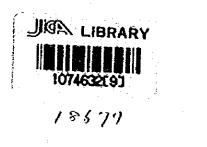
REPORT OF FOREST INVENTORY ON PLANTATION OF HARD-WOOD IN VITI LEVE, FIJI

March 1981 -

JAPAN INTERNATIONAL COOPERATION AGENCY
(J.I.C.A.)

F D D C R (3)


•

.

•

医耳耳样性 医二氏性氏病 医自由性 医克朗氏氏病 國籍主義 医马克雷氏管 的复数人名英克里人的复数

ENI

REPORT OF FOREST INVENTORY ON PLANTATION OF HARD-WOOD IN VITI LEVE, FIJI

March 1981

JAPAN INTERNATIONAL COOPERATION AGENCY
(J.I.C.A.)

F D D C R (3) 81 - 11

1. 1.

JAPAN INTERNATIONAL COOPERATION MAGAL

15 . 1.

PREFACE

It is with great pleasure that I present this report entitled Report of Forest Inventory on Plantation of Hard-wood in Viti Leve, Fiji to the Government of Fiji.

This report embodies the result of a forest inventory survey which was carried out in Nukurua area, from 6th September to 20th October, 1980 by the Japanese survey team commissioned by the Japan International Cooperation Agency following the request of the Government of Fiji.

The survey team, headed by Mr. Tomohisa Fukumori, had a series of close discussions with the officials concerned of the Government of Fiji and conducted a wide scope of field survey and data analysis.

I sincerely hope that this report will be useful as a basic reference for development of the region.

I am particularly pleased to express my appreciation to the officials concerned of the Government of Fiji for their close cooperation extended to the Japanese team.

March, 1981

Kerruhe Arsta

Keisuke Arita President

Japan International Cooperation Agency

Mahogany planted year 1966 (14 years old)

Cadamba planted year 1971 (9 years old)

E. deglupta planted year 1964 (16 years old)

Maesopsis planted year 1974 (6 years old)

Cordia , planted year 1975 (5 years old)

(aubula planted year 1968 (12 years old)

CONTENTS

1.	Survey outline	
	1.1 Purpose	1
	1.2. Outline of the survey area	1
	1.3 Survey team, and associates in Fiji	3
	1.4 Summary of planting species of hard-wood in the survey	3
2.	Survey of hard-wood recovered	Ĭ
.]-	2.1 Selection of survey method	9
	2.2 Survey procedure	9
	2.3 Sample plot survey	9
,	2.4 Making data for interpretation	3
	2.4.1 Making stereogrammes	7
	2.4.2 Making stand volume table	. 7
	2.5 Estimation of volume according to forest type and the total stand volume	
	2.6 Making the Forest Inventory Note	
2		
3.	Adjustment for time discrepancy	_
4.	Others	55

1. SURVEY OUTLINE

1.1 Purpose

The purpose of the survey was to ascertain, by aerial photograph analysis and field survey, the distribution and resources of hard-wood plantations in Nukurua area, Viti Levu island, Fiji.

1.2 Outline of the survey area

The survey areas are forestry land leased to the Fiji government in Nukurua on the Fijian island of Viti Levu. (See Figures 1-1 and 1-2.)

(i) Location and extent.

Viti Levu is located between latitude South 18° and longitude East 178°. The area is about 13,000 km² and this is 70% of the total area of the Piji islands. The survey area, Nukurua, is located in the south east part of Viti Levu island and it is about 8,000 ha.

(ii) Topography and geology

The majority of the main islands of Fiji are almost entirely of an ancient volcanic nature, with occasional Cretaccous and Tertiary sedimentary deposits.

Viti Levu island is also of a volcanic nature, and in the centre there is a range of moun tains of about 1,000 m altitude running north-south. By this watershed,, it is divided into a wet region in the east and a dry region in the west.

The Nukurua area is located near the coast and its topography is gently undulating. To the south, Viti Levu's largest river, the River Rewa, runs slowly, forming an alluvial plain.

(iii) Climate

The climate is a tropical maritime climate, with high temperature but modified by maritime influence. The predominant wind is the trade wind which tends to be easterly throughout the year; therefore extremely hot weather is not experienced. Hurricanes occur in the period between November and April, sometimes causing considerable damage, but in the long term strong winds is few.

With regard to precipitation, according to the measured value in 1972, it was 4,051 mm at Suva, which is in the wet region, with the largest amount occurring from January to April and from October to December. Even in the month of least precipitation, it was 114 mm.

On the other hand, at Nadi, which is in the dry region, it was only 1.830mm with the largest amount occurring from Octover to March, while in the period April to September the amounts were very low. In the dry region the dry and wet seasons were clearly separated.

Mountains in the big islands were covered with mist and cloud almost permanently and its annual precipitation reached over 7,620 mm.

The Nukurua area belongs to the wel region and its annual precipitation is generally speaking higher than the Suva area.

Fig. 1-1 Location map of FIH

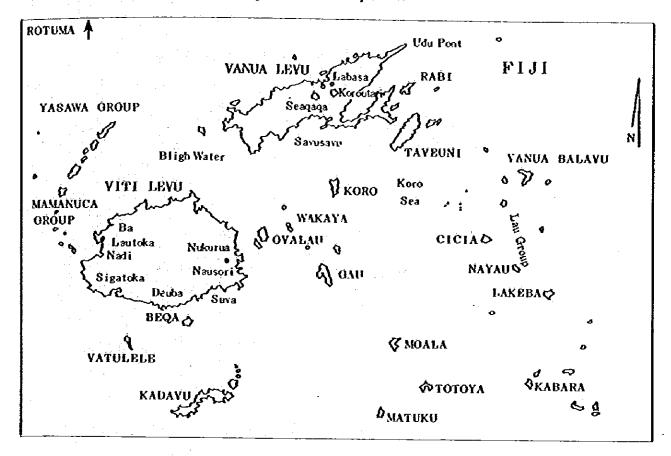
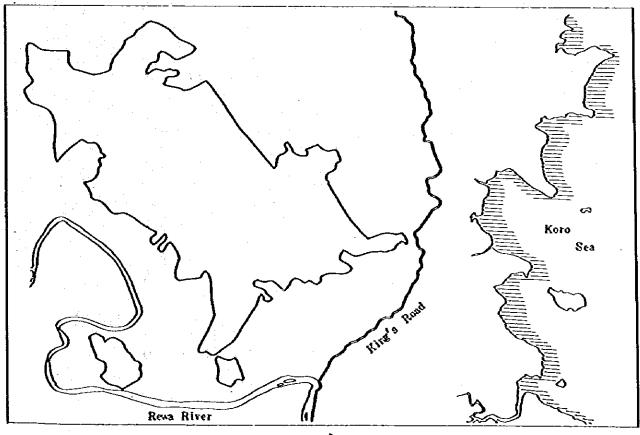



Fig. 1-2 Location map of NUKURUA

1.3 Survey team, and associates in Fiji

The hard-wood survey team for the Nukurua area consisted of the following members: Overall group

Leader

Tomohisa Fukumori, Adviser, Japan Forestry Technical Association.

Hiroshi Watanabe, Technical Department Manager,

Japan Porestry Technical Association.

Survey group

Leader Kazuo Shishikura

Deputy Manager, Planning Department,

Japan Forestry Technical Association.

Kuniyasu Wakamori Chief Technical Expert,

Japan Forestry Technical Association.

Michiharu Kondo

Technical Expert,

Japan Porestry Technical Association.

Ryoichi Sato

Engineer, Japan Forestry Technical Association.

Associates in Fiji were as follows:

The Forestry Agency

Conservator of Forests.

G.H.D. Williams.

Deputy Conservator of Forest.

K.T. Yabaki

The Forestry Agency, Senior Assistant Conservator of Forests

A. Oram.

Administration Manager

J.T. Usumaki

1.4 Summary of planting species of broad leaved trees in the survey

(i) Planting species

Mahogany (Swietenia macrophylla) is the main planting species, and has been planted abundantly in this area. Because of the few technical problems involved in planting this species, and because of the high quality timber produced at the cutting period, afforestation of this species was begun in 1961, reaching 4,900 ha, in 1971.

However, in 1970, damage from Ambrosia beetles was found to be widespread in planted mahogany trees, so that afforestation of mahogany was held back from 1972.

Along with the planting of mahogany, test plantations were made in order to select other planting species. Especially because of the Ambrosia beetle damage and the subsequent hodling back of mahogany planting, the need to select alternative planting species rapidly became great. Test plantations for nearly 200 species were carried out, from which six species including mahongany were chosen as possible future planting species. From 1972, afforestation is being carried out using these six species. The six species are the subjects of this survey.

Common name

Botanical name

Mahogany

Swietenia macrophylla

Cadamba Deglupta

Anthocephaus Cadamba Eucalyptus deglupta

Maesopsis Cordia

Maesopsis eminii Cordia alliodora

Kauvula

Endospérmum macrophyllum

Of the above, only Kauvula is of local origin, the other five being from abroad.

(ii) Regeneration and tending

With regard to the method of afforestation, in the majority of cases this is by line planting. This is a method in which, after extracting the required species from the natural forest, lines are dug 2-3 m wide, speced about 10 m (30 36ft) apart, and planting done in lines. At the same time, large unnecessary trees left in the forest are girdled using arsenic, and trees which would have a detrimental effect on the planted trees are cut down. The planting period is from November to April, which is the rainy season. Girdling should be carried out in the six months prior to planting, the most suitable period still being under consideration; generally, though a time three months prior to planting appears to be the most effective. With regard to brush cutting, this is required about four times a year in the lines. Vine cutting in the line is also an important opera tion. Because the Nukurua is in the wet region, the planting quantities are large with the result that the main problem concerns competition between the planted trees and other vegetation. Therefore, in order to minimise the competition period, planting species with rapid growth in its early stages is considered important. This is the reason that confers, etc., with their slow growth in the early stages, have not become major planting species in the wet region. This condition of fast growth in the early stage was said to be the prime factor in the selection of presently planting species.

(iii) Characteristics of quality

It is difficult to mention clearly about qualities of the 6 species, because the species in Nukurua have not yielded. So qualities of similar species which arrives on the market are mentioned.

(1) Mahogany.

Swietenia macrophylla KING.

(Meliaceae).

In addition to the above mentioned species, another mahogany is S. mahagoni IACQ which used to have a good reputation for high quality. However, supplies of S. mahagoni are now said to be exhausted, and it is seldom found on the market. Because of the high value timbers of the mahogany group, plantations have been attempted in tropical areas all over the world. However, of the species, in South East Asia only S. macrophylla plantations are well known, and plantations of S. mahagoni are not well known. Therefore, to obtain the latter in the future will be increasingly difficult.

When naming high value timber species known world-wide, mahogany always appears with teak, walnut and rosewood. Also, as with Philippine mahogany (of the Lauan family), names are often used to artificially boost a timber's value which indicates the status of mahogany.

The species originated in tropical America and it is distributed over the continent in Mexico, Honduras, Guatemala, Nicaragua, Costa Rica, Panama, Colombia, Venezuela, Peru, Bolivia and Brazil. On the other hand, the distribution of S. mahagoni is limited to the West Indian islands of Cuba, Jamaica, Bahama, Puerto Rico, Dominica and Haiti. In comparison with S. mahagoni (air dried specific gravity 0.77~(0.77-0.85)), S. macrophylla is lighter in colour and light in weight. Therefore, S. mahagoni, with its dark colour and greater weight may be considered superior.

The colour of the corestock is pink or dark red, with a golden gloss. The grain is a shallow cross grain, while the texture is rather rough. Sometimes, mahoganys occur having irregular grain, which produces beautiful patterns. The line of the vessels are dark in colour and produce distinctive dark stripes visible in longitudinal

sections. The air dried specific gravity is 0.53 (natural stand) and 0.53 (planted stand), and the bulk density is 450 kg/cm³ (natural stand) and 420 kg/cm³ (planted stand). A shrinkage percentage of up to 12% may be measured from fresh timber, including a tangential component of 2.5% and a radial component of 1.6%. With regard to strength, the following values have been obtained.

Produ	cing district	Specific Gravity	Water content (%)	Bending strength (kg/cm²)	Bending Young factor (1.000kg/cm²)	Compression slon strength (kg/cm²)
	Mexico	0.50	10.5	868	109	503
Natural	Nicaragua	0.53	10.7	840	106	_
Tree	Peru	0.59	12.0	868	108	499
	Honduras	0.50	12.0	805	96	432
	Brazil	0.53	11.9	811	99	453
Planted	Honduras	0.50	13.4	722	81	397
Tree	Fiji	0.52	12.0	720	92	439

This wood is easy to dry and bears lumbering and mechanical processing well. It is also a good wood for single plank cutting and drying. The corestock has poor durability when in contact with the ground. The albumum is vulnerable to damage by Powder post beetles (Lyctus, brunneus, Stephens). Those presently growing in Fiji are not much affected by Ambrosia beetles, so in the future, a fairly large quantity of middle sized timber will be produced.

Its uses are, as already mentioned, various, but, because of its beautiful appearance, stability of size, and ease of processing, it is widely used as a high-class material.

(2) Čadamba

Labula

Kalampayan

Kaatoan banghal

Anthocephalus cadamba (ROXB.) MIG.

(=A. chinensis (LAMK.) RICH.)

This is distributed over an area stretching from South East Asia to New Guinea. In the Philippines it is known as Kaatoan banghal, and is grown mainly for pulp timber. It is also one of the typical planting species in tropical Asia. When the second growth has formed, it is a quick growing species, for a pioneer species. Since being imported from Papua New Guinea under the name of Labula, the range of uses for light coloured and light weight timber has widened.

The colour of the corestock is a yellowish white, or a dull light yellow. The grain is a cross grain, and the texture is rough. The air dried specific gravity (water content 12%) is 0.44 (Lubula) and the bulk density is 420kg/m³ (Kalampayan) and 390 kg/m³ (Labula), and the shrinkage may be up to 15% including a tantential component of 3.9% and a radial component of 1.0%. With regard to

strength (air dried specific gravity 0.44), the bending strength is measured at 659 kg/cm², the Bending Young factor is 87 1000kg/cm², and the compression strength is 347 kg/cm². It is easy to process. Durability is poor when in contact with the ground, and is vulnerable to damage by blue stain fungus.

Some uses require light colour, light weight wood. Generally, this wood is used as lumber, where it will not be visible. Its applications include matchsticks, pulp, plywood, light construction and crates, etc.

