

Fig. D.4 Results of the Electrical Resistivity Survey (5/9)

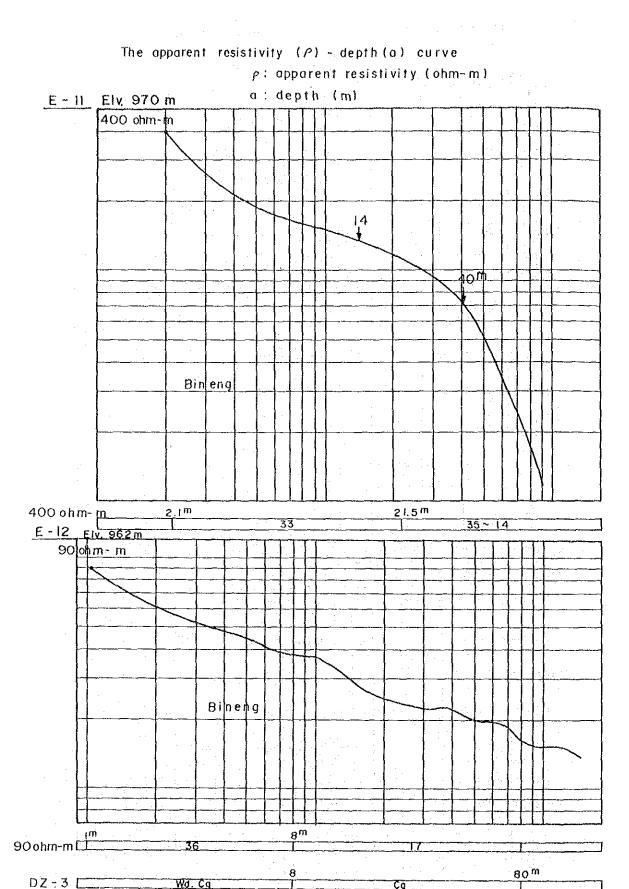


Fig.D.4 Results of the Electrical Resistivity Survey (6/9)

Elv. 9815 m

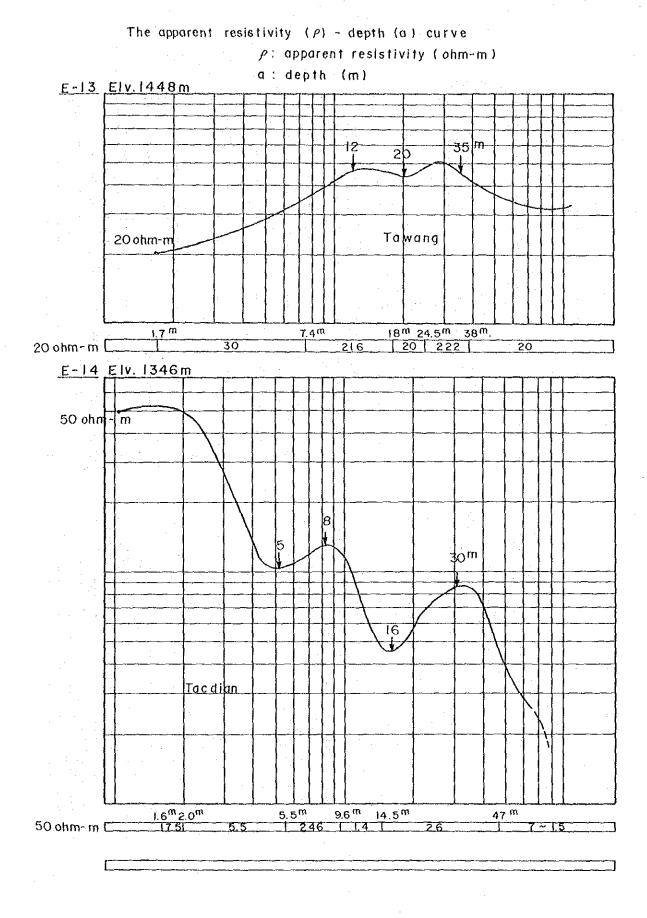
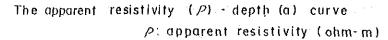
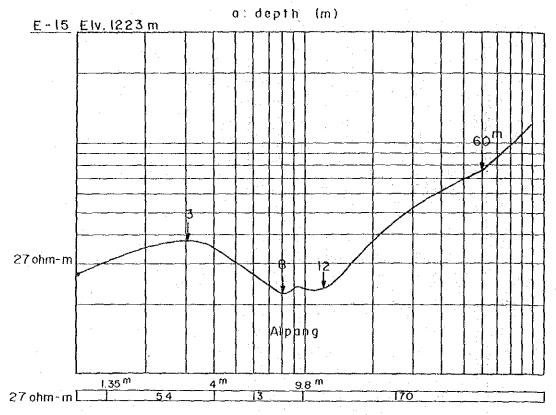




Fig. D.4 Results of the Electrical Resistivity Survey (7/9)

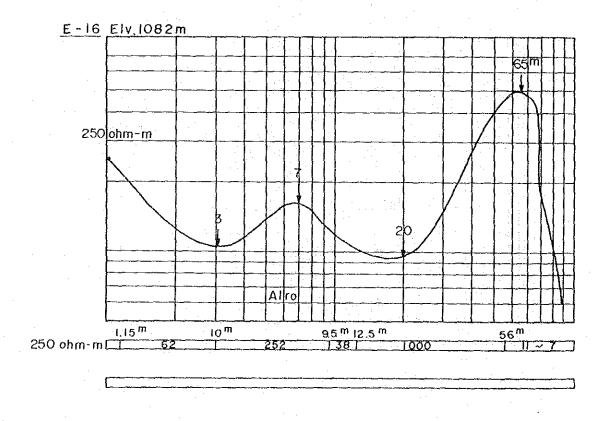
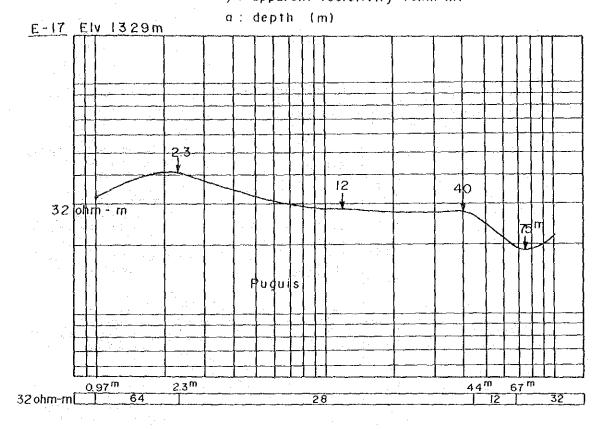



Fig.D.4 Results of the Electrical Resistivity Survey (8/9)

The apparent resistivity (P) - depth (a) curve
P: apparent resistivity (ohm-m)

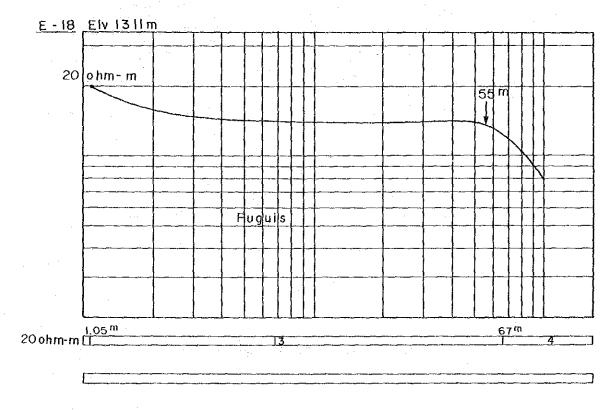


Fig.D.4 Results of the Electrical Resistivity Survey (9/9)

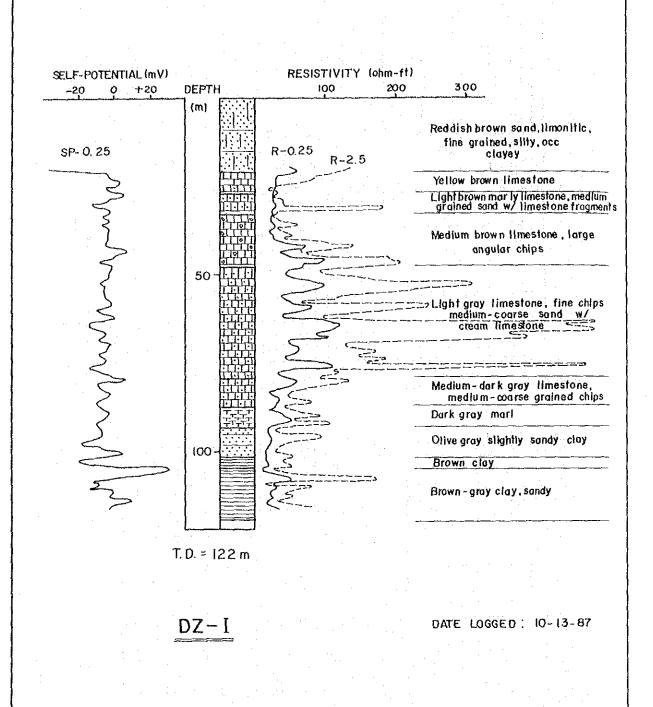


Fig. D.5.1 (1) Electric and Lithologic Log (DZ-I)

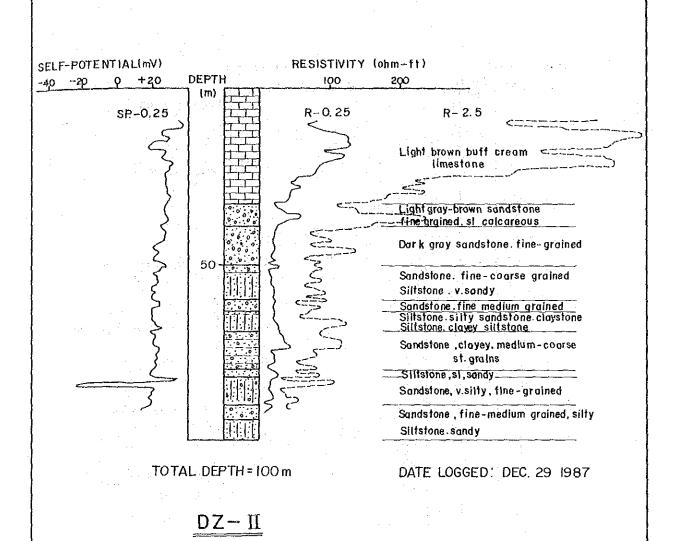
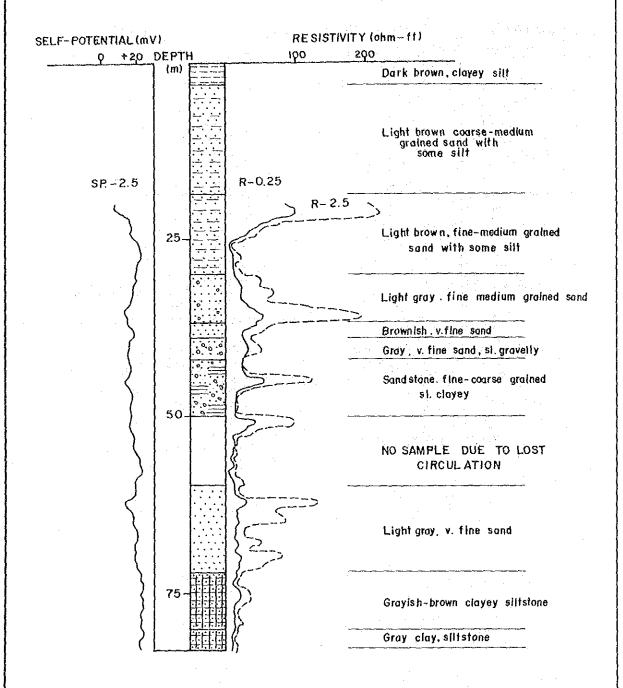
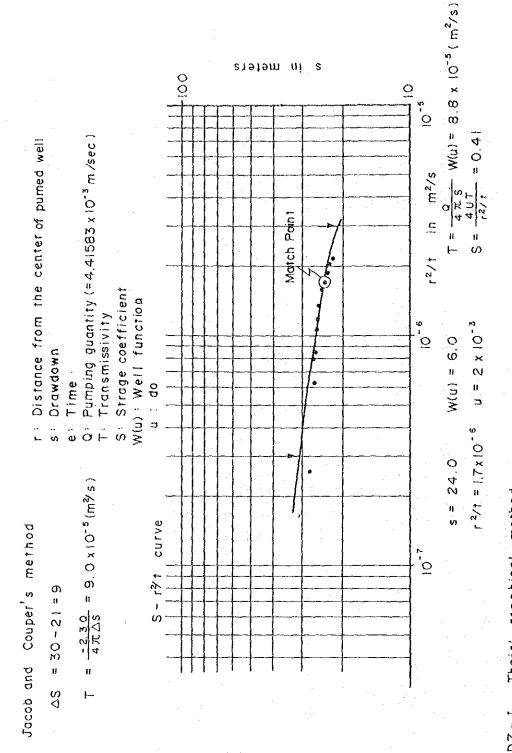



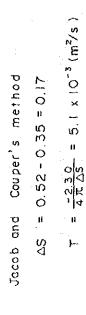
Fig. D.5.1 (2) Electric and Lithologic Log (DZ-II)



TOTAL DEPTH= 83 meters

DZ − III

Fig. D.5.1 (3) Electric and Lithologic Log (DZ-III)



Z-I Theis' graphical method

the Pumping Test

Analysis of

Fig. D.5.3

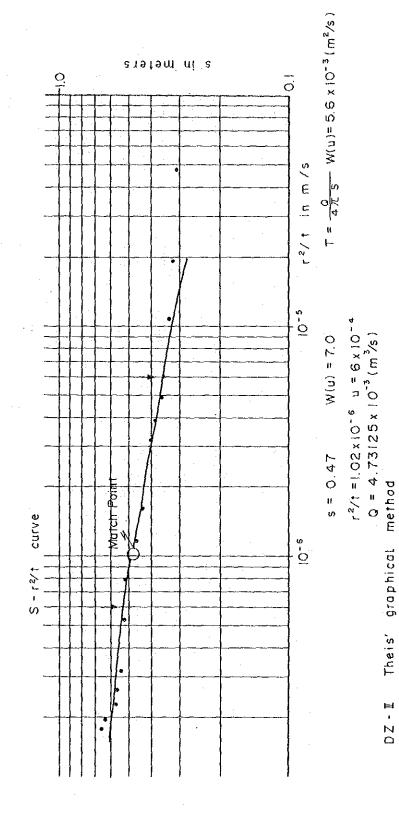
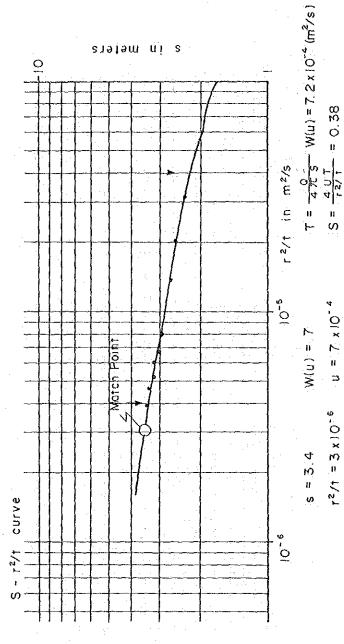



Fig.D.5.3 Analysis of the Pumping Test

(2/12)

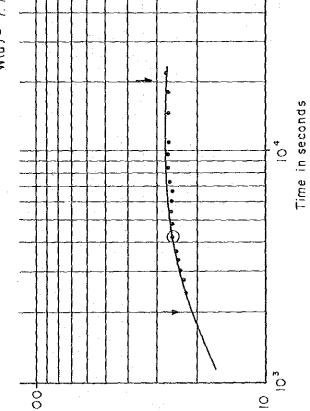
Jacob and Couper's method

$$=\frac{-2.30}{4\pi\Delta s}=-7.0\times(0^{-4}(m^2/s))$$

r2/1 = 3 x 10 = 6 S = 3.4

 $Q = 4.41583 \times 10^{-3} (m^2/s)$ method

Theis' graphical

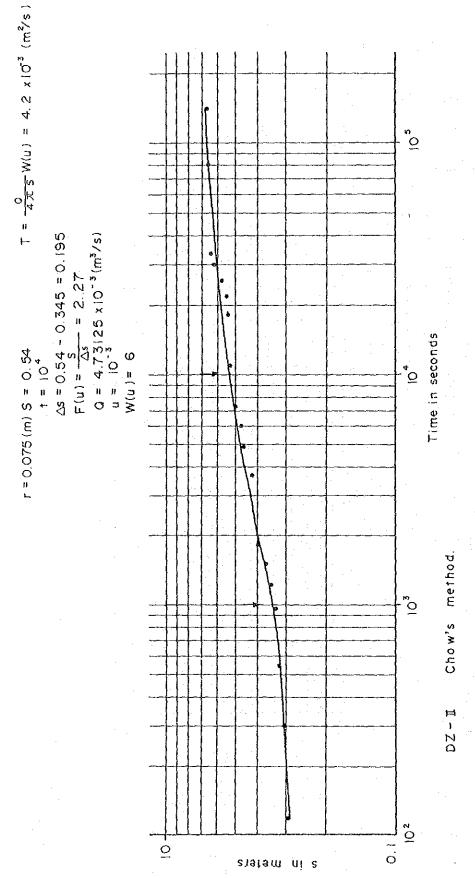

Tes1 Analysis of the Pumping Fig. D.5.3

Time - drawdown curve

$$r = 0.075 (m)$$
 S = 25.3
 $t = 4.2 \times 10^{-3}$
 $\Delta s = 27 - 20.5 = 6.5$ S = $\frac{4 \, \text{U.T.}}{r^2}$ = 0.06
 $F(u) = \frac{5}{\Delta s} = 3.89$

$$C = 4.41583 \times 10^{-3} (\text{m}^3/\text{s})$$

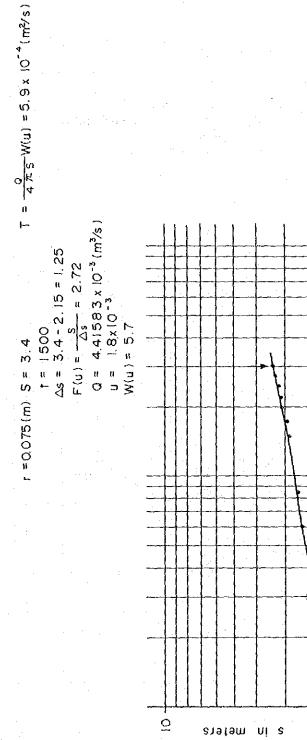
 $C = 4.41583 \times 10^{-3} (\text{m}^3/\text{s})$
 $C = 2.10^{-4}$


$$u = 2 \times 10^{-4}$$

W(u) = 7.7

alətəm ni a

DZ-I Chow's method.

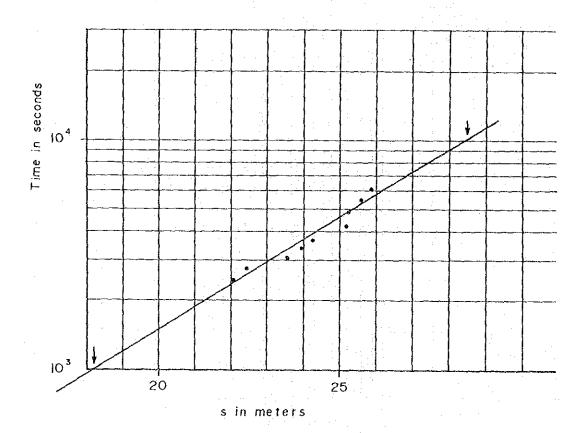

Fig. D.5.3 Analysis of the Pumping Test

Analysis of the Pumping Test

Fig. D.5.3

Time - drawdown curve

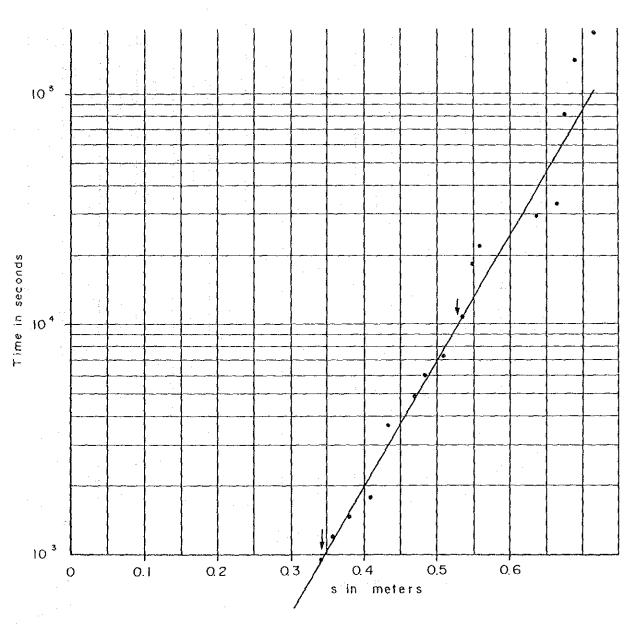
Analysis of the Pumping Test Fig. D.5.3


Time in seconds

DZ-耳 Chow's method

۰ 0

anetem ni a

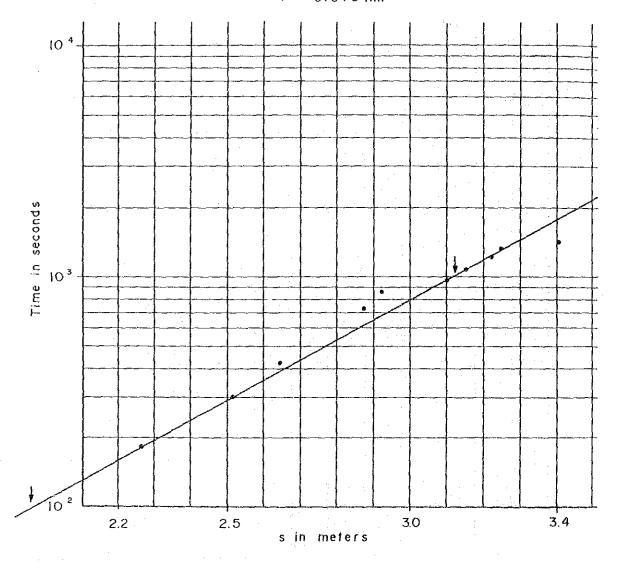

Q =
$$4.41583 \times 10^{-3} \text{ (m}^{3}/\text{s)}$$

 $\Delta S = 28.4 - 18.2 = 10.2$
 $T = \frac{2.30}{4\pi \Delta S} = 7.9 \times 10^{-5} \text{ (m}^{2}/\text{s)}$
to = 15.5
 $S = \frac{2.25 \text{ T to}}{r} = 0.49$
 $r = 0.075 \text{ (m)}$

DZ ~ I Jacob's method

Fig. D.5.3 Analysis of the Pumping Test (7/12)

Q =
$$4.73125 \times 10^{-3}$$
 (m/s)
 $\Delta S = 0.53 - 0.345 = 0.185$
 $T = \frac{2.3Q}{4\pi \times s} = 4.68 \times 10^{-3}$
to = 125



DZ-I Jacob's method

Fig.D.5.3 Analysis of the Pumping Test (8/12)
D-62

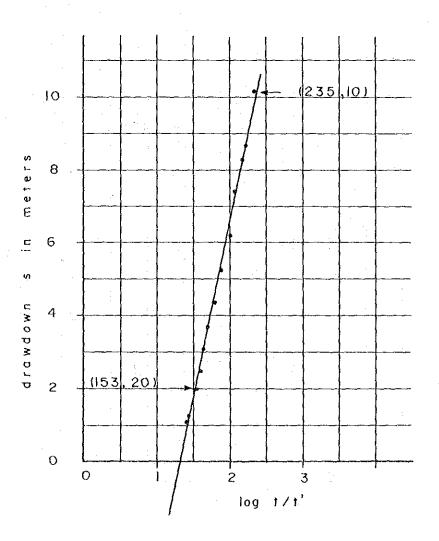
Time - drawdown curve

Q =
$$4.41583 \times 10^{-3} \text{ (m}^3/\text{s)}$$

S = $3.12 - 1.96 = 1.16$
T = $\frac{2.8 \text{ Q}}{4 \pi \Delta \text{S}} = 7.0 \times 10^{-4}$
to = 2.0
S = $\frac{2.25 \text{ T to}}{12} = 0.55$
r = 0.075 (m)

DZ - II Jacob's method

Fig. D.5.3 Analysis of the Pumping Test (9/12)


S-log t/t' curve

$$Q = 4.41583 \times 10^{-3} (m^{3}/s)$$

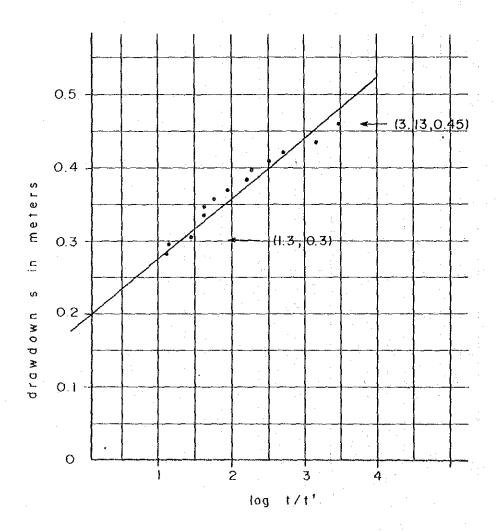
$$T = \frac{0.1830 \log 1/t}{s}$$

$$= 8.3 \times 10^{-5} (m^{2}/s)$$

$$= \frac{\log 1/t}{s} = 0.82$$

DZ - I Recovry

Fig. D.5.3 Analysis of the Pumping Test (10/12)


S-log t/t1 curve

$$Q = 4.73125 \times 10^{-3} \text{ (m}^{3}/\text{s})$$

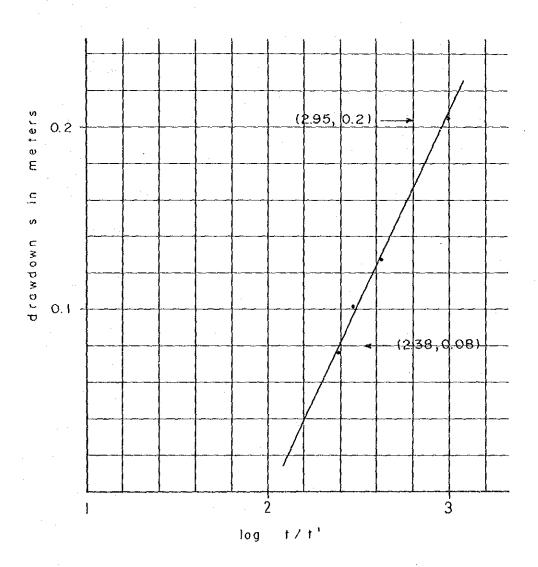
$$T = \frac{0.183 \cdot 0 \cdot \log t/t}{\text{S}}$$

$$= 1.1 \times 10^{-2} \text{ (m}^{2}/\text{s})$$

$$\frac{\log t/t}{\text{S}} = \frac{1.83}{0.15}$$

DZ - I Recovry

Fig. D. 5, 3 Analysis of the Pumping Test (II/I2)


S - log t/t' curve

$$Q = 4.41583 \times 10^{-3} \text{ (m}^{3}/\text{s)}$$

$$T = \frac{0.183 \cdot 0 \cdot \log 1/t}{\text{S}}$$

$$= 3.8 \times 10^{-3}$$

$$\frac{\log 1/t}{\text{S}} = \frac{0.57}{0.12}$$

DZ - 🔟 Recovry

Fig. D.5.3 Analysis of the Pumping Test (12/12)

APPENDIX E WATER QUALITY

APPENDIX E WATER QUALITY

TABLE OF CONTENTS

. WAY	TER QUALITY TEST
1.1	Items of Water Quality Test
1.2	Result of the Test

LIST OF TABLES

		Page
Table E.1.1	Result of Water Quality Test	E-5
Table E.1.2	Guideline for Interpretation of Water Quality for Irrigation in the Philippines.	E-10
	LIST OF FIGURES	
Fig. E.1.1	Location Map of Water Quality Sampling	E-11

APPENDIX E WATER QUALITY

1. WATER QUALITY TEST

Water quality of river and spring etc. is an important factor for water resources development. Water quality test is key determinant to identify sound water resources availability.

Sixteen sampling sites were specified in the Project area as shown in Fig. E.1.1, water quality tests were carried out essentially once a month.

1.1 Items of Water Quality Test

Twelve items of water quality test (ECw, pH, COD, NO2-N, NO3-N, NH4-N, Cl, Fe, Cu, Zn, General and colon bacillus), were selected taking matters mentioned below into consideration.

- a) to complete test quickly (avoiding change in water quality on the way of conveyance to a long distance laboratory).
- b) to examine the availability of river or spring water for irrigation and domestic use.

In addition to the twelve items, BOD, SS and DO were tested occasionally at the authorized laboratory.

1.2 Result of the Test

Result for the test is listed Table E.1.1, and summarized below.

Subject	BOD	COD	T-N	Heavy metals	Bacilli
Balili river	16 - 34	19 - 23	10 - 18	Not detected	Contaminated
	16 - 55	19 - 53	8 - 10		
Bolo creek	19	5 - 15	1 - 3	Not detected	Contaminated
	- do -	- do -	4		
Creeks in	2 - 5	2 - 6	0 - 0.8	Not detected	Contaminated
the Study area	- do -	- do -	- do -		
Springs and	0 - 5	0 - 3	0 - 2	Not detected	Partly
wells	- do -	- do -	- do -	i	contaminated
Dinog cave	12	1 - 8		Not detected	Contaminated
• •	- do -	- do -	 ,		
				Lionar Wet se	39600

Upper: Wet season Lower: Dry season

Balili river water had levels over 20 ppm in both of BOD and COD even in the wet season, and over 10 ppm in T-N, so that it can be said that the Balili river is confirmed to have been badly contaminated with sewage.

2. CONSIDERATIONS

According to an authorized water quality guideline listed below, irrigation water had levels above 6 ppm of BOD or COD, and above 5 ppm of T-N, thus constituting a growth impediment for crop plants. As a reference, guidelines of water quality for irrigation in the Philippines is shown in Table E.1.2.

Limited Content of Water Pollution or Crop Growth

Items	Unit	Unaffected Content	Notes
pН	pН	6,0 - 7.0	Acidity - Alkalinity
Cl	ppm	500 - 700	Chloride
EC	mV/cm	Less than 1	Electrical Conductivity
T-N	ppm	Less than 5	Total - Nitrogen
NH4-N	ppm	Less than 3	Ammonia - Nitrogen
ABS	ppm	Less than 3	Alkyl Benzene Sulfanate
COD	ppm	Less than 6	Chemical Oxygen Demand
BOD	ppm	Less than 5 - 8	Biochemical Oxygen Demand
DO	ppm	Less than 5	Dissolved Oxygen
As	ppm	Less than 1	Arsenic
SS	ppm	Less than 100	Suspended Solid

Source: Agricultural pollution handbook in Japan

The Balili river water is judged to be unsuitable as an irrigation and domestic water source on the basis of the results observed even in wet season.

Almost all creek water in the Project area has been contaminated by bacilli. These has therefore been disqualified for domestic use, but is quite harmless for irrigation use. The Bolo creek have recorded above 10 ppm in BOD because of contamination of La Trinidad sewage, having an apprehension of infection for irrigated crop.

As for the Dinog cave, to where the Balili river water seeps out, water quality of the site has somewhat contaminated. In spite of being introduced to the distinguishably polluted Balili river water, the water has purified on the way of seeping at 8 ppm in COD and 12 ppm in BOD. However, the water has bad influence for irrigated crop depend upon its varieties. Moreover, well and spring water tested at a few sampling sites are partly recognized bacilli pollution, which are not qualified as quite good for domestic use.

A water sample of the Balili river was tested for some factors, i.e., BOD, COD, surface active agent and etc., in Japan. The results are shown as follows:

 		Unit	: ppm	
Item	12 d	Value	The second	
 BOD		13		- ;
COD		15		
T-N		20		
Surface active agent		2.2		
Arsenic		0.1		

: Sampled in Balili river at 8:00, March, 13. 1988

According to the limited contents mentioned previously, the surface active agent and the arsenic are within permissible line. However, the more drought proceed for April, the more the river water will be contaminated.

Table E.1.1 Result of Water Quality Test

			i		11.1.0		3	11/1							, , , , ,		4
Determination	Cpit	Башп	200	Ambiong	Hallin P	Poblacion Bahong Wangai	Banong	wanga≀	Banong (Cave)	Buyagan	Betag	Caming)	uneng	Pugus	Boleweng	Boleweng	Sadag
		: (3)	(2)	(3)	(\$)	(5)	(9)	(1)	(%) (8)	(6)	(10)	(Dalley)	(12)	(13)	(14)	(15)	(16)
Electrical (EC) Conductivity	ms/cm	0.251 0.280	0.280	0.098	0.293	0.268	0.410	0.147	0.290	0.366	0.160	0.319					
Acidity (pH) Alkalinity	Нq	8.1	7.9	8.1	8.2	7.6	8.1	8.3	7.6	7.7	8.0	7.9					
Chmical (COD) Ox. Demand	mdd	20 -	V3	0 - 1	50 -	15	4	0 - 1	pui	٧٠	ø	İ					
Biochemical(BOD) Ox. Demand) ppm										-						
Suspended (SS) Solid	mdd	÷															
Dissolved (DO) Oxygen	mdd																
Nirite (NO2-N) Nitrogen	mdd	0.10	0.01	ì	0.25	90.0	Į	l	l	į	1	1					
Nitrate (NO3-N) Nitrogen	mdd	Ţ	0.1	1	l	ì	ļ	ļ	ļ	l	-	1					
Ammonia(NH4-N) Nitrogen		1.2	9.0	1	8.0	1.2	l	t	l	0.2	2.0	1					
Chloride (Cl)	mdd	0	ļ	ł	- 0	1	. [1	20 -	20 - 25	10	2.5					
Total Iron (Fe)	шád	į	1	١	1	1	ı	l	l	l	0.1	J	·				
Copper (Cu)	mďd	•	ı	ł	Į	1	i. I	ι	l	1	1	. 1			4.5		
Zinc (Zn)	udd	ļ	1	ħ	1	-	Į	l	I	1	1.0	.	:				
General Bacillus	1	† † †	‡ ‡	+	† †	+	‡	‡	†	+	+	+					
Colin Bacillus	ş	‡	† †	; +	† † †	+	† †	† †	† †	† +	ł	+			:		
	+ : Rec	+ : Recognized	1	: Unrecognized	'n.										Tested by JICA	y JICA team	ES.

