Table C.2.29 Tropical Cyclone Summary (1/3)

Brief History, Public Storm Signals (PSS) Raised and Damages	Crossed Cagayan, Kalinga, Apayao, Abra and Ilocos Sur in the evening of the 15th to 16th of Sep. Death toll and heavy damage to property were reported. Rest of Luzon and Visayas experienced rains gusty winds. Damages amounted to P21M, dead 54, missing 11.	Crossed Northern Luzon as a storm and intensified the SW monsoon. Low lying area of Central Luzon including Metro Manila were flooded. Damages amounted to P88M, dead 47, missing 16, injured 4.	Tracked an erratic movement. Center passed about 450 kms northeast of Basco, making its' exit in the Southern Is. of Japan, Ryukyus; induced the southwest monsoon which brought rains and gusty winds over Luzon and Visayas; flooding occurred in low lying areas of Metro Manila (Aug.15) & Central Luzon. PSS #3-Batanes, Cagayan, Ilocás Norte and northern portion of Kalinga-Apayao. PSS #2- Rest of Northern Luzon. PSS #1-Rest of Luzon including Metro Manila and Mindoro. Damages amounted to P45.2M, dead 24, injured 5, and missing 3.	DITANG crossed northeastern Cagayan on May 15, then recurved towards the east northeast. It brought rains and gusty winds along the eastern section of Luzon. PSS #3 was raised over Catanduanes, Camarines Norte and Sur, Aurora, Quírino, Cagayan, Mt. Province, Nueva Vizcaya, Ifugao, Batanes and Abra. PSS #2 ever northern and eastern Samar, rest of Bicol, Quezon, Masbate, Nueva Ecija and rest of Northern Luzon. PSS #1 over the rest of Visayas, rest of Luzon including Metro Manila. Damages reported was P2.2M, but no casualty was reported.
Max 24-Hr. RR (mm) Recorded & place	359.1-Baguio	534.2-Baguio	285.4-Baguto 398.4-Iba	730.3-Baguio 191.2-Tuguegarao
M S L P Recorded & place	977.0-Tuguegarao	985.5-Tuguegarao	954.0-Recon 991.5-Basco	942.0-Recon 993.5-Tuguegarao 995.0-Casigu
Max Winds Obs. (kph) place	205-Tuguegarao	120-Baguio	140-Recon 106-Virac	145-Tuguegarao 185-Recon
Classification & Name Period of Occurrence	Typhoon OPENG Sep. 14-20	Tropical Storm MiDING Aug. 20-26	Typhoon MAMENG Aug. 9≟15	Typhoon DITANG May 10-21
Year	1977	1978	1979	1980

Table C.2.29 Tropical Cyclone Summary (2/3)

### Processed 205-Calayan 375.5-Aparri Crossed 205-Calayan 922.0-Recon 961.5-Calayan 375.5-Aparri PSSS 8-8		Classification of Name	Max Winds Obs.	M S L P	Max 24-Hr. RR (mm)	Brief History, Public Storm Signals (PSS)
LIANG 205-Recon 915.0-Recon, 567.3-Calayan Entered the PAR as a tynogerities - 215-Calayan 975.3-Basco 728.0-Itbayat Entered the PAR as a tynogerities and crossed 120 kms noring and crossed 120 kms noring exit the made its exit the made its exit the post and its exit the page 1 locos Noring PSS #3 hoisted over Batto over Cagaya, 1 locos Noring exit the made its exit the made its exit the made its exit the made its exit the first of the exit of the article of the southwest the article of the morning of Mag 381.8-Baguio and rivers to overflow and rivers to overflow and rivers to overflow indicated over metro Manilas in the article over metro Manilas in the page 10 puls of the article over metro Manilas in the page 20 puls of the pag	1	Typhoon RUBING Sep. 15-21	205-Calayan 215-Recon	. 5.2	764.0-1tbayat 375.5-Aparri	Crossed Northern tip of Cagayan. Stormy weather experienced over extreme Northern Luzon. PSS #3 hoisted over Cagayan, Ilocos Norte and Sur, Kalinga-Apayao, Abra and Mt. Province. PSS #2 hoisted over the rest of Northern Luzon, Pangasinan, Northern Samar, Bicol Region, Aurora, Quirino and Quezon. PSS #1 hoisted over the rest of Luzon including
Storm EIANG 75-Recon 992.0-Recon 728.0-Itbayat In then made its exit to PSS #3 hoisted over Bath Storm EIANG 75-Recon 992.0-Recon 217.8-Baguio Embedded along the action of Luzor North Including Mindoro and Angalties - 6 pages 11.2M. Casualties - 6 pages 12.2M. C	.]	TAMP IT TOWN	206 906	0 200		Metro Manila, Mindoro and the rest of Visayas. Damages to properties - P79.7M, casualty - dead 5.
Storm ETANG 75-Recon 992.0-Recon 217.8-Baguio Embedded along the activation of Aug. 15 induced the southwest for western section of Lucon a tropical depression of Aug. 12 induced the southwest for western section of Lucon of Lucon experienced heavy monsor 45-65 kph. PSS #2 hoisted norman aug. 110-Baler 983.0-Recon 381.8-Baguio of Basco, Batanes. Pack Marzin 150.5-Laoag kph. it.crossed the norman experienced by it.crossed the norman and rivers to overflow and rivers to overflow gered by 10cos Norte and Abra, 110cos Norte and hoisted over Metro Metro Metro P411.2M. Casualities - 0 put 10 put 1		July 26-29	215-Calayan	976.3-Basco		and crossed 120 kms north of Basco between 7-8 PM, It then made its exit towards Southern laiwan. PSS #3 hoisted over Batanes Group, PSS #2 hoisted over Cagaya, Ilocos Norte and Kalinga-Apayao. PSS #1 hoisted over Metro Manila, Rest of Luzon including Mindoro and Marinduque.
Storm MARING 120-Recon 983.0-Recon 381.8-Baguio MARING developed into a of Basco, Batanes. Pack kbh. it crossed the norm MARING left the PAR througher into a of Basco, Batanes. Pack kbh. it crossed the norm MARING left the PAR througher and side overflow and rivers to overflow prossed by Tropical Storm and rivers to overflow prossed over Caga Abra, Ilocos Norte and shindoro. Damages to pub Mindoro. Damages to pub P411.2M. Casualties - 0		ical Storm 13-15	75-Recon	992.0-Recon	217.8-Baguio 189.8-Iba	Embedded along the active monsoon trough. It became a tropical depresstion 400 km west of Vigan, I.S. in the afternoon of Aug. 12. ETANG together with DIDING induced the southwest from Aug. 10-14 thereby western section of Luzon including Metro Manila experienced heavy monsoon rains with gustiness of 45-65 kph. PSS #2 hoisted over Batanes and Northern
Storm MARING 120-Recon 381.8-Baguio of Basco, Batanes. Pack 10-Baler 985.3-Aparri 150.5-Lacag of Basco, Batanes. Pack kph, it crossed the northwarence of Basco, Batanes. Pack horthwaren 150.5-Lacag kph, it crossed the northwaren 150.5-Lacag kph, it crossed the northwaren 150.5-Lacag kph, it crossed the northwarence of Aug. 30. gered by Tropical Storm and rivers to overflow and rivers to overflow and rivers to overflow and rivers to overflow hand hoisted over Metro Manifeldoro. Damages to pui Mindoro. Damages to pui P411.2M. Casualties - c	j					Cagayan. PSS #1 hoisted over Western Luzon including Metro Manila. No damage was reported.
the morning of Aug. 30. The more soon rains trig- gered by Tropical Storm. MARING caused landslides and rivers to overflow flooding low lying areas. PSS #2 hoisted over Cagayan, Isabela, Kalinga-Apayeo, Abra, Ilocos Norte and Sur and Batanes. PSS #1 hoisted over Metro Manila, Rest of Luzon including Mindoro. Damages to public and private property P411.2M. Casualties - dead 121, injured 26, missing		Tropical Storm MARING Aug. 27-30	120-Recon 110-Baler	983.0-Recon 985.3-Aparri	381.8-Baguio 150.5-Lacag	MARING developed into a depression 790 km eastsoutheast of Basco, Batanes. Packing maximum winds of about 95 kph, it crossed the northeastern tip of Cagayan MADING left the 068 through the Bahman Islands in
Abra, Ilocos Norte and Satanes. 155.#1 hoisted over Metro Manila, Rest of Luzon including Mindoro. Damages to public and private property P411.2M. Casualties - dead 121, injured 26, missing						the morning of Aug. 30. The monson rains trig- gered by Tropical Storm. MARING caused landslides and rivers to overflow flooding low lying areas. PSS #2 hoisted over Cagayan, Isabela, Kalinga-Apayzo,
						Abra, 110cos Norte and Sur and Batanes. 155.#1 hoisted over Metro Manila, Rest of Luzon including Mindoro. Damages to public and private property P411.2M. Casualties - dead 121, injured 26, missing

Table C.2.29 Tropical Cyclone Summary (3/3)

Year	Classification & Name Period of Occurrence	Max winds Obs. (kph) place	M S L P Recorded & place	Max 24-Hr. RR (mm) Recorded & place	Brief History, Public Storm Signals (PSS) Raised and Damages
1985	Typhoon KURING Jun. 20-24	165-Recon 120-Tuguegarao	961.0-Recon 979.0-Tuguegarao	304.6-Baguio 271.4-Iba	KURING developed east of Luzon in the morning of June 20th. It moved westnorthwestward and crossed Babuyan Channel. PSS #3 hoisted over Cagayan, Isabela, Abra, Batanes Group and Kalinga-Apayao, PSS #2 hoisted over Rest of Northern Luzon. PSS #1 hoisted over Eastern Visayas and Rest of Luzon including Metro Manila. Damages to preperty P227.6M. Casualties: dead 5, missing 6.
1986	Typhoon GADING Jul. 6-10	220-Vigan 185-Recon	894.0-Recon 967.0-Aparrí	709,6-Baguio 376,8-Dagupan	Embedded along the active monsoon trough, GADING as a typhoon, moved westnorthwest crossing Northern Luzon that brought in considerable amount of rainfall along Northern and Western Luzon. PSS #3 hoisted
					over Batanes, Cagayan, Kalinga-Apayao, Ilocos Norte and Sur, Abra and Mt. Province. PSS #2 hoisted over the Rest of Northern Luzon. PSS #1 hoisted over Central and Southern Luzon including Metro Manila and Mindoro. Damages to Public and Private Property P620,910,851.00. Casualties:dead 89, missing 20 and injured 16.
i					

Table C.3.1 Observed Daily Runoff of Gauging Sites (1/2)

						(Unit : m ³	/sec)
Ionth	Day	Wangal	Balili		Pico	Bahong	Binen
1	1					* •	
	3	eta Guntaria					
	4 5					e e e e e e e e e e e e e e e e e e e	
	6						
٠.	7 8		; ** *		1.858		2.240 1.920
	9 10			•	1.099 0.625	0.812 0.650	1.472
	11				0.672	0.550	$0.180 \\ 0.120$
ept.	12 13				0.435 0.295	0.875 0.550	0.110 0.110
	14 15				0.227 0.181	0.350 0.300	0.080
	16				0.159	0.300	0.100 0.090
	17 18				0.136 0.113	0.230 0.210	0.060 0.050
	19		. ·		0 113	0.190	0.140
1	20 21				0.091 0.159	0.210 0.170	0.080 0.060
	22 23				0.159 0.136	0.150 0.150	0.04
	24				0 136	0.210	$0.043 \\ 0.043$
	25 26	0.452	25 15		0.136 0.159	0.230 0.550	0.039
er Grand	27	0.452			0.272	0.170	0.039
	28 29	0.416 0.452			0.249 0.227	0.190 0.170	$0.037 \\ 0.037$
	30	0.452			0.159	0.130	0.034
	[0.416	1.00	. :	0.159	0.130	0.034
	2 3	0.344			0.159 0.136	0.130	0.026 0.026
	4 5	0.308 0.308		-	0.113	0.190 0.150	0.026
4.4	6	0.308			0.136 0.113	0.150 0.150	0.029 0.026
	7 8	0.272 0.272			0.091	0.150	0.028
	9	0.235			0.091 0.068	0.130 0.110	0.026 0.026
	10 11	0.235 0.235			0.023 0.023	0.110	0.026
t.	12	0.199	** *.		0.136	$0.110 \\ 0.090$	0.024 0.026
·	14	0.199 0.199			0.113 0.159	0.090	0.026 0.026
	15 16	0.199 0.235		.*	0.136	0.090 0.090	0.026
	17	0.127			0.113	0.090 0.070	0.026
	18 19	0.091 0.091	Ti .		0.091	0.070	0.020
	20 21	0.091			0.091 0.136	0.050 0.130	0.024 0.026
	22	0.127 0.091		* .	0.204	0.110	0.024
11	23 24	0.878			1.668	0.090 0.550	0.024 0.160
:	25	9.500		:, '	8.551 4.566	3.200	1.549
	26 27	0.544 0.452			1.099	0.650 0.600	1.472 0.150
	28	0.380			0.957 0.625	0.600 0.600	0.090
	29 30	0.308 0.308			0.249	0.300	0.039
	31	0.308		•	0.227 0.227	0.230	0.042

Table C.3.1 Observed Daily Runoff of Gauging Sites (2/2)

					(Unit : 1	n ³ /sec)
1onth	Day	Wangai	Balili	Pico	Bahong	Binen
		0.272		0.100	0.210	0.04
	l l	0.272		0.136 0.136	0.170	0.048 0.03
	2 3	0.272		0.136	0.150	0.03
	ن ا	0.235	0.950	0.113	0.150	0.020
	4 5 6	0.235	0.950	0.113	0.130	0.02
	6	0.235	0.950	0.113	0.130	0.02
	ž	0.235	0.950	0.113	0.110	0.013
	7 8	0.199	0.860	0.091	0.110	0.01
	9	0.199	0.860	0.091	0.090	10.0
	10	0.199	0.770	0.091	0.090	0.01
	11	0.163	0.680	0.068	0.070	0.01
ov.	12	0.163	0.590	0.068	0.070	0.010
	13	0.163	0.590	0.068	0.050	0.01
	14	0.163 0.163	0.590 0.590	0.068	0.050	0.010
	15	0.163	0.500	0.068 0.068	0.050 0.050	0.019
	16	0.163	0.475	0.068	0.050	0.01
	17	991.0	0.500	0.091	0.050	0.01
	18 19	0.199	0.475	0.091	0.050	0.01
	20	0.199	0.475	0.091	0.050	0.01
	21	0.199	0.475	0.091	0.050	0.01
	22	0.199	0.450	0.091	0.050	0.01
	23	0.199	0.475	0.091	0.050	0.01
	24	0.199	0.450	0.091	0.050	0.01
	25	0.272	0.450	0.136	0.050	0.01
	26	0.272	0.450	0.136	0.050	0.01
	26 27	0.272	0.425	0.136	0.050	0.01
	28	0.235	0.400	0.113	0.050	0.013
	29	0.199	0.375	0.091	0.050	10.0
	30	0.199	0.375	0.091	0.050	0.01
	1	0.163	4, , *		0.050	0.01
	2	0.163			0.050	0.01
	3	0.163			0.050	0.01
	4	0.235			0.050	0.008
	5	0.272 0.272			0.050	0.01
	6 7	0.272			0.045	0.01
	8	0.235	and the second		0.045	0.01
	9	0.100	**************************************		0.045	0.01
	- 10	0.199	·		0.035	10.0
	ΪΪ	0.199			0.035	0.00
	12	0.091			0.030	0.00
lec.	13	0.091		•	0.030	0.00
	14	0.091			0.030 0.030	0.00
•	15	0.091			0.035	0.00
	16	0.163			0.025	0.00
	17	0.235			0.020	0.00
	8 1	0.235		*	0.020	0.00
	19 20	0.235			0.020	0.00
	20	0.199	•		0.020	0.00
	21	0.127			0.020	0.00
	22 23	0.127			0.020	0.00
	23	0.127		•	0.015	0.00
	24 25	0.091	4		0.015	0.01
	26	0.055			0.015	0.01
	27	0.055 0.055			0.015	0.01
	28	0.053			0.015	0.01
	29	0.163			0.010	0.011
	30	0.163			010.0	0.01
	31	0.163	11.		0.010	0.011
	-				0.010	0.01

Table C.3.2 Estimated Runoff of the Balili River (31.4 sq.km)

				÷.		1.		ď.,				
် ကို	1.48	1.92	0.96	2.11	2.04	1.31	1.03	1.08	1,63	1,10	1.10	4.
Nov.	4.44	2.66	1.31	24.77	6.52	3.22	2.76	2.84	3.69	1.70	2.83	5.2
oct.	7.79	98.9	5.74	6.04	8.14	6.91	4.47	7.97	5.48	4.22	11.03	8.9
Sept.	31.55	13.35	6.91	15.31	17.98	15.20	8.44	12.23	15.25	25.65	12.28	15.8
Aug.	20.74	27.77	21.98	8.13	26.52	24.10	21.89	29.13	32.43	23.98	13.92	22.8
July	12.00	13.09	13.96	27.52	12.57	30.89	2.67	9.12	10.42	27.54	5.50	15.3
June	4.36	9,63	6.60	6.03	17.37	7.71	5.87	7.13	26.54	7.41	8.22	7.6
May	3.27	4.32	8.30	22.09	4.62	5.66	1.91	7.71	6:59	8.05	2.99	6.9
Apr.	0.93	0.57	1.04	0.47	1.29	2.26	0.59	2.19	1.56	0.65	0.59	1.1
Mar.	1.19	0.64	0.62	0.54	0.69	0.68	0.68	0.55	0.67	0.68	0.64	6.0
Feb.	0.58	0.64	0.63	0.54	0.71	0.68	0.70	0.52	0.59	0.68	0.65	9:0
Jan.	0.78	0.87	0.94	0.70	1.12	0.99	1.01	0.65	0.77	0.93	0.80	6.0
Year	1977	1978	1979	1980	1881	1982	1983	1984	1985	1986	1987	Average

Annual Runoff Coefficient

Year	Max.Daily				Annual	Annual	Runoff	
	Runoff	Runoff	Runoff	Runoff	Runoff	Rainfall	Coeff.	
	(cn.m/s)			_	(mm)	(mm)	(%)	
1977	54.425				2838.2	3676.8	77.2	
1978	56.364				2621.9	3406.3	77.0	
1979	35.274				2197.6	2903.4	75.7	
1980	86.150				3638.4	4524.0	80.4	*.
1981	43.179				3170.7	3987.7	79.5	-
1982	34.509				3172.5	4033.6	78.7	
1983	34.958				1751.8	2372.6	73.8	
1984	47.534				2583.7	3428.7	75.4	
1985	42.779				3363.0	4362.4	77.1	
1986	71.531				3267.3	4057.7	80.5	
1987	40.651				1928.0	2574.9	74.9	

