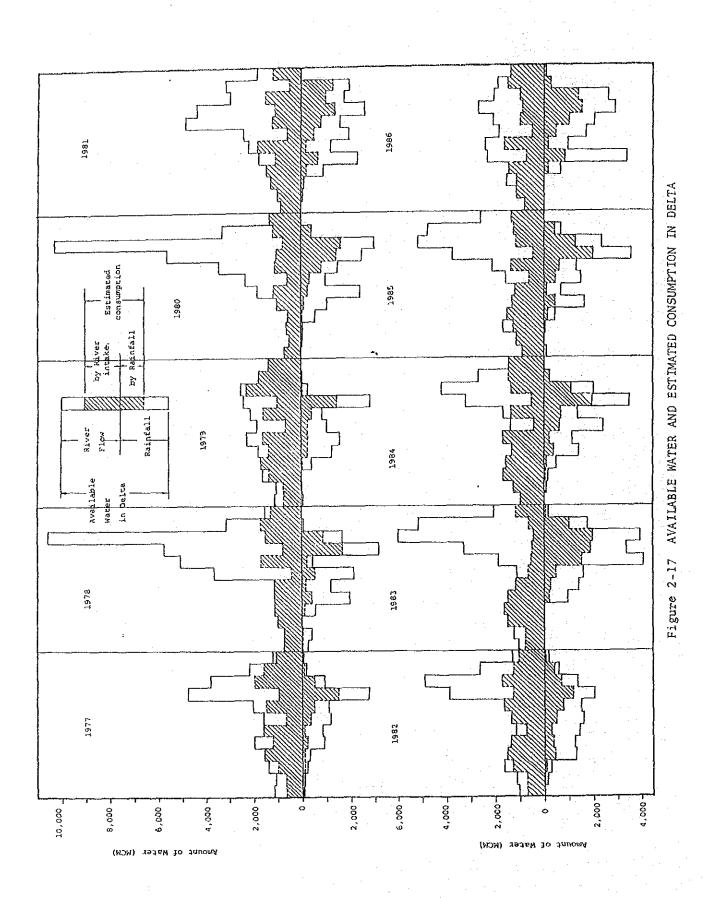
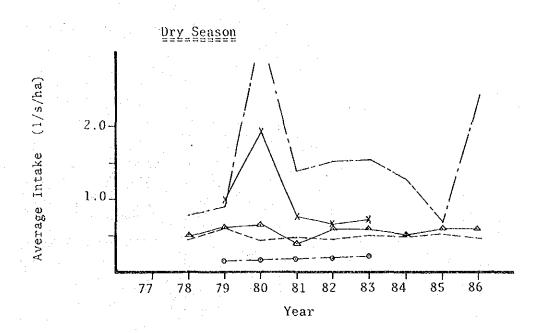




