


## CONTENTS

| Fig. – 1  | Area for Aerial Photography(1)                                     |
|-----------|--------------------------------------------------------------------|
| Fig. — 2  | Information on Topographic Mapping(2)                              |
| Fig. – 3  | Data used in preparing the Aerial Photo Stand Volume Table         |
| Fig. – 4  | Soil Map                                                           |
| Fig. – 5  | Land Classification Map(9)                                         |
| Fig. – 6  | Land Use Classification Map (13)                                   |
| Fig. – 7  | Map of Forest Management Plan(15)                                  |
|           |                                                                    |
| Table – 1 | Results of Aerial Photography (19)                                 |
| Table – 2 | Block Adjustment for Aerial Triangulation                          |
| Table – 3 | Data used in preparing the Aerial Photo Stand Volume Table         |
| Table – 4 | Meteorological Data of the Srinagarind Dam Met. Office             |
| Table – 5 | Population of the Kanchanaburi Province and Survey Area            |
| Table – 6 | Results of Sample Plot Survey by Logging Block and Forest Type     |
| Table – 7 | Results of the Soil Profile Examination (32)                       |
| Table – 8 | Analysis of the Texture and Chemical Property of Typical Soil Type |

,





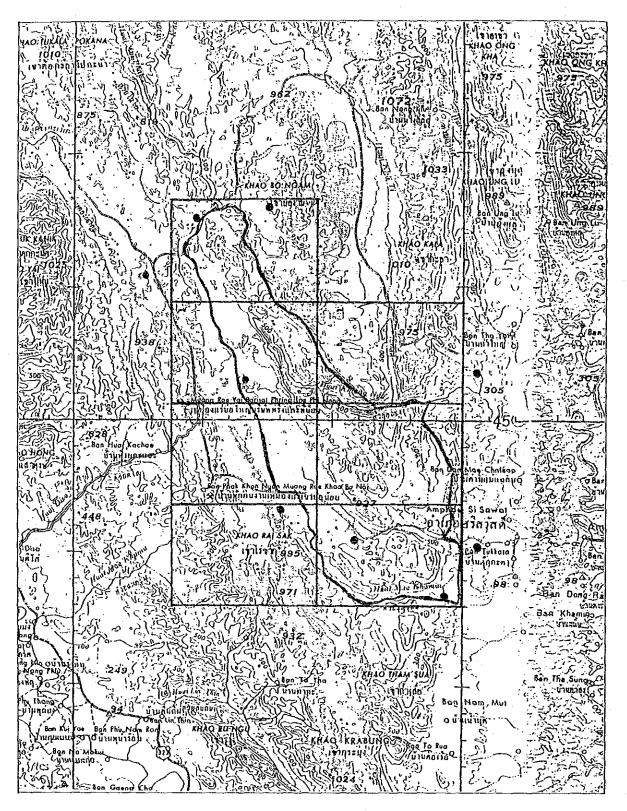
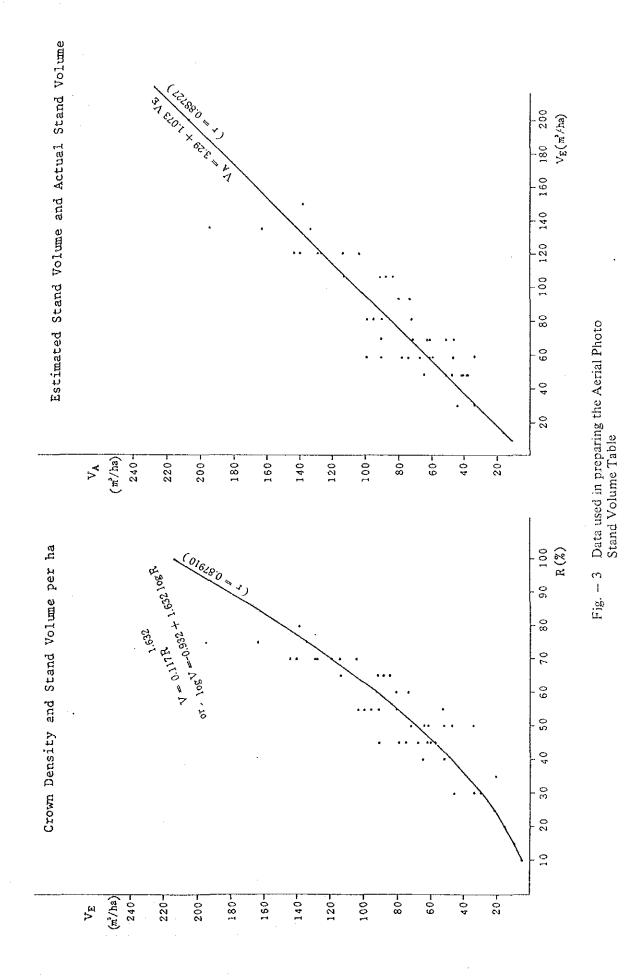
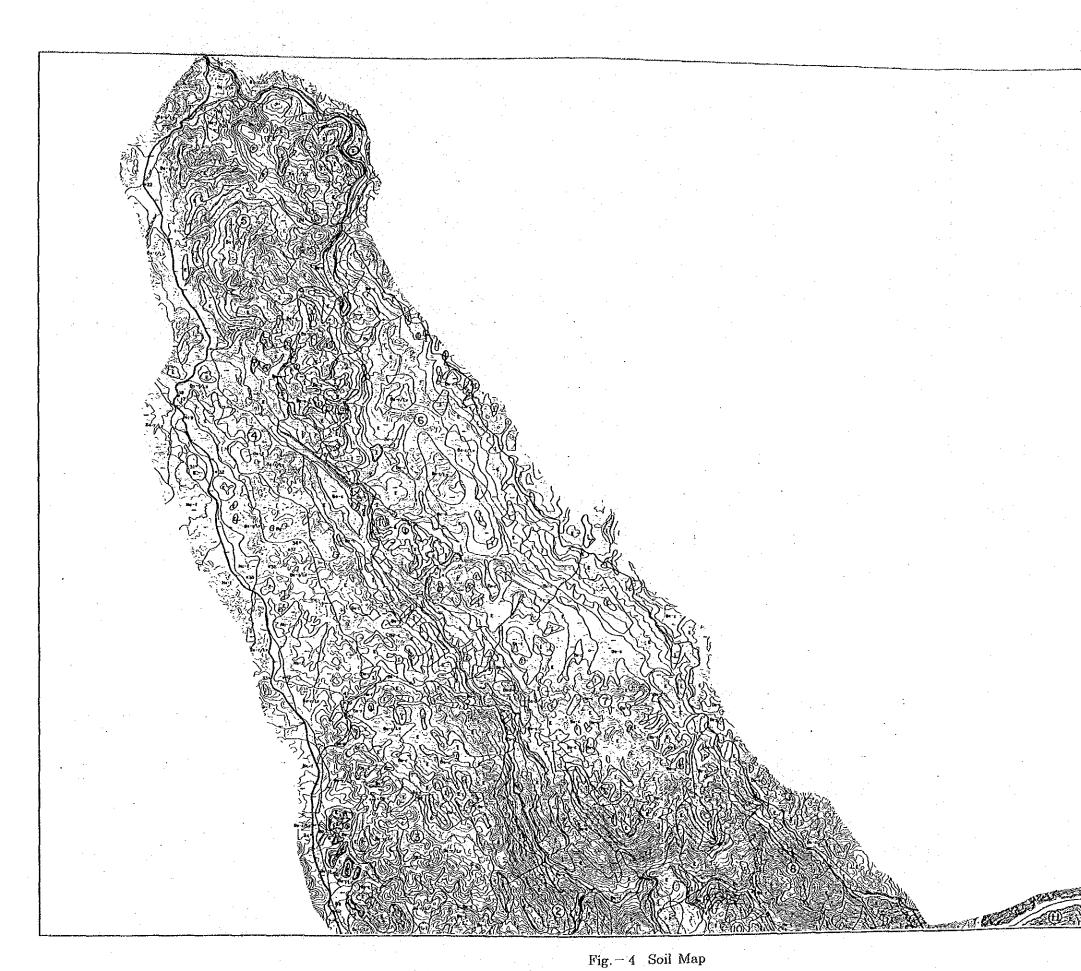





 Fig. - 2 Information on Topographic Mapping Mapping Area Index to Adjoining Sheet Air-photo Signal 1: 250,000



(3)





| LEGEND |                            |  |  |  |  |
|--------|----------------------------|--|--|--|--|
| Symbol | Sof Type                   |  |  |  |  |
| Ne-s   | Eutric Nitosofs-soft       |  |  |  |  |
| Ne-1   | Eutric Netosola Ara        |  |  |  |  |
| Ba-c   | Eulsic Cambrools-colluvial |  |  |  |  |
| 8:-1   | Eutric Cambool's residual  |  |  |  |  |
| Bg     | Głayńc Cambisols           |  |  |  |  |
| L۲     | Yartac Luxiacia            |  |  |  |  |
| £      | Rendzinas                  |  |  |  |  |
| 1      | Lithosofs .                |  |  |  |  |
| 6      | Gleyada                    |  |  |  |  |
| •1     | Profile number             |  |  |  |  |

R.

(5) - (6)

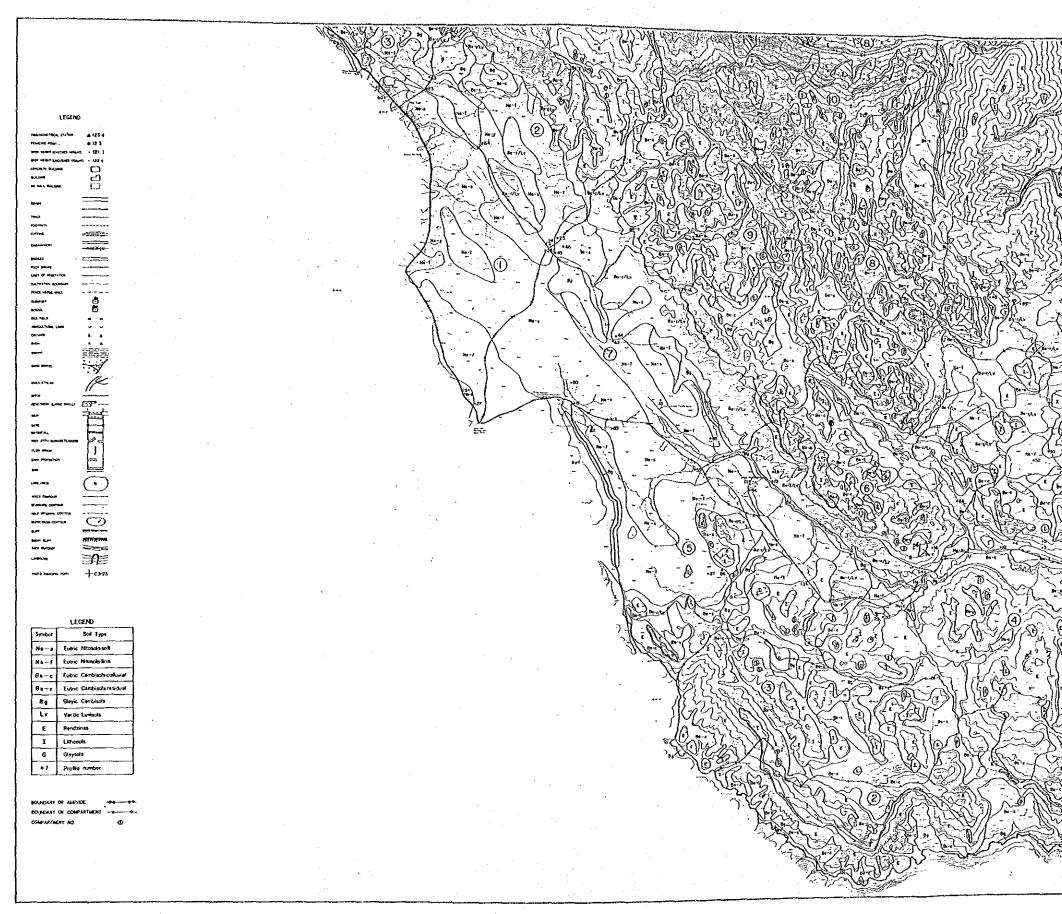
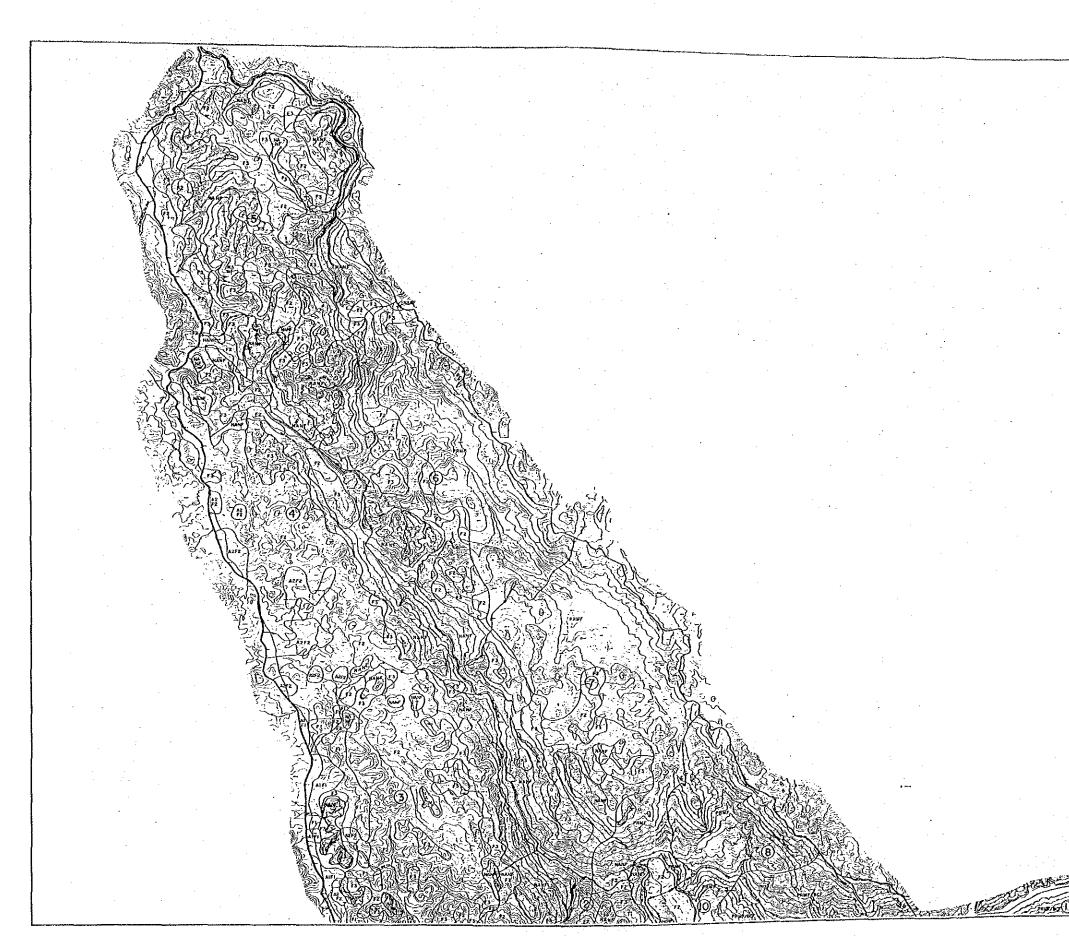
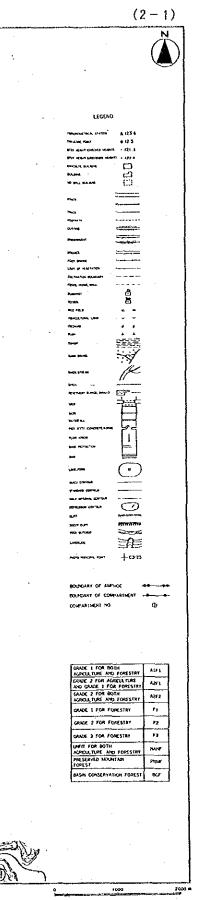
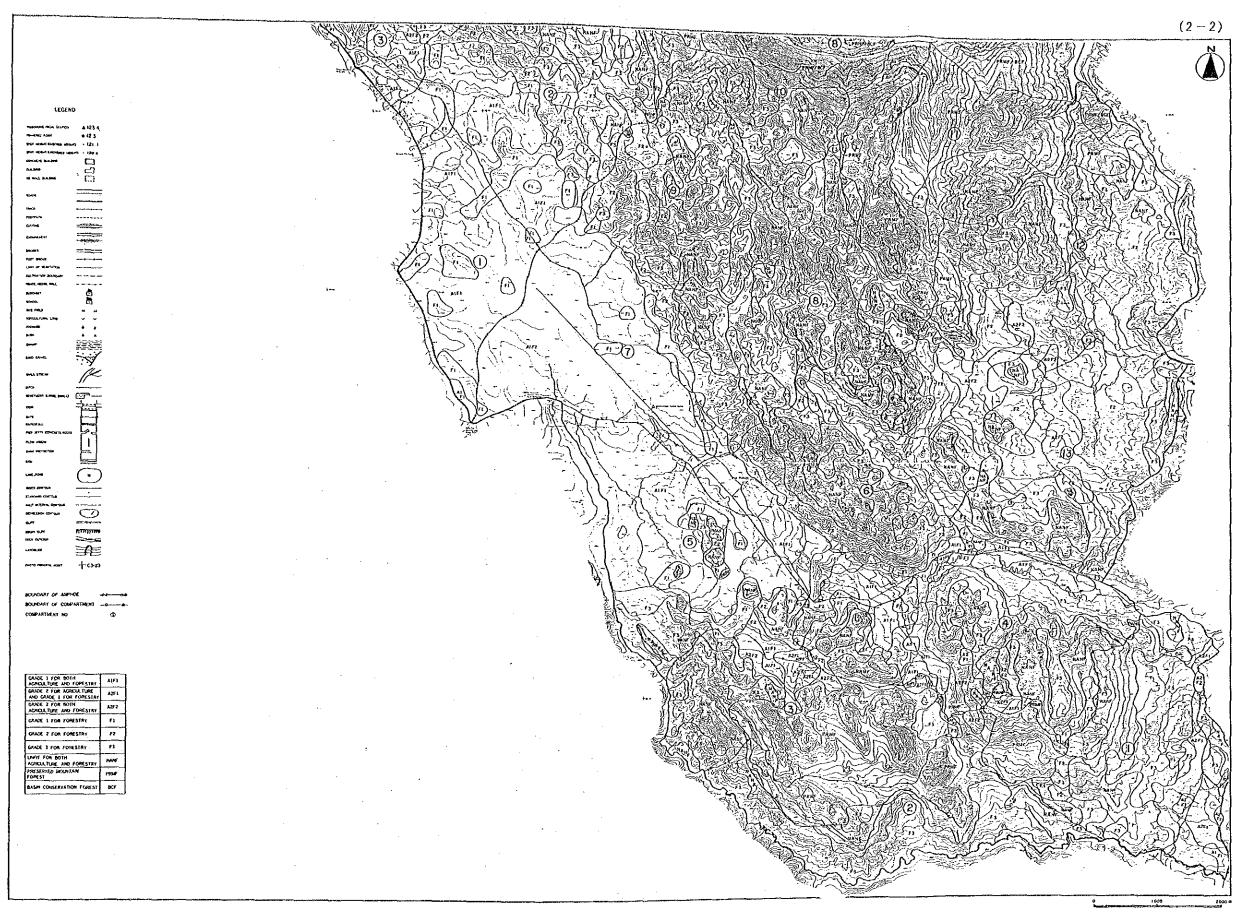
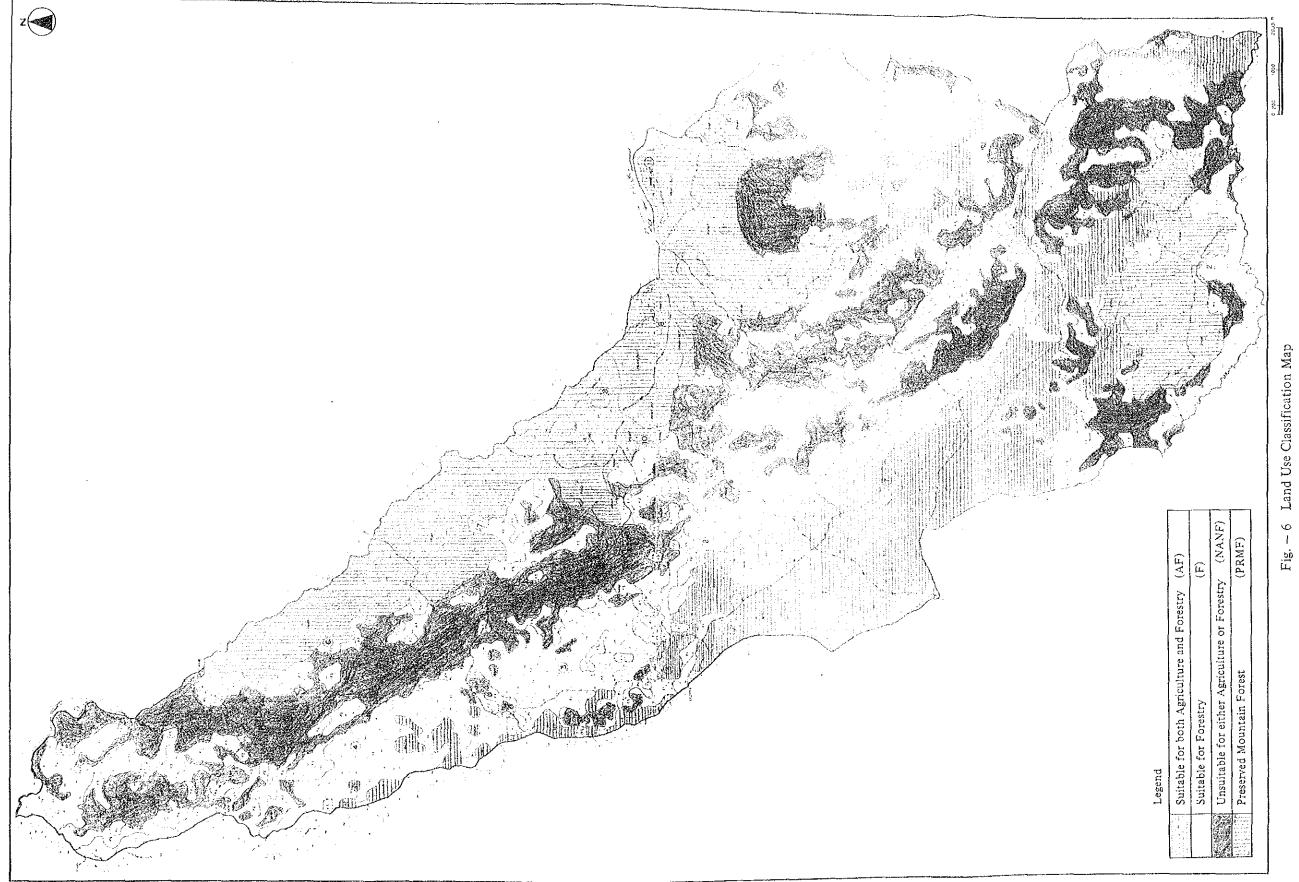



Fig. - 4



(7) - (8)



Fig. - 5 Land Classification Map



(9)-(10)



(11)-(12)



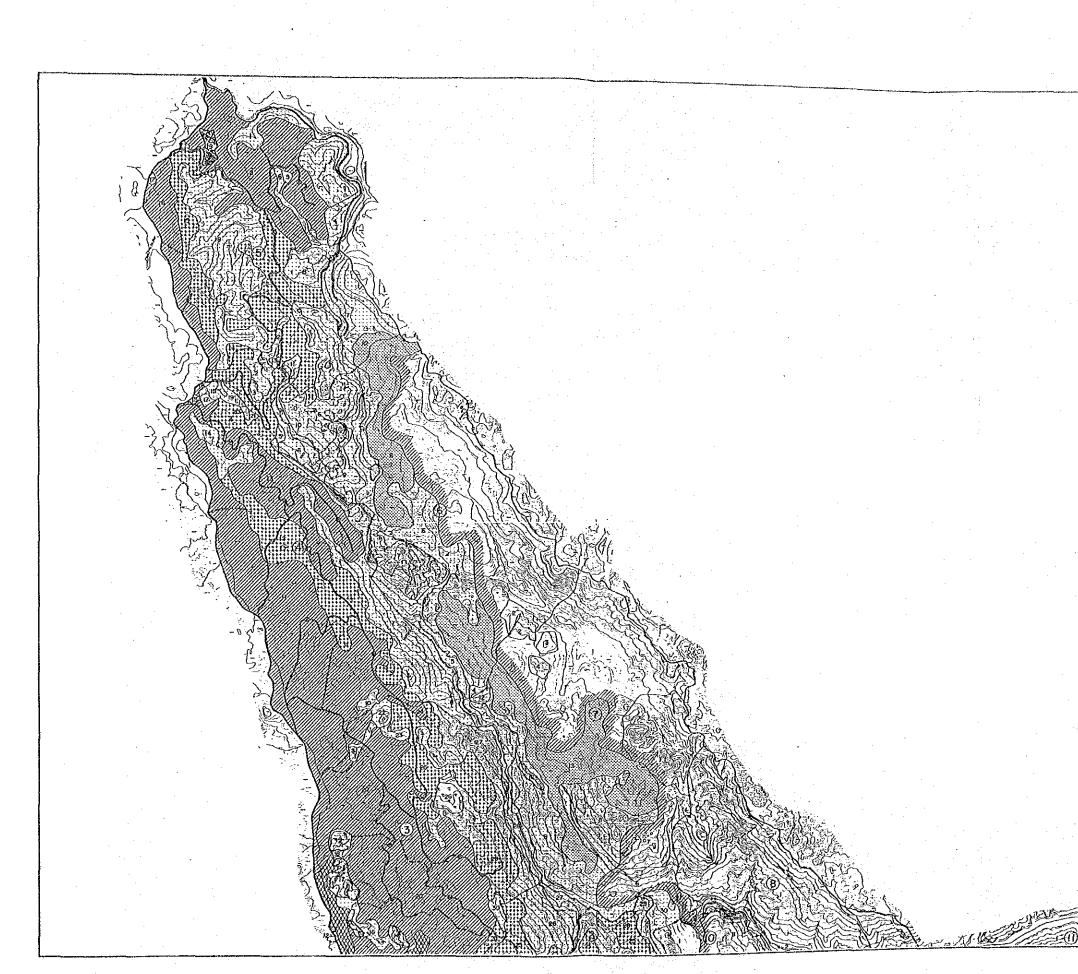



Fig. - 7 Map of Forest Management Plan

| ſ  | 2 | <br>1 | Y |  |
|----|---|-------|---|--|
| ί. | 2 | <br>ſ | 1 |  |



(15)-(16)

1.

