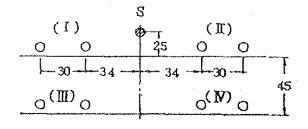
- (7) Coeficiente de blindaje y grado de equilibrio de la linea de comunicación
 - (i) Aunque el coeficiente de blindaje de la linea de comunicación varía según la capa de blindaje que se utilice, se adoptará el valor de medición práctica o el valor de diseño. En el Cuadro 4.6 se indican los valores del coeficiente de blindaje K₁.

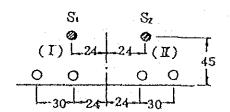
Cuadro 4.6 Coeficiente de blindaje K₁ de la linea de comunicación

Clase de cable de	Coeficiente	de blindaje K _l	V -4-
comunicación	60 Hz	800 Hz	Nota
Alambre desnudo, alambre RD, cable sin capa de blindaje	1,0	1,0	
Cable con forro de plomo, cable con capa de blindaje	0,95	0,15	En el caso de que la capa de blindaje fuera fina
Cable con blindaje de fleje de acero	0,6	0,1	
Cable con blindaje de fleje de acero	0,2	0,03	Cable de alto blindaje
Cable de conductos	0,2	0,03	

(ii) El grado de equilibrio λ del circuito de comunicación, se utiliza el valor de medición práctica cuando existan los valores de medición y en el caso de que no los existan, se adoptarán los valores del Cuadro 4.7.

Cuadro 4.7 Grado de equilibrio λ del circuito de comunicación


Clase	Grado de equilibrio λ	Nota
Linea de comunicación de conductor desnudo	1 (46 dB)	
Cable de comunicación, alambre RD	$\frac{1}{1000}$ (60 dB)	(En los cables nuevos, muchos están en alrededor de 70 dB)
Conmutador a magneto	$\frac{1}{1000}$ (60 dB)	
Conmutador automático	1 200 (46 dB)	
Conmutador de batería común	1 (46 dB)	

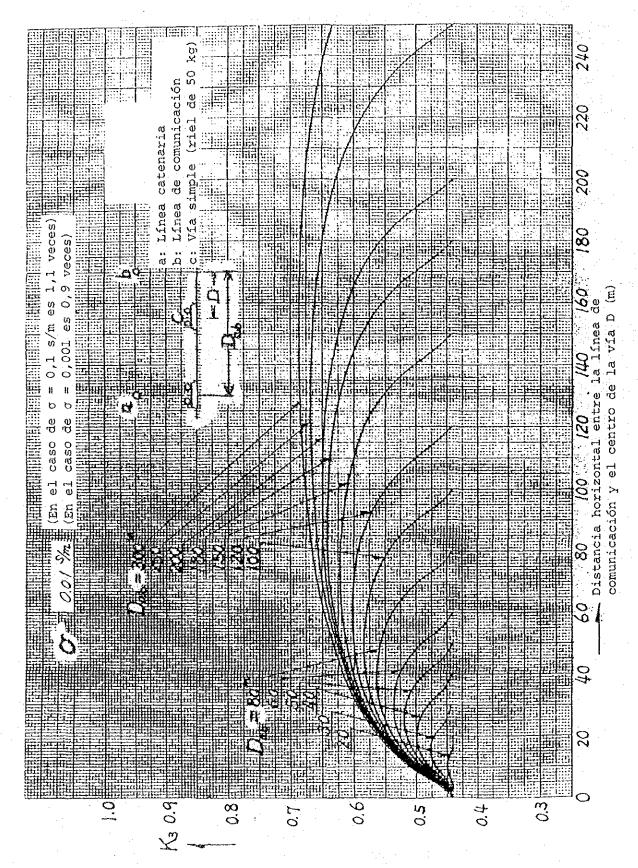

(8) Coeficiente de blindaje K₂ de la línea de pantalla

En el Cuadro 4.8 se detalla el ejemplo del coeficiente de blindaje de la línea de pantalla de la línea de comunicación desnuda.

