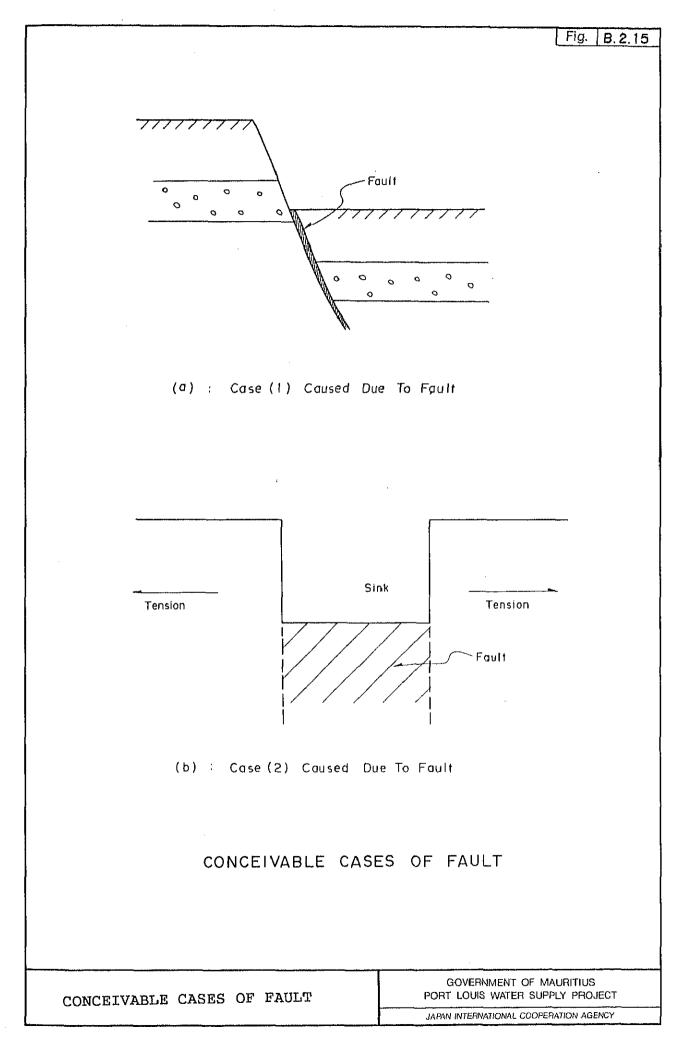
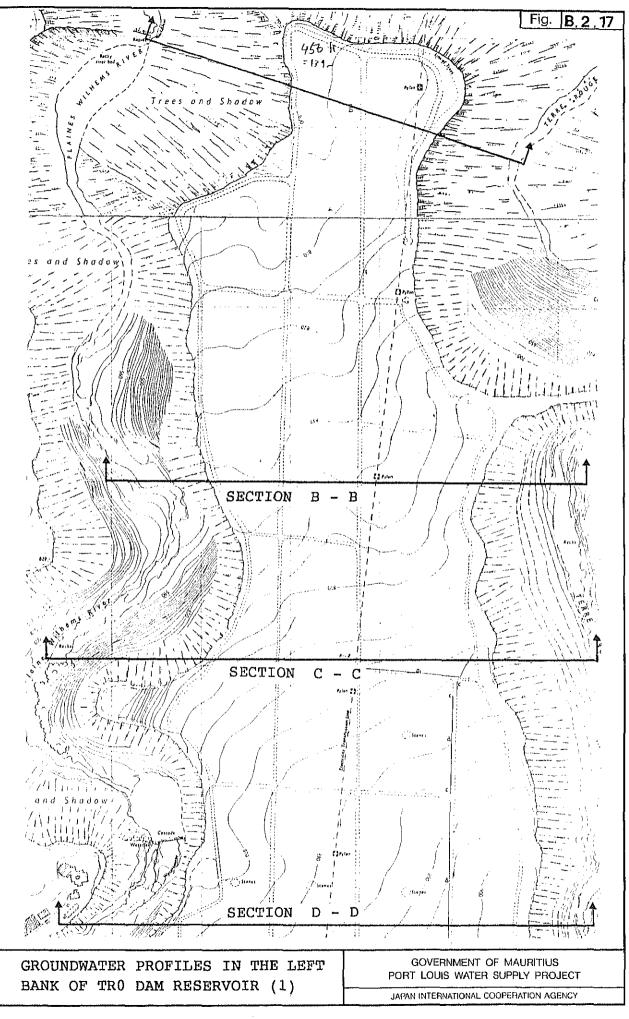
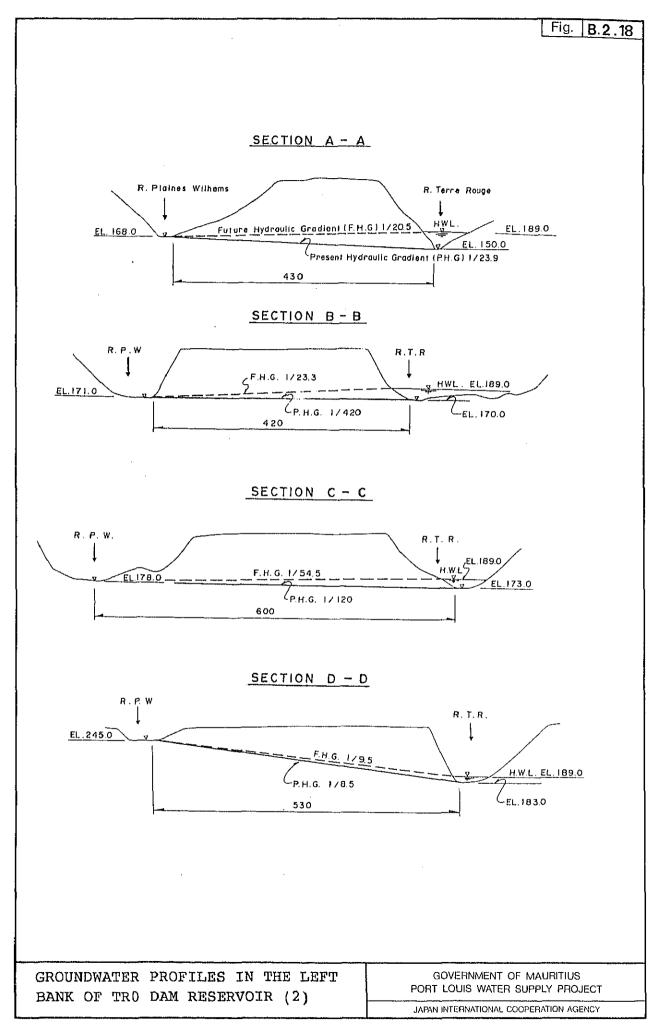

B - 190



B - 191





Story of Geology Mauritius is essentially composed of volcanic rocks of basic composition. The geology of Mauritius was first studied in detail by E.S.W. Simpson in 1951. The nomenclature estab- lished by Simpson has been officially adopted in Mauritius, and while more recent researchers, such as McDougall and Chamalaun, in 1969, have disputed Simpson's tentative dating of the rocks, his simple divisions into different volcanic series remain valid. The isotopic dates established by McDougall et al. are convincing and are given below.	<u>Age, million vears before</u> present	Younger Volcanic Series (Late Lavas) 0,17 - 0,7	Younger Volcanic Series (Early Lavas) 2,0 - 3,5 Oldar Volcanic Serier	of the Younger Volcanic Serit t of the island.	The lavas of the Older Volcanic Series were erupted from a single shield volcano which was active above seu level 6,8 - 7,8 million years ago. Erosion of this shield volcano produced spurs and deeply incised valleys radiating from the centre of the island. The present landforms of the Older volcanic Series	consistently show deep incision of the coastar side of the mountains with the remaining spurs dipping at the angle of flow of the lavas (15° in the yort Louis area, nearer horizontal elsewhere) towards the sea. In contrast, the inland slopes of these mountain ranges are steep, suggesting rapid preferential erosion of the centre of the shield or, quite probably, caldera collapse (see figure 7).	The deeply incised coastal valleys were therefore left with an insignificant catchment area for further incision. Subsequent erosion in these valleys was confined to the gradual wasting of the cliffs on either side. Great thicknesses of	colluvium developed since the restricted drainage was insuffi- cient to wash the material further downstream.	After this long period of erosion, renewed volcanism pro- duced the Younger Volcanic Series. These lavas infilled much of the rugged topography, covering colluvial and residual soil development and leaving gently undulating plains with only the higher mountains of the Older Volcanic Series prominently exposed.	Erosion of the Late Lavas of the Younger Volcanic Series is not well advanced, the landscapes being atructural rather than erosional in origin. Where these Late Lavas are in close con- tact with the mountains of the Older Volcanic Series, as in the Port Louis area, further development of colluvium from the mountains has overlain the margins of the Late Lava surface.
	1. Eruption of Older Volcanic Sories as a shield volcano				2. Erosion of the shield, leading to spurs & deeply incised valleys		3. Caldera collapse, or prelemultal erosion of the centre of the shield			4. Eruption of Younger Volcanic Series, Isolating the eroded reminants of the Okler Volcanic Series sheld

GEOLOGICAL FORMATION OF MAURITIUS

B - 196

ANNEX (B-1)

STUDY ON CONTINUOUS OPENINGS IN DAMSITE AND RESERVOIR AREA

Annex (B-1)

TABLE OF CONTENTS

Study on Continuous Opening in Damsite and Reservoir Area	
1. Assumed Openings	Page . 1
2. Examination for CASE (A) to CASE (H)	. 1
3. Examination for CASE (L) and CASE (M)	. 1
4. Examination for CASE (I) to CASE (K)	• 2
5. Examination for CASE (0) and CASE (P)	. 3
6. Judgement based on investigation of existing wells and coreholes	. 3
7. Conclusion	. 4

.

LIST OF ATTACHMENT

ATTACHMENT	LIST PAG	E
1	ASSUMED CASE OF CONTINUOUS OPENINGS 5	
2	CROSS SECTION OF DAM AXIS (UPSTREAM VIEW) 6	
3	PROFILE OF ASSUMED OPENING CASE (I) TO (K) 7	
4	PROFILE OF ASSUMED OPENING CASE (0) TO (P) 8	
5 (1)	SURROUND WATER LEVEL IN WELLS AND BOREHOLES IN 1982-1983 9	
5 (2)	SURROUND WATER LEVEL IN WELLS AND BOREHOLES IN 1982-1983 10	
6	ELEVATION OF WELL AND MAXIMUM DRAWDOWN 11	
7	EXAMPLE SKETCH OF TREATMENT FOR CAVITIES OR FAULTS 12	
8	DAMS IN HIGH PERMEABLE FOUNDATION ROCKS IN JAPAN 13	
9 (1)	DAMS IN LIMESTONE AREA IN FOREIGN COUNTRIES 14	
9 (2)	DAMS IN LIMESTONE AREA IN FOREIGN COUNTRIES 15	

Study on Continuous Openings in _______ Damsite and Reservoir Area

1. Assumed Openings

Attachment-1 shows all the cases of continuous opening if any, although the Team considers those openings are not likely to exist.

This paper tries to verify the water tightness of dam and reservoir through examinations on all the cases of continuous openings assumed above.

2. Examination for CASE (A) to CASE (H)

CASE (A) to (H) will not cause any problems, since CASE (A), (B), (D) and (H) are situated outside the reservoir and in CASE (C() and (E) to (G), both inlet and outlet of opening are situated within the reservoir.

3. Examination for CASE (L) and CASE (M)

CASE (L) and (M) are the case that the continuous opening exists in the damsite.

Attachment-2 shows the cross section of damsite together with the groundwater table investigated by boring.

As seen, a quite normal groundwater table is shown in the right bank.

Although the groundwater level in left bank is lowered near the riverbed level, it is understandable in consideration that the left bank has no water source.

The present groundwater level in the right bank generally coincide with estimated groundwater table without lava tunnels.

Assuming that the continuous opening of CASE (L) or CASE (M) exists as shown in Attachment-2, the present groundwater level may not be maintained; that is, an unusual groundwater table as shown with dotted lines may be indicated.

Besides that, the water in the openings should be subject to some pressure due to groundwater, resulting in the spring water at the outlet. The field reconnaissance confirms no existence of such spring waters in the are. Further, the boring investigations indicate a very good core recovery. Non-core recovery appears with a few percentage, for which it is considered highly weathered materials were discharged in the process of drilling, since the permeability tests show a normal foundation condition with permeability coefficients of 10^{-4} to 10^{-6} cm/sec, suggesting no existence of any continuous openings there.

Thus, the Team comes to a conclusion that the openings of CASE (L) or (M) will not exist.

4. Examination for CASE (I) to CASE (K)

Attachment-3 shows a profile of CASE (I) to (K). It seems that a continuous opening is not created in this direction in consideration of the process of creation of a lava tunnel; that is, a lava tunnel is created along the slope of lava, i.e. in the direction of mountain side to sea side. However, assuming that this kind of continuous opening exists, the rainfall will come out from the opening. This discharge from the opening forms a gully near its outlet for a very long time.

The Team carried out a careful reconnaissance throughout the reservoir area to find out such a sign or any openings.

The above reconnaissance did not find any sign of the existence of such openings, coming to a judgment that CASE (I) to (K) may not exist in the area.