Table E.1.1 Result of Water Quality Test (Cont.)

(BC) (BC) (BC) (BC) (BC) (BC) (BC) (BC)	Determination	Unit	1	Pico	Ambiong	Balili	Poblacion	Bahong	Wangal		Buyagan	Betag	LTWD	Bineng	Pugis	Boleweng	Boleweng	Sadag
(EC) ity ms/cm 0.246 0.228 0.061 0.280 0.219 0.326 0.106 0.311 0.347 0.289 0.304 0.114 0.126 phf) phf 8.4 8.3 8.2 7.8 7.6 7.7 8.2 7.4 7.7 7.9 7.4 7.7 7.9 CD) phm 4			ж _. Э	(2)	(3)	æ (4)	(5)	(9)	(7)	(cave) (8)	(6)	(10)	(pump) (11)	(12)	(13)	(14)	(15)	(16)
pH) pH 8.4 8.3 8.2 7.8 7.6 7.7 8.2 7.4 7.7 7.9 7.4 7.9 7.7 7.9 7.7 20D) pH 9pm 4 4 7.7 7.9 7.4 7.7 7.9 7.4 7.9 7.7 7.9 7.7 7.9 7.7 7.9 7.7 7.9 7.7 7.9 7.7 7.9 7.7 7.9 7.7 7.9 7.7 7.9 7.7 7.9 7.4 7.9 7.7 7.9 7.4 7.9 7.7 7.9 7.4 7.9 7.7 7.9 7.4 7.9 7.7 7.9 7.7 7.9 7.4 7.9 7.7 7.9 7.4 7.9 7.7 7.9 7.4 7.9 7.7 7.9 7.4 7.9 7.7 7.9 7.4 7.9 7.7 7.9	Electrical (EC) Conductivity	ms/cm	0.246	0.228	0.061	0.280	0,219	0.326	0,106	0.311	0.347	0.289	0.304	0.114	0.126	0.231	0,225	0.154
30(b) 34(800) (S) 39m (SS) 32h) 32h) 3pm (DS) 3p	Acidity (pH) Alkalinity	Ħ	80 4	% %	8.2	7.8	7.6	7.7	8.2	7.4	7.7	7.9	7.4	7 9	7.7	7.6	7.4	∞
al(BOD) d ppm (SS) ppm (DO) pp	Chmical (COD) Ox. Demand		.T.	4	ļ	7.		l	ļ	i	-	. 1	-1		т			
(SS) ppm (DO) ppm (DO) ppm (DO) ppm (DO) ppm (DO) 0.3 - 0.3 0.1	Biochemical (BC Ox. Demand	D) Ppm									٠		-					
(DO) ppm (22-N) ppm (0.3 — 0.3 0.1 — — — — — — — — — — — — — — — — — — —	Suspended (SS)	mdd																
O3-N) ppm 0.3 — 0.3 0.1 — — — — — — — — — — — — — — — — — — —	Dissolved (DO) Oxygen						. 5									. •		
O3-N) ppm 10.0 0.2	Nitrice (NO2-N) Nitrogen		0.3	1	į	0.3	0.1	ĺ	Į	l	J 1	I	1	1	1	ŧ	I	
NH4-N) NH4-N) NH4-N) Ppm 6.0 0.65 0.1 8.0 0.6	Nitrate (NO3-N, Nitrogen		10.0		l	10.0	2.0	1	1	ļ	i	ļ	:1	İ	. 1	İ	I	. 1
(Cu) ppm + + + + + + + + + + + + + + + + + +	Ammonia(NH4- Nitrogen		6.0	0.65	0.1	8.0	9.0	I	1	. 4		1.6	0.35	ĺ	ı	9.0	1.	• 1
(Cu) ppm — — — — — — — — — — — — — — — — — —	Chioride (CI)	mdd	*	İ	ł	. +	+	+	4	.+	+	+	+	+	+	+	**	+
Zn) ppm mqq (vz)	Total Iron (Fe)	шďď	; İ	1	ļ	i	. 1	1	ł	. 1	I	.1	1	ı	1	1	· 1-	1
8.0 mdd (nz)	Copper (Cu)	mod	1	.: 1	i	. 1	·i	i	ı	1	i		I	ļ	ı	ı	İ	1
*** *** * *** *** *** *** *** *** ***	5.	mdď	1	; ; }	:	-		. 1	. 1] .	;: ·	0.8	.1		. 1		1	
	General Bacillus	}	† † †	† † †	1	† † †	. +	‡ ‡	† †	‡	‡	+	. : +	‡ ‡	† †	† †	‡	+
++ + ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ +	Colin Bacillus	ł	+	+	+	+	t	‡	+	† 1 †	+	+	++	+	† †	+	† +	‡

Table E.1.1 Result of Water Quality Test (Cont.)

	.	İ		- 	 	i	i			i		1987 (October	-
Unit Ballli Pico	Ambiong	Balili	Poblacion Bahong Wangal	Bahong	Wangal	Bahong	Buyagan	Betag	•	Bineng	Pugis	/eng	Bol	Sadag
K. (1) (2)	(3)	(4) x	(5)	(9)	(2)	(cave) (8)	(6)	(10)	(pump) (11)	(12)	(13)	A (14)	(15)	(16)
ms/cm				! · ·										
pH 8.45 7.65	7.80	7.65	9.30	8.35	7.35	7.85	7.70	8.20	8.30	8.45	7.60	8.65	8.20	8.05
Chmical (COD) Ox. Demand ppm 23.32 2.12	5.65	19.08	4.95	0.71	6.36	7.77	1.41	2.12	2.12	4.95	0.71	2.83	2.83	1.41
Biochemical(BOD) Ox. Demand ppm 15.93 5.66	4.09	34.45	19.07	2.80	3.54	12.22	3.59	1.53	2.00	3.03	4.12	1.62	2.44	4.49
Suspended (SS) Solid ppm 10.0	10.0				0.4						2.0			
Dissolved (DO) Oxygen ppm 7.57 7.63	7.68	7.30	7.75	7.59	7.52	7.67	7,48	7.64	7.59	8.07	7.56	7.97	7.98	7.53
Nitrite (NO2-N) Nitrogen ppm														
Nitrate (NO3-N) Nitrogen ppm									•					
Ammonia(NH4-N) Nitrogen ppm														
mdd														
mdd														
шда														
mád														
,													·	
.														
+ : Recognized	- : Unrecognized	ğ,										Tested by	BSWP L	polatory
	: Unrecognize	þ						í					Tested by	Tested by BSWP Labolatory

Table E.1.1 Result of Water Quality Test (Cont.)

8 (3 × H	Unit	Ballil						14/02/00	2000				2		C 2 0 2 2 0 2		
			F100	Ambiong	Balili	roplacion banong	Bahong	wangai	panong,	Bahong buyagan	Betag		pineng	200	DOIEWEILB	Boleweng	Sadag
_		(I)	(2)	(3)	4	(5)	(9)	(7)	(cave) (8)	(6)	(10)	(11)	(12)	(13)	(14)	(15)	(14)
	ms/cm (0.389 0.268	.268	0.319	0.396	0.297	0.391	0.167	0.353	0.360	0.303	0.315	0.145	0.166	0.211	0.209	0.168
Alkalinity pl	Hq	7.65	7.5	7.6	7.6	7.2	7.7	8.5	7.5	4.7	8.0	7.7	7.7	7.5	7.5	7.5	8.9
Chrnical (COD) Ox. Demand pj	mdd				8.25		8.0						8. 0.		8.0	7.5	0.6
Biochemical(BOD) Ox. Demand p1	mdd Ppm		٠														
Suspended (SS) Solid	шďd		-														
Dissolved (DO) Oxygen pl	mdd																
Nitrice (NO2-N) Nitrogen pp		0.225	90.0	0	0.06	0.15	0	0	0	Q	0	0	0	0	0	٥	Ö
103-N)	urdd	4.6	2.3	٥	2.3	2.3	0	0	0	ø	0	0	0	0	0	0	0
NH4-N)	मार्व्य	4.0	1.2 2.1	4.0	8.0	. 1.5	•	0	0	0	8.0	4.0		, O	۵	0	٥
Chioride (CI) p)	mdd	+	+	*	° +	: †	†	ļ	+	í	ŧ	+	1	+	+	+	1
Total fron (Fe) p	ppm	0	0	0.2	0.2	0	0	o	0	0	0.2	0	٥	0	٥	0	0
Copper (Cu) pl	mdd	0	•	0	0	0	0	0	0	.0	0	Ö	O	0	ø	٥	0
(nZ)	mdd	0	Q	0	0	0	0.25	; ,0	0	0	0.25	0	0	0	0	0.25	, ©
General Bacillus		-	‡	+	† † †	‡	† †	+	† †	† †	+		+	+ + +	‡	+	+
Colin Bacillus	J		+	+	+	+	+	+	† †	+	+		+	‡	+	+	+

Table E. 1.1 Result of Water Quality Test (Cont.)

Dail Pico Ambong galia Pico Ambong galia Pico Ambong galia Pico Ambong galia Pico Ambong galia Pico Ambong galia Pico Ambong galia Pico Ambong galia Pico Ambong galia Pico Ambong galia Pico Ambong galia Pico Ambong galia Pico Pi		1	Į	١.	1				ł			1			ľ			\
No. (2) (3) (4) (5) (6) (7) (48(8) (10) (11) (12) (13) (4) (13) (14) (14) (14) (14) (14) (14) (14) (14	Determination	Unit Bal			Ambiong	Balili	Poblacion	Bahong		Bahong	Buyagan			neng F			Boleweng	Sadag
ph 8.3 7.7 7.5 7.4 7.2 ppn 9pn 5 9pn 7.7 7.5 7.4 7.2 ppn 9pn 9pn 9pn 9pn 9pn 9pn 9pn 9pn 9pn		ີ ວ		3		×		i	(2)	(cave) (8)	(6)	(10)	(d		13)	A (14)	Б (15)	(16)
pH 8.3 7.7 7.5 7.4 7.2 ppm 5 7.4 7.2 7.4 7.2 ppm 5 6 <td>Electrical (EC) Conductivity</td> <td>ms/cm</td> <td>Ö</td> <td>.170</td> <td></td> <td>** . *</td> <td></td> <td>0.342</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.180</td> <td>0.202</td> <td>0.135</td>	Electrical (EC) Conductivity	ms/cm	Ö	.170		** . *		0.342								0.180	0.202	0.135
ppm 5 ppm 0.10 0.02 0 0 ppm 3.5 1.0 0 0 0 ppm 4++ - +++ +++ +++ +++ +++ ppm 0 0 0 0 0 0 ppm 0 0 0 0 0 0 0 ppm 0 0 0 0 <	Acidity (pH) Alkalinity	hН		 	, th		·	7.7							7.5	7.4	7.2	9.1
D) ppm 9-pm ppm 0.10 0.02 0 0 0 ppm 3.5 1.0 0 0 0 0 ppm 0.1 0 0 0 0 0 ppm 0 0 0 0 0 0 +++ +++ +++ +++ +++ +++ +++ +++ +++ +++ +++ +++ +++ +++ +++ ++++ +++++++ ++++++++++++++++++++++++++++++++++++	Chmical (COD) Ox. Demand			Ŋ		٠					•				אי			4.6
ppm 0.10 0.02 0	Biochemical (BOL Ox. Demand	mdď Dom		÷														
ppm 3.5 1.0 0 0 0 0 ppm 3.5 1.0 0 0 0 0 ppm 0.1 0 0 0 0 0 ppm 0 0 0 0 0 0 ppm 0 0 0 0 0 0 ppm 0 0 0 0 0 0 ppm 0 0 0 0 0 0 ++ ++ ++ ++ ++ ++ ++ +: Recognized -: Unrecognized -: Out of train of	Suspended (SS)	maa																
(O2-N) ppm 0.10 0.02 0	Dissolved (DO)	E E																
ppm 0.10 0.02 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Nimite (NO2-N)	<u>.</u>							•				1 ,					,
1.0 ppm 3.5 1.0 0 0 0 0 0 0 0 0 0	Nitrogen	mdd		0.10			•	0.05	,						0	0	0	0
(CM ppm 3.5 1.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Nitrate (NO3-N)		٠.					•					•			. •	,	٠,
(CI) ppm 0.1 0<	Nitrogen			٠ س		٠		0.1							0	.	ာ	>
(Cb) ppm +++ + + + + + + + + + + + + + + + +	Ammonia(NH4-N Nitrogen			0.1				0							٥	0	0	0
(Fe) ppm 0<	Chioride (Cl)	mdd	•	+ + +			-	}							† † †	+	+	+
(Cu) ppm 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Total Iron (Fe)	wdd		0				0							0	0	0	0
Zn) ppm 0 0 0 0 0 0 0 0 0 0 +++ ++ ++ ++ ++ ++	Copper (Cu)	шdd		0			٠	0							0	0	٥	٥
++ ++ + + + + + + + + + + + + + + + +		ppm		0				0								0	0	0
++ + + + + + + + + + + + + + + + + + +	General Bacillus	ţ		‡				+ + +							† † †	+	+	†
+ : Recognized: Unrecognized	Colin Bacillus	i						† †							+	+	+	+++++++++++++++++++++++++++++++++++++++
		+ : Recogn	ized	li	Unrecognized											Tested by		e.

Table E.1.2 Guidelines for Interpretation of Water Quality for Irrigation in the Philippines

			Degree of Problem	oblem	}
Irrigation Problem		No Problem	Increasing Problem	Severe Problem	J
Salinity *2 (affected crop water availability) ECw (mmhos/cm)	llability)	0.75	0.75 - 3.0	3.0	İ
Permeability (affect infiltration rate into soil) ECw (mmhos/cm)	into soil)	0.5	0.5 - 0.2	0.2	
Montmorillonite (2:1 crystal lattice)	l lattice)	9	6 - 9 *3	0	
Illite - Vermiculite (2:1 cryst	ystal lattice)	8	8 - 16*3	16	
Kaolinite - Sesquioxides (1:	(1:1 crystal lattice)	16	16 - 24*3	24	
Specific on Toxicity (affects sensitive crops) Sodium *4 *5 (Adj. SAR) *1	ive crops)	m	3-9	o,	٠
Chloride *4 *5 (meq/l) Boron (mey/)		4 0 75	4 - 10	10	
susceptible	crops)				•
NO3 - N (mg/l) NH4 - N (mg/l)	ng/l)	' ر	5-30	30	
O3 (meq/l) (ever land	sprinkling)	1.5		8.5	
Нd		(normal range 6.5 - 8.4))		

*1 Adj. SAR mean adjusted Sodium Adsorption Ratio.
*2 Values presented area for the dominant type of clay material on the soil since structual stability varies between the various clay type (Raling, 1966 and Rhoaden, 1975). Ploblems are less likely to develop if water salinity is high; more likely if water salinity is low.

*3 Use the lower range if ECw 0.4 mmhos/cm. Use the intermediate range if Ecw 0.4 - 1.6 mmhos/cm. Use upper limit of Fcw 1.6 mmhos/cm.

*4 Most tree crop and woody or namentals are sensitive to sodium and chloride (use value shown). Most annual crops are not sensitive.

*5 With sprinkler irrigation or sensitive crops, sodium or chloride is excess of 33 meq under certain condition has resulted to excessive leaf adsorption and crop damage.

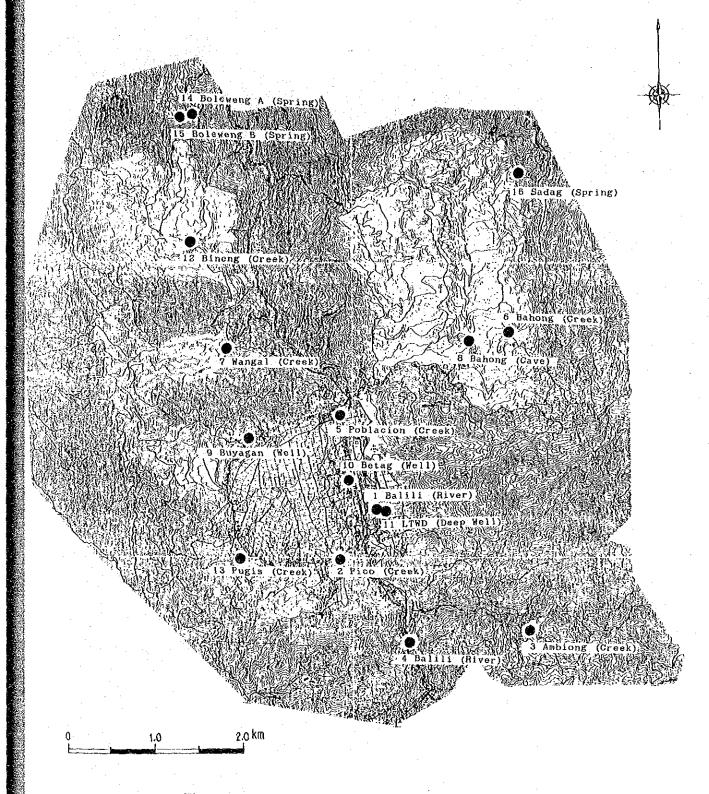


Fig. E.1.1 Location Map of Water Quality Sampling

APPENDIX F

<u>IRRIGATION</u>

APPENDIX F IRRIGATION

	1, 1,	TABLE OF CONTENTS	
		TABLE OF CONTENTS	
			Page
1.	PRESI	ENT CONDITION	F-1
	1.1	Present Irrigation Area	. F-1
		1.1.1 Irrigated area	F-1
		1.1.2 On-farm condition	. F-2
	1.2	Irrigation Practices	. F-3
		1.2.1 Water source for irrigation	
	- · ·	1.2.2 Irrigation/Watering practices	. F-4
	1.3	Communal Irrigation System (CIS) and Private Irrigation System	. F-5
		1.3.1 Communal Irrigation System (CIS)	. F-5
		1.3.2 Private irrigation system	. F-8
	1.4	Intake Rate Survey	F-9
2.	DELO	PMENT PLAN	. F-11
	2.1	General	. F-11
	2.2	Beneficial Area	. F-11
,	2.3	Optimization of Development Plan	. F-12
	•	2.3.1 Developable water source	. F-12
		2.3.2 Alternative plan.	. F-13
		2.3.3 Optimum scale of development plan	. F-14
	2.4	Irrigation Method	. F-15
	2.5	Irrigation Water Requirement	. F-18
		2.5.1 Irrigation water requirement for upland crops	. F-18
. 4	1	2.5.2 Irrigation water requirement for rice	. F-21
	2.6	Water Balance	. F-24
		2.6.1 Water requirement of each zone	. F-24
.*	*	2.6.2 Irrigation block	. F-24
	•	2.6.3 Water sources of the irrigation blocks	. F-26
		2.6.4 Water balance calculation	. F-27

2.7.2 Preliminary design of irrigation facilities F-30 2.7.3 On-farm development	2.7.1	Proposed irrigation system	F-30
	2.7.2	Preliminary design of irrigation facilities	F-30
	2.7.3	On-farm development	F-33
	•		
)
		and the state of t	

	LIST OF TABLES
	Page Page
Table F.1.1	Inventory of Existing CIS in the Project Area F-34
Table F.2.1	Total Consumptive Use of Water in Zone I F-35
Table F.2.2	Consumptive Use of Water in Zone I (1) F-36
Table F.2.3	Consumptive Use of Water in Zone I (2) F-37
Table F.2.4	Consumptive Use of Water in Zone I (3) F-37
Table F.2.5	Consumptive Use of Water in Zone I (4) F-38
Table F.2.6	Consumptive Use of Water in Zone I (5) F-38
Table F.2.7	Consumptive Use of Water in Zone I (6) F-39
Table F.2.8	Consumptive Use of Water in Zone I (7) F-39
Table F.2.9	Consumptive Use of Water in Zone I (8) F-40
Table F.2.10	Total Consumptive Use of Water in Zone II F-41
Table F.2.11	
Table F.2.12	Consumptive Use of Water in Zone II (2) F-43
Table F.2.13	Consumptive Use of Water in Zone II (3) F-44
Table F.2.14	Consumptive Use of Water in Zone II (4) F-44
Table F.2.15	Consumptive Use of Water in Zone II (5) F-45
Table F.2.16	Consumptive Use of Water in Zone II (6) F-45
Table F.2.17	Total Consumptive Use of Water in Zone III F-46
Table F.2.18	Consumptive Use of Water in Zone III (1)
Гаble F.2.19	Consumptive Use of Water in Zone III (2) F-48
Table F.2.20	Consumptive Use of Water in Zone III (3) F-49
Table F.2.21	Consumptive Use of Water in Zone III (4) F-49
Table F.2.22	Consumptive Use of Water in Zone III (5) F-50
Table F.2.23	Consumptive Use of Water in Zone III (6) F-50
Table F.2.24	Consumptive Use of Water in Zone III (7) F-51
	Consumptive Use of Water in Zone III (8) F-51
Table F.2.26	Required Pond Capacity in Water Balance Calculation F-52
Table F.2.27	Water Balance Calculation in Zone I, Irrigation Block: I - 1 F-53
Table F.2.28	Water Balance Calculation in Zone I, Irrigation Block: I - 2 F-54
Table F.2.29	Water Balance Calculation in Zone I, Irrigation Block: I - 3 - 1 F-55
Table F.2.30	Water Balance Calculation in Zone I, Irrigation Block: I - 3 - 2 F-56
Table F.2.31	Water Balance Calculation in Zone II, Irrigation Block: II - 1 F-57
Table F.2.32	Water Balance Calculation in Zone II, Irrigation Block: II - 2 F-58
Table F.2.33	Water Balance Calculation in Zone II, Irrigation Block: II - 3 F-59
Table F.2.34	Water Balance Calculation in Zone II, Irrigation Block: II - 4 F-60

Table F.2.35	Water Balance Calculation in Zone II, Irrigation Block: II - 5	F-61
Table F.2.36	Water Balance Calculation in Zone II, Irrigation Block: II - 6	F-62
Table F.2.37	Water Balance Calculation in Zone II, Irrigation Block: II - 7	F-63
Table F.2.38	Water Balance Calculation in Zone II, Irrigation Block: II - 8	F-64
Table F.2.39	Water Balance Calculation in Zone III, Irrigation Block: III - 1	F-65
Table F.2.40	Summary of Water Balance in Dry Season	F-66
Table F.2.41	Annual Amount of Water Source Availability	F-67
Table F.2.42	Annual Present Water Use	F-68
Table F.2.43	Proposed Irrigation Facilities	F-69

		1
	LICT OF EXCLIPES	
	LIST OF FIGURES	
	en en en en en en en en en en en en en e	Page
Fig. F.1.1	Present On-farm Condition of Sample Site (A)	F-70
Fig. F.1.2	Present On-farm Condition of Sample Site (B)	F-71
Fig. F.1.3	Existing Irrigation Facilities in Zone I	F-72
Fig. F.1.4	Existing Irrigation Facilities in Zone II	F-73
Fig. F.1.5	Existing Irrigation Facilities in Zone III	F-74
Fig. F.1.6	Integrated Infiltration Data (1) - (6)	F-75
Fig. F 2.1	Schematic Diagram of Major Water Source	A Section
	for Irrigation Development Alternatives	F-81
Fig.F 2.2	Proposed Irrigation Block in Zone I	F-82
Fig. F 2.3	Proposed Irrigation Block in Zone II	F-83
Fig. F 2.4	Proposed Irrigation Block in Zone III	F-84
Fig. F 2.5	Schematic Diagram of Proposed Irrigation Block in Zone I	F-85
Fig. F 2.6	Schematic Diagram of Proposed Irrigation Block in Zone II	F-86
Fig. F 2.7	Schematic Diagram of Proposed Irrigation Block in Zone III	
Fig. F 2.8	Flow Chart of Water Balance Calculation	F-88
Fig. F 2.9	Schematic Diagram of Proposed Irrigation System	
	and the contract of the contra	1 .
		1

APPENDIX F IRRIGATION

1 PRESENT CONDITIONS

1.1 Present Irrigation Area

1.1.1 Irrigated area

Irrigation practice is required for about six months from November to April owing to small rainfall. Although sufficient water for irrigation has been not always provided especially in the most droughty month, area presented below has some irrigation services.

PRESENT IRRIGATION AREA

Zone	Category	Water Source	Area(ha)	Remarks
Zone I	Upland field	Bodeceweew and Ovulan Spring	22	
	Upland field	Pico Creek	56	Supplemented by the Balili river water (38 ha)
	Upland field	Puguis Spring and Creek	40	
	Upland field	Bayabas Creek(1)	7	
	Upland field	Bayabas Creek (2)	18	Supplemented by the Balili river water
	Upland field	Betag Creek	42	Supplemented by the Balili river water
	Upland field	Bolo Creek	15	Supplemented by the Balili river water
Sub-total	•		200	
Zone II	Upland field	Dinog Cave	100	Supplemented by the Balili river water
	Upland field	Bahong Creek	18	
	Upland field	Springs in Bahong	g 30	
	Upland field	Alapang Creek	45	Supplemented by Springs
	Upland field	Peril Creek (1)	26	Partly pumped up
	Paddy field	Peril Creek (2)	1	Supplemented by Spring
Sub-total			<u>220</u>	

Zone III	Upland field	Wangal Creek	5	ere a company of
	Upland field	Wangal Creek	20	Bineng, irrigated *1 by existing canal
	Upland field	Bineng Creek	4	
	Upland field	Springs	. 1	
	Paddy field	Wangal Creek	5	Bineng, irrigated by existing canal
	Paddy field	Springs	20	
<u>Sub-total</u>			<u>55</u>	•
TOTAL	والمراجعة والمراجعة والمراجعة والمراجعة والمراجعة والمراجعة والمراجعة والمراجعة والمراجعة والمراجعة والمراجعة	en en en en en en en en en en en en en e	475	

^{*1:} in severe drought term, Balili river water has been slightly introduced.

1.1.2 On-Farm condition

In order to grasp the present on-farm condition, two sample sites were decided as typical farm land for upland field and paddy field respectively, which are shown in Fig.F.1.1 and Fig.F.1.2.

Accordingly, land use on the sample sites are listed as follows:

PRESENT ON-FARM CONDITION OF THE SAMPLING SITES

Items	Sample site A	Sample site B
Farm category	upland field	paddy field
Total area (ha)	0.78	0.48
Total cultivated land (ha)	0.60	0.38
Plot nos.	9	7
Average plot area(ha)	0.068	0.022
Other use area (ha)	0.18	0.10
Ratio of cultivated		
land (%)	77	79

As for upland field, small canal networks are partially provided, although the canal is not systematically aligned and is counted as low density. Irrigation water is conveyed to irrigated area by poly-tubes, then delivered to farmland through those canals.

Very few canals are provided in paddy field. Therefore, irrigation water is generally delivered plot to plot of the field, and thus surplus water is drained into nearest creek or river directly.

1.2 Irrigation Practices

1.2.1 Water source for irrigation

There are three major water sources in the Project area for irrigation especially in the dry season. Those are listed as follows:

- Base flow of stream in the Project area
- Spring water
- the Balili river

Each Zone has no abundant water source, and irrigation practice is scarcely fulfilled in spite of farmers' enormous efforts of utilizing available water therein.

Present condition of water utilization in each Zone is summarized as follows:

a. Zone I

Water use of the Balili river is limited in the dry season and even the wet season because of increasing contamination of the river water. Only about 0.02 cu.m/s of the river water was estimated to be used for irrigation in the dry season, at the result of measures of diverted water in the field survey.

Several springs were found in Puguis and Pico, and 0.03 to 0.04 cu.m/s of discharge from these springs in all was estimated to be utilized for irrigation.

Base stream flow in this area is scarcely expected, but stream water charged by springs in upstream site is used effectively by damming up.

b. Zone II

Dinog cave is the major water source in Zone II. As a result of topographical and geological survey, it was found that the cave was an outlet of natural tunnel connecting with downstream side of the Balili river in Zone I. Therefore, water flow into this cave was estimated to be mixed with Balili river

water and other seepage water through the tunnel. In severe dry season, contaminated Balill river water is directly charged to the Dinog cave by damming up. Unless taking positive countermeasure such as damming up at the Balili river, discharge of 0.015 to 0.02 cu.m/s was estimated to be available at this cave for irrigation in consideration of existing conditions concerned with utilization of irrigation facilities and present cropping pattern therein. In addition to this, 0.03 to 0.04 cu.m/s of water from springs studding in this Zone were also estimated to be available for irrigation.

Source of base flow is spring water. Although the amount is small, those are still expected to be used for irrigation.

c. Zone III

Springs at paddy field and water diverted from the Wangal creek through Bineng CIS canal are major water sources in Zone III.

Water discharge from the springs was estimated at 0.02 cu.m/s taking consideration of the actual cropping area of paddy.

There is no other way of diverting by the existing canal to supply irrigation water for upland area in Zone III. Because of incomplete intake facilities at the Wangal creek, it was almost impossible to divert sufficient water from the Wangal creek. In case of severe drought, farmers in this area introduce limited amount of water from the Balili river by temporary tube. Existing irrigation facilities are shown in Fig.F.1.3, Fig.1.4 and Fig.F.1.5, respectively.

1.2.2 Irrigation/Watering practices

Most of the field in the Project area, except the limited area irrigated by the sprinkler system in Zone II, were adopted by the furrow irrigation as a surface method.

However, during severe drought season especially from February to April, watering by farmers with can or tube has been applied in order to save water. By the watering, actual irrigated area could be concentrated only around cropped portion so-called garden bed.

Crop water consumption are determined exclusively in accordance with evapotranspiration. Only way for saving water is decreasing of water losses, watering can be attained such purpose by means of decreasing actual irrigated area.

In the Project area, some samples of farm land for garden condition survey, were selected in order to estimate percentage of garden bed which are actually irrigated by the watering.

According to the survey, actual irrigated area by watering was concluded at 65 percent of farm land area.

The watering method is delivering irrigation water to a plot adjacent to an easily accessible ditch or puddle, which can manage at most a plot of about 500 sq.m.

As for actual frequency of watering practice, every day watering is familiar case, because more the irrigation frequency is more the crop production. At least, watering practice of three times a week is required in the dry season when no rainfall can be expected.

However, such watering can not be practiced in severe drought term due to the lack of available water.

1.3 Communal Irrigation System (CIS) and Private Irrigation System

1.3.1 Communal Irrigation System (CIS)

There are five (5) Communal Irrigation Systems in the Project area. Namely, Pico CIS, Bahong CIS, Alapang CIS, Alno CIS, and Bineng CIS. These CISs have been operated under respective irrigation Associations (IAs).

Field investigation for the facilities of CIS was carried out by the Study Team and interviewing IAs was also made. Results are mentioned below and summarized in Table F.1.1.

(1) Pico CIS

Pico CIS has a boulder dam and a simple intake at about 850 meters downstream of the Baguio Sewage Treatment Plant on the Balili river and the irrigation canal extended to Zone I area along the National Road. It was originally the main

irrigation water source but is now used as a supplementary water in the dry season due to heavy deterioration of water quality.

Consequently, the main irrigation water source for Pico CIS Area is rainfall and resulted run off discharge coming from the catchment area of the Bayabas Creek (175 ha) and the Pico creek (24 ha), besides the Bodecewcew spring water and Ovulan Spring water which are available throughout a year and are located at the foot of limestone hill in the catchment area of the Bayabas creek

A 200 ha of irrigation area was registered for Pico, Puguis and Betag Barangay and number of farmer/beneficiary was 103, however a rapid development of the residential and commercial area is forcing the decrease of irrigation area. Based on the topographic map of 1/5,000 and supplemented field survey, the irrigation area of Pico CIS is estimated at 200 ha including Puguis area at present, of which 113 ha are irrigated by supplemental water from the Balili river in the dry season.

Other irrigation facilities of Pico CIS are canal including division structures, pipe line and plastic hose.

Purpose of the Pico CIS was the supply water to vegetable, flower and fish culture. Now, fish culture is not found in the area. The Pico CIS was established with SEC but the record and files are missing. O & M of the system has been undertook by the member of CIS using Barangay fund, Cashfund or donations by farmers.

(2) Bahong CIS

Bahong CIS is the biggest CIS in Zone II. It is reported that the potential service area is 250 ha for Bahong, Alapang and Alno Barangays and number of farmer is 300.

Main irrigation water source is rainfall and outflow from the Dinog Cave (so called Bahong Tunnel). It is believed that the outflow is composed of invaded water from the Balili river bed through the Dinog Cave and ground water through cracks of the limestone in the catchment of the Dinog Cave.

Outflow from the Dinog Cave is large in rainy season due to raising of water level at the inlet of the Dinog Cave and high elevation of ground water level, however, it becomes small as progress of the dry weather.

The other irrigation facilities are simple intake installed at the Bahong creek and the Alapang creek downstream of the outlet of the Dinog Cave. The identified intake sites are seven (7) in the Alapang creek and two (2) in the Bahong creek

The main problem of Bahong CIS are:

- Protection of much inflow of floating materials contained with garbage thrown into the Balili river to the Dinog Cave inlet,
- Construction of temporary sand-bag dam so as to divert the Balili river water to the Dinog Cave in the dry season
- Control of irrigation water distribution at the outlet of the Dinog Cave because farmers install numbers of individual pipes or hoses to supply irrigation water for their gardens. The farmers who put their hose or tube in the inner part of the outlet of the Dinog Cave and/or install bigger size of hose/tube are always receive much advantage of water, and
- Deterioration of water quality of outflow at the Dinog Cave which is caused by the Balili river pollution.

Agreement among the member is repair and maintenance of the system and water allocation during the shortage of outflow of the Dinog Cave.

The Balili river water supply area is estimated at 100 ha on the topographic map of 1/5,000 in addition to field survey.

(3) Alapang CIS

It is reported that Alapang CIS has the potential area of 10 ha and number of the member is 20.

Water source is rainfall and its resulted runoff to the Peril creek and springs. Number of intakes is five (5) and conveyance facilities of irrigation water is plastic tubes or pipes. Major crops planted are flowers and vegetables.

(4) Alno CIS

The potential area of 5 ha and 15 beneficiaries are reported. Main water source is rainfall and resulted runoff to the Alno creek. Number of intake is two (2) and water conveyance is by means of pipe/tube. Vegetable is the main crop in the area.

(5) Bineng CIS

Bineng CIS has a boulder dam and simple intake at about 250 meters downstream of the Provincial Road from Capitol to Bineng at the Gayasey on the Wangal river.

Main irrigation canal is extended around 3.5 km.

The structures are earth canal and pipe bridge crossing deep valleys.

Since the irrigation system has been deteriorated under the severe physical conditions and lack of O & M fund, leakage and seepage of water are observed in many places.