Cuadro 4.8 Coeficiente de blindaje K_2 de la línea de puesta a tierra

En el caso de un hilo de línea de apantallamiento En el caso de dos hilos de línea de apantallamiento

Cantidad de hilos de la	Posi	Resistencia de tierra (Ω/km) Posición del 0 0,5 1														
linea de appantalla-	de:	-	()	0	,5	1									
miento	CIFC		4 mm Cu	5 mm Cu	4 mm Cu	5 mm Cu	4 mm Cu	5 mm Cu								
1	(I)	(11)	0,867	0,776	0,913	0,872	0,940	0,915								
1	(III)	(IV)	0,872	0,785	0,916	0,877	0,942	0,917								
2	(I)	(11)	0,736	0,597	0,862	0,816	0,917	0,901								


f = 50 Hz $\sigma = 0.01 \text{ s/m}$ S: Linea de apantallamiento

(9) Coeficiente de blindaje K₃ de otras vías

El coeficiente de blindaje de otras vías para el caso de que las otras vías estén próximas al circuito de alimentación, se obtiene mediante el Cuadro 4.9 y las Fig. 4.17 - Fig. 4.20.

Cuadro 4.9 Coeficiente de blindaje debido a otras vías (K_3)

	engitud de exposición paralela		1000 - menos de 1500 m	1500 - menos de 3000 m	Más de 3000 m	
En el caso de que esté entre la línea	1	0,93	0,87	0,81	Fig. 4.17	
de comunicación y el circuito de	2	0,87	0,76	0,67	Fig. 4.19	
alimentación	3	0,83	0,71	0,60		
	4	0,80	0,65	0,54		
En el caso de que esté fuera de la	1	0,97	0,95	0,92	Fig. 4.18	
línea de comunicación y el circuito de	2	0,95	0,90	0,86	Fig. 4.20	
alimentación	3	0,93	0,88	0,84		
	4	0,92	0,86	0,82		

blindaje $extbf{K}_3$ debido a otras vías (Vía simple) 4.17 Coeficiente de

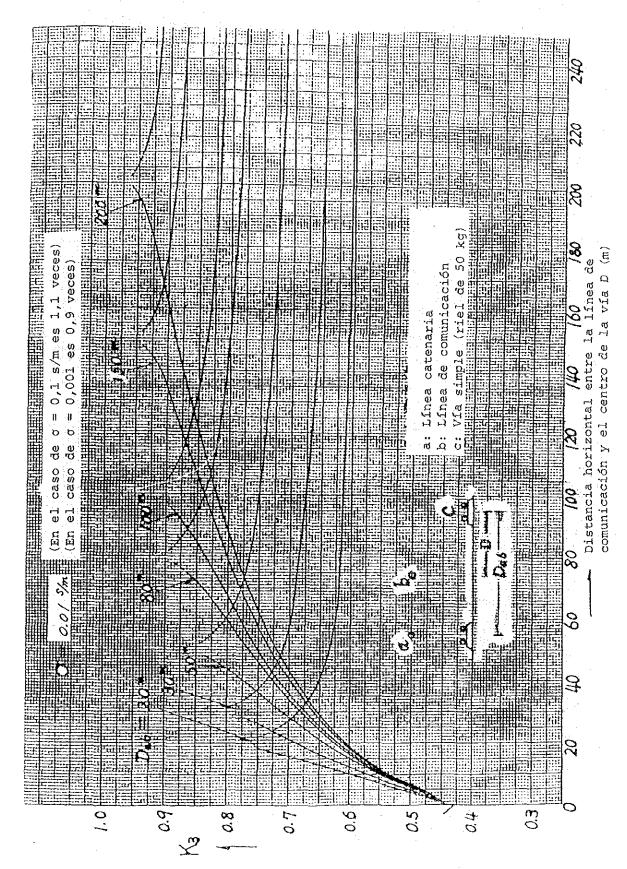


Fig. 4.18 Coeficiente de blindaje K_3 debido a otras vías (Vía simple)