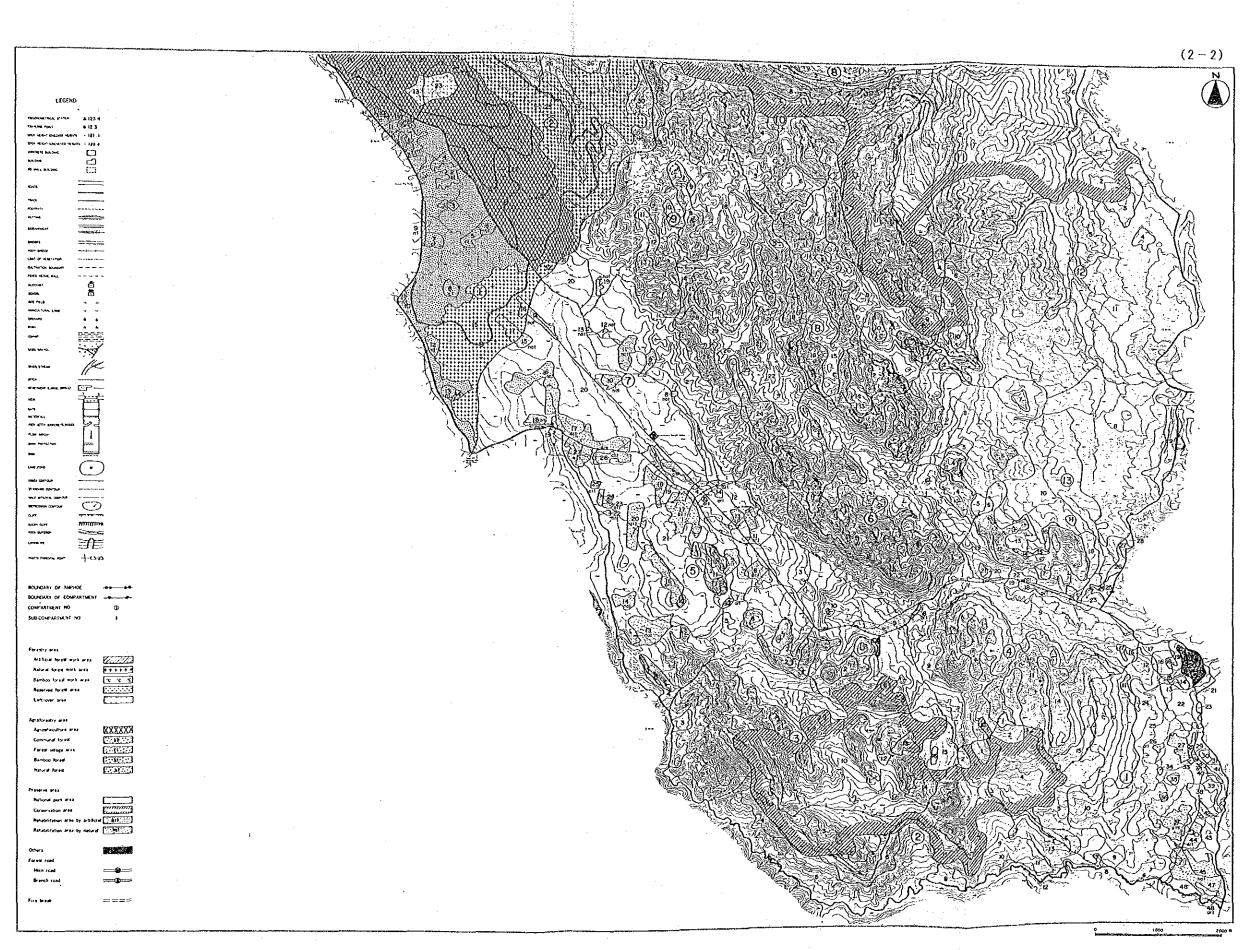



Fig. - 7

(17) -- (18)

Table - 1 Results of Aerial Photography

(1985/86)

(3-1)

| Course Na        | Photo Na           | Na of Photographs | Roll Na | Date of Aerial Photography |
|------------------|--------------------|-------------------|---------|----------------------------|
| C 1              | 1 - 52             | 52                | 4       | Mar. 3 1986                |
| C 2 A            | 1 - 42             | 42                | 4       | Mar. 3 1986                |
| C 2 B            | . 1 15             | 15                | 4       | Mar. 3 1986                |
| C 3              | 1 - 52             | 52                | 4       | Mar. 3 1986                |
| C 4              | 1 - 64             | 64                | 4       | Mar. 3 1986                |
| C 5              | 1 - 62             | 62                | . 3     | Feb. 14 1986               |
| C 6 A            | 1 - 37             | 37                | 9       | Mar. 13 1986               |
| C 6 B            | 1 - 34             | 34                | 5       | Mar. 3 1986                |
| C 7 A            | 1 - 49             | 49                | 9       | Mar. 13 1986               |
| С 7В             | 1 - 21             | 21                | 2       | Feb. 12 1986               |
| C 8              | 1 - 69             | 69                | 2       | Feb. 12 1986               |
| C 9              | 1 - 72             | 72                | 2       | Feb. 12 1986               |
| C 10 A           | 1 - 22             | 22                | 1       | Feb. 9 1986                |
| C 10 R           | 1 - 22             | 22                | 11      | Mar. 18 1986               |
| C 10 D           | 1 - 35             | 35                | 11      | Mar. 19 1986               |
| C 11             | 1 - 73             | 73                | 1       | Feb. 9 1986                |
| C 12 A           | 1 - 48             | 48                | 1       | Feb. 9 1986                |
| C 12 A<br>C 12 B | 1 - 16             | 16                | 11      | Mar. 19 1986               |
| C 12 D<br>C 12 C | 1 - 20             | 20                | 1       | Feb. 9 1986                |
| C 12 C           | 1 - 76             | 76                | 1       | Feb. 9 1986                |
| C 14 A           | 1 - 69             | 69                | 5       | Mar. 4 1986                |
| C 14 A           | 1 - 13             | 13                | 6       | Mar. 4 1986                |
| C 14 B<br>C 15 A | 1 - 44             | 44                | 10      | Mar. 14 1986               |
| C 15 A           | 1 - 36             | 36                | 5       | Mar. 4 1986                |
| C 16 A           | 1 - 45             | 45                | 10      | Mar. 14 1986               |
| C 16 A           | 1 - 36             | 36                | 5       | Mar. 4 1986                |
| С 16 В           | 1 - 78             | 78                | 6       | Mar. 4 1986                |
| C 18             | 1 - 81             | 81                | 6       | Mar. 5 1986                |
| C 18<br>C 19     | 1 - 80             | 80                | 6       | Mar. 5 1986                |
| C 20 A           | 1 - 22             | 22                | 7       | Mar. 6 1986                |
| C 20 R           | 1 - 50             | 50                | 10      | Mar. 14 1986               |
| C 20 B<br>C 20 C | 1 - 30<br>1 - 16   | 16                | 7       | Mar. 6 1986                |
| C 20 C<br>C 21 A | 1 - 21             | 21                | 7       | Mar. 6 1986                |
|                  | 1 - 21<br>1 - 57   | 57                | 10      | Mar. 14 1986               |
| C 21 B           | 1 - 37<br>1 - 13   | 13                | 9       | Mar. 13 1986               |
| C 21 C           | 1                  | 21                | 8       | Mar. 7 1986                |
| C 22 A           | 1 - 21<br>1 - 63   | 63                | . 9     | Mar. 13 1986               |
| C 22 B           | 1 - 63<br>1 - 20   | 85<br>20          | 8       | Mar. 7 1986                |
| C 23 A           |                    | 45                | 11      | Mar. 15 1986               |
| C 23 B           | $1 - 45 \\ 1 - 14$ | 10                | 7       | Mar. 6 1986                |
| C 23 C           | 1 - 14<br>1 - 12   | 14                | 9       | Mar. 13 1986               |
| C 23 D           | L.,                | 1,717             | 11      |                            |
| Sub-             | total              | 1,111             | 11      |                            |

· · · ·

.

(19)

| Table - |  | 1 |
|---------|--|---|
|---------|--|---|

| [1986/87] |  |
|-----------|--|
|-----------|--|

| ÷      |        |                   |        | ble - 1 | 18                |          |           |
|--------|--------|-------------------|--------|---------|-------------------|----------|-----------|
| (3-2   | <br>   | · .               |        |         |                   |          | 1986/87]  |
| graphy | Photog | of Aerial         | Date o | Roll Na | No of Photographs | Photo Na | Course Na |
|        | 1987   | Jan. 20           | i      | 11      | 81                | 1 - 81   | C 24      |
|        | 1987   | Jan. 20           |        | 11 .    | 81                | 1 - 81   | C 25      |
|        | 1987   | Jan. 20           | ž      | 11      | 24                | 1 - 24   | C 26 A    |
|        | 1986   | Dec. 13           | . 1    | 1       | 40                | 1 - 40   | C 26 B    |
|        | 1987   | Jan. 20           | t.     | 11      | 30                | 1 - 30   | C 27 A    |
|        | 1986   | Dec. 13           | 1      | 1       | 34                | 1 - 34   | C 27 B    |
|        | 1987   | Jan. 20           | -      | 11      | 50                | 1 - 50   | C 28 A    |
|        | 1986   | Dec. 15           |        | 1       | 15                | 1 - 15   | C 28 B    |
|        | 1987   | Jan. 31           |        | 13      | 8                 | 1 - 8    | C 29 A    |
|        | 1987   | Jan. 18           |        | 9       | 57                | 1 - 57   | C 29 B    |
|        | 1987   | Jan. 18           |        | 9       | 63                | 1 - 63   | C 30      |
|        | 1987   |                   |        | 9       | 63                | 1 - 63   | C 31      |
|        | 1987   | Jan. 15           |        | 8       | 19                | 1 - 19   | C 32 A    |
|        | 1987   | Feb. 5            |        | 14      | 33                | 1 33     | C 32 B    |
|        | 1987   | Jan. 15           |        | 8       | 18                | 1 - 18   | C 32 C    |
|        | 1987   | Jan. 15           |        | . 8     | 40                | 1 - 40   | C 33 A    |
|        | 1987   | Feb. 5            |        | 14      | 13                | 1 - 13   | C 33 B    |
|        | 1987   | Jan. 15           |        | 8       | 16                | 1 - 16   | C 33 C    |
| -      | 1987   | Jan. 15           |        | 8       | 40                | 1 - 40   | C 34 A    |
|        | 1987   | Feb. 6            |        | 14      | 17                | 1 - 17   | C 34 B    |
|        | 1987   | Jan. 15           |        | 8       | 29                | 1 - 12   | C 34 C    |
|        | 1987   | Jan. 10           |        | 7       | 16                | 1 - 16   | C 35 A    |
|        | 1987   | Jan, 31           |        | 13      | 11                | 1 11     | C 35 B    |
|        | 1987   | Jan. 10           |        | 7.      | 23                | 1 - 23   | C 35 C    |
|        | 1987   | Jan. 18           |        | 9       | 10                | 1 - 10   | C 35 D    |
|        | 1987   | Jan. 15           |        | 8       | 13                | 1 - 13   | C 35 E    |
|        | 1987   | Jan. 10           |        | 7       | 47                | 1 - 47   | C 36 A    |
|        | 1986   | Dec. 15           |        | 1       | 17                | 1 - 17   | C 36 B    |
|        | 1987   | Jan. 10           |        | 7       | 46                | 1 - 46   | C 37 A    |
|        | 1986   | Dec. 15           |        | 1       | 17                | 1 - 17   | C 37 B    |
|        | 1987   | Jan. 10           |        | 7       | 37                | 1 - 37   | C 38 A    |
|        | 1986   | Dec. 15           |        | 1       | 26                | 1 - 25   | C 38 B    |
|        | 1987   | Jan. 10           |        | 7       | 46                | 1 - 46   | C 39 A    |
|        | 1986   | Dec. 15           |        | 1       | 16                | 1 - 16   | C 39 B    |
|        | 1987   | Jan. 9            |        | 6       | 42                | 1 - 42   | C 40 A    |
| · .    | 1987   | Jan. 14           |        | 8       | 20                | 1 - 20   | C 40 B    |
| ·.     | 1987   | Jan. 9            |        | 6       | 19                | 1 - 19   | C 41 A    |
|        | 1987   | Feb. 12           |        | 15      | 11                | 1 - 11   | C 41 B    |
|        | 1987   | Jan. 9            |        | 6       | 17                | 1 - 17   | C 41 C    |
| · ·    | 1987   | Jan. 9            |        | 6       | 41                | 1 - 41   | C 42      |
|        | 1987   | Jan. 9            |        | 6       | 41                | 1 - 41   | C 43      |
|        | 1987   |                   |        | 6       | 41                | 1 - 41   | C 44      |
|        | 1987   | Jan. 9<br>Jan. 9  |        | 6       | 44                | 1 - 41   | C 45      |
|        | 1987   | Jan. 9<br>Jan. 22 |        | 0<br>12 | 15                | 1 - 15   | C 46 A    |
|        | 1986   | Dec. 29           |        | 3       | 13                | 1 - 14   | C 46 B    |

Table -1

[1986/87]

(3-3)

.

| Г | Course No        | Photo Na           | Na of Photographs   | Roll Na | Date of Aerial Photography |
|---|------------------|--------------------|---------------------|---------|----------------------------|
| f | C 46 C           | 1 - 16             | 16                  | 12      | Jan. 24 1987               |
|   | C 47 A           | 1 - 14             | 14                  | 12      | Jan. 22 1987               |
|   | C 47 B           | 1 - 12             | 12                  | 3       | Dec. 29 1986               |
|   | C 47 C           | 1 - 18             | 18                  | 13      | Feb. 2 1987                |
|   | C 48 A           | 1 - 27             | 27                  | 5       | Jan. 9 1987                |
|   | C 48 B           | 1 - 10             | 10                  | 13      | Jan. 31 1987               |
|   | C 49 A           | 1 - 25             | 25                  | 5       | Jan. 9 1987                |
| l | C 49 B           | 1 - 13             | 13                  | 13      | Jan. 31 1987               |
|   | C 50 A           | 1 - 13<br>1 - 17   | 13                  | 4       | Dec. 30 1986               |
| Ì | C 50 B           | 1 - 20             | 20                  | 13      | Feb. 2 1987                |
|   | C 51 A           | 1 - 20<br>1 - 29   | 20                  | 4       | Dec. 30 1986               |
|   | C 51 B           |                    | 2 <del>3</del><br>9 | 12      | Jan. 24 1987               |
|   | C 51 B<br>C 52 A | 1 - 9<br>1 - 11    | 9<br>11             | 12      | Jan. 24 1987               |
|   | C 52 A<br>C 52 B | $1 - 11 \\ 1 - 31$ | 31                  | 12      | Dec. 30 1986               |
|   |                  |                    | 31<br>37            | 4       | Dec. 30 1986               |
|   | C 53             | 1 - 37             | 37<br>16            | 2       | Dec. 18 1986               |
|   | C 54 A           | 1 - 16             |                     |         | Feb. 2 1987                |
|   | C 54 B           | 1 - 25             | 25<br>17            | 13<br>7 | Jan. 10 1987               |
| 1 | C 55 A           | 1 - 17             | 9                   | 2       | Dec. 18 1986               |
|   | C 55 B           | 1 - 9              |                     | 7       | Jan. 10 1987               |
|   | C 55 C           | 1 - 15             | 15<br>18            | 2       | Dec. 17 1986               |
|   | C 56             | 1 - 18             | 18                  | 2       | Dec. 17 1986               |
|   | C 57             | 1 - 19             | 19                  | 2       | Dec. 17 1986               |
|   | C 58             | 1 - 17             | 24                  | 2       | Dec. 26 1986               |
|   | C 59             | 1 - 24             |                     | 3       | Dec. 26 1986               |
|   | C 60             | 1 - 25             | 25                  | 3       | Dec. 26 1986               |
|   | C 61             | 1 - 23             | 23                  | 3       | Dec. 26 1986               |
|   | C 62             | 1 - 22             | 22                  | 3       | Dec. 26 1986               |
| ļ | C 63             | 1 - 22             | 22                  |         | Jan. 22 1987               |
|   | C 64 A           | 1 - 9              | 9<br>19             | 12<br>3 | Dec. 26 1986               |
|   | C 64 B           | 1 - 19             | 19<br>26            |         | Jan. 19 1987               |
|   | C 65             | 1 - 26             | 20<br>27            | 10      | Jan. 19 1987               |
|   | C 66             | 1 - 27             | 27<br>27            | 10      | Jan. 19 1987               |
|   | C 67             | 1 - 27<br>1 - 97   | 21<br>27            | 10      | Jan. 19 1987               |
| l | C 68             | 1 - 27             | 27                  | 10      | Jan. 19 1987               |
|   | C 69             | 1 - 27             | 21<br>27            | 3       | Dec. 29 1986               |
|   | C 70 A           | 1 - 27             | 21                  | 2       | Dec. 16 1986               |
|   | C 71             | 1 - 28<br>1 - 27   | 28<br>27            | 5       | Jan. 4 1987                |
|   | C 72             | 1 - 27             | 8                   | 13      | Feb. 2 1987                |
|   | C 73 A           | 1 - 8              | 8<br>22             | 2       | Dec. 16 1986               |
|   | C 73 B           | 1 - 22             | 22<br>27            | 2       | Dec. 16 1986               |
|   | C 74             | 1 - 27             | 21                  | 2       | Dec. 16 1986               |
|   | C 75             | 1 - 26             | 20                  | 12      | Jan. 22 1987               |
|   | C 76             | 1 - 21             |                     | 12      | Jan. 22 1987               |
|   | C 77             | 1 - 21             | 21<br>19            | 12      | Jan. 25 1987               |
|   | C 78             | 1 - 19             | 2,312               | 12      |                            |
|   |                  | total              |                     | 26      |                            |
|   | Total 10         | 1 Courses          | 4,029               | 40      |                            |

(21)

| Table – 2 Block Adjustment for Aerial Tri | iangulation |
|-------------------------------------------|-------------|
|-------------------------------------------|-------------|

| NAME   | X-coordinate<br>X                      | Residual<br>VX                        | Y-coordinate<br>Y | Residual<br>VY                         | Residual of<br>distance<br>VS         | Elevation<br>H | Residual<br>VH |
|--------|----------------------------------------|---------------------------------------|-------------------|----------------------------------------|---------------------------------------|----------------|----------------|
| 510100 | 1645581.63                             | 0.47                                  | 48706.88          | 0.34                                   | 0.58                                  | 782.00         | -0.33          |
| 973800 |                                        |                                       |                   |                                        |                                       | 738.00         | 4.00           |
| 510200 | 1644755.72                             | -0.35                                 | 482037.73         | -0.23                                  | 0.42                                  | 621.87         | 1.05           |
| 965400 |                                        |                                       |                   | ······                                 |                                       | 654.00         | 0.76           |
| 972100 |                                        |                                       |                   |                                        |                                       | 721.00         | -2.30          |
| 971400 |                                        | ·····                                 |                   |                                        |                                       | 714.00         | 2.28           |
| 976900 |                                        |                                       | · ·               | ······································ |                                       | 769.00         | -1.28          |
| 981900 |                                        |                                       |                   |                                        | · · · · · · · · · · · · · · · · · · · | 819.00         | 1.78           |
| 972200 | ······································ |                                       |                   |                                        |                                       | 722.00         | -2.13          |
| 967300 |                                        | · · ·                                 |                   |                                        |                                       | 673.00         | 1.81           |
| 610301 | 1640555.36                             | -0.02                                 | 477656.26         | 0.20                                   | 0.20                                  | 895.91         | 2.67           |
| 988300 |                                        |                                       |                   | <b></b>                                |                                       | 883.00         | 2.85           |
| 972100 | . <u></u>                              |                                       |                   |                                        |                                       | 721.00         | 0.19           |
| 976400 |                                        |                                       |                   |                                        |                                       | 764.00         | 4.46           |
| 989800 |                                        |                                       |                   |                                        | · · ·                                 | 898.00         | 0.70           |
| 981900 | ······                                 |                                       |                   |                                        |                                       | 819.00         | 2.36           |
| 989400 |                                        |                                       |                   |                                        |                                       | 894.00         | -0.31          |
| 985200 | · · · ·                                | <u> </u>                              |                   |                                        |                                       | 852.00         | -2.31          |
| 989800 |                                        |                                       |                   |                                        |                                       | 898.00         | -4.47          |
| 981800 |                                        |                                       |                   |                                        |                                       | 818.00         | -1.65          |
| 991800 |                                        |                                       |                   |                                        |                                       | 918.00         | 2.08           |
| 981600 | •.                                     |                                       |                   |                                        |                                       | 816.00         | - 1.81         |
| 989600 |                                        |                                       |                   |                                        |                                       | 896.00         | -0.83          |
| 977800 |                                        | · · · · · · · · · · · · · · · · · · · |                   |                                        |                                       | 778.00         | -1.34          |
| 974200 |                                        |                                       |                   |                                        |                                       | 742.00         | -0.94          |
| 992400 | · · · · ·                              |                                       |                   |                                        |                                       | 924.00         | -4.75          |
| 510400 | 1632974.05                             | 0.48                                  | 484357.71         | -0.10                                  | 0.49                                  | 723.61         | -2.61          |
| 510700 | 1635038.81                             | 0.43                                  | 501004.12         | 0.15                                   | 0.46                                  | 279.87         | -1.55          |
| 981500 | -                                      |                                       |                   |                                        |                                       | 815.00         | 4.58           |
| 978600 |                                        |                                       |                   |                                        |                                       | 786.00         | -1.21          |
| 981600 |                                        |                                       |                   |                                        |                                       | 816.00         | -1.46          |
| 974200 |                                        |                                       |                   |                                        |                                       | 742.00         | -1.17          |
| 985000 |                                        |                                       |                   |                                        |                                       | 850.00         | 4.42           |
| 986700 |                                        |                                       |                   |                                        |                                       | 867.00         | -1.55          |
| 987300 |                                        |                                       |                   |                                        |                                       | 873.00         | 3.22           |

(2-1)

Table – 2

(2-2)

.

| NAME   | X-coordinate Residual<br>X VX          | Y-coordinate<br>Y | Residual<br>VY   | Residual of<br>distance<br>VS | Elevation<br>H | Residual<br>VH |
|--------|----------------------------------------|-------------------|------------------|-------------------------------|----------------|----------------|
| 985600 |                                        |                   | · ·              |                               | 856,00         | 3.28           |
| 974500 |                                        |                   |                  |                               | 745.00         | 0.19           |
| 995200 | ······································ |                   |                  |                               | 952.00         | -2.24          |
| 935400 |                                        |                   |                  |                               | 354.00         | -3,21          |
| 947800 |                                        |                   |                  |                               | 478.00         | 1.00           |
| 900001 | :                                      |                   |                  |                               | 180.00         | -4.89          |
| 900002 |                                        |                   |                  |                               | 180.00         | 1.10           |
| 900003 |                                        |                   |                  |                               | 180.00         | 1.07           |
| 900004 | · · · · · · · · · · · · · · · · · · ·  |                   |                  |                               | 180.00         | 1.20           |
| 870468 | · · · · · · · · · · · · · · · · · · ·  |                   | ~~~~~~~ <u>~</u> |                               | 704.68         | 2.39           |
| 871656 |                                        |                   |                  |                               | 716.56         | -1.14          |
| 875526 | <u></u> :                              |                   |                  |                               | 755.26         | 1.17           |
| 874960 |                                        |                   |                  |                               | 749.60         | 2.76           |
| 879246 | · · · · · · · · · · · · · · · · · · ·  |                   |                  |                               | 792.46         | 0.73           |
| 875783 | · · · · · · · · · · · · · · · · · · ·  |                   |                  |                               | 757.83         | 2.86           |
| 900005 | ······································ |                   |                  |                               | 180.00         | 1.57           |
| 900006 |                                        |                   | ······           |                               | 180.00         | 1.18           |
| 510500 | 1624532.02 -0.69                       | 487172.81         | 0.25             | 0.73                          | 872.80         | -0.02          |
| 510600 | 1622281.30 -0.71                       | 492411.18         | -0.13            | 0.72                          | 825.39         | 0.93           |
| 876011 |                                        |                   |                  |                               | 760.11         | 0.61           |
| 875927 | · · · · · · · · · · · · · · · · · · ·  |                   |                  |                               | 759.27         | 1.49           |
| 874704 |                                        |                   |                  |                               | 747.04         | 2.85           |
| 861893 |                                        |                   |                  |                               | 618.93         | 0.55           |
| 837581 |                                        |                   |                  |                               | 375.81         | -0.19          |
| 963300 |                                        |                   |                  |                               | 633.00         | 0.34           |
| 510800 | 1621775.67 -0.31                       | 502062.44         | 0.54             | 0.62                          | 192.42         |                |
| 866695 |                                        |                   |                  |                               | 666.95         | 0.84           |
| 857159 | · •                                    |                   |                  |                               | 571.59         | 0.65           |
| 844475 |                                        |                   |                  |                               | 444.75         | -0.42          |
| 824454 |                                        |                   |                  |                               | 244.54         | 3.05           |
| 823501 |                                        |                   |                  | ·                             | 235.01         | 0.85           |
| 510900 | 1618114.97 0.71                        | 498867.48         | -0.71            | 1.00                          | 260.24         | 0.52           |
| 981500 |                                        |                   |                  |                               | 815.00         | -3.90          |
| 992700 |                                        |                   |                  |                               | 927,00         | 4,83           |
| 975800 |                                        |                   |                  |                               | 758.00         | -4.78          |
| 900008 |                                        |                   |                  |                               | 180.00         | 3.81           |
| 900009 |                                        |                   | -1               | 1                             | 180.00         | -1.00          |