Figure 2-16 AVAILABLE WATER AND ACTUAL WATER USE IN DRY SEASON

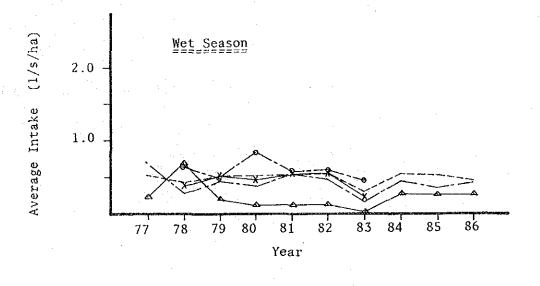


Figure 2-18 ACTUAL AVERAGE INTAKE IN DELTA

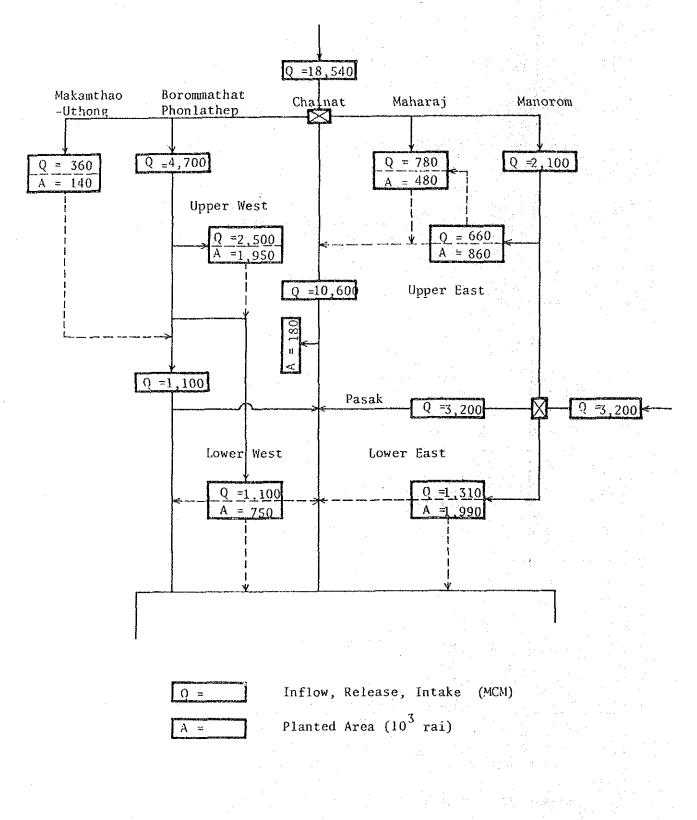
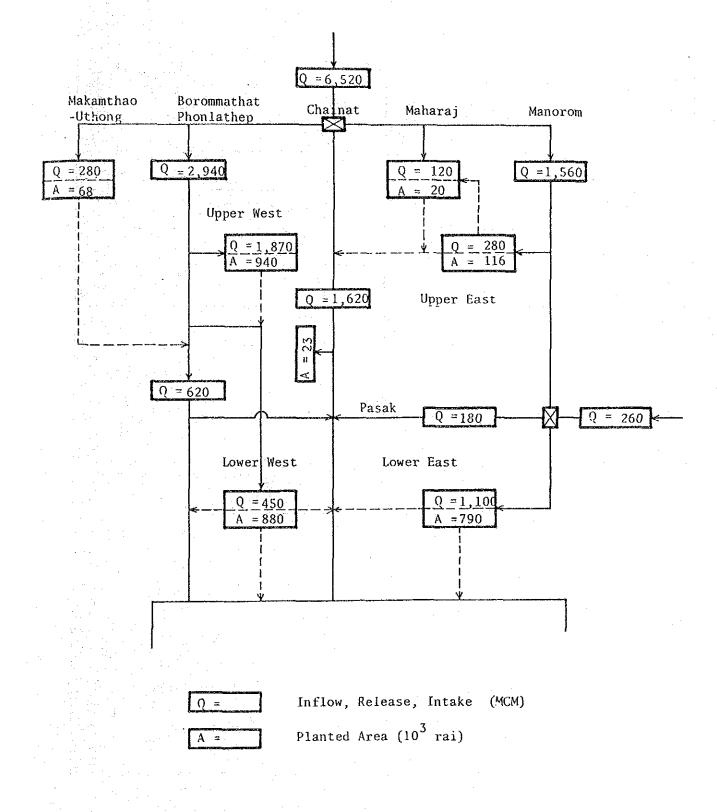
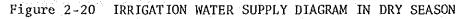