(3) Deglupta

Kamerere, Kamarere

Bagras

Éucalyptus deglupta BLUME

Myrtaceae

This species is distributed in New Guinea, Sulawesi and the Philippines. It is known as Bagras in the Philippines, and as Kamerere in Papua New Guinea Recently it has been planted in the Philippines (Mindanao) and Papua New Guinea for pulp timber. Because it has rapid growth in its early stages, it is considered suitable for afforestation in which the major purpose is to obtain large quantities of wood for lumber at the expense of quality. When this species is used for lumber, unless high technology and experience are available, depending on the use, it is difficult to obtain high quality products, even if the wood has been naturally grown. Furthermore, in the case of planted trees, because of its low specific gravity and because growth stress faults or drying faults become more apparent than in naturally grown wood, some fairly extensive research may be required into the technical developments needed in order to make good use of it as lumber. The colour of the corestock is, in the case of naturally gown wood, dark red, while in the case of planted trees, no dark coloured corestock has been found, due to young tree age, although having relatively large diameters. The texture is somewhat rough, and has a cross grain. Values for air dried specific gravity (water content 12%) are 0.60 (Kamerere, naturally grown), 0.45 (Kamerere, planted), and 0.40 (0.34 - 0.47 Fiji product). Bulk density is 50000 kg/cm^3 (Kamerere, naturally grown), 400 kg/m3 (Kamerere, planted), and 320 kg/m3 (270 - 384 kg.m3 Fiji product). Shrinkage is up to 12% from fresh timber, including a tangential component of 2.9-11.1% and a radial component of 1.1-3.6%. With regard to strength (air dried specific gravity 0.41), the bending strength is 583 kg/cm², the Bending Young factor is 91 1000 kg/cm², and the compression strength is 344 kg.cm² (planted trees). Durability is low when in contact with the ground, and it is vulnerable to damage by Powder post beetles.

Its applications, in the case of timber from naturally grown trees, include furniture, floor boards, boat building, construction and cabinet-making. In the case of timber from planted trees, it is likely that applications are limited.

(4) Maesopsis

Musizi

Maesopsis eminii ENGL.

Rhamnaceae

This is a species of African origin, and is produced in Liberia, Congo, Tanzania, Kenya, Cameroon, Guinea. It is known as an African market timber, but it is not considered to have any special characteristics.

The corestock is a dark golden colour, and as time passes it becomes darker. It has a golden gloss. The texture is rough, and it has a cross-grain. The air dried specific gravity (water content 12%) is 0.48 and shrinkage is up to 12% from fresh timber, including a tangential component of 4.2%, and a radial component of 2.6%. With regard to strength (water content 12%), the bending strength is 728 kg/cm², the Bending Young factor is 100 100 kg/cm² and the compression strength is 449 kg/cm².

When logs are cut and stored there is a tendency for splitting to occur. Lumbering and mechanical processing is easy. Durability is poor when in contact with the ground.

In Africa it is used for construction, furniture and cabinet making. Its finish is not considered good quality, so it is not used when a high quality finish is required.

(5) Cordia

Laurel

Cordia alliodora (R. & P.) CHAM

Boraginaceae

This species originated in the West Indies, and is distributed from Mexico across the whole of South America. When travelling around Papua New Guinea, carvings of dolphins and sharks in wood can been seen; the wood comes from the nearby Solomon Islands, and most of this wood is of the same type. In Africa, carvings can be found in wood of the same type. This group is divided into two, one being dark in colour and heavy, the other being light in colour and weight, and this species falls within the latter.

The colour of the corestock is dark gold with a dark greenish appearance. Generally it has dark stripes. Its surface is similar to that of Japanese Chishanoki. The colour and specific gravity varies according to tree age and growing conditions, but generally with older and more slow growing trees a darker colour and heavier harder wood can be expected. The air dried specific gravity is 0.40-0.70. The texture is rather rough, with a cross or through grain. Processing is easy, and finish is good.

It is used for construction, furniture, cabinet making, turnery plywood, interior decoration and carring. On the market, it is given the name Siera Walnut, so its use can be expected where a so-called walnut-look interior is required.

(6) Kauvula

Fijian basswood

Endospermum macrophyllum (MUELL, ARG.) PAX et K. HOFFM.

Euphorbiaceae

This type of species is a pioneer species often found on land after forest clearance in South East Asia. Because it has good growth in the early stage, it is often used as a kind of planting species, where pulp timber is the aim. It is often sold on the Japanese market under the name of Gubas (Philippines) or New Guinea basswood (Papua New Guinea). However it is not related to the true basswood group.

In forests, often a gigantic Kauvula tree can be found, which may indicate that the area is a secondary stand.

The corestock is a light yellowish white. It has a through grain, or a light cross grain. The texture is rather rough. The air dried specific gravity (water content 12%) is 0.48 (0.40 - 0.54) and the bulk density is 432 kg/m³. With regard to strength (air dried specific gravity 0.51), the bending strength is 790 kg/cm², the Bending Young factor is $110^{100} \, \text{kg/cm}^2$, and the compression strength is 442 kg/cm².

Artificial drying is easy, presenting no particular problems. Lumbering and mechanical processing is easy, and the finish is good. Piercing is easy and turnery is good. Durability is low when in contact with the ground, and it is vulnerable to damage by Powder post Beetles. As a plywood, finish is good, and a yield percentage is also good. Its uses include moulding, interior construction, furniture,

cabinet making, turnery, floorboards, light construction, matchsticks, crates, boxes and banana crates. The range of application is very wide. In Piji, it is in very wide use.

Recent production has exceeded 19.6% of the total log production. This indicates that it is an important species.

2. SURVEY OF HARD WOOD RESOURCES

2.1 Selection of survey method

The following volume survey methods were considered:

- (1) Method of every tree measurement.
- (2) Method of sample survey.
- (3) Method of standard sample plot.

The method of every tree measurement, (1) is a method in which every tree is measured, as the name indicates, and, although it has the greatest accuracy, in a survey covering several thousand hectares it represents both huge expense and effort, and is almost impossible to carry out. Therefore, in a wide survey area, methods (2) and (3) in which sample measurements are made and results estimated for the whole, are used. Method, (2), method of sample survey, generally involves sampling at random, and estimating the total volume. Although it has advantages, such as high efficiency in estimating the total volume and its estimated accuracy can be calculated, it is not suitable for estimations of individual stand volumes. Method, (3), Method of standard sample plot, uses aerial photographs, dividing the forest into various types of stands, and according to the types, standard sample plot surverys are carried out at specific locations, and the volume estimated. Then, using the sample plot results as data, by estmating each stand's volume from aerial photographs, and by calculation, the total volume can be calculated. This is suitable for estimation of individual stand volume. Although the accuracy of the calculated total volume is not estimated statistically, if the individual stand volume estimation is accurate, it is assumed that the calculated total volume is also accurate. The purposes of this survey of hard-wood resources are to estimate the total volume, and to produce a forest inventory note according to compartment, sub-compartment and forest type. Therefore, in this survey, method, (3) was adopted.

2.2 Survey procedure

The survey procedure is shown in the Resource Survey Procedure Flow Chart, Figure 2-1.

(i) Preparation of aerial photographs.

The most recent aerial photographs covering the whole survey area were prepared. Details of the aerial photographs used are given in Table 2-1.

Table 2-1 Details of Aerial Photographs Used

District Name

VITI LEVU

Flying date

June – July, 1978

Flying altitude

Flying altitude

Focal length

Scale of photograph

Scale of photograph used

1: 10,000

Planned by

Fiji Government

Preparation of aerial Preparation photograph of base map Existing Transferring Selection of area Drawing up of compartment stock map for survey and sub-compartment map Sample plot Forest type survey divisions Transferring Drawing up of forest type map Estimating of volume Making stereogrammes, per hectare stand volume table Measurement of stand area Calculation of volumes Making forest inventory note and stock map

Fig. 2-1 The resource survey procedure flow chart

(ii) Preparation of base map.

A base map was prepared by copying a seperately prepared contour map. (The contour interval was 20 m).

(iii) Selection of areas for survey.

The total area of the Nukurua area leased by the Fiji Government from private owners for the purpose of aforestation of hard-wood is 8242 ha, but, taking into account the two points mentioned below, the resource survey area was limited to the areas afforested up to 1977. The area is 6253 ha.

- (1) Areas deeper into the forests are natural forest, not yet being man made.
- (2) Because the most recent aerial photographs were taken in June-July 1978, surveys of more recent areas of afforestation was difficult.

Fig. 2-2 Survey Area

(iv) Drawing up of compartments and sub-compartment maps.

Formerly, in Fiji, stock maps showing compartment planting species and planted years were marked with only valley lines.

Based on these stock maps, by field survey and interpretation of aerial photographs, compartment and sub-compartment extents were checked and amended, and by transferring this information onto base maps, compartment and sub-compartment maps were drawn up. With regard to compartments, for the purpose of management, about 100 ha, was chosen for the standard size, and boundaries chosen on the basis of the topography. Division into compartments was made for the whole leased area, and this produced a total of 60 compartments. With regard to sub-compartments, the stands were divided up in the compartments according to species and plantied year.

(v) Drawing up of forest type map, and measurement of areas.

In order to assist the suitable forest working and estimating volume on each stand, on the aerial photographs the sub-compartments were sub-divided into forest types, based on Table 2-2 standard table of dividing Forest Type.

Transferring these forest type divisions onto the sub-compartment map, a map of forest types was made, and at the same time, areas according to forest type were measured, and areas calculated for sub-compartments, compartments and the total.

Table 2-2 Standard of dividing forest type

Item	Conjents	Mark
Tree age	Planted year shows tree age Example, p.70 means planted year 1970.	example p. 70
Tree species	Survey 6 species are divided mahogany Cadamba Deglupta Macsopsis Cordia Kaubula	S. mac A. cad B. deg M. emi C. all E. mac
Average tree height	This is divided to the nearest meter, Planted year 1961 — 1971, this is recorded Merchantable Height. Planted year 1972 — 77, this is recorded Total Height.	example MH ₄ TH _{1 1}
Crown density	0 - 9% 10 - 39% 40 - 69% 70 - 89% 90 - 100%	D ₁ D ₂ D ₃ D ₄ D ₅

(vi) Sample plot survey.

In order to provide data on which to base the interpretation of aerial photographs, two or three sample plots were established in the area for each species and planted year. The area of the rectangular sample plot was 0.1 ha, and every tree measurement was carried out for diameter and tree height on all planted trees in the plot.

There were 92 sample plots. With regard to the sample plot survey, this is described in section 2.3.

(vii) Making stereogrammes and stand volume table.

Using the results of the sample plot survey, by comparing the plot with its aerial photographs, stereogrammes were made for the purpose of forest type interpretation. At the same time, a stand volume table was drawn up according to planted year and number of trees per hectare. Using these data, estimating of volume per hectare according to forest type was carried out, and the forest type divisions checked. Details are given in section 2.4.

(viii) Calculation of volumes.

By multiplying the area of the forest type by the volume per hectare, the stand volume was calculated. Furthermore, by totalling the volumes per sub-compartment and compartment, the total volume was obtained.

(ix) Making the forest inventory note.

A forest inventory note was made, with area, volume, species and tree height, etc., according to forest type, sub-compartment and compartment. Details are given in section 2.6.

2.3 Sample plot survey

To provide data for volume estimating, smaple plots were established in the survey area and every tree measurement was carried out in these plots.

(i) Distribution of sample plot.

In deciding the location of sample plots, the following points were borne in mind.

- (1) At least two survey plots were to be established for each of the six species and each planted year.
- (2) At least three survey plots were to be established for each species and each planted year for large planted areas.
- (3) Survey plots were also to be established for stands having special characteristics, such as closely planted stands and direct sowing stands.

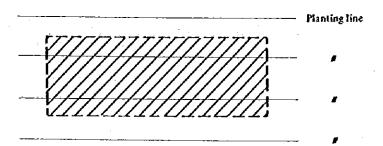
The results are given in Table 2-3.

In deciding the location of sample plots, careful consideration was given to crown density, topography in order to not lean the distribution of sample plots.

(ii) Size and shape of sample plot.

The size was fixed at 0.1 ha, with a rectangular shape formed by sides of 20 m and 50 m. However, in practice because planting was line planting, and the line spacing varied according to location, the width of the plot was adjusted to accommodate 2^{-5} lines, and the length adjusted to provide an area of 0.1 ha.

Table 2-3 Distribution of sample plots


	Mahogany	
Planted year	Numbers of sample plots	Note
1961	2 plots	h
1962	. 3	
1963	3	
1964	3	<u>[</u>]
1965	3	large planted
1966	3	areas
1967	3	
1968	3	
1969	3	
1970	3	
1971	3	li I
1972	_	No planting
1973	_	IJ
1974	2	
1975	2	
1976	2	
1977	2	
sub-total	40	<u> </u>
1965	2	very close planting
1965	Ż	close planting
1967		direct sowing
1971	1	h
sub-total	6	
Total	46	

	Except M	ahogany	
Species	Planted year	Number of sample plots	Note
	1971	2 plots	
Cadamba	1975	2	
Causinog	1976	2	
L	1977	2	
	1964	2	
	1972	2	
Deglupta	1973	2	
Degrapia	1974	-	
	1975	2	poor result
	1976	2	
	1977	2	
	1974	2	
Mesopsis	1975	2]
	1976	2	
	1971	2	1
	1973	2	
	1974	2	
Cordia	1975	2	
	1976	2	
	1977	2 .	
	1968	2	
Kaupola	1975	2	1
vealuna	1976	2	
	1977	2	

Total number of sample plots according to each species

Species	Number of sample plots
Cadamba	8 plots
Deglupta	12
Maesopsis	6
Cordia	12
Kaubula	8
Sub-total	46
Mahogany	46
Total	92

Fig. 2-3 Example, shape of sample plot

(iii) Items and details measured.

For every tree in the plot, measurements were made for all the items shown on the Inventory Data Sheet, Table 24.

(1) Tree species.

With regard to planted trees, only six species, including mahogany, were noted. With regard to natural trees left in the lines, only 41 merchantable species were counted. The names of the 41 merchantable species are given in Table 2-5.

Table 2-4 Inventory Data Sheet

<u></u>		Plan	les T	ree					N	stural	Tree		
Tree No.	Siem Diam- eter	Meren- salsble Height	Total Beight	Cican Ralius	Forsi Class	Danaged Tree	Tree	Tree Spe- cies	Stem Diam- eter	Merca- antable Height	Crows Radius	Form Class	Damaged Tree
Ō							0						
1							1						
2							2						
3	1						3						

Table 2-5 Merchantable species of natural trees

		·
1.	Dakua (m)	22 Moivi
2.	Kauvula	23 Kuasi
3.	Kaudamu	24 Mala
⁻ 4.	Damono	25 Danabi
5.	Yasiyasi	26 Amunu
6	Mavota	27 Rosawa
7	Dakua (S)	28 Bushus
8	Bezาหวัง	29 Sa
9	Saceu	30 Koka
10	Rosatosa (Rogi)	31 Sorovalu
31	Yaks	32 Vutu
12	Kaunicina	33 Kauceuti
13	โลขอย	34 Yuga
14	Vesi .	35 Cevua
15	M3	36 Sasavira
16	Tivi	37 Kannigai
17	Raintree	38 Dawa
18	Res	39 Davila
19	Tabadamu	40 Kaukaro
30	Serosaro	41 Others
21	Vaivai-ni-veikau	

(2) Stem Diameter Breast Height (D. B. H.)

This measurement was taken to the rounding two centimeters, with a calliper. With regard to planted trees, all trees were measured, but for natural trees, only trees of 10 cm or more were measured, while natural trees of less than 10 cm were not recorded.

(3) Tree Height.

This was measured to the nearest meter by both Blume-Leiss and by eye. In Fiji, tree height is generally recorded as Merchantable Height, and volume tables for mahogany and natural trees are described in Merchantable Volume. Measurement of the Total Height of tall trees was certainly difficult, but for young stands, it is difficult to distinguish between Merchantable and Total Height. The decision on which measurement to use for tree Height was based on the standards shown in Table 2-6.