MAX. ERROR RS 1.00 RH -4.89

MEAN. ERROR RS 0.58 RH 1.94

Table - 3 Data used in preparing the Aerial Photo Stand Volume Table

| V. – V.                             | 4 A V E                                 | -11 | 6-  | 0  | 2   | 17  | -17 | თ    | - 19 | ი<br>   | -17 | 10   | 19  | 17 | - 12 | 4  | 21    | 22          | -10  | 33          | 62     | 31   | 25   |        |                            |              |
|-------------------------------------|-----------------------------------------|-----|-----|----|-----|-----|-----|------|------|---------|-----|------|-----|----|------|----|-------|-------------|------|-------------|--------|------|------|--------|----------------------------|--------------|
| Vr (m/ha)<br>Retimoted              | volume                                  | 58  | 48  | 48 | 58  | 48  | 106 | 120  | 63   | 149     | 69  | 18   | 81  | 58 | 63   | 58 | 58    | 69          | 48   | 58          | 134    | 134  | 120  |        | 7910)                      |              |
| $V_{\Lambda}$ ( $m^{*}/ha$ )        | volume                                  | 47  | 39  | 48 | 60  | 65  | 68  | 129  | 74   | 140     | 52  | 91   | 100 | 75 | 81   | 62 | - 16  | 16          | 88   | 16          | 196    | 165  | 145  |        | $\log R$ ( $r = 0.87910$ ) | •            |
| R (%)                               | density                                 | 45  | 40  | 40 | 45  | 40  | 65  | 70   | 60   | 80      | 50  | 55   | 55  | 45 | 60   | 45 | 45    | 20          | 40   | 45          | 75     | 75   | 70   |        |                            | ¥/11.0       |
| Plot                                | No.                                     | 24  | 25  | 26 | 2.7 | 28  | 29  | 30 . | 31   | 32      | 33  | 34   | 35  | 36 | 37   | 38 | add-3 | 1<br>4<br>1 |      | <i>"</i> -8 | / -1   | / -2 | 1- " |        | 108 V == V                 | <br>> .<br>_ |
| C N                                 | 0 KT                                    | 26  | 27  | 28 | 29  | 30  | 31  | 32   | 33   | 34      | 35  | 36   | 37  | 88 | 39   | 40 | 41    | 42          | 43   | 44          | 45     | 46   | 47   |        |                            |              |
| VV.                                 | 7 V 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | -7  | -5  | 4  | 14  | 22  | 0   | - 18 | 17   | - 14 -  | -21 | - 22 | 2   | 10 | 35   | 4  | 21    | 8           | ÷    | 10          | 15     | က    | -15  | ю<br>I | 9                          | 88<br>1      |
| V <sub>s</sub> (m <sup>r</sup> /ha) | volume                                  | 48  | 69  | 48 | 30  | 81  | 16  | 39   | 48   | 106     | 106 | 69   | 69  | 58 | 69   | 30 | 120   | 106         | 134  | 120         | 81     | 69   | 120  | 120    | 48                         | 81           |
| V <sub>A</sub> (m <sup>1</sup> /ha) | volume                                  | 41  | 64  | 52 | 44  | 103 | 16  |      | 65   | 92      | 85  | 47   | 62  | 68 | 34   | 34 | 141   | 114         | 135  | 130         | 8<br>8 | 72   | 105  | 115    | 42                         | 53           |
| R (%)                               | density                                 | 40  | 50  | 40 | 30  | 55  | 20  | 35   | 40   | 65      | 65  | 50   | 50  | 45 | 50   | 30 | 10    | 65          | 75   | 20.         | 55     | 50   | 70   | 70     | 40                         | 55           |
| Plot                                | No.                                     | 1   | 2-1 | 22 | в   | 4   | 5   | 9    | 7    | ω       | 6   | 10   | 11  | 12 | 13   | 14 | 15    | 16          | 17-2 | 18-1        | 19     | 20-1 | 20-2 | 21     | 22                         | 23           |
|                                     | .02                                     |     | 2   | S  | 4   | പ   | 9   | 7    | ø    | с,<br>С | 10  | 11   | 12  | 13 | 14   | 15 | 16    | 17          | 18   | 19          | R      | 21   | 22   | 23     | 24                         | 25           |

(24)

Table - 4 Meteorological Data of the Srinagarind Dam Met. Office

|                 |       |       |       | •     |       |       |       |       |       |       |       | (Unit : | °C)           |
|-----------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|---------|---------------|
| Month<br>Year   | 1     | 2     | 3     | 4     | 5     | 6     | 7     | 8     | 9     | 10    | 11    | 12      | Annua<br>mean |
| 1981            | 2 3.0 | 26.5  | 2 8.3 | 2 9,0 | 2 8.0 | 2 6.5 | 2 7.0 | 2 6 3 | 2 6.6 | 26.2  | 24.4  | 2 1.6   | 2 6.1         |
| 1982            | 225   | 260   | 2 8.8 | 28.2  | 2 8.9 | 2 6.9 | 2 7.0 | 2 5.7 | 26.2  | 2 6.7 | 2 6.3 | 2 1.8   | 2 6.3         |
| 1983            | 2 3.0 | 2 5 5 | 2 8.9 | 31.6  | 30.3  | 2 8.4 | 2 8.6 | 27.4  | 2 7.0 | 2 6.5 | 2 3.4 | 2 2.6   | 2 6.9         |
| 1984            | 2 3.2 | 266   | 2 7.6 | 2 9.6 | 2 9.0 | 2 6.9 | 2 7.1 | 2 6.9 | 2 7.0 | 26.2  | 2 4.9 | 2 3.8   | 2 6 6         |
| 1985            | 24.6  | 2 7.0 | 2 7.9 | 2 9.9 | 286   | 2 6.5 | 2 6.4 | 2 6.9 | 26.6  | 2 6.1 | 2 5.4 | 2 3.0   | 2 6.6         |
| Monthly<br>mean | 2 3.3 | 2 6.3 | 2 8.3 | 2 9.7 | 2 9.0 | 2 7.0 | 2 7.2 | 2 6.6 | 2 6.7 | 2 6.3 | 2 4.9 | 22.6    | 2 6.5         |

1. Mean monthly air temperature

#### 2. Minimum monthly air temperature

(Unit:°C)

| Month<br>Yeat   | 1     | 2     | 3     | 4     | 5     | 6     | 7     | 8     | 9     | 10    | 1.1   | 12    | Annual<br>mean |
|-----------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|----------------|
| 1981            | 16.9  | 21.0  | 2 2.1 | 2 3.3 | 24.0  | 2 3.4 | 2 3.5 | 2 3.4 | 2 2.9 | 2 2.7 | 21.3  | 17.2  | 21.8           |
| 1982            | 1 7.2 | 2 0.4 | 2 2.8 | 2 3.2 | 24.5  | 2 3.5 | 2 3.4 | 2 2.4 | 225   | 2 1.9 | 21.9  | 1 6.1 | 21.7           |
| 1983            | 17.6  | 19.4  | 22.5  | 2 5.7 | 2 5.1 | 24.5  | 24.8  | 2 3.8 | 2 3.0 | 2 2.8 | 1 9.3 | 17.9  | 2 2.2          |
| 1984            | 1 8.1 | 2 1.6 | 2 1.8 | 24.6  | 24.3  | 2 3.4 | 2 3.2 | 2 3.8 | 2 3.0 | 2 2.2 | 2 0.5 | 18.7  | 2 2.1          |
| 1985            | 19.4  | 21.6  | 2 1.1 | 2 4.8 | 2 4.0 | 2 3.4 | 2 3.0 | 24.0  | 2 3.1 | 2 2.6 | 2 1.4 | 17.5  | 2 2.2          |
| Monthly<br>mean | 1 7.8 | 2 0.8 | 2 2.1 | 24.3  | 244   | 2 3.6 | 2 3.6 | 23.5  | 22.9  | 224   | 2 0.9 | 17.5  | 2 2.0          |

#### 3. Maximum monthly air temperature

(Unit : ℃)

|                 |       | • •   |       |       |       |       |       |       |       |       |       | (Unit : | °C)            |
|-----------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|---------|----------------|
| Month           | 1     | 2     | 3     | 4     | 5     | 6     | 7     | 8     | 9     | 10    | 11    | 12      | Annual<br>mean |
| 1981            | 2 9.1 | 3 2.0 | 34.5  | 3 4.6 | 32.0  | 2 9.6 | 3 0.4 | 2 9.1 | 3 0.3 | 2 9.6 | 27.4  | 26.0    | 3 0.4          |
| 1982            | 2 7.8 | 315   | 34.8  | 3 3,1 | 3 3.2 | 3 0.2 | 3 0.5 | 28.9  | 2 9.8 | 3 1.4 | 30.6  | 27.5    | 3 0.8          |
| 1983            | 28.3  | 316   | 3 5.3 | 3 7.5 | 3 5.4 | 32.2  | 3 2.3 | 31.0  | 3 0.9 | 3 0.1 | 2 7.4 | 2 7. 3  | 3 1.6          |
| 1984            | 28.3  | 3 1.5 | 3 3.4 | 34.6  | 3 3.6 | 3 0.4 | 3 0.9 | 2 9.9 | 3 1.0 | 3 0.1 | 2 9.2 | 2 8.9   | 31.0           |
| 1985            | 29.8  | 3 2.4 | 34.6  | 3 4.9 | 331   | 2 9.6 | 2 9.8 | 2 9.7 | 3 0.1 | 2 9.6 | 2 9.3 | 2 8.5   | 31.0           |
| Monthly<br>mean | 28.7  | 31.8  | 34.5  | 3 4,9 | 3 3.5 | 3 0.4 | 3 9.8 | 2 9.7 | 3 0.4 | 3 0.2 | 2 8.8 | 2 7.6   | 3 1.0          |

(2-1)

Table -4

| Month |                   | 1        | 1            | r           |              |               |              | 1            | Т              | T             | <u> </u>    | r        | T                |
|-------|-------------------|----------|--------------|-------------|--------------|---------------|--------------|--------------|----------------|---------------|-------------|----------|------------------|
| Year  | 1                 | 2        | 3            | 4           | 5            | 6             | 7            | 8            | 9              | 10            | 11          | 1 2      | Total            |
| 1981  | 0                 | 40.7     | 55.6         | 120.8       | 212.4        | 161.1         | 91.3         | 104.4        | 293.9          | 83.7          | 234.4       | 40.3     | 1.438.6          |
|       | (0)               | (7)      | (4)          | (7)         | (20)         | (22)          | (19)         | (23)         | (21)           | (12)          | (15)        | (1)      | (151)            |
| 1982  | 0                 | 0.6      | 23.0         | 141.1       | 81.6         | 117.4         | 1141         | 1371         | 10 9.3         | 119.6         | 10,3        | 22.4     | 876.5            |
|       | (0)               | (1)      | (3)          | (9)         | (14)         | (21)          | (19)         | (23)         | (17)           | (15)          | (2)         | (1)      | (125)            |
| 1983  | 1.5               | 0        | 0            | 155         | 70.5         | 378           | 41.0         | 98.7         | 176J           | 286.0         | 42.8        | 2.3      | 772.2            |
|       | (2)               | (0)      | (0)          | (1)         | (9)          | (11)          | (13)         | (23)         | (23)           | (28)          | (7)         | (3)      | (120)            |
| 1984  | 0,3               | 21.7     | 7 0.4        | 85.6        | 3 3.2        | 117.8         | 72.5         | 21.0         | 179 <u>1</u>   | 221.5         | 24.0        | 0        | 847.1            |
|       | (1)               | (5)      | (6)          | (12)        | (10)         | (21)          | (15)         | (11)         | (20)           | (17)          | (5)         | (0)      | (123)            |
| 1985  | 175<br>(1)        | 0(0)     | 68.7<br>(3)  | 691<br>(11) | 90.5<br>(15) | 105.6<br>(23) | 94.6<br>(23) | 55.3<br>(20) | 24 7.6<br>(21) | 2251<br>(21)  | 82.3<br>(8) | 0<br>(0) | 1,056.3<br>(146) |
| Mean  | 3 <u>9</u><br>(1) | 12.6 (3) | 4 3.5<br>(3) | 86.4<br>(8) | 97.6<br>(14) | 107.9<br>(20) | 82.7<br>(18) | 83.3<br>(20) | 201.2<br>(20)  | 187.2<br>(19) | 78.8<br>(7) | 1 3.0    | 998.<br>(133)    |

### 4. Monthly rainfall and rainy days

5. Maximum daily rainfall of each month

[Unit : mm, ( ): date]

| Month<br>Yeu       | 1           | 2           | 3            | 4             | 5            | 6            | 7            | 8            | 9             | 1 0           | 11          | 12          | Annual<br>maximum |
|--------------------|-------------|-------------|--------------|---------------|--------------|--------------|--------------|--------------|---------------|---------------|-------------|-------------|-------------------|
| 1981               | 0<br>(0)    | 3.8<br>(27) | 36.4<br>(11) | 53.0<br>(1)   | 78.7<br>(26) | 274<br>(18)  | 26.1<br>(23) | 12.6<br>(6)  | 6 4.5<br>(20) | 208<br>(17)   | 732<br>(7)  | 0.3<br>(10) | 78.7              |
| 1982               | 0<br>(0)    | 0.6<br>(17) | 14.5<br>(30) | 55.4<br>(14)  | 142<br>(30)  | 45.7<br>(3)  | 22.3<br>(8)  | 20.2<br>(18) | 298<br>(17)   | 28.5<br>(4)   | 9.5<br>(30) | 22.4<br>(2) | 55.4              |
| 1983               | 11<br>(2)   | 0<br>(0)    | 0<br>(0)     | 155<br>(29)   | 124<br>(7)   | 10.0<br>(28) | 13.1<br>(10) | 214<br>(21)  | 37.4<br>(28)  | 1349<br>(18)  | 183<br>(4)  | 2.0<br>(31) | 134.9             |
| 1984               | 0.3<br>(23) | 82<br>(26)  | 349<br>(23)  | 4 5.5<br>(22) | 127<br>(9)   | 266<br>(27)  | 19.7<br>(12) | 70<br>(2)    | 51.6<br>(22)  | 582<br>(3)    | 111<br>(10) | 0<br>(0)    | 58.2              |
| 1985               | 175<br>(25) | 0<br>(0)    | 47.6<br>(31) | 21.7<br>(29)  | 163<br>(25)  | 143<br>(10)  | 20.3<br>(25) | 8.6<br>(27)  | 475<br>(14)   | 4 3.4<br>(12) | 442<br>(13) | 0<br>(0)    | 47.6              |
| Monthly<br>maximum | 175         | 82          | 47.6         | 55.4          | 78.7         | 45.7         | 26.1         | 21.4         | 645           | 134.9         | 732         | 224         | 134.9             |

# 6. Mean monthly humidity

. .

| ·               |    | onthly | humidi | ty |    |    |    |    |     |    |    | (1 | Unit : %       |
|-----------------|----|--------|--------|----|----|----|----|----|-----|----|----|----|----------------|
| Month<br>Year   | 1  | 2      | 3      | 4  | 5  | 6  | 7  | 8  | 9   | 10 | 11 | 12 | Annual<br>mean |
| 1981            | _  |        | _      |    | -  |    | 90 | -  | 93  | 94 | 94 | 87 |                |
| 1982            | 94 | 86     | 87     | 87 | 88 | 90 | 89 | 88 | 90  | 96 | 93 | 91 | 90             |
| 1983            | 88 | 87     | 85     | 82 | 90 | 91 | 88 | 91 | 9.6 | 96 | 95 | 93 | 90             |
| 1984            | 92 | 88     | 91     | 86 | 87 | 91 | 90 | 84 | 94  | 94 | 94 | 91 | 90             |
| 1985            | 91 | 94     | 93     | 92 | 95 | 95 | 96 | 95 | 95  | 96 | 96 | 97 | <br>95         |
| Monthly<br>mean | 91 | 89     | 89     | 87 | 90 | 92 | 91 | 90 | 94  | 96 | 95 | 93 | 91             |

|                                           |             | (2-1)                                      |          | Increase      | 2.294                        | <u>948</u><br>0.9%      | <u>975</u><br>1.0%     | 1.259<br>1.0%                                    | 876<br>1.2%            | 1.5%                             | <u>507</u><br>1.8%    | 238<br>1.9%             | 200<br>1.58         | 0.8 %         | 1.8 <del>%</del><br>1.8%  | 9.099<br>1.5%          |
|-------------------------------------------|-------------|--------------------------------------------|----------|---------------|------------------------------|-------------------------|------------------------|--------------------------------------------------|------------------------|----------------------------------|-----------------------|-------------------------|---------------------|---------------|---------------------------|------------------------|
|                                           |             |                                            | ,<br>,   | nean          | <u>482</u><br>1.5            | 185<br>02               | 258<br>0.3             | 326<br>03                                        | <u>296</u><br>0.4      | <u>154</u><br>03                 | 186                   | 380.0                   | 51<br>0.4           | 220           | 120<br>0.3                | 2,1 1 8<br>0.4         |
|                                           | • .         |                                            | 4        | mina          | 2.776                        | 1.13                    | 1.233                  | <u>1.585</u><br>1.2                              | $\frac{1.172}{1.6}$    | 1.7                              | 25<br>25<br>25        | 276                     | 251                 | 1.1<br>8.6    | <u>941</u><br>2.1         | <u>1 1,21 6</u><br>1.8 |
|                                           |             |                                            |          | 60~85         | 1,645                        | 5,483                   | 4,954                  | 6,841                                            | 3839                   | 3,192                            | 1.467                 | 670                     | 101                 | 411           | 2.380                     | 31.632                 |
|                                           |             |                                            |          | 45~59         | 4,420                        | 1.1,295                 | 12.910                 | 17,843                                           | 1 0,0 0 6              | 8.718                            | 3.8.2.7               | 1;746                   | 1,827               | 1.073         | 6,201                     | 82,446                 |
| Area                                      |             |                                            | 0        | 15~44         | 14,210                       | 4 5,968                 | 41,516                 | 56,746                                           | 32.178                 | 26,748                           | 12,306                | 5,615                   | 4,949               | 3.450         | 19,942                    | 265,152                |
|                                           | ·           | ic., 1984                                  | Age      | 10~14         | 4,350                        | 14,073                  | 12.710                 | 17,557                                           | 9,852                  | 8,189                            | 3.767                 | 1.719                   | 662'1               | 1.056         | 6,105                     | 81.178                 |
| vince and                                 |             | uri in De                                  |          | ۍ<br>د ک      | 4,279                        | 13.842                  | 12501                  | 17,268                                           | 9,690                  | 8,054                            | 3.706                 | 1,691                   | 1,769               | 1,039         | 6.005                     | 79,844                 |
|                                           |             | nchanab                                    |          | 1~4           | 3.0.3.6                      | 9,821                   | 8,870                  | 12,252                                           | 6,875                  | 5,715                            | 2,629                 | 1,199                   | 1,255               | 737           | 4,260                     | 56,649                 |
| the hanchanaburi Frovince and Survey Area |             | province of Kanchanaburi in Dec., 1984     |          | 0~1           | 550                          | 1,779                   | 1,606                  | 2,219                                            | 1,245                  | 1,035                            | 477                   | 217                     | 227                 | 134           | 121                       | 10,260                 |
|                                           |             |                                            |          | Total         | <u>32.539</u><br>100%        | $\frac{105.261}{100\%}$ | $\frac{95,067}{100\%}$ | $\frac{1}{1}\frac{3}{0}\frac{1,3}{0}\frac{1}{8}$ | $\frac{7.3685}{100\%}$ | $\frac{6}{1}\frac{1.250}{0.0\%}$ | $\frac{28179}{100\%}$ | $\frac{12.857}{100\%}$  | $\frac{1}{100\%}$   | 1 0 0 %       | 45664<br>100%             | <u>607.171</u><br>100% |
| Population of                             |             | tseholds of                                | Sex      | Female        | 16.537<br>50.8               | 50.234                  | 4 7,2 8 8<br>4 9.7     | <u>64,783</u><br>493                             | <u>38407</u><br>521    | <u>29,670</u><br>48.4            | 12981                 | 6.327<br>49.2           | <u>6.171</u><br>459 | 3929<br>49.7  | 2 2 2 1 5<br>4 8.6        | 298.543<br>49.2        |
| n                                         |             | ther of hou                                |          | Male          | 1 6,0 0 2<br>4 9.2           | 55,027                  | <u> 4 7,778</u><br>503 | <u>66553</u><br>507                              | <u>35,278</u><br>47,9  | <u>31,580</u><br>51.6            | 15,198<br>53.9        | <u>6.5 3 0</u><br>5 0.8 | 7282                | 3,991<br>50.3 | <u>2 2,4 4 9</u><br>5 1.4 | <u>308,628</u><br>50.8 |
| Table -                                   |             | Population and number of households of the |          | Housenoid No. | 1.077                        | 15,660                  | 13.909                 | 1 6.8 2 0                                        | 12.508                 | 11,267                           | 6,041                 | 2.255                   | 2.963               | 1,399         | 8.550                     | 95,449                 |
|                                           | •<br>•<br>• | 1. Populatic                               |          | Name of place | Kanchanaburi<br>(urban area) | Kanchanaburi<br>(city)  | T ha Muang             | T ha Maka                                        | Phanom' Thuan          | Bo Phloi                         | Sai Yok               | Si Sawat                | Thong Pha Phum      | Sangkhla Buri | Lao Khwan                 | Total                  |
|                                           |             |                                            | <u> </u> |               | <u> </u>                     |                         |                        | ,,                                               | (:                     | 27)                              |                       |                         |                     |               |                           |                        |

(Source) Annual Report 1984 of Kanchanaburi Province

.

.

# Table - 5

| Ta a     | Year 19 | 81  | Year 19 | 82  | Year 19 | 83. | Yeat 19 | 84. |
|----------|---------|-----|---------|-----|---------|-----|---------|-----|
| Item     | Person  | %   | Person  | %   | Person  | 1%  | Person  | %   |
| Birth    | 12,928  | 2.4 | 13,575  | 2.4 | 12,382  | 2.1 | 11,216  | 1.8 |
| Death    | 2,345   | 0.4 | 2,367   | 0.4 | 2,358   | 0.4 | 2,118   | 0.4 |
| Increase | 10,583  | 2.0 | 11,206  | 2.0 | 10,024  | 1.7 | 9,099   | 1.5 |

## 2. Movement of population in the province of Kanchanaburi

(Source) Annual Report 1984 of Kanchanaburi Province

#### 3. Population of the rural districts of the survey area

|           |        | Year   | 1983   |          |                     |        | Year 1984 |        |          |
|-----------|--------|--------|--------|----------|---------------------|--------|-----------|--------|----------|
| Districts | Male   | Female | Total  | Increase | Household<br>number | Male   | Female    | Total  | Increase |
| Thong Pha | 6,346  | 6,012  | 12,358 | 279      | 2,963               | 7,282  | 6,171     | 13,453 | 200      |
| Phum      | 51.4%  | 48.6%  | . 100% | 2.3%     |                     | 45.1%  | 45.9%     | 100%   | 1.5%     |
| C: Causel | 6,881  | 5,820  | 12,701 | 395      | 2,255               | 6,530  | 6,327     | 12,857 | 238      |
| Si Sawat  | 54.2%  | 45.8%  | 100%   | 3.1%     |                     | 50.8%  | 49.2%     | 100%   | 1.9%     |
| Tetel     | 13,227 | 11,832 | 25,059 | 674      | 5,218               | 13,812 | 12,498    | 26,310 | 438      |
| Total     | 52.8%  | 47.2%  | 100%   | 2.7%     |                     | 52%    | 48%       | 100%   | 1.7%     |

(Source) Annual Report 1984 of Kanchanaburi Province

# 4. Villages and population of the zone in which the model area is to be selected

| No. | Villages           | Household number | Person | Remarks                                |
|-----|--------------------|------------------|--------|----------------------------------------|
| ]   | Ban Phu Toei       | 80               | 300    | Thong Pha Phum district Chalae town    |
| 2   | Ban Dong Yai       | 30               | 200    | Si Sawat district Dan Mae Chalaep town |
| 3   | Ban Dong Lek       | 30               | 100    | H.                                     |
| 4   | Ban Danmae Chalaep | 3                | 30     |                                        |
| 5   | Ban Phu Ta Ma      | 9                | 40     |                                        |
|     | Total              | 152              | 670    |                                        |

(Source) Field Survey Data in Jan., 1986.