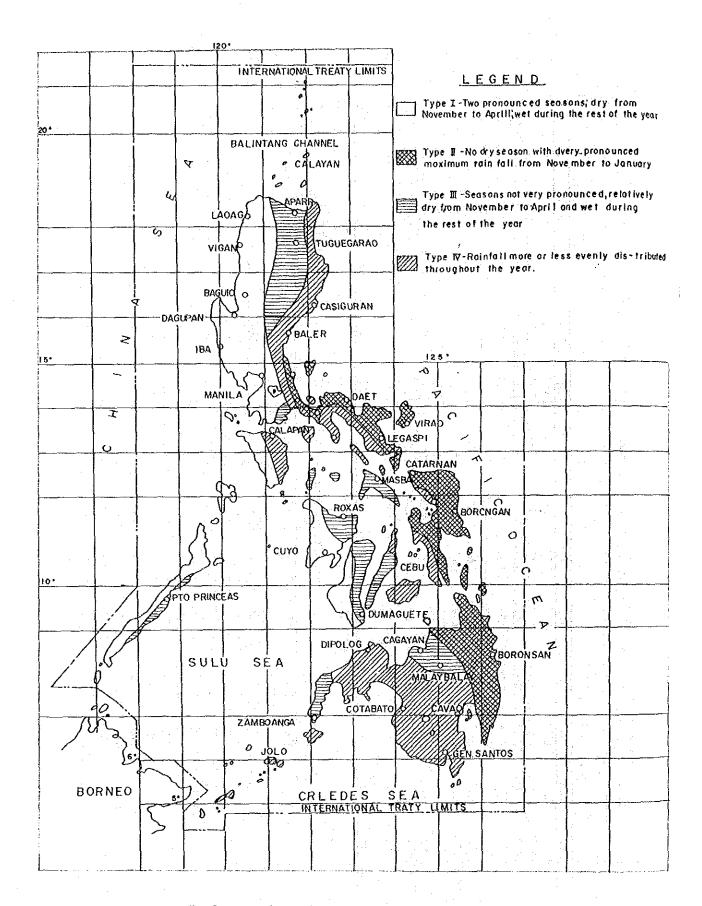


Fig.C.1.1 Climate Map of the Philippines

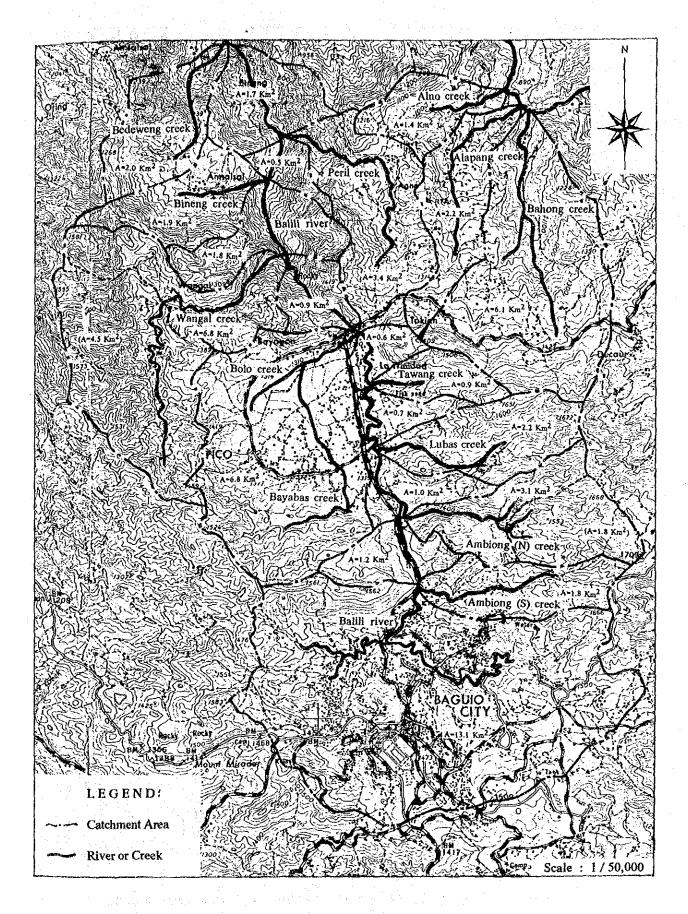


Fig.C.1.2 River System of Balili River Basin

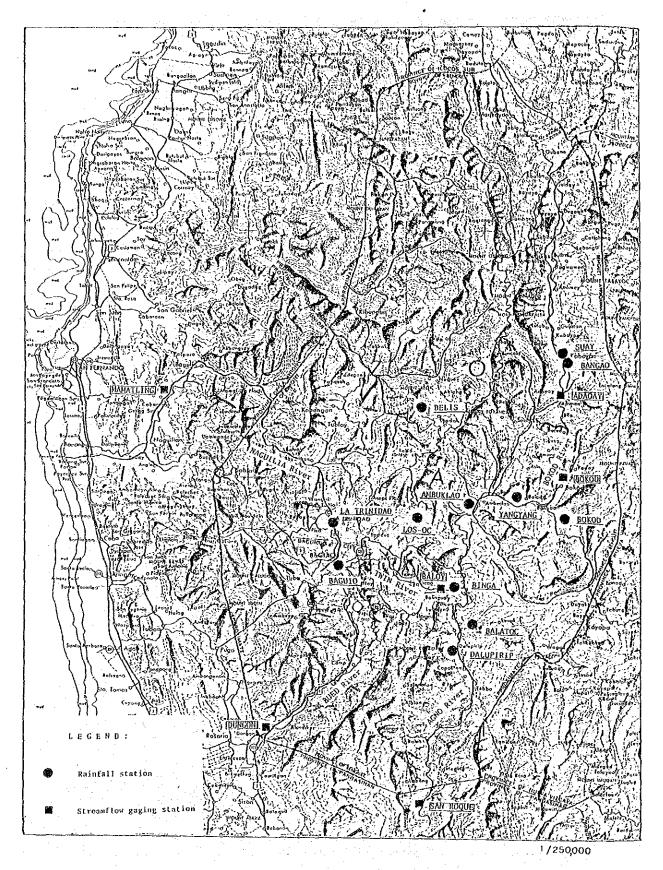


Fig.C.2.1 Location of Existing Rainfall and Streamflow Stations

Fig.C.2.2 Collected Meteorological Data

Station name	1949	\	1974	1975	1976	1977	1978	1979	1980	1981	1982	1983	1984	1985	1986	1987
Baquio PAGASA 1																
/		t														
BSC PAGASA																
Belis, Atok 2/						,										
Ambuklao, Bokod 2/																
Bobok, Bokod 2/																
Binga, Itogon ² /																
Balatoc, Itogon2/																
Dalupirip, Itogon 2/																
Los-oc, Tublay 2																
Yangyang, Bokod 2																
Bangao, Kabayan≧⊄																
Suay, Kabayan 2/											2	:	7			
Ambiong, La Trinidad 3																
Puguis, La Trinidad 37.							·									
Bahong, La Trinidad 3/							. :		· [
Wangal, La Trinidad 3/					.,											
Bineng, La Trinidad 3/					all.			· · .			:					

3/: Rainfall data only, observed by JICA team

2/: Rainfall data only

1) : Meteorological data

C- 43

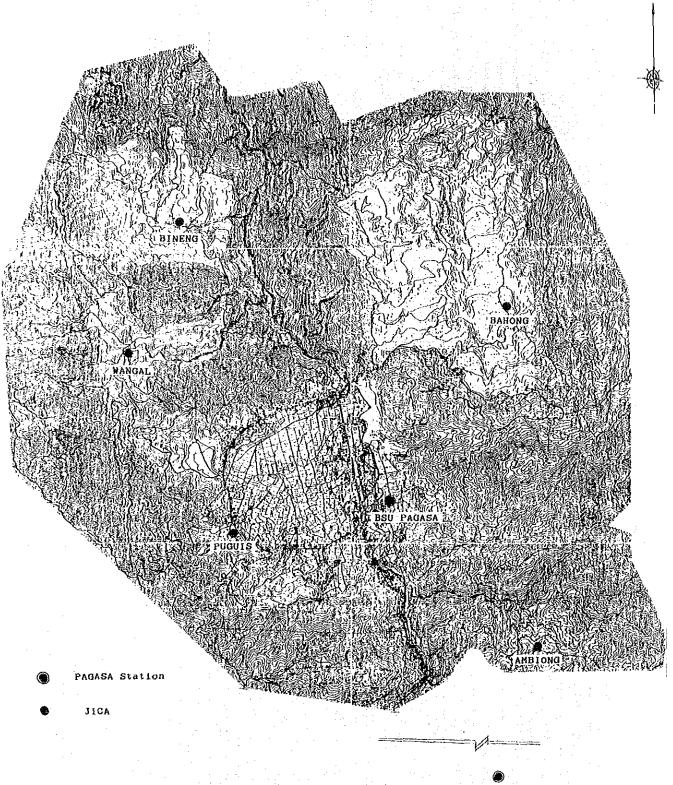
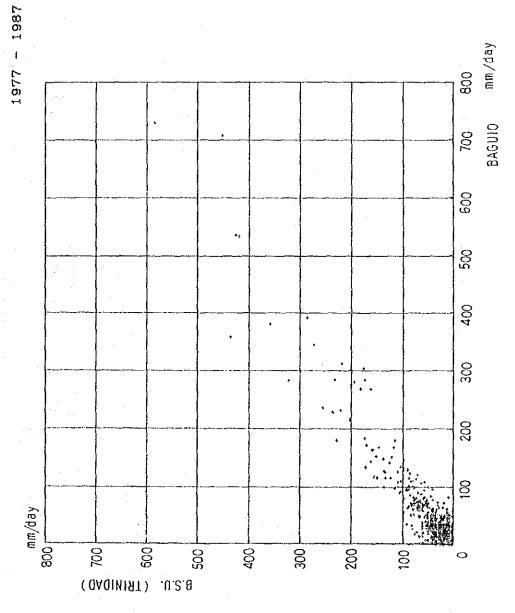
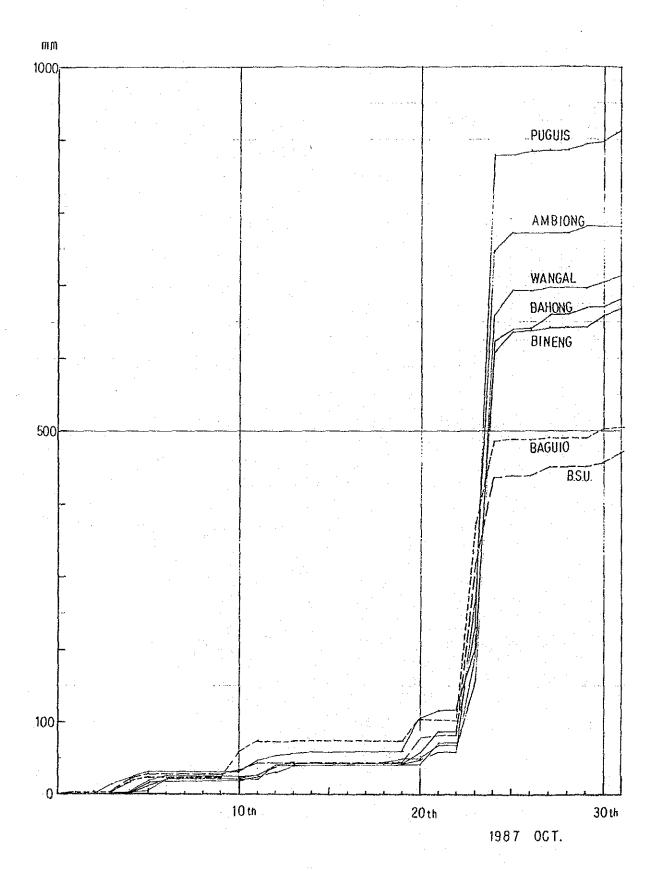
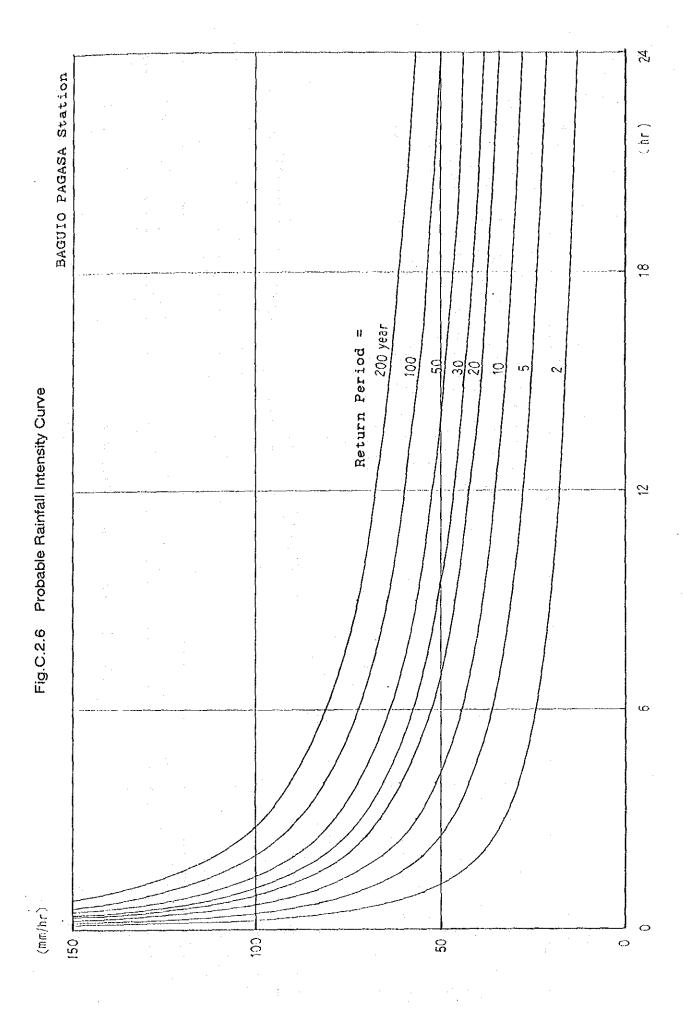


Fig.C.2.3 Rainfall Stations Installed by JICA BAGUTO PAGASA


Fig.C.2.4 Correlation Relation of Daily Rainfall between Baguio Station and BSU Station

Coefficient: 0.97

Correlation

Fig. C.2.5 Accumulation of Observed Rainfall

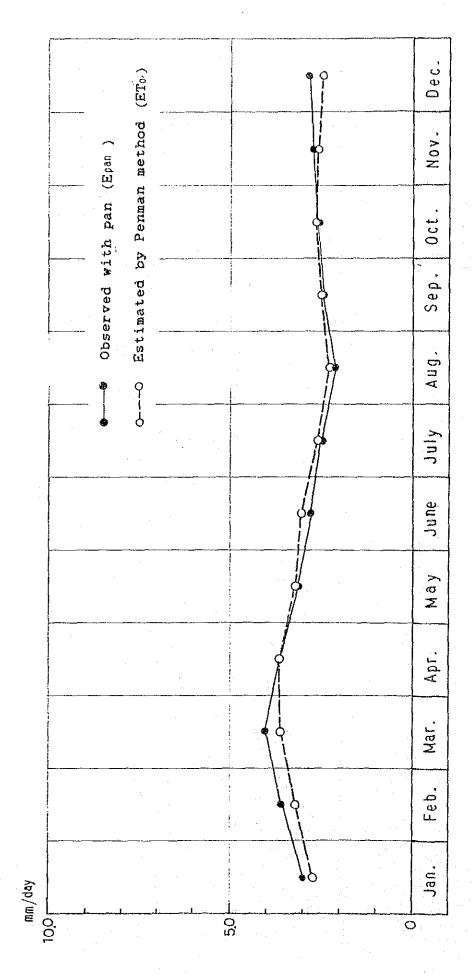


Fig.C.2.7 Comparison of Evaporation

Fig.C.2.8 Hyetograph in Most Severe Typhoon (1/5)

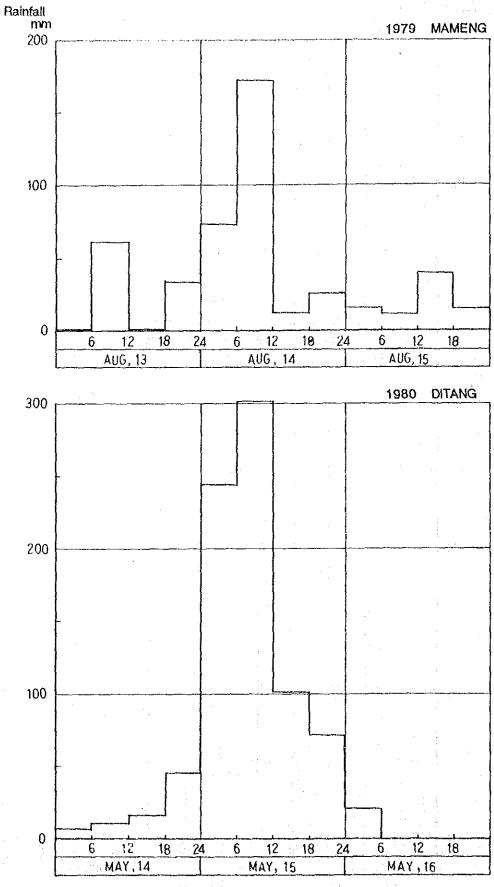
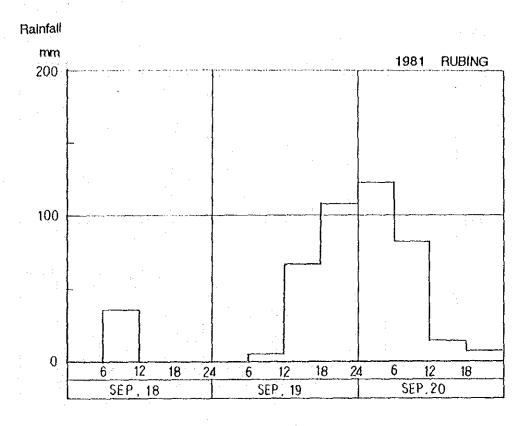



Fig.C.2.8 Hyetograph in Most Severe Typhoon (2/5)