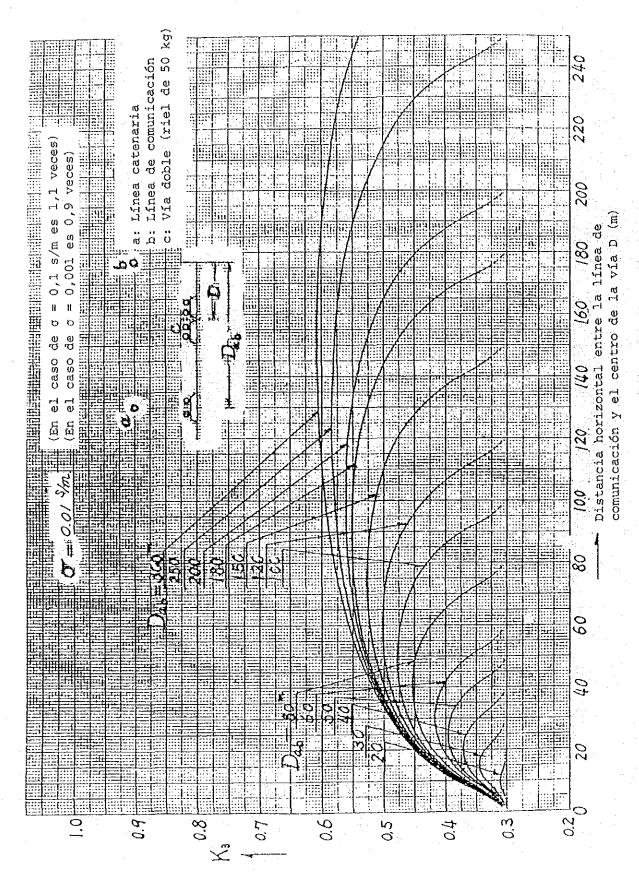
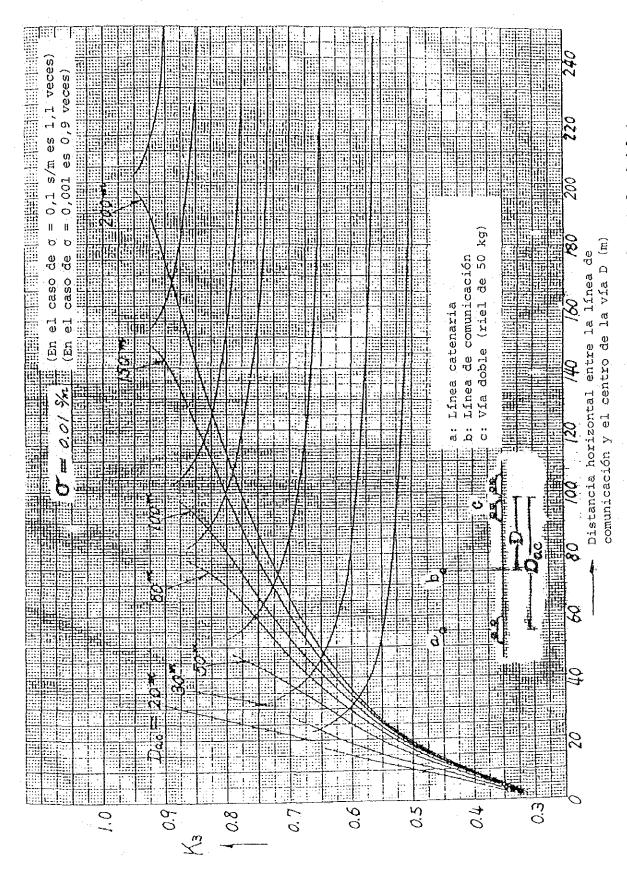



Fig. 4.19 Coeficiente de blindaje κ_3 debido a otras vías (Vía doble)

Coeficiente de blindaje K_3 debido a otras vías (Vía doble) 4.20 Fig.

(10) Coeficiente de blindaje K_4 del túnel

El coeficiente de blindaje del túnel se obtiene del Cuadro 4.10.