5. Examination for CASE (0) and CASE (P)

Attachment-4 shows a profile of CASE (0) or CASE (P)

Assuming the existence of opening of CASE (0), a detectable excessive water loss should occur through the continuous opening.

On the other hand, the discharge measurements carried out for confirming any water loss in the river stretches clarify no water loss in the river, certifying the continuous opening of CASE (0) does not exist.

The continuous opening of CASE (P), if any, has to pass through below the riverbed of Moka River. It must largely effect on the Moka river water and groundwater in surrounding area. However, the Moka river water and groundwater in surrounding area keep just normal flow without any disturbance by the opening below riverbed. It suggests no existence of such an opening.

 Judgment based on investigation of existing wells and coreholes

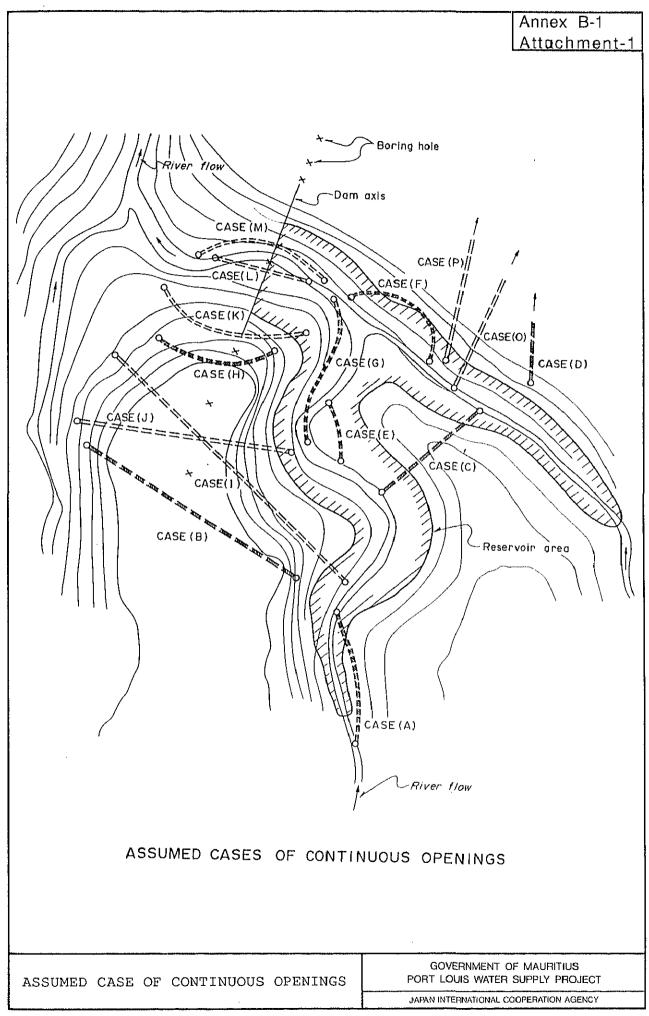
There are many existing wells and coreholes in the surrounding area.

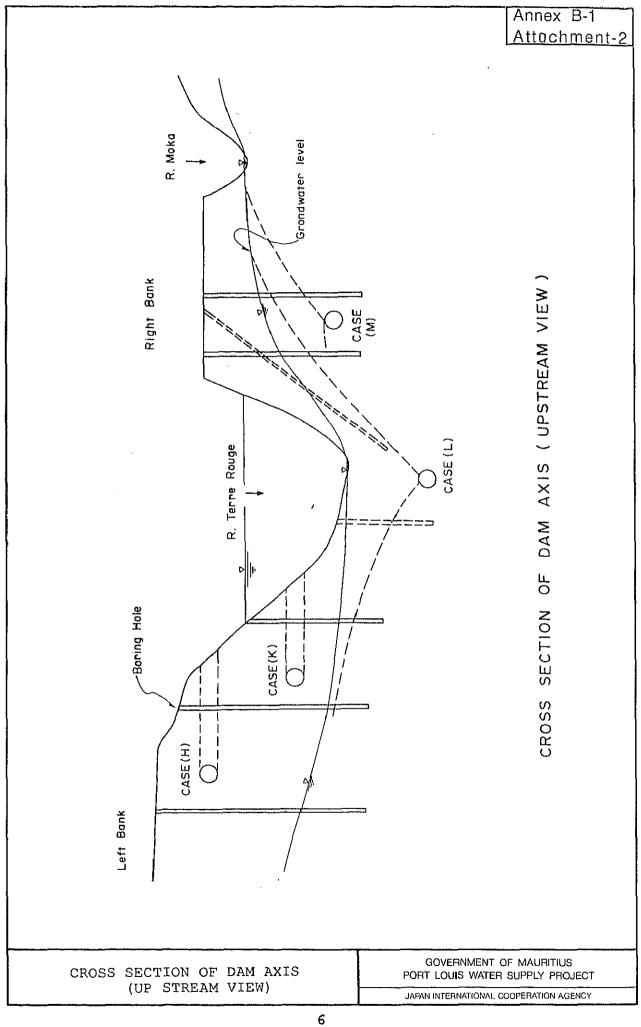
Attachment-5 gives the water levels in the existing wells and coreholes.

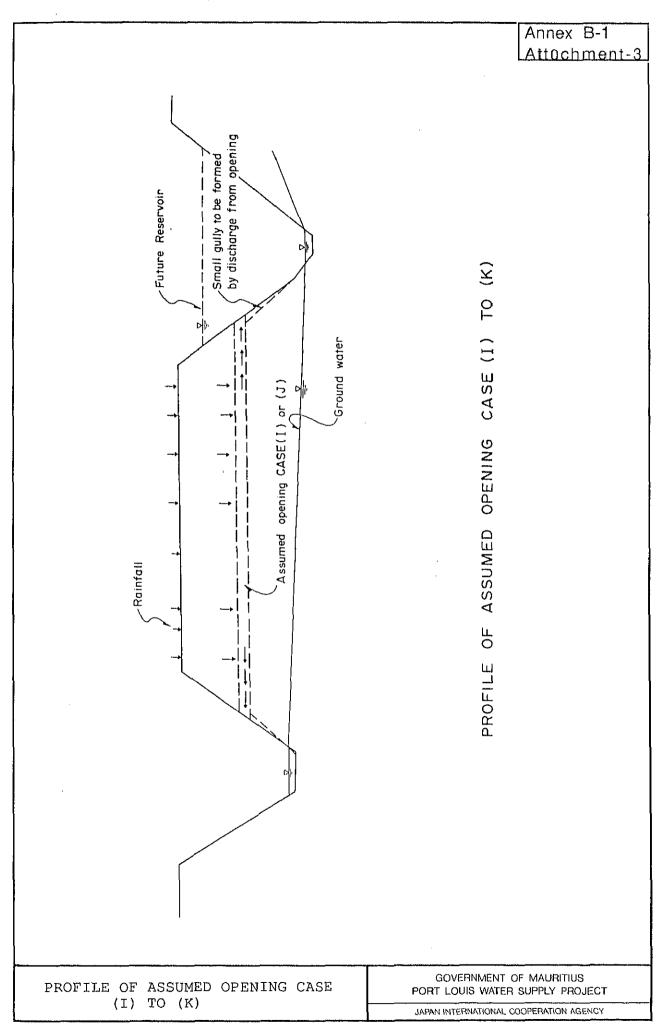
As seen in Attachment-5, the water levels in the existing wells and coreholes mostly appear at shallow depths less than 30 m where the boundary between the weathered soil materials and firm rock exists, meaning that continuous openings do not exist below these water levels.

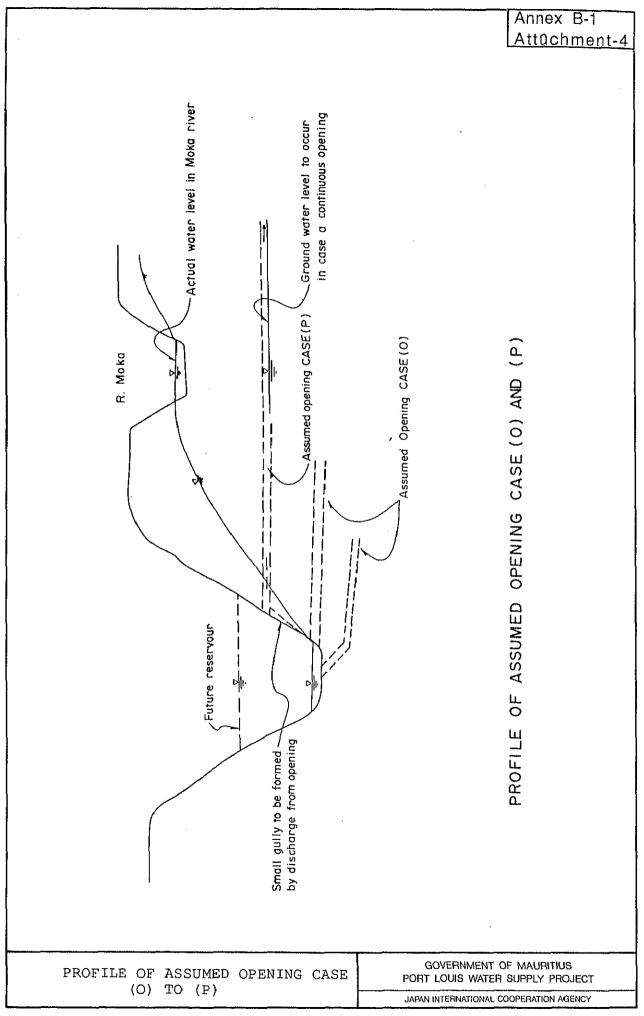
Then, it can be said generally that the existence of continuous opening should be very rare in the area even if it exists.

Annex (B-1)


7. Conclusion


As mentioned, all the investigations and studies indicate that such a continuous opening as cause an excessive leakage in future will not exist. Thus, the Team considers that the necessary water tightness of dam and reservoir will be secured.


However, considering the event that there are continuous openings in the reservoir area by any chance, the impoundment in the reservoir will be made gradually. If there is any continuous opening to cause an excessive leakage, its sign will appear. In such an event, the reservoir water level can be lowered with the river outlet system equipped in the dam, and then, the opening will be plugged with concrete. Its cost is considered minor, since it is investigated at least that the continuous opening does not exist in a large scale.

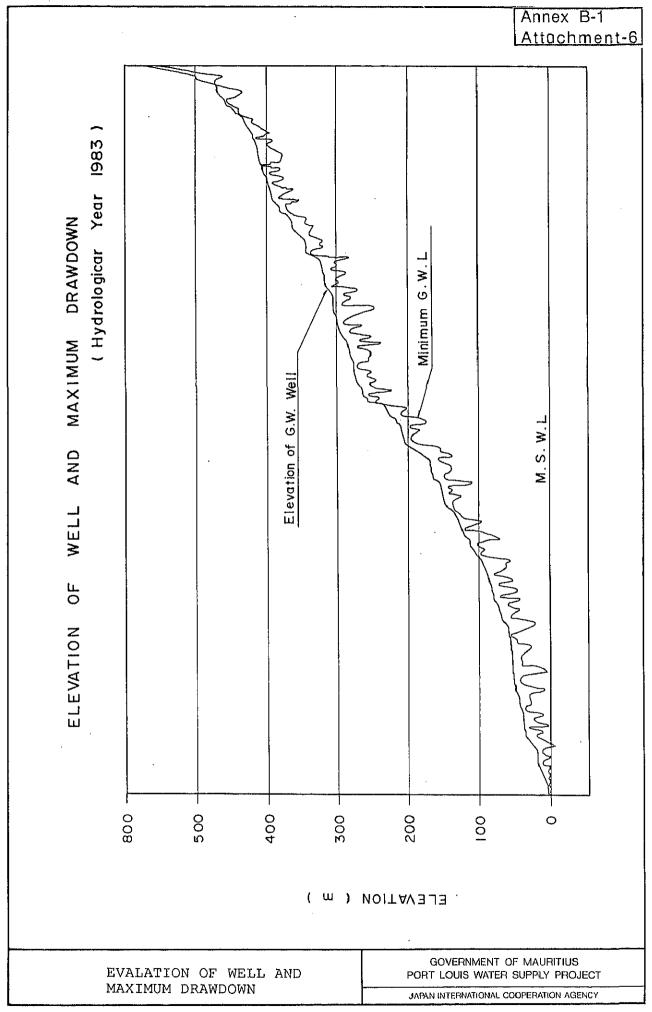

For reference, examples of treatment are shown in Attachment-7. Attachment-8 and 9 list up the past examples of treatment for highly permeable dam foundation in various countries.