It is reported that the designed area of the system was 60 ha and 35 farmers were registered on September 17, 1976 with no. SEC/FSDC 69697. However, the actual irrigated area is about 40 ha at present. The system was constructed as the FSDC project (Farm System Development Corporation) with cost of 248,013 pesos which is 16,840 pesos per one farmer.

This system is operated under the agreement among farmers by-laws Bineng Irrigators Service Association, Inc.

1.3.2 Private irrigation system

Private irrigation system are found in the topographically constrained sites.

In high elevation area where spring water is available or low elevation area where creek water is available in gravity or by means of pumping up, some rich farmers have installed private irrigation systems. Major water conveyance is made utilizing poly-tube or pipe up to their farmland. Usually, farmers provide a small garden basin or a pit for watering purpose.

Such area are found at the following places:

- small spring in Zone I (about 1 ha)
- left hill side of the Peril creek in Zone II (about 8 ha)
- left hill side of the Alno creek in Zone II (about 5 ha)
- -- lowland pumping area along the Peril creek in Zone II (about I ha)

— north-east of Zone III of which elevation is lower than 900 meters (about 4 ha)

Total area is estimated at about 19 ha.

1.4 Intake Rate Survey

Intake rate tests was carried out in six points of several soil classification. As a method of the test, Double Ring was taken and measured integrated infiltration.

1) Integrated infiltration (D)

Exponential regression curve presented below, was adopted to the integrated infiltration data shown in Fig.F.1.6.

$$D = C T^n$$

D: Integrated infiltration (mm)

T: Time (min)

C, n: Constants

2) Intake rate (I)

Intake rate is a differential function of the integrated infiltration function mentioned above.

The equation is presented below.

$$I = 60 \, \text{C} \, \text{n} \, \text{T}^{\, \text{n-1}}$$

I: Intake rate (mm/hr)

T: Time (min)

C, n: Constants

3) Basic intake rate (Ib)

This is the rate which water enters the soil when the charge in rate becomes 10 percent of initial value.

The equation is presented below.

 $Ib = 60 C n \{600 (1-n)\}^{n-1}$

Ib: Basic Intake rate (mm/hr)

C, n: Constants

The results of the test are listed below:

 Sample site	Integrated infiltration(mm)	Intake rate (mm/hr)	Basic intake rate (mm/hr)	
Zone I, pit 5	D=3.4T ^{0.524}	I=106.9T-0.476	7.2	
Zone II, pit 2	D=4.0T ^{0.920}	I=220.0T-0.080	162.0	in the transfer
Zone II, pit 6	D=1.8T ^{0.872}	I= 94.2T-0.128	54.0	
Zone II, pit 9	$D=1.9T^{0.584}$	$I = 66.6T^{-0.416}$	6.7	
Zone III, pit 5	$D=3.7T^{0.635}$	I=141.0T-0.365	19.7	
 Zone III, pit 7	$D=1.4T^{0.693}$	I= 58.2T-0.307	11.7	

2. DEVELOPMENT PLAN

2.1 General

In line with the basic concept and strategy for agricultural development, irrigation system should be facilitated so as to increase productivity and profitability of agriculture. As inadequate facilities and several constraints for irrigation presented below were found in the Project area, these have to be dissolved in accordance with farmers' intention.

- a. Uneven seasonal distribution of rainfall,
- b. Shortage of irrigation water during the dry season,
- c. Inadequate irrigation facilities.

However, irrigation development plan is always formulated to be economically endorsed.

In this Project, proposed irrigation system shall be made realistic or smoothly implement.

2.2 Beneficial Area

It is considerably uneconomical to take whole agricultural land of the Project area into the beneficial area for irrigation, because some of farm lands stud steep potion of each zone. Beneficial area was demarcated in the Project area excluding remote farms mentioned below.

- a. quite isolated farm land which can not be taken into certain farm section.
- isolated farm land which requires own irrigation facilities on a large scale for supplying irrigation water.
- c. high elevated farm land where irrigation water have to be pumped up at more than 50 meters of the total head.

Accordingly, beneficial area for irrigation was concluded as follows:

					* .	(Unit : ha)		
Land categories	Zo	ne I	Zone	e II	Zone	ill	To	al
	Gross	Net_	Gross	Net	Gross	Net	Gross	Net
Upland crop field	200	160	240	155	60	40	500	355
Lowland rice field	. 0	0	0	0	40	30	40	30
Total	200	160	240	155	100	70	540	385

Actual beneficial area excludes land acquisition from the beneficial area presented above.

2.3 Optimization of Development Plan

2.3.1 Developable water source

Developable water sources for beneficial area listed below:

a. Intake weirs

Improvement of intake weirs considerably increases availability of stream flow, and accomplish stable water intake. However, irrigation water for the entire beneficial area will still be insufficient in severe drought term.

b. Ponds

Pond which introduces water of creek or spring and releases water through the intake facilities while drought, is most effective and economic water source on a small and middle scale water demand. Whole developable pond capacity in the Project area was at most about 70,000 cu.m, because of difficulty of land acquisition and steep topographic condition.

As for the alternative plan which requires larger storage capacity to the above, construction of dam reservoir should be taken into consideration.

c. Dam reservoir

Large dam can be constructed only at middle stream of the Wangal creek, which gives 4.0 MCM. capacity at maximum. Nevertheless, the dam is costly itself, and related structures of the same need high investment.

As design water level of the dam will be set at EL. 1,210 m, supplying water for nearly half of the beneficial area must be pumped up.

d. Well

Appropriateness of irrigation water supply by well should be judged by operation cost which imposes farmers, as well as investment cost for the facilities.

According to the comparison of construction cost and agricultural benefit, well with more than 50 meters of the total head was uneconomical for exclusive use of irrigation.

However, supplementary use of well proposed for domestic water supply deserves to introduce, if the well yields sufficient water, and land acquisition for pond construction seems difficult.

2.3.2 Alternative plan

Proposing advantageous cropping pattern from agricultural aspects, it is suggested that water sources should be developed in such a manner so as to adopt surface irrigation method that are consistent with the proposed cropping pattern.

Water source development is basically composed with improvement of intake weirs and construction of ponds or small reservoirs. The construction of ponds inside of each irrigation block was assumed to be permissible to a maximum of about 70,000 cu.m in total because of difficulties of land acquisition and topographic conditions. Despite the fact that dam reservoirs can be constructed in the middle reaches of the Wangal creek in the case of huge irrigation water required, this is assumed to be rather expensive owing to the construction of big dam and long diversion conduits, and the necessity of boosted conveyance of irrigation water by pump to Zone I and a part of Zone II.

In accordance with several conditions mentioned above, three alternatives for irrigation development listed below are proposed. Optimum irrigation plan is to be determined among the alternative plans through economical evaluation.

Alternative A: to aim at enlarging the irrigable area and term by construction of mainly intake facilities. Farm ponds having only regulating capacity are also proposed.

Alternative B: to aim at enlarging the irrigable area and term by construction of intake facilities and irrigation ponds which may have as large as possible reservoir capacity topographically permitted.

Alternative C: to accomplish full development in irrigable area and term. Dam reservoir is required in the Wangal creek as a main water source.

Schematic diagram of major water source for the above irrigation development alternatives are shown in Fig.F.2.1.

Result of the comparison of the alternatives are listed as follows:

Alternative	Net beneficial area (ha) *1	Planted area (ha) *2	Major irrigation facilities
Α	382	1,082 (217)	9 intake weirs, and farm ponds for regulating with 10,000 m ³ capacity in all.
В	381	1,155 (217)	8 intake weirs, and 11 nos.ponds with 68,500 m ³ capacity in all.
. c .	376	1,312 (217)	Concrete dam with 30 m dam height, diversion conduit of 6.8 kms length, lifting pump with 12m ³ /min ,180m head.

^{*1:} These figures excludes land acquisition from the total net beneficial area 385 ha.

2.3.3 Optimum scale of development plan

Economic comparison of the alternatives are shown below, which were evaluated based on the ratio of Benefit by Cost (B/C).

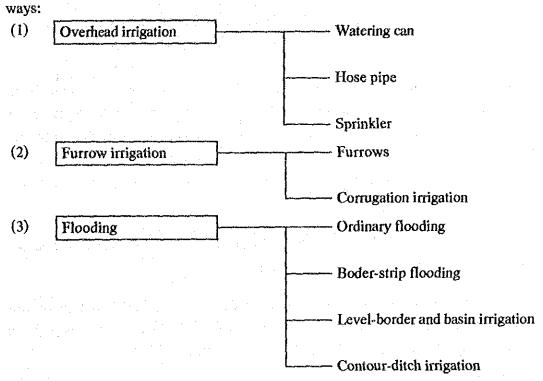
Alternative	Construction cost (103 P)	Annual O&M cost (103 P)	Incremental benefit (103 P)	В/С
Α	60,008	1,135	18,124	1.90
В	67,750	1,248	20,854	1.95
C	210,800	2,563	32,120	1.01

^{*:} Above B/C were calculated in discount rate at 10%.

Accordingly, Alternative B was concluded as the most economic alternative with the highest B/C at 1.95 percent.

Actual beneficial area of the optimum plan excluding land acquisition for proposed road and irrigation facilities, is listed as follows:

^{*2:} Figures in the parenthesis owe to drainage improvement but irrigation.


							(Unit: ha	a)
Land categories	Zor	ne I Zone II		Zone III		Total		
	Gross	Net	Gross	Net	Gross	Net	Gross	Net
Upland crop field	199	159	235	152	60	40	494	351
Lowland rice field	. 0	0	0	0	40	30	40	30
Total	199	159	235	152	100	70	534	381

With the optimum plan, about two thirds of farm lands in Zone I and Zone II would be supplied irrigation water for applying surface irrigation practice even in severe drought months i.e., from January to April. All farm lands in Zone III would be accomplished full area and term irrigation with good effect of improvement of existing Bineng CIS irrigation facilities.

2.4 Irrigation Method

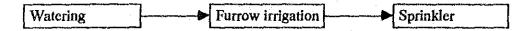
Selecting the methods most suitable for applying water is important in order to economize investment for irrigation facilities and expense for operation and maintenance, and to apply water effectively.

Irrigation water can be applied to the uplands in any of the following general

(4) Drip irrigation Drip or trickle irrigation

According to the results of intake rate survey, average of basic intake rate of respective zones is as follows:

And the state of t	Unit : mm/hr
Zone of Study area	Average of basic intake rate
Zone I	7.2
Zone II	74.2
Zone III	15.7

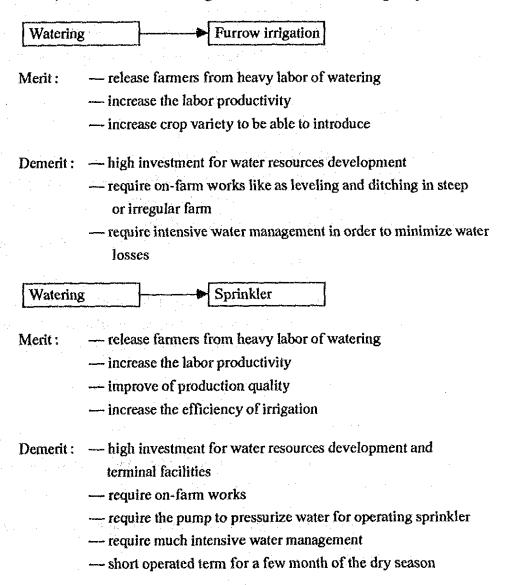

Guide-line of suitable irrigation method in accordance with basic intake rate of soil had been generally proposed below.

Basic intake rate	Suitable irrigation method
Less than 50 mm/hr	Every method is available
50 - 75 mm/hr	Overhead irrigation, Furrow irrigation
More than 75 mm/hr	Overhead irrigation, Drip irrigation
	Source: Field Irrigation in Japan, 1971

As for drip water application, a highly efficient water utilization can be achieved with this method, it usually requires high investments. Water is delivered to the orifices through plastic pipelines which are generally laid on the soil surface or buried. The plastic pipelines have to be installed in high density especially for vegetable cultivation. And, careful filtering of water is also necessary in order to avoid closing at the emitters.

Accordingly, overhead irrigation or furrow irrigation method is adaptable as a suitable irrigation method for whole Project area.

The irrigation method to be adopted will be generally transferred going with water resources development and investment for irrigation facilities to raise agricultural productivity, as agricultural modernization will be proceeded.



The introduction of new irrigation methods can be easily realized in the area holding sufficient natural resources of land or water.

However, to introduce new irrigation methods is not always feasible for area where it isn't, like the Study area.

The selection of irrigation method which requires large investment for water resources development, on-farm development and operation and maintenance, should be evaluated in view point of economic, farm management and farmers' intention.

In this Project, two kinds of transfer of irrigation method are within the realm of consideration, which are from watering to furrow and from watering to sprinkler.

It should be considered that high investment for on-farm equipment such as sprinkler and much expense for maintenance and operation pressure the farm economy.

Considering those situations, furrowing was recommended as a standard irrigation method in entire Project area. However, such recommendation does not prevent farmers from independently practicing of other irrigation method so far as supplying water quantity permits.

- 2.5 Irrigation Water Requirement
- 2.5.1 Irrigation water requirement for upland crops
- (1) Crop water requirement (CWR)

The crop water requirement basically comprises land preparation requirement and field crop requirement. Nursery water requirement is needed depend upon crops in addition to their requirements.

$$CWR = (NW) + LP + FC$$

Where, CWR: Crop water requirement (mm/day)

NW: Nursery water requirement (mm/day)

LP : Land preparation requirement (mm/day)

FC: Field crop requirement (mm/day)

(i) Nursery water requirement (NW)

The nursery water requirement is the amount of water needed to irrigate nursery, in the case of strawberry which must be transplanted. Unit water requirement is as same as field crop requirement mentioned in next section.

Area of nursery to be irrigated is 10 percent of transplanted area.

(ii) Land preparation requirement (LP)

The land preparation requirement is the amount of water needed to make satisfactory field condition for seeding of crop.

Generally, land preparation requirement can be formulated as follows:

$$PR = De x (Fc - Pw)/100$$

Where, LP: Land preparation requirement (mm/day)

PR: Pre-irrigation requirement (mm)
N: Land preparation period (5 days)

De: Depth of soil to be irrigated for seeding (100 mm)

Fc: Field capacity (% in capacity)

Dm: Depletion of moisture content (% in capacity)

Fc and Dm of respective zones which are average of soil sampling data, are summarized as follows:

	unit: % in capacity				
Zone of Study area	Fc	Dm			
Zone I	38.5	30.3			
Zone II	37.3	28.9			
Zone III	32.3	26.1			

The land preparation requirement calculated by the equation mentioned above is generally smaller than the crop water requirement. In this project, the land preparation requirement is regarded as same as the crop water requirement to give some margin of water losses in term of land preparation.

(iii) Field crop requirement (FC)

The field crop requirement is the amount of water consumed by crops during the period from seeding to harvesting.

 $FC = Kc \times ETo$

Where, FC: Field crop requirement (mm/day)

Kc: Crop coefficient

ETo: Potential evapotranspiration (mm/day)

The crop coefficient at each growth stage was estimated on the basis of the "crop water requirement" published by FAO in 1971. Those are listed below:

Growth stage	Kc values of	crops at each growth	stage
at 5 days	Strawberry	Vegetables	Rose
1	0.62	0,63	1.05
2	0.65	0.69	1.05
3	0,69	0.75	1.05
4	0.72	0.80	1.05
5	0.76	0.86	1.05
-6	0.79	0.92	1.05
7	0.83	0.96	1.05
. 8	0.90	0.96	1.05
9	0.93	0.96	1.05
10	0.95	0.96	1.05
11	0.95	0.92	1.05
12	0.95	0.85	1.05
-	0.95		1.05
· · · · · · · · · · · · · · · · · · ·	0.95		1.05
48	0.95		1.05
		the state of the s	1.05
			1.05
72			1.05

Potential evapotranspiration was discussed in APPENDIX C comparing ETo estimated by Penman method with open pan-evaporation data. Grounding on the discussion, potential evapotranspiration was estimated with pan-evaporation data as follows:

$$ETo = Kp \times ETpan$$

Where, Kp: Pan coefficient (1.0)

ETpan: Open pan evaporation

(2) Farm water requirement (FWR)

The farm water requirement is obtained on 5-day basis, deducting the effective rainfall added up effective daily rainfall on 5-day.

Where, FWR: Farm water requirement (mm/5-day)

CWR: Crop water requirement (mm/5-day)

RE: Effective rainfall (mm/5-day)

As for effective rainfall during crop growth, daily rainfall of 5 mm or less is considered ineffective.

While daily rainfall exceeding 5 mm is considered 80 percent effective, limited to the total readily available moisture of soil at 40 mm.

(3) Unit diversion water requirement

The diversion water requirement is defined as the amount of farm water requirement plus allowance for irrigation losses.

DWR = FWR / EF / 100

Where, DWR: Diversion water requirement (mm/5-day)

FWR: Farm water requirement (mm/5-day)

EF: Irrigation efficiency (%)

The irrigation efficiency (EF) is normally subdivided into three stages presented below.

- i) Field application efficiency (Ea)
- ii) Field canal efficiency (Eb)
- iii) Conveyance efficiency (Ec)

As the irrigation method, furrowing is recommended.

$$EF = Ea \times (Eb \times Ec) = 0.7 \times 0.95 = 0.65$$

2.5.2 Irrigation water requirement for rice

(1) Crop water requirement (CWR)

The crop requirement is defined as the amount of water needed to meet the consumptive demand of crop for optimum growth from seeding to harvesting. It consists nursery, Puddling and field crop requirements as shown below:

$$CWR = Kn \times NU + Kd \times PU + Kf \times FC$$

Where, CWR: Crop water requirement (mm/day)

Kn: Area factor of nursery

NU: Nursery requirement (mm/day)

Kd: Area factor of puddling

PU: Puddling requirement (mm/day)

Kf: Area factor of planted main field

FC: Field crop requirement (mm/day)

(i) Nursery requirement (NU)

The nursery requirement is the amount of water needed for nursery preparation and growth of seeding until it is transplanted to original field.

The nursery area takes 3 percent of original field in accordance with present condition.

$$NU = Sn + Kc \times ETo + P$$

Where, NU: Nursery requirement (mm/day)

Sn: Soil saturation requirement Kc: Crop coefficient (Kc = 1.0)

ETo: Potential Evapotranspiration (mm/day)

P: Percolation loss (3.6 mm/day)

Percolation loss were measured at two sites, and respective results were 7.15 mm/day and almost zero which was estimated in lower paddy field because of return flow from upper paddy field.

Averaged percolation rate 3.6 mm/day is adopted in the project.

Soil saturation requirement of nursery is regard as negligible small in comparison with CWR of original paddy field. Soil saturation requirement of nursery is made include in other factor of nursery requirement.

(ii) Puddling requirement (PU)

The puddling requirement is defined as the amount of water needed to saturate the soil prior to the initial breaking and pond the rice field for transplanting, and the needed evaporation and percolation in the paddy field.

$$PU = (Ls + Sw)/N + Ev + P$$

Where, PU: Puddling requirement (mm/day)

Ls: Land soaking (80 mm)

Sw: Standing water (20 mm)

N: Puddling period (10 days)

Ev: Evaporation (mm/day)

P: Procreation rate (3.6 mm/day)

(iii) Field crop requirement

The field crop requirement is the amount of water consumed by the crop during the period from transplanting to 20 days before harvesting.

 $FC = Kc \times ETo + P$

Where, FWR: Field crop requirement (mm/day)

Kc: Crop coefficient

ETo: Potential evapotranspiration (mm/day)

P: Percolation rate (3.6 mm/day)

The crop coefficient at each growth stage of rice is listed below, which is based upon "Crop water requirement" published by FAO in 1971.

		<u> </u>	Kc gr	owth c	f rice					
Growth stage at 5 days	1	2	3	4	5	6	7	8	9	10
Ke	0.80	0.81	0.87	0.91	0.95	0.98	1.01	1.04	1.07	1.10
Growth stage at 5 days	11	12	13	14	15	16	17	18	19	20
Kc	1.13	1.15	1.17	1.19	1.20	1.21	1.21	1.21	1.20	1.18
Growth stage at 5 days	21	22	23	24	25	26				
Kc	1.14	1.11	1.07	1.02	0.98	0.97		·		

(2) Farm water requirement (FWR)

The farm water requirements was assessed on 5-day basis, deducting the effective rainfall from crop water requirement as follows:

FWR = CWR - RE

Where, FWR: Farm water requirement (mm/5-day)

CWR: Crop water requirement (mm/5-day)

RE: Effective rainfall (mm/5-day)

As for effective rainfall during crop growth, daily rainfall of 5.0 mm or less is considered ineffective. While rainfall exceeding 5.0 mm is considered 80 percent effective, limited to field outlet height of 80 mm due to spill over.

(3) Unit diversion water requirement (DWR)

The diversion water requirement is defined as the amount of farm water requirement plus allowances for application loss, operation loss and conveyance loss, and calculated as follows:

DWR = FWR/EF/100

Where, DWR: Diversion water requirement (mm/10-day)

FWR: Farm water requirement (mm/10-day)

EF: Irrigation efficiency (%)

On the basis of present condition, Irrigation efficiency is decided as follows:

Îtem	Efficiency (%)
Application efficiency	95
Conveyance efficiency	90
Overall irrigation efficiency	85

2.6 Water Balance

2.6.1 Water requirement of each zone

Water requirements of each zone in optimized plan were calculated by means of the methodology mentioned previously.

Results of the calculation at five days are shown in Table F.2.1 to Table F.2.25, and water requirements summarized monthly shown below:

Month	Zone I	Zone II	Zone III	
Jan.	61.9	51.5	62.4	
Feb.	57.3	58.2	81.2	20%
Mar.	54.8	64.4	125.2	
Apr.	65.5	65.3	128.9	
May	34.4	51.5	106.8	+ 4 (
June	33.0	70.4	93.4	
July	60.8	70.4	65.9	
Aug.	42.8	37.8	73.1	
Sep.	44.5	37.5	95.3	
Oct.	60.5	51.4	123.7	
Nov.	63.5	79.6	124.4	. * .
Dec.	63.4	63.0	87.1	
Total	642.4	701.0	1,167.4	

2.6.2 Irrigation block

As an unit of irrigation water supply system and irrigation practice, irrigation blocks were delineated at a few tens of hectare in each zone, considering present

irrigation system and topographic conditions as shown in Fig.F.2.2 to Fig.F.2.4. And, schematic diagrams of the respective irrigation block are shown in Fig.F.2.5 to Fig.F.2.7.

These delineation should be paid attention to smoothly organizing of operating and maintaining of irrigation facilities as constituents of a irrigation block.

With considerations mentioned above, twelve irrigation blocks were obtained as follows:

Irrigation Blocks in Zone I

Irrigation Block No.	Area * (ha)	Major facilities for water supply	Remarks
I - 1	43	Pond	
I - 2	42	Pond	
1-3	74	petration of the	Alternate contaminated Balili river water with newly developed water
(I - 3 - 1)	(32)	Pond	
(I - 3 - 2)	(42)	Weli	

159

Irrigation Blocks in Zone II

Irrigation Block No.	Area * (ha)	Major facilities for water supply	Remarks
II - 1	13	Pond	
II - 2	19	Pond	
II - 3	21	Pond	
II - 4	49	Reservoir	Take water from Dinog Cave, and from newly constructed reservoir one together
II - 5	8	Pond	
II - 6	20	Pond	
II - 7	15	Pond	
II - 8	7	Pond	

152

^{*:} excluded land acquisition from the total net beneficial area 160 ha.

^{*:} excluded land acquisition from the total net beneficial area 155 ha.

Irrigation Blocks in Zone III

Irrigation Block No.	Area (ha)	Major facilities for water supply	Remarks
III - 1	70		
(III - 1 - 1)	(60)	Bineng CIS canal	rehabilitate existing Bineng CIS canal and intake structure
(III - 1 - 2)	(10)		rehabilitate existing intake structure

2.6.3 Water sources of the irrigation blocks

Major water source of each irrigation block is stream or small torrent. Some of the stream take into water flown out from spring.

Available water sources in each irrigation blocks are shown as follows:

Irrigation Block	Catchment area of stream (km ²)	Available spring yield (l/sec)	Available droudischarge with spring (1/sec)	water source
I - 1	1.40	account into the right	16.6 (=1000 l/min)	
1 - 2	0.14	- do -	16.6 (=10001/min)	
1-3-1	1.60	<u> </u>	10.0	
1-3-2		<u></u>	0.0	max. 18 l/sec, proposed three wells
II - 1	0.25		1.5	max. 3 l/sec, supplementation by drinking water supply well
II - 2	0.48	1.0	3.5	max. 3 l/sec, supplementation by drinking water supply well
11 - 3	1.00	1.0	7.0	
II - 4	0.35	account into the right	17.0	
11 - 5	0.16	2.0	3.0	
II - 6	0,43	5.0	8.0	
II - 7	0.33	0.5	2.5	max. 3 l/sec, supplementation by drinking water supply well
II - 8	0.27	0.5	2.0	
III - 1*1	0.90	20.0*3	20.0	

^{*1 :} regard III-1-1 and III-1-2 as one together in water balance calculation.

2.6.4 Water balance calculation

Water balance calculation was carried out in each irrigation block, in order to get results for required pond capacity.

The calculation was executed for eleven years between 1977 to 1987, when rainfall data at the BSU PAGASA station located in the Project area are completely available.

The diversion water requirement in each zone was calculated as follows:

^{*2:} droughty discharge from stream itself was estimated by average specific drought at 0.006 m³/s/km², and spring yields were appraised about 50 % of observational yields.

^{*3:} estimate the value so as not to occur a water deficit on water balance calculation put with present cropping pattern.

Diversion water requirement in Zone I

		<u> </u>	Unit : mm
Year	Field Water Requirement	Effective Rainfall	Diversion Water Requirement
1977	642.4	334.8	473.2
1978	642.4	311.5	509.1
1979	642.4	318.5	498.3
1980	644.0	314.8	506.4
1981	642.4	302.3	523.3
1982	642.4	346.1	455.8
1983	642.4	319.2	497.2
1984	644.0	345.1	459.8
1985	642.4	427.2	331.1
1986	642.4	321.2	494.1
1987	642.4	296.4	532.3

Diversion water requirement in Zone II

			Unit: mm
Year	Field Water Requirement	Effective Rainfall	Diversion Water Requirement
1977	701.0	378.1	496.8
1978	701.0	350.9	538.6
1979	701.0	350.6	539.1
1980	702.8	344.2	551.7
1981	701.0	348.6	542.1
1982	701.0	373.7	503.6
1983	701.0	356.0	530.8
1984	702.8	390.0	481.2
1985	701.0	480.8	338.7
1986	701.0	361.2	522.8
1987	701.0	338.3	558.0

Diversion water requirement in Zone III

			Unit: mm
Year	Field Water Requirement	Effective Rainfall	Diversion Water Requirement
1977	1167.4	668.9	767.0
1978	1167.4	632.6	822.7
1979	1167.4	627.2	831.1
1980	1171.2	642.4	813.5
1981	1167.4	622.3	838.6
1982	1167.4	654.1	789.7
1983	1167.4	620.4	841.5
1984	1171.2	714.0	703.4
1985	1167.4	815.2	541.8
1986	1167.4	609.2	858.8
1987	1167.4	598.7	875.0

Flow chart of the water balance calculation is illustrated in Fig. F.2.8.

The ratio of available intake to runoff is a meaningful factor, which owes completeness of intake structure.

In present, the ratio ranges less than 0.5 owing of temporality of intake facilities. Improvement of intake structure will cause increase of the ratio to 0.9. Accordingly, the ratio is taken at 0.88 in the water balance calculation. Required pond capacity in Zone I, Zone II were resulted in each year, as shown in Table F.2.26.

Among the results of required pond capacity, the value ranked second was taken as a design scale, because the second of eleven years is roughly equated with five year return period. Water balance calculation of each irrigation block in the standard year are shown in Table F.2.27 to Table F.2.39.

Design pond capacity were decided adding evaporation and leakage losses which are 15 percent of the calculated pond capacity.

Design Pond Capacity

		Uni	it:m ³
Irrigation Block No.	Calculated pond capacity	Design pond capacity	Pond name
1-1	4,926	5,700	Bayabas
I - 2	3,523	4,100	Puguis
1-3-1	6,470	7,500	Buyagan
II - 1	2,864	3,300	Bahong no. 1
11 - 2	5,545	6,400	Bahong no.2
II - 3	5,002	5,800	Bahong no.3
11-4	18,927	21,800	Alapang no.1
II - 5	1,912	2,200	Alapang no.2
II - 6	3,409	3,900	Alapang no.3
11 - 7	3,058	3,500	Peril
II - 8	3,773	4,300	Alno
Total		68,500	

As for Zone III, improvement of intake structures and Bineng CIS canal, and construction of regulating pond are proposed. Water right of Bineng CIS in accordance with taking water from the Wangal creek has not been established. As existing Bineng CIS canal has an available flowing capacity at 0.1 - 0.2 m³/s, the Wangal creek water less than 0.2 m³/s was regarded to be able to divert for beneficial area of Zone III. According to result of the calculation, Zone III will be able to adopt newly proposed cropping pattern owing of only the improvement of structures.

The summary of water balance in the dry season is shown in Table F.2.40. Referred water source availability and present water use in the summary are shown in Table F.2.41 and Table F.2.42 respectively.

2.7 Proposed Irrigation Facilities

2.7.1 Proposed irrigation system

In Zone I, direct intake from the Balili river should be replaced to newly proposed wells, because of proceeding of contamination for the Balili river water. Three wells with 18 1/sec in all, 50 meters lifting head are proposed in Puguis and Stock farm area. The irrigable area by the pumps is 42 hectare which is demarcated as irrigation block III-3-2. Supplementary use of the remaining production from the wells planned for domestic water supply, have been proposed for three blocks of Zone II where have difficulty of land acquisition for enlarging pond capacity. The irrigation blocks, i.e., II-1, II-2 and II-7, can be supplemented by the wells 3 1/sec at most in each. In Zone III, no pond has been planned for a storage, because only improvement of intake weirs on the Wangal creek and existing irrigation canal of Bineng CIS would be effective.

Proposed irrigation system inside of irrigation block is shown in Fig.F.2.9.

Irrigation water drown in by the proposed intake facilities flows into the proposed pond through diversion conduit. Water stored in the pond flows down through lateral conduits, and is divided to several delivery conduits at the division box.

2.7.2 Preliminary design of irrigation facilities

The proposed ponds should be located in higher portion of each irrigation block to smoothly supply water by gravity, and selected nearer sites to the available water source.

In line with the condition said above, the location of the ponds in each Zone are decided as shown in Fig.F.2.2 and Fig.F.2.3, where are limited apace found in each irrigation block for minimizing land acquisition.

The proposed pond has been designed as a small storage dam type constructing on the streams if topographic conditions and stream's form are allowable. Unless allowable, those have been designed intake weir and pond respectively. Design capacity of the ponds were decided on the base of second shortage in eleven years water balance calculation, adding several losses of 15 percent of the base. Earth work of the pond has been designed so that volume of excavation equated to soil volume to be banked as much as possible.

Dimensions of preliminary design for proposed ponds listed as follows:

Pond	Туре	Design	Full water stage		Water surface	Remarks
name		Capacity		(m)	area(ha)	· · · · · · · · · · · · · · · · · · ·
Bayabas	Pond	5,700	1317.5	4.0	0.12	
Puguis	Small dam reservoir	4,100	1334.0	5.0	0.15	
Buyagan	Pond	7,500	1308.5	2.5	0.43	It may be divided two pond
Bahong no. l	Pond	3,300	1349.0	3.0	0.18	٠.
Bahong no.2	Pond	6,400	1229.5	5.5	0.28	
Bahong no.3	3 Pond	5,800	1181.0	4.5	0.26	
Alapang no.	1 Small dam reservoir	21,800	1204.0	7.0	0.56	
Alapang no.	2 Pond	2,200	1055.0	3.5	0.10	
Alapang no.	3 Pond	3,900	1023.0	3.0	0.18	
Peril	Pond	3,500	1256.0	5.0	0.15	
Alno	Pond	4,300	1089.0	3.0	0.23	

Proposed intake weirs would be built with concrete on the river or creek. These weirs have been designed as fixed type, no gate would be installed. Afflux at the stream are taken at most 1.0 meter so as not to obstruct smooth flowing especially if flooding. Dimensions of preliminary design for proposed intake weirs are listed as follows:

No.	Length (m)	Intake water Level (m)	Maximum Intake Discharge (m ³ /s)	Design * Flood Discharge (m³/s)	Providing Water to:
1	20	1355	0.03	7.5	Bahong No.1 Pond
2	10	1235	0.07	14.0	Bahong No.2 Pond
3	30	1190	0.07	55.0	Bahong No.3 Pond
4	30	1060	0.07	27.0	Alapang No.2 and 3 Ponds
5	10	1260	0.04	6.5	Peril Pond
6	20	1100	0.05	15.0	Alno Pond
7	20	1240	0.01	114.0	Irrigation Block III-1-2
8	20	945	0.01	25.5	Irrigation Block III-1-1
Bineng CIS	20	1195	0.20	157.0	Bineng CIS Canal to be improved

^{* :} Design flood discharge were peak discharge estimated in 50 year return period.

Proposed diversion conduit are to be designed as 200 - 300 mm diameter steel pipes to introduce water to be extent of filling the pond with water in less than one or two days. The capacity of the lateral conduits has been decided at 1.0 litter/sec/ha of maximum design unit water requirement, multiplying commanded area of each lateral conduit. Proposed water tank is on-farm and terminal facilities for multi-purpose which can apply the surface irrigation method as well as usual practice.

Delivery conduit connecting division box on the lateral canal with each water tank, have enough flowing capacity more than 1.0 litter/sec per one commanded farm area so that the proposed pond may regulate the variation of water demand in every water tank.

Number of proposed facilities of each irrigation block are listed in Table F.2.43, and summarized as follows:

Item	Quantity of proposed facilities
Intake facilities	8 intake weirs
	2 diversions
Diversion conduit	3,000 meters
Pond	11 nos. (68,500 m ³)
Lateral conduit	25,050 meters
Division box	120 nos.
Delivery conduit	29,750 meters
Water tank	595 nos.
Others	3 deep wells in Zone I
	1 regulating pond in Zone III
	Rehabilitation of Bineng CIS canal with intake weir

2.7.3 On-farm development

Proposed water tank mentioned in previous section is a terminal facilities of the irrigation system.

The water tank is reinforced concrete construction with 4 m³ capacity devising to easily draw water, installed on average 1.0 hectare of farm land each.

A tap would be also provided at the end of delivery conduit so as to apply hose pipe irrigation.

Farmers will be able to irrigate as their like with effective application of the water tank.

In the term of severe drought, effective water management will be accomplished by controlling of sluice valve installed at the division box, in accordance with an agreement for water saving made by farmers themselves.