Figure 2-19 IRRIGATION WATER SUPPLY DIAGRAM IN WET SEASON

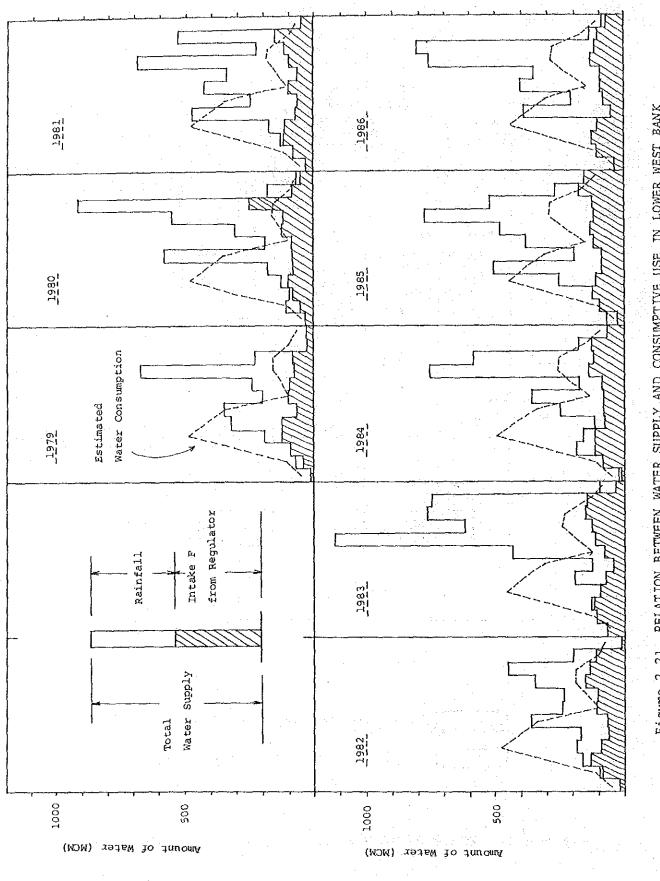
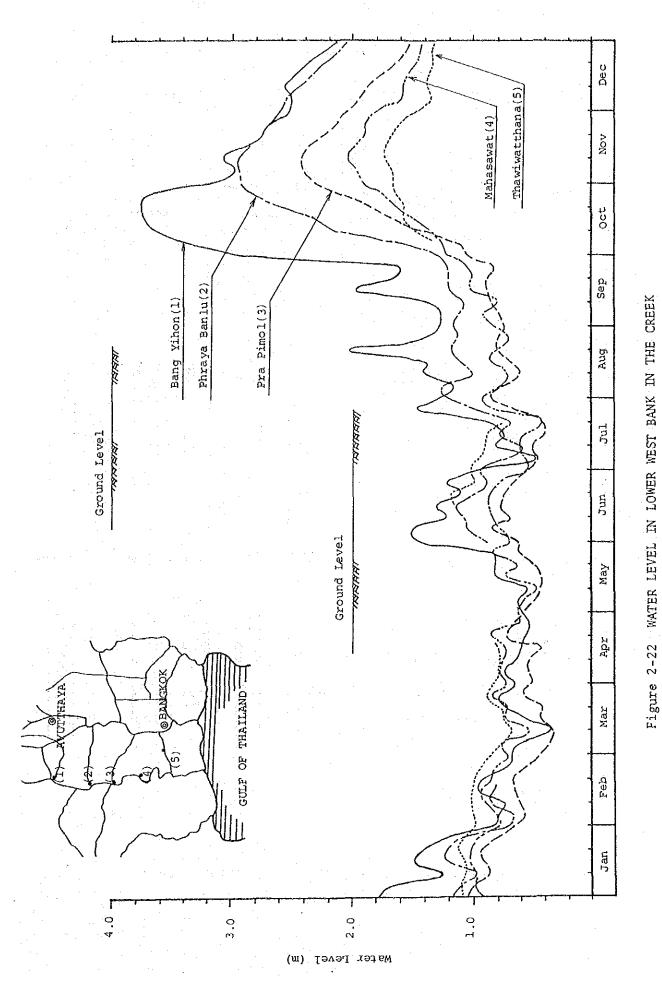