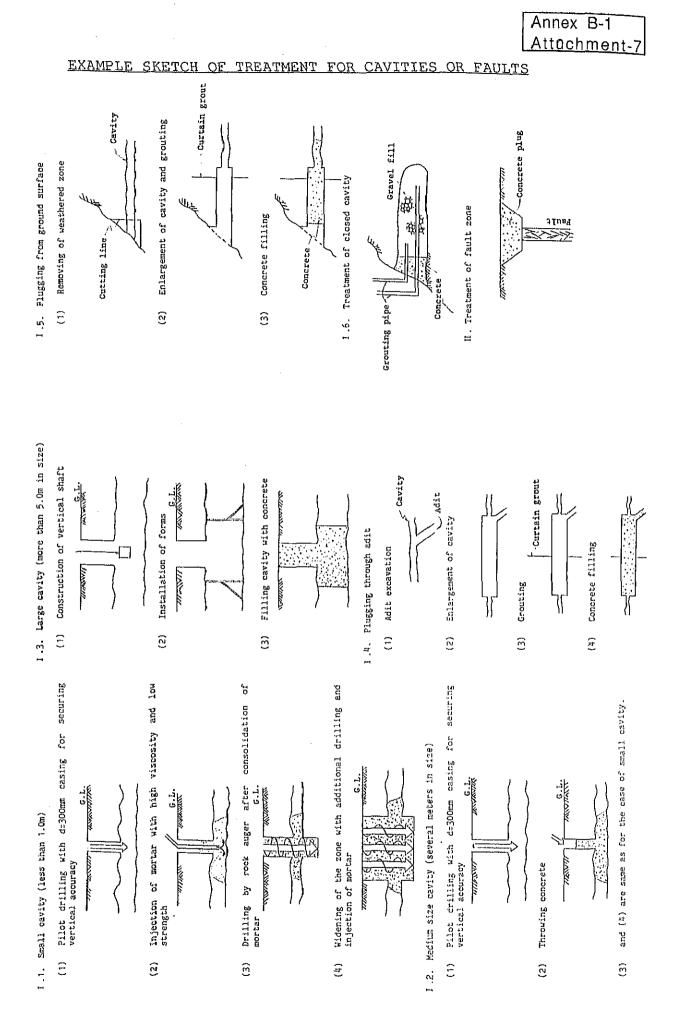
It is noted that the measures of treatment depend largely on the actual situation of opening, requiring a detailed examination in accordance with its location, scale and state, etc.

No. FELL LOCATION ELEVETI DEFTH	EVALL DEFTS		10.2		NO. WELL N	WELL NO. LUCATION EL	-	221.27				NG. NELL ND.	נפראו זמא	H	NCT 11	1.1		
	(=)]]];; (4)		341	DIFFER.			я Э	1317 (Z)	اير ب	훕 '	DIFFED.			(E)	KELL (¢)		麗	DIFFER.
1 F2 FETTE R. E	0.22 43.92	11.27			101 131	EAU BLEUE	398.73	50.56	13.12	23.24	5.42	505 ICT -	ST.FELIX	17.85	79.25	17.51	17.57	0.3
SADCS	330.00 47.55	83 105			102 152	5215543355	13°43	69.53	3.24	15.15	0.70		BEL ETANS	276.79	77.35	3.55	св. 19	1.5
	452.97 46.02		10.51 5	7.83	103 183	EAU REEKE	234.63	90.63	16.42	19-12	1.10	203 412	FADYIEENCE	393.69	107-71	6.30	4-54	5.24
UINTE C.	13.43 45.72 25 25 25 25					2 1975	25°22	02.12			16.5		BEL EIRNG Fa prije	264.23	11 12	E) . I .	13.87	i
		52				CHERTE Distriction Distriction			10,10	1 S	, r - c		LA CLUCALD	74.00 73 TAF		3 1	10.1	// f // r
A TATIO SUMT T			•					1 1 1 1	0 0	72 CJ	11.0			1111111 1111111		107 M	0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4 P 4 F
								12,25	4 1 1 1	С П	0) •)		14 641TE		13	19.83	71.14)
EENIY255							E1.53	57.91	11 12	F] 公	11.		RIVIEFE DU	263.42	19 92 19	5	5.41	0.4
A RANIE					110 157	XCN SECENT	36.70	51.E2 51	13.47	19.43	0.54		DEEP RIVER	!	57.95	5, 90	10.17	4.2
й Ш		5			III 702	AISIGI NGM	50.63	5.2	20.73	31.54	1.16		BRESIK	295.13	51.55	03.11	14.10	2.23
SCPALINDS	15.70 60.75	5.53				BLAN VALE	71.33	60.76	ę.t0	24-42	83 83		rissya	295.46	57.52	5.51	15.30	10.35
	312.27 32.35	17. 17. 17.			113 205	CHOEKEED	01.10	8:33 8:33	2:53	21.53	0.52		IDEDS SNYS	1	77.77	12.02	14.00	1.92
BEACX B	E.41 157.33	й. Г			116 3C7	LE BOSGUET	146.72	30.48	10.10	11.27	1.17		DEEP RIVER	ļ	50.35	3.21	4.50	i i i
	5.61 143.36	5			115 203	591 A 69	315.51	53.64	17.73	19.50	1.71		BEAU CHAMP	!	11.12	11.1	5.10	20
•						•	213.61	20.48	67 21	12.18	5.29		ST. SNTGINE	17.55	60.76	3.70	2.55	1.5
-		i.			117 211	-	352.43	60.95	15.20	23, 30	3.10		6.9 380024	19.03	96.07	5.70	6.84	u . •••
•		21			712 BTT	•	765.90	60.05	14 50	25.69	50°.78		-	12.14	50.65	2.45	ຍາ ຍາ ດາ	0
-	271.45 121.52				119 215	•	610 JO	50°57	17.04	55 CL	13.51		ST. ANTENIE	14,14	10 S	11.72	14.75	0
6					912 021			57 13 13 13		5.50			RUISCEAU M	10 T	3; { fi ;	3.	р. ; ;	-> i
							C. ??	7.12	2.1	9 : 9 :	27.71 27.71		5192 5019 5107 5150	90, 550 00, 550	N 13	5 6 2 6		5 .
	1.51 41.61 	51 E				CKICK VALE	8.8 8 9	21.10	5.5J	53.13 · · ·	(4 %) (4 %)		DEUR SCHOL	72'291	51.92	2	1. 1. 1.	5 I N 7
								: :	3 1 1	4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			SEL 414,51	71-52	73 5 73 5	71-17	6 : - :	
•							67.73	04.14 1		72.02	21			105.20		S ::	16.20	
		នេះ នេះ						21.52 51.62	3.65	មាន ស្រុក	2.45		PCUERE dUr Freferente		40.72 51.72	1. 12 1	12.20 17 75	11 P 11 P
VILLARY V							00° 6	17.97 CC 20		101	1 K				1 1 1 1 1 1	101	79 F1	5.
71ER42100	7/104 101/7	13.7				EATY LINE	10 404	75.00	3				Let te GC		1 2 2	11-27	41.414	
TO IS ALLENDED IN THE ALLEND IS	21.69 11.12	53			104 DI	LLUAY 12 21 TAUN 17	101 - 101 101 - 101	85	65°7	1. 10 10	55		CULINGE CREASEELS			04 T		4 8 5 c
E C CUTT 1	12 17 12 22		_			CLUMI 11	57 LC1			10101					4 S 8	2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 C	i 6 4
TI II I DUPLING T		2 1				Stafferdy B	147.73	11.06	18.40	26.23	7.50				63 B2	10.53	19.70	
		23.65				1 21223	256.87	79-25	15.10	16.11	1.01		-		29, 62	11.45	14.50	3.1
33 214 25450 544.00	12.00 35.24	5			650 201	E YORTECH	151.47	14.50	5.50	6.56	0.75		-		75.97	12.18	14.42	2.2
Z4 23 CHEPEL 3. 15		15.40				•	154.63	37.20	7 90	10 10 10	1.65		ST.JEAN 1		39.52	12.04	13.05	0
FLAME		14.20				HIP ICH	29.56	61.25	5.50	13.00	12.10		RUBSENIA		97 FL	1.10	16.26	2
	214.52 53.64	33.65				E YOARTOE	123.15	60.05	12	26.47	1112		NUMBER OF		30.48	16.35	16.72	0.17
BOLFERING	557.39 75.20	10.15	_			TROU SEAU	77.63	54,36	25.33	8 8	3.25		-		5.11	1.1 1	24.22	2 2
12 23 24 24/25/18 12		10 F	. 0		125 259	BEGFFLUY	158.23	5.5	19,15	12.59	42°0		CRAFOUNY		55	22.68	25.17	5
37 30 LA MEDILE 5		2] 合		0.13	132 SET	Scherk 1	019.30	73.16	£.26	1.77	1.51		-		53.80	14.52	16.55	0.13
40 72 15 13 13 16 1		81 73			140 762	日日に	5	53.23	13.05	15.41	10 17 11		-		44,20	15.47	21.30	(
	19.09 22.00	22			022 143	541E JE 119	얈		2.53	62°	51		FONT FER-P		43.15	14.73	19.25	11.4
		5.5 13		٠.	742 274	3E3FFFLY 7	70.91	54.92	52° 92	27.50	51.15		HIGHLANDS-		39.32	1	12.5	2.03
	67	11 13	5		517 273		19445	100.53	11.55	14.00	2.05							
	\$E.12 E0.35	6		1.12	523 773	1.4.13	÷	ļ	5	16.80	22°¥		NUMBER OF STREET		0.00	9.50		
	0.07 77 5	1.1.1	÷	4 e	10. U	5 0.1700	11 21	12 12	ис С.		c , ,		10 Y 1 Y 10		01 17 8		00 1 1	
	- 4 - 24 - 25 - 2			0 H	201 211			00.00	12.23	11-1-5	2						115 111	

SURROUND WATER LEVEL IN WELLS AND BOREHOLES IN 1982-1983(1/2)

•


Annex B-1 Att0chment-5(1)


																																									•						
	•																																														
	0		. 14	0	ø	53	0	-1.	ח כו-	o 1-	0	0	7	F -1		0 v		0	5	ۍ ا		•			01			L 1 6																			
	1.0	17.0	0	3.5	7.6	ç	2.0		4 1 1 1 1 1	0.7	1.5	0- 113	5	5	é v v	4 <u>6</u>	6.11	0.1	14 195	u - 1	en e	i r r c		-0	2.0	1.2	2.0(11.0				2.15	6 r		ė.3	2.73	5			। स	0	3.82	1.52	51	25		
	2,25	31.36	1.32	6.10	50.10	19.60	07 82	03 7	87°11	05.4 05.4	39, 38	25.43	11.44	69.6	93 M	65 21 11-57	23.00	41.20	17 11	67 e	87	77 13	51.00 11	16.12	5, 53	В. 77	15-2	50°03	2 8 5 7	22.40	14.60	20.70	86	17 TO	11-14	1 1 1 1 1	21.50	8. S	2: 53 51:53	12	23.00	3.25	1.72	8 i 13 i		2 G 1 7	i) n
	1.25	19.82	0.80	2.30	42.62	19.52	÷8-20	61 S	207 107 107	25	1.12	19.50	5.5 12	មិត រ		* * *	15.20	£1.10	51.15	8	11.57	19-01 10-01	50°02		3.61	7.51	19 19 19	23-81 23-81	72.1	12.55	9.87	17.52	2.57 ** **	7.90	4.63	21.70	20.64 13.05	5.7	11.01 11.01	10°-01	Z1.10	1979 1979	5 1 1		5. J 1. v		2 •
•	fe.77	56.33	60.96	60.56	70.10	34.38	90°59	50 95 51	8.8 8 2	50.96	1.20	2.44	1 -		21.EZ	77°57	3.10	16.29	5.2	50.43 5	9-12 2-12		1.56	2.67	2.67	0.55	4.01	1.15 7.15		2.30	51.5	1.54 2.54		5.72	0.76	5.3f	21 C	5 5	21.73 106.65	9.62	5.72	7,44	6.C7	53 ¥	្នុន	10	21-1
		_																																					1777 777 770 700 700 700 700 700 700 700							•	
-	ALEIGN 1	POKDAR 4	EIC 24	FLIC EN	FONDER 6	IN DADA	NDE INCA		•		PONT BON	STE. KAET	ELECELLE		FUNCELLE.	7 673527	ALTA	THIEN BY	FOREACH	1.ET9.1E	NUN IUR		HIS NOT NOT	PETIT FH	BABATABA				10000 AUD		STE. THEFE	PROVIDENC	EUNAE VE	FLAINE KF	•	SOLFERING	3K30[A324		FCREST 210	1004125	ET.JERN	HERNATCE		が発展し	ruk ruatu rur rur		
	147 283	143 255	982 241	150 290	251 292	152 2558	152 251	154 253 156 700		157 702	103 204	159 305	160 7060		122 241	ALC ALL	165 716	166 M7	167 319		970 775 170 775		12 22	EE 211	174 340			772 AZ1		150 348	151 349	64.1	185 552 185 757		-0	-	m e		111 275 111 275	C 1	10	682 863	in .		~ n		10 402
	41	5	-05	171 171	92 ·	12.09	3	3.36	- 	15	ß	R	8	8		7 6	2	52	1	31	i s	3 3	18	35	55	Ş.	C: 1	3 8	n 19	2.13	:5	50	3 f	3 8	53	- 2 -	81	5	7 11	55		13		e ;	-1 f) 2 #	ç,
	5.01 9	5.13 13	15.91 5			26.40 18	_																											12.73 0.					111 810 118 118								
s. L	5.45 2	5.53 4	0.35 1	30.65 3	_	21.31 3	_			21 10			15.60 C		277°4								14.40					51.10 51.10 51.10																		2 2	
	28.10	5.45.5	1.00 1	#2.06 3				- 1 .05				1 H H		124.57			15.25						12.22					28.04 29.05 29.05						5 - 22 - 22 - 22 - 22 - 22 - 22 - 22 -			50.35 11 11		4 94 8 84 8 85			:: :: :: ::					
	30.54	14.00	12.21		ю	2				23.60		305.20 22	11 11 Vi			50.85 5	22.02			51 13		1 6 1 6 1 6	1:8	8.5	2.77 12	2.46 1									412.34 59				19:05 19:05			m			o e		
	DRIDA VELE	LA ERRAGUE114.00	HON DESENT 42.2	E HITHE	LATANIERST 16.1	MEH ERDVE 215.37	ST. ANTOINE		LA LAVE L J		CT2	NE NEW	CC.		E KIYE41	_	•	1503 2150	말하고		11111 PC9 54 77		FLAINE PAP 48,55	302	AGY ETATI 42.77 1	-1.	EFEL SCRIZE.72		. r	10 2 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	BERUX SONS226.30	RESE HILL 277.69	PETITE RIVICI.09 PEANY POMPONE AN	770070 -	ю	-	171		5 2				SPLAZIE Z JEN		Laikrowskie. 		17 ETETE 61
	DIND	្មាំ	ι. C	A 381.6	LATA		6 81 B			1078 14 G		O TELENGK	10.492 F				-	12021 2	:000: 2					11 22 9		- 						3 3055			1 ST.F30L				9 69		4 15	SPAUSTERS	1979		55" 1910 - 19	8 25 8	
and the second se	47 54	07 07 07	13 EF	8	51 53	52 101	21 23	의 : 21 :			5 93 5 93	24 }}	11 23	다. 당 :		1 1 1 2	112	721 99	51 13) 명 (3 E		73 146	251 52	4771 QT	8	77 1516 78 151			21 157 21 157	51 52	335	4 9 1 8	S5 160		59 : 81 :	57 355 50 4775	1937 1 6		빌 문	11 22			7 E 2 E		3
2																																														1	

SURROUND WATER LEVEL IN WELLS AND BOREHOLES IN 1982-1983(2/2)

Annex B-1 Attochment-5(2)

.