Small on-farm facilities such as small earth canal will be required in each farm plot for obtaining good effects of the water tank. Such small facilities should be provided by farmers themselves, because those are farmer's property for private use.

Table F.1.1 Inventory of Existing CIS in the Project Area

Name of CIS	Barangay Coverage	Area (ha)	Farmer- Beneficiaries	Water Source of CIS	Cultivated Crop	Irrigation Facilities & Structures
Pico	Pico, Puguis and Betag	200.0	103	Balili river Ovulan spring Bodecewcew spring	Vegetables & Flower Production 8	Canal, Pipelines Plastic hose
Bahong	Bahong proper Sadag	250.0	300	Balili river Bahong tunnel Bahong creek	Vegetables & Flower Production	Canal, Pipelines Plastic hose
Alapang	Alapang	10.0	20	Rainfed Bahong tunnel	Vegetables & Flower Production	Plastic pipes
Alno	Alno	5.0	15	Alno creek Rainfed		
Bineng	Bineng proper Boleweng	0.09	35	Wangal river	Palay, Vegetables & Flower Production	Pipeline, Flumes & Canal
Total		525.0	473			
			-			

Table F.2.1 Total Consumptive Use of Water in Zone I

(Unit : mm/day) Strawberry Nursery of Vegetables Vegetables Vegetables Vegetables Vegetables Total Month Strawberry 0.72 0.72 0.72 0.72 0.72 2.06 0.68 0.67 Jan. 0.520.84 0.37 0.95 2.04 0.21 1.01 1.94 6 0.07 1.05 1.84 0.86 2.17 2.19 2.19 1.31 0.86 1.33 1.33 1.22 Feb. 0.86 0.86 2.08 0.86 0.99 1.86 0.86 1.63 0.98 0.09 1.68 0.980.27 1.61 Mar. $0.98 \\ 0.98 \\ 0.98$ 0.12 0:47 1.56 0.68 1.66 10.0 1.89 0.98 1.15 | 2.13 2.06 2.13 0.88 Apr. 0.88 0.88 0.88 1.37 6 0.88 1.37 1.70 0.68 1.02 0.60 0.83 May $\begin{array}{c} 0.52 \\ 0.44 \\ 0.36 \end{array}$ $\frac{1.16}{0.95}$ 0.640.06 0.45 0.26 0.81 0.28 0.08 0.69 0.19 0.44 0.65 0.10 June 0.040.95 0.91 0.331.08 0.41 1.24 1.65 0.08 80.0 80.0 0.421.26 0.44 0.46 0.48 0.48 1.40 1.53 July 1.92 2.07 1.53 0.08 2.09 0.08 2.00 1.32 0.08 0.48 0.05 1.94 0.13 0.070.371.01 Aug. 0.070.91 0.33 0.07 0.23 0.79 1.42 0.07 0.17 0.67 0.44 1.34 0.10 0.56 0.68 0.92 1.27 0.07 0.55 $\begin{array}{c} 0.42 \\ 0.34 \\ 0.20 \end{array}$ 1.20 б 0.07 $\begin{array}{c} 0.02 \\ 0.06 \\ 0.11 \end{array}$ 1.28 Sept. 2 1.38 0.16 $0.21 \\ 0.26$ 1.68 1.73 1.47 0.04 0.34 1.49 0.14 Oct 2 1.38 1.92 0.400.47 1.12 0.35 0.51 1.98 0.53 0.55 0.60 1.98 0.83 0.73 0.79 2.13 0.61 Nov. 0.62 0.560.64 0.40 2.11 2.10 0.65 0.66 0.07 2.09 2.15 6 0.66 1.49 2.23 2.13 0.69 1.54 Dcc. 0.69 1.44 2.02 3 0.69 1.33 0.08 1.96 0.69 1.21 1.08 1.97 $\begin{smallmatrix}0.19\\0.33\end{smallmatrix}$ 0.69 0.69

Table F.2.2 Consumptive Use of Water in Zone I (1)

Crop: Strawberry

[AT]: Zone Area [AO]: Planted Area [AO]/[AT]: 25 %

MONTH			- 5	ept.							Oct	_				•			lov.							Dec.				·		Jan.		
5 Days	1	2	3 ັ	4.	5	6		1	2	. 3			5	6.	41	. 2				5		6	1 .	2				5	6	1	2			. 5
	0.61	0.65	0.69	0.73	0,7	6 0.	79	0.83	0.90	0.5	3 0.	95	0.95	0.9	0.	95 0	35.	0.9	0.9	50	.95	0.95	0.95	0.9	0.9	5 0.	35	0.95	0.95	0.9	0.9	0.9	50.9	5 0.9
																																		5 0.9
																																		5 0.95
				0.62																														5 0.9
(Ke)					0.6																													5 0.9
						Q,																												5 0.9
								0.62																										5 0.95
									0.62																									5 0.99
										9.0																								5 0.93 5 0.93
											U.	D &	V.03	4.05	· U.	, z v	. 70	U. /:	, v.o	, v	.yu	0.93	0.71	0.93	. 0,5	J V,	7.3	U, Y J	0.93	U.Y.	, 0.7	. U.Y.	, u.y	2 0.93
Verage Ke	0.62	0 64	0.65	0.67	0.6	o a.	71	0 77	0.74	0.7	6.0	7.8	0.81	0.84	0.	R6 0	A9	0.01	0.9	2.0	03	0.94	0.01	0.91	0.9	5 0.		0.95	0.95	0.95	0.95	0.9	5 0.9	5 0.95
	****			•	*10		•		•	***	٠		••••	0.0					• •••			••••	*.,,	. *	• • • •			• • • •	****					
Irrigated Area	0.06	0,17	0.28	0.39	0.5	Q Q.	61	0.72	0.83	0.5	4 1.	00	1.00	1.00	1.9	00 1.	.00	1.00	1.0	0 1.	.00	1.00	1.00	1.00	1.0	0 1.	00	1.00	1.00	1.00	1.00	1.0	1.0	0 1.00
Ratte			;																					•						٠,				
								:						. :																				
ET (mm/day)	2.40	2,40	2.40	2.40	2.4	0 2.	40	3,60	2.60	2.8	0 2.	9Ġ	2.60	7.60	7 2.	80 2	.80	2.8	2.8	0 2	30	2.80	2.90	2,90	3.4	0 1.	90	2.90	2.90	9.00	יט.נינ	3.0	2 2.0	0 3.00
Water Reg.	0.08	0.25	0.44	0.63	0.8	3 1.	01	1 16	1.60	1 1	6.7	0.1	2.10	2 13	2	.,,	48	7.54	2.4	8 2	62	2.64	2.75	2.76	2.7	6 2.	76	2.76	2.76	2.85	2.85	2.8	5 2.8	5 2.85
(mm/ AO)										•••		•								-														
				- 1																									A 40					
Water Req. (mm/[AT])	0.02	0.06	0.11	0.16	0.2	10.	26	0.34	0.40	0.4	70.	51	0.53	0.5	0.	51 0	.62	0.64	0.6	5 0.	.66	0.66	0.69	0.62	0.6	9 0.	59	0.69	0.69	0,77	0.72	0.7	2 0.7	2 0.72

Table F.2.2 Consumptive Use of Water in Zone I (1) (Cont')

Crop: Strawberry

[AT]: Zone Area [AO]: Planted Area [AO]/[AT]: 25 %

MONTH	len.				Fe	5.							Mar.						7.7		ιρε,							May					lune	
Days	6	1	2	. 1	, .	4	5	. 6		1	2	. 3	4	11.	.5.	6.	1		, i	3	· 4	- 5	17	6	1	2	3	- 4	5		5	ı	2	3
	0.95	0.95	0.95	0.9	35	0.95	0.9	5 0.5	15 0	.95	0.95	0.9	5 0.	95 0	.95	0.9	5 0.9	5 0.	95	0.93	0.9	5 0.9	5 0	.95			· · · ·							
	0.95	0.95	0.95	0.9	95	0.95	0.9	5 0.5	5 0	.95	0.95	0.9	5 0.5	950	.95	0.9	5 0.9	5 Đ.	95 Ì	0.95	0.9	5 0.9	5 0	95	0.95									
	0.95	0.95	0.95	0.5	35	0.95	0.9	5 0.5	5 0	.95	0.95	0.9	5 6.5	95 Q	.95	0.9	5 0.9	5 0.	95	0.95	0.9	5 0.9	5 0	95	0.95	0.9	, ii							
	0.95																															1		
Kc)	0.95	0.95	9.95	0.9	95	0.95	0.9	5 0.5	15 0	.95	0.95	0.9	5 0.	95 0	.95	0.9	5 0.9	\$ O.	95 (0.95	0.9	5 0.9	5 0	.95	0.95	0.9	0.9	5 0.9	5					
	0.95																														4, 7,	11		
	0.95																																	
	0.95																																	
	0.95	0.95	0.95	0.9	35	0.95	0.9	9.9	5 0.	.95	0.95	0.9	5 0.5	95 0	.95	0.9	5 0.9	5 0.	95 (0.95	0.9	5 0.9	50	.95	0.95	0.9	0.9	0.9	5 0.9	50	.95	0.95	0.95	
	0.95	0.95	0.95	0.9	.5	0.93	0.9	9.9	5 0.	.95	0.95	0.9	5 0.9	35 O	.95	0.9	50.9	5 0,	95 (0.95	0.9	5 0.9	5.0	.95	0,95	0.93	0.9	0.9	5 0.9	30	.95	0.95	0.93	0.93
verage Kc	0.95	0.95	0.95	0.5	3 (0.95	0.9	0.5	s o.	950	.95	0,9	5 0.5	95 0	.95	0.9	5 0.9	s 0.	95 (0.95	0.9	5 0.9	5 0	95	0.95	0.95	0.9	0.9	5 0.9	3 0	95	0.95	0.95	0.95
rrigated Area Ratio	1.00	1.00	1.00	F.6	10	1.00	1.00	1.0	0 1	.00	1.00	1.0	1.0)O I	.00	1.01	1.0	0 1.	00 1	1.00	1.0	1.6	0 1	.00	0.94	0.83	0.7	0.6	l 0.5	0 0	39	0.23	0.17	0.06
T (mm/day)	1.00	3.60	3.60	3.6	0	3.60	3.6	3.6	0 4.	10	4,10	4.16	4.1	0 4	.10	4.10	3.7	0 3.	70	3.70	3.7	3.7	0 3	-70	3.00	3.00	3.00	3.0	0 3.0	0 3	.00	2.80	2.80	2.80
Valer Req. (mm/[AO])	2.85	3.42	3.42	3.4	12	3,42	3.47	3.4	1 3.	89	3.89	3.8	3.1	19 3	.89	3.89	3.5	3.	51 :	3.51	3.5	3.5	1 3	.51	2.69	2.38	2.00	1.7	4 1.4	3 1	11.	0.74	0.44	0.15
Vater Req. (mm/[AT])	0.72	5.86	0.86	0.8	6 (0.86	0.86	0.8	6 0.	98	0.98	0.9	0.9	\$ 0	98	0.91	0.5	g 0.	88 (88.0	0.8	0.4	5 0	.88	0.58	0.60	0.53	0,4	4 0,3	6 0	.28	0.17	0.11	0.04

Table F.2.3 Consumptive Use of Water in Zone I (2)

Crop: Nursery of Starawberry

[AT]: Zone Area [AO]: Planted Area [AO]/[AT]: 3 %

				**								
MONTH		~	 July						. A	ıg		
5 Days	 		 			6		2		4		6
Average Ko	1.00	1,00	1,00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	00.5	1.00
Inigated Area Relio	1.00	1.00	 1,00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
ET (mnvday)	2.50	2.50	2.50	2.50	2.50	2.50	2.10	2.10	2.10	2.10	2,10	2.10
Water Req. (mnv(AOI)	2.50	2.50	 2,50	2.50	2,50	2.50	2.10	2.10	2.10	2.10	2.10	2.10
Water Req. (mm/[AT])	0.08	0.08	 0.08	0.08	0.08	0.08	0.07	0.07	0.07	0.07	0,07	0.07

Table F.2.4 Consumptive Use of Water in Zone I (3)

Crop: Vegetables

[AT]: Zone Area
[AO]: Planted Area
[AO]/[AT]: 21 %

			<u> </u>																 -		 	
HUNON				une					- 10	ıly _					٠, ^'	ug.	4					
Days	1 _	2	3	4	<u>s</u> .	6		. 2	3	4_			<u></u> ;					<u> </u>	 		 	_
Ke)	0.63	D. 59 0,63	0.69	0,75	0.80	0.86 0.80 0.75 0.69	0.92 6.86 0.80 0.75	0.96 0.91 0.86 0.80	0.96 0.96 0.92 0.86	0.96 0.96 0.92	0.92 0.96 0.96 0.96 0.96 0.92	0.92 0.96 0.96 0.96	0.03 0.92 0.96 0.96	0.83 0.92 0.96	6.47	0.87	0.85		-			
			i,			0,83	0.63	0.59	0.75	0.10	0.86	0.92	0.96	0.96	0.36	0.96	0.92	0.85			 	
Average Ke	0.63	0.66	0.69	0.72	0.75	0.78	0.80	0.85	0.89	0.92	0.93	0.93	0.94	0.93	0.92	0.91	0.89	0.85				
Irrigated Area Retio	0.08	0.25	0.42	0.58	0.75	0.92	1.00	1.00	1.00	1.00	1.00	1.00	0.92	0.75	0,58	0.42	0.25	80.0				
et (mm/day)																						
Water Req. (mm/[AO])	0.15	0.46	0.81	1,17	1.57	1,99	2,00	2.12	2.22	2.29	2.34	2.33	1.80	[.46	1.13	0.80	0.46	0.15	 		 	
	0.03	0.10	0.17	0.24	0.33	0.41	0.42	0,44	0.46	0.48	0.48	V.≩8	0.37	0.10	0.23	0.17	0.10	0.03	 	· 	 	_

Table F.2.5 Consumptive Use of Water in Zone 1 (4)

Crop: Vegetables

[AT]: Zone Area [AO]: Planted Area [AO]/[AT]: 75 %

MONTH		May				Ju	nę						oly					P	vg.				Sept.	
5 Days	4	5	_6	.1_	2	3	4 -	5	6	<u> </u>	2	- 3	ં 4	5	- 6	1.	2	3	4	- 5	_ 6	1	<u>2</u>	3
	0,63	0.69				0.92			0.95				,											
		0.63						0.98					0.85			1.6					1			
			0.63			0.80																		
				0.63		0.75														1.				
					0.63											0.85			A 1.					
(Kc)						0.63										0.92								
							0.63									0.96			0.48					
								0.03								0.36				0.85				
									0.53							0.96					0.85			
										4.0,						0.92								
											4193					0.86							0.85	
	14.											****	0.63	0.69	0.73	0.80	0.86							
Average Kc	0.63	0.66	0.69	0,72	0.75	0.78	0.80	0.82	0.84	0.85	0.86	0.86			-7	0.91		0.93	0.94	0.93	0.92	0.91	0.89	0.8
rrigated Arta Ratio	0.04	0.13	0.21	0.29	0.38	0.46	0.54	0.63	Q.71	0.79	0.87	0.96	0.96	0.87	0.79	0.71	0.63	0.54	0.46	0.38	0.29	0,21	0.13	0,0
ET (mm/day)	3.00	3.00	3.00	2.80	2.80	2.80	2.80	2.80	2.80	2.50	2.50	2,50	2.50	2.50	2.50	2.10	2,10	2.10	2:10	2.10	2.10	2.40	2.40	. 2.4
Nater Req. (mm/[AO])	80.0	0.15	0.43	0.59	0.78	0.99	1.23	1.44	1.66	1,68	1.67	2.05	3.05	1.93	1.17	1.35	1.21	1.06	0.90	0.13	0,57	0.46	0.21	0.0
Vater Req. (mm/[AT])	0.06	0.19	0.32	0.44	0.59	0.74	0.91	1.08	1.24	1.26	1.40	1.53	1.53	1.43	1.32	1.01	0.91	0.79	0.67	0.55	0.42	0.34	0.20	0.0

Table F.2.6 Consumptive Use of Water in Zone I (5)

Crop: Vegetables

[AT]: Zone Area [AO]: Planted Area [AO]/{AT]: 75%

				1													,,	,		•				
MONTH	Joly			Á	vg.					5	pt.				·	•	χí.		•			Nov.		
5 Days	6	1		3 -	4 .	_ 5	- 6		2	- 3	4	_ 5 _	- 6	_1	. 2 _	3	4		. 6		. 2	. 3	4	. 5
	0.63							0.98																
		0.63						0.96																
			0.63					0.92									•							
				0.63				0.86									- 1							
ere -					0.63			0.60																
(Kc)						0.63		0.75											100					
							0.03	0.69										0.92		9.0				
								0.03										0.94						
									0.03									0.96						
										V.U.3								0.98						
																		0.95						-
																		0.92						
Average Kc	0.63	0.66	0.69	0.72	0.75	0.78	0.80	0.52	0.84	0.85	0.86	0.86	0.86	0.83	0.89	0.91	0.92	0.93	0.94	0.93	0.92	0.91	0.89	0.85
migated Area	0.04	0.13	0.21	0.29	0.38	0.45	0.54	0.63	0.71	0.79	0.87	0.96	0.96	0.87	0.79	0.71	0.63	0.54	0.46	0.38	0.29	0.21	0.13	0.04
Ratio			•							1.		1.7	1.		:								• • • •	
T (mar/day)	2.50	2.10	2.10	2.10	2.10	2.10	2.16	2.40	2.40	2.40	2.40	2.40	2.40	2.60	2.60	2.60	2.60	2.60	2,60	2.60	2.80	2.80	2.80	2.80
Ywer Req. (nur/[AO])	0.01	0.17	0,30	0.44	0.59	0.75	0.91	1.23	1.42	1.61	1.60	1.93	1.97	1.99	1.84	1.68	1.50	131	1.11	0.98	0.75	0.53	0.31	0.10
Vater Req. (mm/[AT])	0.05	0.13	0.23	0.33	0.44	0.56	0.68	0.92	1.06	1.21	1.34	1.47	1.47	1.49	1.34	1.25	1.12	0.98	0.83	0.73	0.56	0.40	0.23	0.07

Table F.2.7 Consumptive Use of Water in Zone 1 (6)

Crop : Vegetables

[AT]: Zone Area [AO]: Planted Area [AO]/[AT]: 65 %

				- 1	1.	9.3											101/		. U. A					
HINOE		• •	C	ci.	,	1.7			N	OV.					p	ec.					J	m,		
Days		1	3	4	. 5	6		7	3	4	5	- 6		_ 2		4	5	. 6		2	3	4		- 6
	0.63	0.69	0.75	0.80	0.86	0.92	0.96	0.96	0.95	0.98	0,92	0.85	7.7											
		0.63	0.69													200								
	٠.		0.63								0.96				4.									
				0.63							0.96													
					0.63						0.96													
(17)						0.63					0.93													
					- :		0.63				0.86													
								0.03			0.80													
								1.5	0.03		0.69													
										0.03							0.96							
						- 1					0.03						0.92						0.85	
												0.00					0.86							0.85
Average Kc	0.63	0.66	0.69	0.72	0.75	0.78	0.80	0.82	0.84	0.85	0.86	0.86	0.86	0.88	0.89	0.91	0.92	0.93	0.94	0.93	0.92	0.91	0.89	0.85
Treate in							1.				5 1 1								1.0	-				
irigated Area Ratta	0.04	0.13	0.21	0.29	0.38	0.46	0.54	0.63	0.71	0.79	0.87	0.96	0.96	0.87	0.79	0.71	0.63	0.54	0,46	0.38	0.29	0.21	0.13	0.04
T (mm/day)	2.60	2.60	2.60	2.60	2.60	2.60	2.80	2.80	2,80	2.80	2.80	2.80	2.90	2.90	2.90	2.90	2,90	2.90	3.00	3.00	3.00	3.00	3.00	3.00
																							~ 33	
Mater Req. (mm/[AO])	0.07	0.21	0.37	0.34	0.73	0.92	1.22	1.44	1.00	1,88	2.10	7.19	2.38	2.22	2.03	1.87	1.07	1.47	1.29	1.03		0.57	V.33	
Yater Req. (mm/[AT])	0.04	0.14	0.24	0.35	0.47	03.6	0.79	0.93	1.08	1.22	1.35	1.49	1.54	1.33	1.22	1.09	0.95	0.84	0.68	0.52	0.37	0.22	0.07	

Table F.2.8 Consumptive Use of Water in Zone I (7)

Crop: Vegetables

[AT]: Zone Area [AO]: Planted Area [AO]/[AT]: 40 %

MONUI		Dec.				્યા	ın.	_				. Fe	rb.		_		Mar.	
5 Days	4	5	6				4	5	- 6	!_	Z		4		<u> </u>	<u>-</u> -		
			0.75															
		0.63	0.69															
			0.63										0.92					
(Kc)				0.63									0.96					
					0.63										0.92			
						0.63	0.69	0.75	0.80	0.86	0.92	0.96	0.96	0.96	0.96	0.92	0.85	
							0.63	0.69	0.75	0.80	0.86	0.92	0.76	0.96	0.96	0.96	0.92	0.85
		•••					~			•				•••	****			********************
Average Ko	0.63	0.66	0.69	0.72	0.75	0.78	0.80	0.85	0.89	0.92	0.93	0.93	0.94	0.93	0.9Z	0.91	0.89	0.85
					- 11	1.22												2.24
Irrigated Azea	9.08	0.23	0.42	0.58	0.75	0.92	1.00	1.00	1.00	1,00	0.0	1.00	0.97	0.73	0.58	0.42	0.23	0.08
Ralio																		
ET (mm/day)	1.00	2 00	2.00	2.00	3 00	1.00	1.00	3 00	1.00	3 60	2.60	3.60	1.60	3.60	3.60	4 (0	4 10	4 10
z (minoay)	4.70	2.90	2.70	3.00	3.00	3.00	3.00	3.00	3.00	3.00	J.60	3.00	3.00	3.00	3.00	7.10	4.10	*****
Water Reg.	0.15	0.44	0.81	1.26	1.68	2.13	2.40	2.44	2.66	1.10	1.16	3.36	3.09	2.51	1.94	1.55	0.91	0.29
[mm/]AO))	****		0.03						4	*		•						
1	 -																	
Water Req.	40.0	0.19	0.33	0.50	0.67	0.84	0,95	1.01	1.05	1.31	1.33	1.33	1.22	0.99	0.77	0.62	0.36	0.12
(ITA]Vmm)		• • •					•											

Table F.2.9 Consumptive Use of Water in Zone 1 (8)

Crop: Vegetables

[AT]: Zone Area
[AO]: Planted Area
[AO]/[AT]: 40 %

HENOM			M	37,					Α	pr.					М	ay				 		
5 Days	!	2	3	4	5 -	6	1	2 '	. 3	4	. 5	. 6	. 1	. 2	3_		5	- 6				_
	0.63		0.69	0.75	0.80	0.86 0.80	0.92	0.96	0.96		0.96	0.92	0.85	0.85				::				
Ke)				0.63		0.69 0.63	0.75	0.80	0.86	0.92 0.86	0.96	0.96	0.96	0.92 0.96 0.96 0.96	0.92	0.85	0.85	0.85				
Average Ke	0.63	0.66	0.69	0.72	0.75	0.78	0.80	0.85	0.89	0.92	0.93	0.93	0.94	0.93	0.92	0.91	0.89	0.85	1	 	•••	*****
isigated Area Ratin	89.0	0.25	0.43	0.58	0.75	0.92	1.00	1.00	1.00	1.00	1.00	1.00	0.92	0.75	0.58	0.42	0.25	0.08				
ET (mm/day)	4.10	4.10	4.10	4.10	4.10	4.10	3,70	3.70	3,70	3.70	3.70	3.70	3.00	3.00	3.00	3.00	3.00	3.00				
Vator Req. (mm/[AO])	0.22	9.68	1.18	1.72	2.29	2.91	2.97	3.14	3,28	3.39	3.46	3.45	2.57	2.09	1,61	1.14	0.66	0.21	. : :	1		
rater Req. mm/[ATj)	6.09	0.27	0.47	0.68	12,0	1.15	1.17	1.24	1.30	1.34	1,37	1.37	1.02	0.83	0.64	0.45	0.26	0.08				

Table F.2.10 Total Consumptive Use of Water in Zone II

·	· · · · · · · · · · · · · · · · · · ·	,				(Un	it : mm/da
Month	Rose	Vegetables	Vegetables	Vegetables	Vegetables	Vegetables	Total
1 2	1.22	:		0.26 0.34]	1.48 1.57
laп. з 4	1.22			0.43 0.49		·	1.66
5	1.22			0.52			1.74
6 1	1.22			0.54 0.67			$\frac{1.77}{2.14}$
eb. 2	1.47		•	0.69 0.68		. }	2.15 2.15
4 5	1.47		* * .	0.63 0.51		j	2.10
6	1.47			0.40			1.98 1.86
1 2 2 3	1.67			$0.32 \\ 0.19$	$0.04 \\ 0.14$.]	2.03 1.99
3 4	1.67 1.67			0.06	$0.24 \\ 0.35$	ļ	$\frac{1.97}{2.02}$
5 6	1.67 1.67				0.47	j	2.14
1	1,51				0.60	}	2.27
Apr. 2 3	1.51				0.64 0.67	į.	2.15 2.18
4 5	l.51 1.51				$0.69 \\ 0.71$	1	2.20 2.21
6	1.51				0.70 0.52	į	2.21 1.75
Asv 2	1.22				0.43	į	1.65
3	1.22 1.22		0.10		$0.33 \\ 0.23$	1	i.55 1.55
5 6	1.22 1.22		0,30. 0,53		$0.14 \\ 0.04$! !	1.66 1.79
1	1.14		0.72 0.96			į	1.86
une 2	1.14		1.22			ļ	2.36
4 5	1.14 1.14		1.37 1.45		•	I I	2.51 2.59
6	1.14 1.02		1.52 1.40			ļ	2.66 2.42
uly 2	1.02		1.43			į	2.45
3	1.02 1.02		1.43			. !	$2.45 \\ -2.33$
4 5 6	1.02 1.02		1.07 0.82			0.10	2.09 1.95
1 Aug. 2	$0.86 \\ 0.86$		$0.49 \\ 0.28$		•	0.18	1.53
3	0.86		0.09			0.21	1.16
4 5	0.86 0.86	•				0.23 0.25	1.09
6 1	$0.86 \\ 0.98$					0.26 [0.30]	$\frac{1.12}{1.28}$
ept. 2	0.98 0.98					0.30 1	1.28 1.28
ept. 2 3 4 5 6	0.98 0.98					0.30 0.30 0.28	1.28 1.28 1.26
6	0.98					0.13	1.11
oct 1 2 3 4	1.06 1.06	0.08 0.26					1.32
3	1.06 1.06	0.46 0.67				. [$\frac{1.52}{1.73}$
. 5	1.06	0.89				į	$1.95 \\ 2.19$
1	1.06 1.14	1.13				į	2.51
5 6 1 2 3 4 5 6	1.14 1.14	1.45 1.52				i	$2.59 \\ 2.66$
4	I.14 I.14	1.57 1.60				1	2.71 2.74
6	1.14	1.60					2.74
Dec. 1	81.18 1.18	1.52 1.24					2.70 2.42
Jec. 2 3 4	1.18 1.18	0.95 0.67		0.03		1	2.14 1.89
4 5 6	1.18	0.39 0.13		0.10			1.67

Table F.2.11 Consumptive Use of Water in Zone II (1)

Crop: Rose

[AT]: Zone Area [AO]: Planted Area [AO]/[AT]: 39 %

MONTH			1	th.					F	ь.					. 18	er.					A	bt.		
5 Days	<u> </u>		3	4	5	6		2_	}_	4		6		2	3	4		6			3	4	5	6
Average Kc	1.05	1.05	1.05	. 1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.03	1.05	1.05	1.05	1.03	1.05	: 1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.0
nigated Area Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	[.00	1.00	1,00	1.00	1,00	1.00	1.00	1.00
ET (mnVday)	3.00	3.00	3.00	3.00	3.00	3.00	3.60	3.60	3.60	3.60	3.60	3.60	4.10	4.10	4.10	4.10	4.10	4,10	3.70	3.70	3.70	3.70	3.70	3.70
Water Req. (mm/[AO])	3.15	3.15	3.15	3.15	3.15	3.15	3,78	3.78	3.78	3.18	3.78	3.78	4.31	4.31	431	4.31	4.31	4.31	3,88	3.88	3.88	-3,88	3.88	3.8
Water Req. (mm/[AT])	1.22	1.22	1.22	1.22	1.22	1.22	1.46	1.46	1.46	1.46	1.46	1.46	1.67	1.67	1.67	1.67	1.67	1.67	1,50	1.50	1.50	1.50	1.50	1.5

Table F.2.11 Consumptive Use of Water in Zone II (1) (Cont')

Crop : Rose

[AT]: Zone Area [AO]: Planted Area [AO]/[AT]: 39 %

MONTH	<i>-</i>		1.0	5 Y					- Tu	ne .						ily					0	cl.		
5 Days	1		3 "	<u> </u>	5	6	1 1	2	3	4_	3	6	1			4		6	<u> </u>	_2_	<u>, </u>	4		6
Average Ko	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05
irrigated Area Ratio				-	-														1.00			-		
Ef (mm/day)	3.00	3.00	3.00	3.00	3.00	3.00	2,80	2.30	2.80	2.80	2.30	2.80	2.50	1.50	1.50	2.50	1.50	1.50	2.10	2.10	2.10	2.10	2.10	2.10
Water Req. (mm/[AD])																			2.20					
Water Req. (mm/[AT])	1.22	1.22	1.22	1.22	1.22	1.72	1.14	1.14	1.14	1.14	1.14	1.14	1.02	1.02	1.02	1.02	1.02	1.02	0.85	0.85	0.85	0.85	0.85	0.45

Table F.2.11 Consumptive Use of Water in Zone II (1) (Cont')

Crop : Rose

[AT]: Zone Area [AO]: Planted Area [AO]/[AT]: 39 %

MONTH			St	pl.					0	ct.					Ne)¥.					Ď	tc.		-
5 Days		2	3	_1_		6	<u>l</u>	2	_ 3	4	_ 5	6		. 2	3	4_	5	6		2	3	4	5	6
Average Ke	1.05	1.05	1,05	1.05	1.05	1.03	1,05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05
inigated Area Ratio	1.00	1.00	1,00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1,00	1.00	1.00	1.00	1.00	1.00	1,00	1.00	1.00	1.00
ET (mm/dsy)	2.40	2.40	2.40	2.40	2.40	2.40	2.60	1,60	2.60	2,60	2.60	2.60	2.80	2.80	2.80	2.80	1,50	2.80	1.90	2.90	2.90	2.90	2,90	2.90
Water Req. (mm/[AO])	1,52	2.52	2,52	2.52	2.52	2.52	5)73	2.73	2,73	2.73	2.73	2.73	2.94	2.94	2.94	2.94	2,94	2.94	3.05	3.05	3.05	3.05	3.05	3.05
Water Req.	0,98	0.98	0.98	0.98	0,98	0.98	1.06	1.06	1.06	1.06	1.06	1.06	1.14	1.14	1.14	1-14	1.14	1.14	1.18	1.18	1,18	1.18	1,18	1.18

Table F.2.12 Consumptive Use of Water in Zone II (2)

Crop: Vegetables

[AT]: Zone Area [AO]: Planted Area [AO]/[AT]: 61 %

																	~	·	
MONTH			. 0)cl.					N	OY.					D	ec.			
5 Days	1_	2	_3	4	. 5	_6	- 1	2	3	. 4	5	_6		2	_3	4	5	- 6	
	0.63									0.96									
		0.63								0.96									
			0.63							0.96									
(Ke)				0.63						0.96									
					0.63					0.92									
						0.63											0.85		
							0.63	0,69	0.73	U. 80	0.40	0.42	0.90	0.90	0.96	0.90	0.92	0.43	
Average Kc	0.61	0.66	D 60	0.72	0.75	0.74	0.80	0.85	0.89	0.92	0.01	0.91	0.04	0.91	0.97	100	0.89	0.85	
ge ite	0.03	0,00	0,03	0.12	0.75	V. / 6	0.00	0,03	. 0.03	V.72	0.73	0.73		0.75	V,,,	٠.,,	4.07	0.00	
Inigated Area Ratio	0.08	Q.25	0,42	0.58	0.75	0.92	1.00	1.00	1.00	1.00	1.00	1.00	0.92	0.75	0,58	0.42	0.25	0.08	
ET (mm/day)	2.60	1.68	2.60	2.69	2.60	2.60	2.80	2.80	2.80	2.80	2.80	2.80	1.90	2.90	2,90	2.90	2.90	2.90	
Water Tra													2 40	2.43					
Water Req. (mm/(AO))	0.14	0.43	0.75	1.09	1.43	1.53	7.24	Z.38	2.44	2.57	2.62	7.01	2.49	2.02	1.30	1.10	0.64	0.21	
Water Req.	0.08	0.26	0.46	0.67	0.89	1.13	1.38	1.46	1.52	1.57	1.60	1.60	1.52	1.24	0.96	0.67	0.39	0.13	
Water Req. (mm/[AT])	0.08	0.26	0.46	0.67	0.89	1.13	1.38	1.46	1.52	1.57	1.60	1.60	1.52	1.24	0.96	0.67	0.39	0.13	

Table F.2.13 Consumptive Use of Water in Zone II (3)

Crop : Vegetables

[AT] : Zone Area [AO] : Planted Area [AO]/[AT] : 13 %

HOMH	July			A	vg.				- 1	. 50	nt.								 		
5 Days	6	i	2	. 3	· 4	. 5	6	!	2	. 1	. 4		6	 		 					
Ke)	0.63										0.92 0.96		0.85						-	•	
verage Kc	0.63	0.66	0.72	0.78	0.83	0.89	0.94	0.96	0.96	0.96	0.94	0.89	0.85	 ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	******	 		******	 	******	
migated Area Ratio	0.50	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.50				P -				
T (mm/day)	2.50	2.10	2.10	2.10	7.10	2,10	2.10	2,40	2.40	2.40	2.40	2.40	2.40								
Valet Req. (mm/[AO])	0.79	1.39	1.51	1.63	1.74	1,87	1.91	1.30	2.30	2.30	2.26	2.12	1.02	 		 			 		
Vater Req.	0.10	81.0	0.20	0.21	0.22	0.24	0.25	0.30	0,30	0.30	0,29	0.27	0,13								

Table F.2.14 Consumptive Use of Water in Zone II (4)