Figure 2-21 RELATION BETWEEN WATER SUPPLY AND CONSUMPTIVE USE IN LOWER WEST BANK

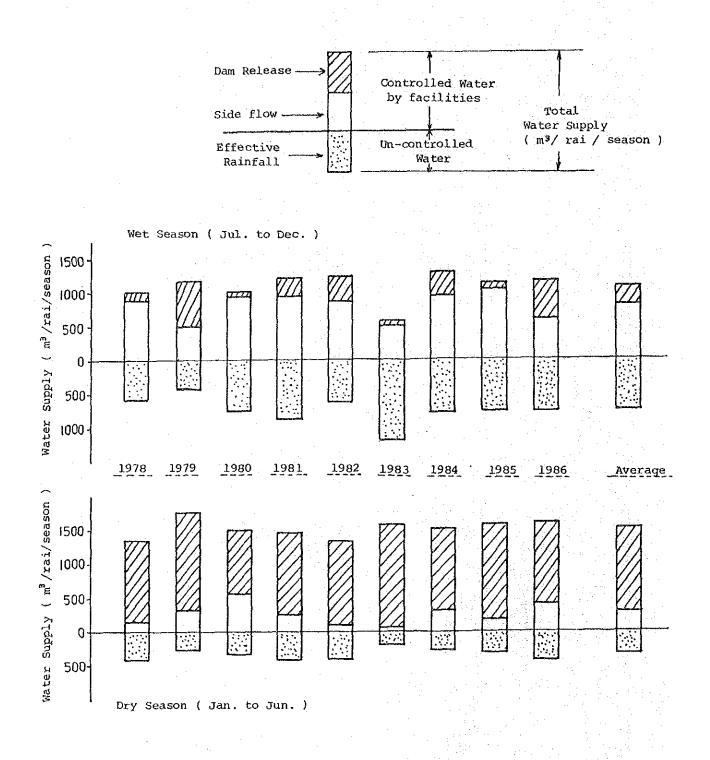
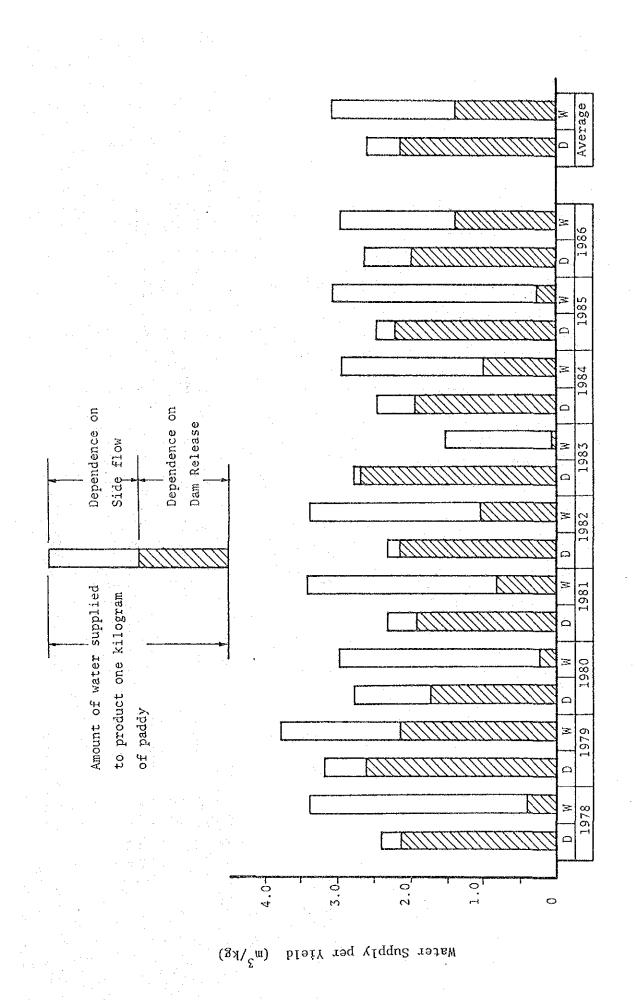