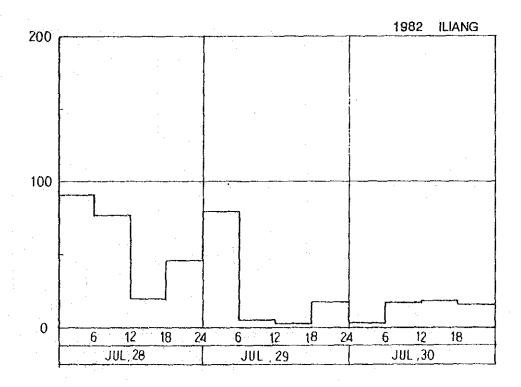
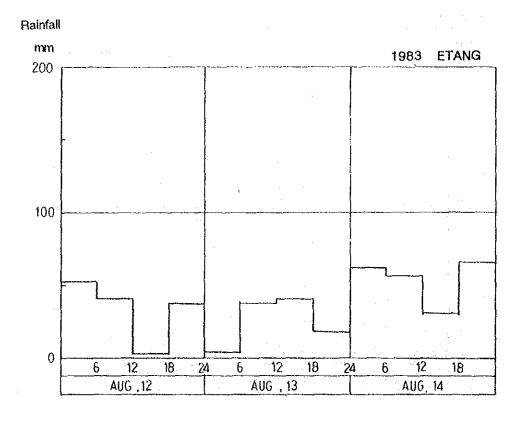



Fig.C.2.8 Hyetograph in Most Severe Typhoon (3/5)

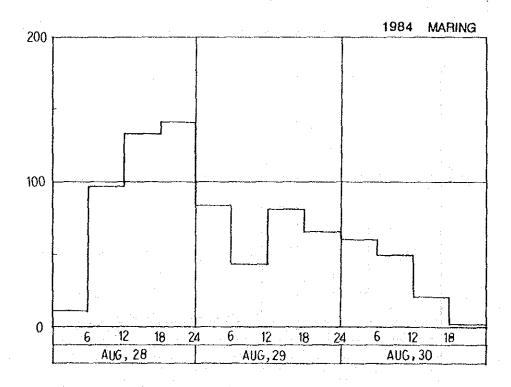
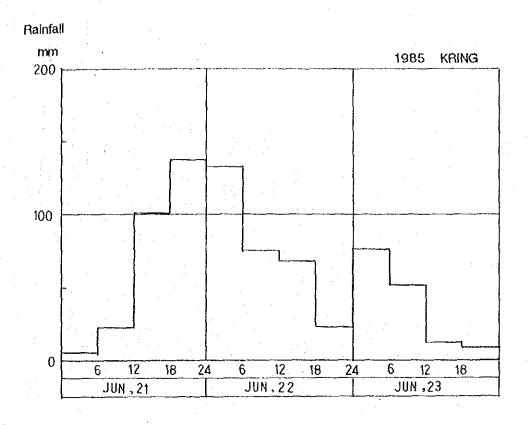



Fig.C.2.8 Hyetograph in Most Severe Typhoon (4/5)

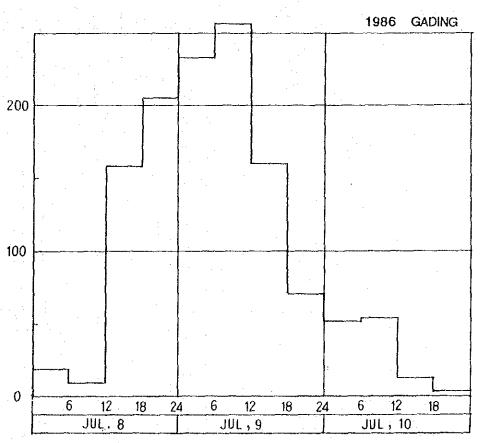


Fig.C.2.8 Hyetograph in Most Severe Typhoon (5/5)

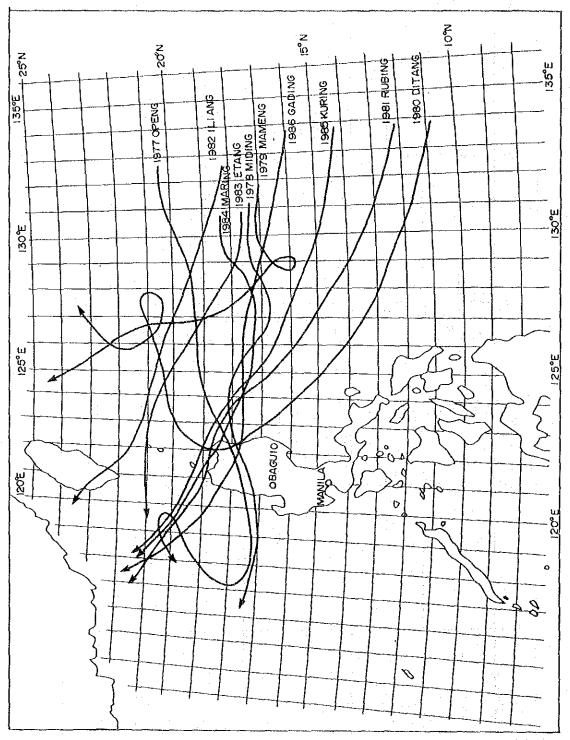
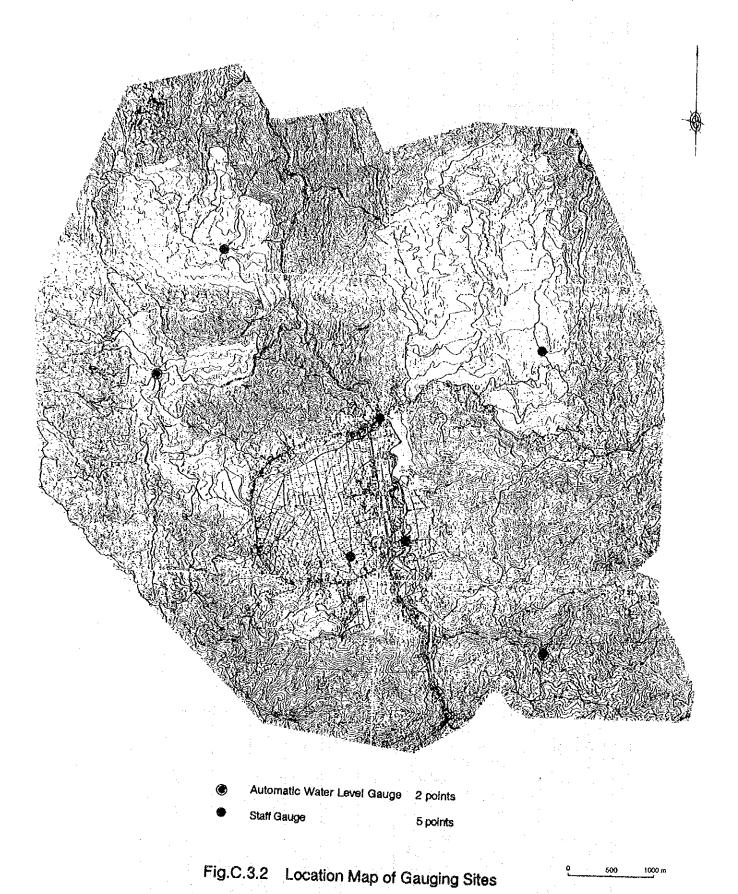
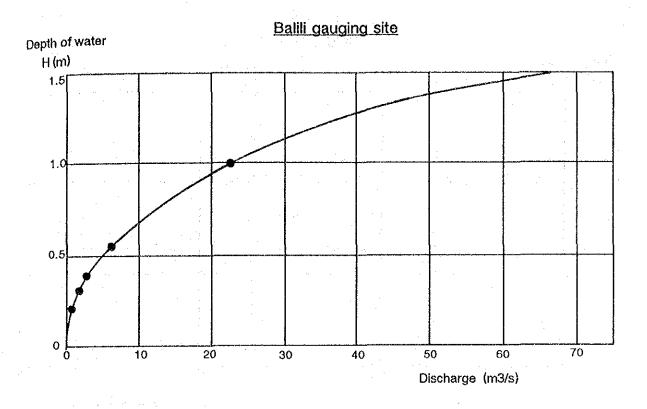



Fig.C.2.9 Tracks of Most Severe Typhoons in Last 10 Years


River name	Catchment Area(sq.km)	1945	1946	}	1950	. }	1959	1	1969	1	1970	}	1976	}	1985	1986	1987
Naguilian R.	304	_															<u></u>
Bokod R.	102				1000										1.		
Twin R.	87						:										
Agno R. (Adaoay)	246																
Agno A.(San Roque)	1225			, i													
Baiii 1/	23																19
Pico 1/	15																B
Wangal 1/	ည																
Ambiong 1/	1.8																201
Bahong 1/	1.8																
Bineng 1/	0.6																

1/: Observed by JICA team

Fig. C.3.1 Collected Stream Flow Data

C- 56

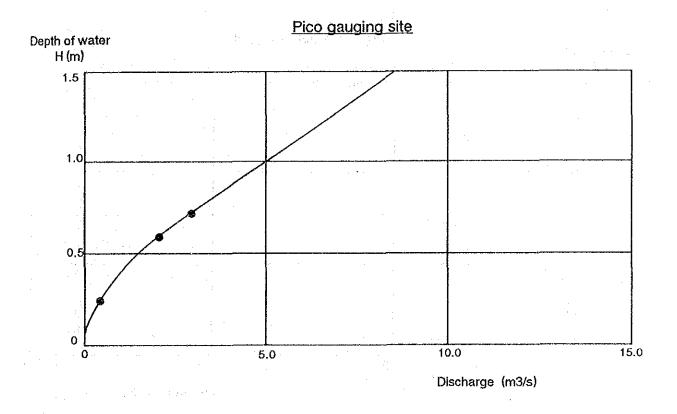
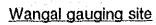
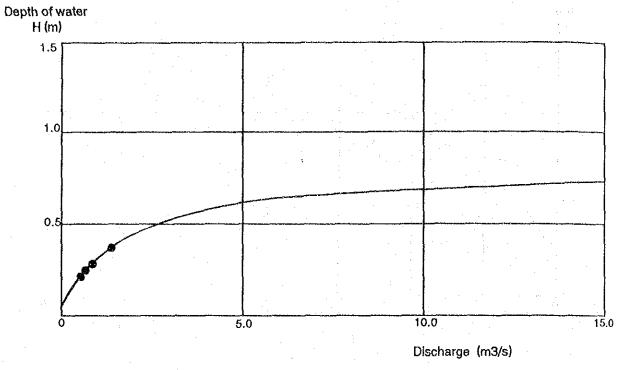




Fig. C.3.3 Rating Curve of Gauging Site in the Project Area (1/3)

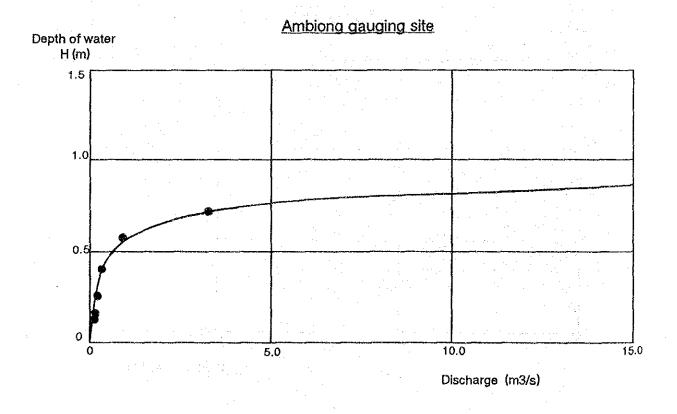
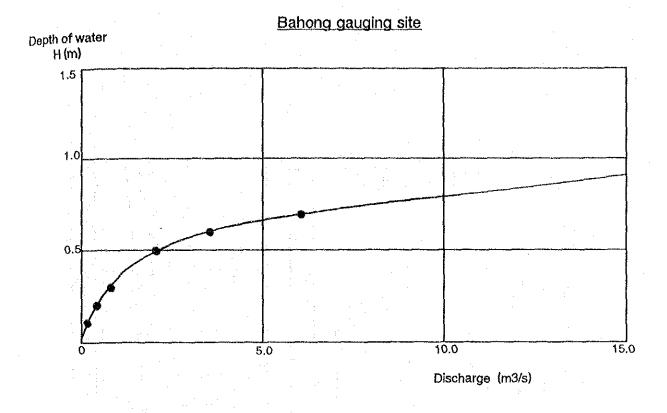



Fig. C.3.3 Rating Curve of Gauging Site in the Project Area (2/3)

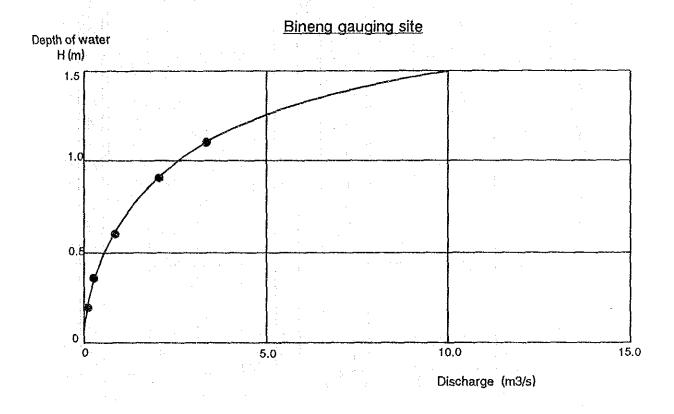


Fig. C.3.3 Rating Curve of Gauging Site in the Project Area (3/3)

Calculated . Observed DEC. UNN N Gauging Site: Wangal, Catchment Area: 5.0 km² NOV. MAY 001. A PR. SEP. MAR. AUG. FEB. JAN. 5 0.0 0.01

Fig.C.3.4 Comparison of Estimate Runoff and Observed Runoff (1/5)

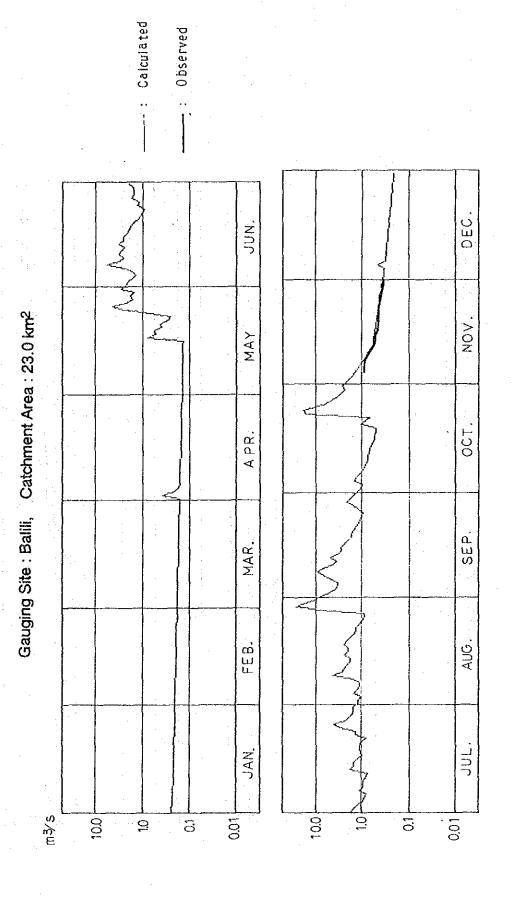
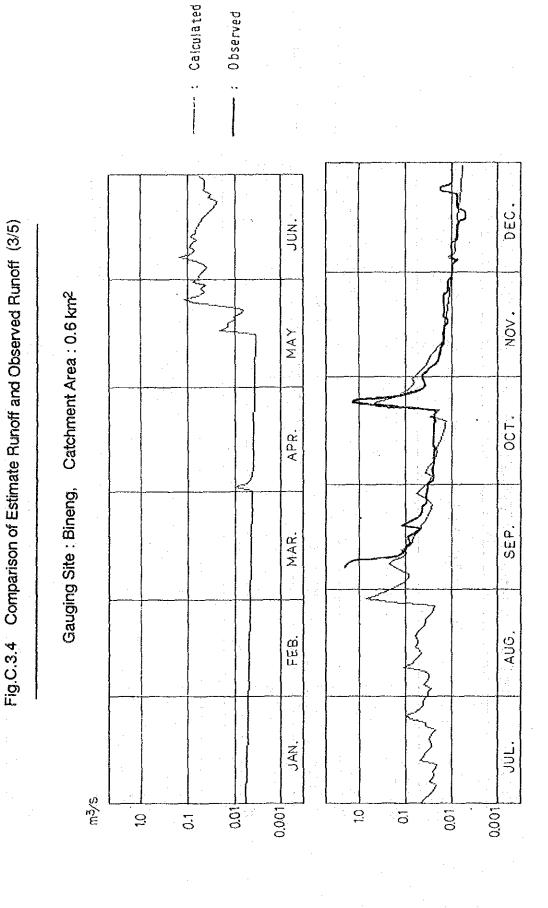
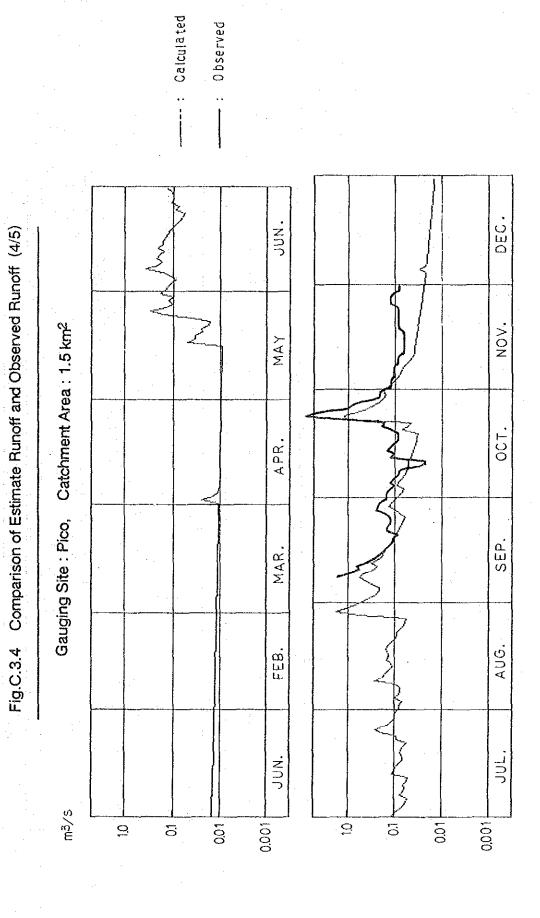
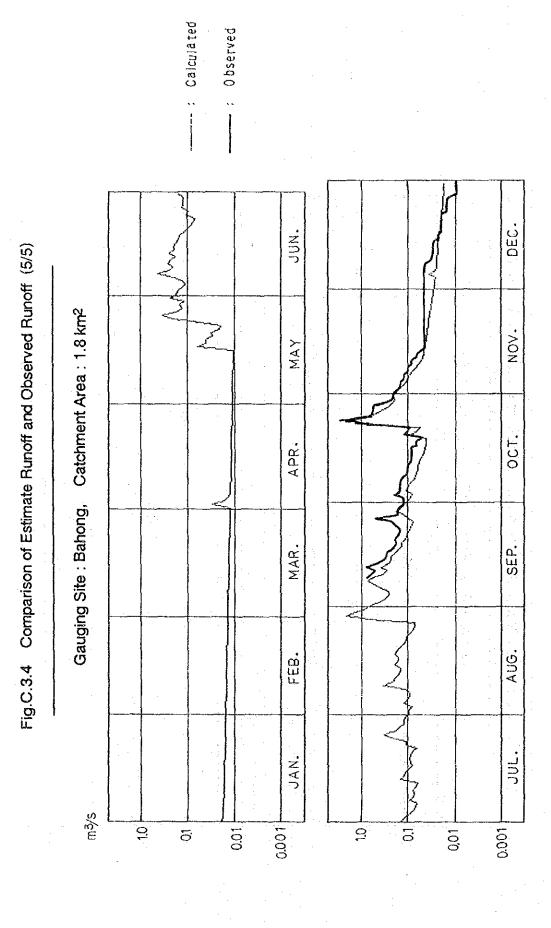