Cuadro 4.10 Coeficiente de blindaje K_4 del túnel

Longitud del túnel (m)			Más de 1000 m				
Conductividad de la tierra σ (s/m)		500 - menos de 1000 m	A Committee of the Comm	Tramo fuera de lo indicado a la izquierda			
σ ≧ 0,06	1,0	0,800	0,800	0,600			
0,06 > σ ≧ 0,006	1,0	0,785	0,785	0,570			
0,006 > σ	1,0	0,775	0,775	0,550			

El coeficiente de blindaje del túnel, se aplica en el caso de que el túnel tenga barra de refuerzo y no se aplica para los túneles sin armadura de hierro.

(11) Coeficiente de blindaje K_5 de vías elevadas

El coeficiente de blindaje debido a las vías elevadas, se obtiene del Cuadro 4.11.

Cuadro 4.11 Coeficiente de blindaje K_5 de las vías elevadas

Altura de la vía			Más de 1000 m				
elevada (m) Conductividad de la tierra σ (s/m)		500 - menos de 1000 m	extremos	Tramo fuera de lo indicado a la izquierda			
σ ≧ 0,06	1,0	0,785	0,785	0,57			
0,06 > σ ≧ 0,006	1,0	0,77	0,77	0,54			
0,006 > σ	1,0	0,76	0,76	0,52			

(12) Coeficiente de blindaje K_6 debido a la corriente de derivación de la corriente del riel

El coeficiente de blindaje debido a la corriente de derivación de la corriente del riel se obtiene de los Cuadros 4.12 y 4.13.

Cuadro 4.12 Coeficiente de blindaje $K_{\hat{6}}$ debido a la corriente de derivación de la corriente del riel (60 Hz)

Distancia desde la subestación o el	К	s	
puesto de secciona- miento de alimenta- ción (km)	Resistencia de fuga del riel 3 Ω•km	Resistencia de fuga del riel 1 Ω•km	Nota
0 ~ 1	0,59	0,65	
1 ~ 2	0,75	0,87	
2 ~ 3	0,86	0,97	
3 ~ 4	0,94	1,0	
4 ~ 5	0,98	1,0	

Cuadro 4.13 Coeficiente de blindaje K₆ debido a la corriente de derivación de la corriente del riel (800 Hz)

Distancia desde la subestación o el puesto de secciona- miento de alimenta- ción (km)	Resistencia de fuga del riel 3 Ω•km	s Resistencia de fuga del riel 1 Ω•km	Nota
0 ~ 1	0,74	0,84	
1 ~ 2	0,98	1,0	
2 ~ 3	1,0	1,0	

(13) Tensión de inducción electrostática Vs y corriente de inducción electrostática Is

La tensión de inducción electrostática que se produce en la línea de comunicación desnuda o cable de comunicación que no tenga la capa de blindaje para el caso de la vía simple se indica en la Fig. 4.21 y para el caso de vía doble se indica en la Fig. 4.22.

Asimismo, con respecto a la corriente de inducción electrostática Is se indica en la Fig. 4.23.

En el Cuadro 4.14 se indica el coeficiente de blindaje electrostático k debido al alambre de tierra aéreo, etc.