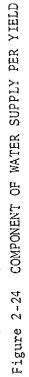
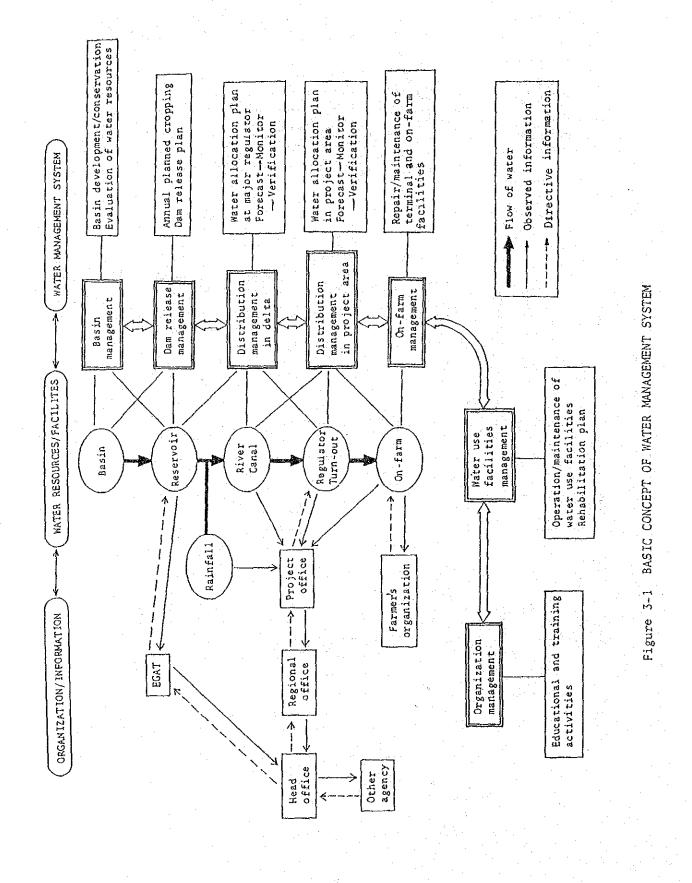
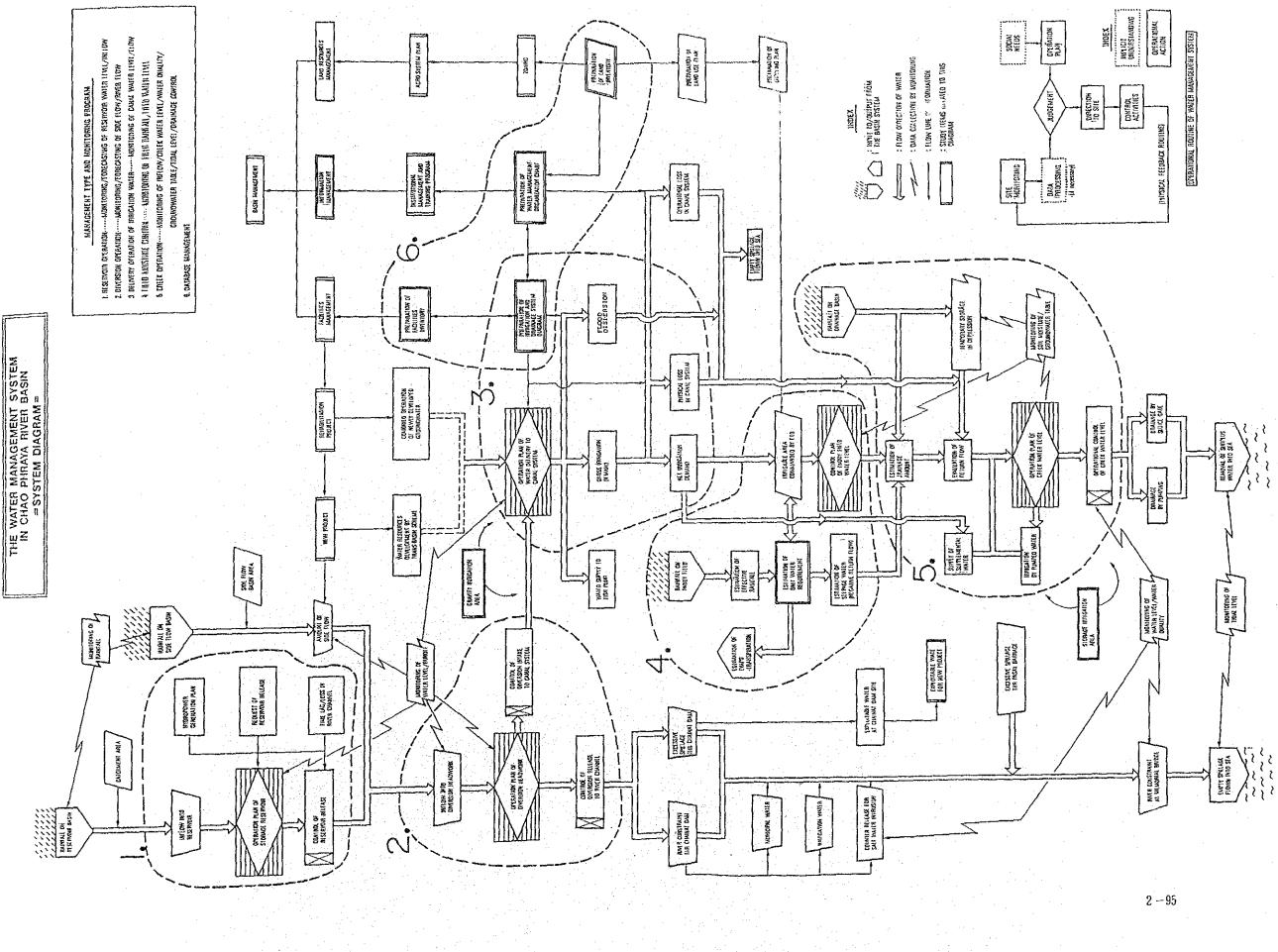