Fig.C.3.4 Comparison of Estimate Runoff and Observed Runoff (2/5)

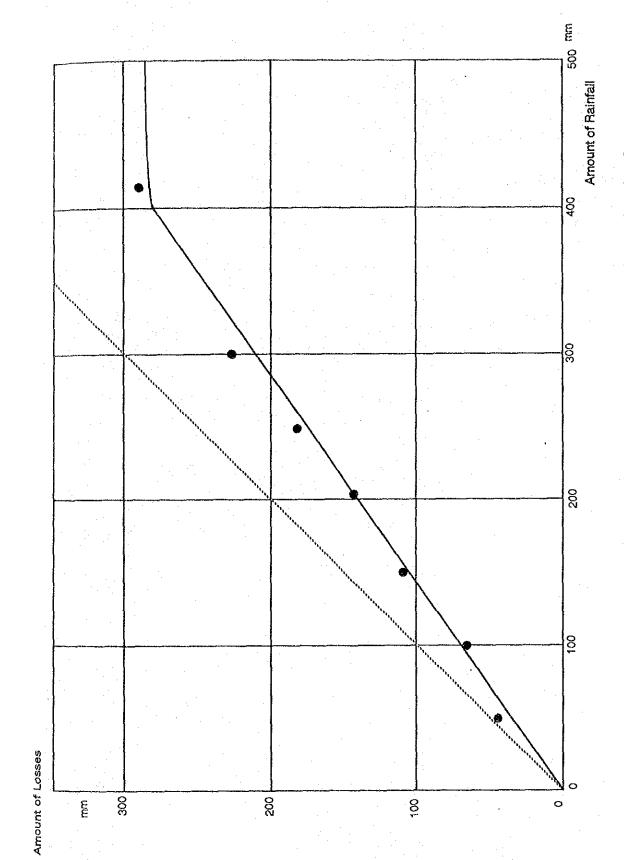


Fig. C.3.5 Actual Relation between Rainfall and Rainfall Losses at the Ambiong Gauging Site

APPENDIX D

GEOLOGY AND HYDROGEOLOGY

APPENDIX D GEOLOGY AND HYDROGEOLOGY

TABLE OF CONTENTS

i i i		and the contract of the contra	Page
1.	GENI	BRAL THE TANK THE PROPERTY OF	D-1
2.	GEOL	OGY	D-2
et kons	2.1	Geological Components in the Study Area	D-2
	2.2	Quaternary Formation	D-2
		2.2.1 Alluvium	
		2.2.2 Limestone fragment	D-2
	2.3	The Tertiary Formation	D-3
		2.3.1 Tuffbreccia and Basalt	D-3
		2.3.2 Agglomerate-Lapplli Tuff	D-3
18.5		2.3.3 Conglomerates	
•		2.3.4 Shale-Sandstone-Tuff	
i e		2.3.5 Limestone	
		2.3.6 Andesitic sediment	D-4
3. .	HYDR	COGEOLOGY	D-5
4	3.1	General	D-5
	3.2	Springs	D-5
	3.3	Groundwater	D-6
4.	ELEC	TRIC RESISTIVITY SURVEYS	D-7
5.	DEEP	WELL AND RESULTS OF PUMPING TEST	D-10
:	5.1	General	D-10
i Programa	5.2	Pumping Capacity of Deepwells	D-10
6.	SOIL	PROPERTY FOR PROPOSED PONDS	D-12
7.	GEOL	OGY OF WANGAL DAMSITE	D-13
	7.1	Geology	D-13
	7.2	Test Hole Drilling	D-13

LIST OF TABLES

		Page
Table D.2	Stratigraphic Classification	D-14
Table D.3.1	Available River Water on February	1.7
Table D.3.2	Classification of Spring Condition	,
Table D.4	Results of Electric Resistivity Surveys	D-16
Table D.5.1 (1)	Records of Pumping Test of Deep Well (DZ-I)	D-17
Table D.5.1 (2)	Records of Pumping Test of Deep Well (DZ-II)	D-21
Table D.5.1 (3)	Records of Pumping Test of Deep Well (DZ-III)	
Table D.5.2	Results of Pumping Test on the Deep Wells	D-28
Table D.5.3	Geology of Deep Wells	
Table D.5.4	Results of Deep Wells Analysis	D-29
Table D.5.5	Water Well Data	
Table D.7.1	Comparison of Proposed Wangal Damsite	D-31
Table D.7.2	Quantity on Drilling Works	D-31
Table D.7.3	Result of Test Hole Drilling	D-32
Table D.7.4	Drilling Record and Log (V-1)	D-33
Table D.7.5	Results of Water Pressure Test for Test Hole Drilling	D-34
Table D.7.6 (1)	Results of Rock Test of Drilling Core Sample (S-1)	D-36
Table D.7.6 (2)	Results of Rock Test of Drilling Core Sample (S-2)	D-37
Table D.7.6 (3)	Results of Rock Test of Drilling Core Sample (S-3)	D-38
		٠
	<u>LIST OF FIGURES</u>	
	in filozofia de la traspeta de la compania de la c La compania de la co	
Fig. D.1	Regional Tectonic Setting	D-39
Fig. D.2	Geological Map at La Trinidad, Benguet	D-40
Fig. D.3	Hydrogeological Map of La Trinidad, Benguet	D-41
Fig. D.4	Results of the Electrical Resistivity Survey	D-42
Fig. D.5.1 (1)	Electric and Lithologic Log (DZ-I)	D-51
Fig. D.5.1 (2)	Electric and Lithologic Log (DZ-II)	D-52
Fig. D.5.1 (3)	Electric and Lithologic Log (DZ-III)	D-53
Fig. D.5.2	Specification of Deepwell for Pumping Test	D-54
Fig. D.5.3	Analysis of the Pumping Test	D-55

APPENDIX D GEOLOGY AND HYDROGEOLOGY

1. GENERAL

The Project area of some 15 km² surface area lies in the southwestern part of the Central Cordillera mountain range in Northern Luzon. The Cordillera is flanked on the east by the Cagayan valley and Eastern Cordillera, and on the west by foothills which are the northern continuation of the Luzon Central valley.

South of La Trinidad, the Central Cordillera takes a southeasterly course. The central valley lies to the southwest of the Central Cordillera and is borders on the Sierra Madre in the east and on the Zambales Range in the west.

The Central Cordillera consists largely of early to middle Tertiary volcanic and platonic rock and early Tertiary or older metamorphic rock, all of which are known in great detail from the Baguio area, and Tertiary volcanic and sedimentary rocks.

There are no active volcanoes or confirmed volcanic landforms although Pliocence pyrociastics have been reported from the Guinaoang area, 50 km. northnortheast of Baguio.

2. GEOLOGY

2.1 Geological Components in the Project Area

The geology of the project area consists of quaternary and the tertiary sedimentation. The quaternary formations are divided into the alluvium of the Trinidad Valley and the Talus deposits presenting around the area with limestone formations.

The tertiary formations occupying most of the mountainous areas consist of the following:

- Tuffbreccia-Basalt
- Agglomerate-Lapilli Tuff
- Conglomerates
- Shale-Sandstone-Tuff
- Limestone
- -Andesitic Sediment

Table D.2 gives a breakdown of these components in the Project area.

2.2. Quaternary Formation

2.2.1 Alluvium

This formation reaches a thickness of 14 m in the central part of the Trinidad Valley, more than 43 m along the national road at the northeast of Zone I, and 2 m of Stock Farm. The upper layer of this formation is of poorly sorted soil with a thickness of 1 to 2 m, and the lower layer is composed of well rounded silt and clay. Sandy soil of more than 2 m in thickness is distributed in the Alno Valley.

2.2.2 Limestone fragment

Limestone fragment is predominantly piled up at the foot of the steep cliffs in Zone II, and a part of the formation stretches into Sadag or Talingting.

This formation consists mainly of limestone boulder and reddish clay of terrestrial deposits. The formation is also observed at the foot of the Pico mountain and the Wangal creek.

2.3 Tertiary Formations

2.3.1 Tuffbreccia and Basalt

This formation consists of alternating beds of dark-greyey basalts and greenishgreyey tuffbreccia, and distributed in the downstream area of the Balili river.

This formation is supposed to be the oldest basement in the Baguio-Trinidad district.

2.3.2 Agglomerate-Lapilli Tuff

This formation occurs at the mountainside. Andesitic boulder is predominant at the top of the mountain.

This formation consists of granule to rounded cobble of andesite/tuff with a matrix of fine grades of the above, showing a reddish brown hue.

This formation is considered to be heterotopic faeces of conglomerate and shalesandstone.

2.3.3 Conglomerates

This formation is widely distributed in the western part of the Project area. The formation consists of pebbles of andesite or granite and matrix of sandstone, and is almost jointless, hard to medium-hard.

Weathering residue 10 to 20 meters in thickness, is widely distributed in Puguis, in the Lower Wangal and Bineng. The formation dips to the north or to the west at angles generally ranging from 20 to 30 degrees.

2.3.4 Shale-Sandstone-Tuff

This formation is observed in Zone II, the upstream area of the Balili river and the peripheral area of the Trinidad Valley except at the eastern part of it. It has a gray, reddish brown and greenish gray color. Generally, it consists of soft to medium hard rocks with little fracture. Dipping angles of the formation range from 20 to 30 degrees to the north.

2.3.5 Limestone

Limestone occurs in the area from the back of Zone II through the Pico mountain. Basement rock of the Trinidad Valley consists of limestone stretching to the Westside of the Wangal creek.

It is of hard to medium-hard rock well jointed, showing grayish white color. The formation at the mountain ranges dips 30 to 40 degrees to the north-west, overlying the basal conglomerate. Thickness of the limestone layer in the Trinidad Valley is about 92 meters on the right bank, 40 meters on the left bank of the Balili river and 90 meters in the Stock farm area.

2.3.6 Andesitic sediment

Andesitic sediment is distributed in the mountain ranges at the back of Cruz through Alno, composing the mountain range.

This formation consists of andesite breccia, being hard and gray in color.

This Andesitic Sediment as well as Tuff mentioned in 2.3.4, are assumed to be a contributing factor to the formation of the Trinidad Valley and the Alno Valley.

3. HYDROGEOLOGY

3.1 General

The alluvium in the Trinidad Valley is generally water impermeable to semipermeable as it consists of clayey sediment. But, in certain parts in the southern and western areas of the Trinidad Valley, the alluvium retains ground-water as it contains interbedded thin sandy layers.

There are several shallow wells of 10 to 20 meters depth and a static water level ranging from 3 to 7 meters. It is often the case that these shallow wells cannot be used in the dry season because of poor discharge from the wells and water contamination. This contamination is assumed to extend from the Balili river basin to the Bayabas creek basin.

Tertiary limestone interbedded with poorly cemented layer of coral fragments and loose soil of terrestrial deposits is an externally permeable layer because cracks along the bedding plane and joints are well developed in it. The mountain slope has no natural waterstops in the form of impervious rocks, so that no aquiferous strata are found here. A good aquifer does exist, however, in the Trinidad Valley.

On account of its high permeability in the Trinidad Valley, the aquifer found here is affected by the contamination from the Balili river.

3.2 Springs

Several springs are found in the mountainside areas consisting of limestone formations. Their occurrence suggests that the impervious shale or other tertiary rocks exist with the limestone formations.

Water from the Dinog cave contains lather, offensive odor, garbage and other wastes. The mains water is therefore assumed to come from the Balili river.

This indicates that the Bahong cave (Dinog Cave) is natural tunnel outlet connecting the downstream side (EL. 1,310 m) of the Balili river in Zone I and the Bahong spring (EL. 1,230 m). The length of this tunnel is about 1,500 meters.

The low quality of the water from the Bahong spring has a negative effect on the western side of sloping outlet downstream area, except Peril creek.

3.3 Groundwater

Groundwater in the tertiary rocks which generally form impermeable strata occurs as fissure water, while Puguis and Lower Wangal, mostly composed of weathered conglomerates, have phreatic ground water, with the rocks having a high water retention ratio.

In Longlong in the upstream area of the Wangal creek, groundwater may exist in the conglomerates as a confined water, with the conglomerates intercalated with loose and poorly graded layers along the accumulation surfaces.

As the thin layers of sandstone and coarse tuff in Zone II are rather loose, due to weathering, small but stable amount of groundwater discharge are obtained. Therefore, several shallow wells are exploited in the layers.

Rich aquifer is found in the hilly areas of Ambiong-Busal in Zone I, where boulders of agglomerates are concentrated.

4. ELECTRIC RESISTIVITY SURVEYS

Electric resistivity surveys of the rock strata are the most effective method of obtaining information about the hydrogeologic conditions.

The electric properties of most deposits and rocks vary over a wide range, depending upon the material, density, porosity, water content and quality, and the distribution of the water in the materials. Water saturated materials have lower resistivity than unsaturated and dry materials. The higher the porosity of the saturated materials, the lower their resistivity. The presence of clays and conductive minerals also reduces the resistivity of the materials.

Electric resistivity surveying is based on evaluating the apparent resistivity (Pa) of subsurface materials by passing a known electric current through the ground and measuring the potential difference between two points. The electric current is applied by using buried metal rods driven into the ground as the electrodes. The distance between the current electrodes depends on the desired range (depth) of observation. The potential difference is measured with two separate electrodes located symmetrically on a line between the current electrodes.

With the Wenner configuration, the distance between the voltage-applying electrodes (a) is one-third the distance between the current applying electrodes (L). Apparent resistivity (Pa) is calculated as

$$Pa = 2 \pi a \frac{V}{I}$$

where V is the potential difference between the voltage electrodes, I is the total current in the electric field.

When the apparent resistivity (Pa) is plotted against the electrode spacing (a) for various spacing distances in a given site, the measurement points (coordinates) can be connected by a regular curve.

The interpretation of such a resistivity-spacing(depth) curve in terms of the associated subsurface conditions is a complex problem. A measured apparent resistivity-depth curve is matched against the familiar standard theoretical curves (Sundberg and Hummel's curve) in order to determine the true resistivities of individual layers,

Electric resistivity surveys were carried out at 18 sites to make clear the hydrogeologic structure in Zone I, II and III. True resistivity values are given below.

Results of Electric Resistivity Surveys

True Resistivity Value (ohm - m)	Material	Geology	Permeability
0.2		Alluvium (Clay - Silt),	
i	Argillaceous	Shale, Tuff,	Impermeable Layer
15	5.7	Sandy Conglomerate	
15		Sandy Clay - Sand,	
	Arenaceous	Sandy Rocks,	
40		Conglomerate	
40		Coarse Sandstone,	
	Sand or Gravel	Weathered Conglomerate,	Permeable Layer
60		Limestone, Porous Rocks	
200		Limestone Fragment,	:
1	Gravel	Cracky Sandstone and Conglomerate, Jointful	

A section of the sectio

^{* 1,000} ohm-m in Alno is the unknown values.

Results of Pumping Tests of Deepwells

Well No.				
Item	DZ-I (Stock Farm)	DZ-II (Bahong)	DZ-III (Bineng) Remarks	
Pumping Setting (m)	42.7	48.8	48.8	
Static water Level (m)	6.71	10.57	30.18	
0 - 21	0-1	0-8	Permeable layer : Ls.	
Talus deposits and Alluvial Sand	Talus deposit	Weathered conglomerates		
Lithologic Log (m)	21 - 87	1-33	8-76 Semipermeable lay	er
Limestone and Sand	Limestone	Conglomerates	Sand, Sandstone,	
•			Conglomerates	
8- 112	33-100	76-80		
Marl	Sandstone, Shale,	Mudstone	Impermeable layer:	
112-120	Conglomerates	Marl, Tuff, Muc	Istone	
Tuff	and Tuff			
Thickness of the Aquifer M (m)	80.29	89.43{L.S. 22.43 S.Salt 67.0	45.82 Below the Static Water Level	
Discharge Q (m ³ /sec)	4.4X10 ⁻³	4.7X10 ⁻³	4.4X10 ⁻³ Final	
Drawdown s(m)	26.52	0.69	3,40 Maximum	
Specific Capacity C (m ³ /sec/m)	1.6X10 ⁻⁴	6.8X10 ⁻³	1.3X10 ⁻³ C=Q	
		· · · · · · · · · · · · · · · · · · ·		
Transmissivity T (m ³ /sec	c)			
Draw down TD		3		
by Yacob and Couper	9.0X10 ⁻⁵	5.1X10 ⁻³	7.0X10 ⁻⁴ TR in DZ-II :	
by Theis	8.8X10 ⁻⁵	5.6X10 ⁻³	7.2X10 ⁻⁴ 1.1 X 10 ⁻²	
by Chow	1.1X10 ⁻⁴	4.2X10 ⁻³	5.9X10 ⁻⁴ TR in DZ-III:	:
by Yocob	7.9X10 ⁻⁵	4.7X10 ⁻³	7.0×10^{-4} 3.8×10^{-3}	
Recovery TR	8.3X10 ⁻⁵	••	· · · · · · · · · · · · · · · · · · ·	
Average	9.0X10 ⁻⁵	4.9X10 ⁻³	6.8X10 ⁻⁴	٠.
Hydraulic conductivity	1.1X10 ⁻⁶	5.5X10 ⁻⁵	1.5X10 ⁻⁵	
K (m/sec)			$K = \frac{T}{M}$	

5. DEEPWELL AND RESULT OF PUMPING TEST

5.1 General

Pumping tests for three deepwells were executed during the HIRDP survey period. The locations for each of the deepwells in the three zones were selected by taking into account the electric resistivity survey results and the estimation of the hydrogeological conditions.

Fig. D.5.2 gives the specifications of the deepwells for the pumping tests.

The pumping test resulted in an adequate and clean water discharge from the test wells. Table D.5.2 sums up the results while Table D.5.3 shows the corresponding hydrogeological conditions.