(2-2)

(3-1)

Table - 6 Results of Sample Plot Survey by Logging Block and Forest Type

| (cm)<br>80.5<br>80.5<br>106.6<br>106.6<br>107.2<br>127.0<br>100.5<br>71.0<br>71.0<br>83.7<br>71.0<br>83.7<br>71.0<br>83.7<br>71.0<br>85.0<br>105.2<br>86.0<br>106.3<br>106.3<br>106.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $V_{\rm eff}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $V_{WV}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $4^{44}$ $10^{4}$ $1^{4}$ $10^{4}$ $11^{4}$ $0^{4}$ $10^{4}$ $10^{4}$ $10^{4}$ $10^{4}$ $10^{4}$ $10^{4}$ $10^{4}$ $10^{4}$ $10^{4}$ $10^{4}$ $10^{4}$ $10^{4}$ $10^{4}$ $10^{4}$ $10^{4}$ $10^{4}$ $10^{4}$ $10^{4}$ $10^{4}$ $10^{4}$ $10^{4}$ $10^{4}$ $10^{4}$ $10^{4}$ $10^{4}$ $10^{4}$ $10^{4}$ $10^{4}$ $10^{4}$ $10^{4}$ $10^{4}$ $10^{4}$ $10^{4}$ $10^{4}$ $10^{4}$ $10^{4}$ $10^{4}$ $10^{4}$ $10^{4}$ $10^{4}$ $10^{4}$ $10^{4}$ $10^{4}$ $10^{4}$ $10^{4}$ $10^{4}$ $10^{4}$ $10^{4}$ $10^{4}$ $10^{4}$ $10^{4}$ $10^{4}$ $10^{4}$ $10^{4}$ $10^{4}$ $10^{4}$ $10^{4}$ $10^{4}$ $10^{4}$ $10^{4}$ $10^{4}$ $10^{4}$ $10^{4}$ $10^{4}$ $10^{4}$ $10^{4}$ $10^{4}$ $10^{4}$ $10^{4}$ $10^{4}$ $10^{4}$ $10^{4}$ $10^{4}$ $10^{4}$ $10^{4}$ $10^{4}$ $10^{4}$ $10^{4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $4^{44}$ $10^{4}$ $1^{4}$ $10^{4}$ $11^{4}$ $10^{4}$ $11^{4}$ $10^{4}$ $10^{4}$ $10^{4}$ $10^{4}$ $10^{4}$ $10^{4}$ $10^{4}$ $10^{4}$ $10^{4}$ $10^{4}$ $10^{4}$ $10^{4}$ $10^{4}$ $10^{4}$ $10^{4}$ $10^{4}$ $10^{4}$ $10^{4}$ $10^{4}$ $10^{4}$ $10^{4}$ $10^{4}$ $10^{4}$ $10^{4}$ $10^{4}$ $10^{4}$ $10^{4}$ $10^{4}$ $10^{4}$ $10^{4}$ $10^{4}$ $10^{4}$ $10^{4}$ $10^{4}$ $10^{4}$ $10^{4}$ $10^{4}$ $10^{4}$ $10^{4}$ $10^{4}$ $10^{4}$ $10^{4}$ $10^{4}$ $10^{4}$ $10^{4}$ $10^{4}$ $10^{4}$ $10^{4}$ $10^{4}$ $10^{4}$ $10^{4}$ $10^{4}$ $10^{4}$ $10^{4}$ $10^{4}$ $10^{4}$ $10^{4}$ $10^{4}$ $10^{4}$ $10^{4}$ $10^{4}$ $10^{4}$ $10^{4}$ $10^{4}$ $10^{4}$ $10^{4}$ $10^{4}$ $10^{4}$ $10^{4}$ $10^{4}$ $10^{4}$ $10^{4}$ $10^{4}$ $10^{4}$ $10^{4}$ $10^{4}$ $10^{4}$ <th< td=""><td><math>4^{4}</math> <math>10^{4}</math> <math>1^{4}</math> <math>10^{4}</math> <math>1^{4}</math> <math>10^{4}</math> <math>1^{4}</math> <math>10^{4}</math> <math>1</math></td></th<>                | $4^{4}$ $10^{4}$ $1^{4}$ $10^{4}$ $1^{4}$ $10^{4}$ $1^{4}$ $10^{4}$ $10^{4}$ $10^{4}$ $10^{4}$ $10^{4}$ $10^{4}$ $10^{4}$ $10^{4}$ $10^{4}$ $10^{4}$ $10^{4}$ $10^{4}$ $10^{4}$ $10^{4}$ $10^{4}$ $10^{4}$ $10^{4}$ $10^{4}$ $10^{4}$ $10^{4}$ $10^{4}$ $10^{4}$ $10^{4}$ $10^{4}$ $10^{4}$ $10^{4}$ $10^{4}$ $10^{4}$ $10^{4}$ $10^{4}$ $10^{4}$ $10^{4}$ $10^{4}$ $10^{4}$ $10^{4}$ $10^{4}$ $10^{4}$ $10^{4}$ $10^{4}$ $10^{4}$ $10^{4}$ $10^{4}$ $10^{4}$ $10^{4}$ $10^{4}$ $10^{4}$ $10^{4}$ $10^{4}$ $10^{4}$ $10^{4}$ $10^{4}$ $10^{4}$ $10^{4}$ $10^{4}$ $10^{4}$ $10^{4}$ $10^{4}$ $10^{4}$ $10^{4}$ $10^{4}$ $10^{4}$ $10^{4}$ $10^{4}$ $10^{4}$ $10^{4}$ $10^{4}$ $10^{4}$ $10^{4}$ $10^{4}$ $10^{4}$ $10^{4}$ $10^{4}$ $10^{4}$ $10^{4}$ $10^{4}$ $10^{4}$ $10^{4}$ $1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 4       10       Me F Mi H1 D1       0       15       136       161       101.9         19       1.0       Me F S <sub>w</sub> H <sub>1</sub> D1       25       15       116       156       107.2         21       0.       Me F S <sub>w</sub> H <sub>1</sub> D1       25       15       166       156       107.2         21       1.0       Me F S <sub>w</sub> H <sub>1</sub> D1       3       3       16       96       115       127.0         21       1.0       Me F S <sub>w</sub> H <sub>1</sub> D1       115       5       17       126       148       100.5         21       1.0       Me H S <sub>w</sub> H <sub>2</sub> D1       115       5       12       165       105.2         21       0.1       Me H S <sub>w</sub> H <sub>2</sub> D1       115       25       12       163       105.2         22       0.4       Me H S <sub>w</sub> H <sub>2</sub> D1       120       15       120       163       105.2         23       1.0       Me H S <sub>w</sub> H <sub>2</sub> D1       120       123       224       71.0         26       0.4       10       122       24       122       326       71.0         26       1.0       D6 H S <sub>w</sub> H <sub>2</sub> D1       120       123       212       212       211 <t< td=""><td>4       10       Mb F Mi H<sub>3</sub> D<sub>3</sub>       0       15       16       161       161       101.9         19       1.0       Mb F S<sub>6</sub>, H<sub>3</sub> D<sub>3</sub>       25       15       16       166       167.2         27       0.4       Mb F S<sub>6</sub>, H<sub>3</sub> D<sub>3</sub>       25       17       126       146       100.5         27       0.1       Mb H H<sub>1</sub> D<sub>2</sub>       115       5       17       126       146       100.5         27       0.1       Mb H S<sub>6</sub> H<sub>1</sub> D<sub>2</sub>       115       5       17       126       87.9       97.0         27       0.1       Mb H S<sub>6</sub> H<sub>1</sub> D<sub>2</sub>       115       5       126       165       105.2         28       0.4       Mb H S<sub>6</sub> H<sub>1</sub> D<sub>2</sub>       115       23       15       120       97.0         27       0.4       Mb H S<sub>6</sub> H<sub>1</sub> D<sub>1</sub>       23       15       120       165.2       171.0         26       1.0       Mb H S<sub>6</sub> H<sub>1</sub> D<sub>1</sub>       133       21       122       326       71.0         27       0.4       Mb H S<sub>6</sub> H<sub>1</sub> D<sub>1</sub>       133       21       123       326       73.1         26       1.0       12       24       123       24       <t< td=""><td>4       10       Mn F K, H1, D1       0       15       16       161       101.9         19       1.0       Mn F S, H1, D1       25       15       116       156       107.2         21       0.       Mn F S, H1, D1       25       15       116       156       107.2         21       0.       Mn F S, H1, D1       25       15       126       145       100.6         21       0.       Mn H1, D2       115       5       126       146       107.2         21       10       Mn F S, H1, D2       115       5       15       126       165       177.2         22       0.1       Mn H1, D2       115       5       125       246       87.9       71.0         23       0.4       Mn H2, D2       177       26       127       266       71.0         25       0.8       Mn H2, D1       118       21       171       205       83.7         26       1.0       Da H S, H2, D1       128       27       266       71.0         26       1.0       128       27       129       266       71.0         27       10       128       27</td></t<></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4       10       Mb F Mi H <sub>3</sub> D <sub>3</sub> 0       15       16       161       161       101.9         19       1.0       Mb F S <sub>6</sub> , H <sub>3</sub> D <sub>3</sub> 25       15       16       166       167.2         27       0.4       Mb F S <sub>6</sub> , H <sub>3</sub> D <sub>3</sub> 25       17       126       146       100.5         27       0.1       Mb H H <sub>1</sub> D <sub>2</sub> 115       5       17       126       146       100.5         27       0.1       Mb H S <sub>6</sub> H <sub>1</sub> D <sub>2</sub> 115       5       17       126       87.9       97.0         27       0.1       Mb H S <sub>6</sub> H <sub>1</sub> D <sub>2</sub> 115       5       126       165       105.2         28       0.4       Mb H S <sub>6</sub> H <sub>1</sub> D <sub>2</sub> 115       23       15       120       97.0         27       0.4       Mb H S <sub>6</sub> H <sub>1</sub> D <sub>1</sub> 23       15       120       165.2       171.0         26       1.0       Mb H S <sub>6</sub> H <sub>1</sub> D <sub>1</sub> 133       21       122       326       71.0         27       0.4       Mb H S <sub>6</sub> H <sub>1</sub> D <sub>1</sub> 133       21       123       326       73.1         26       1.0       12       24       123       24 <t< td=""><td>4       10       Mn F K, H1, D1       0       15       16       161       101.9         19       1.0       Mn F S, H1, D1       25       15       116       156       107.2         21       0.       Mn F S, H1, D1       25       15       116       156       107.2         21       0.       Mn F S, H1, D1       25       15       126       145       100.6         21       0.       Mn H1, D2       115       5       126       146       107.2         21       10       Mn F S, H1, D2       115       5       15       126       165       177.2         22       0.1       Mn H1, D2       115       5       125       246       87.9       71.0         23       0.4       Mn H2, D2       177       26       127       266       71.0         25       0.8       Mn H2, D1       118       21       171       205       83.7         26       1.0       Da H S, H2, D1       128       27       266       71.0         26       1.0       128       27       129       266       71.0         27       10       128       27</td></t<>                                                                                                                                                                                                        | 4       10       Mn F K, H1, D1       0       15       16       161       101.9         19       1.0       Mn F S, H1, D1       25       15       116       156       107.2         21       0.       Mn F S, H1, D1       25       15       116       156       107.2         21       0.       Mn F S, H1, D1       25       15       126       145       100.6         21       0.       Mn H1, D2       115       5       126       146       107.2         21       10       Mn F S, H1, D2       115       5       15       126       165       177.2         22       0.1       Mn H1, D2       115       5       125       246       87.9       71.0         23       0.4       Mn H2, D2       177       26       127       266       71.0         25       0.8       Mn H2, D1       118       21       171       205       83.7         26       1.0       Da H S, H2, D1       128       27       266       71.0         26       1.0       128       27       129       266       71.0         27       10       128       27                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 18         1.0         Mo F S <sub>m</sub> H <sub>1</sub> D <sub>1</sub> 25         15         16         166         107.2         15.9           41         1.0         Mo F S <sub>m</sub> H <sub>1</sub> D <sub>2</sub> 5         17         126         146         100.5         20.6           27         0.1         Mo F S <sub>m</sub> H <sub>1</sub> D <sub>2</sub> 15         17         126         148         100.5         20.6           27         0.1         Mo H <sub>1</sub> D <sub>2</sub> 115         5         126         146         100.5         20.6           27         0.1         Mo H <sub>2</sub> D <sub>2</sub> 115         126         148         100.5         20.6           27         0.1         Mo H <sub>2</sub> D <sub>2</sub> 15         120         163         16.7         16.7           28         120         Mo H <sub>2</sub> D <sub>2</sub> 120         22         246         71.0         18.2           29         1.0         Mo H <sub>2</sub> D <sub>1</sub> 123         212         120         266         73.7         16.6           29         1.0         Te F S <sub>m</sub> H <sub>2</sub> D <sub>1</sub> 123         221         120         226         73.7         16.6           210         Te F S <sub>m</sub> H <sub>2</sub> D <sub>1</sub> 123         21         122                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 19         1.0         Mo         F.S., H1, D1,<br>at         25         15         116         156         107.2         15.9           41         1.0         Mo         F.S., H1, D1,<br>at         3         16         36         115         127.0         17.6           41         1.0         Mo         F.S., H1, D1,<br>at         3         115         5         17         126         146         100.5         20.6         1           27         0.1         Mo         HS., H1, D2,<br>b         115         5         15         126         16.7         16.9         16.7         17.6           27         0.1         Mo         HS., H1, D1,<br>b         155         24         87.0         18.2         1           26         12         Mo         HS., H2, D1,<br>b         179         22         120         18.2         1           27         0.4         Mo         HS, H2, D1         121         22         120         12.5         10.5         13.1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         23         120         12.5 <td>19         1.0         Mo         F.S., H<sub>1</sub> D<sub>1</sub>         25         15         116         156         107.2         15.9           41         1.0         Mo, F.S., H<sub>1</sub> D<sub>1</sub>         5         1.7         126         145         17.6         17.6           41         1.0         Mo, F.S., H<sub>1</sub> D<sub>2</sub>         5         1.7         126         145         17.7.6         17.6           2*         0.1         Mo, H<sub>1</sub> D<sub>2</sub>         115         5         246         87.9         15.7.7         17.6           3         1.0         Mo, H<sub>2</sub> D<sub>2</sub>         115         21         21         126         18.2         16.5           2*         0.1         Mo, H<sub>2</sub> D<sub>2</sub>         23         15         16.2         18.2         1           2*         0.2         D<sub>2</sub> F S_n H<sub>1</sub> D<sub>1</sub>         23         1         23         14.1.0         13.1           5         0.2         D<sub>2</sub> F S_n H<sub>1</sub> D<sub>1</sub>         123         21         171         205         18.2           6         1.0         D<sub>2</sub> H S_n H<sub>1</sub> D<sub>1</sub>         123         21         205         28.3         14.1.9           6         1.0         D<sub>2</sub> H S_n H<sub>1</sub> D<sub>1</sub>         123</td> | 19         1.0         Mo         F.S., H <sub>1</sub> D <sub>1</sub> 25         15         116         156         107.2         15.9           41         1.0         Mo, F.S., H <sub>1</sub> D <sub>1</sub> 5         1.7         126         145         17.6         17.6           41         1.0         Mo, F.S., H <sub>1</sub> D <sub>2</sub> 5         1.7         126         145         17.7.6         17.6           2*         0.1         Mo, H <sub>1</sub> D <sub>2</sub> 115         5         246         87.9         15.7.7         17.6           3         1.0         Mo, H <sub>2</sub> D <sub>2</sub> 115         21         21         126         18.2         16.5           2*         0.1         Mo, H <sub>2</sub> D <sub>2</sub> 23         15         16.2         18.2         1           2*         0.2         D <sub>2</sub> F S_n H <sub>1</sub> D <sub>1</sub> 23         1         23         14.1.0         13.1           5         0.2         D <sub>2</sub> F S_n H <sub>1</sub> D <sub>1</sub> 123         21         171         205         18.2           6         1.0         D <sub>2</sub> H S_n H <sub>1</sub> D <sub>1</sub> 123         21         205         28.3         14.1.9           6         1.0         D <sub>2</sub> H S_n H <sub>1</sub> D <sub>1</sub> 123                                                                                                                                               |
| $23^{4}$ $0.4$ $M_{\rm D}$ F S_{\rm A} H <sub>3</sub> D <sub>1</sub> 3         16         96         115         127.0         17.6           41         1.0 $M_{\rm D}$ F S_{\rm A} H <sub>3</sub> D <sub>1</sub> 5         17         126         148         100.5         20.6 $2^{-4}$ 0.1 $M_{\rm D}$ F S_{\rm A} H <sub>3</sub> D <sub>1</sub> 5         115         5         246         87.9         15.7 $2^{-4}$ 0.1 $M_{\rm D}$ H S_{\rm m} H <sub>3</sub> D <sub>1</sub> 0         115         5         246         87.9         15.7 $2^{-4}$ 0.1 $M_{\rm D}$ H S_{\rm m} H <sub>3</sub> D <sub>1</sub> 0         115         23         105.2         18.2 $2^{-6}$ 0.4 $M_{\rm D}$ H S_{\rm m} H <sub>3</sub> D <sub>1</sub> 159         24         105.2         18.2 $2^{-6}$ 0.4 $M_{\rm D}$ H S_{\rm m} H <sub>3</sub> D <sub>1</sub> 159         24         13.5 $2^{-6}$ 0.4 $M_{\rm D}$ H S_{\rm m} H <sub>3</sub> D <sub>1</sub> 122         21         111 $2^{-6}$ 1.0 $M_{\rm D}$ H S_{\rm m} H <sub>3</sub> D <sub>1</sub> 122         24         71.0         13.1 $2^{-6}$ 1.0 $M_{\rm D}$ H S_{\rm m} H <sub>3</sub> D <sub>1</sub> 122 </td <td><math>23^{+}</math> <math>0.4</math>         Mo F S_m H_2 D_1         <math>3</math> <math>16</math> <math>9.6</math> <math>115</math> <math>127.0</math> <math>17.6</math> <math>1</math> <math>1.0</math>         Mo F N<sub>4</sub> H_3 D_1         <math>5</math> <math>17</math> <math>128</math> <math>100.5</math> <math>20.6</math> <math>2^{-1}</math> <math>0.1</math>         Mo H H_1 D_2         <math>115</math> <math>5</math> <math>125</math> <math>246</math> <math>87.9</math> <math>15.7</math> <math>3</math> <math>10</math>         Mo H S_m H_3 D_1         <math>0</math> <math>15</math> <math>128</math> <math>297</math> <math>87.9</math> <math>15.7</math> <math>3</math> <math>10</math>         Mo H S_m H_3 D_1         <math>13</math> <math>2</math> <math>12</math> <math>246</math> <math>116</math> <math>16.7</math> <math>5</math> <math>0.4</math>         Mo H S_m H_3 D_1         <math>20</math> <math>15</math> <math>120</math> <math>165.2</math> <math>18.2</math> <math>5</math> <math>0.4</math> <math>M_2</math> H_3 D_1         <math>129</math> <math>226</math> <math>71.0</math> <math>13.1</math> <math>5</math> <math>0.4</math> <math>10.5</math> <math>120</math> <math>128</math> <math>226</math> <math>71.0</math> <math>13.1</math> <math>5</math> <math>0.4</math> <math>10.5</math> <math>226</math> <math>122</math> <math>226</math> <math>71.0</math> <math>13.2</math> <math>6</math> <math>1.0</math> <math>1.6</math></td> <td><math>23^{+}</math> <math>0.4</math> <math>M_{5}</math> <math>F_{3,4}</math> <math>H_{1}</math> <math>D_{1}</math> <math>3</math> <math>16</math> <math>36</math> <math>115</math> <math>127.0</math> <math>17.5</math> <math>1</math> <math>1.0</math> <math>M_{5}</math> <math>F_{3,4}</math> <math>H_{1}</math> <math>D_{2}</math> <math>115</math> <math>5</math> <math>17</math> <math>126</math> <math>148</math> <math>100.5</math> <math>20.5</math> <math>2^{-1}</math> <math>0.1</math> <math>M_{2}</math> <math>H_{3}</math> <math>D_{2}</math> <math>115</math> <math>5</math> <math>125</math> <math>246</math> <math>87.9</math> <math>15.7</math> <math>2^{-1}</math> <math>0.1</math> <math>M_{2}</math> <math>H_{3}</math> <math>D_{1}</math> <math>D_{2}</math> <math>115</math> <math>126</math> <math>148</math> <math>100.5</math> <math>20.5</math> <math>2^{-1}</math> <math>0.1</math> <math>M_{2}</math> <math>H_{3}</math> <math>H_{1}</math> <math>D_{1}</math> <math>129</math> <math>21</math> <math>171</math> <math>326</math> <math>71.0</math> <math>12.5</math> <math>2^{-1}</math> <math>0.4</math> <math>D_{2}</math> <math>H_{3}</math> <math>H_{1}</math> <math>D_{1}</math> <math>128</math> <math>21</math> <math>171</math> <math>305</math> <math>83.7</math> <math>14.9</math> <math>4.4</math> <math>1.0</math> <math>D_{2}</math> <math>H_{3}</math> <math>H_{1}</math> <math>D_{1}</math> <math>122</math> <math>212</math> <math>122</math> <math>12.6</math> <math>12.6</math> <math>12.6</math> <math>2^{-1}</math> <math>D_{2}</math> <math>120</math> <math>128</math> <math>221</math> <math>122</math> <math>12.6</math> <math>12.6</math> <math>12.6</math></td> | $23^{+}$ $0.4$ Mo F S_m H_2 D_1 $3$ $16$ $9.6$ $115$ $127.0$ $17.6$ $1$ $1.0$ Mo F N <sub>4</sub> H_3 D_1 $5$ $17$ $128$ $100.5$ $20.6$ $2^{-1}$ $0.1$ Mo H H_1 D_2 $115$ $5$ $125$ $246$ $87.9$ $15.7$ $3$ $10$ Mo H S_m H_3 D_1 $0$ $15$ $128$ $297$ $87.9$ $15.7$ $3$ $10$ Mo H S_m H_3 D_1 $13$ $2$ $12$ $246$ $116$ $16.7$ $5$ $0.4$ Mo H S_m H_3 D_1 $20$ $15$ $120$ $165.2$ $18.2$ $5$ $0.4$ $M_2$ H_3 D_1 $129$ $226$ $71.0$ $13.1$ $5$ $0.4$ $10.5$ $120$ $128$ $226$ $71.0$ $13.1$ $5$ $0.4$ $10.5$ $226$ $122$ $226$ $71.0$ $13.2$ $6$ $1.0$ $1.6$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $23^{+}$ $0.4$ $M_{5}$ $F_{3,4}$ $H_{1}$ $D_{1}$ $3$ $16$ $36$ $115$ $127.0$ $17.5$ $1$ $1.0$ $M_{5}$ $F_{3,4}$ $H_{1}$ $D_{2}$ $115$ $5$ $17$ $126$ $148$ $100.5$ $20.5$ $2^{-1}$ $0.1$ $M_{2}$ $H_{3}$ $D_{2}$ $115$ $5$ $125$ $246$ $87.9$ $15.7$ $2^{-1}$ $0.1$ $M_{2}$ $H_{3}$ $D_{1}$ $D_{2}$ $115$ $126$ $148$ $100.5$ $20.5$ $2^{-1}$ $0.1$ $M_{2}$ $H_{3}$ $H_{1}$ $D_{1}$ $129$ $21$ $171$ $326$ $71.0$ $12.5$ $2^{-1}$ $0.4$ $D_{2}$ $H_{3}$ $H_{1}$ $D_{1}$ $128$ $21$ $171$ $305$ $83.7$ $14.9$ $4.4$ $1.0$ $D_{2}$ $H_{3}$ $H_{1}$ $D_{1}$ $122$ $212$ $122$ $12.6$ $12.6$ $12.6$ $2^{-1}$ $D_{2}$ $120$ $128$ $221$ $122$ $12.6$ $12.6$ $12.6$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 41         1.0         Mb F X <sub>6</sub> H <sub>3</sub> D <sub>1</sub> 5         17         126         148         100.5 $2^{-1}$ 0.1         Mb H M <sub>1</sub> H <sub>2</sub> D <sub>2</sub> 115         5         245         87.9         87.9 $3^{-1}$ 0.1         Mb H M <sub>1</sub> H <sub>2</sub> D <sub>2</sub> 115         5         245         87.9         87.0 $3^{-1}$ 0.10         Mb H S <sub>m</sub> H <sub>3</sub> D <sub>1</sub> 0         15         120         165         17.0 $3^{-1}$ D <sub>2</sub> Mb H <sub>3</sub> H <sub>3</sub> D <sub>1</sub> 23         15         120         165.2 $5$ D <sub>2</sub> D <sub>2</sub> F S <sub>m</sub> H <sub>3</sub> D <sub>1</sub> 160         17         305         33.7 $5$ D <sub>4</sub> D <sub>2</sub> H S <sub>m</sub> H <sub>3</sub> D <sub>1</sub> 160         113         21         171         305         33.7 $5$ LO         D <sub>2</sub> H S <sub>m</sub> H <sub>3</sub> D <sub>1</sub> 121         21         171         305         33.7 $4^{4}$ LO         D <sub>6</sub> H S <sub>m</sub> H <sub>3</sub> D <sub>1</sub> 1221         21         124         266         73.7 $4^{4}$ LO         D <sub>6</sub> H S <sub>m</sub> H <sub>3</sub> D <sub>1</sub> 221         21         266         74.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 41         10         Mb F Ni, H_1 D_1         5         17         126         148         100.05         20.6 $2^{-1}$ 01         Mb H N_{1} D_2         115         5         125         246         87.9         15.7 $3$ 10         Mb H S_m H_3 D_1         0         15         5         24         37.0         18.5 $3^{-1}$ 0         Mb H S_m H_3 D_1         0         15         122         37.0         18.5 $3^{-1}$ 0         Mb H S_m H_3 D_1         0         15         122         37.0         18.5 $5^{-1}$ 0         Mb H S_m H_3 D_1         262         27         105.2         18.2 $5^{-1}$ 0.4         Da H S_m H_3 D_1         152         27         105         13.1 $5^{-1}$ 0.4         Da H S_m H_3 D_1         122         21         171         305         83.7         14.9 $4^{-1}$ 1.0         Da H S_m H_3 D_1         122         21         124         266         79.7         16.5 $4^{-1}$ 1.0         Da H S_m H_3 D_1         1221         21         124                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $1$ $10$ $M_{\rm D} \in N_{\rm t}, H_{\rm J}, D_{\rm T}$ $5$ $17$ $126$ $146$ $100.5$ $20.6$ $2^{-1}$ $0.1$ $M_{\rm D} H S_{\rm m} H_{\rm T}, D_{\rm T}$ $115$ $5$ $125$ $246$ $8.7.9$ $15.7$ $3$ $10$ $M_{\rm D} H S_{\rm m} H_{\rm T}, D_{\rm T}$ $115$ $5$ $120$ $163$ $106.5$ $18.5$ $20^{-1}$ $M_{\rm D}$ H $S_{\rm m}$ H_{\rm T}, D_{\rm T} $179$ $224$ $170$ $18.2$ $18.2$ $20^{-1}$ $D_{\rm D} F S_{\rm m}$ H_{\rm T}, D_{\rm T} $129$ $224$ $71.0$ $13.1$ $5^{-1}$ $0.6$ $D_{\rm D} F S_{\rm m}$ H_{\rm T}, D_{\rm T} $129$ $224$ $71.0$ $13.1$ $5^{-1}$ $0.6$ $120$ $122$ $224$ $71.0$ $13.2$ $5^{-1}$ $0.6$ $100$ $122$ $122$ $122$ $122$ $122$ $5^{-1}$ $0.6$ $D_{\rm D} H S_{\rm m} H_{\rm D} D_{\rm L}$ $122$ $226$ $79.0$ $13.2$ $10^{-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $2^{-1}$ 0.1         M <sub>5</sub> H M <sub>4</sub> H <sub>1</sub> D <sub>2</sub> 115         5         125         245         87.9         15.7 $3^{-1}$ 10         M <sub>5</sub> H S <sub>2</sub> H <sub>2</sub> D <sub>1</sub> 0         15         82         97         57.0         18.5 $20^{-1}$ D <sub>4</sub> M <sub>2</sub> H S <sub>2</sub> H <sub>2</sub> D <sub>1</sub> 22         15         120         165.2         18.2 $20^{-1}$ D <sub>2</sub> H <sub>2</sub> D <sub>1</sub> 22         15         120         16.3         105.2         18.2 $5^{-1}$ D <sub>2</sub> H <sub>2</sub> D <sub>1</sub> 28         17         159         28.3         71.0         13.1 $5^{-1}$ D <sub>2</sub> H <sub>2</sub> D <sub>1</sub> 128         21         171         305         83.7         14.9 $10$ D <sub>2</sub> H S <sub>2</sub> H <sub>2</sub> D <sub>1</sub> 121         21         171         305         83.7         14.9 $10$ D <sub>1</sub> D <sub>2</sub> H S <sub>2</sub> H <sub>2</sub> D <sub>1</sub> 121         21         122         266         79.7         165.6 $10$ D <sub>1</sub> D <sub>2</sub> H S <sub>2</sub> H <sub>3</sub> D <sub>1</sub> 221         205         267         13.6 $10$ D <sub>1</sub> D <sub>2</sub> H S <sub>1</sub> H <sub>2</sub> D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $2^{+}$ 0.1         M <sub>5</sub> H M <sub>4</sub> H <sub>1</sub> D <sub>2</sub> 115         5         125         245         87.9         15.7         15.7         15.7         15.7         15.7         15.7         15.7         15.7         15.7         15.7         15.7         15.7         15.7         15.7         15.7         15.7         15.7         15.7         15.7         15.7         15.7         15.7         15.7         15.2         15.7         15.2         15.2         15.2         15.2         15.2         15.2         15.2         15.2         15.2         15.2         15.2         15.2         15.2         15.2         15.2         15.2         15.2         15.2         15.2         15.2         15.2         15.2         15.2         15.2         15.2         15.2         15.2         15.2         15.2         15.2         15.2         15.2         15.2         15.2         15.2         15.2         15.2         15.2         15.2         15.2         15.2         15.2         15.2         15.2         15.2         15.2         15.2         15.2         15.2         15.2         15.2         15.2         15.2         15.2         15.2         15.2 <th16.2< th=""> <th16.2< th=""> <th16.2< th=""></th16.2<></th16.2<></th16.2<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $2^{+}$ $0.1$ $M_{D}$ H $M_{1}$ H $D_{2}$ $115$ $5$ $125$ $245$ $87.9$ $15.7$ $18.5$ $2^{-1}$ $0.4$ $M_{D}$ H $S_{m}$ H $J_{1}$ $D_{1}$ $0$ $15$ $225$ $57.0$ $18.5$ $2^{-1}$ $D_{4}$ $M_{D}$ H $S_{m}$ H $J_{1}$ $D_{1}$ $223$ $15$ $120$ $16.3$ $106.2$ $18.2$ $5$ $D_{6}$ $D_{D}$ F $S_{m}$ H $J_{1}$ $D_{1}$ $129$ $236$ $71.0$ $12.5$ $18.2$ $5$ $D_{10}$ $D_{2}$ F $S_{m}$ H $J_{1}$ $D_{1}$ $129$ $231$ $122$ $236$ $71.0$ $13.1$ $2^{-1}$ $D_{11}$ $D_{12}$ $172$ $121$ $205$ $83.7$ $14.0$ $4.4$ $1.0$ $D_{14}$ H $S_{m}$ H $J_{1}$ $D_{1}$ $122$ $211$ $171$ $205$ $83.7$ $14.0$ $4.4$ $1.0$ $D_{14}$ $212$ $212$ $212$ $214.9$ $14.9$ $1.0$ $D_{16}$ $D_{16}$ <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 3       1.0 $M_0$ H S <sub>m</sub> H <sub>3</sub> , D <sub>1</sub> 0       15       82       97       97.0       18.5 $23^4$ D <sub>4</sub> $M_{2}$ H S <sub>m</sub> H D <sub>1</sub> 23       15       120       163       105.2       18.2         5       D <sub>2</sub> D <sub>5</sub> F S <sub>m</sub> H D <sub>1</sub> 179       23       17.0       12.5       18.1         6       1.0       D <sub>5</sub> F S <sub>m</sub> H D <sub>1</sub> 162       179       28.3       71.0       13.1 $2^4$ 0.4       D <sub>5</sub> H S <sub>m</sub> H D <sub>1</sub> 183       21       171       305       83.7       14.9 $2^4$ 1.0       D <sub>5</sub> H S <sub>m</sub> H D <sub>1</sub> 121       121       21       266       79.7       16.6         44       1.0       D <sub>6</sub> H S <sub>m</sub> H D <sub>1</sub> 121       21       124       266       79.7       16.6         1.0       T <sub>6</sub> F M <sub>1</sub> H <sub>3</sub> 21       121       21       124       266       74.9       17.3         1.0       T <sub>6</sub> F M <sub>1</sub> H <sub>3</sub> 20       2       231       254       74.9       17.3         1.0       T <sub>6</sub> F M <sub>1</sub> H <sub>3</sub> 121       21       224       254       74.9       17.3         1.0       T <sub>6</sub> F M <sub>1</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3       1.0 $W_0 + K_a, H_2, D_1$ 0       15       82       97       97.0       18.5 $20^4$ $D_4$ $W_2$ , $H_2, D_2$ 23       15       120       16.3       105.2       18.1         5 $D_2$ $D_5$ $F_{ab}, H_1, D_1$ 139       24       123       32.6       71.0       13.1         6 $1.0$ $D_5$ $H_a, H_1, D_1$ 138       21       171       305       83.7       14.9         44       1.0 $D_5$ $H_a, D_1$ 121       21       124       266       79.7       16.6         1.0 $T_6$ $F_{ab}, H_a, D_1$ 121       21       124       266       79.7       16.6         1.0 $T_6$ $F_{ab}, H_a, D_1$ 121       21       124       266       79.7       16.6         1.0 $T_6$ $F_{ab}, H_a, D_4$ 221       21       124       266       74.9       17.3         1.0 $T_6$ $T_6$ $T_6$ 221       224       74.9       17.3         1.0 $T_6$ $T_6$ $T_7$ 266       74.9       17.3 </td <td>3         1.0         <math>M_0</math> H S<sub>m</sub> H<sub>3</sub>, D<sub>1</sub>         0         15         82         97         97.0         18.5           20<sup>4</sup>         D<sub>4</sub>         M<sub>2</sub>, H<sub>3</sub>, D<sub>4</sub>         22         15         120         163         105.2         18.1           5         D<sub>2</sub>         D<sub>b</sub> F S<sub>m</sub>, H<sub>1</sub>, D<sub>1</sub>         175         23         15         120         163         105.2         18.1           6         Li         D<sub>b</sub> F S<sub>m</sub>, H<sub>1</sub>, D<sub>1</sub>         159         24         123         326         71.0         13.1           2<sup>4</sup>         D<sub>1</sub>         D<sub>b</sub> H S<sub>m</sub>, H<sub>1</sub>, D<sub>1</sub>         153         21         171         305         83.7         14.9           4.1         Li         D<sub>b</sub> H S<sub>m</sub>, H<sub>2</sub>, D<sub>1</sub>         121         21         21         266         79.7         16.6           10         T<sub>k</sub> F S<sub>m</sub> H<sub>2</sub>, D<sub>k</sub>         320         21         121         21         266         79.7         16.6           10         T<sub>k</sub> F S<sub>m</sub> H<sub>3</sub>, D<sub>k</sub>         320         0         231         122         266         13.6           10         T<sub>k</sub> F S<sub>m</sub> H<sub>3</sub>, D<sub>k</sub>         320         0         231         263         85.0         13.6           10</td>                                                                                                                | 3         1.0 $M_0$ H S <sub>m</sub> H <sub>3</sub> , D <sub>1</sub> 0         15         82         97         97.0         18.5           20 <sup>4</sup> D <sub>4</sub> M <sub>2</sub> , H <sub>3</sub> , D <sub>4</sub> 22         15         120         163         105.2         18.1           5         D <sub>2</sub> D <sub>b</sub> F S <sub>m</sub> , H <sub>1</sub> , D <sub>1</sub> 175         23         15         120         163         105.2         18.1           6         Li         D <sub>b</sub> F S <sub>m</sub> , H <sub>1</sub> , D <sub>1</sub> 159         24         123         326         71.0         13.1           2 <sup>4</sup> D <sub>1</sub> D <sub>b</sub> H S <sub>m</sub> , H <sub>1</sub> , D <sub>1</sub> 153         21         171         305         83.7         14.9           4.1         Li         D <sub>b</sub> H S <sub>m</sub> , H <sub>2</sub> , D <sub>1</sub> 121         21         21         266         79.7         16.6           10         T <sub>k</sub> F S <sub>m</sub> H <sub>2</sub> , D <sub>k</sub> 320         21         121         21         266         79.7         16.6           10         T <sub>k</sub> F S <sub>m</sub> H <sub>3</sub> , D <sub>k</sub> 320         0         231         122         266         13.6           10         T <sub>k</sub> F S <sub>m</sub> H <sub>3</sub> , D <sub>k</sub> 320         0         231         263         85.0         13.6           10 |