Table 2-6 The standards of measurement for tree height

		Planted Year	<u></u>
	pecies	1961 1971	1972 — 1979
	Mahogany	Merchantable Height (MH)	Total Height (TH)
Planted tree	5 species except	Merchantable Height (MII)	Talliant (TII)
	Mahogany	Total Height (TH) is indicated for reference.	Total Height (TH)
Natural t	reė	Merchantable Height (MH)	

(4) Others.

Supplementary information was collected with regard to crown radius, form class, and damaged trees.

Table 2.7 The volume formula of each species

Species	Marchantable Volume	Total Volume
Mahogany	$MV = 0.053562 \pm 0.457 D^2 \times MH$	Left formula is substituted.
Cadamba	$MV = 0.0301 + 0.4720 D^3 \times MH$	$TV = 0.0081 + 0.3764D^2 \times TH$
Deglopta	$MV = 0.0807 \pm 0.4133 D^2 \times MH$	$TV = 0.0146 + 0.3197D^2 \times TH$
Maesopsis	$MV = 0.0185 + 0.4150 D^2 \times MH$	$TV = 0.0251 + 0.3034D^2 \times TH$
Cordia	$MV = 0.0129 \pm 0.4381 D^2 \times MH$	$TV = 0.0012 \pm 0.3079D^2 \times TH$
Kaubula	Following formula is substituted.	Left formula
Natural-tree	$V = 0.104 \pm 0.4908D^2 \times MH$	

The formula used to obtain the single tree volume was the formula derived by the Fiji Government used in thinning trees in plantations and test planted areas. With regard to species for which no formula exists, the formula which seemed most suitable was adopted.

(iv) Results of sample plot survey.

The results of the sample plot survey are given in Table 2-8.

2.4 Making data for interpretation

By using the sample plot survey results as data to estimate volume per hectare for every forest type using aerial photographs, stereogrammes and stand volume table were made.

2.4.1 Making Stereogrammes

Stereogrammes are used to compare survey results and images from aerial photographs for each sample survey plot, and are useful for interpretation of forest types by visual means. Stereogrammes were made for 92 sample plots in this survey (Table 2-9 shows an example).

The aerial photographs used were taken in 1978, so there is a two-year discrepancy with the survey which was carried out in 1980. Therefore it was necessary to backdate the survey data by two years. This adjustment is fairly complicated, and the details are given in section 3.

2.4.2 Making Stand Volume Table

The estimation of volume using stereogrammes is directly related to volume by visual means. Therefore, if the same forest type stand as the stand under interpretation is described in the stereogramme, its volume value can be used as it is. But in the case where the same stand is not in the stereogramme, the volume must be estimated by comparison with similar stands. Thus, there is a possibility of a large error being puted in. 92 stereogrammes were made, based on results from the field survey, but the forest type are very varied, and there is no guarantee that all forest types are covered by the stereogrammes. Therefore, in order to obtain standard of volume estimating of a forest type for which there was no stereogramme, a stand volume table was made.

A stand volume table is a table giving simplified values in which factors such as tree age, which can be obtained from existing data, and factors such as the number of trees and the tree height, which can be measured from aerial photographs, are set out to give independent variables, from which appropriate formulae can be obtained in which stand volume is a dependent variable. The volume can be calculated by using the number of trees and tree height, which can be measured directly from aerial photographs, and is therefore a fairly objective measurement. By detailing the measured values of the factors, the table can be used for any stand.

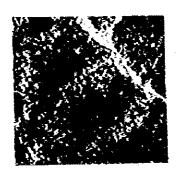
Normally there are two types of stand volume table. One uses 1~3 factors which can be measured quantitatively, and, by the method of least squares, the volume formula is obtained. This formula is given in the table. The other is a type in which scores are added up according to many factors including those which cannot be measured quantitatively. However, this latter type requires a large amount of data whereas the former type requires relatively little data. Even so, this type required the use of over 30 pieces of data.

With regard to mahogany stands planted before 1971, a highly accurate estimate of volume was required, and a large number of sample plots were surveyed (32 locations).

(M), Merchantable (T), Total

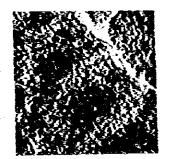
					٠																															
D ama vice		T													•	•	-	· ·	•••	-	,-															
Natural	Vel (19)	自	1.7	8	99	0	0	16.1	6. 0.	41.9	¢	0	14.3	œ X	0	7.5	0		0	-	ဝ ဗ	2.5	•	ન જ	4.4	21 99	0		4.		လ က်	လ က်	0	Ö	6,7	Ó
	P S	(A)	⇔	•	•	63	0	es	30	Ċ	ដ	#	0	49	0	0	8		ന		90	ಣ	Ó	❖	0	ന	თ		t~		~	0	0	0	0	0
		(A) 9013	Š,	ਲ	ਜ਼ ਲ	ន	ន	ន	ដ	53	¥	R	65	3	ង	69	R		ტ <u>.</u>		91	17	92	ន្ត	63	61	\$		8		8	C.	g S	\$	2.5	6
		al l	8	S S	8	8	\$	410	8	88	1.130	840	8	8	010	260	410		8		310	8	38	930	क्ष	370	88		8	_	8	36	870	8	ន្ត	036
Number (Iiving		(44/	ន	8	Ŝ	8	88	88	8	8	670	35	240	88	ষ্ট্	8	280		280		580	\$	8	88	410	8	â		140		8	8	8	202	170	8
•		Kadius(m)	∞ ⊶i	o.	0.5	0.7	9.0	7	0.5	0.5	2,7	2.6.	6.2	2.7	7.7	2 2	က်		ය ෆ්		တ်	6	4.0	69	φ 69		<u>ර</u> ෆ්		A. A.		4.29	2:1		8 8	8 7	•
		_	5 8 7	% %	0.31	1.89	0.94	38.	0.13	8	35. 47	\$3. \$3.	16.50	34.58	12.40	2.0	22.02		\$ 22		4 8	6.46	5,05	8	6.06	6.52	র প্র		17.17		13, 17	10, 75	17. SŞ	10.12	1.21	
		=	61	٢-	0	ĸ	63	4	G	σ	ရှ	16	0	4	17	0	Ŕ	4	0	0	0	0	00	0	٢-	4	-	0	0	0	(r)	ø	00	ដ	5	•
Class	2	_	ผ	83	0	8	3	90	ន	8	2	á	ន	ន	8	3	음	er er	ĸ	8	鈴	~	ģ	8	Ş	ង	忥	걲	Ø	শ্ব	83	×	ន	\$	67	1
Form	(volume rate 70	_	2.2	3	8	25	\$	88	8	8	46	á	ક્ષ		S	ន	92	7.7	67	8	88	8	5	2	3	Ę	3	88	g	73	8	B	89	g	ន	-
Volume F		(a)(a)	28.7	7.72	4	4.63	27.9	28.	11.2	11.7	210.0	148.9	93.2	95.4	74.6	15.7	265.8	287.0	351.1	377.9	27.72	42.4	8	14.8	31.3	38.2	374.8	396, 9	190.9	169.8	112.7	102:3	163.0	91,5	6.	
•		(m)	(T) 10:1	(T) 10.5	(T) 9.0	(T) 9.5		_		خـ	(M) 7.1	_	_	_	(M)	(M) 8.8	-	_	(T) 23.5			(T) 11.4					_	(M) 20.3			(T) 17.4		(T) 20.8			
•		(B)														17.89			32.3		15.43		16.04	11.65	13, 73	16.62	41, 12		39.52	-	38.68		%	22		
Planted		Your	19.74	74	25	22	92	92	2	1.	38	\$	8	8	67	. <i>E</i>	Ę		Ę		73	22	26	92	7.7	1	\$		\$		27	2	E	53	75	
Planted	- · ·	Species	Mahogany		*	*	*		*	•	*		•	*	Ł	*	Caclamba	*	*	•	*	*	*	*	*	*	Deglupte	***	*	2	*	*	*		. 3.	
Sample		Ś	1	v	8	8		<u> </u>	8	9	4	4	3	\$	\$	1 48	£		3	*	67	\$	· 5	: 23	8	3	35	*	38	*	5	3	\$ \$	3 8	3 6	\$

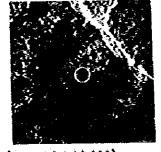
O Laborator	Komarks																												•	. no .de						
N. Turn	Volume	(a \ a	Ŏ ·	Ó.	•		جا دي د	Ö	25.0	•	0	0	•	1	m ri	<	>	တ် (17.7	8	6 e4	0	\$	1.4	<u>ဝ</u> ဗ	0	0	•	>	•	0	0	0	Ó	43.1	٥
Namber rate of	dumag	tree (%)	0	0	8	Ő	0	sý	ń	4	ജ	17	ර		0	•	**	œ	0	0	•	er)	0	Ġ	0	n	ന	ć	2		•	0	ន្ត	0	Ю	0
Number rate of	-peop	tree (%)	8	88	\$	*	엺	ਲ	37	ន	61	អ	8		2		II.	8	8	90	8	23	*	30	es	91	83		8		8	23	\$	23	~	οτ
Plantod*	37	-	390	ន្ត	310	० स	30	82	38	88	8	\$	38		8		370	8	410	8	8	88	8	88	8	8	\$\$:	8		\$	370	8	410	410	390
Number (Tiving-	tree)	⟨ ₹ / 	017	\$	8	Š	270	82	ង	0/2	8	8	8		8		සි	87	310	370	8	8	88	8	310	025 225	8		3		880	82	ន្ត	110	88	88
AVOTAGO	Crown	Radius (m)	9.0	13	6.0	61	2.7	6 4	တ က	2,4	લં	2,3	13 53		9.		9	හ හ	2.3	3	23		æ .∺	1.9	2.1	2.0			6. 80		2.1	1.7	90	1,2	80	0.8
Basal	Area	うさり	0,45	0.27	0.15	83	7.13	4, 18	8.8	5.44	2.8	2.07	15.37		17.46		800	8. 88	2.8	4.24	2.56	8		2,06	1.93	1.75	9.75		7.74		ર્જી તાં	1.13	8	0,16	8	0.37
	8	Ħ	7	£~	Ó	0	74	2	-	0	8	88	약	Ø.	ដ	თ	ដ	ო	H	ĸ	ო	61	ଷ	ψò	7	4	8	ઇ	\$	3	ž	Ħ	য়	l &	é	φ
) to 300	ae rat	# :	0	£;	ន	13	K	9	Ŋ	7	8	6	3	43	6	69	3	25	ያ	13	63	_ 지	\$	N	8	ន	ĝ	8	23	દર	47	3	8	\$	5	5 23
Form Class	(Volume rate		8	8	2	83	56	9 0	72	* \$	8	×	జ	\$	8	Ŕ	4	\$	3	8	8	4	8	} &	S	8	អ្ន	5	œ	7	8	₹	9	3	<u> </u>	3,92
Volume		(a) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c		ri G	∞ i	8	8	26.1	20.02	2	17.5	1.6.1	105.8	92.9	8 8	88.9	55.0	41.3	12.2	20.7	10.1	27.72	o v	2 6	7.2	, Ay	107.8	71.5	76.5	3	6.67	32.3	90		200	i si
Average	ght	Ê		90			•		1 5	. 4	4	00	14,6	හ ගේ		7.			7.								11.4		10.0							
Ave	Holght		Ê	E	E	E	E		} E			É	ું હ	3			_		E	_				_			9							<u> </u>		
Avorago	D. B. H	(B)	178	5	4.37	ot ot	5 6	3 4	3 2	9 9	3 6	3	19.78		18.79	;	17.95	8	10.13	8	9 5	2 .	10 i	6 0) 8 0 0	} };	8 8	i i	20.27		10.16	3 6	: 6		5 6	3.74
Planted		, i	1976	26		: \$: 2	2 5	÷	, F	G 47	2 %	2 2		2			2 2	77		. ×	3 5	5 4	2 8	ė į	: F	: 88		8	3		? *	2 %	٤	2 [4.2
Plantel		Cracios	Declubta			. :		NIBOSODIN'	. :	•	• :		e puo			•	. 1	. 1	. 3	• •	. 1	L :	•	•	• :	• •	Z while		. 3		. :		•	*	•	
Sample		ž	1.	3 3	, ¥	3 8	8 8	3 8	8 8	2 6	2 :	- E	4 E		. %	: •	7	3 %	<u> </u>	: 8	९ ६	2 3	3 €	ಕ ಕ	\$ 8	3 8	8 %	3 •	· 3	3 '	• 5	3 5	8	\$	& 	ಕ 8 —

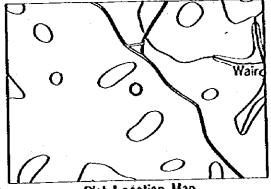

Table 2-9 STANDARD INTERPRETATION CARD (STEREO GRAMME)

Planted Species	Forest Age	Crown Density	Filing No.
Mahogany	18	Dz	3

		The state of the s						
Plot N	0.	3						
Locati	ôn	Nukurua						
	rtment & mpartment	55 - a · 1						
Planne	d by	JI.C.A. Fiji Government						
Enforc	ed by	J.F.T.A.						
Surve	yed on	September ~ Octorber, 1980						
	Sizė	0.1 ha						
Piot	Spacing	25.2 m × 39.2 m 2 lines						


	Data of Fig	eld Survey								
Site De	escription	Forest Description								
Topography	Flat, Ridge-top (Valley-bottom)	Planted species	Mahogany							
· opog. apmy	Mid-slope, Irregular	Age & (Planted Year)	V							
42-1-1-1	Flat, Gentle	Average Height	Kervarlable 9.5 m Total m							
Inclination	Moderate Steep	Average D.B.H.								
Direction	NØS, W, Nothing	Basal Area	9.74 m²/ha							
Altitude	50 m	Number of Trees	//o n/ha							
Òthèi	Remarks	Crown Density	30 %							
		Volume	Kacharlade 62.9 m³/ha Total m³/ha							
	•	Natural Tree Volume	7.4 m³/ha							


Aerial Photo	ograph Index
District Name	YITI LEYU
Flyng Date	June~ July, 1978
Scale of Photograph	1: 20,000
Flyng Altitude	3,100 m
Focal Length	152.89 _{mm}
Course No. & Photo No.	c 39 - 30.31
Base Length	/73 mm



Stereo Photograph (Scale. 1: 10,000)

Plot Location Map (Scale. 1: 10,000)

With regard to the other five species and younger mahogany stands, the number of sample plots was lower, and some difficulty was experienced in creating the stand volume tables. Also, because of the large number of young stands, accuracy was not so important.

Therefore, a stand volume table was made only for mahogany planted before 1971. There are several factors which are closely related to volume, but of these, tree age and number of trees per hectare were chosen as they could be easily obtained from exiting data and aerial photographs. Using these two factors, calculations were carried out using the method of least squares. Table 2-10 and Figure 2-4 show the accuracy of the volume table and Table 2-11 shows the stand volume table.