5.2 Pumping Capacity of Deepwells

Three (3) observation wells have been installed in appropriate locations on the inferred lineation along the fault line in the expectation that groundwater may exist in the cracks and fissures that have developed in the zigzag formation,

Hydraulic conductivity analyses have been carried out on the premise that there is a free groundwater surface. The results of the analysis are presented in Table D.5.4, the relationship between the specific capacity (C: m³/sec/m) and the hydraulic conductivity (K: m/sec) in particular, was found to be as follows;

C = 150K

(1) Zone I (DZ-I : Stock farm)

It can be inferred from the data of the pumping tests that groundwater near a well is possibly formed on a free groundwater surface. A slightly recovering tendency of groundwater level was observed during the pumping test period. This suggests a yield capacity in excess of the test results. Given that the permeability value of the limestone sand may be $K = 1.1 \times 10^{-6}$ m/sec, the design drawdown (s) value shall be less than 30 meters.

The results suggest that the design yield capacity of a well F = 250 mm reaches $Q = 4.8 \times 10^{-3}$ m³/sec when the drawdown (s) is 30 meters.

In order to maximize groundwater utilization in Zone I, the installation of one more production well with a casing diameter = 200 to 300 mm might be effective at the promising site in Puguis in the Zigzag zone. Its pumping capacity may be in the same order as that of production wells such as DZ-II and DZ-III in the zigzag formation.

(2) Zone II (DZ -II Bahong)

Although a large specific capacity was recorded in the tests in the first half of the dry season, its value may decrease in progress of the groundwater level lowering to the end of the dry season. Since the groundwater level reaches a depth of 33 meters below the ground surface and since the permeability is $K = 5 \times 10^{-6}$ m/sec, the design yield capacity of one well $\Phi = 250$ mm becomes $Q = 7.5 \times 10^{-3}$ m³/sec, when the drawdown (s) is 1.0 meters.

Six (6) wells have been designed to meet the water demand in Zone II at the location decided in the topography viewpoints, geology and the electrical exploration results with the expectation of the above capacity. More accurate estimates very difficult due to uncertainty of the lineament on the geographical map.

The depth of the production well at Tawang may be required to be more than 100 meters resulting from the thickness of the limestone at the high elevated land.

The depth of the other production well in Zone II may be 80 meters in consideration of the above conditions.

(3) Zone III (DZ-III Bineng)

According to the pumping test results, the existence of water-retaining fissure and leakable cracks has been observed, so that, it may be difficult to be successful in finding the aquifer at a different site.

Based on the analysis on DZ-III pumping test, the design yield capacity can be secured at a value of $Q=1.3 \times 10^{-2} \text{ m}^3/\text{sec}$ when the drawdown s=10 meters. Stable pumping-up is essential in the dry season so that the pump setting must be designed underneath the level of the possible leaking cracks. Its level may be about 59 meters in depth from the ground surface.

6. SOIL PROPERTY FOR PROPOSED PONDS

Soils in the foundations of the proposed ponds and proposed borrow pit areas can be classified into the following categories as their origin.

- (1) Soils derived from limestone
- (2) Soils derived from conglomerates
- (3) Soils derived from shale, sandstone and tuff
- (4) Alluvial clay

Soil derived from limestone is composed principally of talus deposits, weathered residual soil and reddish clay. Talus deposits and weathered residual soil contain fewer fine particles and have a high permeability.

Reddish clay indicates a high natural moisture content and may be considered to have poor workability characteristics.

Soils derived from conglomerates are mainly composed of talus deposits and weathered residual soil. They are widespread within areas as Puguis in Zone I, Alno in Zone II and elsewhere in Zone III. This kind of soil shows high shear strength and low compressibility and it is expected to be the most suitable for embankment materials and for foundation of embankment, except the soil extended at apart of Puguis in Zone I which has a possibility of depression of strength in water because it is composed of tuffaceous particles.

Soils derived from shale, sandstone and tuff are mainly composed of totally weathered residual soil and they are found widespread in Zone II. They have a high resistance against piping by have a water and are expected to be suitable for embankment materials and for embankment foundation.

Alluvial soils are found in the swamp area of Zone I. They are expected to show excessive settlement for embankment foundation and low strength for materials because their natural moisture content is higher than the liquid limit.

In addition, when the foundation is composed of limestone, it is necessary to take a countermeasures for the control of leakage.

GEOLOGY OF WANGAL DAMSITE

7.1 Geology

Three alternatives of the dam axes have been selected along the Wangal creek by considering the geological conditions as well as the specifications of damtype and required water capacity came from water demand.

Topographical and geological characteristics of the three alternatives are summarized as in Table 4.3.6.

There are topographical and geological limitations on the maximization of dams, i.e.:

-highest elevation of saddle having EL. 1,249.62 meters at the left bank of the Wangal creek, 350 m up-stream from No. 2 point.

-existing leaky limestone on EL. 1,260 meters height up-stream of the Wangal creek.

In case of an earth/rock fill type dam, impervious and rock materials for the embankment should be secured from the borrow pit consisting of totally weathered conglomerates in the Lower Wangal creek. The quarry site of medium hard conglomerates on the right bank of 200 meters up-stream site from No. 2, respectively.

In case of a concrete gravity dam, the most suitable site would be selected at 1.8 kms up-stream site from No. 2.

7.2 Test hole drilling

Test hole drilling specified in Table D.7.2 was executed at the No.2 point by the study team to obtain the geological informations for a dam foundations.

According to the results given in Table D.7.4, a low groundwater level is found left of the abutment, so that, curtain grouting would be required. Consolidation grouting would also be necessary for dam foundation to expect more increase of bearing capacity thereof.

Table D.2 Stratigraphic Classificatin

Period		Epoch		Geology
Quarternary		Recent	A	Alluvium
Quarternary		Recent to Pleistocene		imestone Fragment
		Upper Miocene to Pliocene		Andesitic Sediment
			S	ihale - Sandstine - Tuff
Tertiary		Early Middle Miocene		Conglomerates
	:			San Stark Walley
			,	agglomerates - Lapilli Tuff
* <i>:</i> * :	i de la companya de La companya de la co	Upper Eocene	ī	uff Breccia - Basalts
		g ger Aris geren ger til 1 ger		ari Paragai Maragai Arabai (1907) Maragai Arabai (1908)

Table D.3.1 Available River Water on February

Geology	River	Water Source
(1) Limestone	Balili River Alapang Creek	(Baguio district), Pico Mountain, Trinidad Valle Tawang-Lubas Piedmont
(2) Conglomerates	Wangal River Bolo Creck	Longlong-Timay-Sadiatan range
	Bedeweng Creek	Bineng Spring
(3) Agglomerates	Ambiong North Creek	Busol-Ambiong Mountainous
(4) Andesitic Sediment	Peril Creek	Bagto range

Table D.3.2 Classification of Spring Condition

Туре	Location	Elevation (m)
(1) Piedmont lowland	East and South ends of Trinidad Valley;	1310 - 1320
(Limestone)	Pico Spring, Balili Spring	
(2) Bed on impervious	Lubas Spring	1385
rocks	Bahong-Alapang Spring	1200 - 1350
(3) Fissure	Conglomerates area	700 - 1400
the same	Sadag-Alno	980 - 1100

Table D.4 Results of Electric Resistivity Survey

True resistivity value (ohm-m)	Material	Geology	Permeability
0.2	argillaceous	Alluvium (clay - silt) shale, Tuff sound conglomerate	Impermeable layer
15 40	arenaceous	sandy clay - sand sandy rocks conglomerate	
40 60	sand or granel	coarse sandstone wethered conglomerate limestone, porus rocks	Permeable layer
200	gravel	Limestone fragment cracky sandstone and conglomerate, jointful	

^{* 1000} ohm-m in Alno is the unknown values.

Table D.5.1 (1) Record of Pumping Test of Deep Well (DZ - I) (1/4)

WELLNO. ZONE I JICA - HIRDP BUYAGAN, LA TRINIDAD DATE STARTED JAN. 24, 1988 STOPPED JAN. 26, 1988 PUMP TYPE SUBMERSIBLE TURBINE PUMP SETTING 140 feet (42.67 m) STATIC WATER LEVEL 22 feet (6.7056 m) REMARKES

r = 0.075 m

T Clock	ime Elapsed	Pumping Water Level (feet)	Draw Down (feet)	Weir Level (feet)	Discharge (GPM)	Remarkes
10:00	Esapsex	Level (leet)	(loci)	(rect)	(01141)	
:01	01			N .	80	
:01	02			*	80	
:03	03				80	
:04	03	4	•		80	Fast Drawdown No
:05	05	1.5		•	80	Reading Taken
:06	. 06	N			80	reading taxen
:07	07				80	
:08	08			e ¹	80	
:09	09				80	
:10	10	•	·		80	
:12	12			* :	80	• •
:14	14				80 .	
:16	16	•			75	•
:18	18				75	
:20	20				75	
:22	22				75	
:24	24				75	
:26	26	w.,	•		75	
:28	28				75	
:30	30				75	
;35	35	\$			75	
:40	40	94'	72.0		75	
:45	45	95'44"	73.3		75	
:50	50	99,	77.0		75	
:55	55	100'3"	78.3		75	
11:00	60	101'5"	79.4		75	
:10	70	104'3"	82.3		75	
:20	80	104'7"	82.6		75	
:30	90	105'10"	83.8		75	
:40	100	106'10"	84.8		75	
:50	110	106'9"	84.8		75	
12:00	120	107'10"	85.8		75	
:20	140	107'7"	85.6		75	* *
:40	160	107'8"	85.7	2.0	70	
1:00	180	107'7"	85.0		70	•

Table D.5.1 (1) Record of Pumping Test of Deep Well (DZ-I) (2/4)

WELLNO. ZONE I JICA - HIRDP BUYAGAN, LA TRINIDAD DATE STARTED JAN. 24, 1988 STOPPED JAN. 26, 1988 PUMP TYPE SUBMERSIBLE TURBINE PUMP SETTING 140 feet (42.67 m) STATIC WATER LEVEL 22 feet (6.7056 m) REMARKES

r = 0.075 m

T Clock	ime Elapsed	Pumping Water Level (feet)	Draw Down (feet)	Weir Level (feet)	Discharge (GPM)	Remarkes	
2:00	240	107'5"	85.4		70		
3:00	300	108'6"	86.5		70	-	
4:00	360	109'0"	87.0	*	70		
5:00	420	109'0"	87.0		70		
6:00	480	108'7"	86.6		70	\$	-
7:00	540	108'5"	86.4		70		
8:00	600	108'5"	86.4		70		٠.
9:00	660	108'5"	86.4		70		
10:00	720	108'4"	86.3		70		
11:00	780	108'4"	86.3		70.		
12:00	840	108'5"	86.4		70		
1:00	900	108'5"	86.4		70	:	
2:00	960	108'5"	86.4		70	•	÷
3:00	1020	108'4"	86.3		70		
4:00	1080	108'5"	86.4		70		
5:00	1140	108'6"	86.5		70	•	
6:00	1200	108'6"	86.5		70		
7:00	1260	108'8"	86.6		70		
8:00	1320	108'6"	86.5		70	÷.	• -
9:00	1380	108'6"	86.5	•	70		
10:00	1440	108'7"	86.6	•	70	. *	-
11:00	1500	108'5"	86.4		70		
12:00	1560	108'7"	86.6	•	70	, t	* .
1:00	1620	108'6"	86.5		70	4	.*
2:00	1680	108'7"	86.6		70	:	* •
3:00	1740	108'7"	86.6		70		
4:00	1800	108'7"	86.6		70		
5:00	1860	108'5"	86.4		70		
6:00	1920	108'6"	86.5	9.0	70		
7:00	1980	108'6"	86.5		70		
8:00	2040	108'8"	86.7		70		
9:00	2100	108'6"	86.5		70		. 7
10:00	2160	108'7"	86.6		70	1.00	χ1 ·
11:00	2220	108'6"	86.5	1, 1	70		ŧ"
12:00	2280	108'6"	86.5		70	* ***	100

Table D.5.1 (1) Record of Pumping Test of Deep Well (DZ - I) (3/4)

ZONE I JICA - HIRDP BUYAGAN, LA TRINIDAD WELLNO. ZONE I JICA - HIRDP BUYAGAN, LA TRINIDAD DATE STARTED JAN. 24, 1988 STOPPED JAN. 26, 1988

PUMP TYPE

SUBMERSIBLE TURBINE

PUMP SETTING 140 feet (42.67 m) STATIC WATER LEVEL 22 feet (6.7056 m)

r = 0.075 m

T	ime	Pumping Water	Draw Down	Weir Level	Discharge	Remarkes	
Clock '	Elapsed	Level (feet)	(feet)	(feet)	(GPM)		
1:00	2340	108'5"	86.4		70		
2:00	2400	108'4"	86.3		70	.*	
3:00	2460	108'4"	86.3		70	_	
4:00	2520	108'4"	86.2	1	70		1.
5:00	2580	108'3"	86.2		70		*
6:00	2640	108'1"	86.1	٠.	7 ,0 c.	•.	
7:00	2700	108'0"	86.0		70 ¹		
8:00	2760	108'2"	86.2		70	*	
9:00	2820	108'1"	86.0		70		
10:00	2880	108'0"	86.0		70		

Table D.5.1 (1) Record of Pumping Test of Deep Well (DZ-I) (4/4)

WELL NO. ZONE I JICA - HIRDP BUYAGAN, LA TRINIDAD DATE STARTED JAN. 28, 1988 STOPPED JAN. 28, 1988 AVERAGE PUMPING RATE 70 GPM (264.95 Vmin) STATIC WATER LEVEL 22 feet (6.7056 m)

Clock		ce Pumping	Ratio	Weir Level		Remarkes
Time	Started t (min)	Stopped t' (min)	t/8	(feet)	Drawdown (feet)	
10:01	2881	1	2881			
:02	2882	2	1441			
:03	2883	3	961			
:04	2884	4	721	ž.	F	
:05	2885	5	577	+		And the second second
:06	2886	6	481			* E *
:07	2887	7	412	*.		
:08	2888	8	361	÷ ;		A STATE OF STATE OF
:09	2889	9	321		•	
:10	2890	10	289			
:12	2892	12	241		:	•
:14	2894	14	207			
:16	2896	16	181	55	33	
:18	2898	18	161	50	28	
:20	2900	20	145	49	27	
:25	2905	25	116	46	24	
:30	2910	30	97	42	20	
:40	2920	40	73	39	17	
:50	2930	50	59	36	14	
11:00	2940	60	49	34	12	
:10	2950	70	42	32	10	
:20	2960	80	. 37	30	8	
:30	2970	90	33	28.5	6.5	
:50	2990	110	27	26	4	
12:10	3010	130	. 23	25.7	3.7	
:30	3030	150	20	23.7	1.7	
1:30	3090	210	15	22.9	0.9	
2:30	3150	270	12	22.7	0.7	

Table D.5.1 (2) Record of Pumping Test of Deep Well (DZ - II) (1/3)

WELL NO. ZONE II JICA - HIRDP BAHONG, LA TRINIDAD DATE STARTED JAN. 20, 1988. 8:00 A.M. STOPPED JAN. 26, 1988. 8:00 A.M. PUMP TYPE SUBMERSIBLE 5 HP MOTER PUMP SETTING 160 feet (48.77 m) STATIC WATER LEVEL 34.8 feet (10.5664 m) REMARKES

r = 0.075 m

T Clock	ime Elapsed	Pumping Water Level (feet)	Draw Down (feet)	Weir Level (feet)	Discharge (GPM)	Remarkes
8:01	01					
:02	02	35'8"	1'0"		75	Cloudy Discharge
:03	03	3 <i>5</i> '8"	1'0"		75	
:04	04	35'8"	1'0"	• •	75	
:05	05	3 <i>5</i> ′8.5″	1'0.5"		75	
:06	06	35'8.5"	1'0.5"		75	•
:07	07	35'8.5"	1'0.5"		75	
:08	08	35'8.5"	1'0.5"		75	
:09	09	35'9"	1'1"		75	· · · · · · · · · · · · · · · · · · ·
:10	10	35'9"	1'1"		75	•
:12	12	35'9"	111"		75	
:14	14	35'9"	1'1"		75	
:16	16	35'9.5"	1'1.5"		75	
:18	18	35'9,5"	1'1.5"		75	
:20	20	35'10"	1'2"		75	
:25	25	35'11"	1'3"		75	
:30	30	36'00"	1'4"	•	75	
:35	35	36'00"	1'4"		75	
:40	40	36'00"	1'4"		75	
9:00	60	36'01"	1'5"		75	
:20	80	36'2.5"	1'6.5"		75	
:40	100	36'3"	1'7"		75	
10:00	120	36'4"	1'8"	4	75	Clearer Water
11:00	180	36 '5 "	1'9"		75	
12:00	240	36'5"	1'9"	4	75	
1:00	300	36'5.5"	1'9.5"		75	
2:00	360	36'6"	1'10"		75	
3:00	420	36'7"	1'11"		75	:
4:00	480	36'9"	2'1"		75	
5:00	540	36'10"	2'2"		75	
6:00	600	36'10"	2'2"		75	•
7:00	660	36'10"	2'2"		75	
8:00	720	36'10"	2'2"		75	
9:00	780	36'10"	2'2"		75	
10:00	840	36'10"	2'2"		75	
11:00	900	36'10"	2'2"		75	
12:00	960	36'10"	2'2"		75	

Table D.5.1 (2) Record of Pumping Test of Deep Well (DZ - II) (2/3)

WELL NO. ZONE II JICA - HIRDP BAHONG, LA TRINIDAD DATE STARTED JAN. 20, 1988. 8:00 A.M. STOPPED JAN. 26, 1988. 8:00 A.M. PUMP TYPE SUBMERSIBLE 5 HP MOTER PUMP SETTING 160 feet (48.77 m) STATIC WATER LEVEL 34.8 feet (10.5664 m)

r = 0.075 m

4.4	V 1			<u> </u>		_1
T Clock	ime Elapsed	Pumping Water Level (feet)	Draw Down Weir Level (feet) (feet)	Discharge (GPM)	Remarkes	
1:00	1020	36'10"	2'2"	75		, , , , , , , , , , , , , , , , , , , ,
2:00	1080	36'10"	2'2"	75	4.94	
3:00	1140	36'10"	2'2"	75		
4:00	1200	36'10"	2'2"	75		
5:00	1260	36'10"	2'2.5"	75		
6:00	1320	36'10.5"	2'2.5"	75		
7:00	1380	36'10.5"	2'2"	75	÷	
8:00	1440	36'10"	2'2"	75	.* *	
9:00	1500	36'10"	2'2.5"	75		
10:00	1560	36°10.5°	2'2.5"	75		
11:00	1620	36'10.5"	2'2.5"	75	•	
12:00	1680	36'10.5"	2'2.5"	75		
1:00	1740	36'10.5"	2'2.5"	75		
2:00	1800	36°10.5"	2'2.5"	75		
3:00	1860	36'10.5"	2'2.5"	75		
4:00	1920	36'10.5"	2'2.5"	<i>7</i> 5		
5:00	1980	36'10.5"	2'2.5"	75		1 1
6:00	2040	36'10.5"	2'2.5"	75	٠	
7:00	2100	36'10.5"	2'2.5"	75	÷	
8:00	2160	36'10.5"	2'2.5"	75		
9:00	2220	36'10.5"	2'2.5"	75		:
10:00	2280	36'11"	2'3"	75		
11:00	2340	36'11"	2'3"	75		
12:00	2400	36'11"	2'3"	75		. *
1:00	2460	36'11"	2'3"	75		
2:00	2520	36'11"	2'3"	75		1
3:00	2580	36'11"	2'3"	75	٠.	
4:00	2640	36'11"	2'3"	75		2
5:00	2700	36'11"	2'3"	75		1.1
6;00	2760	36°11"	2'3"	75		
7:00	2820	36'11"	2'3"	75		
8:00	2880	36'11"	2'3"	75		<i>.</i>
						