| $22^{4}$ $0.4$ $M_{2}$ , if $S_{m}$ , $H_{2}$ , $D_{4}$ $22$ 15       120       16.3       106.2       18.4.4       1         5 $0.2$ $D_{5}$ F, $S_{m}$ , $H_{1}$ , $D_{1}$ 179 $22^{4}$ 12.0       12.5.       13.1.1 $5^{-4}$ $1.0$ $D_{5}$ F, $S_{m}$ , $H_{1}$ , $D_{1}$ 150       17.2       32.6       71.0       13.1.1 $2^{-4}$ $0.4$ $D_{5}$ H, $S_{m}$ , $H_{1}$ , $D_{1}$ 113 $21$ 171       305 $83.7$ 14.9 $4.4$ $1.0$ $T_{6}$ F, $S_{m}$ , $H_{2}$ , $D_{1}$ 121 $21$ 124 $266$ 79.7       16.6       1 $4.4$ $1.0$ $T_{6}$ F, $S_{m}$ , $H_{2}$ , $D_{1}$ 121 $21$ 124 $266$ 79.7       16.6       1 $10$ $T_{6}$ F, $S_{m}$ , $H_{2}$ , $D_{1}$ $221$ $224$ $256$ 74.9       17.8       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $22^4$ D4 $M_D$ , H.S., H., D.       23       15       120       163       106.2       18.4       1         5       D2       D5       F.S., H., D.       175       24       122       326       71.0       13.1         6       LC       D5       F.S., H., D.       183       21       171       305       93.7       14.0         44       1.0       D6       H.S., H., D.       121       21       121       305       93.7       14.0         44       1.0       Te, F.S., H., D.       121       21       121       305       93.7       14.0         44       1.0       Te, F.S., H., D.       121       21       121       20       14.0       13.1         46       1.0       Te, F.S., H., D.       121       21       121       205       14.0       13.1         41       1.0       Te, F.S., H., D.       121       21       121       265       79.0       16.6.6       1         10       Te, F.S., H., D.       121       21       21       264       74.9       17.3         10       Te, F.S., H., D.       22       3       12       29.0       18.6<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $22^4$ D4 $M_D$ , if $S_m$ , $F_2$ , $D_4$ $22$ 15       120       163       106.2       18.4       1         5       D2       D <sub>b</sub> F, $S_m$ , $H_1$ , $D_1$ 175       23       171.0       13.1       13.1         6       1.0       D <sub>b</sub> H, $S_m$ , $H_1$ , $D_1$ 165       17       163       71.0       13.1 $2^{-4}$ 0.4       D <sub>b</sub> H, $S_m$ , $H_1$ , $D_1$ 183       21       171       305       83.7       14.9       13.1 $4^{-4}$ 1.0       D <sub>b</sub> H, $S_m$ , $H_2$ , $D_1$ 121       21       122       266       79.7       16.6       1 $4^{-4}$ 1.0       T_k F N_6, $H_3$ , $D_4$ 22       23       171       205       89.0       18.6       1 $10$ 1.0       T_k F N_6, $H_3$ , $D_4$ 22       23       257       89.0       18.6       1 $10$ 1.0       T_k F N_6, $H_3$ , $D_4$ 22       3       172       197       102.4       20.2       1       1 $10$ 1.0       T_k F N_6, $H_3$ , $D_4$ 21       23       254       74.9       17.3       1       1       1                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 5 $0.2$ $D_{\rm b}$ F $S_{\rm m}$ H <sub>1</sub> D <sub>1</sub> $179$ $24$ $12.6$ $12.6$ $12.5$ 6 $1.0$ $D_{\rm b}$ H $S_{\rm m}$ H <sub>1</sub> D <sub>1</sub> $162$ $17$ $109$ $28.8$ $71.0$ $13.1$ $2^{-4}$ $0.4$ $D_{\rm b}$ H $S_{\rm m}$ H <sub>2</sub> D <sub>1</sub> $113$ $21$ $171$ $305$ $33.7$ $14.9$ $44$ $110$ $D_{\rm b}$ H $S_{\rm m}$ H <sub>2</sub> D <sub>1</sub> $121$ $211$ $211$ $305$ $33.7$ $14.9$ $41$ $110$ $D_{\rm b}$ H $S_{\rm m}$ H <sub>2</sub> D <sub>1</sub> $121$ $211$ $211$ $305$ $33.7$ $14.9$ $10$ $T_{\rm b}$ F $S_{\rm m}$ H <sub>2</sub> D <sub>1</sub> $121$ $221$ $212$ $257$ $99.0$ $18.6$ $1$ $10$ $10$ $T_{\rm c}$ F $S_{\rm m}$ H <sub>2</sub> D <sub>2</sub> $30$ $0$ $2224$ $257$ $99.0$ $18.6$ $1$ $10$ $10$ $T_{\rm c}$ F $M_{\rm m}$ H <sub>3</sub> D <sub>4</sub> $0.9$ $223$ $254$ $70.2$ $1$ $11.3$ $10$ $10$ $T_{\rm c}$ F $M_{\rm m}$ H <sub>3</sub> D <sub>4</sub> $20$ $224$ $254$ <t< td=""><td>5         Dz         Dz         F.S., H., D.         179         24         123         326         71.0         12.5         13.1           <math>z^{-1}</math>         DA         DA         HS, H., D1         182         17         109         283         71.0         13.1           <math>z^{-1}</math>         DA         DA         HS, H., D1         113         21         171         305         83.7         14.9           44         1.0         DF, F.S., H., D1         121         221         124         266         79.7         16.6         1           9         1.0         Te, F.S., H., D2         321         221         124         266         79.7         16.6         1           10         1.0         Te, F.S., H., D2         321         221         221         231         266         73.7         16.6         1           10         1.0         Te, F.S., H., D2         320         0         224         266         73.7         16.6         1         1           10         1.0         Te, F.S., H., D2         320         0         224         266         17.4         20.2         1         1           10         1.0</td></t<> <td>5         D2         D5 F S<sub>m</sub> H<sub>1</sub> D<sub>1</sub>         179         24         123         326         71.0         12.5         13.1           <math>2^{-4}</math>         D         H S<sub>m</sub> H<sub>1</sub> D<sub>1</sub>         182         17         109         283         71.0         13.1           <math>2^{-4}</math>         D         H S<sub>m</sub> H<sub>1</sub> D<sub>1</sub>         113         21         171         305         83.7         14.9           <math>4^{-4}</math>         1.0         D<sub>6</sub> H S<sub>m</sub> H<sub>2</sub> D<sub>1</sub>         121         21         121         20         13.3         14.9           <math>4^{-6}</math>         1.0         T<sub>6</sub> F S<sub>m</sub> H<sub>2</sub> D<sub>1</sub>         121         21         121         205         83.7         14.9           <math>1.0</math>         T<sub>6</sub> F S<sub>m</sub> H<sub>2</sub> D<sub>1</sub>         121         21         121         205         13.7         16.6         1           <math>10^{-1}</math>         T<sub>6</sub> F S<sub>m</sub> H<sub>2</sub> D<sub>1</sub>         121         21         224         255         17.6         17.3           <math>10^{-1}</math>         T<sub>6</sub> F S<sub>m</sub> H<sub>3</sub> D<sub>4</sub>         D         221         20.2         1         16.6         1           <math>10^{-1}</math>         T<sub>6</sub> F S<sub>m</sub> H<sub>3</sub> D<sub>4</sub>         D         223         254         74.9         17.3         1         1</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5         Dz         Dz         F.S., H., D.         179         24         123         326         71.0         12.5         13.1 $z^{-1}$ DA         DA         HS, H., D1         182         17         109         283         71.0         13.1 $z^{-1}$ DA         DA         HS, H., D1         113         21         171         305         83.7         14.9           44         1.0         DF, F.S., H., D1         121         221         124         266         79.7         16.6         1           9         1.0         Te, F.S., H., D2         321         221         124         266         79.7         16.6         1           10         1.0         Te, F.S., H., D2         321         221         221         231         266         73.7         16.6         1           10         1.0         Te, F.S., H., D2         320         0         224         266         73.7         16.6         1         1           10         1.0         Te, F.S., H., D2         320         0         224         266         17.4         20.2         1         1           10         1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5         D2         D5 F S <sub>m</sub> H <sub>1</sub> D <sub>1</sub> 179         24         123         326         71.0         12.5         13.1 $2^{-4}$ D         H S <sub>m</sub> H <sub>1</sub> D <sub>1</sub> 182         17         109         283         71.0         13.1 $2^{-4}$ D         H S <sub>m</sub> H <sub>1</sub> D <sub>1</sub> 113         21         171         305         83.7         14.9 $4^{-4}$ 1.0         D <sub>6</sub> H S <sub>m</sub> H <sub>2</sub> D <sub>1</sub> 121         21         121         20         13.3         14.9 $4^{-6}$ 1.0         T <sub>6</sub> F S <sub>m</sub> H <sub>2</sub> D <sub>1</sub> 121         21         121         205         83.7         14.9 $1.0$ T <sub>6</sub> F S <sub>m</sub> H <sub>2</sub> D <sub>1</sub> 121         21         121         205         13.7         16.6         1 $10^{-1}$ T <sub>6</sub> F S <sub>m</sub> H <sub>2</sub> D <sub>1</sub> 121         21         224         255         17.6         17.3 $10^{-1}$ T <sub>6</sub> F S <sub>m</sub> H <sub>3</sub> D <sub>4</sub> D         221         20.2         1         16.6         1 $10^{-1}$ T <sub>6</sub> F S <sub>m</sub> H <sub>3</sub> D <sub>4</sub> D         223         254         74.9         17.3         1         1                                                                                                                                                                         |
| 6       1.C $D_0 F S_m H_1 D_1$ 180       17       100       283       71.0       13.1         2 <sup>-1</sup> 0.4 $D_0 H S_m H_1 D_1$ 113       21       171       305       03.7       14.9         44       1.0 $D_0 H S_m H_1 D_1$ 121       21       171       305       03.7       16.6         4       1.0 $D_0 H S_m H_1 D_1$ 121       21       121       266       79.7       16.6       1         9       1.0 $T_c F S_m H_1 D_2$ 8       0       27.9       2557       89.0       18.6       1         10       1.0 $T_c F S_m H_1 D_2$ 30       0       22.34       254       74.9       17.3         10       1.0 $T_c F M_1 H_3 D_4$ 22       3       172       197       102.4       20.2       1         10 $T_c F M_1 H_3 D_4$ 59       1       239       309       86.0       19.3       1         10 <sup>17<sup>+1</sup></sup> 0.8 $T_c F M_1 H_3 D_4$ 5       4       153       1       1         10 <sup>17<sup>+1</sup></sup> 0.8 $T_c F M_1 H_3 D_4$ 5       4       15.3       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6         1.0 $D_0 F S_n H_1 D_1$ 180         17         100         283         71.0         13.1           2 <sup>-1</sup> 0.4 $D_0 H S_n H_1 D_1$ 113         21         171         305         83.7         14.9           44         1.0 $D_0 H S_n H_1 D_1$ 121         21         171         305         83.7         14.9           10 $T_6 F S_n H_2 D_1$ 121         21         121         266         79.7         16.6         1           10 $T_6 F S_n H_2 D_2$ 8         0         2.12         121         2.66         79.7         16.6         1           10 $T_6 F S_n H_3 D_2$ 8         0         2.12         2.12         2.66         79.7         16.6         1           10 $T_6 F S_n H_3 D_4$ 2.0         0         2.21         2.67         74.9         17.3           10 $T_6 F M_1 H_3 D_4$ 2.2         3         172         197         102.4         20.2         1           10 <sup>4</sup> 1.0 $T_8 F M_1 H_3 D_4$ 5         4         153         106.3         19.3         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6         1.0 $D_0 F S_m H_1 D_1$ 180         17         109         283         71.0         13.1           2*         0.4 $D_0 H S_m H_1 D_1$ 113         21         171         305         33.7         14.9           44         1.0 $D_0 H S_m H_1 D_1$ 121         21         171         305         33.7         16.6         1           9         1.0 $T_6 F S_m H_1 D_4$ 8         0         249         257         89.0         18.6         1           10         1.0 $T_6 F S_m H_1 D_4$ 8         0         249         257         74.9         17.3           10         1.0 $T_6 F M_1 H_3 D_4$ 30         0         22.1         254         74.9         17.3           11         0.1 $T_6 F M_1 H_3 D_4$ 22         3         172         197         102.4         20.2         1           13^*         0.8 $T_6 F M_1 H_3 D_4$ 5         4         153         16.6         1           16         1.0 $T_6 F M_1 H_3 D_4$ 22         3         254         20.2         1         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| $2^{-4}$ $0.4$ $D_{D}$ H S <sub>m</sub> H <sub>2</sub> D <sub>1</sub> 113       21       171       305       83.7       14.9         44       1.0 $D_{D}$ H S <sub>m</sub> H <sub>2</sub> D <sub>1</sub> 121       21       121       21       266       79.7       16.6         9       1.0 $T_{E}$ F S <sub>m</sub> H <sub>2</sub> D <sub>1</sub> 21       121       21       267       89.0       18.6       1         10       1.0 $T_{E}$ F S <sub>m</sub> H <sub>2</sub> D <sub>2</sub> 8       0       27.9       257       89.0       18.6       1         10       1.0 $T_{E}$ F S <sub>m</sub> H <sub>2</sub> D <sub>2</sub> 30       9       27.4       254       74.9       17.3         16       1.0 $T_{F}$ F M <sub>1</sub> H <sub>3</sub> D <sub>4</sub> 5       4       183       197       106.3       19.2       1         17 <sup>4</sup> 0.8       T <sub>6</sub> 6       1       239       309       86.0       19.2       1         19 <sup>4</sup> 0.8       T <sub>6</sub> 1       0       183       163       19.3       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $2^{*}$ $0.4$ $D_{D}$ H S, H, D1       113       21       171       305       93.7       14.9         44       1.0 $D_{D}$ H S, H, D1       121       21       121       21       124       10.         5       1.0 $T_{E}$ F S, H <sub>1</sub> D1       121       21       124       265       79.7       16.6       1         6       1.0 $T_{E}$ F S, H <sub>1</sub> D2       30       9       27.9       265       79.0       18.6       1         10       1.0 $T_{E}$ F S, H <sub>1</sub> D2       30       9       22.4       25.4       74.9       17.3       1         16       1.0 $T_{E}$ F Mi H <sub>1</sub> D4       22       3       172       197       102.4       20.2       1         17 <sup>-4</sup> 0.8 $T_{K}$ F Mi H <sub>1</sub> D4       69       1       239       309       86.0       19.2       1       1         18 <sup>-1</sup> 0.8 $T_{K}$ F Mi H <sub>1</sub> D4       5       4       153       163       19.2       1       1         18 <sup>-1</sup> 0.8 $T_{K}$ F Mi H <sub>1</sub> D4       69       1       0       195       106.3       19.2       1       1       1       1 </td <td><math>2^{*}</math> <math>0.4</math> <math>D_{e}</math> HS, H, D1       113       21       171       305       93.7       14.9         44       1.0       <math>D_{e}</math> HS, H, D1       121       21       124       265       79.7       16.6       1         9       1.0       Te, FS, H_1 D2       23       21       124       265       79.7       16.6       1         10       1.0       Te, FS, H_1 D2       30       9       257       99.0       18.6       1         10       1.0       Te, FS, H_1 D2       30       9       257       99.0       18.6       1         10       1.0       Te, FS, H_1 D2       30       9       254       74.9       17.8       1         11       10       Te, FS, H_1 D4       22       3       172       197       102.4       20.2       1         117*       0.8       Ts, FM, H3, D4       53       1       239       369       86.0       19.3       1       15.2       1       1         117*       0.8       1       1       153       163       166.3       19.3       1       1       1       1       1       1       1       1       <td< td=""></td<></td>                                                                                                                                                                                                                                                                                                                                | $2^{*}$ $0.4$ $D_{e}$ HS, H, D1       113       21       171       305       93.7       14.9         44       1.0 $D_{e}$ HS, H, D1       121       21       124       265       79.7       16.6       1         9       1.0       Te, FS, H_1 D2       23       21       124       265       79.7       16.6       1         10       1.0       Te, FS, H_1 D2       30       9       257       99.0       18.6       1         10       1.0       Te, FS, H_1 D2       30       9       257       99.0       18.6       1         10       1.0       Te, FS, H_1 D2       30       9       254       74.9       17.8       1         11       10       Te, FS, H_1 D4       22       3       172       197       102.4       20.2       1         117*       0.8       Ts, FM, H3, D4       53       1       239       369       86.0       19.3       1       15.2       1       1         117*       0.8       1       1       153       163       166.3       19.3       1       1       1       1       1       1       1       1 <td< td=""></td<>                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 44       1.0 $D_0$ H S_m H_2 D_1       121       221       124       266       79.7       16.6         9       1.0       T_6 F S_m H_3 D_4       8       0       249       257       89.0       18.6       1         10       1.0       T_8 F S_m H_3 D_4       30       0       2.49       257       89.0       18.6       1         16       1.0       T_8 F S_m H_3 D_4       22       3       172       197       102.4       20.2       1         16       1.0       T_8 F M_1 H_3 D_4       52       1       239       309       86.0       19.2       1         17 <sup>4</sup> 0.8       T_8 F M_1 H_3 D_4       6       1       239       309       86.0       19.3       1         18 <sup>4</sup> 0.8       T_6 F M_1 H_3 D_4       1       0       195       163       19.3       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 44       1.0 $D_0$ H S_m H_2 D_1       121       221       124       266       79.7       16.6         9       1.0       T_E F S_m H_3 D_4       8       0       249       257       89.0       18.6       1         10       1.0       T_E F S_m H_3 D_5       30       0       224       254       74.9       17.3         16       1.0       T_E F N_0 H_3 D_5       30       0       224       254       74.9       17.3         16       1.0       T_E F N_0 H_3 D_4       22       8       172       197       102.4       20.2       1         16       1.0       T_E F M_1 H_3 D_4       69       1       239       309       86.0       19.3       1         17 <sup>4</sup> 0.8       T_K F M_1 H_3 D_4       69       1       239       309       86.0       19.3       1         18 <sup>41</sup> 0.8       T_K F M_1 H_3 D_4       1       0       196       20.6       99.4       19.3       1         30       1.0       T_K F M_1 H_3 D_4       8       1       216       20.4       19.3       1       1         18 <sup>41</sup> 0.8       1       1       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 44       1.0 $D_0$ H S_m H_2 D_1       121       221       124       266       79.7       16.6         9       1.0       Te F S_m H_2 D_4       8       0       2.49       257       89.0       18.6       1         10       1.0       Te F S_m H_3 D_4       30       9       22.4       74.9       17.8       1         16       1.0       Te F S_m H_3 D_4       22       3       172       197       102.4       20.2       1         16       1.0       Te F M_1 H_3 D_4       22       3       172       197       102.4       20.2       1         17 <sup>-4</sup> 0.8       Tx F M_1 H_3 D_4       5       1       233       309       86.0       19.3       1       1         17 <sup>-4</sup> 0.8       Tx F M_1 H_3 D_4       11       0       105       20.6       99.4       19.3       1         19 <sup>-7</sup> 0.8       Tx F M_1 H_3 D_4       11       0       1056       20.4       19.2       1       1         10 <sup>-7</sup> 1.7       1       153       166       1       1       2       1       1       1       1       1       1       1       1                                                                                                                                                                                                                                                                                                                                                                                                       |
| $3$ $1.0$ $T_{\rm E}$ F S <sub>m</sub> H <sub>3</sub> D <sub>4</sub> $8$ $0$ $2.49$ $2.57$ $89.0$ $18.6$ $10$ $1.0$ $T_{\rm E}$ F S <sub>m</sub> H <sub>3</sub> D <sub>7</sub> $30$ $0$ $2.49$ $2.54$ $74.9$ $17.8$ $16$ $1.0$ $T_{\rm E}$ F M <sub>1</sub> H <sub>3</sub> D <sub>7</sub> $30$ $0$ $2.24$ $2.54$ $74.9$ $17.8$ $16$ $1.0$ $T_{\rm E}$ F M <sub>1</sub> H <sub>3</sub> D <sub>4</sub> $22$ $3$ $172$ $197$ $102.4$ $202$ $17^{**}$ $0.8$ $T_{\rm E}$ F M <sub>1</sub> H <sub>3</sub> D <sub>4</sub> $5$ $4$ $153$ $193$ $193$ $17^{**}$ $0.8$ $T_{\rm E}$ F M <sub>1</sub> H <sub>3</sub> D <sub>4</sub> $5$ $4$ $153$ $193$ $193$ $10^{**}$ $T_{\rm E}$ F M <sub>1</sub> H <sub>3</sub> D <sub>4</sub> $11$ $0$ $156$ $193$ $193$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9         1.0         Te FS <sub>m</sub> H <sub>3</sub> D <sub>4</sub> 8         0         249         257         89.0         18.6           10         1.0         Te FS <sub>m</sub> H <sub>3</sub> D <sub>7</sub> 30         0         224         254         74.9         17.3           16         1.0         Te F M <sub>1</sub> H <sub>3</sub> D <sub>4</sub> 22         3         172         197         102.4         20.2           16         1.0         Te F M <sub>1</sub> H <sub>3</sub> D <sub>4</sub> 22         3         172         197         102.4         20.2           17 <sup>4</sup> 0.8         Te F M <sub>1</sub> H <sub>3</sub> D <sub>4</sub> 69         1         239         300         86.0         19.3           18 <sup>4</sup> 0.8         Te F M <sub>1</sub> H <sub>3</sub> D <sub>4</sub> 1         0         196         20.2         19.3           18 <sup>4</sup> 0.8         Te F M <sub>1</sub> H <sub>3</sub> D <sub>4</sub> 11         0         196         206         99.4         19.3           30         1.0         Te F M <sub>1</sub> H <sub>3</sub> D <sub>4</sub> 8         1         215         224         92.2         17.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $g$ 1.0 $T_{E}$ F S <sub>m</sub> H <sub>3</sub> D <sub>4</sub> 8         0         249         257         89.0         18.6           10         1.0 $T_{E}$ F S <sub>m</sub> H <sub>3</sub> D <sub>4</sub> 30         9         224         254         74.9         17.3           15         1.0 $T_{E}$ F S <sub>m</sub> H <sub>3</sub> D <sub>4</sub> 22         3         172         197         102.4         20.2           16         1.0 $T_{E}$ F M <sub>1</sub> H <sub>3</sub> D <sub>4</sub> 69         1         239         309         86.0         19.2           17 <sup>4</sup> 0.8 $T_{K}$ F M <sub>1</sub> H <sub>3</sub> D <sub>4</sub> 69         1         239         309         86.0         19.2           18 <sup>4</sup> 0.8 $T_{K}$ F M <sub>1</sub> H <sub>3</sub> D <sub>4</sub> 11         0         195         20.4         19.3           18 <sup>4</sup> 0.8 $T_{K}$ F M <sub>1</sub> H <sub>3</sub> D <sub>4</sub> 11         0         196         20.4         19.2           30         1.0 $T_{K}$ F M <sub>1</sub> H <sub>3</sub> D <sub>4</sub> 8         1         215         22.4         90.4         19.2           31         1.0 $T_{K}$ F M <sub>1</sub> H <sub>3</sub> D <sub>4</sub> 8         1         215         22.4         20.7                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10       1.0 $T_k \ F \ S_n \ H_3 \ D_2$ 30       9       224       254       74.5       17.8         15       1.0 $T_k \ F \ M_i \ H_3 \ D_4$ 22       3       172       197       102.4       20.2         16       1.0 $T_k \ F \ M_i \ H_3 \ D_4$ 69       1       239       309       86.0       19.2         17 <sup>4</sup> 0.8 $T_k \ F \ M_i \ H_3 \ D_4$ 69       1       239       309       86.0       19.2         17 <sup>4</sup> 0.8 $T_k \ F \ M_i \ H_3 \ D_4$ 69       1       239       309       86.0       19.3         18 <sup>41</sup> 0.8 $T_k \ F \ M_i \ H_3 \ D_4$ 11       0       196       99.4       19.3         30       1.0 $T_k \ F \ M_i \ H_3 \ D_4$ 8       1       215       224       92.2       17.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10       1.0 $T_{\rm K}$ F S <sub>m</sub> H <sub>3</sub> D <sub>7</sub> 30       0       224       254       74.5       17.3         15       1.0 $T_{\rm K}$ F M <sub>1</sub> H <sub>3</sub> D <sub>4</sub> 22       3       172       197       102.4       202         16       1.0 $T_{\rm K}$ F M <sub>1</sub> H <sub>3</sub> D <sub>4</sub> 53       5       1       239       309       86.0       19.2         17 <sup>-4</sup> 0.8 $T_{\rm K}$ F M <sub>1</sub> H <sub>3</sub> D <sub>4</sub> 5       4       153       166.3       19.3         17 <sup>-4</sup> 0.8 $T_{\rm K}$ F M <sub>1</sub> H <sub>3</sub> D <sub>4</sub> 11       0       196       206       99.4       19.3         18 <sup>-1</sup> 0.8 $T_{\rm K}$ F M <sub>1</sub> H <sub>3</sub> D <sub>4</sub> 11       0       196       206       99.4       19.2         30       1.0 $T_{\rm K}$ F M <sub>1</sub> H <sub>3</sub> D <sub>4</sub> 8       1       215       22.4       92.2       17.7         31       1.0 $T_{\rm K}$ F M <sub>1</sub> H <sub>3</sub> D <sub>5</sub> 9       0       81       20.7       20.7                                                                                                                                                                                                                                                                                                                                                                             |
| 1.0     T <sub>5</sub> F M <sub>1</sub> H <sub>3</sub> D <sub>4</sub> 22     3     172     197     102.4     20.2       1.0     T <sub>5</sub> F M <sub>1</sub> H <sub>3</sub> D <sub>4</sub> 69     1     239     309     86.0     19.2       0.8     T <sub>5</sub> F M <sub>1</sub> H <sub>3</sub> D <sub>4</sub> 5     7     153     163     106.3     19.3       0.8     T <sub>6</sub> F M <sub>1</sub> H <sub>3</sub> D <sub>4</sub> 11     0     196     206     99.4     19.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.0 $T_{\rm K}$ F M <sub>1</sub> JJ,       22       3       172       197       102.4       20.2         1.0 $T_{\rm K}$ F M <sub>1</sub> H <sub>3</sub> D <sub>4</sub> 69       1       239       309       86.0       19.2         0.8 $T_{\rm K}$ F M <sub>1</sub> H <sub>3</sub> D <sub>4</sub> 69       1       239       309       86.0       19.2         0.8 $T_{\rm K}$ F M <sub>1</sub> H <sub>3</sub> D <sub>4</sub> 5       4       153       163       19.3         0.8 $T_{\rm K}$ F M <sub>1</sub> H <sub>3</sub> D <sub>4</sub> 11       0       196       206       99.4       19.2         1.0 $T_{\rm K}$ F M <sub>1</sub> H <sub>3</sub> D <sub>4</sub> 11       0       196       206       99.4       19.2         1.0 $T_{\rm K}$ F M <sub>1</sub> H <sub>3</sub> D <sub>4</sub> 8       1       215       22.4       92.2       17.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | L0 $T_{\rm K}$ F M <sub>1</sub> JJ,       22       3       172       197       102.4       202         L0 $T_{\rm K}$ F M <sub>1</sub> H <sub>3</sub> D <sub>4</sub> 59       1       239       309       86.0       19.2         L0 $T_{\rm K}$ F M <sub>1</sub> H <sub>3</sub> D <sub>4</sub> 5       7       1       239       309       86.0       19.2         0.8 $T_{\rm K}$ F M <sub>1</sub> H <sub>3</sub> D <sub>4</sub> 5       7       153       163       19.3       19.3         0.8 $T_{\rm K}$ F M <sub>1</sub> H <sub>3</sub> D <sub>4</sub> 11       0       196       206       99.4       19.2         1.0 $T_{\rm K}$ F M <sub>1</sub> H <sub>3</sub> D <sub>4</sub> 8       1       2       215       224       92.2       17.7         1.0 $T_{\rm K}$ F M <sub>1</sub> H <sub>5</sub> D <sub>5</sub> 9       0       81       2       20.7       17.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1.0 $\Gamma_{\rm F}$ F M <sub>i</sub> H <sub>3</sub> D <sub>4</sub> 69     1     239     309     86.0     19.2       0.8 $\Gamma_{\rm F}$ F M <sub>i</sub> H <sub>3</sub> D <sub>4</sub> 5     7     153     163     19.3       0.8 $\Gamma_{\rm F}$ F M <sub>i</sub> H <sub>3</sub> D <sub>4</sub> 1     0     195     206     99.4     19.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.0     T <sub>R</sub> F M <sub>1</sub> H <sub>2</sub> D <sub>4</sub> 69     1     239     309     86.0     19.2       0.8     T <sub>R</sub> F M <sub>1</sub> H <sub>2</sub> D <sub>4</sub> 5     4     153     163     19.3     19.3       0.8     T <sub>R</sub> F M <sub>1</sub> H <sub>2</sub> D <sub>4</sub> 11     0     196     206     99.4     19.2       1.0     T <sub>R</sub> F M <sub>1</sub> H <sub>2</sub> D <sub>4</sub> 11     0     196     206     99.4     19.2       1.0     T <sub>R</sub> F M <sub>1</sub> H <sub>2</sub> D <sub>4</sub> 8     1     215     224     92.2     17.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.0 $T_R F M_t H_3 D_4$ 69       1       239       86.0       19.2         0.8 $T_R F M_t H_3 D_4$ 5       7       153       163       19.3         0.8 $T_R F M_t H_3 D_4$ 11       0       195       19.3         0.8 $T_R F M_t H_3 D_4$ 11       0       196       206       99.4       19.2         1.0 $T_R F M_t H_3 D_4$ 11       0       196       20.6       99.4       19.2         1.0 $T_R F M_t H_3 D_4$ 8       1       215       22.4       92.2       17.7         1.0 $T_R F M_t H_3 D_5$ 9       0       81       20.7       20.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 0.8 $T_{\rm K}$ F M <sub>1</sub> H <sub>2</sub> D <sub>4</sub> 5         4         153         163         19.3         19.3           0.8 $T_{\rm K}$ F M <sub>i</sub> H <sub>3</sub> D <sub>4</sub> 11         0         196         206         99.4         19.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.8 $T_{\rm s}$ F M <sub>1</sub> H <sub>3</sub> D <sub>4</sub> 5 $d$ 153     163     19.3       0.8 $T_{\rm c}$ F M <sub>1</sub> H <sub>3</sub> D <sub>4</sub> 11     0     196     206     99.4     19.2       1.0 $T_{\rm s}$ F M <sub>1</sub> H <sub>3</sub> D <sub>4</sub> 11     0     195     206     99.4     19.2       1.0 $T_{\rm s}$ F M <sub>1</sub> H <sub>3</sub> D <sub>4</sub> 8     1     215     22.4     92.2     17.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.8         T <sub>k</sub> F M <sub>1</sub> H <sub>1</sub> D <sub>4</sub> 5         4         153         163         19.3         19.3           0.8         T <sub>k</sub> F M <sub>1</sub> H <sub>2</sub> D <sub>4</sub> 11         0         196         206         99.4         19.3           1.0         T <sub>k</sub> F M <sub>1</sub> H <sub>2</sub> D <sub>4</sub> 11         0         196         206         99.4         19.2           1.0         T <sub>k</sub> F M <sub>1</sub> H <sub>2</sub> D <sub>4</sub> 8         1         215         22.4         92.2         17.7           1.0         T <sub>k</sub> F M <sub>1</sub> H <sub>2</sub> D <sub>5</sub> 9         0         81         205         20.7         20.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| $0.8  T_{R} \Gamma M_{i} H_{j} D_{i} \qquad 1.1 \qquad 0 \qquad 1.95 \qquad 2.06 \qquad 9.9.4 \qquad 1.9.2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.8         T <sub>6</sub> F M <sub>i</sub> H <sub>5</sub> D <sub>4</sub> 11         0         196         206         99.4         19.2           1.0         T <sub>8</sub> F M <sub>i</sub> H <sub>5</sub> D <sub>4</sub> 8         1         215         224         92.2         17.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.8         T <sub>K</sub> F M <sub>i</sub> H <sub>3</sub> D <sub>4</sub> 1.1         0         196         206         99.4         19.2           1.0         T <sub>K</sub> F M <sub>i</sub> H <sub>3</sub> D <sub>4</sub> 8         1         215         224         92.2         17.7           1.0         T <sub>K</sub> F M <sub>i</sub> H <sub>3</sub> D <sub>3</sub> 8         1         215         224         92.2         17.7           1.0         T <sub>K</sub> F M <sub>i</sub> H <sub>3</sub> D <sub>3</sub> 9         0         81         30         106.7         20.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.0 Tr, F M, H <sub>5</sub> D <sub>4</sub> 8 1 215 224 92.2 17.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | L0         Tr, F M, H <sub>3</sub> D,         8         1         215         224         92.2         17.7           L0         Tr, F M, H <sub>3</sub> D,         9         0         81         30         106.7         20.7         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| L0         Tr F M <sub>1</sub> H <sub>2</sub> D <sub>3</sub> 5         0         81         50         106.7         20.7           L0         Tr F M <sub>1</sub> H <sub>3</sub> D <sub>4</sub> 74         2         230         306         91.3         20.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.0 T <sub>K</sub> F M; H <sub>3</sub> D <sub>4</sub> 74 2 230 306 91.3 20.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| L0       T <sub>k</sub> F M, H <sub>3</sub> D,       9       0       81       50       106.7       20.7         L0       T <sub>k</sub> F M, H <sub>3</sub> D,       74       2       230       306       91.3       20.6         L0       T <sub>k</sub> F L <sub>x</sub> H <sub>3</sub> D,       11       0       184       195       114.1       20.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | L0         T <sub>K</sub> F M <sub>1</sub> H <sub>2</sub> D <sub>4</sub> 74         2         230         306         31.3         20.6           1.0         T <sub>K</sub> F L <sub>A</sub> H <sub>2</sub> D <sub>4</sub> 11         0         184         195         114.1         20.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.0 T <sub>K</sub> F L <sub>A</sub> H <sub>2</sub> D <sub>A</sub> 11 0 184 195 114.1 20.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