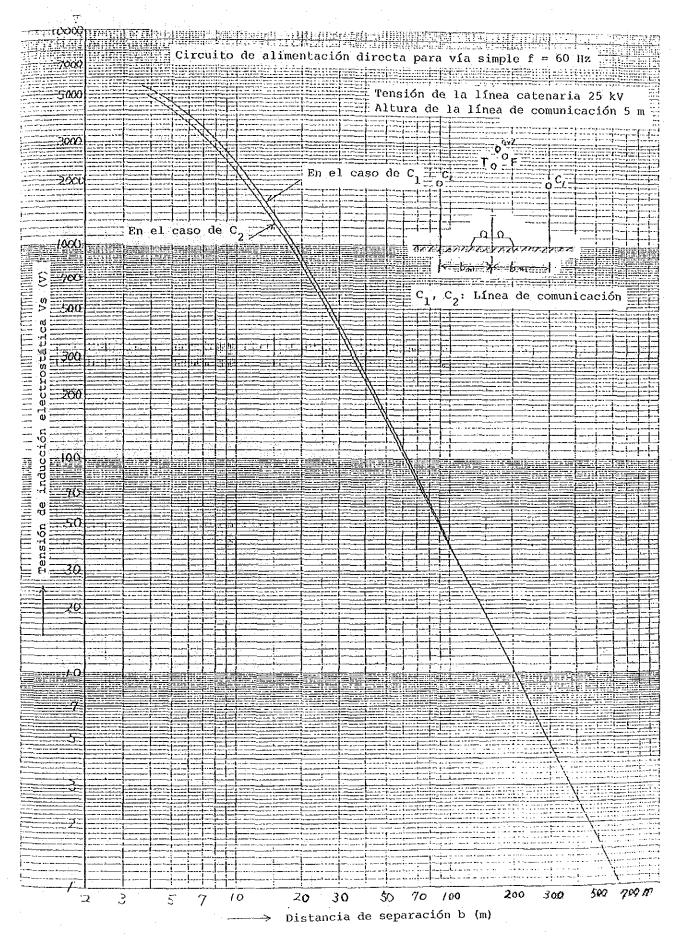


Fig. 4.21 Tensión de inducción electrostática Vs