Table D.5.1 (2) Record of Pumping Test of Deep Well (DZ - II) (3/3)

WELL NO. ZONE II JICA - HIRDP BAHONG, LA TRINIDAD DATE STARTED JAN. 22, 1988. 8:00 A.M. STOPPED JAN. 22, 1988. 12:00

AVERAGE PUMPING RATE 75 GPM (238.875 Vmin) STATIC WATER LAVEL 34.8 feet (10.5664 m)

Clock		ce Pumping	Ratio	Weir Level	Residual	Remarkes	-
Time	Started t (min)	Stopped t' (min)	t/ť	(feet)	Drawdown (feet)		
8:01	2881	1	2881	36'2"	1'6"		
:02	2882	2 *:	1441	36'1"	1'5"		
:03	2883	3	961	36'1"	1'5"		
:04	2884	4	721	36'1"	1'5"		
:05	2885	5	577	36'1'	1'5"		
:06	2886	6	481	36'0.5"	1'0.5"		-
:07	2887	7	412	36'0.5"	1'4.5"		
:08	2888	8	361	36'0.5"	1'4.5"		
:09	2889	9	321	36'0"	1'4"		
:10	2890	10	289	36'0"	1'4"		
:12	2892	12	241	36'0"	1'4"		
:14	2894	14	207	36'0"	1'4"		
:16	2896	16	181	35'11.5"	1'3.5"		
:18	2898	18	161	35'11"	1'3"	•	
.20	2900	20	145	35'11"	1'3"		
:25	2905	25	116	35'11"	1'3"		
:30	2910	30	97	35'11"	1'3"		
:35	2915	35	82	35'11"	1'3"		
:40	2920	40	73	35'10.5"	1'2.5"	•	
:50	2930	50	58	35'10"	1'2"		•
9:00	2940	60	49	35'10"	1'2"		
:10	2950	70	42	35'9.5"	1'1.5"		
:20	2960	80	37	35'9"	1'1"		
:30	2970	90	33	35'8.5"	1'0.5"		
:40	2980	100	29	35'8"	1'0"	*,	
0:00	3000	120	25	35'8"	1'0"		•
:30	3030	150	20	35'8"	1'0"	*	
1:00	3060	180	17	35'7.5"	11'0.5"		
1:30	3090	210	15	35'7"	11"		
2:00	3120	240	13	35'7"	11"		

Table D.5.1 (3) Record of Pumping Test of Deep Well (DZ - III) (1/4)

ZONE III JICA-HIRDP BINENG, LA TRINIDAD DATE STARTED JAN. 29, 1988. 2:00 P.M. STOPPED JAN. 31, 1988. PUMP TYPE SUBMERSIBLE TURBINE

PUMP SETTING 160 feet (48.768 m) STATIC WATER LEVEL 99 feet (30.1752 m)

r = 0.075 m

Clock	Time Elapsed	Pumping Water Level (feet)	Draw Down (feet)	Weir Level (feet)	Discharge (GPM)	Remarkes	
2:01	01	99	•				
:02	02						
:03	03	106.6	7.5		76.	Cloudy Water	
:04	04				76	2	
:05	05	107.3	8.3		76	٠.	+ 1
:06	06				76		
:07	07	107.9	8.8		76		
:08	08				76		
:09	09				76		
:10	10				76		•
:12	12	108.6	9.5	•	76		
:14	14	108.8	9.7		76		
:16	16	109.2	10.2		76		
:18	18	109.5	10.4		76		
:20	20	109.8	10.7		76		
:22	22	109.9	10.8		76		
:24	24	110.2	11.2		76		
:26	26	110.2	11.2		76		
:28	28	110.2	11.2		76		
:30	30	110.2	11.2	•	76		
:35	35	110.2	11.2		76	Clearer Water	
:40	40	110.2	11.2		76		2
:45	45	110.2	11.2		76		
:50	50	110.2	11.2		76		
:55	55	110.2	11.2		76		
3:00	60	110.2	11.2		70		
:10	70	110.2	11.2		70		3.1
:20	80	110.2	11.2		70	1.441	
:30	90	110.2	11.2		70		
:40	100	110.2	11.2		70		
:50	-110	110.2	11.2		70	:	
4:00	120	110.2	11.2		70		•
:15	135	110.2	11.2		70		
:30	150	110.2	11.2		70		*
:45	165	110.2	11.2	* ************************************	70		
5:00	180	110.2	11.2		70		·

Table D.5.1 (3) Record of Pumping Test of Deep Well (DZ - III) (2/4)

ZONE III JICA - HIRDP BINENG, LA TRINIDAD DATE STARTED JAN. 29, 1988. 2:00 P.M. STOPPED JAN. 31, 1988.
PUMP TYPE SUBMERSIBLE TURBINE

PUMP SETTING 160 feet (48.768 m) STATIC WATER LEVEL 99 feet (30.1752 m)

r = 0.075 m

T Clock	ime Elapsed	Pumping Water Level (feet)	Draw Down (feet)	Weir Level (feet)	Discharge (GPM)	Remarkes
5:20	200	110.2	11.2		70	
:40	220	110.2	11.2		70	
6:00	240	110.2	11.2		70 :	
:30	270	110.2	11.2		70	
7:00	300	110.2	11.2		70	
:30	330	110.2	11.2		70	
8:00	360	110.2	11.2		70	
:30	390	110.2	11.2		70	
9:00	420	110.2	11.2		70	
:30	450	110.2	11.2		70	
10:00	480	110.2	11.2		70	
11:00	540	110.2	11.2		70	
12:00	600	110.2	11.2		70	
1:00	660	110.2	11.2	i.	70	
2:00	720	110.2	11.2		70	
3:00	780	110.2	11.2		70	
4:00	840	110.2	11.2		70	
5.00	900	110.2	11.2		70	
6:00	960	110.2	11.2		70	
7:00	1020	110.2	11.2		70	
8:00	1080	110.2	11.2		70	
9:00	1140	110.2	11.2		70	
10:00	1200	110.2	11.2		70	
11:00	1260	110.2	11.2		70	
12:00	1320	110.2	11.2		70	
1:00	1380	110.2	11.2		70	
2:00	1440	110.2	11.2		70	
3:00	1500	110.2	11.2		70	
4:00	1560	110.2	11.2		70	
5:00	1620	110.2	11.2		70	
6:00	1680	110.2	11.2		70	
7:00	1740	110.2	11.2		70	
8:00	1800	110.2	11.2		70	
9:00	1860	110.2	11.2		70	
10:00	1920	110.2	11.2		70	
11:00	1980	110.2	11.2		70	
12:00	2040	110.2	11.2		70	

Table D.5.1 (3) Record of Pumping Test of Deep Well (DZ - III) (3/4)

WELLNO. ZONE III JICA - HIRDP BINENG, LA TRINIDAD DATE STARTED JAN. 29, 1988. 2:00 P.M. STOPPED JAN. 31, 1988.

PUMP TYPE SUBMERSIBLE TURBINE

PUMP SETTING 160 feet (48.768 m) STATIC WATER LEVEL 99 feet (30.1752 m)

r = 0.075 m

	ime	Pumping Water	Draw Down (feet)	Weir Level (feet)	Discharge (GPM)	Remarkes	
Clock	Elapsed	Level (feet)		(reet)			
1:00	2100	110,2	11.2	•	70	•	
2:00	2160	110.2	11.2		70		
3:00	2220	110.2	11.2		70		
4:00	2280	110.2	11.2	6.2	70		
5:00	2340	110.2	11.2		70		
6:00	2400	110.2	11.2		70		1
7:00	2460	110.2	11.2		70		
8:00	2520	110.2	11.2	* .	70		
9:00	2580	110.2	11.2	1	70		
10:00	2640	110.2	11.2		70		
11:00	2700	110.2	11.2	•	70		
12:00	2760	110.2	11.2		70		
1:00	2820	110.2	11.2		70	\$ 	
2:00	2880	110.2	11.2		70	1.1	

Table D.5.1 (3) Record of Pumping Test of Deep Well (DZ - III) (4/4)

ZONE III JICA-HIRDP BINENG, LA TRINIDAD DATE STARTED JAN. 31, 1988. 2:00 P.M. STOPPED JAN. 31, 1988. AVERAGE PUMPING RATE 70 GPM (264.95 Vmin) STATIC WATER LAVEL 99 feet (30.1752 m)

Clock	Time sind	e Pumping Stopped	Ratio t /t'	Weir Level	Residual Drawdown	Remarkes
Time	t (min)	t' (min)	(/((feet)	(feet)	
2:00	2880		\$ ** *	110.2	11.2	· · · · · · · · · · · · · · · · · · ·
:01	2881	1	2881	:		
:02	2882	2	1441	100	1.0	
:03	2883	3	961	99.8	0.8	
:04	2884	4	<i>7</i> 21	99.8	0.8	•
.05	2885	5	577	-		
:06	2886	6	481			
:07	2887	7	412	99.5	0.5	
:08	2888	8	361	•		
:09	2889	9	321			
:10	2890	10	289	99.4	0.4	A Section 1
:12	2892	12	241	99.3	0.3	
:14	2894	14	207	99.3	0.3	
:16	2896	16	181	99.3	0.3	
:18	2898	18	161	•		
:20	2900	20	145			
:30	2910	30	97		ē.	
:40	2920	40	73	•	•	
:50	2930	50	58			
3:00	2940	60	49	99.3	0.3	
:30	2970	90	33	99.2	0.2	
4:00	3000	120	25	99.2	0.2	
5:00	3060	180	17	99.2	0.2	
6:00	3120	240	13	99.2	0.2	

Table D.5.4 Results of Deep Wells Analysis

			Casino dia 152ma	January, 1988
Hell No.	DZ-1 (Stock farm)	DZ-1 (Bahong)	DZ-II (Bineng)	Remarks
Pumping setting (m)	42.7	48.8	48.8	
Staticwater level(m)	6.71	10.57	30.18	
	0 ~21	0~1	0 ~8	· permeable layer : Ls.
	Talus deposits and	Talus deposit	Heathered conglomerates	
	Alluvial sand			Till the state of
Lithologic log (m)			Section 1	
	21 ~87	1 ~33	8 ~76	· semipermeable layer :
	Limestone and sand	Limestone	Conglomerates	Sand, Sandstone,
				Conglomerates
:	8~112	33~100	76 ~80	
	Harl	Sandstone, Shale,	Hudstone	· Impermeable layer :
	112~120	Conglomerates and		marl, tuff, mudstone.
	Turi	Tuff	And the second second	
Thickness of the	80. 29	89.43{ L.S. 22.43	45. 82	below the static water level
aquifer M (m)		09.43(S.S.alt 67.0		
Discharge Q(m/sec)	4.4 ×10 ⁻³	4.7 ×10 ⁻³	4.4 ×10 ⁻³	final
Drawdown s(#)	26, 52	0,69	3, 40	Bax isxin
Specific capacity				
C (m²/sec/n)	1.6 ×10 ⁻⁴	6.8 ×10 ⁻³	1.3 ×10 ⁻³	Q C=-
				S
Transmissivity				
T(m/sec)			•	
· draw down TD				TR in DZ-II: 1.1 ×10-2
by Yacob and Couper	9.0×10 ⁻⁵	5.1 ×10 ⁻³	7.0 ×10 ⁻⁴	
by Theis	8.8×10 ⁻⁵	5.6 ×10 ⁻³	7.2×10^{-4}	
by Chow	1.1×10 ⁻⁴	4.2 ×10 ⁻³	5.9 ×10 ⁻⁴	TR in DZ-11:3.8 ×10-3
by Yocob	7.9×10 ⁻⁵	4.7 ×10 ⁻³	7.0 ×10 ⁻⁴	
recovery TR	8.3×10 ⁻⁵			
	·			·
average	9.0×10-5	4.9 ×10 ⁻³	6.8 ×10 ⁻⁴	
Hydraulic conductivity	1,1×10 ⁻⁶	5.5 ×10 ⁻⁵	1.5 ×10 ⁻⁵	a a
k (M/sec)				T K=
				M

Water Well Data Table D.5.5

Remarks	by National Water Resources Council, May 1982	op	ор	OĐ	ф	by Baguin city Nov. 1983	on going construction as of JAN. 1981, Abandoned	Existing	Existing	JAH. 1983 by JICA
DRAWDOWN (m)	0.06	4.00	1.53	1.53	3.88	22.10	(30)			26.52
STATIC WATER LEVEL (mbgs)	1.52	2.44	4.27	4,57	Ground Level	2.90	45	Q	NO	6.71
SPECIFIC CAPACITY (#/sec/m)	1.205×10 ⁻²	8.0×10 ⁻⁵	4.1×10 ⁻⁴	4.1×10-4	2.1×10 ⁻⁴	6.0×10 ⁻⁴	ND	2	QX	1.6×10 ⁻⁴
ACTUAL CAPACITY (#/sec)	7.6×10 ⁻⁴	3.2×10 ⁻⁴	6.3×10-4	6.3×10 ⁻⁴	6.3×10 ⁻⁴	1.3×10 ⁻²	CN	1.26 ×10 ⁻²	ON.	4.4×10 ⁻³
DRILLING DEPTH (m)	17.6	21.3	26.8	42.6	20.4	152.0	(230.0)	145.0	122.0	120.0
LOCATION	Bayabas	Pico Elem, School	Pico	KM.6 Betag	Buyagan	DANGHA TRANS, CO.	Balili	Balili	Puguis	Stockfarm
WELL NUMBER	6PW 36-61-12	8PW 18903	8PW 18904	8PW 36-61-11 (LWUA No.136)	8PN 36-61-15	LWUA No 142	LWUA NO 151	LTMD	private well	02-1

mbgs: meter below ground surface ND — No Data

Table D.7.1 Comparison of Proposed Wangal Damsite

			The second secon		.
Dansi te	Landform	Geology	Proposable scale of Dam	Dam type	Paris Marian
No 1					
Up-Stream	lowlying terrace floor in riverbed,	deeply weathered conglomerates	Small	earth & rock fill type	
site	hill at the right abutment	at the right abutment.		(Fill type)	- · · · ·
Na 2					
Middle	lowlying terrace floor in left,	exposure of medium weathered	medium	Fill type/concrete	
site	steep slope at both abutments	conglowerates at both		gravity type	War, Wes
		abutments			الويدة الأدب
Na 3		weathered tuff at the right			0 3 6 3 6
Down-Stream	gentle slope in part at the	abutment more than 1250	medium	Fill type/con	
site	middle of both abutment	meters in elevation,		gravity type	
		inferring fault at about			
	·	20 meters higher than			ندوا فنكبوه
-		riverbed at the right bank			***

Table D.7.2 Quantity on Drilling Works

Rock test		3pieces
Water pressure test		10 times
Diameter		75888
Depth D		50a
Collar elevation		1246, 90m
Location	leftbank at	No.2 Gayasey
Orilling No	$I - \Lambda$	

Table D.7.3 Result of Test Hole Drilling

Martin and Company of the Company of		
Depth (m)	Classification and Physical Condition	Permeability (Lugeon)
\\\\\\\\\\		
0 ~ 12.7	weathered zone, poor core recovery	less than 2
12.7 - 30.0	sound zone, medium hard to hard,greenish	5-10
	gray in color conglomerates consisting of subrounded Andesita	
	ranging from 2 cm to 10 cm in diameter and graded sand	
30.0 - 40.0	fractured zone, friable and slightly hard	17 - 23
	rock	
40.0 - 50.0	sound zone, medium hard to hard, jointed	4-10
	gray in color	