12

.

DAM	(四) (四)		C.LENGTE GEOLOGY (a)	TECHNICAL PROBLEMS	FOUNDATION TRETHENT (stressed in improvement of permesbility meinly)
KASSA	1977	0-05	487.0 Volcanic rocks of Neogene, Quaternary	High permeability and mechanical strength	Treatment by cement milk and mortar through steel pipes inserted into foundation rocks in fissure developed zones (cement: L-11551 m, Q-3160 tons; mortar: L-2696 m, Q-4615 cu. m). Providing grout garalley for re-grouting
TEDORICAN	1979	153.0	420.0 Sedimentary rocks of Paleozoic and Hesozoic	A fault accompanied by 25 m wide fractured zones	Providing grout garalley for minimizing construction period and re-grouting; Low pressure grouting into high permeable fractured zones with horizontal and radial grouting after completion of dam embankment in the same zone (L-23984 m, Q-1960 tons in fractured zones). Injection of cement milk and mortar in cavities confirmed by pilot drilling and normal grouting holes (L-10994 m, Q-550 tons)
0HS09	1980	52.5	327.0 Andesitic agglomerate, tuffaceous shale and tuff breccia of Neogene	High permeabhlity in crack developed tuffaceous rocks	High permeability in Curtain grouting was performed from the grout gallarey for securing easy crack developed grouting when water leakage is occured. tuffaceous rocks Sub-surtain grouting was made in partailly confirmed high permeable zones in volcanic mud flows on the left abutment.
TAMAHARA	1 1982	116.0	570.1 Tuff breccia and volcanic breccia of Neogene and andesite and thick volcanic breccia		High permeability of Providing grout gralley for curtain grouting; blankat grouting in the area of andesite becuase of core zone; faults and open cracks were treated by filling mortar and cement paste developed joints and The fault which crosses the dam was treated by blankat grouting with 20-30 m wide fault extending the length of grout holes. Total grout amount is 4331 tons for 50576 m.
ТНЭЛОО	- 1977	102.0	340.0 Tuffaceous rocks of Neogene	Fractured foundation rocks because of a fault crossing dam ands	Fractured foundation Dam foundation of the core zone is treated by low pressured blanket grouting rocks because of a with closing spaces of grout holes, and by providing three lines of curtain fault crossing dam grout and sub-curtain grout along the center of dam axis. Grout injection was performed in the fault zones for improving permeability. The zones in which open cracks are developed were covered by mortar with rasing pipes for draining seepage water and treated by grouting finally.

DAMS IN HIGH PERMEABLE FOUNDATION ROCKS IN JAPAN

.

13

Annex B-1 Attachment- 8

COUNTRY	NAME OF DAM	COMPLETEI YEAR	COMPLETED HEIGHT OF TEAR DAM(m)	CREST LENGTH (=)	DEGREE OF CORROSION	TREETMENT
USA	J.PERCY PRIEST	1968	39.6	s 828.0 Kars gene	Karst in general	Corrosion cavities are excavated for about 3 times of the cavities width. and replaced by concrete. Curtain grouting for 28782 m; filters and drain blanket at the downstream of the dam
USA	HALES BAR	R 1914	4 33.6	694.5	F	Concrete cut-off wall for 6 - 30 m; asphalt and cement grouting into corrosion cavities
USA	KENTUCKY	1944	62.8	2569.0		Sheet piling in earth-fill zone with grouting at the upstream side Concrete cut-off wall for large corrosion cavities by large diameter drilling
A 2u	GUNTEERS- VILLE	- 1939	9 28.2	1193.7	·	Surfacial zones in which weathering is developed are excevated and removed. Cavities in deeper parts are replaced by concrete by large diameter drilling Grouting for preventing water leakages
USA	CHLCKA- MAUGA	1940	38.7	1740.0	E	Cut-off trench in earth-fill zones with concrete core-wall at rock firing zones Limestones in which karst is developed were removed from the major structure sites. Cavities in deeper zones are filled with concrete by large diameter drilling.
USA	FORT LOUDOUN	1943	36.6	1257.0	¥	Karst limestones were excavated and removed. Grouting at structure bases and concrete walls; concrete wall in earth-fill zones and concrete core wall
ASU	NORRIS	1936	79.5	558	F	Cavities in sbutments were pluged through adits (left abutment 8 adits for 390 m, right sbutment: 3 adits for 78 m). Consolidation grouting and curtain grouting: 1-59166 m, rim grouting: 1-13383 m, Q-69630 cu.m
ALGERIA	FOUN EL GHERZA	1950	65.0		126.0 Cavities at parts	Grouting from grout gallerys of along dam foundation and along left abutment ridges for 160 m and right abutment side for 500 m.
FRANCE	CEARMINE MOUX	1950	17.0		180.0 Kar st in general	First grouting of 16400 cu.m using mixtures of sand materials; second grouting of 540 tons using mixtures of sand materials
FRANCE	GENISSIAT		104.0	1 1	F	Concrete filling into matural well& and cavities; curtain grouting of 50 kg/m
FRANCE	SERRE	1	120.0	}		Grouring into fissure zones in linestones and zonas between alluvial deposits

DAMS IN LIMESTONE AREA IN FOREIGN COUNTRIES

Grouting was perfromed until third stages and permeability was improved less than 1 Lugeon. Details numbers and quantities are unkown.	Weathered zones and weak zones in thw core zone were excavated and replaced by concrete. Curtain grouting and blanket grouting for 64600 m (4563 tons)	Concrete pluges into two cavities in the left abutment; Curtain grouting from grouting tunnel in the left abutment (238000 cu.m)	Surfacial zones in which cavities are developed were excavated and removed and cavities in deeper zones were filled by concrete or pipe grouting (concrete; 9450 cu.m and moltar; 86 cu.m). Core zones were treated by grouting using soil cement and mortar	After cleaning cavities filled with clayey materials, the cavities were filled up with concrete in the core zones, left abutment and gravity dam portions. Curtain grouting from horizontal garalley, concrete cut-off wall at left abutment	Surfacial zones in which cavaities are developed were excavated and removed. Cavities were cleaned removing clayey materials and filled up with mortar and concrete.	
ម៉ូដ			" Surfa and c 9450 cemen	a After up wi Curta	 Surfacial zo Cavities wer and concrete 	
Karst genera	300.0 Cavities at parts	203.0 Karst in general	610.0		1	
55.0	145.0	156.0	140.0		1	
I	1	1960	1978	1	1	
Saint- Giulhelm- le-Desert	La ANGOSTURO	CANELLES	SRINAGA- RIND	KEBAN	CLEMS	
FRANCE	MEXICO	SPAIN	TAILAND	TUREY	GERMANT	

DAMS IN LIMESTONE AREA IN FOREIGN COUNTRIES

Annex B-1 AttOchment-9(2)

ANNEX (B-2)

ANALYSIS ON GROUNDWATER LEVEL AND LEAKAGE

Annex (B-2)

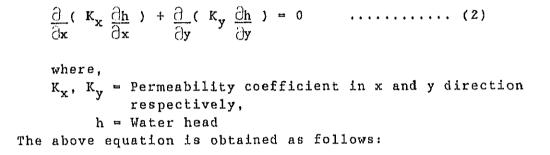
TABLE OF CONTENTS

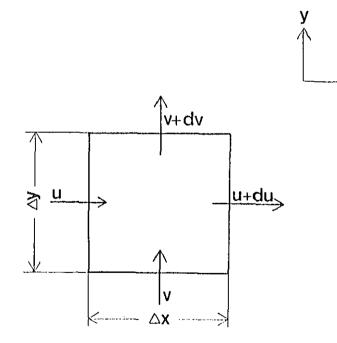
1.	Analy	sis of Groundwater Level at Present Condition	<u>Page</u> 1
	1.1	General	1
	1.2	Methodology	1
	1.3	Result of Analysis and Comment	3
2.	Analy	sis of Groundwater Level and Leakage After	
	Dam C	onstruction	4
	2.1	Methodology	4
	2.2	Leakage After Dam Construction	4
	2.3	Velocity of Seepage Water	4

LIST OF ATTACHMENT

<u>ATTACHMENT</u>	LIST	PAGE
1	GROUND WATER LEVEL (PRESENT CONDITION)	• б
2	CROSS SECTION OF LEFT ABUTMENT ALONG DAM AXIS	. 7
3	GROUND WATER LEVEL (RESERVOIR WL : EL.189.0 m)	• 8
4	GROUND WATER LEVEL (RESERVOIR WL : EL.180.0 m)	. 9
5	GROUND WATER LEVEL (RESERVOIR WL : EL.170.0 m)	. 10
б	RELATION BETWEEN RESERVOIR WL. AND LEAKAGE	. 11
7	FLOW VELOCITY OF GROUNDWATER (RESENT CONDITION)	. 12
8	FLOW VELOCITY OF GROUNDWATER (RESERVOIR WL : EL.189.0 m)	. 13
9	AVERAGE WATER BALANCE (1966-19867) (WITH LEAKAGE)	• 14
10	PERMIABILITY (After improvement)	. 15
11	GROUND WATER LEVEL (Present condition)	. 16
12	GROUND WATER ELEVATION (RESERVOIR WL : EL.189.0 m)	. 17
13	GROUND WATER ELEVATION (RESERVOIR WL : EL.180.0 m)	• 18
14	GROUND WATER ELEVATION (RESERVOIR WL : EL.170.0 m)	• 19

⇒х


1. Analysis of Groundwater Level at Present Condition

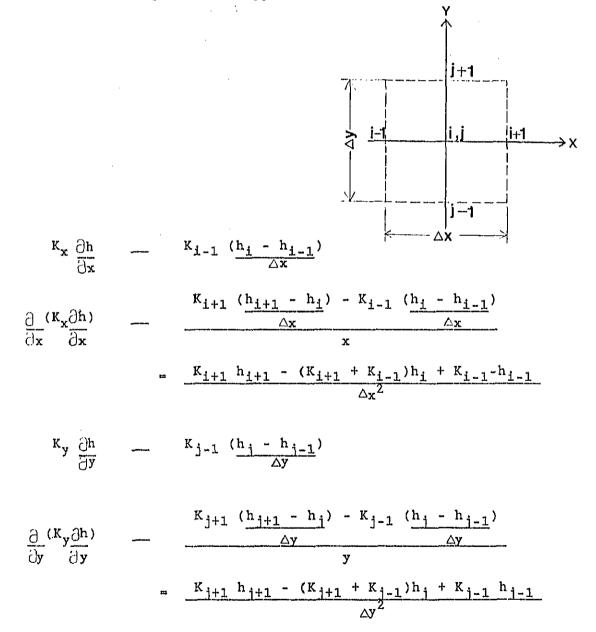

1.1 General

An analysis is made to confirm whether the groundwater level measured in the left bank of the proposed damsite is reasonable or not.