Table 2-10 Accuracy of stand volume table

Yolume formula	V = -9.1421 + 0.0290 x	age x No./ha.
Correlation coefficient	γ=0.85	
Survey plot No.	Measured value	Estimated value
1	215.7	216.8
2	85.6	95.5
3	62.9	48.2
4	106.8	105.7
5	129.1	100.5
6	87.2	89.4
7	84.4	59.8
8	38.1	45.1
9	76.1	55.8
10	132.8	92.9
11	63.5	51.1
12	112.0	103.9
13	166.5	130.0
14	74.9	51.7
15	124.6	104.5
16	84.4	63.9
17	54.6	51.7
18	89.0	58.7
19	84.4	62.5
20	41.6	54.9
21	69.3	70.9
22	33.9	56.9
23	23.9	32.6
24	33.3	51.4
25	55.6	77.0
26	41.1	70.6
27	14.9	28.5
28	65.4	144.5
29	29.6	57.5
30	17.8	35.2
31	23.3	35.2
32	25.4	43.0

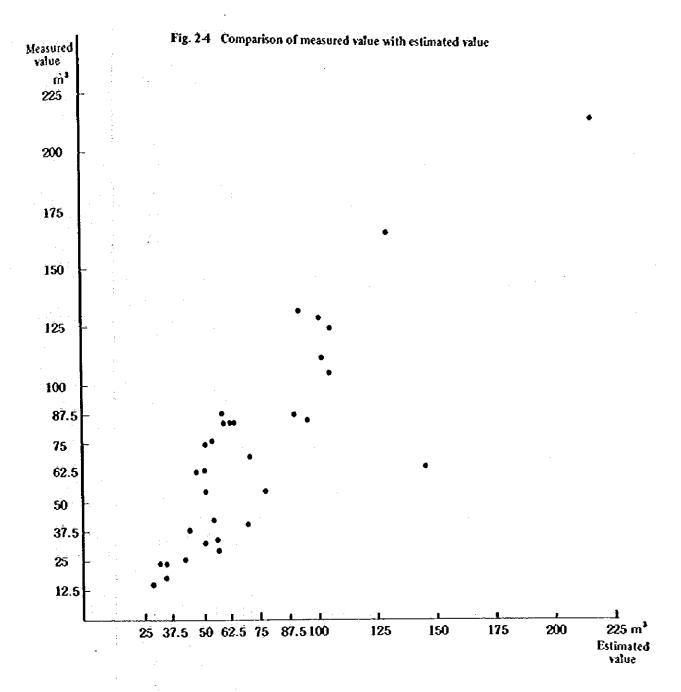


Table 2-11 Stand volume table (Mahogany)

***** STAND VOLUME TABLE (MAHOGANY) *****

V = -9.1421 + .0290 * (AGE) * N

	(M 1 3 A													ha)			
AGE N/ha	7	8	9	1Ô	11	13	13	14	15	16	17	18	19	20	21	22	
20	-5	5	- 4	- 3	- 3	- 2	- 2	- i	_ 1		7	1	2	2	3	4	
40	1		1	2	4	5	6	7	8	9	11	12	13	14	15	16	
60	3	5	7	8	10	12	13	15	17	19	20	22	24	26	27	29	ĺ
80	7	ģ	12	14	16	jġ	21	23	26	23	30	33	35	37	40	42	İ
100	11	14	17	20	23	26	29	31	31	37	40	43	46	49	52	5Ś	
120	15	19	22	26	29	33	36	40	43	47	50	53	57	60	61	67	
140	19	23	27	31	36	40	44	48	52	56	60	64	68	72	76	80	
160	23	28	33	37	42	47	51	56	60	6 \$	70	74	79	84	88	93	
180	27	33	38	43	48	53	59	64	69	74	80	85	90	95	100	106	
200	31	37	43	49	55	60	66	72	78	84	89	95	101	107	113	118	
220	36	42	48	55	61	67	74	80	87	93	99	106	112	118	125	131	l
249	40	47	53	60	67	74	81	88	95	102	109	116	123	130	137	144	١
260	44	51	59	66	74	81	89	96	104	111	119	127	134	142	149	157	l
280	48	56	64	72	80	88	96	105	113	121	129	137	145	153	161	169	
300	52	60	69	78	87	95	104	113	121	130	139	147	156	165	174	182	l
320	55	65	74	84	93	102	111	121	130	139	149	158	167	176	186	195	١
349	60	70	80	89	99	109	119	129	139	149	158	163	178	188	198	208	
360	61	74	85	95	106	116	127	137	147	158	168	179	189	200	210	221	l
380	68	79	90	101	112	123	134	145	156	167	178	189	200	211	222	233	١
400	72	81	95	107	118	130	142	153	165	176	183	200	211	223	234	246	
420	76	88	100	113	125	137	149	161	174	186	198	210	222	234	247	259	ļ
440	80	93		118	131	144	157	169	182	195	208	22 i	233	245	259	272	l
460	84	98	1111	124	138	151	164	178	191	204	218	231	244	258	271	281	١
480	88	102	116	130	144	158	172	186	200	214	227	241	255	269	283	297	
500	92	107	121	136	150	165	179	191	208	223	237	252	266	281	295	310	ı
520	96	111	127	142	157	172	187	202	217	232	247	262	277	292	308	1	ļ
540	100	116	132	147	163	179	194	210	226	241	257		ĺ	1		1	
560	105	121	137	153	169	186	202	218	234	251	267	283	Į	1	1	1	
580	109	125	142	159	176	193	210	1	1	١.		i		Ì		1	
600	113	130	147	165	182	200	217	231	252	253	287	301	321	339	356	374	1

2.5 Estimation of volume according to forest type and total volume.

The volume according to forest type is given in a seperate Forest Inventory Note. This section presents;

- (1) Area and volume according to species for each compartment.
- (2) Area and volume according to tree age of the six species in the plantation.

The total area of the survey area is 6,253 ha. (8,242 ha for the whole Nukurua area) and the total volume is 366.396 m^3 .

The area and volume according to species for each compartment is shown in Table 2-12. The area and volume according to tree age of the six species in the plantation are shown in Table 2-13. With regard to the area and volume according to tree age of all six species, they are shown in Table 2-14, and shown diagrammatically in Figure 2-5-6.

As can be seen from the Figure and Table, it is clear that the plantation area of $6^{\circ}8$ years old is extremely small. This is because of damage by Ambrosia beetles, which put the whole mahogany plantation in jeopardy, prompting a change over to plantation with a mixture consisting of six species. This gap should be taken into account in consideration of forest management in the Nukurua area in the future.

Table 2-14 Area and volume according to age of all six species

Age-	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	Total
Area (ha)	354.91	201.08	261.01	73.65	38.75	Ó	199.03	543.86	617.09	520.37	646, 84	518. 49	360. 80	422.0 <u>5</u>	\$80. 2 9	104. 88	110.89	5, 863, 91
Yolume (m³)	5. 169	4,057	7.611	3,024	1,915	0	9,617	14, 363	21, 421	22. 393	43, 364	43, 173	34, 169	31, 109	38,872	7.83	14, 627	300, 739

Fig. 2-5 Area according to age of all 6 species

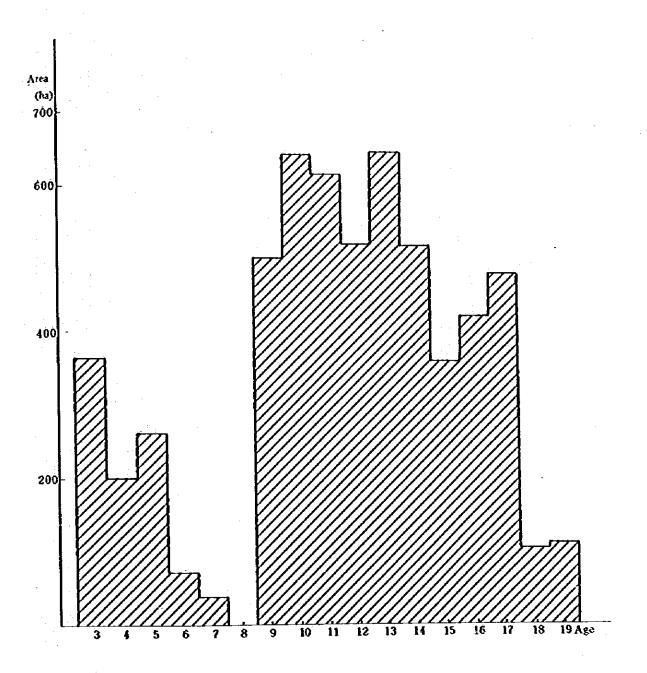


Fig. 2-6 Volume according to age of all 6 species

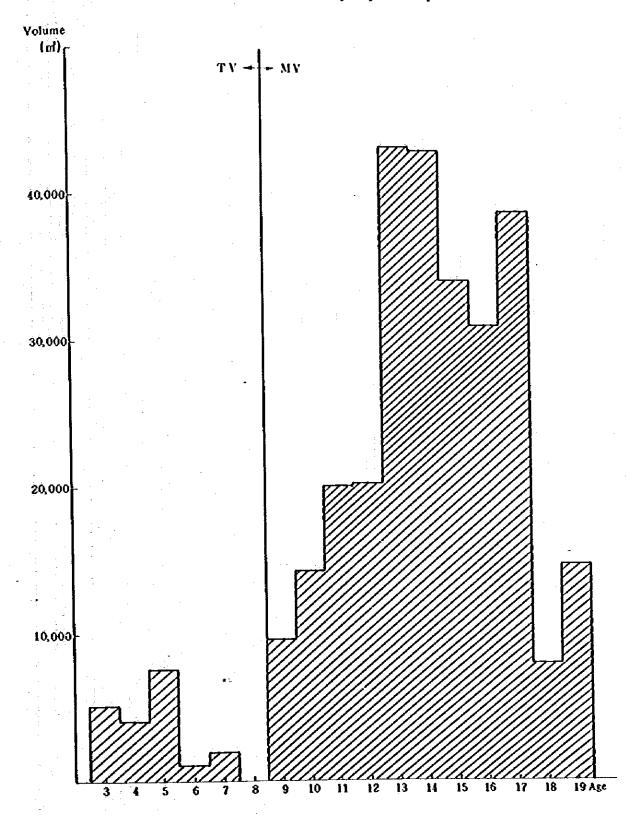


Table 2.12 Area, volume according to compartment and species

Total Area 87.7 A.volume T.volume Area 107 A.volume	al survey	Mahogany	Cadamba				Kaubula	other	Natural	Start.	Forest	Nacive	Native	Research	Deserted
				Deglupta	Massopsia	Cordia		985	tree	bral	•	Total		7	aite si
	87.75 87.75	0	0	0	0	٥	٥	0	0	0	Ò	٥	•	•	٥
1	0		0	Ċ I	0	0	0	0	0	0	0	0	0	0	9
1. 1.	0	0	٥	٥	Ò	0	0	0	0	0	°	٥	0	٥ (2
1.	107.0	0	ô	0	0	0	0	0	Ö	0	0	•	0	0	2
		Ó	0	0	0	٥	٥	0	0	0	0	٥	0	٩	°
omiton 4			°	0	0	0	0	Ó	0	0	0	0	0	0	٥
	1,48		•	0	0	0	0	٥	٥	0	0	0	0	٥	•
\perp			0	Ö	0	0	0	٥	0	0	Ó	0	٥	٥	
T column			0	0	٥	0	٥	0	0	0	0	٥	•	0	0
	83		0	0	0	Ó	Ö	0	0	0	0	•	•	•	0
-		0	0	0	0	0	0	0	0	Ò	Ó	٥	0	0	0
T.volumo		_	0	0	0	٥	٥	0	Ò	0	0	0	٥	٥	0
	0.03		0	0	0	0	Ö	0	0	0	0	•	0	ী	0
				0	0	0	0	٥	0	0	0	0	٥	٥	9
M.VOIMING				P	0	0	0	0	0	٥	0	0	0	٥	•
A. YORKIII	ľ	_		0	0	O	Ö	Ó	0	٥	0	0	0	٥	°
	٥		0	0	Ö	0	0	0	0	٥	0	0	0	Ö	°
M.volumo			1	6	°	0	0	0	0	٥	Ö	0	0	0	0
•			1 2 2 2)	· c	1 9.5	0	12.6	O	0	0	٥	0	231	0
Arm 1.1			3	3	1	•	Ġ	1	484	٥	٥	0	Ó	0	0
_[,	> <	, c	19.5	0	0		0	0	0	0	٥	٥
	°	2 9	0 C	· c	, 0	·	0	0	0	٥	0	0	0	0	٥
_	27.0			· c	Ċ	0	0	6	0	0	Ó	0	0	0	0
M.volume				1	6	C	0	o	0	0	٥	0	0	0	٥
T.volume		2 0		<u> </u>	· c	0	0	0	0	0	°	0	٥	٥	0
₹ 8	ŝ			})	٦	c	l°	P		0	٥	Ó	0	0
M.volume				> <		> <) C	٥	c	0	0	0	0	0	٥
T.volume				9	> <) c	C	0	0	°	Ö	0	0	0	0
1	1131			2 0	> <) c	ò	0	0	0	0	0	0	0	٥
M.volume	0			1)	·	C	°	0	0	0	٥	•	0
T.volume	0	0	0	٥	2	>	, ,	7							

L			-		-			,	e E	In the survey area	a rea						
STE	115	Total	out the survey	Mahogany	Cudamba'	Deglupta	Маснориів	Cordia	Kaubula	planted	Natural	Saute	Forest	Native	Native lease	Research	Village Bito
					١	٦	C	Ö	°	0	0	Ó	Ô	0	0	0	.0
	\$	11733	11/13			> <	۲	· c	C	O	0	0	0	0	0	Ö	0
ਜ ਜ	M.volume	0	٥			2		1	1	١	C	c	0	0	0	٥	0
	T,volume	0	٥		۱	2	> •	2 0	> (>	•		c	Ġ	٥	Ó	°
L_	۸۲۵	10588	105.88	0	O	0	٥	0	5	غ ا	2 6	1	^ [>	, c	c	C
7	1.2 M.volume	٥	0	0	0	0	0	0	0	0	٥	5	2	7		> <	ì
<u>. </u>	en or	0	0	•	0	0	0	0	ò	٥	°	٥	ġ į	٥ (7	> 6	\$ 1
	25	157.63	157.63	0	0	0	0	0	0	0	٥	°	0	0		٥	٥١٥
	· 2	6	°		0	٥	0	0	0	0	0	٥	٥	٥	0	2	2
<u>:</u>		, <	٥			°	0	٥	0	0	0	0	0	٥	٥	٥	
L	T. Omino	26436	15475			0	0		0	0	0	0	0	0	0	0	0
		2 0	2			Ö	O	0	0	0	0	0	٥	٥	٥	ै	
<u>~</u>		3	^ ^			°	0	0	0	0	0	0	0	0	0	0	0
	T. VOLUME	2 6 6	900			°	°	0	0	0	0	0	Ó	٥	0	٥	*
	\$	200	ļ			0	Ò	0	o	0	0	0	0	0	0	0	•
4		-	*			, =	0	0	Ö	0	0	0	0	0	0	0	٥
	T,volvens	9	ı			,	C	c	0	O	0	0	٥	0	0	0	0
	768	89.1	88.1				ì	0	0	O		°	٥	0	0	0	0
	φ								C	°	0	°	Ö	0	0	Ó	٥
	T.volume					8		2 7 6	A 64	O	°	0	°	0	٥	°	1538
	Area.	171,1		37	707	8/20		e l	> I		- 1.7	6	0	0	0	0	0
H	17 M.volume					- [<		> 2	(0	0	0	0	0	0
	T.volume				7.40	282		200		°	1525	0	0	46,75	0	٥	٥
	\$ ×			\perp				, ,	0	C	2	°	0	0	0	٥	0
-	18 M.volume	3,90		7.00				' '	٥		1	Ö	0	0	0	0	٥
	T.volume	٥						> 0	> <			C	0	0	0	0	0
<u> </u>	Area	126.52	•					7	ľ		1	-	c	0	0	0	٥
	1 9 M.volume	4993	٥	2,879	٥			٥	2	>	۲ بر ۲۰۰۰ ۲ بر ۲۰۰۰		> <	. -	, c	C	0
	T.volume	0	•	0	0	0	0	Ó	٥	٦		<u>}</u>	^	1	•	•	C
1	1	0864	°	98.64	0	0	0	Ò	0	0		9	5	>	>	1	7
	1 _	1.			0	0	٥	0	0	0	1.750	٥	0	0	ी	٥	2
.4	2			<u> </u>	0	0	0	O	0	0	0	٥	0	•	0	0	2
j	T.VOMENT												Ì				