Crop : Vegetables

[AT]: Zone Area [AO]: Planted Area [AO]/[AT]: 20 %

MONTH		Dec.		- ·		Ja	ın.				120	F	D.		1.		Mar.					
Daya	4		6				4_	5	- 6											 	 	
	0.73		0.36	0.00	0.86	0.92	600	0.04	0.06	30 6	0 02	0.65						1 .	1 1			
	0.93					0.86							0.85	100	200							
		0.03												0.85	1	-						
			0.03	63.0	0.75	0.75	0.00	0.36	0.92	0.96	0.96	0.96	0.96	0.92	0.85							
(Ke)				0.03	0.63	0.69	0.75	0.80	0.85	0 17	0.96	0.96	0.96	0.96	0.92	0.85						
					0.03									0.96			0.85					
						5.05								0.95								

Average Ke	0.63	0,56	0.69	0.72	0.15	0.78	0.80	0.85	0.89	0.92	0.93	0.93	0.94	0.93	0.92	0.91	0.49	0.85				
irrigated Area Ratio	0.08	0.25	0.42	0.55	0.75	0.92	1.00	1,00	00.1	1.00	1.00	1,00	0.92	0.75	0.58	0.42	0.25	0.08				
													100	1300		:		4.		-		
ET (mm/day)	2.90	2.90	2.90	3.00	3.60	3.00	3.00	3.00	3.00	3.60	3.60	3.60	3.60	3.60	3.60	4.10	4.10	4.10				
														242								
Vater Req.	0.15	0.48	0.83	1.26	1.68	2.13	2.40	2.55	2.66	3.30	3.36	3.36	3.09	2.51	1.94	1.55	0.91	0.29				
(mn/[AO])																				 	 	
Nater Req. (mm/[AT])	G.03	0.10	0,17	0.26	0.34	0.43	0.49	0.52	0.54	0.67	0.69	0.58	0.63	0.51	0.40	0.32	Ų.1Y	0.06				

Table F.2.15 Consumptive Use of Water in Zone II (5)

Crop : Vegetable

[AT]: Zone Area [AO]: Pinnted Area [AO]/[AT]: 20 %

ионти			M	87.					, A	Pt.						8.9			
Days	_1	_2_		4.	5	. 6	1_	3	3	4_	5	. 6	_1_	7		4	5	6	
	0.63	0.69	0.75	0.80	0.86	0.92	0.96	0.96	0.96	0.95	0.92	0.85							
											0.96		0.85						*
			0.63	0.69	0.75	0.80	0.86	0.92	0.96	0.96	0.96	0.96	0.92	0.85					•
Kc)				0.63	0.69	0.75	0.80	0.86	0.92	0.96	0.96	0.96	0.96	0.92	0.85				
(***)					0.63	0.69	0.75	0.80	0.86	0.92	0.96	0.96	0.96	0.96	0.92	0.85			•
						0.63	0.69	0.75	0.80	0.86	0.92	0.96	9.96	0.96	0.96	0.92	0.85		
	*				. :		0.63	0.69	0.75	0.80	0.86	0.92	0.96	0.96	9.96	34.0	0.92	0.85	
Ka	0 43	0.66	0.4	0.77	071	A 78	D 3D	0.85	O RO	t 07	0.93	D Q Y	n pa	n 03	0.00	0.01	D 84	n ks	
Average Ko	4.03	0.00	0.07	V.,, 2	0	*****	0.40	0.03	0.07		0.73	2.73	0.,4	0.75	V.,,	•.,,	0.07	0	
hrigaten Area Ratio	30.0	9.25	0.42	0.58	0.75	0.92	1.00	1,00	1.00	1.00	1.00	1.00	0.91	0,15	0.58	0.42	0.25	30.0	
ET (mm/day)	4.10	4.10	4.10	4.10	4.10	4.10	3.70	3.70	3.70	3.70	3,70	3.70	3.00	3.00	3.00	3.00	3.00	3.00	
Water Req. (mm/[AO])	0.22	0.68	1.18	1.72	2.29	2.91	2.97	3.14	3.28	3.39	3.46	3.45	2.57	2.09	1.61	1.14	0.66	0.21	
Water Req.	0.04	0.14	0.24	0.35	0.47	0.59	0.60	0.64	0.67	0.69	0,71	0.70	0.52	0.43	0,33	0.23	0.14	0.04	

Table F.2.16 Consumptive Use of Water in Zone II (6)

Crop: Vegetables

[AT]: Zone Area [AO]: Planted Area [AO]/[AT]: 61 %

MONTH		May				Ji	ne			-		J	ıly				Aug	
5 Oxys	4	3	6	į	2	3	- 4	5	6_		2	_3	4	3	6	1		_ 1
	0.61	0.60	0.75	0.80	0.86	ń 02	0.06	0.06	n 06	0.96	0.92	Ó 85						
	4.03										0.96							
											0.96							
(Kc)				0.63	0.69	0.75	0.80	0.86	0.92	0.96	0.96	0.96	0.96	0.92	0.85			
					0.63						0.96							
						0.63					0.92							
							0.63	0.69	0.75	0.80	0.86	0.92	0.96	0.96	0.96	0.96	0.92	0.85
			~	~ 10	A 70	0.20					0.93	6.63	0.04	6 6 2	0.03	0.01	Λ 40	n 95
Average Ke	U.6.J	V.05	0.09	0.72	U.13	Ų.78	Ų. BU	Ų.83	0.89	0.91	0.93	0,73	U.77	U. 73	0.92	0.91	U.07	0.03
in saled Area	0.08	0.25	6.42	0.58	0.75	0.92	1.00	1.00	1.00	1.00	00.1	1.00	0.92	0.75	0.58	0.42	0.25	0.08
Ratio																		
											- **	3	* **	2 60		2.10	2 . 6	2.10
ET (mm/day)	3.00	3.00	3.00	2.80	2.50	2.80	2.80	2.80	2.80	2.30	2.50	2.30	2.50	2.50	4-30	2.10	2.10	2.10
Water Reg.	0.16	0.49	0.86	1.17	1.57	1.99	2.24	2.38	2.48	2.29	2.34	2.33	2.14	1.74	1.35	0.80	0.46	0.15
(mm/[AO])			****		•													
Water Req. (mm/[AT])	0.10	0.30	0.53	0,72	0.95	1.22	1.37	1.45	1.52	1.40	1,43	1.43	1.31	1.07	0.82	0.49	0.28	0,09
																		··· · · · · · · · · · · · · · · · ·

Table F.2.17 Total Consumptive Use of Water in Zone III

Ionth Rice with Land	Land		Vegetables	Vegetables	Vegetables	Vegetables	Vegetables	
	on Preparation 0.88	0.27	***************************************		1 15		1	
an. 3 0.02 4 0.02	0.88 0.65 0.42 0.21	0.32 0.34 0.37		· .	1.15 1.28 1.40 1.40			
6 0.02 1 0.41 b. 2 0.82 1.05 4 1.29 5 1.55		0.39 0.40 0.49 0.49 0.48 0.42 0.29			1.31 1.21 1.33 1.19 1.04 0.88 0.72	0.05 0.17 0.30 0.43 0.58		
6 2.36 1 2.18 2 2.08 3 1.99 4 2.06 5 2.15		0.17	0.05 0.14 0.25 0.37 0.44		0.55 0.44 0.26 0.08	0.73 1.02 1.20 1.39 1.57		
5 2.13 1 2.17 2 2.23 3 2.29 4 2.34 5 2.39			0.47 0.45 0.48 0.49 0.50			1.92 1.73 1.62 1.50 1.36	0.06 0.17	
5 2.33 1 2.23 2 2.25 3 2.26 4 2.26 5 2.25			0.49 0.35 0.24 0.14 0.05			1.07 0.73 0.60 0.46 0.33 0.19	0.30 0.36 0.48 0.61 0.74 0.88	
6 2.23 1 2.12 3 2.07 3 2.01 4 1.95	0.11 0.04 0.04 0.04					0.06	1.02 1.08 1.20 1.31	: -
5 1.64 6 1.35 1 1.01 y 2 0.74 3 0.49 4 0.24	0.04 0.04 0.33 0.66 0.98 1.31 1.49						1.23 1.13 0.92 0.82 0.72 0.61 0.50 0.38	
6 1 3g. 2 3	1.80 1.99 2.19 2.39		1				0.23 0.13 0.04	
5 6	2.60							
pt. 2 3	3.15 3.06 2.96	·		0.04 0.11 0.20 0.29				
4 5 6	2.85 2.72 2.79			0.38 0.49		.:		
i i 2 3	2.95 3.00 3.04			0.64 0.76 0.88				
4 5 6	3.08 3.10 3.11			1.00 1.11 1.22				
1 v. 2	3.20 3.18			$\begin{smallmatrix}1.31\\1.23\end{smallmatrix}$				
3 4 . 5 6	3.14 3.10 2.85 2.60			1.13 1.03 0.92 0.81	0.04 0.13 0.23		 	
ec. 2 3 4 5	2.38 2.12 1.86 1.60 1.35	0.03 0.10		0.71 0.58 0.45 0.31	0.35 0.46 0.59 0.72 0.85			

Table F.2.18 Consumptive Use of Water in Zone III (1)

Crop: Rice

[AT]: Zone Area [AO]: Planted Area [AO]/[AT]: 29 %

MONTH		<u>-</u>	eb.				M	ar.					A	pr	-				M	ay		
Days		4	5	6	1		3	4		- 6_	_1	2	3	4.	5	6	1	2		4_	5	δ
			0.81	0.87	0.91	0.95	0.98	io.t	1.04	1.01	1.10	1.13	1.15	1.19 1.17 1.15	1.19	1.20	1.21	1.21	1.21	1.20	1.18	1.14
(c)					0.81	0.87	0.91	0.95	0.98	1.01	1.04	1.07	1.10	1.13	1.15	1.17	1.19	1.20	1.21	1.21	1.21	1.20
				•		0.80								1.07 1.04								
verage Ke	0.80	0.81	0,83	0.85	0.87	0.89	0.90	0.94	0.98	1.01	1,04	1.07	1.10	1.12	1.14	1.16	1.18	1.19	1.20	1.20	1.19	1.18
rigated Area atlo	0.14	0.29	0.43	0.57	0.71	0.86	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
nter Req. mm/[AO])	0.81	1.66	2.55	3.49	4.17	5.85	6.96	7,23	7.51	1.11	7.59	7.50	8.00	8.19	8.35	8.50	7.19	7.86	7.91	7.91	7.87	1.19
ater Req. mav[AT])	0.14	9.47	0.73	1.00	1.36	1.63	1.99	2.06	2.15	2.22	2.17	2.23	2.39	2.34	2,39	2.43	2.13	2.25	1.26	2.26	2.25	1.13

Above calculation is in growth stage, consumptive use of nursery and puddling are calculated separately.

Table F.2.18 Consumptive Use of Water in Zone III (1) (Cont')

Crop: Rice

[AT]: Zone Area [AO]: Planted Area [AO]/[AT]: 29 %

MONTH			Ju	ne					ily		
5 Days		2	. 3	. 4		6_		2		- 4	
	1.07	1.02	0.98	0.97							
	1.11	1.07	1.02	82,0.	0.97						
				1.02							
(Kc)	1.18	1.14	1.11	1.07	1.02	0.98	0.97				
	1.20	1.18	1.14	LH	1.07	1.02	0.93	0.97			
	1.21	1.20	1.18	1.14	1.11	1.07	1.02	0.95	0.97		
	1.21	1.21	1.20	1.18	1.14	1,11	1.07	1.02	0.98	0.97	
Average Kc	1.16	1.13	1.10	1,07	1.05	1.03	1.01	0.99	0.98	0.97	
Irrigaled Area	1.00	1.00	1.00	1.00	0.86	0.71	0.57	0.43	0.29	0.14	
Ratio											·
Water Req. (mm/[AO])	7.42	1.23	7.04	6.83	3.75	4,71	3.52	2.59	1.10	0.85	
Water Req. (mm/[AT])	2.12	2.07	2.01	1.95	1.64	1.35	1.01	0.74	0.49	0.24	

Above calculation is in growth stage, consumptive use of nursery and puddling are calculated separately.

Table F.2.19 Consumptive Use of Water in Zone III (2)

Crop: Rice

[AT]: Zone Area [AO]: Planted Area [AO]/[AT]: 43 %

MONTH	جنب		oly				A	UK.					Se	pt.					0	ci.		
Daya	. 3		5	6	1_	. 2		*4	5	6		2			. 5	6		2	ງັ		5_	5
	0.80															1.21						
				0.81	0.87	0.91	0,95	0.98	1.01	1.04	1.07	1,10	1.11	1.15	1,17	1.19	1.20	1.21	1.21	1.21	1.20	1.18
						0.81	0.87	0.91	0.95	0.98	1,01	1.04	1.07	1.10	1.13	1.15	1.17	1.19	1.20	1.21	1.21	1.21
Kc)								0.81	0.87	0.91	0.95	0.98	1.01	1.04	1.07	1.10	1.13	1.15	1.17	1.19	1.20	1.21
									0.80		ũ.81	0.87	0.91	0.95	0.98	1.04	1.04	1.07	1.10	1.13	1.15	1.17
											0.80		0.81	0.87	0.91	0.98 0.95 0.91	0.98	1.01	1.04	1.07	1.10	1.13
versge Kt	0.80	0.81	0.83	0.85	0.81	3.89	0.90	0.97	0.94	0.95	0.97	0.99	1.00	1.03	1.06	1.09	1.11	1.13	1.15	1.16	1.17	1.17
rigated Arca atio	0.15	0.31	0.38	0.46	0.54	0.62	0.69	0.77	0.85	0.92	1,00	1.08	1.15	1.08	1.00	1.00	1.00	1.00	1,00	1.00	1.00	1.00
Vaier Req. (mm/[AO])	0.75	1.51	1.94	2.39	2.66	3.11	3.57	4.04	4.52	5.02	5.82	6.36	6.92	6.65	6.36	6.51	6.87	7.00	7.10	7.18	7.23	7.25
fater Req. [mm/[AT])	0.32	0.65	0.83	1.02	1.14	1.33	1.53	1.73	1.94	2.15	2.49	2.73	2.96	2.85	2.72	2,79	2.95	3.00	3.04	3.08	3.10	3.11

Above calculation is in growth stage, consumptive use of nursery and puddling are calculated separately.

Table F.2.19 Consumptive Use of Water in Zone III (2) (Cont')

Crop: Rice

[AT]: Zone Area [AO]: Planted Area [AO]/[AT]: 43 %

HINON			И	OV.					D	¢c.				3	an.					
Days		. 2	- 3	4		- 6	1	2	. 3	_4_	5	6		2	3	1	 	 		
	1.07	1.02	0.98	0.97																
	1.11	1.07	1.02	0.98	0.97															
	1.14	1.11	1.07	1.02	0.98	0.97														
	1.18	1.14	1.11	1.07	1.02	0.98	0.97													
	1.20	1.18	1.14	1.11	1.67	1.02	0.98	0.97												
					1.11															
Kc)					1.14															
	1.21	1.21	1.21	1.20	1.18	1.14	1.11	1.07	1.02	0.98	6.97						 			
											0.98									
											1.02									
	1.17	1.19	1.20	1.21	1.21	1.21	1.20	1.18	1.14	1.11	1.07	1.02	0.98	0.97						
											1.11									
	1.13	1.15	1.17	1.19	1.20	1.21	1.21	1.21	1.29	1.18	1.14	1.31	1.07	1.62	0.98	0.97	 	 		
verage Kc	1.17	1.16	1.15	1.13	1.13	1.12	1.11	1.10	1.04	1.07	1.05	1.03	1.01	0.99	0.98	0.97				
2.00											- 44					0.04				
rigated Area atio	1.00	1.00	1.00	1.00	0.92	0.85	0.77	U, 67	0.02	0.34	0.46	V.38	V.31	:	0.17	0.08			- 1	
/ater Req. mm/[AO])	9.47	7.41	7.33	7.23	6.65	6.06	5.55				3.14			1.51	0.99	0.49	 			
				2 10	2 84	2.60	2 22	2.12	1 86	3.40	1.35	3.30	0.38	0.65	D 42	0.21				
/ater Req. mm/[AT])	3.70	3.F8	3.14	3.10	2.83	1.69	2.38	2.12	. 50	1.00	1.33	1.30	V.80	0,93	0.72	V.11				

Above calculation is in growth stage, consumptive use of nursery and puddling are calculated separately.

Table F.2.20 Consumptive Use of Water in Zone III (3)

Crop: Vegetables

[AT]: Zone Area [AO]: Planted Area [AO]/[AT]: 14 %

MONTH		Dec.				J:	n.					Pe	ь.			Mar.		
Days	4	- 5	6	!_	_ 2		_1_		6	!_	2		4	5	6	<u> </u>	 	
	0.63								0.96									
(K¢)			0.63		0.69	0.75	0.80	0.86	0.96 0.92 0.86	0.96	0.96	0.96	0.96	0.92		0.85		
Average Ke	0.63	0.66	0.69	0,72	0.75	0.80	0.85	0,90	0.93	0.95	0.95	0.93	0.92	0.91	0.89	0.85	 	
inigated Arca Ratio	0.13	0.38	0.63	88.0	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	88.0	. 0.63	0.38	0.13		
Ef (mm/day)	2,90	2.90	2,90	3,00	3.00	3.00	3,00	3,00	. 3,00	3,60	3,60	3,60	9,60	3.60	3.60	4,10		
Water Req. (m2V[AO])	0.23	0.72		1.88	2.24	2.41	2.57	2.70	2.80	3.43	3.4)	3.35	2.91	2.05	1.19	0.44	 	
Water Req. (mtt/[AT])				0.27	0.32	0.34	0.37	0.39	0.40	0.49	0.49	0.48	0,42	0.29	0.17	0.06		

Table F.2.21 Consumptive Use of Water in Zone III (4)

Crop: Vegetables

[AT]: Zone Area [AO]: Planted Area [AO]/[AT]: 14 %

MONTH			М	ar.					Α	pr.				М	ay		
Days	1	2		_4_	5	_6_	1	2		_4_	5		1_	2	3		
	0.63					0.72											
Ke)		0.63		0.69	0.75	0.86	0.86	0.92	0.96	0.96	0.95	0.96	0.92	0.85	3.50		
				0.63		0.73 0.69										0,85	
Average Kc	0.63	0.65	0.69	0.72	0.75	0.80	0.86	0.90	0.93	0.95	0.95	0.93	0.92	16.0	0.89	0.85	***************************************
lrrigated Area Ratio	0.13	6.38	0.63	0.58	1.00	1.00	1,00	1.00	1.00	00.1	1.00	1.00	0.88	0,63	0.38	0.13	
ET (moviday)	4.10	4.10	4.10	4,10	4.10	4,10	3.70	3,70	3.70	3.70	3.70	3.70	3.00	3,00	3.00	3.00	
Water Req. (mm/[AO])	0.12	1.01	1.77	2.57	3.06	3.30	3.17	3.33	3.45	3.52	3.52	3,44	2.42	1.7}	1.00	0.32	
Water Req. (1011/[AT])	0.05	0.14	0.25	0.37	0.44	0.47	0.45	0.48	0.49	0.50	0.50	0.49	0.35	0.24	0.14	0.05	

Table F.2.22 Consumptive Use of Water in Zone III (5)

Crop: Vegetables

[AT]: Zone Area [AO]: Planted Area [AO]/[AT]: 57 %

MONTH			Se	pt.						ct.					Ñ	DV.						ce.		
5 Days	1	2	3	4	Š	6		2	3	4	3	6	i_	2	3	- 4	5	6_	1	2	3	4	_ 5	6
	0.63	0.69	0.75	0.80	0.86	0.92	0.96	0.98	0.96	0.96	0.92	0,85		. i.						- E				
		0.63	0.69	0.75	0.80	0.86	0.92	0.96	0.96	0.96	0.96	0.92	0.85					100						
			0.63								0.96													
				0.63							0.96							-						
					0.63						0.96						1							
V.3						0.63					0.93													
(Kc)							0.63				0.86													
								0.03			0.75													
									4.03		0.69													
										•								0.96						
																		0.96						
																		0.92						
verage Kc	0.63	0.66	0.69	0.72	0.75	0.78	0,80	0.82	0.84	0.85	0.86	0.86	0.86	0.88	0.89	0.91	0.92	0.93	0.94	0.93	0.92	0.91	0.89	0.85
rrigated Atra	0.04	0.13	0.21	0.29	0.38	0.46	0.54	0.63	0.71	0,79	0.87	0.96	0.96	0.87	0.79	0.71	0.63	0.54	0.46	0.38	0.29	0.21	0.13	0.04
Ratio								1.0																
ET (mm/dsy)	2.40	2.40	2.40	2.40	2,40	2.40	2.60	2.60	2,60	2.60	2.60	2.60	2.80	2.80	2.80	2.80	2.80	2.80	2.90	2.90	2.90	2.90	2.90	2.90
Vater Req. (mnv[AO])	0.06	0.20	0.35	0.50	0.67	0.85	1.13	1.33	1.54	1.75	1.95	2.13	2.29	2.14	1.98	1.80	1.62	1.41	1.24	1.01	0.78	0.55	0.32	0.10
Vater Req. (mm/[AT])	0.04	0.11	0.20	0.29	0.38	0.49	9.64	0.76	0.88	1.00	1.11	1.22	1.31	1.23	1.13	1.03	0.92	0.81	0.71	0.58	0.45	0.11	0.18	0.06

Table F.2.23 Consumptive Use of Water in Zone III (6)

Crop : Vegetables

[AT]: Zone Area [AO]: Planted Area [AO]/[AT]: 57 %

MONTH		Nov.	-			D	ec.						žn.					F	сb.				Mar.	
5 Days	. 4	5	6	1	2	3	4	3	6		2	3	4	5 -	6	. 1	2	<u> </u>	4	5	6		2	- 3
	0.63	0.69	0.75	0.50	0.86	0.92	0.96	0.96	0.96	0.96	0.92	0.85	٠.											
												0.92	0.85	1		٠.								
			0.63	0.69	0.75	0.80	0.56	0.92	0.96	0.96	0.96	0.96	0.92	0.85	400					1.0				
				0.63								0.96												
					0.63											0.85		5.5						
						0.03										0.92								
(Ke)							0.63									0.96					100			
																0.96				_ 1_		, , .		
									0.61							0.96					4.4			
										0.63						0.96								
											0.63					0.92								
								٠.				0.63				0.80								
Average Kc	0.63	0.66	0.69	0.72	Q.75	G.78	0.80	0.82	0.84	0.55	0.86	0.86	0.86	0.88	0.89	0.91	0.92	0.93	0.94	0.93	0.92	0.91	0.89	0.85
Irrigated Area Ratio	0.04	0.13	0.21	0.29	0.38	0.45	0.54	0.63	0.71	0.79	6,87	0.96	0.96	0.87	0.79	0.71	0.63	0.54	0,46	0.18	0.29	0.21	0.13	0.04
ET (mm/day)	2.80	2.80	2,80	2.90	2.90	2.90	2.90	2.90	2.90	3.00	3.00	3.00	3.00	3.00	3.00	3.60	3.60	3.60	3.60	3.60	3.60	4.10	4.10	4.10
Nater Req. (mm/(AO))	0.07	0.23	0.40	0.61	0.81	1.93	1.26	1.49	1.72	2.02	2.25	2.46	2.46	2.30	2.12	2.32	2.08	1.82	1.54	1.26	0.97	0.78	0.45	0.13
Water Req. (mnv[AT])	0.04	0, 13	. 0.23	0.35	0.46	0.59	0.72	0.85	0.98	1.15	1.28	1.40	1.40	1.31	1.21	1.33	1.19	1.04	0.88	0.72	0.55	0.44	0.26	0.08

Table F.2.24 Consumptive Use of Water in Zone III (7)

Crop: Vegetable:

[AT]: Zone Area [AO]: Planted Area [AO]/[AT]: 57 %

																	_							
HINON			Fe	b.						ar.					A	pr.					М	n y		
Days	1		3.	4		6		2		4	. 5	. 6	_!_	2		4	5	6	!	2		4		. 6
	0.63	0.69	0.75	0.80	0.86	0.92	9.96	0.96	0.96	0.96	0.92	0.85					•							
	0.03							0,98					0.85											
			0.63	0.69	0.75	0.80	0.86	0.92	0.96	0.96	0.96	0.96	0.92	0.85										
				0.63				0.86																
					0.63			0.80																
						0.63		0.75																
Ke)								0.69																
								0.63																
									0.03	0.69						0.96					0.85			
										0.03						0.92						0.85		
											. 0.03					0.86							0.85	
																0.80								0.85
verage Kc	9.63	0.66	0.69	0.72	0.75	0.78	0.80	0.82	0.84	0.85	0.86	0.86	0.86	0.88	0.89	0.91	0.92	0.93	0.94	0.93	0.92	0.91	0.89	0.85
rrigated Area tatlo	0.04	0.13	0.11	8.19	0.38	0,46	0.54	0.63	0.71	0.79	0.83	0.96	0.96	0.87	0.19	11.0	0.63	0.54	0.46	0.38	0.29	0.21	0.13	0.04
(nundday)	3.60	3.60	3.60	3.60	3.60	3 60	4.10	4.10	4.10	4.10	4.10	4.10	3.70	3.70	3.70	3.70	3.70	3.70	3.00	3.00	3.00	3.00	3.00	3.00
Valer Req. (num/(AO))	0.09	0.30	0.52	0.75	1.01	1.28	1.78	2.10	2.43	2.76	3.07	3.36	3.03	2.63	2.62	2.38	2.14	1.87	1.29	1.05	0.81	0.57	0.33	0.11
Keter Req. (maV[AT])	0.05	0.17	0.30	0.43	0.58	0.73	1.02	1.20	1.39	1.57	1.75	1.92	1.73	1.62	1.50	1.36	1.22	1.07	0.73	0.60	0.46	0,33	0.19	0.06

Table F.2.25 Consumptive Use of Water in Zone III (8)

Crop: Vegetables

[AT] : Zone Area [AO] : Planted Area [AO]/[AT] : 57 %

															-		-						
	Apr.				M	ay .					is	ine					J	uly				Aug.	
4	5	6	!_	2	3	4		6	I	2	3			6_		. 2	3	4	5_	6		2	
0.63	0.69	0.75	0.50	0.86	0.92	0.96	0.96	0.96	0.96	0.92	0.85												
												0.85	1										
		0.63																					
			0.63																				
				0.63																			
					0.63												2.22						
						0.63																	
							0.63																
								0.63												0.85			
									0.03												A 44	1	
											0,03												0.85

0.63	0.66	0.69	0.72	0.75	0.78	0.80	0.82	0.84	0.85	0.86	0.86	0.86	0.88	0.89	0.91	0.92	0.93	0.94	0.93	0.92	0.91	0.89	0.85
0.04	0.13	0.21	0.29	0.38	0.46	0.54	0.63	0.71	0.79	0.87	0.96	0.96	0.87	0.79	0.71	0.63	0.54	0.46	0.38	0.29	0.21	0.13	0.04
	-,			•																			
3.70	3.70	3.70	1.00	1.00	1.00	3.00	1.00	1.00	2.80	2.80	2.80	2.80	2.80	2.80	2.50	2.50	2.50	2.50	2.50	2.50	2.10	2.10	2.10
0.10	0.31	0.53	0.63	0.84	1.07	t.30	1.54	(.76	1.48	2.10	2.29	2.29	2.14	1.98	1.61	1.44	1.26	1.07	0.87	0.67	0.40	0.23	0.07
														·									
0.04	0.17	0.30	0.36	0.44	0.41	0.74		1.02	1.08	1 20	1 21	1 31	1 23	1 13	0 92	0.83	0.22	0.61	0.50	0.12	0.23	0.13	0.04
4.00	0,17	v. 30	0.30	9.70	0.01	0.74	V.00							••		****		0.01	50				
	0.63 0.04 3.70 0.10	0.63 0.69 0.63 0.66 0.04 0.13 3.70 3.70 0.10 0.31	0.63 0.69 0.75 0.63 0.69 0.63 0.69 0.63 0.64 0.63 0.64 0.63 0.04 0.13 0.21 3.70 3.70 3.70 0.10 0.31 0.53	0.63 0.69 0.75 0.80 0.83 0.69 0.75 0.63 0.63 0.69 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63	0.63 0.69 0.75 0.80 0.86 0.63 0.69 0.75 0.69 0.75 0.69 0.75 0.60 0.69 0.75 0.69 0.75 0.63 0.69 0.75 0.63 0.69 0.75 0.63 0.69 0.75 0.63 0.63 0.63 0.63 0.63 0.64 0.13 0.21 0.29 0.38 3.70 3.70 3.70 3.70 3.00 3.00 0.10 0.31 0.53 0.63 0.84	0.63 0.69 0.75 0.80 0.86 0.92 0.63 0.69 0.75 0.80 0.86 0.86 0.63 0.69 0.75 0.63 0.89 0.75 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63	0.63 0.69 0.75 0.80 0.86 0.92 0.96 0.63 0.69 0.75 0.80 0.86 0.92 0.96 0.63 0.63 0.69 0.75 0.80 0.86 0.92 0.63 0.65 0.69 0.75 0.80 0.86 0.92 0.63 0.69 0.75 0.80 0.86 0.63 0.69 0.75 0.80 0.63 0.69 0.75 0.80 0.63 0.69 0.75 0.80 0.63 0.69 0.75 0.80 0.63 0.69 0.75 0.80 0.63 0.69 0.69 0.63 0.69	0.63 0.69 0.75 0.80 0.86 0.92 0.96 0.96 0.53 0.69 0.75 0.80 0.86 0.92 0.96 0.96 0.63 0.69 0.75 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.8	0.63 0.69 0.75 0.80 0.86 0.92 0.96 0.96 0.96 0.63 0.69 0.75 0.80 0.86 0.86 0.92 0.96 0.96 0.63 0.69 0.63 0.69 0.75 0.80 0.86 0.92 0.96 0.63 0.69 0.75 0.80 0.86 0.92 0.96 0.63 0.69 0.75 0.80 0.86 0.92 0.96 0.63 0.69 0.75 0.80 0.86 0.92 0.96 0.63 0.69 0.75 0.80 0.86 0.92 0.63 0.69 0.75 0.80 0.86 0.63 0.69 0.75 0.80 0.86 0.63 0.69 0.75 0.80 0.86 0.63 0.69 0.63 0.69 0.75 0.80 0.86 0.63 0.69 0.63 0.69 0.63 0.69 0.63 0.69 0.75 0.80 0.82 0.84 0.83 0.84 0.83 0.84 0.83 0.84	0.63 0.69 0.75 0.80 0.86 0.92 0.96 0.92 0.96	0.63 0.69 0.75 0.80 0.86 0.92 0.96	1	1	1	1	1	1	4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 3 4 5 6 1 2 3 3 4 5 6 1 2 3 3 4 5 6 1 2 3 3 4 5 6 1 2 3 3 4 5 6 1 2 3 3 4 5 6 1 2 3 3 4 5 6 1 2 3 3 4 5 6 1 2 3 3 4 5 6 6 1 2 3 3 4 5 6 6 1 2 3 3 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 4 5 6 6 1 2 3 4 4 5 6 6 1 2 3 4 4 5 6 6 1 2 3 4 4 5 6 6 1 2 3 4 4 5 6 6 1 2 3 4 4 5 6 6 1 2 3 4 4 5 6 6 1 2 3 4 4 5 6 6 1 2 3 4 4 5 6 6 1 2 3 4 4 5 6 6 1 2 3 4 4 5 6 6 1 2 3 4 4 5 6 6 1 2 3 4 4 5 6 6 1 3 1 2 3 3 4 4 5 6 6 1 3 1 2 3 3 4 4 5 6 6 1 3 1 2 3 3 4 4 5 6 6 1 3 1 2 3 3 4 4 5 6 6 1 3 1 2 3 3 4 4 5 6 6 1 3 1 2 3 3 4 4 5 6 6 1 3 1 2 3 3 4 4 5 6 6 1 3 1 2 3 3 4 4 5 6 6 1 3 1 2 3 3 4 4 5 6 6 1 3 1 2 3 3 4 4 5 6 6 1 3 1 2 3 3 4 4 5 6 6 1 3 1 2 3 3 4 4 5 6 6 1 3 1 2 3 3 4 4 5 6 6 1 3 1 2 3 3 4 4 5 6 6 1 3 1 2 3 3 4 4 5 6 6 1 3 1 2 3 3 4 4 5 6 6 1 3 1 2 3 3 4 4 5 6 6 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4 5 6 1 2 3 4 5 6 0.00 0.00 0.00 0.00 0.00 0.00 0.00	4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 3 4 5 6 1 2 3 3 4 5 6 1 2 3 4 5 6 6 1 2 3 3 4 5 6 6 1 6 6 1 6 7 6 6 6 7 6 7 6 7 6 7 6 7	4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 3 2 3 4 5 6 1 3 2 3 4 5 6 1 3 2 3 4 5 6 1 3 2 3 4 5 6 1 3 2 3 4 5 6 1 3 2 3 4 5 6 1 3 2 3 4 5 6 1 3 2 3 4 5 6 1 3 2 3 4 5 6 1 3 2 3 4 5 6 1 3 2 3 4 5 6 1 3 4 5 6 1 3 4 5 6	4 5 6 1 2 3 4 5 6

Table F.2.26 Required Pond Capacity in Water Balance Calculation

Zone I

			(Unit : m ³)
Year	•	Irrigation Bloo	:k
	I-1	I-2	I-3-1
1977	3321	2657	2340
1978	4926	3523	3134
1979	3218	2557	1134
1980	4454	2854	8121
1981	3047	2389	1616
1982	2543	2336	. 0
1983	3062	2238	4209
1984	3321	2657	6470
1985	2087	1470	1097
1986	2459	1961	1847
1987	5140	3523	3548

Zone II

							(Unit: m ³)	
Year				Irrigatio	n Block		e de la companya de l	
	II - 1	II - 2	11 - 3	II - 4	11 - 5	II - 6	II - 7	II - 8
1977	1927	4606	4585	12279	1148	1045	2503	3244
1978	2374	5545	2556	12798	1552	3091	3058	3661
1979	2180	5307	4373	17874	2092	3694	2958	3635
1980	4204	7255	6275	12551	1073	782	3710	4977
1981	1837	4726	2558	18927	1912	2158	2634	3544
1982	805	2636	889	9587	648	760	1316	1748
1983	2289	5161	5002	14301	1681	3157	2899	3773
1984	2864	4818	4734	23754	1843	3409	2244	3552
1985	933	2304	1354	5768	361	523	1160	1428
1986	2081	4789	2047	11576	1416	2941	2839	2714
1987	2280	5269	2748	14613	1324	1068	2744	3685