1.2 Methodology

The analysis is based on the following equation:

Assuming no increase or decrease in discharge, u riangle y - (u + du) riangle y + v riangle x - (v + dv) riangle x = 0- du riangle y - dv riangle x = 0


On the one hand, u and v are given by Darcy's formula as follows:

$$u = K_x \frac{\partial h}{\partial x} , v = K_y \frac{\partial h}{\partial y}$$

Substituting the above for Equation (1),

$$\frac{\partial}{\partial \mathbf{x}} \begin{pmatrix} \mathbf{K}_{\mathbf{x}} & \frac{\partial \mathbf{h}}{\partial \mathbf{x}} \end{pmatrix} + \frac{\partial}{\partial \mathbf{y}} \begin{pmatrix} \mathbf{K}_{\mathbf{y}} & \frac{\partial \mathbf{h}}{\partial \mathbf{y}} \end{pmatrix} = 0 \qquad \dots \dots \dots \dots \dots (2)$$

The above equation is applied as follows:

Thus, the following equation;

$$\frac{\partial}{\partial \mathbf{x}} \begin{pmatrix} \mathbf{K}_{\mathbf{x}} \frac{\partial \mathbf{h}}{\partial \mathbf{x}} \end{pmatrix} + \frac{\partial}{\partial \mathbf{y}} \begin{pmatrix} \mathbf{K}_{\mathbf{y}} \frac{\partial \mathbf{h}}{\partial \mathbf{y}} \end{pmatrix} = \mathbf{0}$$

is represented by this finite differentiation equation.

$$+ \frac{\frac{K_{j+1} h_{j+1} - (K_{j+1} + K_{j-1}) h_{j} + K_{j-1} h_{j-1}}{\Delta x^{2}}{\Delta y^{2}} = 0$$

Substituting $h_i = h$ and $h_i = h$, then,

$$K_{i+1} h_{i+1} + K_{i-1} h_{i-1} + K_{j+1} h_{j+1} + K_{j-1} h_{j-1}$$
$$- (K_{i+1} + K_{i-1} + K_{j+1} K_{j-1})h = 0$$

,or

$$\begin{array}{c} h \\ = \\ \begin{array}{c} K_{i+1} & h_{i+1} & + \\ \hline \\ K_{i+1} & K_{i-1} & h_{i-1} & + \\ \hline \\ K_{i+1} & K_{i-1} & K_{i+1} & K_{i-1} \\ \end{array} \right)$$

Equation (3) should be satisfied at all the points. Then, simultaneous equations having the water head at each point as unknown quantity can be obtained.

The water head at each point is found by solving the above simultaneous equations.

1.3. Result of Analysis and Comment

The result of analysis is shown in the Attachment-1. In the analysis, the present river water level is given as known groundwater levels, which are shown in bracket.

The groundwater level in the left bank of damsite obtained by the analysis is shown in the Attachment-2 in comparison with that measured actually.

As seen in Attachment-2, an approximate coincidence between the analyzed and measured ones is obtained, indicating that the present low groundwater level in the left bank of damsite is not

due to an unusual geological condition.

The flow velocity and direction of groundwater is shown in the Attachment-7.

The maximum flow velocity of $3^{7}6$ cm/day is indicated at western side of southern edge of the plateau, suggesting that a particular problem will not occur at flow velocity less than 376 cm/day.

2. Analysis of Groundwater Level and Leakage After Dam Construction

2.1 Methodology

The same methodology as mentioned in the previous section 1.2.

2.2. Leakage After Dam Construction

After dam construction, water level of dam reservoir will rise in the range of low water level (El. 139 m) and high water level (El. 189 m) except for short period during flood. Attachment-3 to 5 show groundwater level contour maps of the Plateau by several water levels of the reservoir. Stored water in the reservoir flows into the Plaines Wilhems river and its amount is 30 lit/sec at 189 m, 18 lit/sec at 185 m and 6 lit/sec at 180 m. When water level falls down to 176 m amount of ground water flow is balanced and there is no leakage loss through the Plateau Attachment-6 shows the relationship between leakage volume and water level of the reservoir.

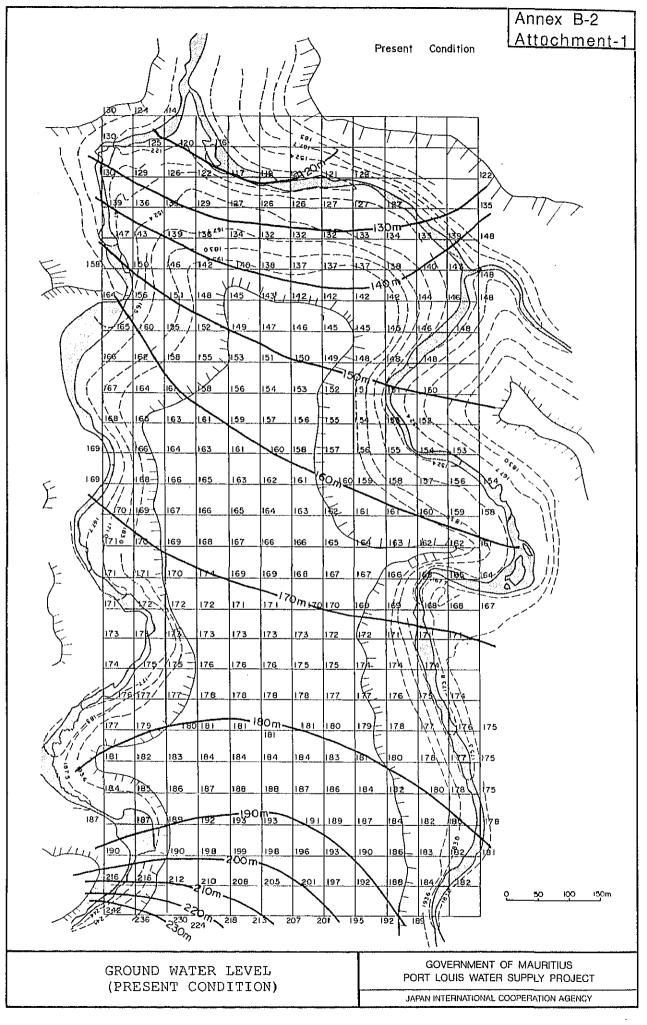
2.3 Velocity of Seepage Water

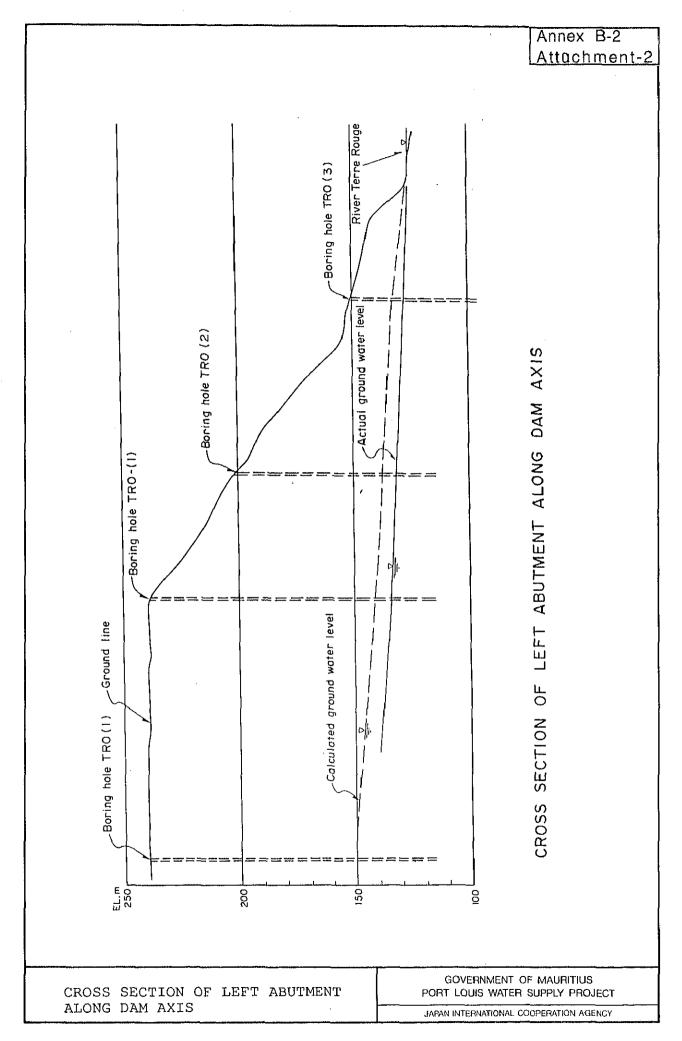
There are two areas where ground water has high velocity in the present condition. One is on the Plaines Wilhems river near the confluence with the Terre Rouge river. Maximum velocity there is 186 cm/day. Another is western side of southern edge of the Plateau. Maximum velocity there is 376 cm/day. Attachment-7 shows distribution of groundwater flow velocity in the analysed

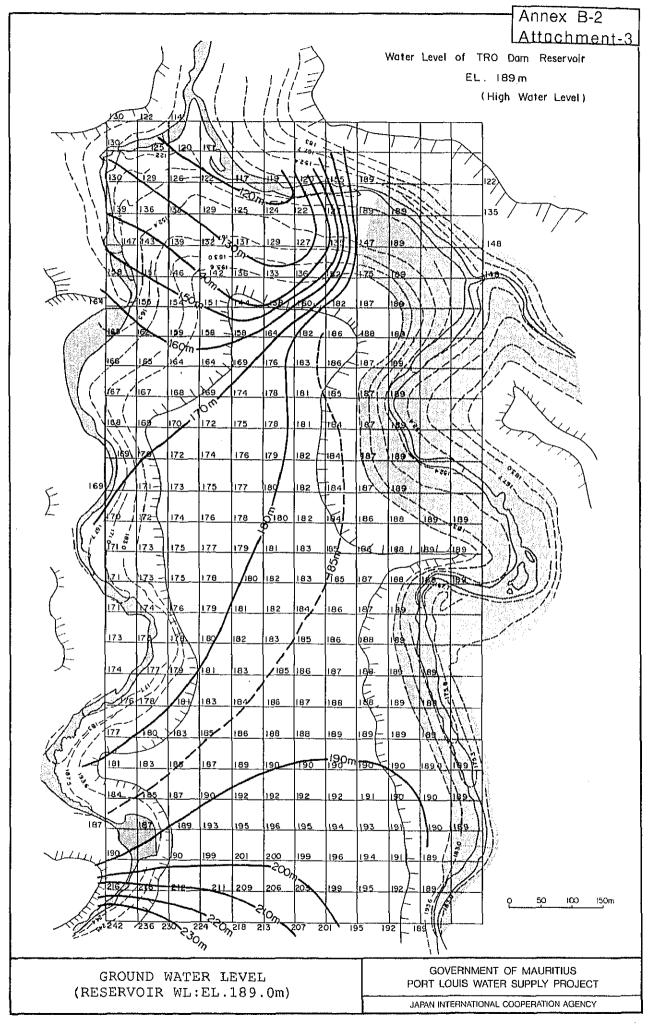
area under the present condition.

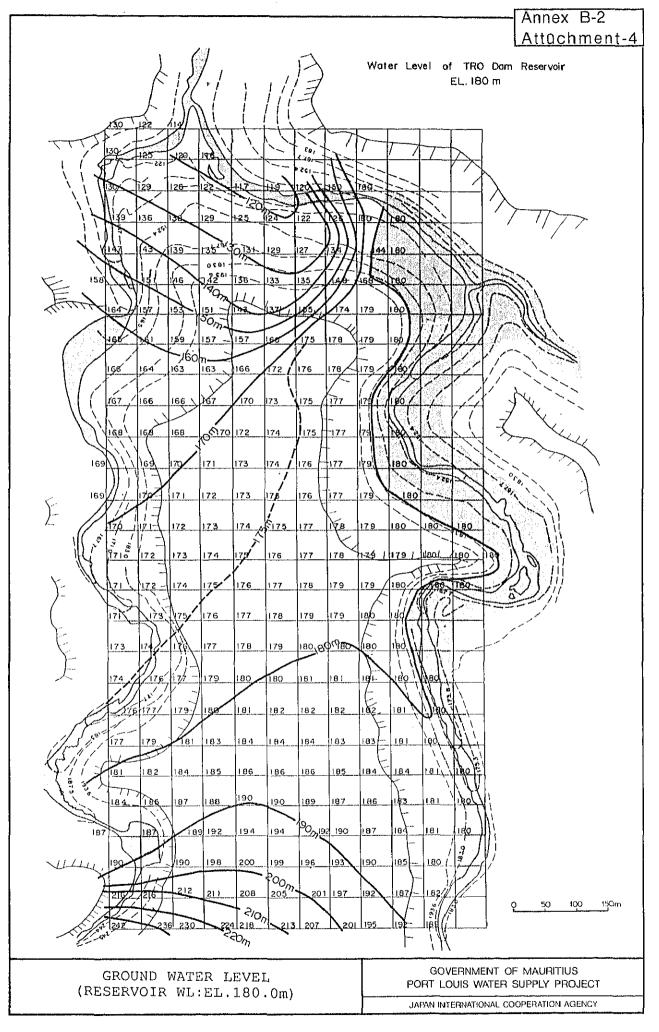
This distribution pattern does not change compared with the present condition even if dam reservoir is filled with water. Attachment-8 shows distribution of groundwater flow after dam construction (EL. 189 m).