5 main species ....... Afzelia xylocarpa, Plerovarpus macrocarpus, Dalbergia dongnaiensis, Xylia kerrii. Sindora siamensis

(29)

# (3-2)

Table – 6

(per ha) 1.40 1.12 0.75 1.06 30 1.20 2.08 0.75 1.58 1.25 1.30 1.64 0.79 L.57 1.26 1.11 0.96 0.95 0.91 1.06 per tree I.21 0.85 1.07 41,5 80.6 61.6 100.2 74,9 114.5 37.0 64.8 92.1 149.6 52.0 91.1 90.5 61.7 41.8 34.0 33.5 46.7 38.7 47.8 Total (per ha) 41.1 62.2 52.6 Volume (m) 41.5 58.6 90.5 64.0 37.0 37.0 46.7 83.0 89.9 115.2 67.7 27.9 33.6 27.9 39.0 6,0 82.2 77.8 12.1 13.6 8.0 1.12 20.1 Others 0 0 16.6 14.9 1.6 29.3 13.3 4.7 1.6 3.9 0 ຕຸ O 10.0 1,8 8.0 1.7 13 2.2 3.1 8.8 5 main DIPTERO. CARPACEAE 0 0 4.3 0 0 0 11.8 36.3 16.9 30.2 13.9 33.3 0 53.4 59.5 0 0 5.1 24.8 16.8 12.1 3.7 50 67 63 3 8 8 5 3 Total 35 35 55 2 55 33 56 52 \$ 53 45 2 5 4 Number of Tree (G. B. H. 101cm & up) 28 42 11 Others 55 35 \$ \$ 22 22 47 \$ 2 83 ç 83 82 å 51 13 31 47 38 33  $\circ$ 0 ~ \$ a 13 61 ŝ œ æ 03 vo 0 H 0 5 main species H ŝ ---------DIPTERO-CARPACEAE  $\circ$ 0 0 0 0 ŝ н 41 3 0 35 0 ω ទ H 0 24 ŝ z 32 12 h н 11.5 1.5 12,9 11.6 11.7 10.9 8.6 9,6 9,0 3,2 8,0 9.6 9.4 8.6 11.3 7.5 8.3 9.2 9.8 7.0 6.5 8.2 8. i E Mean Value 15.2 18.6 18.7 20.6 22.1 15.7 17.0 18.0 17.3 16.9 9.3 18.0 16.8 15.9 16.5 14.7 16.4 16.3 17.2 16,4 16.2 [<u>6</u>.] 8.4 н (-) С. В. Н. (сп.) 82.5 107.5 104.0 101.9 105.6 39.5 99.8 8 104.0 110.9 111.6 103.6 94.5 87.9 95.7 95.6 91.6 100.4 108.9 107.7 107.0 86.4 82.7 84.1 155 120 138 154 6 138 194 216 92 124 176 162 200 113 108 153 186 Ê 112 8 141 167 104 Total Number of Tree (G. B. H. 46cm & up) 155 120 122 179 115 162 40 99 110 Others Ľ ğ 8 ନ 144 142 8 111 35 107 8 135 3 5 main species S 0 0 g 11 33 н 33 8 5 8 5 თ თ ŝ 0 4 2 rs ₹\* 井 ខ្ល DIPTERO. 0 0 10 2 0 0 --0 158 4 49 8 8 æ 0 12 ---ę 25 <del>4</del>8 ÷ ----1 Mo F Mi H<sub>2</sub> D<sub>4</sub> Mo F Mi H<sub>2</sub> D<sub>1</sub> Н2 D2 Mo H L. H<sub>3</sub> D<sub>1</sub>  $H_2 D_2$ M<sub>D</sub> H M<sub>i</sub> H<sub>2</sub> D<sub>1</sub> Mp H Mi Hz DA Mp H S., H<sub>2</sub> D<sub>3</sub> Mp H S<sub>n</sub> H<sub>3</sub> D<sub>2</sub> Mp F Mt H<sub>3</sub> D<sub>2</sub> M<sub>D</sub> F M<sub>i</sub> H<sub>2</sub> D<sub>4</sub> ñ M<sub>D</sub> F M<sub>i</sub> H<sub>3</sub> D<sub>3</sub> DoFS, H2 D3 Mp F Mi H<sub>2</sub> D<sub>2</sub> M<sub>D</sub> F M<sub>i</sub> H<sub>2</sub> D<sub>2</sub> Mp F Mi H<sub>2</sub> D<sub>1</sub> M<sub>D</sub> F M<sub>i</sub> H<sub>2</sub> D<sub>1</sub> ឝ  $D_D F S_m H_2 D_2$ D<sub>D</sub> F S., H<sub>2</sub> D<sub>2</sub> M<sub>D</sub> H S<sub>m</sub> H<sub>z</sub> D<sub>1</sub> MoFM H2D1 Forest Type ц Ē Do H S., M<sub>D</sub> F M Mp H S., Mp F S<sub>m</sub> Size (ha) 0.20.2 1.0 0.8 2 0.8Ľ0 10 1.0 10 3.0 1,0 50 2 1.0 ្អ 2 2 1.0 Plot 18-1 Ī. 37 38 ទ្ ਲ **ਲ** ជ ជ ----8 8 4 ន ន 2 2 ន s 8 8 2 (inside the model area) 3 (inside the model area) 4 (inside the model area) the area) Logging Block No. 5 (inside t model a

5 main species …….. Afzelia xylocarpa, Pterocarpus macrocarpus, Dalbergia dongnaiensis, Xylia kerrii, Sindora siamensis (3 - 3)