Drilling Record and Log (V-1) Table D.7.4

HOLE NO	. ۷-1				SITE	E . WANGAL				HOLE COLLAR ELEVATION	ELEVATION :	1246. 9HATERS	TERS	HOLE INCLINATION	LINATI	ON : VERTICAL	
												ť					
POLE - COM	F 24895	RITT!	NG RE	CORD	MACHINE	I DNGV FAR34						DRILLING	- "				
•	MO OF S	NO OF STRENG OF RODS (P.)	STICK-		N CORE	SECOVE (X	99 X	ROCK SP. gr	HUTER LEYEL	LUGEON (OEPTH LITHOLOGY	Y ROCK HAROKESS	ROCK	ROCK FAC	FACIES SYHBOL	DESCRIPTION	
	2	7.02	4.02	3.00 3.00		 	000		3.0	1.39	C	SOFT	LIGHT	CONGLONERATE	පි	FINE-GRAINED SLUDGE. 2. 95-3. 00, BROKEN, Cg/ PEBSLES. (WEATHERED CONGLOMERATE)	
00-07-10	,				٠		00	^		10kg/cd	85 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 -		SAND			4.88-3.00, BROKEN CQI PEBBLES.	
00 00		10.07	7.02	6. 03 3. 05	0 17	FF	000		% 0:	0. 504 @		. S0FT	BROWN	CONGLOMERATE	3	3-6, REPLIENT-GRAINED SCUESC. 8-10, FINE-GRAINED SCUESC.	
00-67-10		13, 12	3.12	10.00 3.95	S (9)	8	00				01		CLASS.				
02-12-88	v	18 17	3 12	13.05.3.05	20 27	24.59	0 % X		12.0	8 53@ 2 7 2 4		is E	BOST Electrical	CONGLONERATE	පි පි	10-11,7, FINE GRAINED SLUDGE	
02-12-38	, ω	19.22	4.22	8	-	87.	5 22	2.55			15.	EKARO.	GRAY			MITH PROHINENT FRACTURES DIPPING 40- TO 80", PARTIALLY	
02-13-88		22.27	4.22	18.05 3.05	5 3,05	100.00	858		15.70	3.80@	17.07.	HED.	L ICHT GRAY TO	CONGLORERATE	je s	FILLED FRACTURES WITH BROWN MAI. 15. 25-15, 70, HODERATELY BROKEN W.25- 01P OPEN FRACTURES.	
02-13-88	-	22.27	2.27	- 8			ន រ			HAX.	20 02		GREENIS			18.2-18.8 , HIGHLY BROKEN.	
02-15-88	ω	25.32	2.27	33			582 76	2.43	15. 70	4.38@		. HED.	LICHT	CONGLONERATE	3	HODERATELY HASSIVE: PROMINENT CENENTING MATERIAL	
02-15-88	σ	28.37	3.37	8	35 1.95	100.00	ಹಷ			HAX.	25					(HATRIX)ARE CALCITE AND HAGNETITE.	
02-16-88	01	31.42	3.37	28.05 3.0	3.05	20 20	r=88 €		3.65			HED.	LIGHT	CONGLOHERATE	ŝ	SAHE AS 20 TO 25.	
88-91-20	11	34.47	4. 47	30.00 1.9	35 1.95	100.00	88			10kg/gd HAX.	· 0						
02-17-88	22	37.52	4.47	33 05 3.05	3.05	00 00	27.8		9.65	13.6 @		SLIGHTLY	SRAY W	H CONGLOHERATE	ਣ	HAIRIX IS IUFACEUUS AND CLAYEY(30 TO 40H). 33.55 TO 33.88 , BROKEN	
02-17-88	12	37.52	2.57	35.00 1.9	95 1.95	100.00	88			HAX.	35 TI 150	HED.	SINIS			31, 3-32, 0, BRUNER 31, 3-32, 0, 1000000000000000000000000000000000	
02-18-88	<u> </u>	40.57	2,57	38.05.3.05	3.05	100.00	388		¥.	14.4 @		SLIGHTLY HARD		GRAY H/ GRAY H/ BROWNISH CONGLOMERATE	3	33, 39-38, B. HOUFAHILL BROKEN 33, 39-38, 84 , HIGHLY BROKEN 39, 0-39, 84 , HIGHLY FRACTURED, DARRIGHT COACTION OF SHEET OF STEET	
02-18-88	1	43.67	3,63	40.00 1.9	35	90	¥ 2			¥¥.) :. °		SE			WITH BROWN STAINS.	
02-19-88	15	46.67	3.62	43.05 3.05	3.05	100.00	22.23		8. 8.	3.25@	٠./.	HED.	LIGHT	CONGLONERATE	ទ	AT 43.7H CALCITE FILLED FRACTURE DIPPING 76"	
02-19-88	51	48.67	1.67	45.00 1.9	95 1.95	100	£2 25			HAX.	45						
02-20-88	₹	49.72	1.67	48.05 3.0	05 3.05	100.00	સ્ટસ્ટ		47.50	5.65@ 7kg/dd		HARD.	LIGHT	CONGLONERATE	Ī	AI 45. 05 SLUCKRISIDED SHEAR FRACTURE PLANE 40 * DIP. 48. 6-46. 55, HIGHLY FRACTURED	
02-20-88		52, 77	2.73	50.04 1.99	1 96	88	38	2.66		HAX.	50 03		_			41. 3-41. 53, BROKEN 48, 3-48, 5 , BROKEN	

Results of Water Pressure Test for Test Hole Drilling

PROJECT : WANGAL CORE DRILLING

DATA: WATER PRESSURE TEST

Table D.7.5

1 1	100 noon1	0.5595463	0.9022556	1.1908500	1,3930734	1.1771900	0.9068825	1.4517960	·	0.5192771	0.6587982	0.8631853	0.6041270	0.6396860	1.0386200	1.3204819		11.876777	8. 6328034	12.588626		2.805501	3.3471596	3,8094792	3, 1956718	2.7544204		3.678000	6.012500	4.873000	4.361000	4.806500	5.939000	3.410000
X ,	SB/SBC	6.20205 ×10 ⁻⁰	1.00005 ×10 ⁻⁵	1.31994 ×10 ⁻⁵	1.54409 ×10 ⁻⁵	1.30480 ×10 ⁻⁵	1,00519 ×10 ⁻⁵	1 60918 ×10 ⁻⁵		2.10815 ×10 ⁻⁵	8.51345 ×10 ⁻⁶	8.57014 ×10-6	7.80695 ×10 ⁻⁶	8.26647 ×10 ⁻⁶	1.34218 ×10 ⁻⁵	1.70641 ×10 5		2,94402 ×10 ⁻⁴	1.11556 ×10 ⁻⁴	1.62679 ×10-4		3,62546 ×10 ⁻³	4.32543 ×10 ⁻³	4. 92287 ×10 ⁻⁵	4 12967 ×10 5	3.55945 ×10 ⁻³		4.753 ×10 ⁻⁵	7.779 ×10 ⁻⁵		5.635 ×10 ⁻⁵	8.211 ×10 ⁻⁵		4. 967 × 10 ~
(O)	可 可 可 可 可 可 可 可 可 可 可 可 可 可 可 可 可 可 可	0.185 ×10°	0.975 ×10 ³	0.218 ×10 ⁴	3,596 ×10 ³	2.155 ×10 ³	0.980 ×10 ³	0.480 ×10 ³		0.431 ×10 ³	1.535 ×10 ³	2.540 ×10 ³	3.220×10^3	2.450×10^3	2.420 ×10 ³	1.096 ×10 ³		12.530 ×10 ³	17.740 ×10 ³	13.281×10^3		3.57 ×10 ³	9.28 ×10 ³	16.276 ×10 ³	8.86 ×10 ³	3.505 × 10 ³		4.745 ×10 ³	16.795 ×10 ³	20,906 ×10 ³	25.25 ×10 ³		16.57 ×10 ³	
(b)	L/Alla	0, 185	0.975	0.218 ×10	3, 595	2, 155	0.980	0.480		0.431	1.535	2.540	3.220	2.450	2.420	1.096		12.530	17.740	13.281		3.570	9.280	16.276	8.86	3.505		4.745	16. 795	20, 906	25.250	20.620	16.57	4.40
H=A+B+C	<u>(g</u>	1, 322, 50	4, 322, 50	7, 322. 50	10, 322, 50	7, 322, 50	4, 322, 50	1, 322, 50		11, 860.00	4 660.00	7,660.00	10, 660, 00	7, 660, 00	4,680,00	1,880.00		2,110,00	4, 110, 00	2, 110.00		2,545.00	5,545.00	8,545.00	5, 545, 00	2,545.00		2, 580.00	5,580.00	8,580.00	11,580.00	8, 580, 00	5, 580.00	2, 580, 00
HEAD(B)	<u>8</u>	312.50	312.50	312.50	312.50	312.50	312.50	312.50		650.00	650.00	650.00	850,00	650.00	650.00	650.00		3, 100.00	1, 100, 00	1, 100.00	· .	1,535.00	1,535.00	1,535.00	1,535.00	1,535.00		1,570.00	1,570.00	1,570.00	1,570.00	1, 570:00	1, 570.00	1, 570, 00
HEAD(A)	(g	1,000.00	4,000.00	7,000,00	10 000 00	7 000 00	4,000.00	1,000.00		1,000.00	4, 000, 00	7,000.00	10,000.00	7,000,00	4,000.00	1,000.00		1,000.00	3,000.00	1,000.00		1,000.00	4,000.00	7,000.00	4,000.00	1,000,00	- 144 J	1,000.00	4,000.00	7,600.00	10,000.00	7,000.00	4,000.00	1,000.00
PRESSURE	(FS / SF)	1.0	4.0	7.0	10.0	7.0	4.0	0.		0:	0.4	7.0	10.0	7:0	6.0	1.0		0_	3.0	1.0		1.0	4.0	0.7	4.0	9.		1.0	6.0	2.0	10.0	7.0	4.0	-0-
	(B)	8 8	3.83	3.83	3.83	3.80	સ	ري 23		8	3.83	3.83	3.83	3.83	3.83	3.83		3.83	3 8	జ		د ج	3.83	38	8 8	3.83		జ	3,83	88	3.83	3.8	3.	3.83
.7	E E	250.00	250.00	250.00	250.00	250.00	250.00	250.00		900.00	500.00	500.00	500.00	500.00	500.00	500.00	•	200	200	260		200	286	200	200	200		258	200	200	88	28	200	280
DEPTH HAM		2.50-5.00	2, 50-5, 00	2.50-5.00	2.50-5.00	2.50-5.00	2.50-5.00	2.50-5.00		5.00-10.0	5.00-10.0	5,00-10,0	5.00-10.0	5.00-10.0	5.00-10.0	5.00-10.0		10.0-15.0	10.0-15.0	10, 0-15, 0		15.0-20.0	15.0-20.0	15.0-20.0	15.0-20.0	15.0-20.0		20.00-25.0	20.00-25.0	20.00-25.0	20,00-25.0	20.00-25.0	20.00-25.0	20,00-25.0
DATE		FEB. 9, 1988							FEB. 11, 1988								FEB. 13, 1988				FEB. 14. 1988						FEB. 15, 1988							

Results of Water Pressure Test for Test Hole Drilling

PROJECT: HANGAL CORE DRILLING
DATA: WATER PRESSURE TEST

Table D.7.5

(2/2) Lu	Lugeon Unit	4.810	6,707	5.231	4, 365	5.239	9.876	5.540		29,7316	13.6600	13.6380	30,7590		14.4539	12.5110	14, 4179	12, 5110		1.1757	2,4246	2.9181	3.2513	2.9144	2, 51239	1,22507		1.50780	4,55935	5,65878	4, 82223	1,7497
. ₩	385/ao	8.2159 ×10 ⁻³	8.667 ×10 ⁻³	6.780 ×10 ⁻³		6.8478 ×10 ⁻³		7.1647 ×10 ⁻⁵	1	3.8400 ×10 ⁻⁵	1.7650 ×10 ⁻⁴	1.7624 ×10 ⁻⁴	3.97495 ×10 ⁻⁴		1.8678 ×10 ⁻⁴	1,6194 ×10 ⁻⁴	1.8630 ×10 ⁻⁴	1.6135 ×10 ⁻⁴		1,5034 ×10 ⁻⁵	9.5350 ×10 ⁻³	3.7710 ×10 ⁻⁵	4.2016 ×10 ⁻⁵	3,7661 ×10 ⁻³	3.24669 ×10 ⁻⁵	1.58313 ×10 ⁻⁵		2.0777 ×10 ⁻³	5.8919 ×10 ⁻³	7.3126 ×10 ⁻⁵	6.23163 ×10 ⁻⁵	2.26318 ×10 ⁻⁵
(8)	ai / jia	4.75 ×10°	16.68 ×10	20.86 ×10 ⁴	26.70 ×10 ³	21.13 ×10 ³	17.105 ×10 ³	5.475 ×10 ³		29.36 ×10 ³	33.98 ×10 ³	33.925 ×10 ³	30.370 ×10 ³		32.16 ×10 ³	45.60 ×10 ³	46.51 ×10 ³	32.80 ×10 ³		2.86 ×10 ³	9.535 ×10 ³	15.853 ×10 ³	22.54 ×10 ³	15.815 ×10 ³	9,880 ×10 ³	2.980×10^{3}		4.530 ×10 ³	19.685 ×10 ³	32.920 × 10 ³	20.820 ×10 ³	4.930 ×10 ³
(6)	LAin	4,750	16,685	20.86	26. 70	21.13	17, 105	5.475	·	29.36	33. 38.	33.925	30, 375		32, 160	46.605	46, 510	32.800		2.860	9.535	15, 853	22.540	15.815	9.880	2.980		4.530	19,685	32.920	20.820	4.930
H=A+B+C	(B)	1,975.00	4, 975.00	7, 975. 00	10, 975, 00	7, 975.60	4, 975, 00	1,975,00		1,975.00	4,975.00	4,975.00	1, 975, 00		4,450.00	7,450.00	7,450.00	4,450.00		4, 865.00	7,865.00	10,853.00	13,865.00	10,853.00	7,865.00	4,865.00		5, 635.00	8, 635.00	11,635.00	8, 635.00	5, 635. 00
S. H. L. (8)	(15)	965.00	965.00	965.00	965.00	965.00	965.00	865.88		965.00	965. SS	965.00	365.00		3,440.00	3,440.00	3,440.00	3, 440, 00	: -	3,855.00	3,855.00	3, 855.00	3,855.00	3, 855, 00	3, 855.00	3,855.00	·	4, 625.00	4, 625.00	4,625.00	4,625,00	4, 625.00
HEAD(A)	(<u>p</u>	1,000.00	4,000,00	7,000.00	10,000.00	2,000.00	4,000.00	1,000.00		1,000.00	4,000.00	4,000.00	1,000.00		1,000,00	4, 000, 00	4,000.00	1,000.00		1, 999. 90	4,000.90	7,000.00	10,000.00	7,000.00	4,000.00	1,000,00		1,000.00	4,000.00	2,000.00	4,000.00	1,000.00
PRESSURE	(kg/cd)	1.0	4.0	7.0	10.0	7.0	4.0	0,		1.0	4.0	4.0	1.0		1.0	0	4.0	1.0		1.0	4.0	7.0	10.0	7.0	4.0	1.0		1.0	4.0	7.0	4.0	1.0
r	(B)	3.83	3.83	3.8	3.83	8	3.83	ري 28		3.83	3.8	8 8	88.		3.83	8. 8.	3.83	3.83		3.83	8. 83.	د. ع	3.83	3.83	3.8	3.83		3.83	3.83		3.83	3.83
1	(cm)	200	200	200	200	200	200	200		200	200	200	2005		200	200	200	200	1	200	200	200	200	200	200	88		2005	200	8	200	200
DEPTH M=H	9	25.0-30.0	25.0-30.0	25:0-30.0	25.0-30.0	25.0-30.0	25.0-30.0	25.0-30.0		30.0-35.0	30.0-35.0	30.0-35.0	30.0-36.0		35.0-40.0	35.0-40.0	35.0-40.0	35.0-40.0		40.0-45.0	40.0-45.0	40.0-45.0	40.0-45.0	40.0-45.0	40.0-45.0	40.0-45.0		45.0-50.0	45.0-50.0	45, 0-50, 0	45.0-50.0	45.0-50.0
DATE		FEB. 17, 1988				14		*****	FEB. 18, 1988					FEB. 19. 1988					FEB. 19, 1988				:				FEB. 20, 1988		-			

Table D.7.6 (1) Results of Rock Test of Drilling Core Sample (S-1)

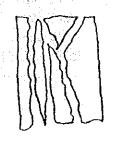
	SUBMITTED: CORE SAMP	1 [6				
A. SPECI		LEO	, 2" φ	NOMINA	L DIAMETER	· · · · · · · · · · · · · · · · · · ·
	FIC GRAVITY TEST TEST METHOD: VOLLY BALANDOTE OF TEST: FEB, 27,		SAMPLE NO.: REFERENCE LO		S−1 @ DEPTH 13.	60 - 13, 75
Manuscript Control of the Control of	TRIAL WEIGHT IN AIR; WA WEIGHT LOSS IN WATER; WL APPARENT S.G. = WA/WL HEAN SPECIFIC GRAVITY	1 4.2 1.77 2.373 8. G.	2.6 0.9 2.7 = 2.5	62 66 729	3 1.76 0.69 2.551	
B. ABSORI	PTION TEST SAMPLE NO. S-	<u>1</u>	REFERENCE LO	CATION:	@ DEPTH 13.	60 - 13.75
	I R I A L CONTAINER + SATURATED SAMPLE CONTAINER + DRY SAMPLE, Wd. CONTAINER, We ABSORBED WATER, W1 = Ww = Wc DRY WEIGHT, W2 = Wd = We % ABSORPTION = W1 / W2	ry	1 10. 90 10. 80 6. 75 0. 10 4. 05 2. 469		2 9.55 9.45 5.85 0.10 3.60 2.778	
L C. UNCONI	AVERAGE ABSORPTION FINED COMPRESSION TEST DATE OF TEST:	FEB, 27, 1988		. 6235 .%	SKETCH AT FAILU	RE
	LOAD PACER, RPM: RANGE SELECTOR: SAMPLE DIAMETOR, CM: SAMPLE AREA, CM2 MAXIMUM LOAD, Kg: UNCONFINED COMPRESSIVE	0.5 10 4.75 17.72 2230				

Table D.7.6 (2) Results of Rock Test of Drilling Core Sample (S-2)

MATERIALS	DESCRIPTION:	CONC	SLOMERATE				
SPECIMEN	SUBMITTED:	CORE SAMPLES	3	, 2"	ϕ NOMINAL	DIAMETER	
		_		t s	* .		
A. SPECI	FIC GRAVITY TE						
		VOLLY BALANCE				<u>S-2</u>	4 or 04 74
	DATE OF TEST:	FEB, 27, 19	388	KEFEKENCE I	LUCATION: _	@ DEPTH 2	$\frac{1.35 - 21.71}{}$
:	TOI	A 1	1		2	3	_
	TRI		4.3		. 62	1.96	-
	WEIGHT IN AIR				·····	0, 79	
	WEIGHT LOSS II		1. 76 2. 443		. 10	2.481	
	APPARENT S.G. MEAN SPECIFIC		S. G.		. 435	2.401	
-	TICHI OFCOTI TO	GIMATLI	0. u.		. 400		
E ARSOR	PTION TEST						
D. Noboli	SAMPLE NO.	S-2		REFERENCE	LOCATION:	@ DEPTH 2	1.35 -21.71
		<u></u>					
	T R	IAL		1		2	
	CONTAINER + :	SATURATED SAMPLE,	Wwet	10.85		12.55	
		DRY SAMPLE, Wdry		10.75		12.40	
	CONTAINER,			6,60		6. 75	
·		}, W1 = WW = Wd		0.10		0.15	
	DRY WEIGHT, W	2 = Wd = We		4. 15		5.65	
	% ABSORPTION	= W1 / W2		2.41		2.65	
	AVERAGE AI	SORPTION		11 - 12 de 1	2.53 %		
'							
C. UNCON	FINED COMPRESS	ION TEST					2.45
			.*		Ş	SKETCH AT FAI	LURE
	DATE OF TEST:	FEE	3, 27, 1988				
	LOAD PACER, RPI	ł:	0.5			الالكالما	 .
•	RANGE SELECTOR	}:	10 .			1 37 301	{
	SAMPLE DIAMETO	OR, CM:	4.7				
	SAMPLE AREA, CI	12	17.349	· · · · · · · · · · · · · · · · · · ·		-1-1-1/1/1	1.1
	MAXIMUM LOAD,	(g:	2180			1 1/1	
	UNCONFINED COM	IPRESSIVE				1-16-14	1_0

STRENGTH, Kg/CH2=

Table D.7.6 (3) Results of Rock Test of Drilling Core Sample (S-3)


MATERIALS DESCRIPTION:	CONG	LOMERATE			
SPECIMEN SUBMITTED:	CORE SAMPLES		2" \$ NOMINA	AL DIAMETER	
A. SPECIFIC GRAVITY TEST TEST METHOD:	VOLLY BALANCE	NETHOD SAI	1PLE NO. :	S-3 (0&@	
DATE OF TEST:			FERENCE LOCATION:	@ DEPTH 49.(80
TRIA WEIGHT IN AIR; WEIGHT LOSS IN 1 APPARENT S.G. =	WA WATER; WL WA/WL	1 8, 52 3, 30 2, 582 S. G. =	2 0.91 0.36 2.578 2.664	3 0.85 0.30 2.833	
B. ABSORPTION TEST SAMPLE NO.	S-3		FERENCE LOCATION:	@ DEPTH 49.6	30