Table F.2.27 Water Balance Calculation in Zone I

Irrigation Block: I - 1, Pond Name: BAYABAS, Standard Year: 1978

		Rainfall	Effective		Water		Available		
	tive Use (mm)	(mm)	Rainfall (mm)	Require-	Requirement (m ³)	Runoff (m ³)	Runoff		Capacity
	1 10.2	0.0	0.0	15.7	6772	7414	(m ³) 6524	(m ³)	(m ³) 248
•	2 10.3	0.0	0 . 0	15.8	6813	7171	6311	0	750
JAN.	3 10.4 4 10.2	$0.0 \\ 0.0$	0.0	16.0 15.7	6894 6741	7171 7171	6311 6311	0 0	1334
	5 9.7	0.0	0.0	14.9	6419	7171	6311	0	1765 1873
	6 11.0 1 10.8	0.0	0.0	$\frac{17.0}{16.7}$	7305 7173	8605	7573	0	1605
	2 11.0	0.0	0.0	16.9	7254	7171 7171	6311	0 0	2468 3411
	3 11.0 4 10.4	0.0	0.0	16.9 16.0	7247	7171	6311	0	4347
	5 9.3	5.1	2.2	10.8	6890 4656	7171 7171	6311 6311	0 0	4926 3271
	6 4.9	0.0	0.0	7.5	3231	4303	3786	0	2716
	$\begin{array}{ccc} 1 & 8.4 \\ 2 & 8.0 \end{array}$	0.0	0.0	12.9 12.4	5561 5317	7171 7171	$6311 \\ 6311$	0 0	1966 972
MAR.	3 7.8	0.0	0.0	12.0	5167	7171	6311	0	0
	4 8.3 5 9.4	7.6 0.0	$\frac{2.9}{0.0}$	$8.3 \\ 14.5$	3549 6248	7171	6311 6311	. 0	0 0
	6 12.8	13.7	6.7	9.3	4013	8605	7573	a	. 0
•	1 10.3 2 10.6	0.3 0.0	0.2 0.0	15.6 16.4	6708	7171	6311	0	398
APR.	3 10.9	0.0	0.0	16.3	7040 7227	7171 7171	6311 6311	0	1127 2043
	4 11.1 5 11.3	$\frac{4.3}{26.7}$	2.2	13.7	5898	7171	6311	0	1631
	6 11.3	0.8	$13.8 \\ 0.4$	$0.0 \\ 16.7$	$\begin{smallmatrix} 0\\7174\end{smallmatrix}$	7208 7171	6343 6311	Q 0	0 864
	1 8.5	5 4	2.6	9.1	3893	7171	6311	0	0
MAY	2 7.1 3 5.8	$\begin{array}{c} 37.4 \\ 0.0 \end{array}$	$\begin{array}{c} 15.2 \\ 0.0 \end{array}$	$\begin{array}{c} 0.0 \\ 8.9 \end{array}$. 0 3829	10744 7171	$9455 \\ 6311$	0	0
	4 4.7	0.0	0.0	7.3	3135	7171	6311	0	. 0
	5 4.0 6 4.1	$133.5 \\ 149.0$	34.0	0.0	0	46645 125594	41048 110523	0	0 0
	1 3.3	86.5	21.1	0.0	0	98877	87012	0	0
	2 4.0 3 4.7	22.8 80.1	6.8 28.4	$0.0 \\ 0.0$	Ú 0	40324 58113	35485	0	0
	4 5.8	57.9	24.4	0.0	0	50166	51140 44146	0	0
	$ \begin{array}{ccc} 5 & 7.0 \\ 8 & 8.3 \end{array} $	153.7	76.7	0.0	0	130925	115214	0	0
	0 0.3 1 8.8	$\frac{5.3}{119.4}$	$\frac{3.1}{79.4}$	8.0	3453 0	51081 66356	.44952 58393	0	0 0
	2 9.6	42.6	30.5	0.0	. 0	72584	63874	0	0
,	3 10.4 4 10.4	$114.1 \\ 112.8$	$\begin{array}{c} 87.3 \\ 86.3 \end{array}$	0.0	0	106707 87541	93902 77036	0 0	0 0
	5 10.0	25.5	18.2	0.0	0	64441	56708	Ô	Ö
	6 11.6 1 7.9	$207.1 \\ 99.5$	142.9 67.3	$0.0 \\ 0.0$	0	186127 105740	163792 93051	0 0	0 0
AUG.	2 7.5 3 7.1	34.5	22.4	0.0	. 0	69558	61211	0	0
	$ \begin{array}{ccc} 3 & 7.1 \\ 4 & 6.7 \end{array} $	139.8	86.8	0.0	0	111795	98380	0	0
	5 6.3	$\begin{array}{c} 20.7 \\ 776.0 \end{array}$	12.3 182.4	$0.0 \\ 0.0$	0	67622 607708	59507 534783	0	0 0
	6 7.2	60.8	32.7	0.0	Q	275811	242713	0	0
	1 6.4 2 6.6	94.6 93.3	48.3 49.7	0.0 0.0	0	133093 109880	$\frac{117122}{96695}$	0 0	0
	3 . 6.9	23.6	13,1	0.0	0	77715	68389	0	0
	4 7.5 5 8.4	144.7 57.3	$87.1 \\ 38.6$	$0.0 \\ 0.0$. 0	138044 73023	121479 64260	0	0 0
	6 8.7	37.8	26.3	0.0	0	63580	55950	0	0
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	45.5 54.9	$31.4 \\ 38.8$	$0.0 \\ 0.0$. 0	53614 44964	47180 39569	0	0
001.	3 9.8	39.9	28.8	0.0	0	61109	53776	0	0
	4 9,9 5 9,9	14.0	10.2	0.0	0 6550	31184 21610	27442	0	0 0
	5 9.9 6 11.9	$0.0 \\ 120.4$	0.0 85.9	$\frac{15.3}{0.0}$	6559 0	93310	19017 82113	0 0	0
	1 10.6	29.0	20.5	0.0	. 0	37930	33379	0	0
	2 10,6 3 10,6	$0.0 \\ 0.0$	$0.0 \\ 0.0$	16.3 16.2	7011 6981	23821 15589	20962 13718	0 0	0 0
	4 10.5	20.8	14.3	0.0	0	14544	12799	0	0
	5 10.4 6 10.8	15.0	10.2	$0.4 \\ 16.5$	$\begin{array}{c} 168 \\ 7113 \end{array}$	14970 11718	13173 10312	0 0	0
	1 11.2	0.0	0.0	17.2	7379	10602	9330	0	0
	2 10.7 3 10.1	0.0	0.0	16.4	7052	9539	8395	0	0
	3 10,1 4 9,8	$\begin{smallmatrix}0&0\\72&6\end{smallmatrix}$	$\begin{smallmatrix}0.0\\43.2\end{smallmatrix}$	15.6 0.0	·6690 0	8642 19824	7605 17445	0 0	0 0
	5 9.8	0.0	0.0	15.1	6507	24040	21155	. 0	0
	6 11.8	0.0	0.0	18.2	7830	12779	11246	0	0
TOTAL	642.4		1669.8	509.1	218896		3285468	0	

Table F.2.28 Water Balance Calculation in Zone I

Irrigation Block: I-2, Pond Name: PUGUIS, Standard Year: 1978

Month		Consump- tive Use	Rainfail	Effective Rainfall	Water Require-	Water Require-	Total Runoff	Available Runoff	Supplied by Pump	
		(mm)	(mm)		•	ment(m ³)	(m ³)	(m ³)	(m ³)	(m ³)
Selection and selection of the	1	10.2	0,0	0.0	15.7	6614	7171	6311	0	304
	2	10.3	0.0	0.0	15.8	6655	7171	6311	0	648
AN.	3	10.4	0.0	0.0	16.0	6734	7171	6311	0	1071
	5	$\frac{10.2}{9.7}$	0.0	0.0	15.7 14.9	6584 6270	7171 7171	6311 6311	0	1345 1304
	6	11.0	0.0	0.0	17.0	7135	8605	7573	Ő	866
	1	10.8	0.0	.0.0	16.7	7006	7171	6311	Ō	1562
	2	11.0	0.0	0.0	16.9	7085	7171	6311	0	2336
EB.	3	$11.0 \\ 10.4$	0.0	$0.0 \\ 0.0$	16.9 16.0	7079	7171	6311	0	3104
	5	9.3	5.1	2.2	10.0	6729 4547	7171 7171	6311 6311	0	3523 1760
	6	4.9	0.0	$\tilde{0}$. $\tilde{0}$	7.5	3156	4303	3786	ŏ	1129
	1	8.4	0.0	0.0	12.9	5431	7171	6311	. 0	250
	2	8.0	0.0	0.0	12.4	5193	7171	6311	0	Õ
IAR.	3	7.8 8.3	0.0 7.6	$0.0 \\ 2.9$	12.0 8.3	5046 3466	$\frac{7171}{7171}$	6311 6311	0	0
	5	9.4	0.0	0.0	14.5	6102	7171	6311	. 0	0
	6	12.8	13.7	6.7	9.3	3919	8605	7573	ő	Ö
	1	10.3	0.3	0.2	15.6	6552	. 7171	6311	0	242
DD.	2	10.6	0.0	0.0	16.4	6876	7171	6311	. 0	807
PR.	3	10.9 11.1	0.0	0.0	16.8	7059	7171	6311	. 0	1555
	5	11.3	$\begin{array}{c} 4.3 \\ 26.7 \end{array}$	$\begin{smallmatrix}2.2\\13.8\end{smallmatrix}$	13.7	5761 0	$7171 \\ 7171$	6311 6311	0	1006
	6	11.3	0.8	0.4	16.7	7007	7171	6311	ŏ	697
	1	8.5	5.4	2.6	9.1	3802	7171	6311	0	. 0
TA V	2	7.1	37.4	15.2	0.0	0	7171	6311	0	0
IAY	3	5.8	0.0	0.0	8.9	3740	7171	6311	0	0
	5	4.7 4.0	0.0 133.5	$0.0 \\ 34.0$	$\frac{7.3}{0.0}$	3062 0	7171 8107	6311 7134	0	0
	6	4.1	149.0	34.2	0.0	Ö	12887	11341	0	ő
	1	3.3	86.5	21.1	0.0	Ö	10062	8855	Ŏ	Õ
JNE	2	4.0	22.8	6.8	0.0	. 0	7171	6311	0	0
NINE	3	4.7	80.1	28.4	0.0	0	7388	6501	0	0
	4 5	5.8 7.0	57.9 153.7	24.4 76.7	$0.0 \\ 0.0$	0	7171 13149	6311 11571	. 0	0
	6	8.3	5.3	3.1	8.0	3373	7171	6311	Ö	Ö
	i	8.8	119.4	79.4	0.0	0	8891	7824	. 0	Ō
JLY	2	9.6	42.6	30.5	0.0	0	7570	6662	0	0
71.71	3	10.4	114 1	87.3	0.0	. 0	10706	9421	0	0
	4	10.4	112.8	86.3	$0.0 \\ 0.0$	0	9017 7352	7935	0	0
	5 6	10.0	$25.5 \\ 207.1$	18.2 142.9	0.0	Ö	18654	6470 16416	Ö	0
	ĭ	7.9	99.5	67.3	0.0	Ö	10574	9305	- 0	ŏ
UG.	2	7.5	34.5	22.4	0.0	0	7512	6610	0	0
VO.	3	7.1	139.8	86.8	0.0	0	11489	10110	0	0
	4 5	6.7 6.3	20.7 776.0	12.3	$0.0 \\ 0.0$	0	7427 60771	6536 53478	0	0
	6	7.2	60.8	$\frac{182.4}{32.7}$	0.0	. 0	27581	24271	ŏ	· ŏ
	ĭ	6.4	94 6	48.3	0.0	Ŏ	13309	11712	Ŏ	Ō
EPT.	2	6.6	93.3	49.7	0.0	0	10988	9669	. 0	0
	3	6.9	23 6	13.1	0.0	0	8061	7094	0	0
	4 5	7.5	144.7	87.1 38.6	0.0	0	13804 7496	12148 6596	0	0
	6	8.4	37.8	26.3	0.0	Ö	7171	6311	ů	ŏ
	ĭ	9.4	45.5	31.4	0.0	. 0	7171	6311	0	0
CT.	2	9.6	54.9	38.8	0.0		7171	6311	. 0	0
	3	9.8	39.9	28.8		0	7529	6625	0	.0
. :	4	$9.9 \\ 9.9$	14.0	$\begin{smallmatrix}10.2\\0.0\end{smallmatrix}$	$\begin{array}{c} 0.0 \\ 15.3 \end{array}$	6406	7171	6311 6311	0	0 96
	,5 6	11.9	120.4	85.9	0.0		10854	9552	0	0
	1	10.6	29.0	20.5	0.0		7171	6311	Ŏ	ő
OV.	2	10.6	0 0	0.0	16.3	6848	7171	6311	0	537
	3	10.6	0.0	0.0	16.2	6818	7171	6311	0	1045
	4	10.5	20.8	14.3	0.0	164	7171	6311	0.	. 0
	5 6	10.4 10.8	15.0 0.0	10.2	$0.4 \\ 16.5$	164	7171	6311 6311	⊕ 0 . :: - 0	0 637
	1	11.2	0.0	0.0	17.2	7208	7171	6311	0	1534
EC.	2	10.7	0.0	0.0	16.4	6888	7171		ŏ	2112
	3	10.1	0.0	0.0	15.6	6535	7171	6311	0	2336
	4	9.8	72.6	43.2	0.0	0	7171	6311	0	0
	5 6	9.8	0.0	0.0	15.1	6356 7648	7171 8605	6311	0	45 120
	U	11.8	0.0	0.0	18.2	. 1090	0000	7573	U	100
JTAL		642.4		1669.8	509.1	213805		578011	0	

Table F.2.29 Water Balance Calculation in Zone I

Irrigation Block: I - 3 - 1, Pond Name: BUYAGAN, Standard Year: 1984

Month	. (Consump-	Rainfall	Effective	Water	Water	Total		Supplied	
		tive Use (mm)	(mm)	Rainfall (mm)	Require- ment(mm	Require-) ment(m ³)	Runoff (m ³)	Runoff (m ³)	by Pump (m ³)	Capacity (m ³)
	1	10.2	0.0	0.0	15.7	5040	6058	5331	0	0
*.	2	10.3	0.0	0.0	15.8	5070	5667	4987	0	83
AN.	3 4	10.4	0.0	0.0	$\frac{16.0}{15.7}$	5131 5017	5329 5164	4689 4545	0	524 996
	5	9.7	5.4	3,1	10.1	3227	5083	4473	0	000
	6	11.0	13.2	7.1	6.0	1928	5993	5274	0	0
	1 2	$\begin{array}{c} 10.8 \\ 11.0 \end{array}$	0.0	0.0 0.0	$16.7 \\ 16.9$	5338 5398	4907 4828	4318 4249	0	1020 2169
EB.	3	11.0	0.0	0.0	16,9	5393	4750	4180	Ö	3383
	4	10.4 9.3	0.0	0.0	16.0	5127	4671	4111	0	4400
	5 6	6.5	0.0	0.0	$14.3 \\ 10.0$	4567 3206	4593 2718	4042 2392	0 0	4925 5739
	1	8.4	4.3	1.5	10.6	3377	4468	3932	Õ	5183
4 A Th	2	8.0	0.0	0.0	12.4	3957	4391	3864	0	5276
AAR.	3 4	7.8	$\begin{array}{c} 28.5 \\ 3.3 \end{array}$	10.3 1.3	$0.0 \\ 10.8$	$\begin{array}{c} 0 \\ 3458 \end{array}$	5750 4242	5060 3733	0	216
	5	9.4	0.0	0.0	14.5	4649	4171	3670	ŏ	979
	6	12.8	6.4	3.1	14.9	4754	4912	4322	0.	1410
	1 2	10.3 10.6	$0.0 \\ 0.0$	0.0 0.0	15.8 16.4	5069 5239	4017 3948	3535 3474	0	2945 4709
APR.	3	10.9	0.8	0.4	16.2	5174	3879	3414	Ő	6470
	4	11.1	82.7	42.9	0.0	0	23021	20259	.0	0
	5 6	11.3	$\begin{array}{c} 34.5 \\ 77.4 \end{array}$	17.9 40.1	0.0 0.0	0	31315 45631	27557 40155	0	. 0
	1	8.5	59.6	28.6	0.0	. 0	47630	41915	0	0
/AY	2 3	7.1 5.8	102.8 76.4	$\frac{41.7}{25.2}$	0.0	. 0	72954	64200	0	0
	4	4.7	63.0	25.2 17.6	0.0 0.0	0 0	94882 56135	83496 49398	0	0
	5	4.0	57.4	14.6	0.0	. 0	65761	57870	0	0
	6	4.1 3.3	$\frac{35.9}{21.7}$	8.2 5.3	$\begin{array}{c} 0.0 \\ 0.0 \end{array}$	0	55415 27549	48766	0	0
	1 2	4.0	37.5	11.2	0.0	0	30382	24243 26736	0	Q
UNE	2	4.7	40.9	14.5	0.0	0	24926	21935	0	0
	<u> </u>	$\frac{5.8}{7.0}$	55.1 176.9	$\begin{smallmatrix}23.2\\88.2\end{smallmatrix}$	0.0	0	50957 151093	44842 132962	0	0
	6	8.3	51.7	29.8	0.0	. 0	78411	69002	ő	ő
	1	8.8	103.9	69.1	0.0	0	114155	100456	0	0
ULY	2 3	9.6	$117.9 \\ 27.4$	84.3	0.0	0	135089 69047	118878 60761	0	0
-	4	10.4 10.4	53.5	21.0 40.9	0.0 0.0	Õ	55385	48738	Õ	ő
	5	10.0	37.5	26.8	0.0	0	47252	41582	. 0	0
1.	6 1	$\begin{array}{c} 11.6 \\ 7.9 \end{array}$	$\begin{array}{c} 38.1 \\ 26.9 \end{array}$	$\begin{array}{c} 26.3 \\ 18.2 \end{array}$	0.0	0	44027 38722	38744 34075	0	0
AUG.	2	7.5	74.9	48.6	0.0	Ö	60718	53432	Ö	Ö
100.	3	7.1	196.9	115.6	0.0	0	132395	116508	0	0
	4 5	6.7 6.3	323.3 41.4	148.7 23.4	0.0 0.0	0 0	418829 125347	368569 110305	0 0	0
	6	7.2	692.3	179.4	0.0	ő	708227	623239	0	0
	.1	6.4	26.9	13.7	0.0	0	209635	184478	0	0
ЕРТ.	2 3	$\substack{6.6 \\ 6.9}$	$32.0 \\ 57.6$	$17.0 \\ 32.0$	0.0	0	98450 79786	86636 70212	0 0	0
	4	7.5	50.2	30.2	0.0	. 0	77203	67939	. 0	0
	5	8.4	56.2	37.9	0.0	0	58030 100000	51066	0	0
	6 1	$\frac{8.7}{9.4}$	67.6 98.4	47.1 68.0	$0.0 \\ 0.0$	0	90757	88000 79866	0	Ŏ
CT.	2	9.6	68.0	48.0	0.0	ŏ	101366	89202	t)	0
	3	9.8	34.3	24.8	0.0	0.46	65003	57202	0 0	0
	4 5	$9.9 \\ 9.9$	11.0 11.8	8.0 8.5	$\frac{3.0}{2.2}$	946 699	39639 27587	34883 24277	0	0
	6	11.9	111.9	79.8	0.0	0	81960	72125	0	0
	1 -	10.6	27.9	19:7	0.0	60.0	55205	48580	0	0
lov.	.2	10.6 10.6	0.0 0.0	$0.0 \\ 0.0$	16.3 16.2	5218 5195	28773 18125	25321 15950	0 0	0
	4	10.5	2.5	1.7	13.5	4325	15968	14052	0	0
	5	10.4	0.0	0.0	16.1	5144	14074	12385	0	0
	6	$10.8 \\ 11.2$	$\frac{0.0}{2.5}$	$0.0 \\ 1.7$	$\frac{16.5}{14.5}$	5293 4633	12470 11140	10974 9803	0 0	0
DEC,	1 2	10.7	0.5	0.3	14.0	5087	10061	8854	0	ő
	3	10.1	0 0	0.0	15.6	4979	9173	8072	0	0
	.4 5	$9.8 \\ 9.8$	0 0	0.0 0.0	15.1 15.1	4835 4843	8419 7772	7409 6839	0	0
	6	11.8	0.0	0.0	18.2	5827	8597	7565	. 0	ő
OTAL	-					147142		3637910	O.	
WINL		644.0		1677.0	459.8	141148		0161600	v	

Table F.2.30 Water Balance Calculation in Zone I Irrigation Block: I-3-2, Standard Year: 1984

Month		Consump- tive Use	Rainfall	Effective Rainfall	Water Require-	Water Require-	Total Runoff	Available Runoff	Supplied by Pump	Required Capacity
		(mm)	(mm)	(mm)) ment(m ³)	(m ³)	(m^3)	(m ³)	(m ³)
	1	10.2	0.0	0.0	15.7	6614	0	0	6614	0
JAN.	2 3	10.3 10.4	0.0	$0.0 \\ 0.0$	15.8 16.0	6655 6734	0	0	6655 6734	0.
JAIA.	4	10.2	0.0	0.0	15.7	6584	ő	0	6584	ŏ
	5	9.7	δ . 4	$3 \cdot 1$	10.1	4236	0	0	4236	Õ
	6 1	$\frac{11.0}{10.8}$	13.2	7.1	6.0	2530	0	0	2530	0
	2	11.0	0.0 0.0	0.0	16.7 16.9	7006 7085	0	0	7006 7085	0
FEB.	3	11.0	0.0	0.0	16.9	7079	. 0	0	7079	Ŏ
•	4	10.4	0.0	0.0	16.0	6729	0	. 0	6729	Ó.
	5 6	$9.3 \\ 6.5$	0.0	0.0	$14.3 \\ 10.0$	5994 4208	. 0	0	5994	0
	Ĭ	8.4	4.3	1.5	10.6	4432	0	0	4208 4432	0
	2	8.0	0.0	0.0	12.4	5193	ŏ	· ŏ	5193	ŏ
MAR.	3	7.8	28.5	10.3	0.0	0	0	0	. 0	0
	4 5 .	8.3	3.3	0.0	10.8 14.5	4539 6102	0	0	4539	0
	6	12.8	6.4	3.1	14.9	6239	. 0	· 0	6102 6239	: 0
	1	10.3	0.0	0.0	15.8	6653	ŏ	ŏ	6653	0
APR.	2	10.6	0.0	0.0	16.4	6876	, 0	0	6876	0
AFA.	3	10.9 11.1	$\begin{smallmatrix}0.8\\82.7\end{smallmatrix}$	$\begin{smallmatrix}0.4\\42.9\end{smallmatrix}$	$\begin{array}{c} 16.2 \\ 0.0 \end{array}$	6791 0	.0	0	6791	0
	5	11.3	34.5	17.9	0.0	. 0	Ö	0 0	.0 .0	0
	6	11.3	77.4	40.1	0.0	ŏ	ŢŎ	ŏ	ő	ő
	1	8.5	59.6	28.6	0.0	. 0	0	0	0	0
MAY	2 3	$\frac{7.1}{5.8}$	102.8 76.4	41.7	0.0	·· 0	0 0	0	. 0	0
	4	4.7	63.0	25.2 17.6	0.0	0	.0	0 0	0	0 0
	5	4.0	57.4	14:6	0.0	ŏ	Ö	ŏ	Ö	ő
	6	4.1	35.9	8.2	0.0	0	0	0	0	0
	2	3.3	21.7	5.3	0.0	0	0	. 0	0	0
JUNE	3	4.0	37.5 40.9	11.2 14.5	0.0	0	0	0	0 0	0
	4	5.8	55.1	23.2	0.0	ŏ	. 0	ŏ	: ŏ	Ŏ
	5	7.0	176.9	88.2	0.0	0	0	0	0	0
	6 1	8.3 8.8	51.7	29.8 69.1	$0.0 \\ 0.0$	0 0	0	0	. 0	0
JULY	2	9.6	103.9 117.9	84.3	0.0	Ö	. 0	0 0	0	0 0
301.1	3	10.4	27.4	21.0	0.0	Ŏ	Ö	ŏ	ŏ	Ŏ
	4	10.4	53.5	40.9	0.0	0	0	0	0	0
	5 6	10.0	37.5 38.1	26.8 26.3	$0.0 \\ 0.0$	0	0	0	. 0	0 0
	1	$\frac{11.6}{7.9}$	26.9	18.2	0.0	0	. 0	0	. 0	0
AUG.	2	7.5	74.9	48.6	0.0	0	0	0	Õ	ŏ
	3	7.1	196.9	115.6	0.0	0	0	0	0	. 0
	4 5	6.7 6.3	323.3 41.4	$148.7 \\ 23.4$	$0.0 \\ 0.0$	0	0	0	0	0
	6	7.8	692.3	179.4	0.0	ŏ	. 0	ŏ	ŏ	ŏ
	1	6.4	26.9	13.7	0.0	Ō	0	. 0	0	0
SEPT.	2	6.6	32.0	17.0	0.0	0	0	0	. 0	0
	3 4	6.9 7.5	57.6 50.2	32.0 30.2	0.0	0	0	0 0	0	. 0
	5	8.4	56.2	37.9	0.0	0	0	0	. 0	Ó
	e	7.8	67.6	47.1	0.0	0	0	0	0	0
ocr	1	9,4	98.4	$68.0 \\ 48.0$	$0.0 \\ 0.0$. 0	0 0	0	0	0 0
OCT.	2 3	9,6 9,8	$68.0 \\ 34.3$	24.8	0.0	0	0	0	0	0
	4	9,9	11.0	8.0	3.0	1242	0	0	1241	0
	5	9,9	11.8	8.5	4.2	917	0	0	917	0
	6	11.9	111.9	79.8 19.7	0 0 0 0	0	0	0	0	0
NOV.	1 2	10.6 10.6	$\begin{array}{c} 27.9 \\ 0.0 \end{array}$	0.0	16.3	6848	0	0	6848	0
• •	3	10.6	0.0	0.0	16.2	6818	0	0	818	0
	4	10.5	2.5	1.7	13.5	5677	0	0	5677	0
	5	10.4	0.0	0.0	16.1	6752	0	0	6752	0
	6.	10.8 11.2	$0.0 \\ 2.5$	0.0 1.7	16.5 14.5	6948 6080	. 0	0	6948 6080	. 0
DEC.	2	10.7	0.5	0.3	15.9	6677	. 0	Ō	.6677	. 0
	3	10.1	0.0	0.0	15.6	6535	0	0	6535	0
	4 .	9.8	0.0	0.0	15.1	6346	0	0	6346	0
	5 6	9.8 11.8	$0.0 \\ 0.0$	0.0	15.1 18.2	6356 7648	0 0	0	6356 7648	. 0
	•	-		1677.0		193124		_	193124	
TOTAL		644.0						Λ.	10010/	

Table F.2.31 Water Balance Calculation in Zone II

Irrigation Block: II - 1, Pond Name: BAHONG No.1, Standard Year: 1984

Month	Consump- tive Use	Rainfall	Effective Rainfall	Water Require-	Water Require-	Total Runoff	Available Runoff	by Pump	Capacity
	(mm)	(mm)	(mm)		ment(m ³)	(m ³)	(m ³)	(m ³)	(m ³)
1 2	7.4	0.0	0.0 0.0	$11.4 \\ 12.0$	1479 1565	947 886	833 779	646 786	0
JAN. 3 4	8.3	0.0	0.0	12.7	1657	833	733	925	0
	8.6	0.0	0.0	13.2	1713	807	710	1003	0
5 6	8.7 10.6	5.4 13:2	$\begin{array}{c} 2.6 \\ 6.3 \end{array}$	$9.5 \\ 6.7$	1230 868	794 936	699 824	531	0
1	10.7	0.0	0.0	16.5	2141	767	675	44 1140	325
2	10.8	0.0	0.0	16.6	2153	754	664	1140	674
FBB. 3	10.8	0.0	0.0	16.6	2152	742	653	1140	1033
5	10.5	$0.0 \\ 0.0$	0.0	$16.1 \\ 15.2$	2097 1979	730 718	642 632	1140 1140	1347 1554
. 6	7.4	.0.0	0.0	11.5	1490	554	488	912	1644
1	10.2	4.3	1.7	13.0	1695	698	614	1080	1644
2 1AR 3	$\begin{smallmatrix}10.0\\9.9\end{smallmatrix}$	$0.0 \\ 28.5$	$\begin{smallmatrix}0.0\\11.2\end{smallmatrix}$	15.3	1994	686	604	1140	1893
4 A	10.1	3,3	11.2	$0.0 \\ 13.5$	$\begin{smallmatrix} &&0\\1753\end{smallmatrix}$	898 663	791 583	0 1140	1103 1132
5	10.7	0.0	0.0	16.5	2139	652	574	1140	1557
6	13.6	6.4	2.9	16.4	2129	778.	684	1369	1633
1 2	10.6 10.7	$0.0 \\ 0.0$	0.0	16.3 16.5	2113 2148	648	570	1140	2035
\PR. 👸	10.9	0.8	0.4	16.2	2148	648 648	570 570	1140 1140	2473 2864
4	11.0	82.7	39.2	0.0	0	3607	3174	0	0
5 6	11.1	34.5	16.3	0.0	0	4893	4306	0	0
6 1	$\begin{smallmatrix}11.1\\8.7\end{smallmatrix}$	77.4 59.6	$\frac{36.7}{27.4}$	$0.0 \\ 0.0$	0	7130 7442	6274 6549	0	0
2	8.2	102.8	44.5	0.0	0	11399	10031	0	0
MAY 3	7.8	76.4	31.0	0.0	0	14825	13046	0	0
4 5	7.8	63.0	26.4	0.0	0	8771	7719	0	0
6 6	$8.3 \\ 10.8$	57.4 35.9	27.2 19.0	0.0	0	10275 8659	9042 7620	0 0	0
1	9.3	21.7	12.9	0.0	Ö	4305	3788	ő	0
UNE 2	10.5	37.5	25.4	0.0	0	4747	4178	0	0
UNE 3	11.8 12.6	$40.9 \\ 55.1$	31.1	0.0	0	3895	3427	. 0	0
5	13.0	176.9	44.1 141.5	0.0 0.0	. 0 0	7962 23608	7007 20775	0	0
6	13.3	51.7	41.4	0.0	0	12252	10782	0	0
1	12.1	103.9	83.1	0.0	0	17837	15696	0	0
ULY $\frac{2}{3}$	$\begin{array}{c} 12.2 \\ 12.2 \end{array}$	117.9	94.3	0.0	0	21108	18575	0	0
3 4	11.6	$\begin{array}{c} 27.4 \\ 53.5 \end{array}$	$21.9 \\ 40.6$	$0.0 \\ 0.0$	0 0	10789 8654	9494 7615	0 0	0
5	10.4	37.5	25.4	0.0	Ö	7383	6497	Ő	0
6	11.7	38.1	24.7	0.0	. 0	6879	6054	0	0
1 2 2	7.6 6.7	26.9 74.9	16.7 40.3	0.0 0.0	0 0	6050	5324 8349	0	0
$UG. \frac{2}{3}$	5.8	196.9	40.3 85.0	0.0	0	9487 20687	18204	: 0	0
4	5.4	323.3	104.2	0.0	ő	65442	57589	0	0
5	5,5	41.4	17.2	0.0	0	19585	17235	0	0
6	6.7	692.3	138.7	0.0	0	110660	97381	0 0	0 0
EPT. 2	$6.4 \\ 6.4$	$26.9 \\ 32.0$	$\begin{array}{c} 11.2 \\ 13.3 \end{array}$	$0.0 \\ 0.0$	0	32755 15383	28825 13537	0	0
3	6.4	57.6	23.9	0.0	. 0	12467	10971	Ō	0
4	6.4	50.2	20.9	0.0	0	12063	10615	0	0
5 6	6.3 5.6	$\begin{array}{c} 56.2 \\ 67.6 \end{array}$	$\frac{23.4}{24.5}$	0.0 0.0	0	9067 15625	7979 13750	0 0	0
1	5.7	98.4	34.6	0.0	Ö	14181	12479	ŏ	ő
CT. 2	6.6	68.0	29.4	0.0	0	15838	13938	0	0
3	7.6	34.3	17.6	0.0	0	10157	8938	0	0
4 5	8.6 9.7	11.0 11.8	6.6 8.0	$\frac{3.2}{2.7}$	414 351	6194 4311	5450 3793	0 0	0 0
5 6	13.1	111.0	85.0		391	12806	11270	.0	0
1	12.6	27.9	22.3	0.0	0	8626	7591	0	0
OV. 2	13.0	0.0	0.0	20.0	2595	4496	3956	0	0
3 4	13,3	0.0	0.0	20.5	2661	2832 2495	2492	169 117	0 0
5	$\begin{array}{c} 13.6 \\ 13.7 \end{array}$	$\frac{2.5}{0.0}$	2.0	$\frac{17.8}{21.1}$	2312 2742	2199	2196 1935	807	0
6	13.7	0.0	0.0	21.1	2739	1949	1715	1025	Ö
1	13.5	2.5	1.9	17.9	2323	1741	1532	791	. 0
EC. 2	12.1	0.5	0.3	18.1	2352	1572	1383	968	0
3	10.7 9.4	0.0	0.0	16.4 14.5	2137 1886	1433 1315	1261 1158	876 728	0 0
5	8.4	0.0	0.0	12.9	1672	1214	1069	604	0
6	8.9	0.0	0.0	13.6	1773	1343	1182	591	0
OTAL	702.8		1607.5	481.2	62554		568637	26516	
			ibili/ h	4 K I 2	nzaba		300037	200110	