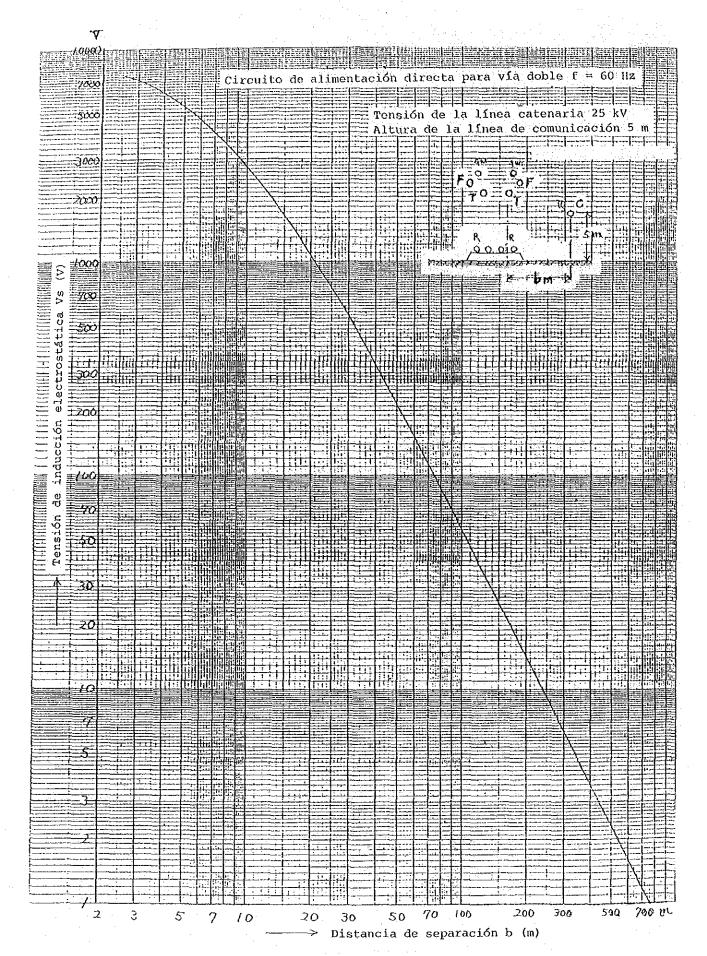
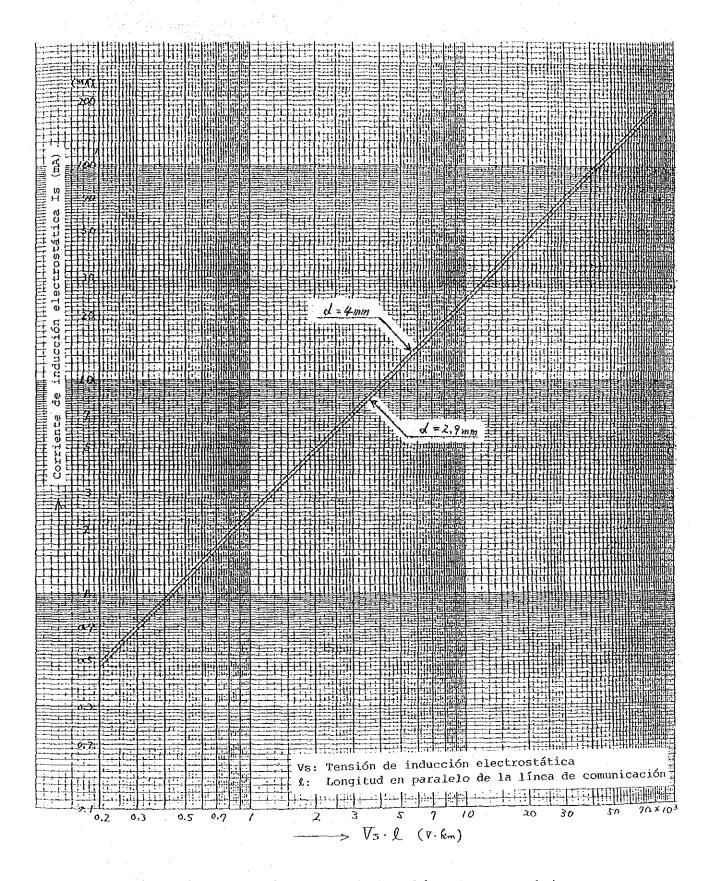
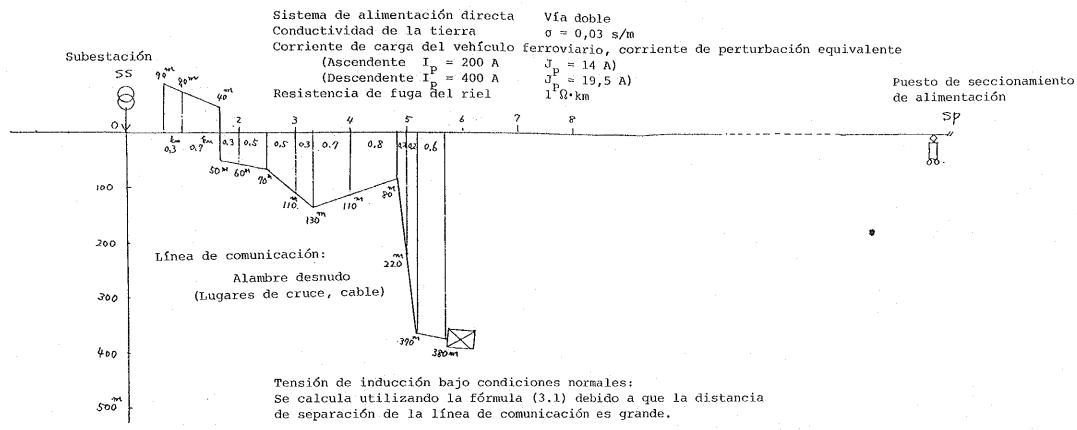