Columba Degluyer Measure Mea
Description Propert
24 Creat Forest Native Native leases 2 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Forest Total Native station. Native station. station. 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Research Village area after a state area after a state after a state a

Total Michaeline August Augus August August August Augus August August August										금	In the survey area	area		•				
Accessive States 143,81 © 165,83 426,9 426 0 0 0 494 0	8 2 6		Total	out the nurvey		Cadamba	Deglupta	Maeno prids	Cordia	Kaubula	other planted tree	Natural	Crass	Forest station	Native	Native loase	Research	Deserted village site
Company Comp			1001	¢	1663	4.6.3	426	°	36.99	-	1.2	0	0	0	O	٥		
Accoration Acc			70007	<u> </u>			0	0	Ö	0	Ó	767	0	0	0	٥	0	
Troubline 2,50.7 Color			484	> <	200	366	1886	0	Iω	0	0	0	0	٥	0	0	Ŏ	
According 2.45 co. O		T. voluntio	2/6/				21.5	C	4923	0	0	0	0	٥	0	٥	0	
Timelane 246 Color Col		Ş	148,74	0000			[C	c	°	P	1-0	0	0	0	٥	0	
Trocking 492 635 63 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ار	M.volume	24.6	3				· ·	0	Ċ	Ò	1	0	0	Ó	0	٥	
Area. 633 93.5 0		T.volume	492					> C	١,	0	ľ	0	0	0	0	°	0	
X.v.olumn O		\$	63	2)) 6	C	0	Ò	0	O	0	0	٥	0	
X.volume 0<	ස ස	M.volume)	ì	0	0	°	0	0	0	0	0	0	
Marcheller Mar		T.volumo	- [L					0	0	0	0	0	0	٥	٥	0	
Acrosional Scription O	-		125.8	┸			•		0	0	0	0	0	0	0	0		
Avea 154.59 0 66.0 91.8 34.76 32 35.08 0 64.2 0<	φ 4								0	°	0	Ö	Ö	0	0	0	0	
Avea. 154524 0 154524 0		T.volume				0	4.7	6.2	80	0		0	0	0	0	٥	0	
Ni.volume 921 0 125 548 0 128 884 0		g Y	Î			2	•			0	0	Ç.5	٥	0	0	0	0	
Avolume 2,685 V ALLS Section O	(c)					F	٥	6	90	0	0	0	0	Ö	0	0	0	
Avea 247.26 0 1300.1 0	_1	T.volume	_[Ľ	\$			1	0	0	0	٥	0	0	7.2	Ó	
Altroblume 11,350 U 3,535 U 4,603 U 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		2			1				0	0	O	N.	0	0	0	\$	0	٥
Coolumne C 793 O 131,77 O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ĕ	X.volume	1135						Ġ	0	°	ı	0	0	0	0	0	٥!
Avea 131.77 0 131.77 0 131.77 0 131.77 0 131.77 0 131.77 0 14603 0		2.volume	_						C	C	0	0	°	Ó	O	Ó	0	
M.volume 6.793 0 <									0	°	0	O	0	Ö	0	0	0	٥
Linguisting	ö				1				0	0	0	0	0	0	0	0	٥	0
Avolume 6,336 0 4,905 0		T.WOW.I			4 4 4 7				Ö	°	°	0	0	0	0	0	Φ	^
M.volume 0.5350 V 0.00		2	٦		1				0	0	0	62	0	0	0	٥	0	°
Troblemo Description Transmission O	<u>~</u>	W.W.W.			┸				Ö	0	٥	0	0	0	0	٥	^	$^{\circ}$
Acres 214.01 Value Value <t< td=""><td>_Į</td><td>T.volum</td><td></td><td></td><td>2776</td><td></td><td></td><td></td><td>0</td><td>°</td><td>0</td><td>್ಟ</td><td>0</td><td>0</td><td>0</td><td>Ò</td><td>0</td><td>$^{\circ}$</td></t<>	_Į	T.volum			2776				0	°	0	್ಟ	0	0	0	Ò	0	$^{\circ}$
9 M.volume 9.253 0			<u>" </u>		1				0	0	0	(2)	0	0	0	0	0	$^{\circ}$
26414 0 <td><u>ო</u></td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>٥</td> <td></td> <td></td> <td></td>	<u>ო</u>		1							0	0	0	0	0	٥			
8.931 0 4.168 0 0 0 0 0 0 4.763 0 0 0 0 8.931 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	\perp	T.volum			_ _					0	Ó	Ø	0	0	Ö	ผ		
0 0 0 0 0 0 0 0 0 0		Tage .	7		1					0	0	4,763	0	٥	0	٥	0	°
	ě.	W.Water								Ö	Ó	0	0	0	Ó	0		

									7	In the survey area	area						
88		Total	out the survey	Mahogany	Cadamba	mba Deglupta	Maesopsin	Cordia	Kaubula	planted	Natural 000	Gress	Forest station	Native	Native	Research	Deserted village
	4			2000	•	ĺ		١	C	200	o	0	o	Ó	0	Ò	0
: -	18	. 1	٥	72661	> 1	> 0	> (7	٠		0.00	Č	Ö	0	O	0	°
4	M.volume	13874	Ó	12949		٥	Š	7		^ 	240	,	•	ć	c	c	°
-	T.volume	Õ	0	0	0	0	Ö	٥	ò		>	2	}	>	۲ ا	· (
	1857	15441	0	14428	1.5	0	0	5.5	0	313	0	0	٥	Ö	o l	Э (Ì
	12	2027	0	6.572	*	0	0	495	0	0	1375	Ó	0	Ò	0	٥	^
1	1		C	C		°	0	0	Ò	Ó	Ö	Ö	Ó	0	٥	Ò	٩
1	*****	24177	• •	177.02		0	0	0	0	0	31.75	3.0	0	0	0	0	°
ç		0027	C	1 00 1 3	°	°	0	0	Ö	٥	3,670	0	0	٥	Ó	0	°
3	_	2020			°		0	0	Ó	0	Ó	0	٥	0	0	0	9
	A. Solume			47.		10.38	0	0	0	0	Ò	0	o	0	0	0	0
:		. 1	Ì			7	°	°	0	0	793	0	0	0	0	0	٥
<u>*</u>		2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		7000		۱)	Ó	0	0	0	0	0	O	0	0	0	Ó
\perp	T.volume	ᆚ	> 0	. 427		c	Ċ	0	0	O	0	Ó	0	0	٥	O	٥
		143.78		1) 0	°	0	0	0	0	0	0	0	Ó	0	٥
٥		L	•			0	0	Ö	0	Ö	0	0	0	0	0	0	٥
	I.volumbe			1,0		Ć	O	°	0	0	٥	Ö	Ö	0	0	Ó	Ó
	Arg.						0	0	٥	Ò	2,415	٥	0	0	0	0	0
4	4 6 M.volumo	C 1-4 4				1	c	°	°	0	0	0	0	0	0	0	0
	T.volume	1		0		> C	C	°	Ó	0	н	0	0	Ó	٥	0	Ó
				┸		` `		°	°	0	2,143	0	٥	0	0	0	0
4		1245		7 (2)) •		• •	O	O	ı	0	0	0	0	Ö	Ö
	X.volume			0000		, c	°	0	°	0.63	0	°	٥	٥	6.38	0	0
) C		0	0	63	Ó	0	٥	0	0	Ó	٥
\$		5.8.5						O	°	0	0	0	Ó	0	0	0	Ö
	T.volume	⅃.		1210			0	0	27.88	٥	0	٥	0	0	0	0	٥
				1			O	0	1.673	0	1.094	6	0	Ó	0	Ö	0
4.9		1179		000			0	0	0	0	0	0	0	0	0	0	0
	T.volume	1	^ °	0,0				٥	Ó	0	2.13	2.88	0	0	0	0	٥
	Zea		<u> </u>	_L				°	0	Ó	2585	0	0	0	0	0	٥
<u>~</u>	5 0 M.volume	1 %50						C	0	O	Ö	0	0	٥	0	0	0
	T.volume	Ö		2													

` -							-		1	SATE VIOLENCE AND AT	401						
		: !								C Let		A Transfer Dr.				1	70
8 2 2		Total	aurvey area	Mahogany	Cadamba	Deglupte)	Massopsis	Cordia	Kaubula	other planted tree	Natural	Grass	Forest station.	Native	Native	Kenearch area	village
	L	2000	•	17968	٥	0	°	0	0	7.38	0	0	0	0	٥	٥	ণ
	\$	2000	3 6	14074	C	0	0	٥	Ó	0	2726	0	0	0	٥	0	0
rt \$3	M.Votume	00/1/7	2		c	l	0	0	0	٥	٥	0	0	0	Ö		°
	T.volome	5	7	2000)	c	٥	0	0	0	0	0	0	0	0	\rightarrow	°
		19938	٥	00067	2 0	• •		6	0	0	2638	0	0	0	0	0	٥
52	~ 1	18,756	o i	10.1.13	3 (> <	, (, -	c	°	1	°	0	٥	٥	0	0
	T.volume		0	0	3 9	3) c	· c	. 0	. 60	Ö	0	0	16.88	0	0
	- Area	1144	0	94.52	3 (3 6	3	*	· c	·	438	0	0	0	0	0	0
8	M.volume	7492	0	7.054	2	2 9	> <	> <	· c) c	1	0	0	0	0	٥	0
	T.volume	٥	٥	0	0	7	7	3 6		,	·	c	6.13	0	٥	0	٥
_	Area	13139		1		2 (2 6	3 6	7	}	7 X	• •		0	٥	0	0
3	M.volume	10464		9.65		7	7	> 0	,	· c	1	Ó	0	0	٥	0	0
	T.volume	0	٥	- }	ō	3	? •	1	\	· °		6	c	٥	3	0	0
L	Aroa	104.88			0	٥	2 0	2 9	5 6	2	28.6	٥	0	0	0	0	٥
<u>~</u>	M.volumo	8.785	0	7.803		7	7	1	1	^)	٥	٥	٥	0	٥	Ó
	T, wolume	0	0			0	9	3	7	1		, ,	· c	-	0	٥	0
L	1857 V	151.03	0	147.64		٥		٥	۰	٥		200	> <	, c	c	0	°
٧.	LΣ	13583	0	10,556		٥	0	1		ا	30.5	3	>	^	, <	c	C
		1	0	_	0	0	0	٥	9	0	٥	9	3	1	1	, <)
_	ş	882	°	8828		0	0	°	0	0	ŀ	Ó	2	> <	> <	> <) 0
7	12		0	55.01	0	0	0	9	0	٥	267	2	7	1	3 3	,	c
<u>.</u>				-	0	0	0	0	0	0	٥	٥	۰	٠	7	\	^
1	Area	16713		167.		0	0	0	0	0	٥	0	0	٥	Þ °	> <	> <
	12	1		1333		0	0	0	0	Ò	1.666	0		٥	5	١.	7
^				`			0	0	0	0	٥	0	٥	٥	۰,	0 (> (
1	Transport of the second	1167		1108		0	٥	0	0	0	0	5.88	٥	٥	3	> (9
		ı				0	Ö	0	0	0	598	0	0	2	3	>	2 4
<u>۸</u>	A W. Walerto	100		L			°	0	0	0	0	٥	•	0	0	٥ .	٥ (
1	у може	20000		2000		0	°	0	0	0	0	0	9	0	0	۰	3 (
		1.		1			0	٥	0	0	2,040	0	٥	0	٥	3	۰
<u> </u>	M.volumo	4. U.O. Z					0	0	0	0	٥	0	٥	^		ı	
	T. Volume		7000	A 0 0 6 A	2705	254.35	24.47	243.26	44.84	5127	101.76	1515	6.13	4 9.1 3	123,76	2638	1538
-			P) 1	076359	2	1.85	°	495	1,736	0	65,661	0	9		0	٥	٥ (
3				0 4 3 0	-	252	640		489	0	0	0	0		0	٥	°
╝	1. whme	19807	^				١.	·									