	11	
TRIAL	, 1	2
CONTAINER + SATURATED SAMPLE, Wwet	11.65	10.60
CONTAINER + DRY SAMPLE, Wdry	11.50	10.45
CONTAINER, We	6.80	6. 55
ABSORBED WATER, W1 = WW = Wd	0.15	0.15
DRY WEIGHT, W2 = Wd = We	4.30	3, 90
% ABSORPTION = W1 / W2	3.19	3,84
AVERAGE ABSORPTION	3, 519	5%

C. UNCONFINED COMPRESSION TEST

DATE OF TEST:	FEB, 27,	1988
LOAD PACER, RPH:	0.5	e de la companya de
RANGE SELECTOR:	10.0	
SAMPLE DIAMETOR, CM:	1 4.7	② 4.7
SAMPLE AREA, CH2	17.349	17.349
MAXIMUM LOAD, Kg:	2740	2540
UNCONFINED COMPRESSIVE		
STRENGTH Ka/CH2=	146 40 -	- 157.93

SKETCH AT FAILURE
TYPICAL FAILURE
FOR SAMPLE ①&②

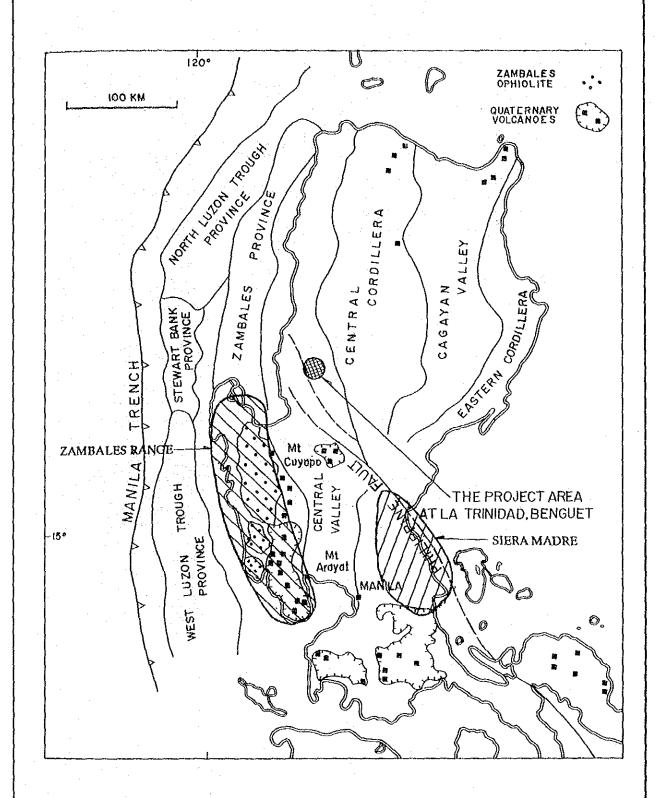
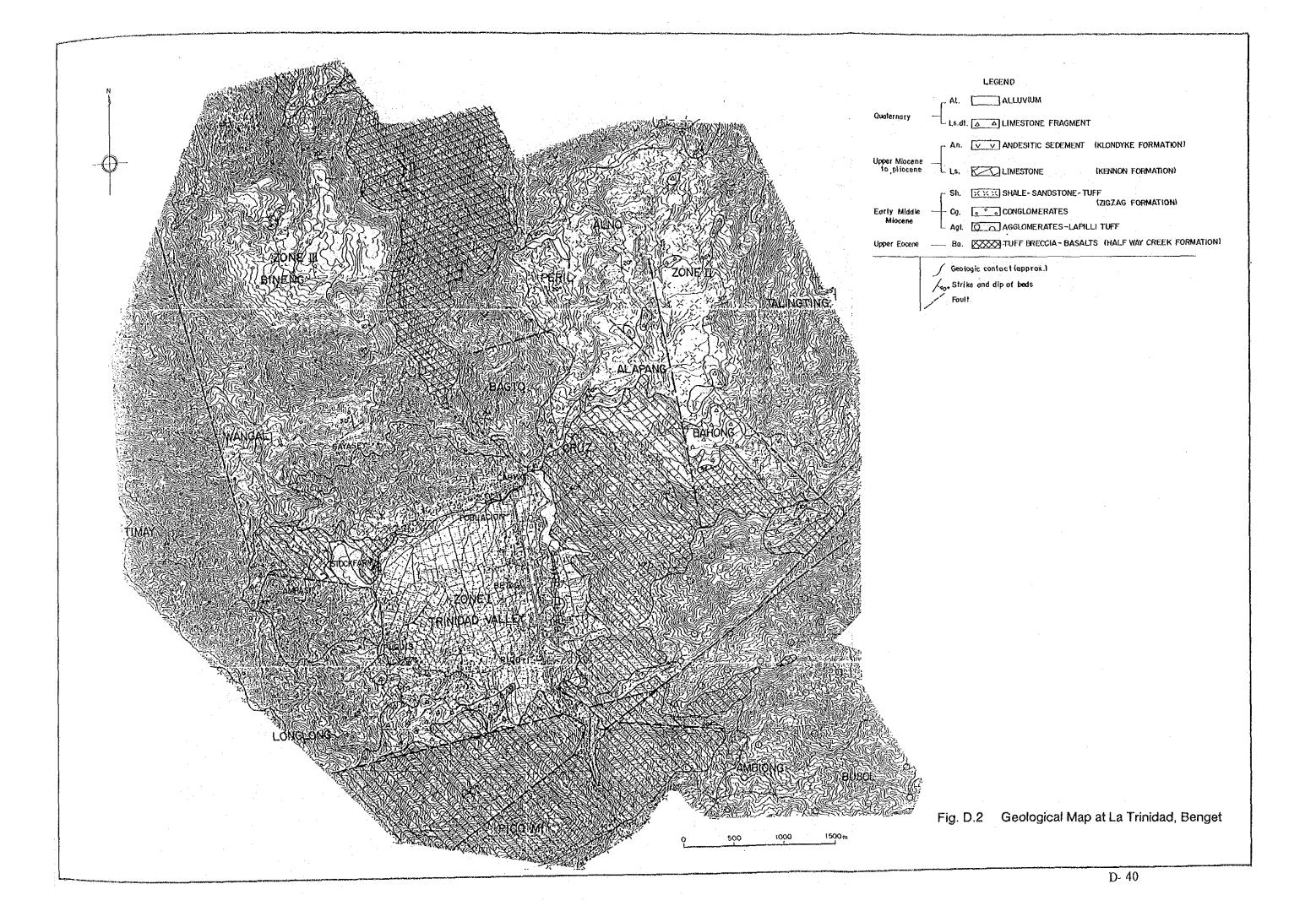
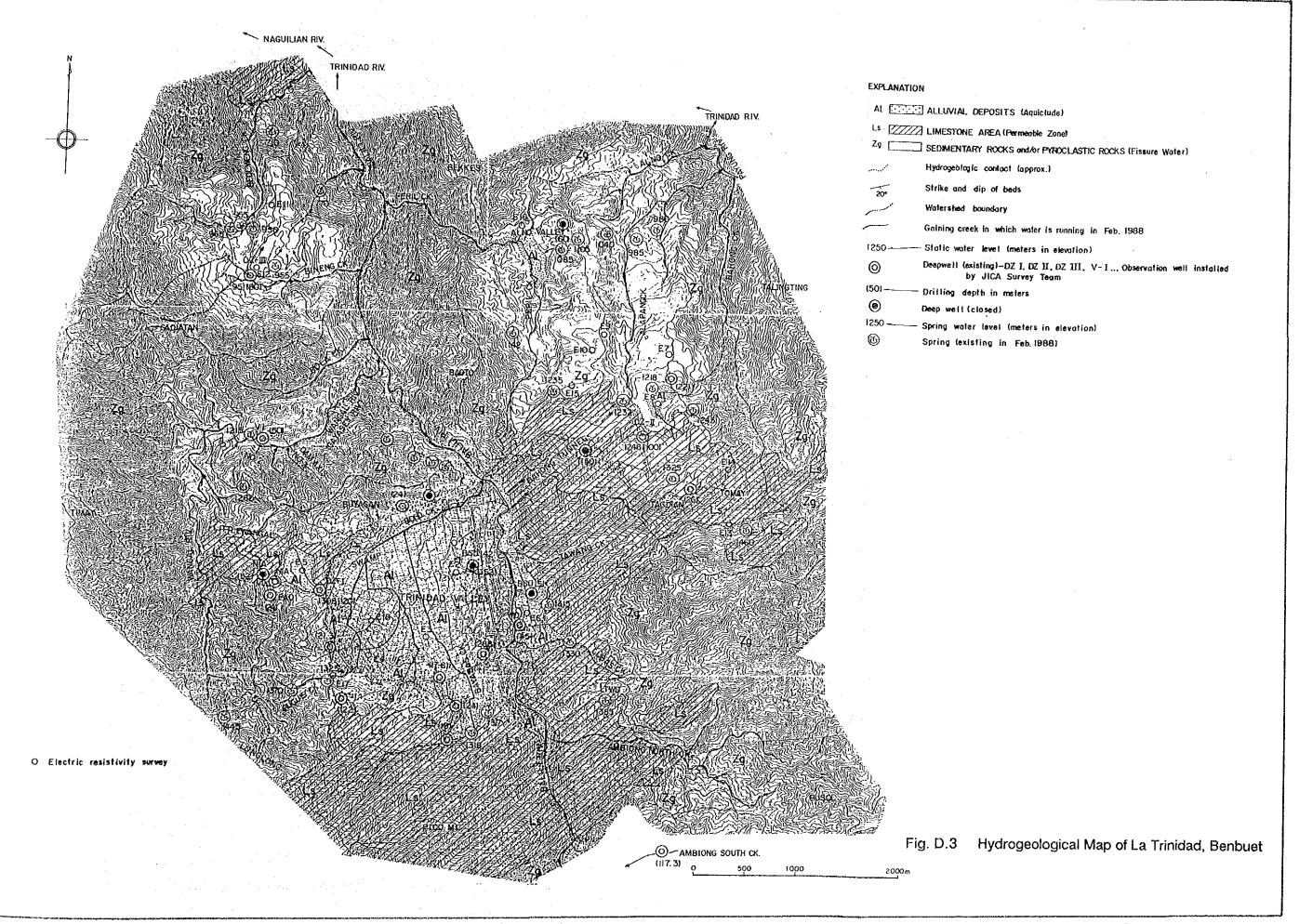




Fig. D.1 Regional Tectonic Setting

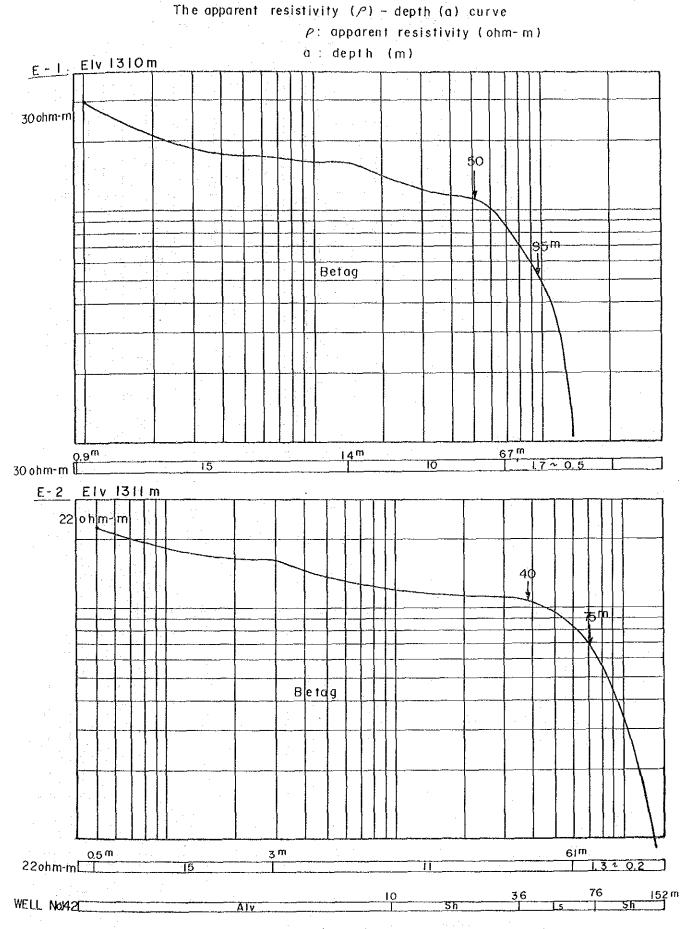
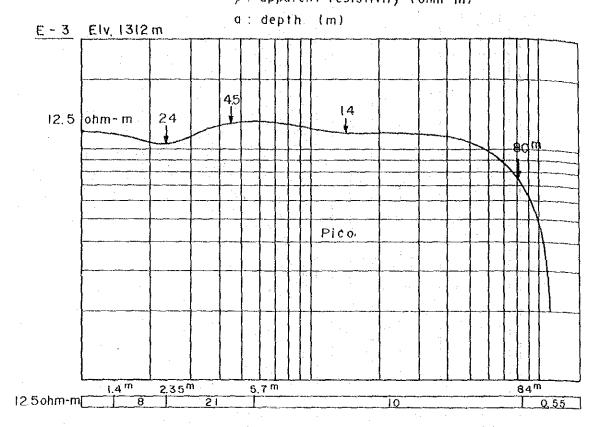



Fig.D.4 Results of the Electrical Resistivity Survey (1/9)

The apparent resistivity (P) - depth (a) curve P: apparent resistivity (ohm-m)

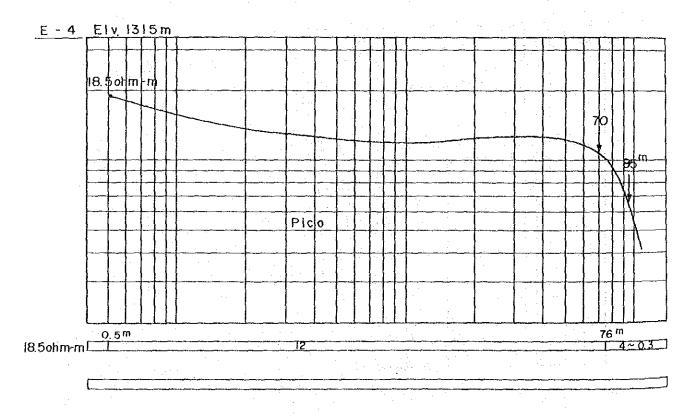


Fig.D.4 Results of the Electrical Resistivity Survey (2/9)

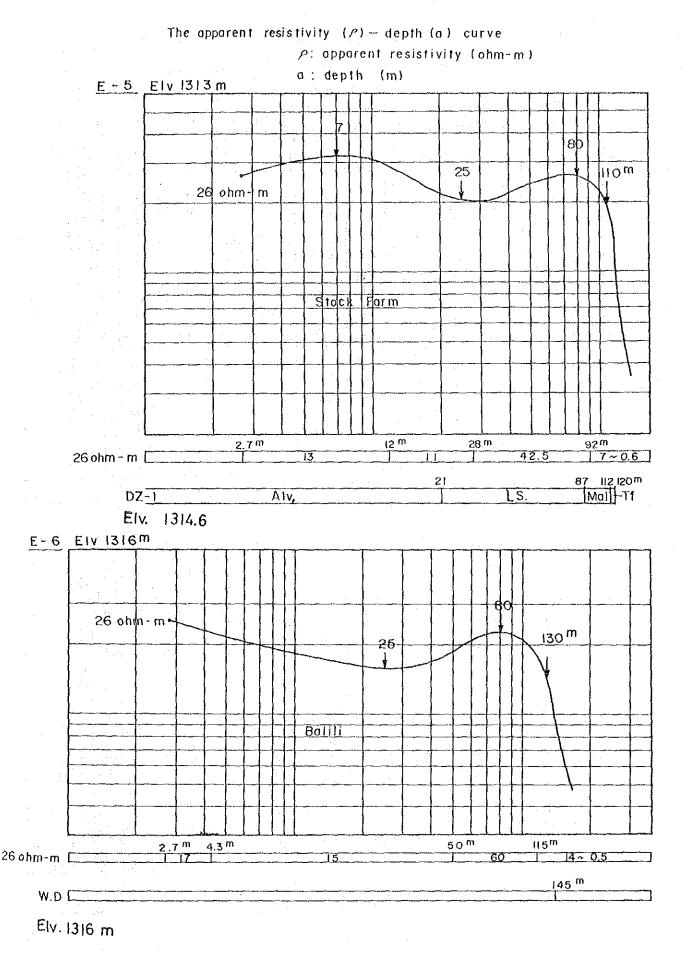
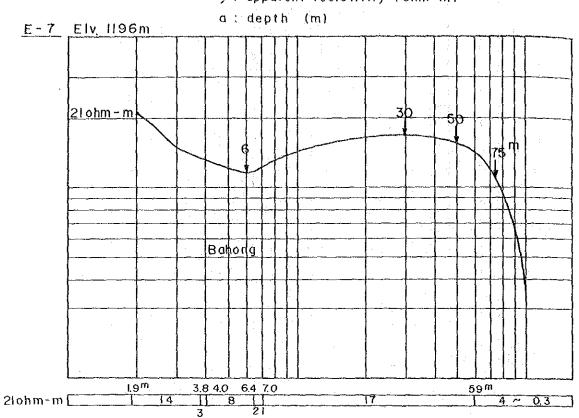



Fig.D.4 Results of the Electrical Resistivity Survey (3/9)

The apparent resistivity (P) - depth (a) curve P: apparent resistivity (ohm-m)

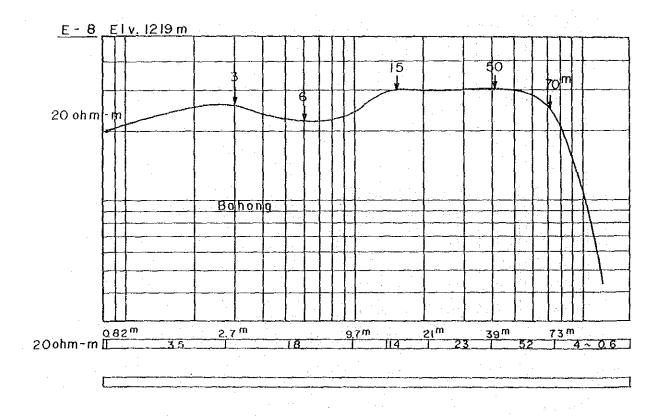


Fig. D. 4 Results of the Electrical Resistivity Survey (4/9)