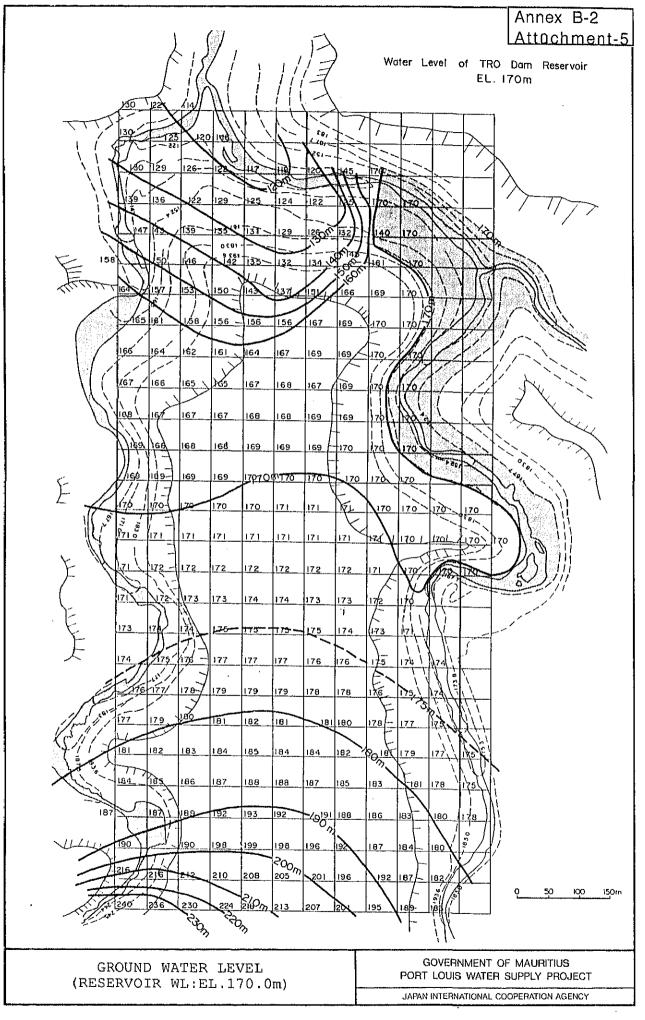
Following changes of ground water flow velocity from the present

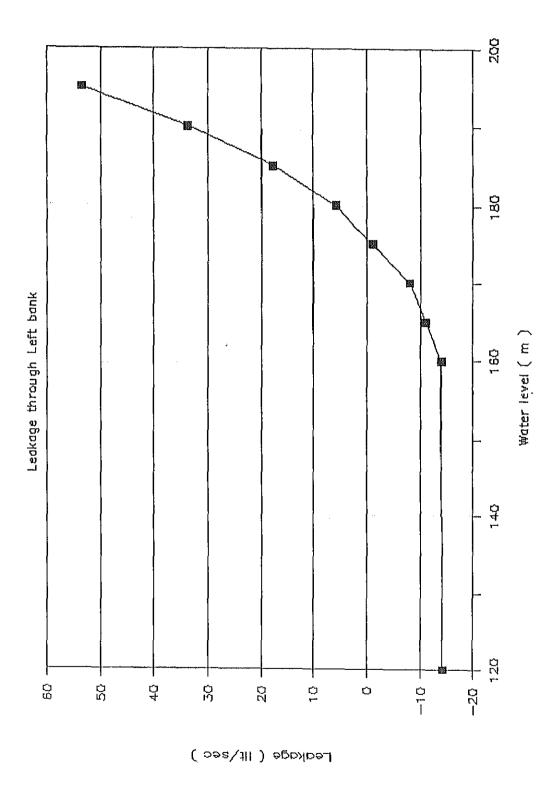

condition are observed after dam construction.

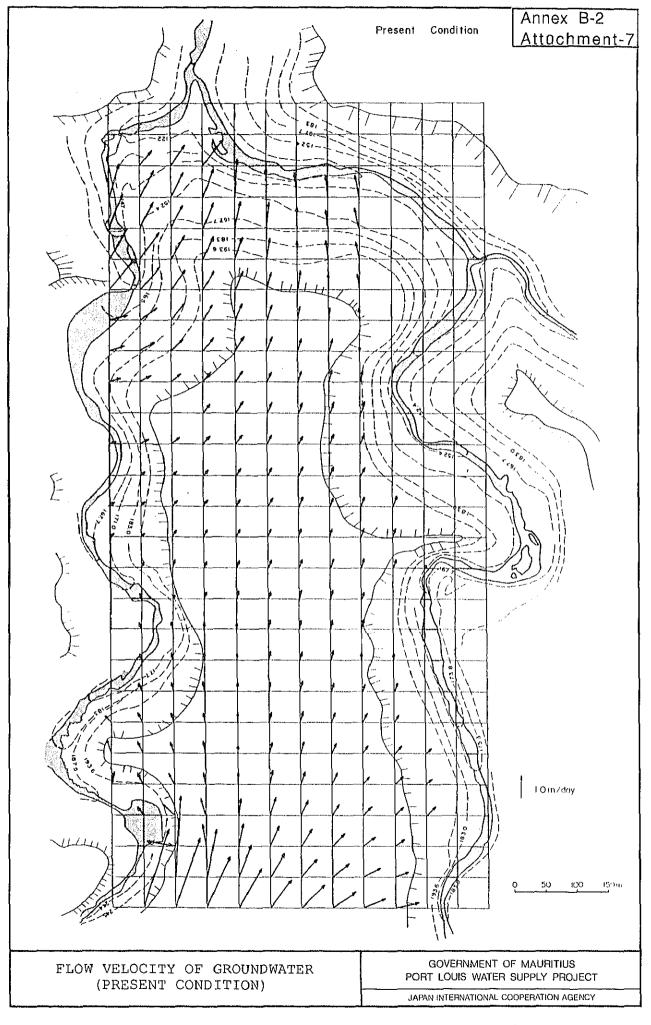

	SITE	Present condition	After condition
(1)	Plaines Wilhems river near confluence with Terre Rouge river - Max. velocity	186 cm/day	199 cm/day
(2)	Western side of southern edge of the plateau: - Max. velocity	376 cm/day	374 cm/day

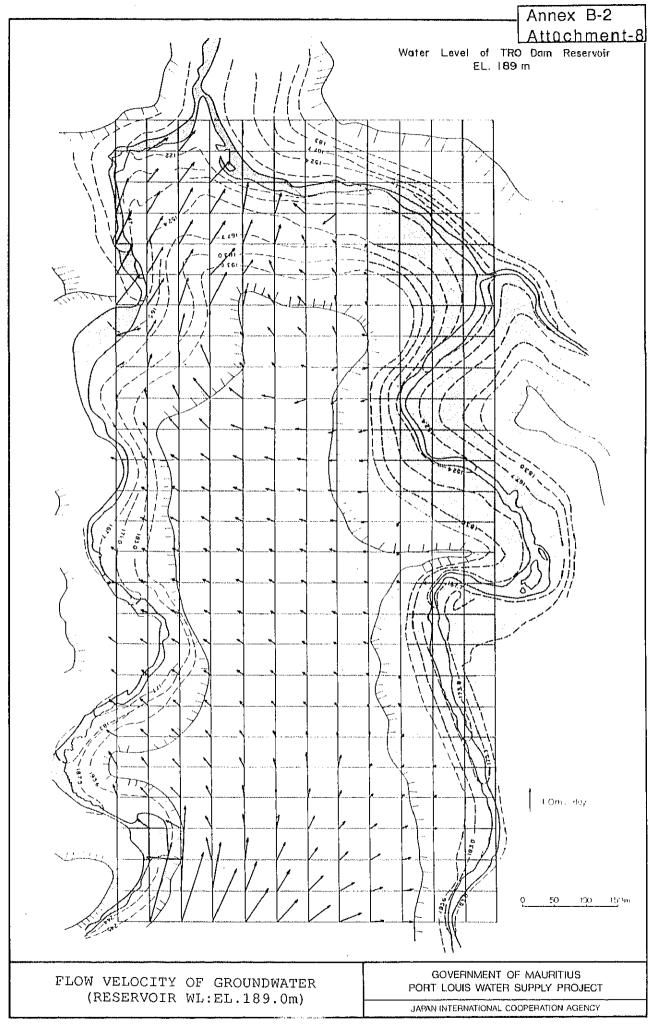

In Plaines Wilhems river near the confluence with Terre Rouge river, the increase maximum of flow velocity of 13 cm/day occurs due to dam construction. However, this increase is considered insignificant from the aspect of safety.


In the western side of southern edge of the plateau, the flow velocity tends to reduce due to the rise of water level in the downstream, changing the condition to safe side.


Detail of conditions such as permeability distribution in the simulated area, ground water level as boundary and results of simulation are tabulated in Attachment 10 to 14.







RELATION BETWEEN RESERVOIR WATER LEVEL AND LEAKAG

AVERAGE WATER BALANCE (1966 - 1986) (with leakage)

Total Water Requirement : 1.05 m³/sec LWL : 139.0 m HWL : 189.0 m Effective Storage : 6.4 MCM Dead Storage : .275 MCM

SEASON		INFLOW* Resi Dam (MCM) (MCM)		SUPPLY		SPILLOUT	& NUMBER			EVAPORA- TION	
	-	(muM)	(mum)	(MCM)	(MCM)	(MCM)	(MCH)		(m)	(MCM)	(MCM)
NOV.	1	0.28	0.47	0.18	0.45	0.17	0.00	0	185.2	0.010	0.020
	2	0.24	0,40	0.18	0.50	0.11	0.00	0	184.0	0.010	0.019
	3	0.32	0.51	0.19	0.47	0.23	0.00	0	183.0	0.009	0.017
DEC.		0.47	0.68	0.19	0.40	0.30	0.00	0	182.6	0.009	0.015
	2	0.71	0.90	0.20	0.33	0.52	0.00	0	182.4	0.009	0.015
	3	1.32	1.56	0.22	0.29	0.98	0.00	0	184.7	0.009	0.017
JAN.	1	0.69	0.88	0.20	0.21	0.54	0.00	0	185.0	0.010	0.016
	2	1.60	1.82	0.19	0.23	1.53	0.00	0	185.2	0.010	0.018
	3	2.74	2.92	0.24	0.15	2.64	0.00	0	185.6	0.010	0.021
EB.	1	3.42	3.99	0.24	0.04	3.45	0.00	0	187.8	0.009	0.020
	2	2.95	3.97	0.24	0.06	3.87	0.00	0	187.8	0.009	0.024
	3	2.03	2.44	0.20	0.05	2.34	0.00	0	187.9	0.009	0.020
MAR.	1	2.03	2.55	0.24	0.03	2.38	0.00	0	188.4	0.009	0.024
	2.	2.54	2.95	0.24	0.01	2.86	0.00	0	188.6	0.010	0.025
	3	2.13	2.40	0.26	0.05	2.27	0.00	0	188.8	0.009	0.028
\PR.	1	1.39	1.59	0.24	0.04	1.48	0.00	0	189.0	0.009	0.026
	2	1,51	2.08	0.24	0.06	1.98	0.00	0	189.0	0.008	0.026
	3	1.20	1.77	0.24	0.06	1.68	0.00	0	189.0	0.008	0.026
ΙΛΥ.	1	0,96	1.24	0.24	0.07	1.14	0.00	0	189.0	0.007	0.026
	2	0.75	1.00	0.23	0.11	0.87	0.00	0	188.9	0.007	0.026
	3	0.88	1.15	0.25	0.15	1.00	0.00	0	188.8	0.007	0.029
JUN.	1	0.74	1.02	0.23	0.13	0.89	0.00	0	188.7	0.006	0.026
	2	0.68	0.95	0.23	0.12	0.78	0.00	0	188.7	0.006	0.025
	3	0.63	0.91	0.22	0.16	0.71	0.00	0	188.8	0.006	0.025
JUL.	1	0.55	0.81	0.21	0.18	0.61	0.00	0	188.8	0.006	0.026
	2	0.57	0.80	0.22	0.17	0.61	0.00	0	188.8	0,006	0.026
	3	0.71	1.00	0.24	0.17	0.80	0.00	0	188.7	0.007	0.028
AUG.	1	0.63	0.83	0.21	0.15	0.65	0.00	0	188.7	0.007	0,025
	2	0,77	1.13	0.22	0.15	0.96	0.00	0	188.6	0.007	0.025
	3	0.77	1.13	0.24	0.16	0.94	0.00	0	188.6	0,008	0.028
SEP.	1	0,56	0.71	0.21	0.19	0.51	0.00	0	188.5	0,008	0.025
	2	0.49	0.56	0.21	0.22	0.34	0.00	0	188.3	0.008	0.025
	3	0.40	0.49	0.20	0.29	0.23		0	188.0	0.009	0.025
ост.	1	0.40	0.58	0.20	0.34	0.29	0.00		187.6	0.009	0.024
	2	0.31	0.46	0.20	0.39	0.15	0.00		187.0	0.010	0.023
	3	0.29	0.45	0.21	0.48	0.10	0.00		186.2	0.010	0.023
		38.69	49.10	7.88	7.06	40.92	0.00	0		0.301	0.835

* Dam : inflow into TRO dam reservoir

Resi: river flow of residual basin

PERMIABILITY (after improvement)