Table 2.13 Area and volume according age of th 6 species

Area (ha) Volume(m²) Area (ha) Area			Mak	7.000	Cad	lamba.	Deg	Deglupta	Mack	Maesopsis	8	Cordia	Kau	Kaubula
1977 August August 880 816 816 838 1977 August August 434 1257 251 7014 701 567 1976 1350 270 5578 2231 4342 434 1257 251 7014 701 567 1976 1350 270 257 2578 3236 389 870 261 7014 701 567 1972 1704 351 2428 3892 389 870 261 545 567 1972 1704 351 2428 326 1826 326 495 1828 326 495 1638 1638 495 1638 1638 495 1638 1638 495 1638 1638 495 1638 1638 1638 1638 1638 1638 1638 1638 1638 1638 1638 1638 1638 1638 1638 1638 <t< th=""><th>Age</th><th>Year</th><th></th><th>Valume(m3)</th><th></th><th>Volumo(m²)</th><th></th><th>Volume(m3)</th><th></th><th>Volumo(m³)</th><th></th><th>Volume(m³)</th><th>Area (ha)</th><th>Volumo(m³)</th></t<>	Age	Year		Valume(m3)		Volumo(m ²)		Volume(m3)		Volumo(m ³)		Volume(m ³)	Area (ha)	Volumo(m ³)
1976 13.50 27.0 55.7 22.21 43.4 12.57 25.1 70.4 70.1 56.7 1976 13.5 27.0 55.7 55.46 392.8 38.92 38.9 87.0 26.1 65.1 131.3 52.8 1974 17.04 35.1 36.50 132.5 182.0 125. 90 22.5 90 22.5 18.2 34.5 15.2 49.5 18.2 32.5 34.5 18.2 22.5 90 22.5 90 22.5 90 22.5 90 22.5 90 22.5 22.5 90 22.5 22.5 22.5 90 22.5 34.5 18.5 22.5 22.5 22.5 22.5 22.5 49.5 18.5 22.5 22.5 22.5 49.5 18.5 22.5 49.5 18.5 22.5 49.5 18.5 22.5 49.5 18.5 22.5 49.5 18.5 22.5 49.5 22.5 19.5	k		2007		14779	2956		880			`	816	538	108
1970- 1350 270<	,	7767			8 2 8 3	293.	4342	434	1257	251	7014	701	2.6.7	170
1975 77.04 11542 6546 3528 3552 089 0.10 201 202 345 1974 1779 351 34.6 3650 1825 225 90 1972 14897 2572 26903 9115 24284 3528 2447 640 23776 3465 1633 1971 49203 8657 150 495 24284 3528 2447 640 23776 3465 1633 1969 61709 21421 150 495 166 23776 3465 1633 1966 51840 43.54 2648 43.64 1151 1852 1 1967 64684 43.56 1151 1852 0 550 495 2851 1 1967 1968 51840 2468 1151 1852 0 550 495 2851 1 1961 11089 14627 1151 1852	4	1976	1 3.50		3	1		0	0.00	130	1223	1213	528	211
1974 1749 351 3476 0 320 128 1820 545 1972 1972 28903 9115 24284 3528 2447 640 23776 3465 1633 1971 49203 8657 1150 495 1638 2447 640 23776 3465 1633 1970 64386 14361 150 495 1638	S	1975		_;_	65,46		38.92	389	87.0	107	7050	2	25	
1973 1883 1825 1825 1825 90 1972 14897 2572 26803 9115 24284 3528 2447 640 23776 3465 1633 1970 64386 14361 64884 49263 9115 24284 3528 2447 640 23776 3465 1633 1969 61709 21421 64884 43564 64884 43564 64884 43564 64884 43564 64884 43564 64884	S	1974					34.76	0	320	128	1820	545		1
1972 14897 2572 26903 9.115 24284 3528 2447 640 23776 3465 16.33 1971 49203 8657 150 495 8657 150 495 8657 1633 1638 2447 640 23776 3465 1633 1969 61709 21421 8657 150 495 8657 8657 1658 4958 4458 4458 4458 4458 4458 4458 4458 4458 4458 4458 445		1973					36.50	1.825		:	225	06		
1967 49203 8657 150 495 24284 3528 2447 640 23776 3465 1633 1971 49203 8657 150 495 8657 150 495 1633 1969 61709 21421 8657 150 495 1633 1968 49186 20657 1151 1852 8650 8651 1965 51840 43173 8670 1151 1852 8670 495 1964 41055 29257 1151 1852 8670 495 2851 1964 41056 1503 150 1151 1852 8670 495 2851 1964 41055 29257 1151 1852 9 9 9 9 9 9 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8<	8	1972										1		
1971 49203 8657 1.50 495 550 495 1969 61709 21421 2851 1968 49186 20657 2851 1966 51840 43173 2852 1965 36080 34160 1151 1852 1967 410.55 29257 11.51 1852 1963 48029 38872 11.51 1852 1964 410.55 29257 11.51 1852 6 6 8 8 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9	Sub- total		14897		26903	9118	242.84	3,528	2447	640	237.76	3,465	16.33	400
1970 643.86 14.361 28.51 1968 491.86 206.57 28.51 1967 646.84 433.64 341.60 28.51 1965 518.40 431.73 11.51 185.2 49.5 1964 410.55 292.57 11.51 185.2 49.5 28.51 1962 104.89 7.803 49.5 11.51 185.2 49.5 28.51 1961 48.7749 276.35 15.1 185.2 64.0 5.30 49.5 28.51 1961 25.2646 278.35 15.0 25.38 24.47 64.0 24.326 39.60 44.34	6	1971	49203	_	1.50	495					5.50	495		
1969 61709 21A21 2851 1968 49186 20657 2851 1966 51840 43.354 2831 1965 31840 43.173 11.51 1852 2831 1964 410.55 29257 11.51 1852 2832 1962 480.29 38.872 38.872 38.872 48.883 48.883 48.883 48.883 48.883 48.883 48.883 48.883 48.883 48.883 48.884 <	10	1970	64386	_										
1968 49186 20657 2051 1967 64684 42364 20657 34160 1151 1852 2051 1965 35080 34160 1151 1152 2051 2051 2051 1964 410.55 29257 1151 1152 2051 2051 2051 2051 2051 2051 2051 2051 2051 2052 <td>11</td> <td>1969</td> <td>617.09</td> <td>L</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>466.</td>	11	1969	617.09	L										466.
1967 64684 43364 11.51 1852 64684 43373 11.51 1852 64684 43373 644 64684 43373 644 64684 43373 648872 648872 648872 648872 648873	12	1968	491.86							:			1007	7.7
1966 51840 43173 11.51 1.852 60.80 34160 11.51 1.852 60.80	13	1967	64684	<u> </u> _										
1965 36080 34160 11.51 1.852 64 410.55 29257 11.51 1.852 64 640.59 11.51 1.852 64 640.59	7.7	1966	-	_									:	
1964 410.55 29257 11.51 1.852 1887 1963 480.29 38872 1887 1887 1888	15	1965	-											
1963 48029 38872 1963 48029 38872 1962 10488 7803 495 1151 1852 0 0 640 550 495 2851 1961 11089 14627 150 495 1151 1852 0 0 0 640 5851 2851 502646 278924 27053 9610 25435 5380 2447 640 24326 3960 4434	16	1964		<u> </u>			11.51	1,852						
1962 10488 7803 495 1131 1852 0 0 550 495 2851 1961 11089 14627 150 495 1131 1852 0 0 0 550 495 2851 502646 278924 27053 9610 25435 5380 2447 640 24326 3960 44.84	1.7	1963												
1961 11089 14627 495 1131 1852 0 · 0 · 850 495 2851 487749 276352 1.50 495 1151 1852 0 · 0 · 850 495 2851 502646 278924 27053 9610 25435 5380 2447 640 24326 3960 4434	84	1962	-											
487749 276352 1.50 495 11.51 1.852 0 0 0 5.50 495 2851 502646 278924 270.53 9.610 254.35 5.380 2447 640 243.26 3.960 44.84	19	1961		<u> </u>										200.
502646 278924 27053 9,610 254,35 5,380 2447 640 24326 3,960 44,34	Super state	1_	╁	<u> </u>		495	131		0		5.50	495	10.82	20 77
	2 2		400646	┺		9,610	254.35	5,380	2447	640	24326	3,960	44.84	2225

(Attention) 3-8 years old: T. Volume 9-19 years old: M. Volume

28 Making the Forest Inventory Note.

An example of Foredt Inventory Note is shown in Table 2-15. Explanations on the survey items which are in the Porest Inventory Note are given here.

(1) Sub-compartment

Compartments having stands of different species or planted year were divided into subcompartments. The code for sub-compartments is alphabetical.

é.g: a, b, c....

(2) Forest type

There are some situations in which different tree heights or crown densities occur in the same sub-compartment. In this case, it is divided according to forest type and a number 1, 2, 3 is added.

(3) Distinction between Merchant (M), Total (T).

With regard to forest type, this is shown as either M or T of the average tree height or volume. With regard to the volume of natural trees, it is always shown as M.

(4) Area

Using the stock map drawn up from this survey, the area was measured according to forest type in hectares to two decimal places.

(5) Species

In the species column, codes according to usage such as native lease, etc, were added.

Codes are as follows

Species or usage	Code
Mahogany	S. mac
Cadamba	A. cad
Deglupta	E. deg
Maesopsis	M. emi
Cordia	C. all
Kauvula	B. mac
Other planting species	Other
Natural trées	Salural tree
Grass land	Grass land
Forest station	Fore station
Native reserve	Nati reserve
Native lease	Nati lease
Research area	Res area
Deserted village site	Des Vil Site

(6) Planted year

The planted year of the planted trees was checked from the stock map.

(7) Average tree height

Average tree height was obtained using the stereogrammes and it was interpreted from the aerial photographs in meters. The same applies to average dominant tree height.

(8) Crown density

Crown density was interpreted to the nearest 5% from the aerial photographs.

(9) Number of treessha.

Number of trees/ha was interpreted to the nearest m3 from the aerial photographs.

(10) Basal area

Basal area was obtained during stereogrammes and is given to the nearest m2.

(11) Yolume/ha

Volume per hectare was estimated from the aerial photographs by using stereogrammes

and the volume table, and is given to the nearest 10 m3.

(12) Stand volume

By the multiplying the area by the volume per hectare, this was obtained to the nearest m³.

(13) Natural trees

The merchantable volume per hectare was estimated from the aerial photographs, and, by multiplying the area obtained in (4), stand volume is obtained.

(14) Note

Plantation species except the six main species and the direct sowing plantations were coded as follows:

ode
pepe
lbiz
lsto
'aiva
. pen
lel
. sup
), sow

A N H. CO D T N C. CONTROL TO THE SAL TREEX TO AN TO THE SAL TREEX TO AN TO THE SAL TREEX THE SAL TREEX TO THE SAL TREES TO THE SAL TREES TO THE SAL TREES TO THE SAL TREES TO THE SAL THE SAL TREES TO THE SAL THE SA	e e	9 01 1 02 h 8 9 9 8	8 6 8 20 120 H 20	स के सुर १९६० के धर्म भारत	00 W W W W	30 30 31 30 30	8 6 9 50 230 15 70 7	3 6 10 100 600 23 140	8 6 9 50 230 15 70 2	8 6 9 100 400 29 100 63		የል. ፕዮፍና	(H) (H) (H)	~				000
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	964	i de la composition della comp	1961	196	394	961	198	196	961 0		NATE CEASE	AT Z		(B)		& ₽	00	
S H C E S		. A. C.	S. A	S. AAG	. 3 A D C	S. 3AC	0 19 10	. A	S. MAC	E. HAC	H 4 2	167.04	200	50.04 40.04	2 0 C	8 8		000
##### #### #### #### #### ####	, ,	900		72.75	8	1,00	11.38	8	я. 88	29	92.9	* 1						GLASS LAND FORE STATION NATE RESERVE

3. ADJUSTMENT FOR TIME DISCREPANCY

As mentioned is section 2.4.1, the aerial photographs used to make the stereogrammes were taken two years prior to the survey. Therefore, an adjustment is required to allow for this time discrepancy.

First, regression formulae were prepared for average tree height, average diameter, number of trees, volume, and diameter breast height for each species and tree age, and estimated values were calculated. In the calculations, regression calculations using the following six regression formulae were tried, and after considering the correlation coefficients and the differences between actual and estimated values, the most suitable regression formula was adopted.

Furmula 1. $\log Y = a + b (10/x)$

- 2. $10/Y = a + b (10/x) + C (10/x)^2$
- " 3. If $\log Y = a + b (10/x)$
 - 4. $\log Y = a + b \log x$
- " 5. 1/SQRT = a + b (10/x)
- 6. $\log Y = a + b \log x + C(10/x)$

Table 3-1~3-6 and Figures 3-1~3-7 show the regression formulae, regression curves and estimated values according to tree age which were adopted for each species and each stand factor.

In the case of mahogany, with regard to volume and average tree height, the calculations were made for Merchantable (7-19 years old), and Total (1-6 years old).

According to the regression curve, the present values were back dated to values for two years earlier. For example, in the case of volume the following calculation was done:

Volume 2 years earlier =

Present volume x Volume from regression formula (2 years earlier)

Volume from regression formula (present)

By this means the present volume for the sample plot was adjusted to a value for two years earlier. With regard to average tree height, etc., the same calculation was done to achieve adjustment, but with regard to the number of trees, a suitable regression formula could not be obtained, so the calculation was made form average diameter and breast height.

With regard to crown density, there was no need for adjustment as this could obviously be interpreted from the aerial photographs, so the interpreted values were used as they stood. Table 3.7 shows each value for both present and two years earlier for the sample plots.

Table 3-1 Estimate value of Merchantable Tree Height and Merchantable Volume for each age, mahogany

Age	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Tree height (m)	5. 81	6.10	6.35	6.60	6.83	7.05	7.25	7.45	7.63	7.81	7.98	8.14	8.30	8.40
Yolume (m³/ha)	14.90	19.81	25. 46	31.87	39.04	47.00	55. 74	65. 28	75.61	86.76	98.73	111.52	125. 14	139.00
				Regress	ion Fo	mula				•	Corr	elation c	oefficien	1
		:	log M	H=-	0.627	8 + 2.	1312 1	og A		•			γ=	0.40
			log M	V =	0.463	0 + 0.	3567 1	og A	Į				7 =	0.75

MH: Merchantable Tree Height MV: Merchantable Volume

A : Age

Table 3-2 Regression formula and estimate value of age: Total tree height

Age		E	stimate value fo	or each speci	ts.	
	Cadamba	Deglupta	Maesopsis	Cordia	Kaubula	Mahogany
1	3.22	1.86	0.85	2.44	1.27	0.40
2	5. 78	3.77	2.47	4.31	2.32	1.51
3	8.12	5. 70	4.69	6.01	3.30	3.28
4	10.34	7.63	7.16	7.61	4.24	5.69
5	12.48	9.58	10.09	9.15	5.14	8.72
6	14.54	11.53	13.36	10.62	6.02	12.37
7	16.56	13.49		12.06	6.88	
8	18.52	15. 45		13.46	7.73	[
9	20.45	17.42		14.82	8.56	
10	22.35	19.39		16.17	9.38	
11	24.21	21.36		17.48	10.19	
12	26.06	23.34		18.78	10.98	
13	27.85	25, 32		20.05	11.77	
14	29.65	27.30		21.31	12.55	
15	31.42	29.29		22.56	13.33	
16	33.18	31.28		23.78	14.10	
- 17	34.91	33.26	1	25.00	14.86	
18	36.63	35.26		26.20	15.61	
19	38.33	37.25		27.39	16.36	ļ ·
20	40.02	39.24		28.57	17.11	<u> </u>
Species			legression form	บใน		. γ
Cadamba		log TH =	0.5085 + 0	.8407 log .	A	0.90
Deglupta		leg TH =	0.2704 + 1	.0172 log	A	0.90
Maesopsis		log TH =	- 0.0713 + 1	.5385 log .	A	0.93
Cordia		log TH =	0.3869 + 0	.8217 log	A ·	0.78
Kaubula		log TH =	0.1048 + 0	.8672 log	А	0.90
Mahogany		log TH =	- 0.3982 + 1	.9155 log	A	0.91

Extent of adjustment until bold lines.

Indication for reference under bold lines.