Fig. 4.22 Tensión de inducción electrostática Vs

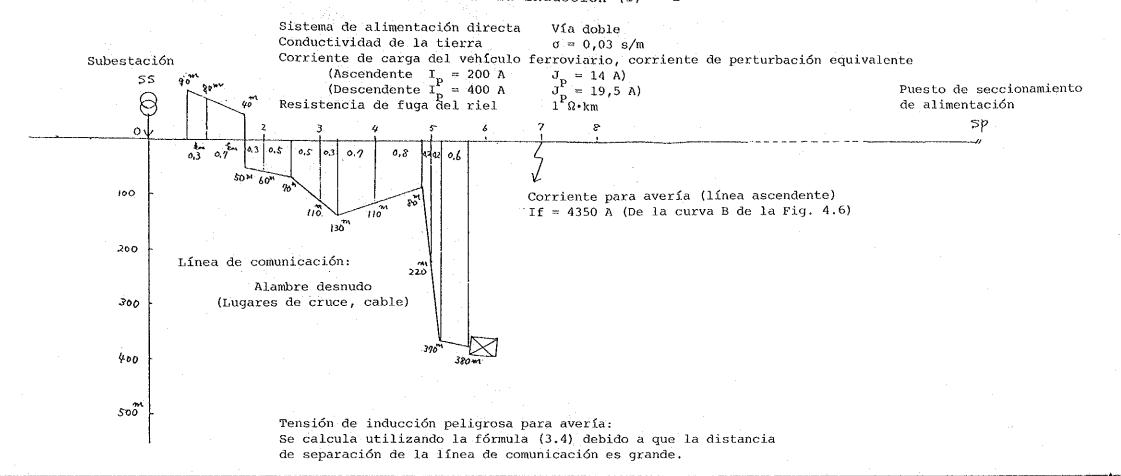



Fig. 4.23 Corriente de inducción electrostática Is

Cuadro 4.14 Coeficiente de blindaje electrostático k debido al alambre de tierra aéreo y demás

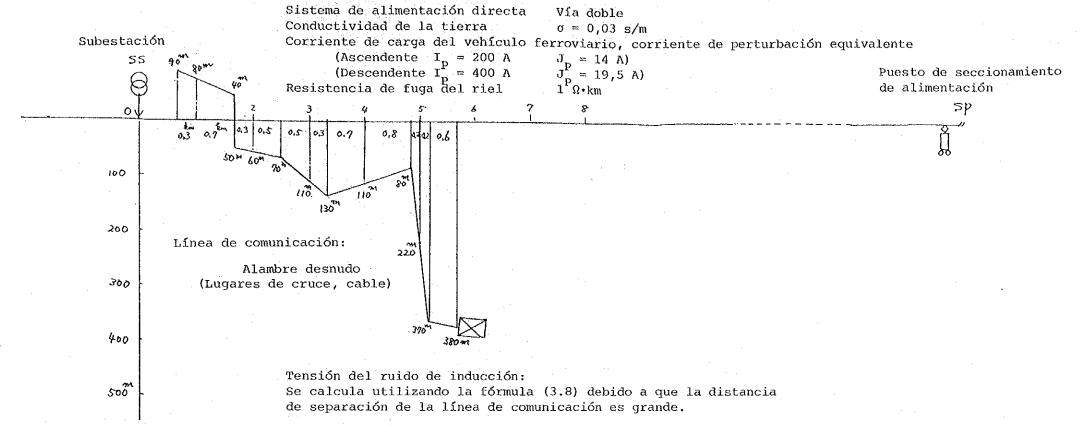
Clase	Coeficiente de blindaje	Observaciones
Alambre de tierra aéreo instalado en la línea catenaria, 1 hilo	0,7	
Alambre de tierra aéreo instalado en la línea catenaria, 2 hilos	0,6	
Alambre de tierra aéreo instalado en la línea catenaria, 3 hilos	0,5	
Alambre de tierra aéreo instalado en la línea de comunicación, 1 hilo	0,7	Se indican los valores
Alambre de tierra aéreo instalado en la línea de comunicación, 2 hilos	0,6	normales debido a que se relaciona con la posición de instalación
Alambre de tierra aéreo instalado en la línea de comunicación, 3 hilos	0,5	posicion de instatación
Alambre de tierra aéreo instalado en la línea de comunicación, 4 hilos	0,4	
Arboles y edificaciones que existen entre la línea catenaria y la línea de comunicación	0,7	
Arboles y edificaciones de las proximidades de la línea de comunicación	0,7	