Table F.2.32 Water Balance Calculation in Zone II

Irrigation Block: II - 2, Pond Name: BAHONG No.2, Standard Year: 1978

Month		Rainfall	Effective		Water	Total		Supplied	
	tive Use	4	Rainfall	Require-	Require-	Runoff		by Pump	
	(mm)	(mm)	(mm)) ment(m ³)		(m ³)	(m ³)	(m ³)
1 2	7.4 7.8	$\begin{array}{c} 0.0\\ 0.0 \end{array}$	0.0	$\frac{11.4}{12.0}$	2161 2287	2542 2352	2237 2069	218	0
JAN. 🕉	8.3	0.0	0.0	12.7	2422	2189	1926	496	0
3AN. 4	8.6	0.0	ŏ.ŏ	13.2	2504	2050	1804	700	Ŏ
5	8.7	0.0	0.0	13.4	2546	1930	1698	848	Ō
6	10.6	0.0	0.0	16.3	3096	2223	1956	1140	0
1 2	10.7	0 0 0 0	0.0	16.5 16.6	3129 3147	1819 1789	1601 1574	1140 1140	387
FEB. 3	10.8	0.0	0.0	16.6	3145	1758	1547	1140	820 1277
4	10.5	0.0	0.0	16.1	3064	1728	1521	1140	1680
5	9,9	5.1	2.2	11.8	2248	1698	1494	753	1680
6	5.6	0.0	0.0	8.6	1633	1005	884	684	1745
1	10.2	0.0	0.0	15.6	2970	1651	1453	1140	2122
2 MAR. 3	$\begin{smallmatrix}10.0\\9.9\end{smallmatrix}$	$0.0 \\ 0.0$	0.0	$\begin{array}{c} 15.3 \\ 15.2 \end{array}$	2914 2880	1622 1593	$-1427 \\ 1402$	1140 1140	2468 2807
ижк. з 4	10.1	7.6	3,1	10.8	2052	1564	1376	676	2807
. 5	10.7	o o	0.0	16.5	3126	1536	1352	1140	3440
6	13.6	13.7	6.3	11.2	2130	1816	-1598	532	3440
. 1	10.6	0.3	0.1	16.0	3046	1512	1331	1140	4016
2	10.7	0.0	0.0	16.5	3140	1512	1331	1140	4685
APR. 3	10.9	0.0	0.0	16.7	3182	1512	1331	1140	5396
4 5	11.0 11.1	4.3 26.7	$\frac{2.0}{12.6}$	13.8	2620 0	1512 1714	133 <u>1</u> .1508	1140	5545 4037
6	11.1	0.8	0.4	16.4	3122	1512	1331	1140	4688
Ĩ	8.7	5.4	2.5	9.6	1827	1512	1331	497	4688
2	8.2	37.4	16.2	0.0	. 0	3305	2908	0	1779
AAY 3	7.8	0.0	0.0	11.9	2268	1512	1331	938	1779
4	7.8	0.0	0.0	11.9	2267	1512	1331	936	1779
. 5 . 6	$8.3 \\ 10.8$	133.5 149.0	$63.2 \\ 78.7$	0 0 0 0	0	15949 43061	14035 37894	. 0	0
	9.3	86.5	51.6	0.0	. 0	33901	29833	. 0	Û
2	10.5	22.8	15.5	0.0	Ö	13825	12166	ŏ	Ŏ.
UNE 3	11.8	80.1	60.8	0.0	Ō	19925	17534	0	0
4	12.6	57.9	46.3	0.0	. 0	17200	15136	0	0
5	13.0	153.7	123.0	0.0	. 0	44889	39502	0	0
6	13.3	5.3	4.2	13.9	2650	17514	15412	0	0
1 2	12.1 12.2	119.4 42.6	95.5 34.1	$0.0 \\ 0.0$	0	22751 24886	20021 21900	0	0
ULY 3	12.2	114.1	91.3	0.0	0	36585	32195	0	Ô
4	11.6	112.8	85.6	0.0	ŏ	30014	26412	ŏ	ő
5	10.4	25.5	17.3	0.0	. 0	22094	19443	Ō	Ô
6	11.7	207.1	134.3	0.0	0	63815	56157	. 0	. 0
1	7.6	99.5	61.7	0.0	0	36254	31903	0	0
$UG. \frac{2}{3}$	6.7	34.5	18.6	0.0	0	23848 38330	20987 33730	0	0
3. 4	5.8 5.4	$139.8 \\ 20.7$	63.8 8.6	0.0	. 0	23185	20402	ŏ	ő
5	5.5	776.0	134.1	0.0		208357	183354	. Ŏ	Ď
. 6	6.7	60.8	25.3	0.0	Õ	94564	83216	. 0	0
1	6.4	94.6	39.3	0.0	0	45632	40156	. 0	0
EPT. 2	6.4	93.3	38.8	0.0	. 0	37673	33152	. 0	0
J	0.4	23.6	9.8	0.0	0	26645 47329	23448 41650	: 0	0
4 5	6.4 6.3	144.7 57.3	$60.2 \\ 23.8$	0.0	. 0	25036	22032	ŏ	. 0
ě	5.6	37.8	13.7	0.0	ŏ	21799	19183	Ŏ	Õ
ī	5.7	45.5	16.0	0.0	. 0	18382	16176	. 0	0
CT. $\frac{2}{2}$	6.6		23.8	0.0	Õ	15416	13566	0	0
O.	7.6	.39.9	20.5	0.0	. 0	20952	18437	O O	0
4	8.6	14.0	8.3	0.4	83	10692	9409	0	0
5 6	9.7	0.0	0.0 91.4	15.0 0.0	2850 0	7409 31992	6520 28153	0	0
1	13.1 12.6	120.4 29.0	23.2	0.0	0	13005	11444	Ů	0
· A	13.0	0.0	0.0	20.0	3793	8167	7187	Ŏ	0.
OV. $\frac{2}{3}$	13.3	0.0	0.0	20.5	3889	5345	4703	0	. 0
4	13.6	20.8	16.6	0.0	0	4987	4388	0	0
5	13.7	15.0	12.0	2.6	499	5132	4517	0	0
6	13.7	0.0	0.0	21 1	4004	4018	3535	468	. 0
1 2	13.5	0.0	0.0	20.8	3950 3536	3635 3271	3199 2878	751 658	0
EC. $\frac{2}{3}$	12.1 10.7	0.0	0.0	18.6 16.4	3536 3123	2963	2607	515	. 0
. 4	9.4	72.6	38.3	0.0	0120	6797	5981	0.0	ő
5	8.4		0.0	12.9	2444	8242	7253	0	0
6	8.9	0.0	. , 0 , 0 ,	13.6	2592	4381	3856	0	. 0
	e de la Company				•				
OTAL	701.0		1694.7	520 C	102340		1108643	25637	

Table F.2.33 Water Balance Calculation in Zone II

Irrigation Block: II - 3, Pond Name: BAHONG No.3, Standard Year: 1983

Month	Consump- tive Use	Rainfall	Effective Rainfall	Water Require-	Water Require-	Total Runoff	Available Runoff		Required Capacity
	(mm)	(mm)	(mm)	ment(mm)			(m ³)	(m ³)	(m ³)
1	7.4	24.9	10.1	0.0	0	7191	6328	0	0
2	7.8	0.0	0.0	12.0	2528	5332	4692	0	ŏ
JAN. 3	8.3	3.6	1.7	10.2	2142	5098	4486	0	0
5 · · · · · · · · · · · · · · · · · · ·	8.6 8.7	$\substack{12.3\\2.5}$	$\frac{5.8}{1.2}$	4.2 11.6	885 2431	4796 4530	4221 3986	0	0
6	10.6	0.0	0.0	16.3	3422	5116	4502	0	0
ĺ	10.7	0.0	0.0	16.5	3458	4031	3547	ŏ	. ŏ
2	10.8	0.0	0.0	16.6	3478	3899	3431	. 0	47
FEB. 3	10.8 10.5	0.0	$0.0 \\ 9.9$	16.6	3477	3835	3375	0	149
5	9.9	21.5	0.0	$\begin{array}{c} 0.9 \\ 15.2 \end{array}$	191 3197	4633 3710	4077 3265	: 0 0	0
6	5.6	0.0	0.0	8.6	1805	2197	1933	0	Q
1	10.2	0.0	0.0	15.6	3282	3614	3180	ő	102
2	10.0	15.5	6.1	6.0	1258	3621	3187	0	. 0
MAR. 3	9.9 10.1	0.0	0.0	15.2 15.5	3183	3495	3076	0	108
5	10.7	0.0	0.0	16.5	3265 3455	3437 3380	3025 2974	0	348 829
6	13.6	0.0	0.0	20.9	4391	3981	3503	Ŏ	1716
1	10.6	0.0	0.0	16.3	3413	3255	2864	Ŏ	2265
2	10.7	0.5	0.2	16.2	3394	3199	2815	0	2843
PR 3	10.9	0.0	0.0	16.7	3517	3144	2766	0	3594
-4 5	$\begin{array}{c} 11.0 \\ 11.1 \end{array}$	4.6	$\begin{array}{c} 2 \cdot 2 \\ 2 \cdot 2 \end{array}$	$\begin{array}{c} 13.6 \\ 13.7 \end{array}$	2850 2871	3089 3037	2718 2672	0	3727 3925
6	11.1	0.0	0.0	17.0	3573	3024	2661	Ö	4837
1	8.7	0.0	0.0	13.4	2822	3024	2661	0	4998
1AY 3	8.2	0.0	0.0	12.7	2665	3024	2661	0	5002
IAY 3	7.8 7.8	0.0	0.0	11.9	2507	3024	2661	Ö	4848
5	8.3	$5.9 \\ 41.9$	2.5 19.8	$8.1 \\ 0.0$	1706 0	3024 5398	2661 4750	0 0	3893 0
ě	10.8	109.2	57.7	0.0	ŏ	44198	38894	ŏ	ő
1	9.3	70.2	41.8	0 0	. 0	31387	27621	Õ	Ŏ
UNE 2	10.5	51.6	35.0	0.0	. 0	37821	33282	0	0
·		30.5	23.2	0.0	0	25663	22583	0	0
- 4 5	12.6 13.0	60.9 21.3	48.7 17.0	$0.0 \\ 0.0$	0 0	29777 27980	26204 24622	0	0
. 6	13.3	63.4	50.7	0.0	ŏ	34294	30179	ŏ	Õ
ì	12.1	20.8	16.6	0.0	· ŏ	21458	18883	Ŏ	Ď
ULY 2	12.2	29.3	23.4	0.0	0	18107	15934	0	0
ა	12.2	55.8	44.6	0.0	0	18015	15853	0	0
4 5	11.6 10.4	98.8 18.1	$\begin{array}{c} 75.0 \\ 12.3 \end{array}$	$0.0 \\ 0.0$	0	56677 29525	49876 25982	0 0	0
6	11.7	66.2	42.9	0.0	Ö	36802	32385	ő	0
1	7.6	108.0	66.9	0 0	ŏ	50925	44814	ŏ	ŏ
.UG. 2	6.7	99.4	53.5	0.0	0	74081	65191	0	Q
3	5.8	545.0	199.8	0.0	0	304710	268145	. 0	0
. 4 5	5.4 5.5	54.6 49.6	$\begin{array}{c} 22.7 \\ 20.6 \end{array}$	0.0	0	152418 65226	134128 57399	0 0	0 0
6	6.7	36.5	15.2	0.0	ŏ	49844	43863	ŏ	ŏ
. 1	6.4	89.9	37.4	0.0	0	46337	40777	0	0
EPT. 2	6.4	25.4	10.6	0.0	. 0	42724	37597	0	0
3	6.4	19.5	$8.1 \\ 28.6$	0.0	0	26504 32776	23324 28843	0	0
5	6.4 6.3	68.9 113.6	47.2	0.0	ŏ	59713	52548	Ö	0
6	5.6	54.7	19.9	0.0	ŏ	60782	53488	ŏ	Ö
1	5.7	18.0	6.3	0.0	0	31739	27931	0	0
CT. 2	6.6	25.4	11.0	0.0	0	19556	17209	0	0
3	7.6	20.7	10.6	0.0	0	22718	19992	0	0
4 5	$8.6 \\ 9.7$	25.9 52.7	15.4 35.7	0.0	0	16297 31343	14342 27582	0	0
6	13.1	23.1	17.5	0.0	. 0	20767	18275	Ů	ő
i	12.6	61.0	48,8	0.0	0	29597	26045	0	0
OV 2	13.0	0.5	0.4	19.3	4063	16592	14601	0	0
. 3	13.3	1.0	8.0	19.2	4040	9705	8541	. 0	0
4 5	13.6	41.1	$\begin{array}{c} 32.9 \\ 0.6 \end{array}$	$\begin{array}{c} 0.0\\20.1 \end{array}$	0 4222	15245 9091	13416 8000	0	0 0
6	13.7	0.8 2.6	$\begin{array}{c} 0.0 \\ 2.1 \end{array}$	17.9	3753	7586	6675	0	0
1	13.5	0.0	0.0	20.8	4366	6780	5967	· ŏ	ő
EC. 2	12.1	0.0	0.0	18.6	3908	6060	5332	0	0
	10.7	0.0	0.0	16.4	3452	5453	4798	0	0
4		0.0	0.0	14.5	3046	4940	4348	- 0	0
5 6	8.4	0.0	$0.0 \\ 0.3$	12.9 13.1	2701 2756	4507 4931	3966 4339	0	0
U	. 0.3		0.0			1001	4000	U	v
and the second									

Table F.2.34 Water Balance Calculation in Zone II

Irrigation Block: II - 4, Pond Name: ALAPANG No.1, Standard Year: 1981

Aonth	~~	Consump-	Rainfall	Effective		Water	Total	Available	Supplied	Required
		tive Use (mm)	(mm)	Rainfall (mm)	Require-	Require-) ment(m ³)	Runoff (m ³)	Runoff (m ³)	by Pump (m ³)	Capacity
	<u> </u>	7.4	14.8	6.0	2.1	1047	7344	(m ³) 6463	(m ⁻³)	(m ³)
	2	7.8	35	1.5	9.7	4757	7344	6463	0	- 0
AN.	3 4	$\begin{array}{c} 8.3 \\ 8.6 \end{array}$	0.0	0.0	12.7	6247 6457	7344 7344	6463 6463	0	. 0
	5	8.7	0.0	0.0	13.4	6566	7344	6463	Ŏ	0 103
	6	10.6	3.0	1.4	14.1	6914	8813	7755	0	0
	1 2	10.7 10.8	0.8	$\begin{array}{c} 0.4 \\ 0.0 \end{array}$	$\begin{array}{c} 15.9 \\ 16.6 \end{array}$	7783 8116	7344 7344	6463 6463	0	1320 2973
EB.	3	10.8	0.0	0.0	16.6	8112	7344	6463	Ŏ	4622
	4.	10.5	0.0	0.0	16.1	7902	7344	6463	0	6062
	5 6	$9.9 \\ 5.6$	$0.0 \\ 0.2$	$0.0 \\ 0.1$	$\substack{15.2\\8.5}$	7461 4151	7344 4406	6463 3878	0	7060 7333
	ĭ	10.2	0.0	0.0	15.6	7659	7344	6463	ŏ	8529
- 4 79	2	10.0	0.0	0.0	15.3	7516	7344	6463	0	9582
IAR.	3	$9.9 \\ 10.1$	0.0	0.0	15.2 15.5	7428 7618	7344 7344	6463 6463	0	10547
	5	10.7	0.0	0.0	16.5	8062	7344	6463	0	11702 13301
	6	13.6	0.0	0.0	20.9	10245	8813	7755	0	15791
	1 2	10.6 10.7	$0.0 \\ 0.0$	0.0	$\begin{array}{c} 16.3 \\ 16.5 \end{array}$	7963 8098	7344 7344	6463	0 0	17292
PR.	3	10.9	7. i	3,4	11.6	5672	7344	6463 6463	0	18927 18136
	4	11.0	4.8	2.3	13.4	6579	7344	6463	0	18252
	:5 6	11.1 11.1	$\begin{array}{c} 69.1 \\ 36.6 \end{array}$	$\frac{32.7}{17.3}$	0.0	0	7344	6463	0	11789
	1	8.7	14.5	6.7	$0.0 \\ 3.2$.0 1556	7550 7344	6644 6463	0	5145 238
iAY .	2	8.2	44.7	19.4	0.0	0	7344	6463	Ö	0
IM I	- 3 - 4	7.8 7.8	78.5 62.6	$\begin{array}{c} 31.8 \\ 26.2 \end{array}$	0.0 0.0	0	11972	10535	. 0	0
	5	8.3	28.4	13.5	0.0	0	11967 8358	10531 7355	0 0	0
	6	10.8	66.0	34.9	0.0	0	11176	9835	. 0	Ö
	1	9.3 10.5	47.0 89.4	28.0 60.6	0.0	0	11348	.9986	0	0
UNE	2 3	11.8	354.3	242.4	$0.0 \\ 0.0$. 0	12487 79884	10988 70298	0	0
	4	12.6	141.3	113.0	0.0	- 0	45838	40337	ŏ	. 0
	5	13.0	50.5	40.4	0.0	0	25917	22807	0	0
	6 1	13.3	70.0 125.8	56.0 100.6	0.0 0.0	0	18096 23054	15924 20288	0	0
ULY	2	12.2	19.8	15.8	0.0	0	17411	15322	ŏ	. 0
JL 1		12.2	118.1	94.5	0.0	0	22832	20092	0	0
	4 5	11.6 10.4	171.4 16.3	130.1 11.0	0.0 0.0	0	35461 22515	31206 19813	0	0
	6	11.7	67.1	43.5	0.0	Ö	18795	16539	Ŏ	ő
	1	7.6	144.1	89.3	0.0	0	25586	22516	0	.0
UG.	2	6.7 5.8	133.3 95.0	71.7 43.4	$\begin{array}{c} 0.0 \\ 0.0 \end{array}$	0	41241 25588	36292 22517	0	0
•	4	5.4	230.2	95.7	0.0	· · ŏ	47717	41991	Ö	Ö
	5	5.5	345.4	112.2	0.0	0	87619	77104	: 0	- 0
	6 1	6.7 6.4	$170.2 \\ 1.5$	$\begin{array}{c} 70.8 \\ 0.6 \end{array}$	$0.0 \\ 8.9$	0 4359	67899 21333	59751 18773	0	0
יועם:	2	6.4	9.1	3.8	4.0	1977	11732	10324	Ö	ő
BPT.	3	6.4	9.6	4.0	3.7	1821	7812	6874	. 0	0
	4 5	$\begin{array}{c} 6.4 \\ 6.3 \end{array}$	533.3 22.0	$\begin{array}{c} 111.2 \\ 9.1 \end{array}$	0.0	0	76047 59466	66922 52330	0	. 0
	6	5.6	84.1	30.5	0.0	Ŏ	24754	21784	Ŏ	ŏ
	1	5.7	111.4	39.1	0.0	0	31964	28129	Ō	. 0
CT.	2	6.6 7.6	0.5 1.8	$\begin{array}{c} \textbf{0.2} \\ \textbf{0.9} \end{array}$	$\begin{smallmatrix}9.8\\10.2\end{smallmatrix}$	4820 5020	17520 9378	15417 8252	0	0
	4	8.6	0.0	0.9	13.3	6504	7344	6463	Ů	41
1	5	9.7	83.5	56.6	0.0	0	11847	10425	0	0
	6	13.1	77.0	58.5	0.0	4712	15002	13202	0	0
οV.	12	$\begin{smallmatrix}12.6\\13.0\end{smallmatrix}$	7.9 0.0	6.3 0.0	9.6 20.0	4712 9781	11997 7398	10557 6510	0	3271
J¥.	3	13.3	4.1	3.3	15.4	7557	7344	6463	0	4365
	4	13.6	2.5	2.0	13.8	8716	7344	6463	0	6619
	5 6	$13.7 \\ 13.7$	213.0 1.3	120.0 1.0	0.0 19.5	0 9541	31199 17698	27455 15574	0	0
	1	13.7	0.0	0.0	20.8	10187	7777	6844	0	3343
EC.	2	12.1	0.0	0.0	18.6	9120	7344	6463	0	6000
	3	10.7	0.8	0.5	15.7	7694	7344	6463	0	7232
	5	$\frac{9.4}{8.4}$	0.0	$0.0 \\ 0.2$	$14.5 \\ 12.5$	7108 6124	7344 7344	6463 6463	0	7877 7538
	6	8.9	0.0	0.0	13.6	6684	8813	7755	0	6467
	-					1 4 4		100		
TAL		701.0		2064.7	542.1	265632		1132606	0	

Table F.2.35 Water Balance Calculation in Zone II

Irrigation Block: II - 5, Pond Name: ALAPANG No.2, Standard Year: 1981

Month	Consump- tive Use		Effective Rainfail	Water Require-	Water Require-		Available		
: 1	(mm)	(mm)		ment(mm)		Runoff (m ³)	Runoff (m ³)	by Pump (m ³)	Capacity (m ³)
1	7.4	14.8	6.0	2.1	171	1296	1140	0	0
2	7.8	3.5	1.5	9.7	ว้าว	1296	1140	Ö	.0
JAN. 3	8.3	0.0	: 0.0	9.7 12.7	1020	1296	1140	Ö	Õ.
. 4	8.6	0.0	0.0	13.2	1054	1296	1140	0	0
5 6	8.7 10.6	0.0 3.0	0.0 1.4	13.4 14.1	1072	1296	1140	.0	0
1	10.0	0.8	0.4	14.1	1129 1271	1555 1296	1369 1140	0	120
2	10.8	0.0	0.0	16.6	1325	1296	1140	0	130 315
FEB. 3	10.8	0.0	0,0	16.6	1324	1296	1140	ŏ	499
4		0.0	0.0	16.1	1290	1296	1140	ŏ	648
5	9,9	0.0	0.0	15.2	1218	1296	1140	0	726
6	5 6	0.2	0:1	8.5	678	778	684	0	719
I	10.2	0.0	0.0	15.6	1250	1296	1140	0	829
2 MAR. 3	$\begin{array}{cc}10&0\\9&9\end{array}$	0.0	0.0	15.3 15.2	1227	1296	1140	. 0	916
MAK. 0	10.1	0.0	0.0	15.5	1213 1244	1296 1296	1140 1140	0	988
5	10.7	0.0	0.0	16.5	1316	1296	1140	. 0	1091 1267
6	13.6	0.0	0.0	20.9	1673	1555	1369	0.	1571
1	10.6	0.0	0.0	16.3	1300	1296	1140	0	1731
APR. 3	10.7	0.0	0.0	16.5	1322	1296	1140	ŏ	1912
	10.9	7.1	3.4	11.6	926	1296	1140	0	1698
4	11.0	4.8	2.3	13.4	1074	1296	1140	0	1631
5 6	11.1	69.1	32.7	0.0	0	1773	1560	0	72
0 1	$\begin{array}{c} 11.1 \\ 8.7 \end{array}$	$\begin{array}{c} 36.6 \\ 14.5 \end{array}$	$\substack{17.3\\6.7}$	0.0 3.2	0 254	2711 1517	2385	0	0
2	8.2	44.7	19.4	0.0	204 0	2343	1335 2062	0 0	0
MAY 3	7.8	78.5	31.8	0.0	Ö	5473	4816	0	0
4	7.8	62.6	26.2	0.0	ō	5470	4814	Ŏ	Ö
. 5	8.3	28.4	13.5	0.0	0	3734	3286	Ō	Ō
6	10.8	66.0	34.9	0.0	Ō	5007	4406	0	0
1	9.3	47.0	28.0	0.0	0	5187	4565	0	. 0
UNE $\frac{2}{3}$	$\begin{array}{c} 10.5 \\ 11.8 \end{array}$	89.4 354.3	60.6 242.4	0.0	0	5708	5023	0	0
. 4	12.6	141.3	113.0	0.0	0	36518 20955	32136 18440	0 0	0 0
5	13.0	50.5	40.4	0.0	ŏ	11848	10426	ŏ	ŏ
- 6	13.3	70.0	56.0	0.0	Ö	8272	7280	ŏ	ŏ
1	12.1	125.8	100.6	0.0	. 0	10539	9274	0	0
ULY $\frac{2}{3}$	12.2	19.8	15.8	0.0	0	7959	7004	0	0
J	12.2	118.1	94.5	0.0	0	10438	9185	0	0
4	11.6	171.4	130.1	0.0	0	16211	14265	0	0
· 5	10.4 11.7	$\begin{smallmatrix}16.3\\67.1\end{smallmatrix}$	11.0 43.5	0.0 0.0	0	10292 8592	9057	0	0 0
. i	7.6	144.1	89.3	0.0	0	11697	7561 10293	0 0	0
	6.7	133.3	71.7	0.0	ŏ	18853	16591	0	ő
NUG. $\frac{2}{3}$	5.8	95.0	43.4	0.0	ŏ	11697	10294	ŏ	ŏ
4	5.4	230.2	95.7	0.0	Ō	21814	19196	Ō	Õ
5	5.5	345.4	112.2	0,0	. 0	40054	35248	. 0	0
6	6.7	170.2	70.8	0.0	. 0	31039	27315	0	0
I	6.4	1.5	0.6	8.9	712	9752	8582	0	0
EPT. 2	6.4 6.4	$\frac{9.1}{9.6}$	3.8 4.0	4.0 3.7	323 297	5363 3387	4720 2981	0	0
3 4	6.4	533.3	111.2	0.0	162	34610	30457	0	ŏ
5	6.3	22.0		0.0	n	27185	23922	ŏ	ŏ
. 6	5.6	84.1	30.5	0.0		11316	9958	0	0
: 1	5.7	111.4	39.1	0.0	0	14612	12859	0	0
CT. 2		0.5	0.2	9.8	787	8009	7048	0	0
3	7.6	1.8	0.9	10.2	820	4287 2677	3772 2356	0	0 0
4 5	8.6	0.0 83.5	$\begin{smallmatrix}0.0\\56.6\end{smallmatrix}$	13.3 0.0	1062 0	5030	4426	0	0
6		77.0	58.5	0.0	- 0	6858	6035	Ö	ŏ
i	12.6	7.9		9.6	769	5484	4826	Õ	Õ
OV 2	13.0	0.0	0.0	20.0	1597	2885	2539	0	0
3	13.3	4.1	3.3	15.4	1234	1915	1685	0	0
4		2.5	2.0	17.8	1423	1687	1484	0	0
5	13.7	213.0	120.0	0.0	0	13177	11595	0	0
6	13.7	1.3	1.0	19.5	1558	8090	7120 2884	0 0	0
EC. 2	13.5	$\begin{array}{c} 0.0 \\ 0.0 \end{array}$	$0.0 \\ 0.0$	$\begin{array}{c} 20.8 \\ 18.6 \end{array}$	1663 1489	$\frac{3277}{1772}$	2884 1560	0	0
EC. 2	12.1 10.7	0.0	0.5	15.7	1256	1499	1319	0	ő
4	9.4	0.0	0.0	14.5	1160	1341	1180	ő	ŏ
5	8.4	0.5	0.2	12.5	1000	1296	1140	Ö	Ŏ
6	8.9	0.0	0.0	13.6	1091	1555	1369	0	0
				- 1-			4E0802	^	
OTAL	0.107		2064.7	542.1	43369		458726	0	

Table F.2.36 Water Balance Calculation in Zone II

Irrigation Block: II - 6, Pond Name: ALAPANG No.3, Standard Year: 1984

Month	·	Consump- tive Use	Rainfall	Effective	Water Require-	Water	Total		Supplied	Required
		(mm)	(mm)	(mm)		Require- ment(m ³)	Runoff (m ³)	Runoff (m ³)	by Pump (m ³)	Capacity (m ³)
	1	7.4	0.0	0.0	11.4	2275	3456	3041	0	0
	2 3	7.8 8.3	0.0	0.0	$\frac{12.0}{12.7}$	2408	3456	3041	0	0
JAN.	4	8.6	$0.0 \\ 0.0$	0.0 0.0	13.2	2550 2635	3456 3456	3041 3041	0	() ()
	5	8.7	5.4	2.6	9.5	1893	3456	3041	ŏ	Õ
	6	10.6	13.2	6.3	6.7	1335	4147	3650	0	0
	1 2	10.7 10.8	$0.0 \\ 0.0$	0.0	16.5 16.6	8293 3313	3456 3456	3041 3041	. 0	252 523
FEB.	3	10.8	0.0	0.0	16.6	3311	3456	3041	ŏ	793
	4	10.5	0.0	0.0	16.1	3225	3456	3041	0	977
	5 6	9.9 7.4	0.0	$0.0 \\ 0.0$	15.2 11.5	3045 2292	3456 2765	3041 2433	0	981
	1	10 2	4.3	1.7	13.0	2607	3456	3041	0	840 406
	2	10.0	0.0	0.0	15.3	3068	3456	3041	0	433
ИAR.	3	9.9	28.5	$\frac{11.2}{1.3}$	0.0	0.00	3456	3041	Ŏ	0
	4 5	10.1 10.7	$\begin{array}{c} 3.3 \\ 0.0 \end{array}$	0.0	13 5 16 5	2697 3291	3456 3456	3041 3041	0	249
	6	13.6	6.4	2.9	16.4	3276	4147	3650	. 0-	0
·	1	10.6	0.0	0.0	16.3	3250	3456	3041	0	209
PR.	2	10.7	0.0	0.0	16.5	3305	3456	3041	0	473
ii ic.	4	10.9 11.0	$\begin{smallmatrix}0.8\\82.7\end{smallmatrix}$	$0.4 \\ 39.2$	16.2 0.0	3233 0	3456 6672	3041 5871	0	665 0
	5	11.1	34.5	16.3	0.0	0	8416	7406	. 0	ů
	6	11.1	77.4	36.7	0.0	0	12263	10792	. 0	0
	2	8.7	$\begin{array}{c} 59.6 \\ 102.8 \end{array}$	27.4 44.5	0.0	0	12801 19607	11265 17254	0 0	0
1AY	3	7.8	76.4	31.0	0 Õ	Ŏ	25500	22440	Ő	Ö
	4	7.8	63.0	26.4	0.0	0	15086	13276	0	0
	5 6	8.3 10.8	57.4 35.9	$\begin{array}{c} 27.2 \\ 19.0 \end{array}$	0.0	0	17673 14893	15553 13106	0	0
	1	9.3	21.7	12.9	0.0	ů	7404	65.15	. 0	0
UNE	2	10.5	37.5	25.4	0.0	0	8165	7185	0	ŏ
ONE	3	11.8	40.9	31.1	0.0	. 0	6699	5895	. 0	0
	4 5	12.6 13.0	55.1 176.9	44.1 141.5	0.0	0 0	13695 40606	12051 35733	0	0
."	6	13.3	51.7	41.4	0.0	ŏ	21073	18544	ŏ	ŏ
	1	12.1	103.9	83.1	0 0	0	30679	26998	0	. 0
ULY	2	12.2	117.9	94.3	0.0	0	36305	31948	0	0
*	3	12.2 11.6	$27.4 \\ 53.5$	21.9 40.6	0.0	0	18556 14885	16330 13098	.: 0	0
	5	10.4	37.5	25.4	0.0	Ö	12699	11175	Ö	ŏ
	6	11.7	38.1	24.7	0.0	0	11832	10412	Ō	0
	1	7.6	26.9	16.7	0.0	0	10406	9158	0	0
UG.	2 3	6.7 5.8	74.9 196.9	$40.3 \\ 85.0$	0.0	0	16318 35581	14360 31311	0	0
	4	5.4	323.3	104.2	0.0	. Ŏ	112560	99053	Ŏ	Õ
	5	5.5	41.4	17.2	0.0	0	33687	29645	Ō	0
	6	6.7 6.4	$692.3 \\ 26.9$	138.7 11.2	$\begin{array}{c} 0.0 \\ 0.0 \end{array}$	0	190336 56339	167496 49579	0	0
EPT.	2	6.4	32.0	13.3	0.0	0	26458	23283	Ŏ	0
L1 1.	3	6.4	57.6	23.9	0.0	0	21442	18869	0	0
	4	6.4	50.2	20.9	0.0	0	20748 15595	18259	0	0
	5 6	6.3 5.6	$56.2 \\ 67.6$	23.4 24.5	0.0		26875	13724 23650	. 0	. 0
	1	5.7	98.4	34.6	0.0	0	24391	21464	0	. 0
CT.	2	6.6	68.0	29.4	0.0	0	27242	23973	. 0	0
	3 4	7.6 8.6	34.3	17.6 6.6	$\begin{array}{c} 0.0 \\ 3.2 \end{array}$	0 637	17469 10653	15373 9375	0	0
	5	9.7	11.8	8.0	2.7	637 539	7414	6524	Ō	0
	6	13.1	111.9	85.0	0.0	0	22027	19384	0	0
017	1	12.6	27.9	22.3	0.0	2002	14836	13056	0	0
OV.	2	$\begin{array}{c} 13.0 \\ 13.3 \end{array}$	$0.0 \\ 0.0$	$\begin{array}{c} 0.0 \\ 0.0 \end{array}$	20.0 20.5	3992 4094	7733 4871	6805 4287	. 0	0
	4	13.6	2.5	2.0	17.8	3558	4291	3776	. 0	. 0
	5	13.7	0.0	0.0	21.1	4218	3782	3329	0	890
	6	13.7	0.0	0.0		4214	3467	3051	. 0	2053
EC:	i 2	$\frac{13.5}{12.1}$	$\begin{smallmatrix}2.5\\0.5\end{smallmatrix}$	$\frac{1.9}{0.3}$	17.9 18.1	3574 3618	3456 3456	3041 3041	. 0	2586 3162
	3	10.7	0.0	0.0	16.4	3287	3456	3041	0	3409
	4	9.4	0.0	0.0	14.5	2901	3456	3041	0	3268
:	5 6	8.4 8.9	0.0 0.0	0.0	12.9 13.6	2572 2728	3456 4147	3041 3650	0	2800 1878
	Ü	0.3	V. U	0.0	10.0	6120	4141	, ,	v	1010
JATC		702.8		1607.5	481.2	96237	2.5	1024961	0	

Table F.2.37 Water Balance Calculation in Zone II

Irrigation Block: II - 7, Pond Name: PERIL, Standard Year: 1978

Month	Consump- tive Use	Rainfall	Effective		Water	Total	Available		
	(mm)	(mm)	Rainfall (mm)	Require- ment(mm)	Require- ment/m3		Runoff (m ³)	by Pump (m ³)	Capacity (m ³)
1	7.4	0.0	0,0	11.4	1706	1748	1538	168	(m3)
2	7.8	0.0	0.0	12.0	1806	1617	1423	383	0 -
JAN. $\frac{3}{4}$	$8.3 \\ 8.6$	0.0	0:0	$\begin{array}{c} 12.7 \\ 13.2 \end{array}$	1912 1977	1505 1409	1324 1240	588 737	0
5	8.7	0.0	0.0	13.4	2010	1327	1167	843	ŏ
6	10.6	0.0	0.0	16.3	2445	1528	1345	1100	0
2	10.7 10.8	$\begin{array}{c} 0.0 \\ 0.0 \end{array}$	0.0	16.5 16.6	2470 2484	1251 1230	1101 1082	1140 1140	229 491
FEB. 3	10.8	0.0	0.0	16.6	2483	1209	1064	1140	770
4	10.5	0.0	0.0	16.1	2419	1188	1046	1140	1003
5 6	9 9 5 6	5.1 0.0	2.2 0.0	11.8 8.6	$\begin{array}{c} 1774 \\ 1289 \end{array}$	1167 691	1027	747 682	1003
i	10.2	0.0	0.0	15.6	2345	1135	608 999	1140	1003 1208
2	10.0	0.0	0.0	15.3	2301	1115	981	1140	1387
MAR. $\frac{3}{4}$	9.9 10.1	0.0 7.6	0.0	15.2	2274	1095	964	1140	1557
5	10.7	0.0	3.1	10.8 16.5	1620 2468	1081 1080	951 950	669 1140	1557 1934
6	13.6	13.7	6.3	11.2	1682	1296	1140	541	1934
1	10.6	0.3	1.0	16.0	2405	1080	950	1140	2248
2 APR. 3	10.7 10.9	$0.0 \\ 0.0$	0.0 0.0	16.5 16.7	2479 2512	1080 1080	950 950	1140 1140	2636 3058
4	11.0	4.3	2.0	13.8	2069	1080	950	1118	3058
5	11.1	26.7	12.6	0 0	. 0	1211	1065	0	1992
. 6 . I	11.1 8.7	0.8 5.4	0.4 2.5	16.4 9.6	2465 1443	$\begin{array}{c} 1080 \\ 1080 \end{array}$	950 950	1140 492	2366 2366
2	8.2	37.4	16.2	0 0	0	2288	2014	452	352
MAY 3	7.8	0.0	0.0	11:9	1791	1080	950	840	352
4 5	7.8 8.3	$\begin{smallmatrix}0.0\\133.5\end{smallmatrix}$	$0.0 \\ 63.2$	$\begin{array}{c} 11.9 \\ 0.0 \end{array}$	1790 0	1080 10965	950 9649	839	352
6	10.8	149.0	18.7	0.0	0	29604	26052	0	0
1	9.3	86.5	51.6	0.0	0	23307	20510	0	0
IUNE 3	10.5	22.8	15.5	0.0	0	9505	8364	0	0
4	11.8 12.6	80.1 57.9	60.8 46.3	0.0	0	13698 11825	12054 10406	0	0 0
5	13.0	153.7	123.0	0 0	0	30861	27158	0	Ö
6	13.3	5.3	4.2	13.9	2092	12041	10596	0	0
1 2	12.1 12.2	119.4 42.6	$95.5 \\ 34.1$	0.0	. 0	15641 17109	13764 15056	0	0 0
$\frac{2}{3}$	12.2	114.1	91.3	ő, ő	ŏ	25152	22134	ŏ	· 0
4	11.6	112.8	85.6	0.0	0	20635	18159	0	0
5 6	$\frac{10.4}{11.7}$	25.5 207.1	$17.3 \\ 134.3$	$\begin{array}{cc} 0 & 0 \\ 0 & 0 \end{array}$	0 0	43873	13367 38608	0	0 0
Ĭ	7.6	99.5	61.7	0.0	ő	24924	21933	ő	ŏ
AUG. 2	6.7	34.5	18.6	0.0	0	16396	14428	0	0
4 4	58 54	139.8 20.7	63.8 8.6	0 0 0 0	.0	26352 15939	23189 14027	0 0	0 0
5	5.5	776.0	134.1	0 0	. 0	143246	126056	ő	Õ
6	6.7	60.8	25.3	0.0	0	65013	57211	0	0
1 2	6.4	94.6 93.3	$39.3 \\ 38.8$	0.0	0	31372 25900	27607 22792	0	0
SEPT. 2	6.4 6.4	23.6	9.8	$0.0 \\ 0.0$	0	18319.	16120	Ö	0
4 .	6.4	144.7	60.2	0.0	0	32539	28634	0	0
5 6	$\begin{array}{c} 6.3 \\ 5.6 \end{array}$	57.3 37.8	23.8	$\begin{array}{c} 0.0 \\ 0.0 \end{array}$	· 0	17213 14987	15147 13188	0 0	0 0
i	5.7	45.5	13.7 16.0	0.0	0	12638	11121	Ö	0
ocr 2	6.6	54.9	23.8	0.0	0	10599	9327	0	0
3	7.6	39.9	20.5	0.0	0	14404	12676	0	0
4 5	$\frac{8.6}{9.7}$	14.0 0.0	$8.3 \\ 0.0$	0.4 15.0	65 2250	7351 5094	6469 4483	0	0 0
6	13.1	120.4	91.4	0.0	0	21995	19355	ő	0
1	12.6	29.0	23.2	0.0	0	8941	7868	0	0
10V. 2	13.0	0.0	0.0	20.0	2994 3070	5615 3675	4941 3234	0	0 0
3	$\begin{array}{c} 13.3 \\ 13.6 \end{array}$	0.0 20.8	0.0 16.6	$\begin{array}{c} 20.5 \\ 0.0 \end{array}$	3070	3428	3017	Ö	0
5	13.7	15.0	12.0	2.6	394	3529	3105	0	0
6	13.7	0.0	0.0	21.1	3161	2762	2431	730	0
DEC. 2	13.5 12.1	0.0 0.0	$0.0 \\ 0.0$	$\frac{20.8}{18.6}$	3119 2792	2499 2249	2199 1979	919 813	0 0
7EC. 2	10.7	0.0	0.0	16.4	2465	2037	1793	673	0
4	9 4	72.6	38.3	0.0	0	4673	4112	0	0
5 6	8.4 9.0	0.0	0.0	12.9	1929 2046	5667 3012	4987 2651	.0 0	0
O	8.9	0.0	0.0	13.6	ប្រមាធ	3414	auo t	•	
	701.0		1694.7	538.6	80795		762588	26568.	