γ : correlation coefficient TH : Total Tree Height

A :age

Table 3-3 Regression formula and estimate value of age: Average diameter

Age		E	stimate value (or each spec	les						
Me	Cadamba	Deglupta	Maesopsis	Cordia	Kaubula	Mahogany					
1	5. 47	5.47 1.79 1.52 3.06 0.80									
2	9.18	9.18 3.96 4.03 5.53 2.00									
3	12.42	6.30	7.13	7.82	3.41	3.66					
4	15. 40	8.76	10.69	10.00	4.99	5, 35					
. 5	18.20	18.20 11.32 14.64 12.09 6.70									
6	20.85	20.85 13.95 18.92 14.13 8.52									
7	23.40	23.40 16.64 16.12 10.45									
8	25.85	19.39		18.07	12.46	11.36					
9	28.23	23. 23 22. 20 19. 98 14. 56									
10	39.54	30.54 25.05 21.86 16.74									
11	32.79	32.79 27.94 23.72 18.99									
12	34.99	34.99 30.87 25.55 21.30 37.15 33.83 27.35 23.63 39.27 36.83 29.14 26.11 41.34 39.86 30.91 28.61									
13	37.15										
14	39.27										
15	41.34										
16	43.38	42.92	<u> </u>	32.66	31.15	33.40					
17	45. 39	46.01		34.40	33.75	36.19					
18	47.37	49.13		36.12	36.40	39.02					
19	49.33	52.27		37.83	39.09	41.91					
20	51.25	51.25 55.43 39.52 41.84									
Species		Regréssion formula									
Cadamba		log D = 0.7373 + 0.7470 log A									
Deglupts		$\log D = 0.2526 + 1.1461 \log A$									
Maesopsis		log D =	0.1814 + 1.4	078 log A		0.87					
Cordia		log D =	0.4856 + 0.8	541 log A		0.86					
Kasbula	1	log D=-	0.0977 + 1.3	215 log A		0.96					
Mahogany		log D=-	0.0674 + 1.3	214 log A		0.96					

Extent of adjustment until bold lines. Indication for reference under bold lines γ : Correlation coefficient

D : Average diameter

A : Age

Table 3-4 Regression formula and estimate value of age' Number of trees

Age	·		Estimate va	lue for each	species				
	C adamba	Deglupia	Massopsis	Cordia	Kaubula	Mahogany			
1	405. 22	405. 22 359. 18							
2	311.00	311.00 No suitable estimate value 291.13							
3	321.94				271.44	261.06			
4	312.82				262.10	236.10			
5	307.46	367.46 256.65							
6	303.95	303.95 253.08 301.46 250.56							
7	301.46								
8	299.61	248.69							
9	293.18	298.18							
10	297.04	297.04 246.09							
11	296.11	296.11 245.15							
12	295.33	296. 33 244. 37 243. 71							
13	291.68								
14	294.12	294.12 243.15							
15	293.64	293.64 242.67							
16	293.22				242.24	188.31			
17	292.84				241.87	187.48			
18	292.51	292.51 241.54							
19	292.22	292.22 241.24							
20	291.95	291.95 240.97							
Specie	3	Regression formula							
Cadamb	3	log N = 2.4578 + 0.0150 (10/A)							
Deglup	la	No suitable formula (10/A)							
Maesop	sis	•							
Cordia	•		•						
Kasbula	,	log N=	2.3728 + 0.0	0182 (10/	'A}	0.10			
Mahoga	ay	log N=	2.2421 + 0.	0524 (10/	(A)	0.21			

Extent of adjustment until bold lines. Indication for reference under bold lines. γ : Correlation coefficient

N: Number of trees/ha

A: Age

Table 3.5 Regression formula and estimate value of age: Total Volume

Age												
7,50	Cadamba	Deglupta	Maesopsis	Cordia	Kaubula	Mahegany						
1	1.57	0.00	0.98	0.27	8.42	4. 23						
2	7.37	0.02	4.08	1.59	15.85	9.06						
3	18.21	0.76	9.41	4.51	22.95	12.66						
4	34.60	4.70	17.02	9.43	29.84	15. 33						
5	56.91											
6	85. 57	29.11	39.26	26.65	43.21	18.94						
7	20.43	49.03	53.94	39.57	49.74							
8	162.35	72.48	71.03	55.73	56.19							
9	211.12	98.24	90.54	75. 38	62.56	1						
10	267.04	125. 29	112.50	98.76	68.88]						
н	330.29	330.29 152.88 136.92 126.10 75.14										
12	Į	180.46 163.81 81.36										
13		207.65 193.18 87.53										
14		231.19 225.06 93.65										
15		259.92 259.44 99.74										
16		284.75 296.35 105.79										
17	İ	338.61 335.78 111.82										
18		331.50	377.76		117.81							
-19		353.42 422.23 123.77										
20		374.38 469.37 129.70										
: Species		Regression formula										
Cadamba		$\log TV = 0.1963 + 2.2303 \log A$										
Deglupla	1	$\log T V = 3.0487 - 0.9508 (10/A)$										
Maesopsi	s	log TV =	- 0.0096 + 3	2.0608 log	A .	0.83						
Cordia		log TV=	- 0.5693 + 3	2.5639 log	A	0.92						
Kaubula		log TV=	0.9251 +	0.9130 log	A	0.71						
Mahogany	1	log TY =	0.7509 +	0.7837 log	A	0.31						

Extent of adjustment until bold lines. Indication for reference under bold lines. γ: Correlation coefficient ΤΥ: Total Volume (m³/ha)

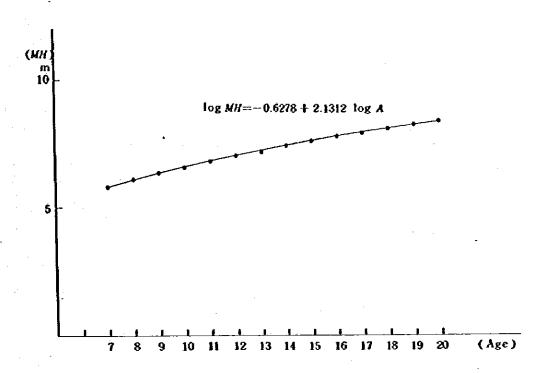
A: Age

Table 3.6 Regression formula and estimate value of age: Basal area

	Yee	Cadambe	Deglupta	Maesopsis	Cordia	Kaubula	Mahogany					
7	1	0.78	0.00	0.17	0.16	0.01	0.02					
	2	2.14	0.00	0.69	0.62	0.08	0.03					
	3	3.84	0.11	1.56	1.35	0.24	0.26					
1	4	5. 83	0.62	2.79	2.36	0.50	0.53					
	5	8.04	1.72	4.38	3.64	0.90	0.91					
	6	10.47	10.47 3.38 6.32 5.18 1.46									
ŀ	7	13.09	13.09 5.49 8.63 6.98 2.20									
١	8	15.88	15.88 7.90 11.29 9.03 3.13									
	ġ	18.83	18.83 10.48 11.35 4.26									
1	10	21.93										
	11	25, 17	25. 17 15. 81 16.74 7.24									
1	12	28.55	28.55 18.45 9.11 32.05 21.02 11.25									
l	13	32.05										
	14	35,68	35, 68 23.51 13.68 39.43 25.90 16.41									
-	15	39.43										
	16	43.29	28.19			19.46	16.37					
١	17	47.25	30.38	3		22.8	19.02					
	18	51.33	32.47	7	ļ	26.5	5 21.92					
1	19	55, 50	34.4	7		39.6	2 25.07					
١	20	59.78	59.78 36.36 35.06									
Ī	Species			Regression fo	omula	:	γ					
Ì	Cadanka		log BA=	- 0.1057 +	1.4468 log	A .	0.81					
	Deglupta		log BA=	2.0026 —	0.8840 10 /	'A	0.92					
	Maesopsis	,	log BA=	- 0.7686 +	2.0169 log	A	0.78					
	Cordia		log BA=	-0.7927 +	1.9362 log	A	0.89					
	Kaubula		log BA=	- 1.8874 +	2,6380 log	A	0.90					
	Mahogany	- [log BA=	- 1.7734 +	2.4810 log		0.92					

ntention)

Extent of adjustment until bold lines.


Indication for reference under bold lines.

 γ : Correlation coefficient

Ba: Basat area (m2/ha)

A: Age

Fig. 3-1 Regression curve of age' Merchantable Tree Height (Mahogany)

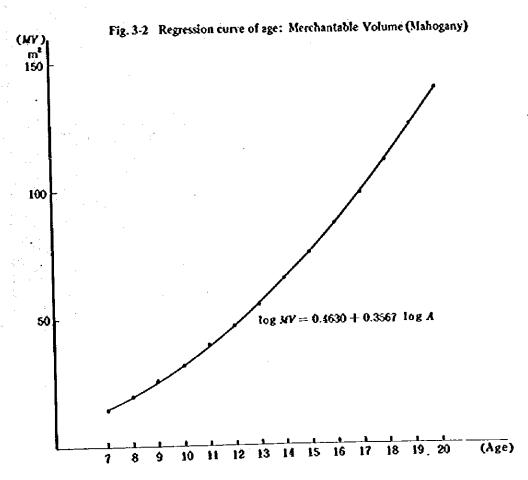
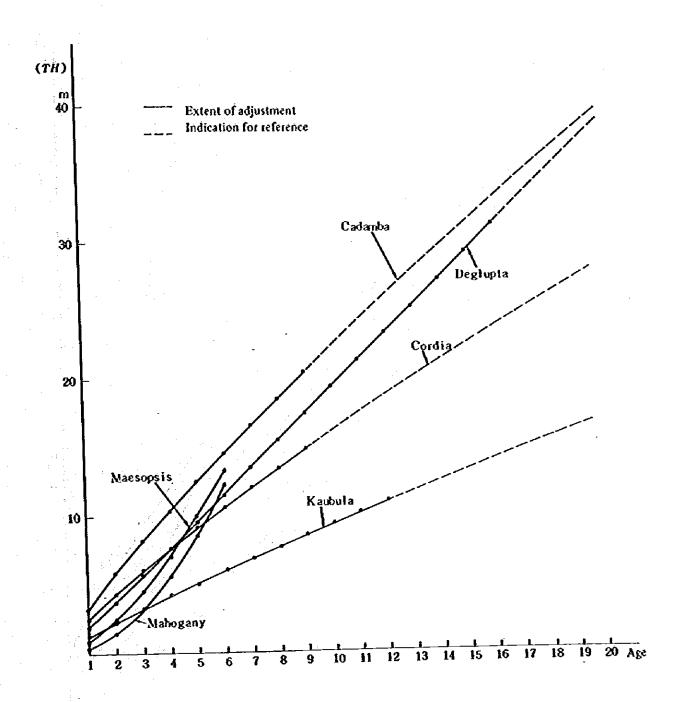



Fig. 3-3 Regression curve of age: Total Tree Height (6 species)

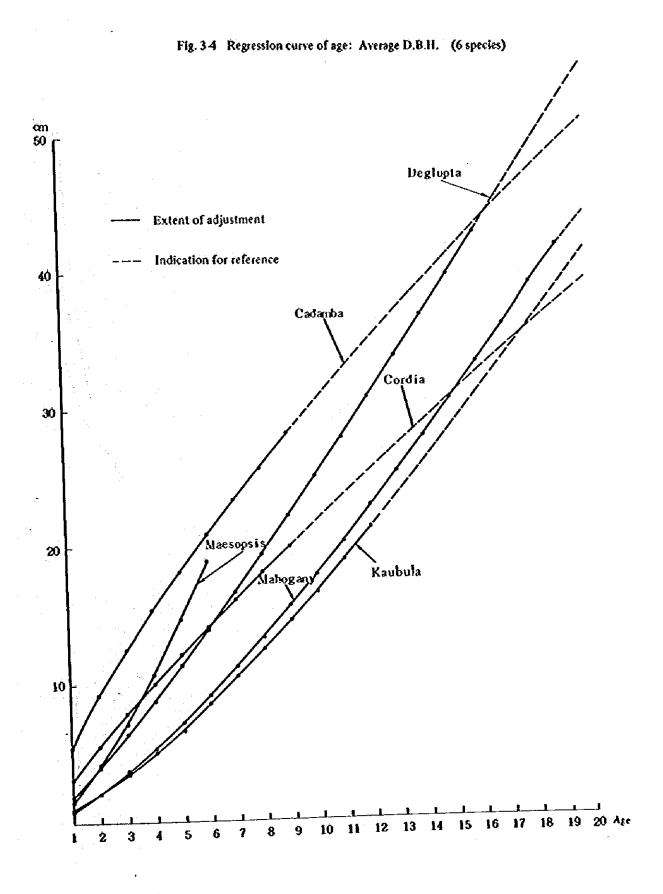


Fig. 3.5 Regression curve of age: Tree number (only 3 species)

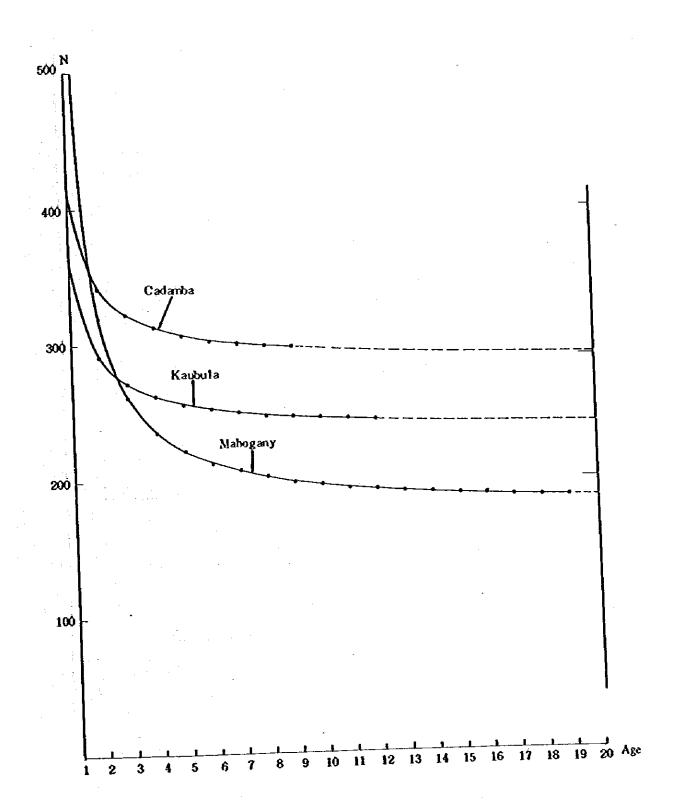
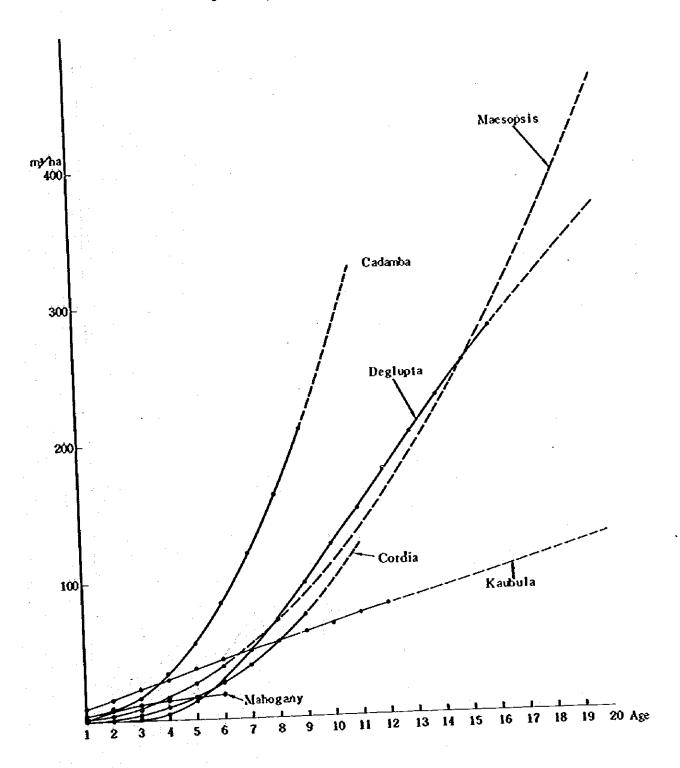