Annex B-2 Attachment-10

Unit : cm/sec

	1	2	3	4	5	6	7
14	1E-04 1E-	04 1E-04 1E-0	4 1E-04 J	1E-04 1E-04	1E-05 1E-06	1E-06 1E-04	1E-04 1E-04
	1E-04 1E-	04 1E-04 1E-0	4 1E-04 1	1E-04 1E-04	1E-05 1E-06	1E-06 1E-04	1E-04 1E-04
13	1E-04 1E-	04 1E-04 1E-0	4 1E-04 1	1E-04 1E-04	1E-05 1E-06	1E-06 1E-04	1E-04 1E-04
	1E-04 1E-	04 1E-04 1E-0	4 1E-04 J	1E-04 1E-04	1E-05 1E-06	1E-06 1E-04	1E-04 1E-04
12	1E-04 1E-	04 1E-04 1E-0	4 1E-04 1	1E-04 1E-05	1E-05 1E-06	1E-06 1E-04	1E-04 1E-04
	1E-04 1E-	04 1E-04 1E-0	4 1E-04 1	1E-04 1E-05	1E-05 1E-06	1E-05 1E-04	1E-04 1E-04
11	1E-04 1E-	04 1E-04 1E-0	4 1E-05 1	1E-05 1E-05	1E-05 1E-05	1E-05 1E-04	1E-04 1E-04
	1E-04 1E-	04 1E-04 1E-0	4 1E-05 1	1E-05 1E-05	1E-04 1E-04	1E-04 1E-04	1E-04 1E-04
10	1E-04 1E-	04 1E-04 1E-0	4 1E-05 3	1E-05 1E-05	1E-04 1E-04	1E-04 1E-04	1E-04 1E-04
	1E-04 1E-	04 1E-04 1E-0	4 1E-04 3	1E-04 1E-04	1E-04 1E-04	1E-04 1E-04	1E-04 1E-04
9	1E-04 1E-	04 ·1E-04 1E-0	4 1E-04 3	1E-04 1E-04	1E-04 1E-04	1E-04 1E-04	1E-04 1E-04
	1E-04 1E-	04 1E-04 1E-0	4 1E-04 3	1E-04 1E-04	1E-04 1E-04	1E-04 1E-04	1E-04 1E-04
8	1E-04 1E-	04 1E-04 1E-0	4 1E-04 3	1E-04 1E-04	1E-04 1E-04	1E-04 1E-04	1E-04 1E-04
	1E-04 1E-	04 1E-04 1E-0	4 1E-04	1E-04 1E-04	1E-04 1E-04	1E-04 1E-04	1E-04 1E-04
7	1E-04 1E-	04 1E-04 1E-0	4 1E-04 3	1E-04 1E-04	1E-04 1E-04	1E-04 1E-04	1E-04 1E-04
	1E-04 1E-	04 1E-04 1E-0	4 1E-04	1E-04 1E-04	1E-04 1E-04	1E-04 1E-04	1E-04 1E-04
6	1E-04 1E-	04 1E-04 1E-C	4 1E-04	1E-04 1E-04	1E-04 1E-04	1E-04 1E-04	1E-04 1E-04
	1E-04 1E-	04 1E-04 1E-0	4 1E-04	1E-04 1E-04	1E-04 1E-04	1E-04 1E-04	1E-04 1E-04
5	1E-04 1E-	04 1E-04 1E-C	4 1E-04	1E-04 1E-04	1E-04 1E-04	1E-04 1E-04	1E-04 1E-04
	1E-04 1E-	04 1E-04 1E-0	4 1E-04	1E-04 1E-04	1E-04 1E-04	1E-04 1E-04	1E-04 1E-04
4	1E-04 1E-	04 1E-04 1E-0	4 1E-04	1E-04 1E-04	1E-04 1E-04	1E-04 1E-04	1E-04 1E-04
	1E-04 1E-	04 1E-04 1E-0	4 1E-04	1E-04 1E-04	1E-04 1E-04	1E-04 1E-04	1E-04 1E-04
3	1E-04 1E-	04 1E-04 1E-0	4 1E-04	1E-04 1E-04	1E-04 1E-04	1E-04 1E-04	1E-04 1E-04
	1E-04 1E-	04 1E-04 1E-0	4 1E-04	1E-04 1E-04	1E-04 1E-04	1E-04 1E-04	1E-04 1E-04
2	1E-04 1E-	04 1E-04 1E-0	4 1E-04	1E-04 1E-04	1E-04 1E-04	1E-04 1E-04	1E-04 1E-04
	1E-04 1E-	04 1E-04 1E-0	4 1E-04	1E-04 1E-04	1E-04 1E-04	1E-04 1E-04	1E-04 1E-04
1	1E-04 1E-	04 1E-04 1E-0	4 1E-04	1E-04 1E-04	1E-04 1E-04	1E-04 1E-04	1E-04 1E-04
	1	2	3	4	ł	i 6	7
		l permiabilit		to be 10 ⁻⁴			
		grout or oth	er impro				
	Others		1		10 ⁻⁴ cm/sec		
			15				

(Present condition)

·	1		2		3		4		5		6			liver bed Ferre Rouge		ection 4-5 lux(lit/sec
14	130	122	114			-		-	~	-	-		-	-	-	
	130	125	120	116	-	-	-	-	-	-	-	-	-	-		
13	130	129	126	122	117	119	120	121	122	••	-	-	122	122		-0.03
	139	136	133	129	127	126	126	127	127	129	-	129	135	135		-0.31
12	147	143	139	136	134	132	132	132	133	134	135	139	148	148		-0.42
	156	150	146	142	140	138	137	137	137	138	140	143	148	148		-0.16
11	164	156	151	148	145	143	142	142	142	142	144	146	148	148		-0.01
	165	160	155	152	149	147	146	145	145	145	146	148	-	148		0.03
10	166	162	158	155	153	151	150	149	148	148	148	-	-	148		-0.02
	167	164	161	158	156	154	153	152	151	151	150	-	-	150		-0.06
9	168	165	163	161	159	157	156	155	154	153	152	-	-	152		-0.10
•	169	166	164	163	161	160	158	157	156	155	154	153	-	153		-0.19
8	169	168	166	165	163	162	161	160	159	158	157	156	154	154		-0,26
	170	169	167	166	165	164	163	162	161	161	160	159	158	158		-0.20
7	171	170	169	168	167	166	166	165	164	163	162	162	161	161		-0.13
	171	171	170	170	169	169	168	167	167	166	165	165	164	164		-0.10
6	171	172	172	172	171	171	170	170	169	169	168	168	167	167		-0.07
	173	173	173	173	173	173	173	172	172	171	171	171	-	171		-0.04
5	174	175	175	176	176	176	175	175	174	174	174	-	-	174		-0.01
	176	177	177	178	178	178	178	177	177	176	175	174	-	174		-0.09
4	177	179	180	181	181	181	181	180	179	178	177	176	175	175		-0.23
	181	182	183	184	184	184	184	183	181	180	178	177	175	175		-0.47
3	184	185	186	187	188	188	187	186	184	182	180	178	175	175		-0.86
	_	187	189	192	193	193	191	189	187	184	182	180	178	178		-1.24
2		-	190	198	199	198	196	193	190	186		182		180		-1.84
		216	212	210	208	205	201	197	192	188	184		-			-2.94
1	242	236	230	224	218	213	207	201	195	189	183	-		183		-4.50
	1		2		3	<u></u>	4		5		6		7	Tot	a]	-14.23

Water Level	of	TRO Dam reservoir : 18	19 m

		_
Unit	1	meter

													I	River bed	Section	4-5
	1		2		3		4		5		6		7 (Terre Rouge)	Flux(lit	/sec
14	130	122	114	-	-	-	-	-	-	-	-	-	-			
	130	125	120	116	-		~	-	-	-	-	-	-	-		
13	130	129	126	122	117	119	120	155	189	-	-	. .	122	122	4.72	
	139	136	133	129	125	124	122	127	189	189	-	-	135	135	3.91	
12	147	143	139	135	131	129	127	135	147	189	-	-	148	148	-0.21	
	156	151	146	142	136	133	136	152	175	189	~	-	148	148	0.98	I
11	164	157	154	151	144	138	160	182	187	189	-	-	148	148	0.98	I
	165	162	159	158	158	164	182	186	188	189	-	-	-	148	2.34	
10	166	165	164	164	169	176	183	186	187	189	-	-		148	2.61	
	167	167	168	169	174	178	181	185	187	189	-	-	-	150	4.12	
9	168	169	170	172	175	178	181	184	187	189		-	-	152	4.14	
	169	170	172	174	176	179	182	184	187	189	-	-	-	153	3.95	
8	169	171	173	175	177	180	182	184	187	189	-	-	-	154	3.60	
	170	172	174	176	178	180	182	184	186	188	189	189	+	158	2.71	
7	171	173	175	177	179	181	183	185	186	188	189	189	189	161	2.10	
	17 1	173	175	178	180	182	183	185	187	188	189	189	-	164	1.75	
6	171	174	176	179	181	182	184	186	187	189	-	_	-	167	1.52	
	173	175	178	180	182	183	185	186	188	189	-	-	-	171	1.09	
5	174	177	179	181	183	185	186	187	188	189	189	-	-	174	0.64	
	176	178	181	183	184	186	187	188	188	189	189		••	174	0.42	
4	177	180	183	185	186	188	188	189	189	189	189	_	-	175	0.16	ļ
	181	183	185	187	189	190	190	190	190	190	189	189	-	175	-0.16	į
3	184	185	187	190	192	192	192	192	191	190	190	189	-	175	-0.63	
	-	187	189	193	195	196	195	194	192	191	190	189	_	178	-1.19	
2	-	~	190	199	201	200	199	196	194	191	189	-	-	180	-1.89	
	-	216	212	211	209	206	203	199	195	192	189	_	-	182	-2,94	ł
1	242	236	230	224	218	213	207	201	195	192	189	-	-	183	-4,50)
	1		2		3	·····	4		5		6		7	Tota	al 30.22	<u>.</u>

Water Level of TRO Dam reservoir : 180 m

```
Unit : meter
```

	1		2		3		4		5		6			liver bed Ferre Rouge)	Section 4-5 Flux(lit/sec
14	130	122	114	-	-		-		-	-	 	-	-		
	130	125	120	116	-	-	-	-	-	-	-	-	-	-	
13	130	129	126	122	117	119	120	150	180	-	-	-	122	122	3.55
	139	136	132	129	125	124	122	126	180	180	-	-	135	135	2.67
12	147	143	139	135	131	129	127	134	144	180	-	-	148	148	-0.24
	156	151	146	142	İ36	133	135	148	168	180	-	-	148	148	0.56
11	164	157	153	15 1	143	137	155	174	17 9	180	-	-	148	148	0.63
	165	161	159	157	157	160	175	178	179	180	-	-	-	148	1.27
10	166	164	163	163	166	172	176	178	179	180	-	-	-	148	1.30
	167	166	166	167	170	173	175	177	179	180	-	-	-	150	1.96
9	168	168	168	170	172	174	175	177	179	180	-	-	-	152	1.90
	169	169	170	171	173	174	176	177	179	180	-	-	-	153	1.73
8	169	170	171	172	1 73	175	176	177	179	180	-	-	-	154	1.49
	170	171	172	173	174	175	177	178	179	180	180	180		158	1.02
7	171	172	173	174	175	176	177	178	179	179	180	180	180	161	0.68
	171	172	174	175	176	177	178	179	179	180	180	180	-	164	0.45
6	171	173	175	176	177	178	179	179	180	180	-	-	-	167	0.26
	173	174	176	177	178	179	180	180	180	180	-	-	-	171	0.07
5	174	176	177	179	180	180	181	181	181	180	180	-	-	174	-0.04
,	176	177	179	180	181	182	182	182	182	181	180	-	-	174	-0.17
4	177	179	181	183	184	184	184	183	183	181	180	-	-	175	-0.36
	181	182	184	185	18 6	186	186	185	184	182	181	180	-	175	-0.63
3	184	185	187	188	190	190	189	187	186	183	181	180	-	175	-1.07
	-	187	189	192	194	194	192	190	187	184	181	180	-	178	-1.51
2	-	-	190	198	200	199	196	193	190	185	180	-	-	180	-2.12
	-	216	212	211	208	205	201	197	192	187	182	-	-	182	-3.13
1	242	236	230	224	218	213	207	201	195	189	183	-	-	183	-4.50
	1		2		3		4		5		6		7	 T	

Water Level of TRO Dam reservoir : 170 m

Unit	:	meter	
------	---	-------	--

	1		2		3		4		5		6			River bed Terre Rouge)	Section 4-5 Flux(lit/sec
14	130	122	114	~	-		~	-	-		•		-	-	-
	130	125	120	116	-	-	-	-	-	-	-	-	-	-	
13	130	129	126	122	117	119	120	145	170	-	-	-	122	122	2.44
	139	136	132	129	125	124	122	125	170	170	-	-	135	135	1.56
12	147	143	139	135	131	129	126	132	140	170	-	-	148	148	-0.25
	156	150	146	142	135	132	134	145	161	170	-	-	148	148	0.21
11	164	157	153	150	143	137	151	166	169	170	-	-	148	148	0.33
	165	161	158	156	156	156	167	169	170	170	-	-		148	0.43
10	166	164	162	161	164	167	169	169	170	170	-	-	-	148	0.31
	167	166	165	165	167	168	169	169	170	170	-	-	-	150	0.36
9	168	167	167	167	168	168	169	169	170	170	-	-	-	152	0.27
	169	168	168	168	169	169	169	170	170	170	-	-	-	153	0.15
8	169	169	169	169	170	170	170	170	170	170	-	-	-	154	0.01
	170	170	170	170	170	171	1 71	171	170	170	170	170	-	158	-0.10
7	171	171	171	171	171	171	171	171	171	170	170	170	170	161	-0.18
	171	172	172	172	172	172	172	172	171	170	170	170	-	164	-0.24
6	171	172	173	173	174	174	173	173	172	170	-	-		167	-0.26
	173	174	174	175	175	175	175	174	173	171			-	171	-0.16
5	174	175	176	177	177	177	176	176	175	174	174	-	-	174	-0,06
	176	177	178	179	179	179	178	178	176	175	174	-	-	174	-0.15
4	177	179	180	181	182	181	181	180	178	177	175	_	-	175	-0,31
	181	182	183	184	185	184	184	182	181	179	177	175	-	175	-0.56
3	184	185	186	187	188	188	187	185	183	181	178	175	_	175	-0.98
0	-	187	189	192	193	192	191	188	186	183	180		-	178	-1.35
2	-	107	190	198	199	198	196	192	189	184	180	-		180	-1.93
L .	-	- 216	212	210	208	205	201	192	105	184	182	-	-	180	-3.01
1	- 242		230	224	218	205	201			187	183	-			
1		2,30	2.30			215	207	201	190	109		-	-	183	-4.50
	1		2		3		4		5		6		7	Te	otal -7.99

19

.