Figure 2-23 COMPONENT OF IRRIGATION WATER SUPPLY

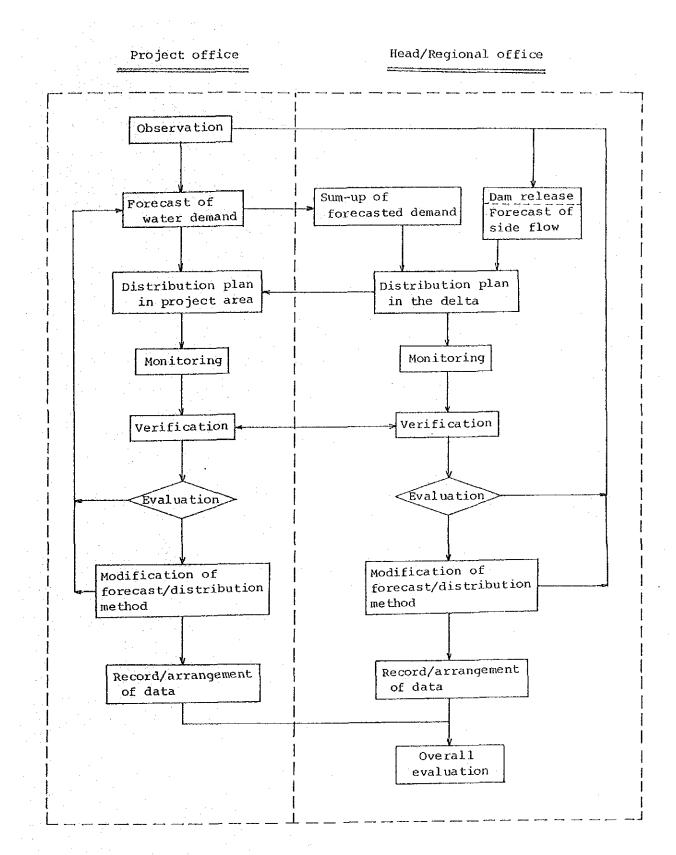


Figure 3-3 SYSTEM FORMATION OF WATER DISTRIBUTION MANAGEMENT