Fig. 3-6 Regression curve of age: Total Volume

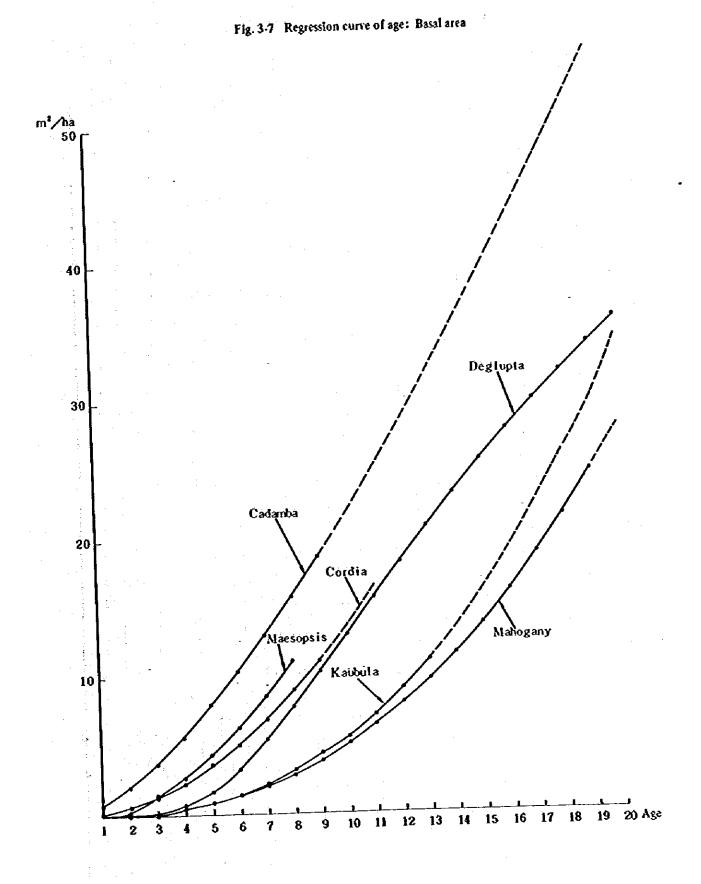


Table 3-7 Each stand value for both present and 2 years earlier for sample plots

Sample		Ave. h	eight	Ave. o	lameter	Nu	mber	T	· Volu	me]	Bassi	\$163	
plot No.	Species	2 years	Present	2 years	Present	2 years	bies	ent	2 years earlier	Present	2 years earlier	present	
1	Mahogany	9.3	9.7	26.60	30.81	424	4	10	170.2	215.7	23.55	30.56	
2		7.4	7.7	27.87	32.27	193	1	90	67.5	85.6	11.79	15. 54	
3	,	9.1	9.5	28.74	33.58	112	,	110	48.9	62.9	7.27	9.74	
4	,	7.3	7.6	30.01	35.06	224	1 2	220	83. I	106.8	15.86	21.24	İ
5	•	6.5	6.8	35.08	40.98	214	1 2	210	100.4	129.1	20.68	27.69	
6	•,	6.4	6.7	29.34	34.62	204	1 2	200 	66.8	87.2	13.81	18.83	
7	,	6.1	6.4	36,98	43,63	143	•	140	64.6	84.4	15.35	20.94	
8		5. 2	5.4	28.73	33.90	113	: [110	29.2	38.1	7.28	9.93	
9		7.0	7.3	31.43	37.49	143	١	140	57.3	76.1	11.09	15.45	
10		8.7	9.1	39.67	36.58	22	•	220	99.9	132.8	16.59	23.12	
11		7.8	8.2	28.39	33.87	13	3	130	47.8	63, 5	8.41	11.71	ŀ
12	,	11.9	12.5	20.94	25.30	26	5	260	82.6	112.0	9.16	13.07	1
13	,	9.4	9.9	26.43	31.93	32	8	320	122.7	166.5	17.97	25, 63	ı
14	•	8.0	8.4	28.57	34.51	. 14	3	140	55.2	74.9	9.18	13.10	ı
15		8.3	8.8	25. 29	31.00	28	7	280	89.7	124.6	14.42	21.13	١
16	•	7.1	7.5	28.14	34.50	18	5	180	60.8		11.49	16.83	
17	•	7.6	8.1	22.99	28.67	1 18	4	150	38.2		6.40		1
18		9.5	10.1	24.5	30.60) 1	5	180	62.3		1	13.24	ı
19		7.2	7.0	25.5	31.9	1 1	5	190	59.1			1	ı
20	•	6.4	6.8	3 19.1	24.3	5 1	76	170	i .				Į
21		6.0	6.	22.9	3 29.2	5 2	37	230	i			1	l
22	•	4.9	5.1	2 17.5	5 22.3	3 I	96	190					
23	1.0	5.9	6.	3 16.3		1	24	120	1				-
24		5.9	6.		l l		96	190	1			1	
25		5.6		1	1	ļ	79	270	Ι.	1	L		
26		6.	ı.		. 1		59	250	Į.	- 1	l l	1	
27		4.1		· 1	1		35	130			i	1	
28		4.9	- 1			l	349 ~ a	530	1	1			
28		6.	. .	7 11.0	l l		239	23	Ì	i	ļ.	1	
30		6.	- 1	.8 8.4			177	17 17			l l		
31	i. *	7.	,	5 10.	1	1	178	20 20	l l	- 1	1		43
3		5.		5 10.	1		208	22		2 28		Į.	66
3	, l	4.			26 12.	Į.	231	24		.4 27	1		24
3		1	8 10		37 10.	1	257 56		ı	į.	l l	I.	.31
3	5	3.	4 9	.0 4.	53 8.	88	30	<u> </u>	~`				

37				·									
38	36	Mahogany	ogany 3.6	9.5	4.42	8.67	352	320	21.4	29.4	0.54	1.89	
39	37	,	2.0	7.4	2.63	6.58	295	280	16.5	27.9	0.16	0.94	
40	38	,	23	8.6	3.38	8.44	345	330	16.6	28.1	0.31	1.85	
41	39		0.3	2.6	0.59	2.52	330	260	3.7	11.2	0.01	0.13	
11	40		0.3	2.7	0.46	1.95	340	290	3.9	11.7	0.01	0.09	
7.8 8.2 24.50 29.59 246 240 68.7 93.2 11.57 16.56 16.5	41	,	6.7	7.1	21.49	25.96	686	670	154.8	210.0	24.87	35. 47	
43 44 7.8 8.2 22.11 26.71 266 260 70.3 95.4 10.22 14.5 46 8.0 8.8 11.83 17.89 84 80 9.2 15.7 1.08 2.0 47 Cadambe 17.8 22.0 26.23 31.65 284 280 151.7 265.8 15.31 22.0 48 48 49 19.0 23.5 26.77 32.30 343 340 200.4 351.1 19.34 27.8 49 40 400 13.6 42.4 3.09 43.4 43.6 44.8 43.09 43.1 43.6 44.8 43.09 43.1 43.6 44.8 43.09 43.1 43.6 44.8 43.09 43.1 43.6 44.8 43.09 43.1 43.6 44.8 43.09 43.1 43.6 44.8 43.09 43.1 43.6 44.8 43.09 43.1 43.6 44.8 43.09 43.1 43.6 44.8 43.09 43.1 43.6 44.8 43.09 44.8 43.09 44.8 43.09 44.8 43.09 44.8 43.09 44.8 43.09 44.8 43.09 44.8 43.09 44.8 43.09 44.8 43.09 44.8 43.09 44.8 43.09 44.8 43.09 44.8 43.09 44.8 43.09 44.8 43.09 44.8 43.09 44.8 43.09 44.8 43.09 44.8 45.3 46.8 46.8 46.8 46.8 46.8 46.8 46.8 46.8	42		7.0	7.4	19.93	24.07	573	560	109.8	148.9	17.86	25. 48	
45	43		7.8	8.2	24.50	29.59	246	240	68.7	93.2	11.57	16.50	
46	44		7.8	8.2	22.11	26.71	266	260	70.3	95.4	10.22	14.58	
46	45		6.5	6.9	15.02	18.73	462	450	52.2	74.6	8. 19	12.40	
16.0 18.5 22.0 23.5 31.3 31.3 163.9 287.0 163.9 287.0 16.1 19.9 215.7 377.9 21	46		8.0	8.8	12.83	17.89	84	80	9.2	15.7	1.08	2.01	
48	47	Cadamba	damta 17.8	22.0	25.23	31.65	284	280	151.7	265.8	15, 31	22.02	
16.1 19.9	1		15.0	18.5					163.9	287.0	.		
49	48		19.0	23.5	26.77	32.30	343	340	200.4	351.1	19.34	27.86	
50			16.1	19.9	7.4				215.7	377.9			
50	49	,	, š.š	10.2	10.53	15. 43	268	260	8.7	27.2	2.32	4.86	
51	50		7.5	11.4	9.80	14.36	410	400	13.6	42.4	3.09	6.46	
52	51		5.6	10.0	9.56	16. Ò4	256	250	6.4	30.1	1.85	5.05	
53	52		4.8	8.0	6.91	11.65	294	280	3.2	14.8	1.10	2.99	i
54	53		3.6	9.1	6.05	13.73	435	410	2.7	31.3	1 '	6.06	ĺ
55 Deglupts 23.9 27.4 35.29 47.12 245 25 36.4 396.9 17.7 20.3 326.4 396.9 140 157.0 190.9 14.32 17. 13.0 14.9 139.7 169.8 139.7 169.8 14.2 19.0 13.32 18.51 400 400 41.1 102.3 4.60 105 14.8 20.8 16.93 24.88 360 369 46.6 163.0 5.48 17.	54		4.2	10.5	7.32	16.62	316	300	3.3	38.2	1.32	6.52	
56 20.9 24.0 33.91 39.52 159 140 157.0 190.9 14.32 17.0 57 13.0 17.4 13.41 18.68 480 480 45.3 112.7 5.63 13.51 58 14.2 19.0 13.32 18.51 400 400 41.1 102.3 4.60 10.51 59 14.8 20.8 16.93 24.83 360 360 46.6 163.0 5.48 17.0	55	Deglup	eglupia 23.9	27.4	35. 29	41.12	243	220	308.3	374.8	24.36	29.21	ł
56			17.7	20.3		}	}	ļ	326.4	396.9			l
57	56	5	20.9	24.0	33.91	39.52	159	140	157.0	Į.	1	17.17	ļ
57			13.0	14.9			1		139.7	169.8	i		ł
58	57	,	13.0	17.4	13.44	18.68	480	480	45.3	112.7	1	13.17	
59 14.8 20.8 10.95 24.05	54	8	14.2	19.0	13.32	18.51	400	40	41.1	102.3	i	10.75	1
	5	9	14.8	20.8	16.93	24.83	360	36	1	ì		17.50	ı
60 13.7 19.3 14.85 25.64 20 20	6	0	13.7	19.3	14.85	21.84	270	27	- 1			10.12	ł
61 , 4.5 7.6 5.42 9.13	6	i ,	4.5	7.6	5, 42	9.74	170	17	1	1		l l	1
62 , 3.7 6.3 3.44 0.10	6	2	3.1	6.3	3.44	6.18	90	9	1	- }	1		ı
63 4.3 8.8 5.40 11.94 40 40 0.0 2.7 0.00	1	1	4.5	8.8	5.40	11.94	44) 4	I I	- 1			1
64 , 3.4 6.8 4.22 9.34 40 40 0.0 1.5 0.00	Į.	1	3.	6.8	4.22	9.34	4	0 4	· [1	ł	1	
65 , 1.3 4.1 1.24 4.37 100 100 0.0 1.8 0.00	L]]	1.	3 4.1	1.24	4.37	<i>i</i> 10	0 1	1 .	1	1		ļ
66 2.3 7.2 2.38 8.37 50 50 0.0 1.8 0.00	1		2	3 7.2	2.3	8.3	7 5	0	50 0.	.0 1	.8 0.00	0.2	5

-

	-											
٠ [67	Maesopsis	7.7	14.3	10.33	18.30	290	270	21.0	48.5	3.15	7.13
	68		7.4	11.2	9.22	16.32	278	200	11.3	26.1	1.85	4.18
l	69	,	6.4	10.7	9.06	18.61	247	220	11.2	32.0	2.14	6.00
	70	,	4.9	11.6	7.79	16.00	305	270	11.3	32.5	1.91	5.44
	71	•	2.4	6.9	3.97	10.52	420	340	4.2	17.5	0.73	2.96
	72	•	2.3	6.8	3.53	9.37	400	300	3.4	14.1	0.51	2.07
	73	Cordia	11.9	14.6	16.45	19.78	500	500	55. 5	105.8	9.45	15. 37
			6.8	8.3			.		48.8	92.9		
-	74	•	9.5	11.7	15, 63	18.79	630	630	46.6	88.8	10.74	17.46
		•	5.9	7.3	ļ				45.1	85.9	1 1	
-	75	•	11.8	15.5	13.46	17.95	330	330	23.2	55.0	4.35	8.34
	76	•	13.9	18.3	17.87	23.83	120	120	17.4	41.3	2.79	5. 35
ţ	77	•	5.4	7.5	7.17	10.13	310	310	4.3	12.2	1.34	2.50
	78		7.3	10.2	8.56	12.03	370	370	7.3	20.7	1.93	4.24
	79		5.7	8.7	7.69	11.89	230	230	2.7	10.1	0.95	2.56
1.	80		7.9	12.1	9.26	14.32	330	330	7.5	27.7	1.97	5. 30
•	81		3.4	6.0	4.79	8.67	320	320	1.1	6.8	0.49	1.89
4	82	•	3.4	6.0	4.79	8.67	350	350	1.3	7.7	0.51	2.06
-	83	,	3.0	7.5	3.47	8.88	310	310	0.4	7.2	0.23	1.93
	84	•	2.4	6.0	3.28	8.37	320	320	0.3	5.6	0.21	1.75
	85	Kaubula	9.7	13.4	15. 99	20.34	300	300	91.3	107.8	6.03	9.75
		,	5.1	6.0]			60.5	71.5		
•	85	,	8.5	10-0	15.93	20.27	240	240	61.8	76.5	4.78	7.74
		,	5.0	5.9					45.8	54.1		
-	87	1	4.7	7.3	5, 17	1 .	358	i .	31.3	49.9	0.76	2.84
	88	,	3.7	5.7	3.72		279	1	1		1	1.13
	89		1.5	2.7	1.50		226	1	1	18.8		0.22
	90	•	2.1		. 1	1 .	i	. 1	ł .	11.8		1 1
	91		1.2	1		ł		1	1	1		0.30
	92	,	1.5	3.9	0.8	3.74	350	350	13.0	35.3	0.02	0.37

•

4. OTHERS

We would like to mention here the necessity of right tree on right site, and site index survey.

At present, in Fiji, line planting in which the same species are planted in a line after deciding direction has been followed. Because this method is simple and clear, it is easy to prepare seedlings and the planting method is easy. Also the cultural work is easy. However, it does not seem desirable to plant the same species regardless of the ground factors, such as topography and soil conditions. For example, in the case of mahogany, this species flourishes along ridges and on steep hillsides, whereas in valley bottoms and low areas growth seems poor. Some areas are left with few trees even if they have been planted. In such places it is obviously more effective to plant species for which the environment is better suited rather than mahogany. It seems to be important to carry out surveys on which trees are suitable for which areas, and to estimate what degree of growth can be expected.

..