Table - 6

| Logying                    | Plot | ot           | Forest Type                                                   |                       | Number of Tree<br>(G. B. H. 46cm & up) | of Tree<br>Som & up) |       | · F              | Mean Value   |            |                       | C. B. H. 101      | Number of Tree<br>B. H. 101cm & up) |       |                       |                   | Volt   | Volume (m) | urne (m <sup>1</sup> ) |
|----------------------------|------|--------------|---------------------------------------------------------------|-----------------------|----------------------------------------|----------------------|-------|------------------|--------------|------------|-----------------------|-------------------|-------------------------------------|-------|-----------------------|-------------------|--------|------------|------------------------|
| Block Na                   | Na.  | Size<br>(ha) |                                                               | DIFTERO-<br>CARPACEAE | 5 muin<br>species                      | Others               | Total | G, B, H.<br>(cm) | Т. Н.<br>(ш) | C.L<br>(m) | DIPTERO.<br>CARPACEAE | 5 main<br>species | Others                              | Total | DIPTERO.<br>CARPACEAE | 5 main<br>species | Others |            | Total<br>(per ha)      |
| so.                        | 53   | 1.0          | MuFMiH2D2                                                     | 69                    | ۲                                      | 95                   | 168   | 1.80             | 16.2         | 8.1        | 34                    |                   | 38                                  | 73    | 30.3                  | 1.2               | 28.4   |            | 59.9                   |
| (inside the<br>model area) | ន    | 01           | M <sub>D</sub> F M <sub>i</sub> H <sub>2</sub> D <sub>1</sub> | 80                    | 69                                     | 142                  | 225   | 86.8             | 16.1         | 8.5        | 42                    | 0                 | 23                                  | . 65  | 48.8                  | 0                 | 16.2   |            | 65.0                   |
|                            | 8    | 01           | Mo F Mt H <sub>2</sub> D,                                     | 14                    | 0                                      | 8                    | 107   | 120.8            | 18.4         | 6          | 14                    | т<br>т            | 42                                  | 59    | 33.6                  | 4.0               | 51.1   |            | 88.7                   |
| 7                          | 22   | 1.0          | Mp F Sm H1 D1                                                 | 0                     | 0                                      | 120                  | 120   | 103.8            | 11.6         | 7.0        | 0                     | 0                 | 54                                  | 54    | •                     | 0                 | 42.2   |            | 42.2                   |
| model area)                | Ś    | 0.8          | Mp F S., H1 D1                                                |                       | 0                                      | 117                  | 118   | 108.4            | 11.6         | 7.1        | rei                   | 0                 | 23                                  | 54    | 2.0                   | 0                 | 59.5   |            | 61.5                   |
| 8                          | . 00 | 10           | Tr F M, H <sub>a</sub> D <sub>2</sub>                         | 61                    | Pr-1                                   | 201                  | 221   | 89.7             | 0.61         | 13.0       | 6                     | -                 | 47                                  | 57    | 29.0                  | 0.8               | 102.6  |            | 132.4                  |
| model area)                | я    | 1.0          | TEFM, HID2                                                    | 55                    | 0                                      | 240                  | 275   | 87.0             | 20.0         | 13,5       | 27                    | 0                 | 70                                  | 97    | 118.2                 | 0                 | 153.2  |            | 271.4                  |
|                            | ъ,   | 2            | T <sub>E</sub> H M <sub>i</sub> H <sub>3</sub> D <sub>3</sub> | 0                     | 0                                      | 243                  | 252   | 103.9            | 18,3         | 12.2       | Ŷ                     | 0                 | 78                                  | 84    | 17.7                  | 0                 | 217.2  |            | 234.9                  |
|                            | ~    | .0<br>.1     | Mp F S <sub>n</sub> H <sub>2</sub> D;                         | ي<br>م                |                                        | 157                  | 25    | 98.4             | 0'11         | 9.2        | 50                    | Ö                 | 26                                  | 59    | 3.2                   | 0                 | 76.0   |            | 79.2                   |
|                            | 12   | 1.0          | M <sub>D</sub> F S <sub>n</sub> H <sub>2</sub> D <sub>1</sub> | 0                     | гя                                     | 152                  | 155   | 83,6             | 13.1         | 6.8        | 0                     | 0                 | 48                                  | 48    | 0                     | 0                 | 46.2   |            | 46.2                   |
|                            | 10   | 01           | M <sub>D</sub> H S <sub>m</sub> H <sub>1</sub> D <sub>1</sub> | 0                     | 4                                      | 138                  | 142   | 117.8            | 8.61         | 8.1        | 0                     | -                 | 67                                  | 89    | 0                     | 2.1               | 93.1   |            | 95.2                   |
| 6                          | -    | 10           | T <sub>E</sub> F Mi H <sub>3</sub> D <sub>2</sub>             | ۵۰<br>                |                                        | 228                  | 235   | 1.7.1            | 23.7         | 16.9       | s.                    | 0                 | 83                                  | 87    | 17.8                  | 0                 | 276.9  | ļ          | 294.7                  |
| model area)                | ~    | 1:0          | T <sub>E</sub> F M; H, D,                                     | 4                     | 0                                      | 295                  | 239   | 91.8             | 22.2         | 14.9       | 4                     | 0                 | 88                                  | 6     | 6.2                   | Q                 | 178.2  |            | 184.4                  |
| -                          | \$   | 1.0          | T <sub>E</sub> F M <sub>i</sub> H <sub>3</sub> D <sub>2</sub> | 0                     | 0                                      | 260                  | 260   | 99.7             | 21.0         | 14.4       | 0                     | 0                 | 11                                  | 11    | 0                     | 0                 | 280.3  |            | 280.3                  |
|                            | 4    | 1:0          | TEFM, H, D,                                                   | ~~~                   | 0                                      | 219                  | 222   | 123.1            | 20.6         | 19.5       |                       | 0                 | 8                                   | 95    | 1.6                   | 0                 | 340.4  |            | 342.0                  |

5 main species …….. Afzelia xylocarpa, Pterocarpus macrocarpus, Dalbergia dongnaiensis, Xylia kerrii, Sindora siamensis

.

·

|                                         | ·····                       |             |                              |                           | ~                     | <u> </u>                               |                                      |                                               | ·                                 |                                         |                                |                     |                                                            | ····                          |                                         |                                 |                                   |                                  |                         |
|-----------------------------------------|-----------------------------|-------------|------------------------------|---------------------------|-----------------------|----------------------------------------|--------------------------------------|-----------------------------------------------|-----------------------------------|-----------------------------------------|--------------------------------|---------------------|------------------------------------------------------------|-------------------------------|-----------------------------------------|---------------------------------|-----------------------------------|----------------------------------|-------------------------|
| (5-1)                                   |                             | Remarks     | pH5,5~6.2<br>(A, ~C horizon) | pH5.8 (A, ~C<br>horizon)  | pH6.7<br>(A, horizon) | pH5.3<br>(A, , B <sub>2</sub> horizon) | tpH6.4<br>(A, horizon)               | pH5.1, 6.2<br>(A, ~B <sup>2</sup><br>horizon) | pH6.0, 6.2<br>(A., A.<br>horizon) | Gravel                                  | -                              | pH5,4 (A, A, A,     | pH5.8, 5.3<br>(A <sub>1</sub> , B <sub>2</sub><br>horizon) | pH5.4, 5.7<br>(A., B horizon) |                                         | pH5.0, 4.9<br>(A, B;<br>honzon) | pHS.2, 6.1<br>(A,, B,<br>horizon) | pH5.7, 6.1<br>(A, B,<br>horizon) | 1                       |
|                                         |                             | Root        | Abundant                     | Abundant                  | Abundant              | Common                                 | Abundant                             | Соттоп                                        | Abundant                          | Common                                  | Common                         | Abundant            | Common                                                     | Соттол                        | Abundant                                | Few                             | Соттоп                            | Солтол                           | Many                    |
|                                         | Mycor-<br>rhiza &<br>mycel- |             | 5                            | I                         | ı                     | I                                      | 1                                    | 1                                             | I                                 | 1                                       |                                | 1                   | I.                                                         | I.                            | ı                                       | i                               | I                                 |                                  | t.                      |
|                                         | Leach-<br>ing &<br>accumu-  | lation      | t                            | 2                         | I                     | t                                      | I                                    | ł.                                            | 1                                 | t                                       | ł                              | I                   | I                                                          | 1                             | ł                                       | 5                               | ·                                 | (Fe<br>mottle)                   | 1 .                     |
|                                         | Moice                       | ture        | Dry to<br>moist              | Dry                       | <b>V</b> iQ           | Dry to<br>Dry to<br>moist              | Dry                                  | Dry to<br>moist~<br>Moist                     | Dry to<br>moist~<br>Moist         | Dry                                     | λΩ                             | Dry                 | Dry~<br>Dry to<br>moist                                    | Dry                           | Dry                                     | Dry                             | Dry∼<br>Moist                     | Dry                              | Dry                     |
|                                         |                             | Hardness    | 24~30                        | 2737                      | 17~20                 | 28~32                                  | 15~19                                | 28~31                                         | 21~31                             | 21~36                                   | 24~28                          | 29~32               | 24~3I                                                      | 30~31                         | 23                                      | 26~32                           | 22~32                             | 23~31                            | 26~33                   |
| tion                                    |                             | Content     | Солимол                      | Abundant                  | Very<br>abundant      | 1                                      | Very<br>abundant                     | 1                                             | 3                                 | Very<br>abundant                        | Abundant                       | Scanty              | 1                                                          | Scanty                        | Abundant                                | Scanty                          | 1                                 | (Scanty)                         | 1                       |
| Examina                                 | Gravel                      | Weathering  | Weathered                    | Weathered                 | Weathered             | 1                                      | Weathered                            | 1                                             | 1                                 | Strong<br>Weathered                     | Weathered                      | Strong<br>Weathered | 1                                                          | Strong<br>Weathered           | Fresh∼<br>Wcathere                      | Weathered                       | 1                                 | (Strong<br>Weathered)            | 1                       |
| Results of the Soil Profile Examination |                             | Form & size | Angler,<br>Fine~Small        | Subangler<br>Angler, Fine | Rounded,<br>Small     | i                                      | Rounded~<br>Subangler,<br>Fine~Small | 1                                             | 1                                 | Angler~<br>Subangler,<br>Fine~Small     | Subangler~<br>Angler,<br>Small | Subangler,<br>Fine  | 1                                                          | Rounded,<br>Small             | Rounded,<br>Fine<br>Suburgier,<br>Small | Angler,<br>Small                | J .                               | (Subangler,<br>Medium)           | ł                       |
| of the So                               |                             | Structure   | Blocky                       | Blocky                    | Blocky                | Blocky                                 | Nutty,<br>Blocky                     | Blocky                                        | Blocky                            | Blocky                                  | Blocky                         | Blocky              | Blocky                                                     | Blocky                        | Blocky                                  | Nutty<br>Blocky                 | Blocky                            | Blocky                           | Blocky                  |
| sults c                                 |                             | Texture     | Clay                         | Clay                      | Sandy<br>clay~Clay    | Clay.                                  | G <sub>ay</sub>                      | Clay                                          | Clay                              | Clay                                    | Clay                           | Clay                | Clay                                                       | Clay<br>Ioam                  | Clay<br>Ioam                            | Clay                            | Clay                              | Clay                             | Clay<br>Clay~           |
|                                         |                             | Humus       | Abundant                     | Very<br>abundant          | Very<br>aboundant     | Aboundant                              | Very<br>abundant                     | Aboundant                                     | Very<br>abundant                  | Aboundant                               | Abundant                       | Abundant            | Abundant<br>~Common                                        | Abundant                      | Abundant                                | Соттол                          | Соттол                            | Соттол                           | Соттоп                  |
| Table-7                                 |                             | Color       | 7.5YR 3/3~4/3                | 7.5YR 2/1~2/2             | 5YR 2/2~2/3           | 5YR 2/1~3/4                            | 7.5YR 2/1-2~10R 2/3-4                | 5-7.5YR 2/2~5YR 3/6                           | 5YR 2-3/1~3/2                     | 5YR 3/2~2.5YR 4/6                       | 5YR 2/1~7.5YR 4-5/3-4          | 7.5YR 3/2~5YR 3/1   | 2.5YR 2/3~7.5YR 3/4                                        | 7.5YR 3/2~ 4/4                | 5YR 3/2                                 | SYR 3/4~7.5YR 5/4               | 5YR 2/2~10R-2.5YR 3/6             | 10YR 5/2~2.5YR 4/8               | 7.5YR 3/3~2.5-5YR 4/8   |
|                                         | Thickness                   | (m)         | 0.45                         | 0.50                      | 0.35                  | 0.60                                   | 0.15                                 | more than<br>10                               | more than<br>10                   | 0.6                                     | 0.30                           | more than<br>10     | more than<br>10                                            | more than<br>1.0              | 0.20                                    | more than<br>1.0                | more than<br>1.0                  | more than<br>10                  | more than<br>1.0        |
|                                         | Type                        |             | ğ                            | ш                         | <u>ш</u>              | Be-c                                   | щ                                    | Ne - I                                        | Be-c                              | LEI<br>التا                             | щ                              | Be-c                | Ne - s                                                     | Be-I                          | ٤٩                                      | Be r                            | Nc - f                            | 3                                | Be - L                  |
|                                         | Incli-                      | 10          | æ                            | 13                        | 'n                    | m                                      | <del>4</del>                         | 0                                             | 17                                | 5                                       | -                              | 0                   | 0                                                          | 53                            | 10                                      | 50                              | 0                                 | 60                               | :                       |
|                                         | ľ nestion .<br>8            | topography  | Secondly<br>ridge top        | Spur upper<br>site        | Supur upper<br>site   | Spur<br>deposit site                   | Hillside<br>middle site<br>(flat)    | Flat                                          | Spur<br>deposit-site              | Hillside<br>lower site<br>(flat)        | Flat                           | Flat                | Flat                                                       | Hillside<br>lower site        | Spur<br>deposit site                    | Hillside<br>middle site         | Upland<br>upper site<br>(flat)    | Small ridge<br>top               | Hillside<br>middle site |
|                                         | +                           | ź           | Θ                            | ~                         | m.                    | 4                                      | ۲۷<br>                               | ý                                             | 0                                 | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | <u>о</u>                       | 10                  |                                                            | 12                            | ri<br>Fi                                | 4                               | \$<br>1                           | 16                               | 1                       |

\* No mark : inside the model area,  $\bigcirc$  : outside the model area

(32)

| (5-2)   |                   | Remarks           |                                | pH6.2, 6.0<br>(A <sub>1</sub> , B <sub>1</sub><br>horizon) | pH5.6, 5.9<br>(A, B,<br>horizon) |                                   |                      |                         | pH6.3, 6.5<br>(A <sub>2</sub> , B <sub>1</sub><br>horizon) | pH6.0, 6.7<br>(A., B.<br>hoñzon) |                               |                                | pH6.7, 7.0<br>(A, 'B,<br>horizon) | Gravel                               |                               | pH6.3<br>(A, herizon) |                          |                        |                          |
|---------|-------------------|-------------------|--------------------------------|------------------------------------------------------------|----------------------------------|-----------------------------------|----------------------|-------------------------|------------------------------------------------------------|----------------------------------|-------------------------------|--------------------------------|-----------------------------------|--------------------------------------|-------------------------------|-----------------------|--------------------------|------------------------|--------------------------|
|         |                   | Root              | Common                         | Many                                                       | Many                             | Common                            | Common               | Common                  | Few                                                        | Many                             | Соплиол                       | Common                         | Many                              | Abundant                             | Мапу                          | Common<br>~Many       | Common                   | Few                    | Few                      |
| :       | Mycor-<br>rhiza & | -imycer-          | I                              | I                                                          | 1                                | 1                                 | i                    | ۱                       | ł                                                          | ł                                | l                             | 1                              | 1                                 | 1                                    | 1                             | 1                     | l                        | 1                      | r                        |
| ·       | Leach-<br>ing &   | accumu-<br>lation | I                              | I                                                          | ł                                | ł                                 | I                    | l                       | 1                                                          | i                                | 1                             | <u></u> 1                      | l                                 | I.                                   | i                             | 1                     | 1                        | 1                      | 1                        |
|         |                   | mous-<br>ture     | Dry~<br>Dry to<br>moist        | Dry                                                        | Dry to<br>moist                  | Dry                               | Dry                  | Dry~<br>Dry to<br>moist | Dry~<br>Dry to<br>moist                                    | Dry to<br>moist                  | Dry to~<br>Dry to<br>moist    | Dry to<br>moist                | Dry to<br>moist                   | Dry                                  | Dry                           | Dry                   | Dry to<br>moist          | D::U                   | Dry                      |
| :       |                   | Hardness          | 28~31                          | 28~30                                                      | 23~32                            | 30~33                             | 18~33                | 30~32                   | 24~30                                                      | 21~29                            | 24~30                         | 25~30                          | 21~24                             | 12~16                                | 20~31                         | 21~31                 | 26~30                    | 29~33                  | 23~31                    |
|         |                   | Content           | Scanty                         | 1                                                          | 1                                | . 1                               | 1                    | Scanty                  | Соттоп                                                     | F .                              | Scanty                        | 1                              | 1                                 | Very<br>abundant                     | Scanty                        | 1                     | 1                        | 1                      | Солтол                   |
|         | Gravel            | Weathering        | Fresh                          | i                                                          | L                                | 1                                 | I                    | Weathered               | Weathered                                                  | ł                                | Weathered                     | 1                              | I                                 | Weathered                            | Weathered                     | 1                     | 1                        | 1                      | Weathered                |
|         |                   | Form & size       | Subangler~<br>Rounded,<br>Fine | 1                                                          | i                                | l                                 | 1                    | (Rounded,<br>Fine)      | Angler<br>Subangler,<br>Fine                               | I                                | Rounded<br>Subangler,<br>Fine | I                              | ì                                 | Rounded<br>Angler,<br>Fine<br>Medium | Subangler,<br>Angler,<br>Fine | ł                     | 1                        | ł                      | Subangler,<br>Fine~Small |
| Table-7 |                   | Structure         | Blocky                         | Blocky                                                     | Blacky                           | Blocky                            | Blocky<br>Clumb      | Blocky                  | Blocky                                                     | Blocky                           | Blocky                        | Blocky                         | Blocky                            | Blocky                               | Blocky                        | Blocky                | Blocky                   | Blocky                 | Blocky                   |
| F       |                   | Texture           | Clay loam<br>loam              | Clay                                                       | Cluy                             | Clay                              | Clay,<br>Clay loam   | Clay                    | Clay toam<br>loam~<br>Clay                                 | Clay                             | Clay loam                     | Cluy                           | Clay                              | Sandy<br>Ioam                        | Clay loam<br>loam~<br>Clay    | Clay                  | Clay                     | Clay                   | Clay                     |
|         |                   | Humus             | Abundant                       | Common                                                     | Abundant                         | Common                            | Abundant             | Common                  | Common                                                     | Abundant                         | Соллаол                       | Common                         | Common                            | Abundant                             | Abundant                      | Very<br>abundant      | Abundant                 | Scanty                 | Scanty                   |
|         |                   | Color             | 7.5YR 2-3/1~5YR 4/8            | 7.5YR 4-5/3~5YR 4/8                                        | 7.5YR 3/2~2.5YR 3/5              | 5YR 2/2~2.5YR 34/4                | 7.5YR 2-3/1~10YR 4/4 | SYR 3/2~2.5YR 3/6       | 7.5YR 4/4~2.5YR 3/5                                        | 2.5YR 2/3~10YR 2-3/3             | 5YR 4/2~4/4-6                 | 5YR 2/3~2.5YR 3/6              | 2.5YR 2/4~10R-2.5YR 3/<br>3/6     | 7.5YR 4/2~8/3                        | 5YR 2/4~2.5YR 3/4             | 2.5YR 3/2~3/3         | 5YR 2/2~2.5YR 3/5        | 5YR 5/2-2.5YR 4/8      | 7.5YR 4/3~5YR 5/6        |
|         | Thickness         | (m)               | more than<br>1.0               | more than<br>1.0                                           | more than<br>1.0                 | more than<br>1.0                  | more than<br>10      | more than<br>10         | more than                                                  | more than<br>1.0                 | more than<br>1.0              | more than<br>1.0               | more than<br>1.0                  | 0.10                                 | 0.25                          | 0.50                  | more than<br>1.0         | more than<br>1.0       | more than<br>1.0         |
|         | Type              |                   | Bo - r                         | Be-r                                                       | <u>ੇ</u>                         | Bc - r                            | Bc-r.                | Хе - Г<br>Х             | ż                                                          | ž                                | ž                             | J - 9%                         | Ne•s                              | ស                                    | щ                             | ធ                     | Ne - ſ                   | Ľ\$                    | Be-r                     |
|         | Incli-            | цĊ,               | 13                             | 10                                                         | 18                               | 51                                | 0                    | 0                       | **                                                         | <b>.</b>                         | vi<br>                        | Q                              | 0                                 | 58                                   | 0                             | 13                    | 11                       | 12                     | 16                       |
|         | I active I        | topography        | Hillside<br>Jower site         | Hill slope<br>middle<br>site                               | Hillside<br>lower site           | Hillside<br>middle<br>site (flat) | Flat<br>(hill side)  | ाथम्                    | Flac                                                       |                                  | Fiat                          | Upland<br>upper site<br>(flat) | Upland<br>upper site<br>(flat)    | Hillside<br>middle site              | Flat                          | Spur upper<br>site    | Hill slope<br>lower site | Hillside<br>upper site | Hillside<br>lower site   |
| ĺ       | +                 | ò                 | 2<br>2                         | 61                                                         | 8                                | 51                                | 5                    | 53                      | *                                                          | 52                               | 56                            | 51 ·                           | 80<br>7                           | б<br>Н                               | 30                            | 5                     | 32                       | ٢                      | 3                        |
|         | ·                 |                   |                                |                                                            |                                  |                                   |                      |                         |                                                            | (33                              | )                             |                                |                                   |                                      |                               |                       |                          |                        |                          |

\* No mark ; inside the model area,  $\bigcirc$  ; outside the model area

.

| (2-3)   |                             | Remarks                  |                                |                               |                        | pH5.8<br>(A, horizon)                 |                           |                                        | ······                  | pH6.5<br>(B, horizon)    |                                |                                |                                |                                | pH6.3<br>(A <sub>1</sub> horizon) |                      |                           | pH5.6<br>(B <sub>1</sub> horizon) |                               |
|---------|-----------------------------|--------------------------|--------------------------------|-------------------------------|------------------------|---------------------------------------|---------------------------|----------------------------------------|-------------------------|--------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|-----------------------------------|----------------------|---------------------------|-----------------------------------|-------------------------------|
|         |                             | Root                     | Соттол                         | Соттол                        | Соттор                 | Common                                | Common                    | Many                                   | Common                  | Соттол                   | Common                         | Малу                           | Common                         | Common                         | Соттоп                            | Many                 | _                         | Соттол                            | Many                          |
|         | Mycor-<br>rhiza &<br>mycol- | щ                        | I                              | I                             | I                      | 1                                     | 1                         | I                                      | 1                       | ł                        | I                              | t                              | ł                              | I                              | í                                 | I                    |                           | I                                 | ł                             |
|         | Leach-<br>ing &             | lation                   | 1                              | à                             | 1                      | (Fe con-<br>cretion)                  | 1                         | 1                                      | 1                       | 1                        | 1                              | 3                              | 1                              | 1                              | 1                                 | I                    |                           | l<br>:                            | l                             |
| -       | Moisa                       | ture                     | Dry to<br>moist                | Dry~<br>Dry to<br>moist       | Dry                    | Dry to<br>moist                       | Dry to<br>moist           | Dry                                    | Dry~<br>Dry to<br>moist | Dry~<br>Dry to<br>moist  | Dry to<br>moist                | Dry to<br>moist                | Dry to<br>moist                | Moist                          | Dry                               | Dry                  |                           | Dry~<br>Dry to<br>moist           | Dry~<br>Dry to<br>moist       |
|         |                             | Hardness                 | 27~31                          | 23~31                         | 31~34                  | 29~32                                 | 26~30                     | 27~34                                  | 29~33                   | 25~32                    | 25~31                          | 25~29                          | 18~27                          | 17~26                          | 33~34                             | 29~33                |                           | 29~32                             | 31~32                         |
|         |                             | Content                  | 1                              | I                             | Соттол                 | (Santy)                               | Scanty                    | t                                      | i                       | 1                        | I                              | t                              | Î                              | l                              | (Scanty)                          | (Scanty)             |                           | (Scanty)                          | I                             |
|         | Gravel                      | Wcathering               | 1                              | 1                             | Strong                 | (Strong<br>Weathered)                 | Weathered                 | 1                                      | I                       | 1                        | 1                              | 1                              | 1                              |                                | (Weathored)                       | (Weathered)          | · · ·                     | .(Weatherod)                      | 3                             |
|         |                             | Form & size              | I                              | i                             | Rounded.<br>Fine~Small | (Rounded,<br>Fine)                    | Rounded,<br>Small         | 1                                      | 1                       | 1                        | t                              | 1                              | 1                              | 1                              | (Rounded,<br>Fine)                | (Rounded,<br>Fine)   |                           | (Rounded~<br>Subangler,<br>Fine)  | 1                             |
| Table-7 |                             | Structure                | Blocky                         | Blocky                        | Blocky                 | Blocky                                | Blocky                    | Blocky                                 | Blocky                  | Blocky                   | Blocky                         | Blocky                         | Clumo,<br>Blocky               | Blocky                         | Blocky                            | Blocky               | Blocky                    | Blocky                            | Blocky                        |
|         |                             | Texture                  | Clay                           | Clay                          | Sandy                  | Clay                                  | Clay                      | Clay                                   | Clay                    | Clay∼<br>Clay loam       | Clay                           | Clay                           | Clay loam<br>~Clay             | Clay                           | Clay                              | Clay                 | Clay~<br>Sandy<br>clay    | Clay                              | Clay                          |
|         |                             | Humus                    | Scanty                         | Abundant                      | Scanty                 | Abundant<br>~common                   | Scanty                    | Abundant                               | Comnon                  | Scanty                   | Abundant                       | Common                         | Abundant<br>~Common            | Common                         | Very<br>abundant                  | Abundant             | Abundant                  | Abundant                          | Common                        |
|         |                             | Color                    | 2.5YR 3/2~2.5YR-10R -<br>3/6   | 2,5YR 2/2~3/6                 | 5YR 5/1-2~7.5YR 4-5/6  | 7.5YR 3/2~5YR 3/4                     | S YR 4/2~4/8              | .5YR 4/2~4/3-4                         | 7.5YR 4/2~5YR 4/6       | SYR 4/2~4/8              | SYR 3/2~2/4                    | 5YR 2/3~4/8                    | 2.5YR 3/3~10R 3/3              | 10R-2.5YR 3/3~10R<br>3/34      | 7.5YR 2/1~3/3                     | 7.5YR 2/1~5YR 3/3    | 7.5YR 1.7-2/1~5YR 3/4     | 75.YR 2/1~%YR 4/6                 | 5YR 2/1-2~2.5-5YR 3/6         |
|         |                             | (m)                      | more than<br>1.0               | more than<br>1.0              | 0.35                   | more than<br>1.0                      | more than<br>1.0          | more than<br>1.0                       | more than<br>1.0        | more than<br>1.0         | more than<br>1.0               | more than<br>1.0               | more than<br>1.0               | more than<br>1.0               | more than<br>1.0                  | more than<br>1.0     | more than<br>1.0          | more than<br>1.0                  | more than<br>1.0              |
|         |                             | soil                     | Nerf                           | Be-r                          | Be-I                   | Bo-r                                  | Nc - f                    | Be-r                                   | 4                       | Nc - f                   | Ne-f                           | ភ្                             | Ne - s                         | Ne-s                           | Be-c                              | Be - c               | Ļ.                        | 3                                 | Ľ                             |
|         | Incli                       | μ                        | ø                              | 13                            | 16<br>1                | 18                                    | <i>2</i> 0                | 10                                     | 32                      | 10                       | 0                              | 0                              | Pr4                            | 0                              | ~                                 | 18                   | 14                        | 0                                 | ∞                             |
|         |                             | Location &<br>topography | Uplant<br>upper site<br>(flat) | Upland<br>upper site<br>(flat | Hill top               | Hillside<br>Iower site<br>(rill head) | Hill slope<br>middle site | Upland upper<br>site (shallow<br>rill) | Hillside<br>middle site | Hill stope<br>upper site | Upland<br>upper site<br>(flat) | Upland<br>upper site<br>(flat) | Upland<br>upper site<br>(flat) | Upland<br>upper site<br>(flat) | Spur<br>deposit site              | Spur<br>deposit site | Hill slope<br>middle site | Upland<br>upper site<br>(flat)    | Upland<br>upper sit<br>(flat) |
| i       |                             | o'Z                      | 35                             | 36                            | 37                     | ŝ                                     | 56                        | 4                                      | 4                       | 42                       | 43                             | 4<br>4                         | 54<br>54                       | 46                             | 47                                | 48                   | 49                        | 50                                | 51                            |