ANNEX (B-3)

JUSTIFICATION FOR DEPTH OF FOUNDATION EXCAVATION FOR SPILLWAY AND EARTH DAM AT MO4 AND TR9

Annex (B-3)

1. General

In the design of dam for MO4 and TR9 schemes, the spillway is founded on the weathered rock surface situated at around 15 m depth from the ground surface. The impervious cut-off trench is also excavated down to the weathered rock surface to secure the safety of dam.

the above design is based on the following consideration:

- 2. Foundation for spillway
 - (1)The spillway (a heavy concrete structure) founded on the should be considered to clay materials cause а differential settlement due to the so-called consolidation of clay materials (The consolidation of clay occurs because the water contained in the clay discharges out due to the weight of concrete structure); that is, the foundation of the concrete structure will move.

As a result, many troubles are considered to arise in the concrete structure itself. Besides that, the earth dam will be subject to serious damages in the contact portion with the concrete structure due to the movement of concrete structure, resulting in a fatal damage of whole dam.

Therefore, the Team considers the spillway, in principle, is forced to be founded on the weathered rock situated at about 15 m depth where the consolidation will not occur.

(2) The spillway is a concrete gravity dam which should followed the dam design criteria accepted widely.

According to the dam design criteria, the foundation of dam has to have the safety factor more than 4 times at least in both sliding and bearing strength.

It will be difficult to secure the above necessary safety factor on the foundation of clay as seen in the attached paper (attach.-1) which shows a stability analysis of a concrete structure on the clay material.

In the case of this example, the safety factor for sliding is calculated at 0.83 which is much less than 4.0. The bearing stress is calculated at 24.83 t/m^2 , while the bearing strength of clay materials will be about 5.0 to 15 t/m^2 .

Thus, it is considered that such an important concrete structure as the spillway of dam should not be founded on the clayey materials which tend to cause various troubles.

3. Foundation for earth dam

(1) Impervious cut-off trench

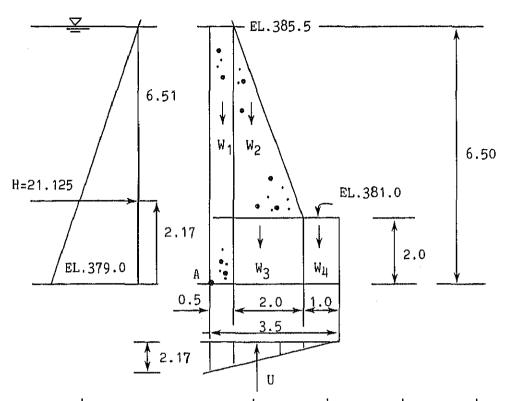
The securement of a sufficient impermeability in the dam foundation is the most important factor for the safety of a fill type dam.

As for measures to secure the sufficient impermeability of dam foundation, there are three(3) widely accepted measures as shown in Attachment-2. One of them is usually applied in accordance with the thickness of pervious foundation.

Case (a) in Attachment-2, in which the cut-off trench reaches the impervious stratum, is most reliable technically, and therefore, it is recommended to apply the Case (A), if the thickness of pervious layer is not so deep or if there is no large difference in the cost.

Attachment-3 presents a preliminary cost comparison on the above three (3) treatment measures.

The result is as follows:


Case (A): US\$ 3,780,000 Case (B): US\$ 6,300,000 (concrete wall) US\$ 3,900,000 (cement grout) Case (c): US\$ 3,660,000

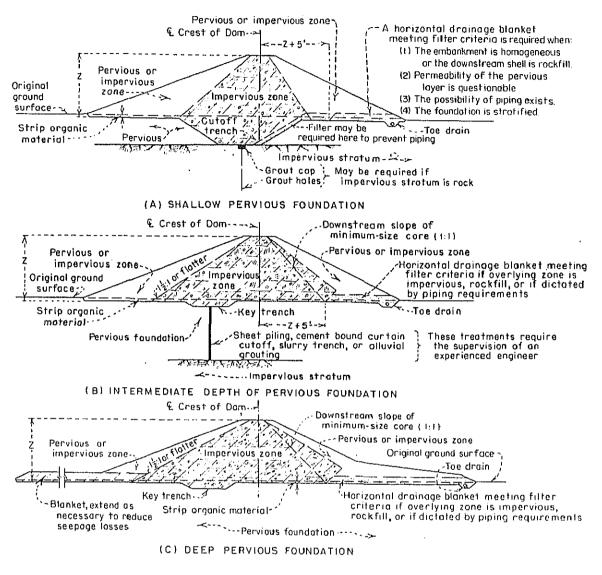
As seen, the cost difference is negligibly small among three measures. In such a case, application of the most reliable and complete measure (Case(A)), in principal, is recommendable.

(2) Foundation for earth dam

The foundation of a fill type dam is prohibited to contain any organic or harmful materials. Furthermore, very loose residual soil materials should be removed to avoid probable troubles to be caused by consolidation of loose soil materials or the collapse of dam body along a weak sliding circle which appears through the weak foundation.

Based on the field investigations at MO4 or TR9, it is judged the stripping of about 3.0 m depth at least will be required. Examination of Stability for A Concrete Structure on Clayey Material

· · ·	FORCE	н	v	ARM	MONENT
H	$\frac{1}{2} \times 6.5 \times 6.5 = 21.125$	21.125		2.17	45.84
W1	6.5×0.5×2.4=7.8		7.8	0.25	1.95
W2	$\frac{1}{2} \times 4.5 \times 2.0 \times 2.4 = 10.8$		10.8	1.17	12.64
^W 3	2:0×2.0×2.4=9.6		9.6	1.5	14.40
	1.0×2.0×2.4=4.8		4.8	3.0	14.40
U	½×2.17×3.5=3.80		-3.80	1.17	-4.45
	'	ΣH :	= 21.125 :	ΣV= 29.2	ΣM = 84.78

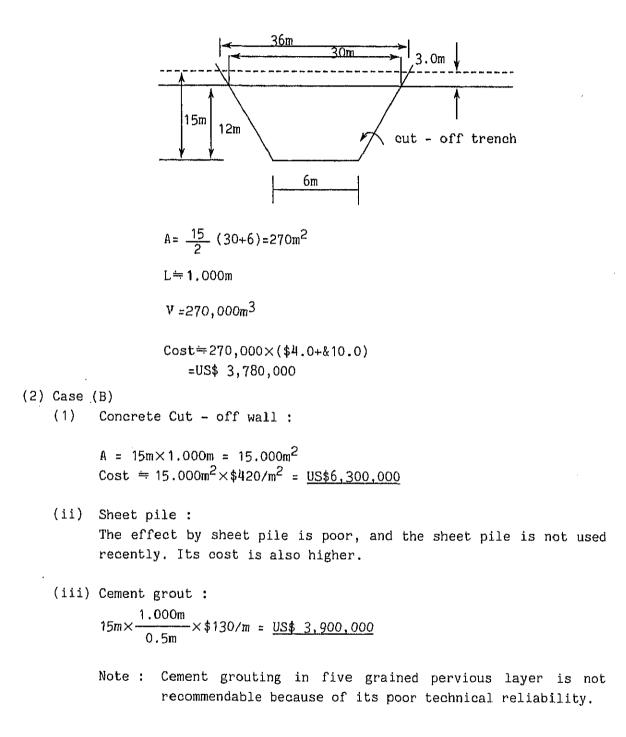

$$S.F = \frac{v.\ell + f.\Sigma V}{\Sigma H} = \frac{2.0 \times 3.5 + 0.364 \times 29.2}{21.125}$$

$$=\frac{17.63}{21.125}=0.83$$

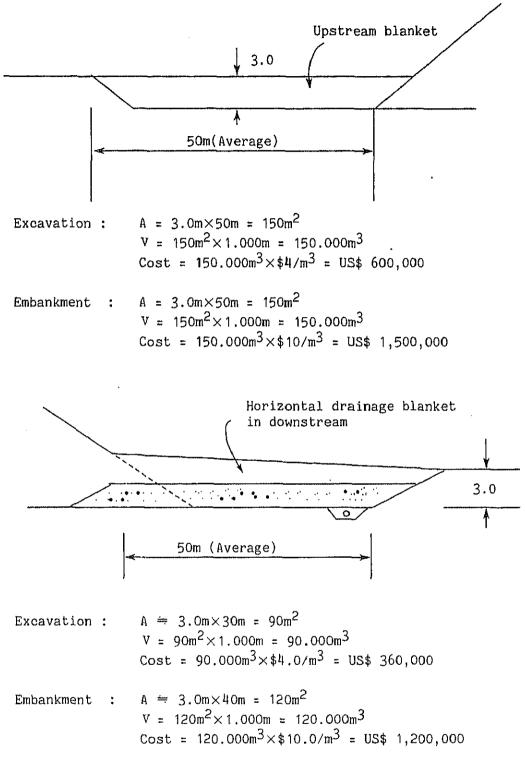
$$\sigma = \frac{\Sigma V}{\ell} (1 \pm \frac{6 \times e}{\ell}) = \frac{29.2}{3.5} (1 \pm \frac{6 \times 1.153}{3.5}) = \begin{cases} 24.83 \text{ t/m}^2 \\ -8.15 \text{ t/m}^2 \end{cases}$$

$$e = \frac{\Sigma M}{\Sigma V} - \frac{\ell}{2} = \frac{84.78}{29.2} - \frac{3.5}{2} = 1.153$$

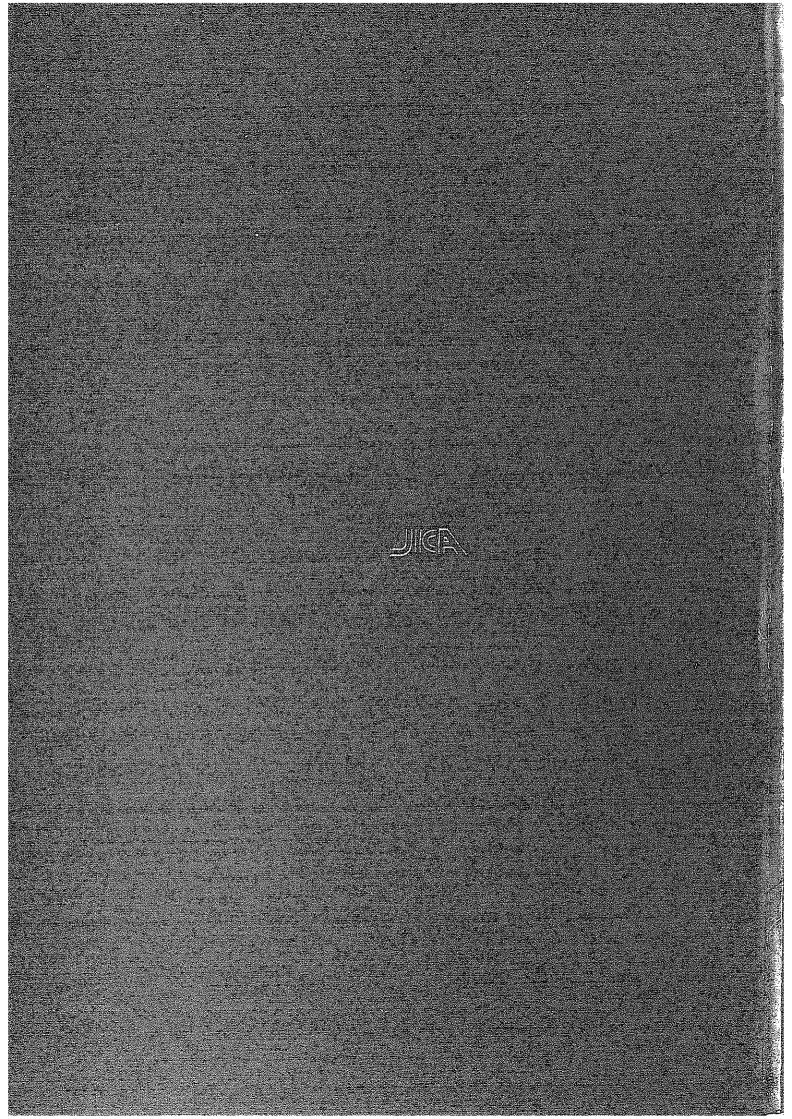
.



Source : DESIGN OF SMALL DAMS, USBR, 1977


TYPICAL FOUNDATION TREATMENTS

Preliminary Cost Comparison of Foundation Treatments


(1) Case (A)

(3) Case (C)

Grand Total of Cost = <u>US\$ 3,660,000</u>