Table F.2.38 Water Balance Calculation in Zone II

Irrigation Block: II - 8, Pond Name: ALNO, Standard Year: 1983

Month		Consump- tive Use	Rainfall	Rainfall		Water Require-	Total Runoff	Runoff	Supplied by Pump	Required Capacity
		(mm)	(mm)			ment(m ³)	(m ³)	(m ³)	(m ³)	(m ³)
	Į	7.4	24.9	10.1	0.0	0	1942	1709	0	0
	2 3	7.8	$0.0 \\ 3.6$	$0.0 \\ 1.7$	$\begin{smallmatrix}12.0\\10.2\end{smallmatrix}$	843 714	1440 1377	1267 1211	0	0
IAN.	4	8.6	12.3	5.8	4.2	295	1295	1140	0	0
	5	8.7	2.5	5.8 1.2	11.6	810	1223	1076	ŏ	· ŏ
	6	10.6	0.0	0.0	16.3	1141	1381	1216	0	Ó
	l	10.7	0.0	0.0	16.5	1153	1088	958	. 0	195
EB.	2 3	$\frac{8}{8},01$	0.0	$\begin{array}{c} 0.0\\ 0.0 \end{array}$	16.6 16.6	1159 1159	1053 1035	986 911	0	428
DD.	4	10.5	21.5	9.9	0.9	64	1251	1101	0	676 0
	5	9.9	0.0	0.0	15.2	1066	1002	882	0	184
	6	5.6	0.0	0.0	8.6	602	593	522	. 0	264
	1	10.2	0.0	0.0	15.6	1094	976	859	0	499
e A S	2	10.0	15.5	6.1	6.0	419	978	860	: 0	58
IAR.	3	$9.9 \\ 10.1$	$0.0 \\ 0.0$	0.0	$\begin{array}{c} 15.2 \\ 15.5 \end{array}$	1061 1088	944	830 817	0	289 560
	3	10.7	0.0	0.0	16.5	1152	913	803	0	909
	6	13.6	0.0	0.0	20.9	1464	1075	946	Ŏ.	1427
	1	10.6	0.0	0.0	16.3	1138	879	773	0	1791
nD.	2	10.7	0.5	0.2	16.2	1131	866	762	0	2161
PR.	3	10.9	0.0	0.0	16.7	1172	864	760	0	2573
	5	11.0 11.1	4.6 4.6	$egin{array}{c} 2 \ , \ 2 \ 2 \ . \ 2 \end{array}$	$\begin{smallmatrix}13.6\\13.7\end{smallmatrix}$	950 957	864 864	760 760	0 0	2762 2959
	6	11, 1	0.0	0.0	17.0	1191	864	760	0	3390
	ï	8.7	0.0	0.0	13.4	941	864	760	ŏ	3570
	2	8.2	0.0	0.0	12.7	888	864	760	0	3698
ſAY	3	7.8	0.0	0.0	11.9	836	864	760	0	3773
	4	7.8	5.9	2.5	8.1	569	864	760	0	3582
	5 6	$8.3 \\ 10.8$	41.9 109.2	$\frac{19.8}{57.7}$	0.0	0	1496 11933	1316 10501	0 0	2266 0
	ĺ	9.3	70.2	41.8	0.0	ů	8475	7458	0	0
D.110		10.5	51.6	35.0	0.0	Ŏ	10212	8986	ŏ	Ŏ
UNE	2 3	11.8	30.5	23.2	0.0	0	6929	6097	0	0
	4	12.6	60.9	48.7	0.0	0	8040	7075	0	0
	5	13.0	21.3	17.0	0.0	0	7555	6648	0	. 0
	6	13.3 12.1	$\begin{array}{c} 63.4 \\ 20.8 \end{array}$	$\begin{array}{c} 50.7 \\ 16.6 \end{array}$	0.0	0	9259 5794	8148 5098	0 0	0
	1 2	12.2	29.3	23.4	0.0	Ö	4889	4302	Ö	0
ULY	3	12.2	55.8	44.6	0.0	ŏ	4864	4280	č	Ö
	4	11.6	98.8	75.0	0.0	. 0	15303	13467	0	. 0
	5	10.4	18.1	12.3	0.0	Q	7972	7015	0	0
	6	11.7	66.2	42.9	0.0	0	9936	8744	0	0
	1	7.6	108.0	66.9	0.0	0	13750	12100	0	0
UG.	2	6.7 5.8	99.4 545.0	53.5 199.8	$0.0 \\ 0.0$. 0	20002 82272	17602 72399	0	0
	4	5.4	54.6	22.7	0.0	ŏ	41153	36215	ŏ	ŏ
	5	5.5	49.6	20.6	0.0	ŏ	17611	15498	Õ	Õ
	6	6.7	36.5	15.2	0.0	. 0	13458	11843	0	0
	1	6.4	89.9	37.4	0.0	. 0	12511	11010	0	. 0
EPT.	2 3	6.4 6.4	25.4 19.5	8.1	0.0	0	11535 7156	10151 6297	0	0
-	4	6.4	68.9	28.6	0.0	0	8849	7788	Ů	0
	5	6.3	113.6	47.2	0.0	ŏ	16123	14188	. 0	Ŏ
:	6	5.6	54.7	19.9	0.0	0	16411	14442	0	. 0
	2	5.7	18.0	6.3	0.0	0	8570	7541	0	0
CT.	2	6.6	25.4	11.0	0.0	, U	5280	4646	0	0
	3 4	7.6 8.6	20.7 25.9	$\begin{array}{c} 10.6 \\ 15.4 \end{array}$	0.0 0.0	0	6134 4400	5398 3872	. 0	Ü
	5	9.7	52.7	35.7	0.0	Ö	8463	7447	Ü	ŏ
	6	13.1	23.1	17.5	0.0	Ö	5607	4934	0	. 0
	i	12.6	61.0	48.8	0.0	0	7991	7032	0	0
OV.	2	13.0	0.5	0.4	19.3	1354	4480	3942	0	0
	3	13.3	1.0	$\begin{smallmatrix}0.8\\32.9\end{smallmatrix}$	19.2	1347	2620 4116	2306 3622	0	C 0
	4 5	$13.6 \\ 13.7$	$\begin{array}{c}41.1\\0.8\end{array}$	0.6	0 0 20.1	1407	2454	2160	0	0
	5 6	13.7	2.6	2.1	17.9	1251	2048	1802	Ö	0
	1	13.5	$\tilde{0}$. $\tilde{0}$	0.0	20.8	1455	1831	1611	Õ	0
EC.	2	12.1	$0.0 \\ 0.0$	0.0	18.6	1303	1636	1440	0	0
	3	10.7	0.0	0.0	16 4	1151	1472	1296	0	0
	4	9.4	0.0	0.0	14.5 12.9	1015	1334 1217	1174 1071	0	0
	5 6	8 4 8 9	$0.0 \\ 0.8$	0.3	13.1	919	1331	1172	0	. 0
	u	100				100	,00,		· ·	J
OTAL		701.0		1263.9	530.8	37158		416785	л	

Table F.2.39 Water Balance Calculation in Zone III

Irrigation Block: III - 1, Standard Year: 1979

		nn Daine-11	Wife	Water	Water	Tas-1	A 22.21. L 1	Cunultad	Danis
Month	Consun tive U	np-Rainfall Ise	Effective Rainfall	Require-	Water Require-	Total Runoff	Runoff	Supplied bywangal or	
	(mm		(mm)	ment(mm)		(m ³)	(m ³)	(m ³)	(m ³)
	1 11. 2 11.		0.0	15.7 15.1	10963 10571	8640 8640	7603 7603	3360 2968	0
JAN.	3 10.	9 0.0	0.0	14.6	10218	8640	7603	2615	0
	4 10. 5 8.		0 2 4 5	$\begin{array}{c} 13.1 \\ 5.5 \end{array}$	9167 3821	8640 8640	7603 7603	1564 0	0
	6 9.		0.0	13.0	9122	10368	9124	Ö	Ö
	1 11.	4 0.0	0.0	15.2	10630	8640	7603	3026	0
FEB.	2 13. 3 14.	$\begin{array}{cccc} 3 & 0.0 \\ 3 & 0.3 \end{array}$	0.0 0.2	17.8 18.9	12429 13214	8640 8640	7603 7603	4826 5611	0
rgo.	4 15.	1 0.0	0.0	20.1	14078	8640	7603	6475	0
	5 15. 6 11.		0.0 0.0	20.9 15.2	14609 10673	8640 5184	7603 4562	7006 6111	0
	1 18.	7 0.0	0.0	25.0	17500	8640	7603	9896	0
(A D	2 18. 3 18.		0.0 0.0	24.6 24.8	17205 17329	8640 8640	7603 7603	9602 9726	0
MAR.	4 20		0.0	26.7	18701	8640	7603	11097	Q.
	5 21.		1.0	27.6	19339	8640	7603	11736	0
- 1	6 27. 1 21.		0 0 5 4	36.9 21.8	25813 15294	10368 8640	9124 7603	16689 7691	. 0
	2 21.	6 10.2	7.6	18.7	13107	8640	7603	5504	0
APR.	3 21. 4 21.	4 7.4 3 27.0	$\begin{array}{c} 5.2 \\ 18.5 \end{array}$	21.5	15079 2602	8640 8640	7603 7603	7476 0	0
	5 21	4 39.9	27.4	0.0	- 0	10025	8822	0	. 0
	6 21. 1 18. 2 17.	5 36.6	25.1	$\begin{array}{c} 0.0 \\ 10.8 \end{array}$	7576	10592	9321	0	0
1.5	2 17.	3 15.2 8 25.6	10.2 16.5	1.8	7576 1290	8650 9821	7612 8642	0	0
MAY	3 17.	4 24.3	14.9	3.2	2273	8640	7603	0	0
	4 16. 5 16.		111.6 58.9	0.0	0	78595 62178	69163 54717	0	0
	6 19.	8 123.0	70.3	0.0	0	75270	66237	0	0
	1 16. 2 16.		15.1 47.6	$\frac{1.8}{0.0}$	1293 0	44686 52702	39324 46377	0	0
JUNE	2 16. 3 16.		20.4	0.0	Ö	41200	36256	Ô	0
	4 16. 5 14.		0.4 6.9	$\begin{array}{c} 21.5 \\ 10.2 \end{array}$	15054 7119	23270 13111	20477 11538	0	. 0
4	6 12.		11.2	10.2	1306	14184	12482	0	ő
	1 11.	3 378.1	74.8	0.0	0	185507	163246	0	0
ULY	2 11. 3 10.		29 1 5 1	0.0 7.8	0 5487	89517 35097	78775 30886	0	0
	4 10.	8 6.1	2 4	11.1	7803	19972	17575	0	0
	5 9. 6 11.		$\begin{array}{ccc} 23.7 \\ 34.0 \end{array}$	0.0 0.0	0	20934 49242	18422 43333	0	· 0 0
1000	6 11.		16.8	0.0	Q	44481	39144	Ŏ	0
AUG.	2 10. 3 11.	6 153.1	49.1	0.0	0	70350	61908	0	0
-	3 11. 4 12.		109.0 32.0	0.0	0	231849 152759	204027 134428	0	0 0
	5 13.	0 90.7	31.1	0.0	0	78650	69212	0	0
	6 16, 1 15.		15.6 8.1	$0.8 \\ 10.4$	581 7300	51912 28022	45683 24659 -	0 0	0
SEPT.	2 15.	9 85.3	38.6	0.0	0	38733	34085	0	0
J	3 15. 4 15.		19.1 23.3	0.0 0.0	0 Q	39137 33634	34440 29598	0	0
	5. 15.		15.8	0.0	0	26479	23301	. 0	0
4 - 1 -	6 16.		32.3	0.0	0	32059 82122	28212 72267	0	0
יזריער	1 18. 2 18.		$82.0 \\ 4.1$	$0.0 \\ 19.5$	13680	30817	27119	0	0
OCT.	3 19.	6 2.8	1,9	23.7	16570	17067	15019	1551	0
	4 20. 5 21.		8.7 23.2	15.6 0.0	10934	11757 11224	10346 9877	588 0	0
	6 25.	9 5.6	4 4	28.8	20134	11616	10222	9912	. 0
	1 22.		0 9 3 4	28.9	20253 17359	8640 8640	7603 7603	12650 9755	0
NOV.	2 22. 3 21.		2.3	24.8 25.4	17775	8640	7603	10172	. 0
	4 20.	9 1.0	0.7	26.9	18833	8640	7603	11230	0
4	5 19. 6 18.		0.0 2.7	26.0 20.6	18219 14417	8640 8640	7603 7603	10616 6813	0 0
	1 17.		0.0	22.9	16022	8640	7603	8419	0
DEC.	2 15.	8 2.5	1.5	19.1	13387	8640 8640	.7603 .7603	5783 2586	0 0
	3 14. 4 13.		3 5 0 0	14.6	10189 12445	8640	7603	4842	0
٠.	5 12.	4 40.1	8.15	0.0	0	9715	8549	2005	0
	6 13.	9 0.0	0.0	18.6	13009	10368	9124	3885	U
TOTAL	1167.	4	1199.9	831.1	581771		1885330	231782	

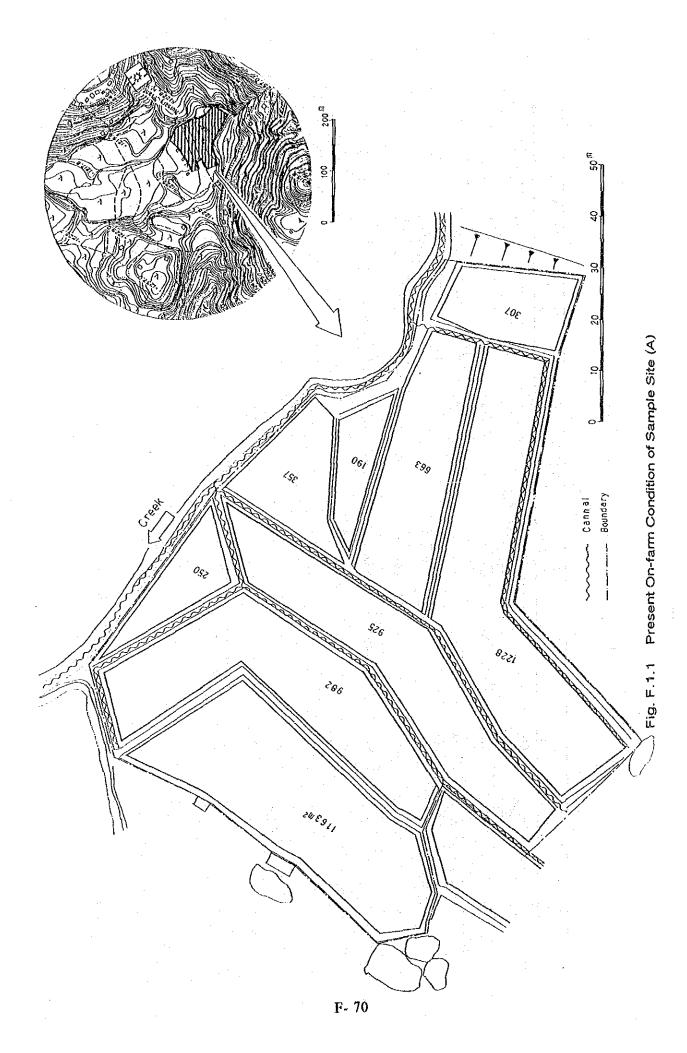
Table F.2.40 Summary of Water Balance in Dry Season

	Remarks		4.9 Standard year: 1978	1978	1984	·		1984	1978	1983	1981	1981	1984	1978	1983	1979
	1	(a	.9 Standard	3.5		5.7	ı	2.9	5.5	5.0	18.9	1.9	3.4	3.1	3.8	•
	Required reservoir	capacity	4	e,		ν		71	. 40	v a.			•••			
	Difficit Total deficit)(cu.m) (8.1	6.6		13.3		3.7	6.2	5.3	33.7	1.9	5.3	3.4	4.9	
	Supplemen- tation by well	('000 cu.m) ('000 cu.m) ('000 cu.m)		•			193.1	26.5	25.7	•	: •	•	•	26.6	•	
	with project Minimum discharge	(cn.m / s)	0.0171	0.0167		0.0125	0.0164	0.0063	0.0091	0.0101	0.0236	0.0038	0.0098	0.0073	0.0034	0.0500
	r requirement Mean discharge	(cu.m / s)	0.0126	0.0123		0.0092	0.0121	0.0039	0.0057	0.0065	0.0152	0.0025	0.0060	0.0045	0.0022	0.0294
	Irrigation water Volume	('000 cu.m)	198.0	(218.9)	(213.8)	145.5	(193.1) (193.1)	61.8	90.4	101.8	239.6	39.1	95.1	71.4	33.9 33.9 (37.2)	463.4 (581.8)
	with project Minimum discharge	(cn.m/s)	0.0146	0.0146	٠	0.0079	•	0.0013	0.0031	0.0062	0.0150	0.0030	0.0070	0.0022	0.0018	0.0516
	availability Mean discharge	(cn.m / s)	0.0210	0.0146		0.0223		0.0035	0.0063	0.0120	0.0170	0.0043	0.0090	0.0043	0.0032	0.0715
	Water suorce Volume	('000 cu.m)	331	(3,285)	(578)	351	(000'0)	55	(208)	(1, 109) 189 (3)	268	(1,133) 68 68	(450) 142 (162)	68 68	(103) 51 (417)	1,128 (12,522)
	for irrigation Mean discharge	(cu.m / s) ('000 cu.	0.0073	0.0072	0.0116			0.0023	0.0035	0.0038	0.0095	0.0015	0.0038	0.0028	0.0013	0.0188
	Present water use for irrigation Water suorce availability with project Irrigation water requirement with project Supplement Volume Mean Minimum tation Volume Mean Minimum tation discharge discharge discharge discharge discharge	(ha) ('000 cu.m) ('000 cu.m)	115.5	(123.3)	(120.5)	(183.2)		36.8	(36.8) 55.2	(60.4) 59.7	149.4	(160.8) 23.4	59.5	43.6	(4/./) 19.9 (21.4)	296.5 (405.8)
- 1	Amount of water source	0 cu.m)	** 376	(3,733)	(657)	(4,134)		63	(\$ 4 6)	(1,260)	305	(1,287)	(17C)	(1,103)	(30/) 58 (474)	1,282 (14,229)
	Net * A beneficial of farm land s	(ha) (°00	43	42	74	(32)	(42)	13	61	73	49	∞	20	15	7	70
	Imgation block		1-1	1-2	1 - 3	(1-3-1)	(1-3-2)	H-1	п-2	II - 3	₹ #	H - 5	9-п	п.7	æ 	г. Н

* : These figures are excluded land acquisiton such as proposed road and irrigation facilities from original net beneficial area.

**: Besides these, Zone I has taken about 280,000 cum from the Balili niver in the dry season.

Figures in the parenthesis are through a year.


Table F.2.41 Annual Amount of Water Source Availability

							tion Block					5	(Unit : '000 ca	cu.m)
YEAR	I-1	1-2	Ĭ-3	П-1	II - 2	II - 3	II - 3 II - 4	11-5	11 - 6	n-7	8 - II	Ш-1	Wangal	TOTAL
	* *				•								Creek	
1977	4,026	8	4,541	710	1,363	2,838	1,201	472	1,269	937	797	2,698	15,610	37,132
	(464)	(260)	(479)	(75)	(144)	(300)	(52)	(64)	(171)	(66)	(81)	(395)	(1,648)	(4,459)
1978	3,733	657	4,195	655	1,260	2,624	1,135	411	1,185	867	709	2,527	14,420	34,378
	(376)	(260)	(372)	(28)	(112)	(233)	(270)	(95)	(148)	(77)	(63)	(352)	(1,278)	(3,655)
1979	3,127	630	3,516	549	1,055	2,198	1,004	372	666	726	594	2,142	12,087	28,999
	(366)	(260)	(280)	<u>4</u>	(82)	(176)	(266)	(48)	(129)	(26)	(48)	(317)	(596)	(2,973)
1980	5,172	799	5,821	910	1,750	3,645	1,477	604	1,622	1,204	985	3,433	20,010	47,432
	(1,372)	(341)	(1,484)	(232)	(449)	(633)	(501)	(168)	(452)	(306)	(253)	(855)	(5,101)	(12,577)
1981	4,473	716	5,073	793	1,522	3,171	1,287	521	1,400	1,046	856	2,967	17,439	41,264
	(\$82)	(592)	(089)	(86)	(189)	(394)	(302)	(11)	(506)	(130)	(106)	(467)	(2,166)	(5,622)
1982	4,470	726	5,076	793	1,523	3,173	1,297	522	1,402	1,047	857	2,975	17,449	41,310
	(436)	(260)	(466)	(73)	(140)	(291)	(276)	(19)	(162)	(96)	(79)	(378)	(1,601)	(4,319)
1983	2,514	288	2,803	438	842	1,753	849	303	814	579	474	1,756	9,635	23,348
	(347)	(260)	(344)	(54)	(103)	(212)	(593)	(23)	(143)	(11)	(85)	(343)	(1,183)	(3,443)
1984	3,685	653	4,134	646	1,243	2,589	1,099	434	1,165	856	700	2,479	14,211	33,894
	(417)	(261)	(366)	(63)	(123)	(254)	(275)	(09)	(161)	(82)	(69)	(378)	(1,373)	(3,918)
1985	4,762	753	5,381	841	1,615	3,364	1,356	555	1,491	1,111	606	3,158	18,497	43,793
	(451)	(260)	(454)	(12)	(137)	(282)	(272)	(62)	(167)	(62)	(77)	(386)	(1,559)	(4,276)
1986	4,626	761	5,228	817	1,569	3,268	1,369	544	1,460	1,079	822	3,106	17,970	42,619
-	(300)	(260)	(292)	(46)	(88)	(183)	(266)	(48)	(128)	(61)	(49)	(315)	(1,005)	(3,041)
1987	2,765	607	3,085	482	927	1,929	606	331	068	638	521	1,912	10,604	25,600
	(349)	(260)	(337)	(53)	(102)	(211)	(271)	(54)	(143)	(70)	(57)	(344)	(1,157)	(3,408)

Table F.2.42 Annual Present Water Use

•						1111	milganon proce		-				
YEAR	- -	1.2	I-3	11 - 1	n-2	П-3	II - 4	N - 5	9 - II	11-7	11 - 8	Ш - 1	TOTAL
1977	109,030	106,550	180,890	36,780	53,750	59,410	144,270	22,630	59,410	42,430	19,800	360,590	1,195,540
	(98,350)	(96,110)	(163,170)	(31,530)	(46,090)	(50,940)	(123,710)	(19,410)	(50,940)	(36,380)	(16,980)	(246,600)	(980,210)
8/61	123,330	120,530	204,620	41,320	066,09	66,750	162,100	25,430	66,750	47,680	22,250	368,700	1,309,850
	(115,510)	(112,890)	(191,650)	(37,770)	(55,200)	(61,010)	(148,160)	(23,240)	(61,010)	(43.580)	(20,340)	(291,640)	(1,162,000)
1979	111,410	108,880	184,840	39,110	57,160	63,180	153,440	24,070	63,180	45,130	21,060	405,830	1,277,290
	(107,480)	(105,040)	(178,320)	(36,280)	(53,020)	(28,600)	(142,320)	(22,320)	(58,600)	(41,860)	(19,530)	(296,500)	(1,119,870)
1980	116,940	114,290	194,020	40,250	58,830	65,030	157,920	24,770	65,030	46,450	21,680	361,990	1,267,200
	(113,120)	(110,550)	(187,680)	(36,860)	(53,870)	(59,540)	(144,600)	(22,680)	(59,540)	(42,530)	(19,850)	(281,290)	(1,132,110)
1981	118,320	115,630	196,300	40,980	29,890	66,190	160,750	25,220	66,190	47,280	22,060	401,720	1,320,530
	(114,390)	(111,790)	(189,770)	(38,090)	(55,670)	(61,540)	(149,440)	(23,440)	(61,540)	(43,950)	(20,510)	(301,050)	(1,171,180)
1982	101,360	050,66	168,160	35,830	52,360	57,880	140,560	22,050	57,880	41,340	19,290	369,230	1,164,990
	(95,570)	(93,400)	(158,560)	(31,520)	(46,070)	(50,920)	(123,670)	(19,400)	(50,920)	(36,370)	(16,970)	(265,980)	(989,350)
1983	118,890	116,190	197,250	39,820	58,210	64,330	156,240	24,510	64,330	45,950	21,440	382,500	1,289,660
	(110,820)	(108,300)	(183,860)	(36,980)	(54,050)	(59,740)	(145,090)	(22,760)	(59,740)	(42,670)	(19,910)	(299,130)	(1,143,050)
1984	110,400	107,890	183,160	36,810	53,800	59,460	144,410	22,650	59,460	42,470	19,820	331,160	1,171,490
	(110,400)	(107,890)	(183,160)	(36,810)	(53,800)	(59,460)	(144,410)	(22,650)	(59,460)	(42,470)	(19,820)	(289,280)	(1,129,610)
1985	78,210	76,440	129,760	24,440	35,720	39,480	95,870	15,040	39,480	28,200	13,160	249,340	825,140
	(76,850)	(75,100)	(127,500)	(23,640)	(34,550)	(38,190)	(92,740)	(14,550)	(38,190)	(27,280)	(12,730)	(212,010)	(773,330)
1986	108,840	106,370	180,580	37,640	55,010	60,800	147,650	23,160	008'09	43,430	20,270	401,710	1,246,260
	(103,740)	(101,380)	(172,120)	(34,360)	(50,210)	(55,500)	(134,780)	(21,140)	(55,500)	(39,640)	(18,500)	(293,430)	(1,080,300)
1987	122,000	119,220	202,400	41,460	009'09	086'99	162,660	25,520	086,99	47,840	22,330	407,240	1,345,230
	(116.720)	(114,060)	(193,640)	(39,000)	(57,000)	(63,000)	(153,010)	(24,000)	(63,000)	(45.000)	(21,000)	(314,420)	(1,203,850)

Table F.2.43 Proposed Irrigation Facilities

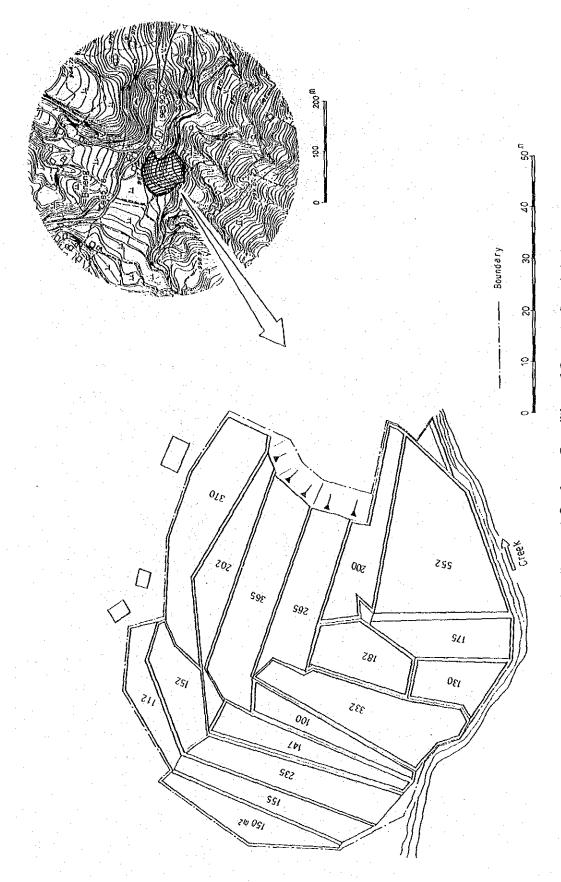
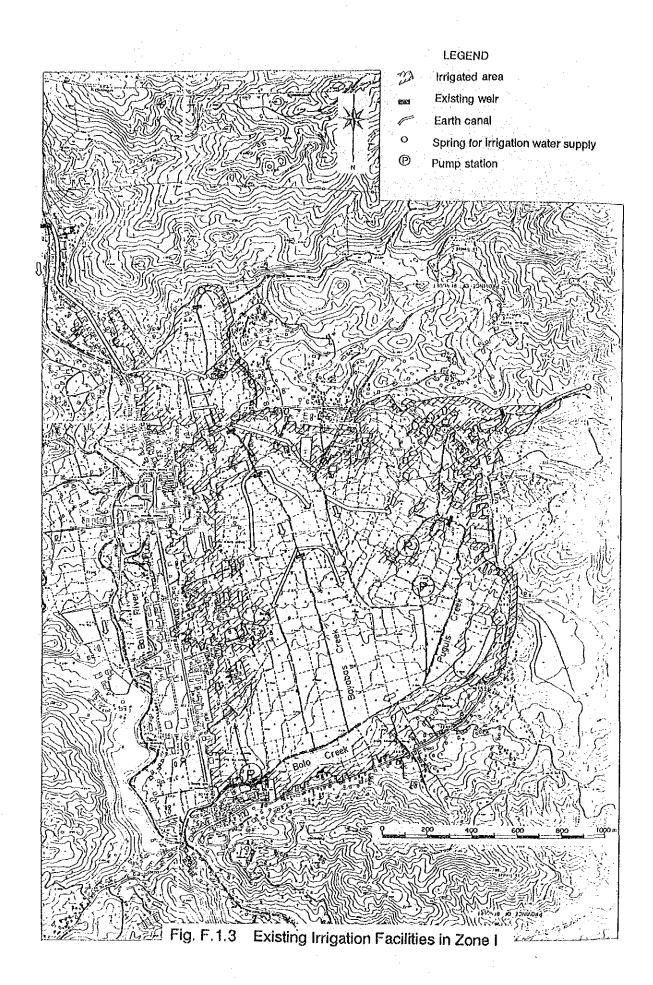



Fig. F.1.2 Present On-farm Condition of Sample Site (B)