 ${\boldsymbol *}$  No mark ; inside the model area,  $\, \, {\boldsymbol \bigcirc}$  : outside the model area

| (5-4)    |                   | Remarks                 |                                | pH5.6<br>(A, horizon) | Exist Boulder                     | pH6.4<br>(A, horizon) |                                   | pH5.8<br>(A, horizon)            | pHS.8                               | pHS.4, 6.3<br>(A. B. horizo<br>horizon) | pH5.5, 6.3<br>(A, ·B,<br>(horizon) |
|----------|-------------------|-------------------------|--------------------------------|-----------------------|-----------------------------------|-----------------------|-----------------------------------|----------------------------------|-------------------------------------|-----------------------------------------|------------------------------------|
|          |                   | Raot                    | Соттоп                         | Many 1                | Many                              | Common                | Many                              | Many                             | Сотпол                              | ACE<br>Note                             | Common                             |
|          | Mycor-<br>rhiza & | ium<br>ium              | 1                              | ı                     | t                                 | I                     | 1                                 | ı                                | ŀ                                   | ŧ                                       | i                                  |
|          | Leach-<br>ing &   | lation                  | I                              | ł                     | I                                 | 1                     | I                                 | ı                                | 1                                   | 1                                       | 1                                  |
|          | Može              | ture                    | Dry~<br>Dry to<br>moist        | Dry                   | Dry                               | Dry                   | Dry                               | Dry                              | Dry                                 | Dry to<br>moist                         | Dry~<br>Moist                      |
|          |                   | Hardness                | 24~32                          | 25~32                 | 23~30                             | 26~33                 | 20~32                             | 27~32                            | 25~33                               | 25~29                                   | 18~30                              |
|          |                   | Content                 | 1                              | Common                | Scanty                            | 1                     | 1                                 | ł                                | ì                                   | I                                       |                                    |
|          | Gravel            | Weathering              | 1                              | Strong<br>Weathered   | Weathered                         |                       | I                                 | 1                                | I                                   | ŀ                                       | 1                                  |
|          |                   | Form & size             | 3                              | Rounded.<br>Fine      | Subangler,<br>Fine~Small          | ł                     | ļ                                 | I                                | t                                   | 1                                       | i                                  |
| l'able-/ |                   | Structure               | Blocky                         | Blocky                | CBlocky                           | Blocky                | Blocky                            | Blocky                           | Blocky                              | Blocky                                  | Blocky                             |
| 16       |                   | Texture                 | Caly                           | Clay                  | Clay                              | Caly<br>loam~<br>Clay | Clay                              | Clay                             | Clay                                | Clay                                    | Clay<br>loum∼<br>Clay              |
|          | ,                 | Humus                   | Соттоп                         | Very<br>abundant      | Very<br>abundant                  | Abundant              | Abundant                          | Abundant<br>~Common              | Abundant                            | Commen                                  | Common                             |
|          |                   | Color                   | 5YR 2/2~2.5YR 3/6              | 7.5YR 2/1~5YR 3/1     | 7.5YR 2/1~5YR 2/3                 | 5YR 2/2~2.5YR 3/54    | 5YR 2/2~2/34                      | 5YR 2/3~2.5YR 3/3                | SYR 2/1~2.3/4                       | more than 5YR 2/2~10R 3/3<br>1.0        | 5YR 2/3~2.5YR 3/6                  |
|          |                   | t nickness<br>(m)       | more than<br>1.0               | 0.50                  | 0.50                              | more than<br>1.0      | 0.70                              | more than 1.0                    | Be-c 0.6 - 1.0                      | more than<br>1.0                        | more than<br>1.0                   |
| -        | Type              | soll                    | Nc + ľ                         | ы                     | ដា                                | Ne - f                | ដ                                 | Be - C                           | Be-c                                | Ne - s                                  | Ne - s                             |
|          | Incli-            | (°C)                    | -                              | 80<br>1               | 32                                | ~                     | 31                                | 5                                | 0                                   | 0                                       | o                                  |
|          |                   | Locaung &<br>topogruphy | Upland<br>upper site<br>(tlat) | Spur<br>deposit site  | Hillside<br>middle site<br>(flat) | Spur<br>deposit site  | Hillside<br>middle site<br>(flat) | Hillside<br>upper sito<br>(flat) | Ridge upper<br>upper site<br>(flat) | Flat                                    | Flat                               |
|          |                   | No,                     | 52                             | 53                    | 54<br>24                          | 55                    | 56                                | 57                               | 58                                  | ŝ                                       | 8                                  |

**\*** No mark ; inside the model area,  $\bigcirc$  : outside the model area

.

(35)

| (5-5)   | <b>-</b>          | Remarks                    | pH5.5(A, )<br>6.6(B <sub>2</sub> ) | pH5.3(A)                | pH6.6(A, )<br>5.6(B <sub>2</sub> ) | pH6.5(A,)<br>6.7(B,) | pH6.6(A, )            | pH5.8(A, )            | pH5.8(A, )         |                   | pH64(A, )           |                         | pH6.4(A1)           | · .                 | pH6.4(A, )<br>6.3(B. ) | pH6.4(B1)         |                  |                       | <u>.</u>             |                         |                         |                          | pH6.7(A,)               | pH6.4(A,)         | pH6.6(A, )          | pH6.2(A,)         | pH6.8(A, )            | pH6.2(A1)           | 4,5                 | . Ei              | •••••••••••••••••••••••••••••••••••••• |
|---------|-------------------|----------------------------|------------------------------------|-------------------------|------------------------------------|----------------------|-----------------------|-----------------------|--------------------|-------------------|---------------------|-------------------------|---------------------|---------------------|------------------------|-------------------|------------------|-----------------------|----------------------|-------------------------|-------------------------|--------------------------|-------------------------|-------------------|---------------------|-------------------|-----------------------|---------------------|---------------------|-------------------|----------------------------------------|
|         |                   |                            | Common pH                          | Common pH               |                                    | Common bH            | ·                     | Common PH             |                    | поп               |                     | иош                     |                     | nom                 |                        |                   |                  | nom                   |                      |                         | <u> </u>                | пот                      |                         | Hđ                | ·                   |                   |                       |                     | PH6.4               | non pH6.3         | uou                                    |
|         | દસ                | r.<br>Root                 | Сол                                | Com                     | Many                               | Com                  | Many                  | Com                   | Common             | Соттол            | Many                | Common                  | Common              | Common              | Соттол                 | Contmon           | Many             | Соттоп                | Few                  | Few                     | Few                     | Солттоп                  | Common                  | Few               | Сотноп              | Соттоп            | Соттоп                | Common              | Many                | Соттол            | Соттол                                 |
|         | Mycor-<br>rhiza & |                            | 1                                  | 1                       | I                                  | ۱<br>                | 1                     | I                     |                    | I                 | 1                   | ۱.<br>                  | 1                   | 1                   | I<br>                  |                   | I                | •                     | 1<br>                | í                       | 1                       | ۱<br>                    | 1                       | 1                 | 1                   | i                 | ï                     | · •                 | ł                   | 1                 |                                        |
|         |                   | Leaching &<br>accumulation | (Mn · Fe<br>mottle)                | (Mn · Fe<br>concretion) | (Clay)                             | I                    | 1                     | 1                     | (Mn<br>concretion) | 1                 | !                   | (Mn Te<br>mottle)       | 1                   | 1                   | Clay                   | Gay               | 1                | ï                     | Clay                 | (Fe · Mn<br>concretion) | (Fe · Mn<br>concretion) | (Ciay)                   | (Clay)                  | (Clay)            | (Clay)              | (Clay)            | (Clay)                | Clay                | (Clay)              | <b>)</b>          | Clay                                   |
|         |                   | Moisture                   | Moist                              | Moist                   | Moist                              | Dry to<br>moist      | Dry                   | Dry                   | Dry                | Dry               | Dry                 | Moist                   | Dry to<br>moist     | Dry to<br>moist     | Dry to<br>moist        | ,<br>Dry          | Dry to<br>moist  | Dry                   | Dry                  | Dry                     | Dry                     | Dry to<br>moist          | Dry to<br>moist         | Dry to<br>moist   | Dry to<br>moist     | Dry to<br>moist   | Dry to<br>moist       | Moist               | Moist               | Dry to<br>moiet   | Dry                                    |
|         |                   | Hardness                   | 29 - 32                            | 24 - 30                 | 2330                               | 25-30                | 26 - 30               | 32 - 34               | 27 - 32            | 25-32             | 27-31               | 28-30                   | 20-32               | 19-31               | 22-32                  |                   | 32 - 33          | 27-31                 | 31-32                | 26 - 29                 | 28-32                   | 9 - 25                   | 12-26                   | 22 - 32           | 10-23               | 24 - 32           | 25 - 31               | 24 - 32             | 22-28               | 29 - 32           | 31-33                                  |
|         |                   | Content                    |                                    |                         | Соттол                             |                      |                       | Scanty                | <u> </u>           |                   | Abundant            |                         |                     |                     |                        |                   |                  |                       |                      |                         | Scanty                  | . <u>,</u>               |                         |                   |                     |                   |                       |                     |                     | Scanty            |                                        |
|         | Gravel            | Weathering                 | I                                  | 1                       | Fresh                              | 1                    | ī                     | Strongly<br>weathered | ł                  | i                 | Fresh               | , <b>1</b>              |                     | 1                   | I                      |                   | 1                | ł                     |                      | J                       | Fresh                   | 1                        | 1                       | 1                 | 1                   | 1                 |                       | 1                   | t.                  | Weathered         | · · ·                                  |
|         |                   | Size                       |                                    |                         | Fine                               |                      |                       | Fine                  |                    |                   | Small               |                         |                     |                     |                        |                   |                  |                       |                      |                         | Fine                    |                          |                         |                   |                     |                   |                       |                     |                     | Fine -<br>Small   |                                        |
| 7       |                   | Form                       |                                    |                         | Angler                             |                      |                       | Rounded               |                    |                   | Angler              |                         |                     |                     |                        |                   |                  |                       |                      |                         | Rounded                 |                          |                         |                   |                     |                   |                       |                     |                     | Rounded           |                                        |
| Table-7 |                   | Structure                  | Biocky                             | Biocky                  | Blocky                             | Blocky               | Nutty,                | Nutty                 | Biocky             | Nutty             | Nutty,<br>Biocky    |                         | Nutty               | Biocky              | Nutty,<br>Biocky       | · ·               | Nutty,<br>Biocky | Nutty,<br>Biocky      | Biocky               | Blocky                  | Nutty                   | Biocky                   | Biocky                  | Biocky            | Biocky              | Biocky            | Biocky                | Nutty,<br>Biocky    | Biocky              | Biocky            | Biocky                                 |
|         |                   | Texture                    | Clay                               | Cay                     | Clay -<br>Clay Ioam                | Clay loam            | Clay -<br>Clay Ioam   | Clay loam             | Clay Joam          | Clay loam         | Clay Joam -<br>Clay | Loam Light<br>Clay loam | Loam                | Loam - Clay<br>Ioam | Loam - Clay            | Loam - Clay       | Loam - Clay      | Loam                  | Loam -<br>Saniv clav | Clay loam               | Sandy loam -<br>Clay    | Loam - Clay<br>Clay loam | Loam<br>Clay loam       | Loam<br>Clay loam | Loam -<br>Clay loam | Clay loam         | Гоат                  | Qay                 | Clay loam -<br>Clav | Loam - Clay       | Clay Ioam -<br>Clay                    |
|         |                   | Humus                      | Abundant<br>~Common                | Abundant                | Abundant                           | Common               | Abundant              | Abundant              | Соттоп             | Common            | Abundant            | Abundant                | Common              | Common              | Common                 | Scanty            | Very<br>abundant | Abundant              | Сощтол               | Common                  | Abundant                | Common                   | Abundant                | Соттоп            | Common              | Abundant          | Common                | Abundant            | Abundant            | Abundant          | Abundant                               |
|         |                   | Color                      | 7.5YR3/2 - 5YR4/4                  | 7.5YR2/2 ~ 7.5YR4/2     | 7.5YR2-3/1 - 5YR3/6                | 5YR3/4 - 2.5YR3/6    | 7.5YR3/2 - 5-7.5YR4/4 | SYR3/1 - SYR3/3       | 7.5YR3/1 - 5YR4/6  | 7.5YR3/2 - 5YR3/6 | SYR2/1 - 5YR3/4     | 7.5YR2-3/2 - 7.5YR4/4   | 7.5YR2/1 - 7.5YR4/4 | 7.5YR2/1 - 7.5YR5/6 | 5YR3/2 - 2.5-5YR5/8    |                   | 7.5YR2/1         | 7.5YR2-3/1 - 7.5YR3/4 | 7.5YR3/2 - 5YR4/4-5  | 7.5YR3/1 - 75YR5/4      | 7.5YR2/2 - 7.5YR4/4-6   | 2.5YR2/4 - 10R3/4        | 2.5YR2/3 - 10R-2.5YR3/4 | 5YR3/3 - 10R3/4   | SYR2/4 - 10R3/4     | 5YR2/2-3 - 10R3/6 | 5-7.5YR2/2 - 2.5YR4/8 | 2.5YR2/2-3 - 10R3/3 | 2.5YR2/2 - 10R3/4   | 5YR2/1 - 5YR3/4   | 5YR2/1 - 2.5YR4/6                      |
|         |                   | Thickness<br>(m)           | more than<br>1.0                   | more than<br>1.0        | more than<br>1.0                   | more than<br>L.Q     | more than<br>10       | more than<br>0.5      | more than<br>0.5   | more than<br>0.5  | 0.5 - 0.6           | more than<br>0.5        | more than<br>0.6    | more than<br>0.5    | more than<br>0.6       | more than<br>0.6  | more than<br>1.0 | more than<br>0.5      | more than<br>0.5     | more than<br>0.5        | more than<br>0.5        | moré than<br>1.0         | more than<br>1.0        | more than<br>1.0  | more than<br>1.0    | more than<br>1.0  | more than<br>1.0      | more than<br>0.8    | more than           | 0.7               | more than 0.6                          |
|         | Type              |                            | ßg                                 | U                       | Nc-f                               | Nc - 5               | Bv                    | Be                    | Bg                 | Вс                | Be                  | Bg                      | Bc                  | Be                  | 2                      | rc                | ъ                | Bc                    | Lg                   | å                       | បំ                      | Ne-s                     | Ne - s                  | Ne - f            | Ne - S              | Ne - f            | Ne - f                | 2                   | Ne - f              | Be-c              | Ľ                                      |
|         | Inclí-            | nation<br>COn              | 17                                 | 0                       |                                    | vi<br>               | 13                    | <b>9</b>              | 0                  | 9                 | 10                  | 0                       | m                   | Ŷ                   | ø                      | 4                 | 0                | 0                     | 4                    | 0                       | 0                       | 0                        | 0                       | 0 · ·             | 0                   | a                 | -                     | R                   | m                   | ف                 | <b>60</b>                              |
|         |                   | Location &<br>topography   | Flat                               | Flat                    | Flat                               | Gentle slope         | Hill middle slope     | Hill gentle slope     | Flat               | Hill gentle slope | Hill gentle stope   | Flat                    | Hill gentle slope   | Hill gentle slope   | Hill gentle slope      | Hill gentle slope | Flat             | Flat                  | Flat                 | Flat                    | Flat                    | Flat                     | Flat                    | Flat              | Flat                | Flat              | Flat                  | Flat                | Hill gentle slope   | Hill gentle slope | Hill gentle slope                      |
| i       |                   | , ov                       | 61                                 | 62                      | 63                                 | 64                   | 3                     | ۲                     | 6                  | 9                 | ٢                   | 8                       | 8                   | 3                   | ®                      | <b>(</b> *)       | 3                | 9 (                   | Ð                    | <b>(2)</b>              | Ð                       | 8                        | 12                      | \$2               | 83                  |                   | ŝ                     | 86                  | 66                  | 80                | 8                                      |

st No mark : inside the model area, O : outside the model area

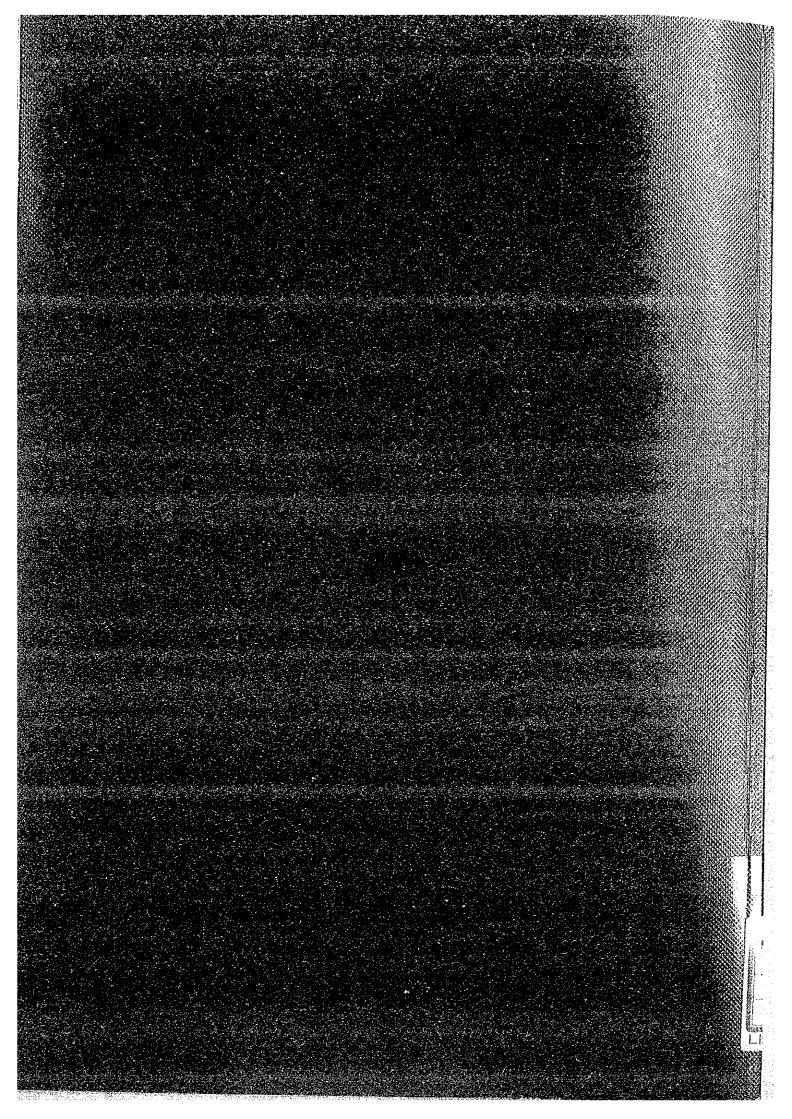

(36)

Table - 8 Analysis of the Texture and Chemical Property of Typical Soil Type

|                      |                     |                       | Eutric<br>Nitosols |                              | Rendzinas             |                                    | Eutric<br>Cambisols          |                  |                                    | Cambisols                                    |                  |                        | Luvisols         |                  |
|----------------------|---------------------|-----------------------|--------------------|------------------------------|-----------------------|------------------------------------|------------------------------|------------------|------------------------------------|----------------------------------------------|------------------|------------------------|------------------|------------------|
| ç                    | Kemarks             | No. 1-10 cm A horizon | 30 cm B1 horizon   | 50 cm B <sub>a</sub> horizon | No. 2-10 cm A horizon | No. 3-10 cm A <sub>1</sub> horizon | 25 cm A <sub>2</sub> horizon | 40 cm B, horizon | No. 4-10 cm A <sub>1</sub> horizon | 20 cm A <sub>1</sub> -B <sub>1</sub> horizon | 50 cm B, horizon | No. 5-10 cm A, horizon | 25 cm B, horizon | 50 cm B, horizon |
| Soil                 | Texture             | Clay                  | Clay               | Clay                         | Clay                  | Clay                               | Clay                         | Clay .           | Clay loam                          | Clay                                         | Clay             | Clay                   | Clay             | Clay             |
| ition                | Clay                | 52.18                 | 65.93              | 71.93                        | 44.68                 | 42,18                              | 51.09                        | 49.59            | 36.75                              | 56.18                                        | 64.25            | 44.43                  | 85.34            | 80.84            |
| % Soil Composition   | Silt                | 19.00                 | 15.16              | 10.25                        | 31.09                 | 31.41                              | 30.25                        | 28.50            | 34.84                              | 23.75                                        | 21.43            | 31.66                  | 13,18            | 16.50            |
| % Soi                | Sand                | 28.22                 | 18.91              | 17.82                        | 24.32                 | 26.41                              | 18.66                        | 21.91            | 28.41                              | 20.07                                        | 14.32            | 23.91                  | 1.48             | 2.66             |
| CEC                  | me/100g             | 39.85                 | 20.01              | 17.21                        | 86.79                 | 35.99                              | 36.04                        | 30.33            | 28.90                              | 17.07                                        | 15.02            | 35.01                  | 20.38            | 18.13            |
| Ca                   | tion %              | 57.55                 | 19.24              | 16.33                        | 68.04                 | 60.04                              | 62.46                        | 58.72            | 52.80                              | 10.08                                        | 5.13             | 47.87                  | 21.15            | 15.40            |
| 0g                   | Na                  | 1                     | ł                  | 1                            | 1                     | J                                  |                              |                  | ł                                  | 1                                            | I                | 1                      | 1                | ł                |
| n me/10              | Mg                  | ł                     | I                  | 1                            | 1                     | I                                  | ł                            | ł                |                                    | I                                            | 1                | i<br>I                 | I                | 1                |
| Exch. Cation me/100g | Ga                  | 23.02                 | 3.85               | 2.81                         | 59.05                 | 21.61                              | 22.51                        | 17.81            | 15.26                              | 1.72                                         | 0.77             | 16.76                  | 4.31             | 2.79             |
| Ä                    | К                   | ł                     | I                  | I                            | . 1                   | ł                                  | I                            | ł                |                                    | i                                            | ۱                | 1                      | 1                | 1                |
| Avail.P              | ppm                 | 1                     | ł                  | . 1                          | l                     | Ι.                                 | I                            | 1                | 1                                  | ł                                            | ł                | 1                      | ſ                | 1                |
| Total C              | %                   | 5.14                  | 2.48               | 1.70                         | 10.48                 | 3.33                               | 2.41                         | 1.68             | 4.02                               | 0.91                                         | 0.64             | 6.32                   | 1.45             | 0.69             |
|                      | 1:2KCI              | 5.30                  | 4.50               | 4.42                         | 5.54                  | 5.71                               | 5.65                         | 5.58             | 5.49                               | 4.12                                         | 3.89             | 5,42                   | 3.96             | 3.89             |
| Ηď                   | 1:2H <sub>3</sub> O | 7.41                  | 5.55               | 6.04                         | 6.50                  | 7.12                               | 6.37                         | 6.78             | 6.26                               | 6.02                                         | 5.41             | 6.29                   | 5.66             | 5.71             |
| Sample               | No.                 |                       | 3                  | 'n                           | 4                     | S                                  | 9                            | Ŀ                | 8                                  | \$                                           | 10               | 11                     | 12               | 13               |
|                      | pitto Id            |                       | 11                 |                              | 3                     |                                    | 10                           |                  |                                    | 17                                           |                  |                        | 34               |                  |

(Note) Analyzed by the Central Forest Res. Lab. and Training Center (RFD).

••