5. Ejemplos del cálculo estimativo


Ejemplo de cálculo para el cálculo estimativo de la inducción (1) - 1

Distancia de separación b (m)	90	80	40	0	50	60	70	110	130	110	80	220	370 380	
Distancia de separación promedio bm (m)	85	60	20	. 25	55	65	90	120	120	95	150	295	375	
Longitud de exposición paralela & (km)	0,3	0,7	0	0	0,3	0,5	0,5	0,3	0,7	0,8	0,2	0,2	0,6	
									25.0					
M ₆₀ (μH/km)	385	⁴⁵⁰	660	615	465	435	380	322	322	367	283	170	133	Fig. 4.4
м ₆₀ · 2 (µii)	116	315	0	0	140	218	190	97	225	294	57	34	80	
1-n	0,362	0,362	0,362	0,362	0,362	0,362	0,362	0,362	0,362	0,362	0,362	0,362	0,362	Cuadro 4.4, Fig. 4.8
Ascendente I _p (A)	200	200	200	200	200	200	200	200	200	200	200	200	200	
Descendente I _p (A)	400	400	400	400	400	400	400	400	400	400	400	400	400	
Ascendente $\omega_{60}^{M}M_{60}^{I}P_{(1-n)} \cdot \ell \times 10^{-6}$	3,17	8,60	0	0	3,82	5,95	5,19	2,65	6,14	8,02	1,56	0,93	2,18	Fórmula (3.1)
Descendente $\omega_{60}^{M}_{60}I_{p}(1-n) \cdot \ell \times 10^{-6}$	6,33	17,20	0	0	7,64	11,90	10,37	5,30	12,28	16,05	3,11	1,86	4,37	Fórmula (3.1)
K ₁ •K ₂ •K ₃ •K ₄ •K ₅	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1.,0	1,0	Cuadro 4.6, Cuadro 4.8, Cuadro 4.9, Cuadro 4.10, Cuadro 4.11
K ₆	0,65	0,87	0,87	0,87	0,87	0,97	0,97	1,0	1,0	1,0	1,0	1,0	1,0	Cuadro 4.12
Ascendente	2,06	7,48	0	0	3,32	5,77	5,03	2,65	6,14	8,02	1,56	0,93	2,18	Fórmula (3,1) Total 45,14 V
$V_{\text{m(Ascendente)}} = \omega_{60}^{\text{M}} \omega_{60}^{\text{I}} \Gamma_{\text{p(1-n)}} \cdot \ell \cdot \kappa_{6}^{\text{m}} \times 10^{-6}$ Descendente	<u> </u>	14,96	0	0	6,65	11,54	10,06	5,30	12,28	16,05	3,11	1,86	4,37	Fórmula (3.1) Total 90,29 V
Descendente $V_{\text{m}}(\text{Descendente}) = \omega_{60}^{\text{M}} \omega_{60}^{\text{T}} p^{(1-n) \cdot \ell \cdot \kappa_{6}} \times 10^{-6}$ Ascendente y descendente	1	2.,,,,												Total de las líneas ascendente y descendente Vm = 135,4 V
Total Vm = Vm(ascendente) + Vm(descendente)		1 1 1	1 .	i .	1	į.	ŀ			1	1			<u></u>

Excede el valor de límite de 60 V (Al utilizarse el cable blindado con un coeficiente de blindaje de 0,44 para 60 Hz, resulta Vm = 59,6 V.)


Ejemplo de cálculo para el cálculo estimativo de la inducción (1) - 2

Distancia de separación b (m)	90	80	40	0	50	60	70	110	1.30	110	80	220	370 380	
Distancia de separación promedio bm (m)	85	60	20	25	55	65	90	120	120	95	150	295	375	
Longitud de exposición paralela & (km)	0,3	0,7	0	0	0,3	0,5	0,5	0,3	0,7	0,8	0,2	0,2	0,6	
м ₆₀ (µH/km)	385	450	660	615	465	435	380	322	322	367	283	170	133	Fig. 4.4
м ₆₀ •l (µн)	116	315	0	0	140	218	190	97	225	294	57	34	. 80	
1-n	0,362	0,362	0,362	0,362	0,362	0,362	0,362	0,362	0,362	0,362	0,362	0,362	0,362	Cuadro 4.4, Fig. 4.8
Corriente para avería If (A)	4350	4350	4350	4350	4350	4350	4350	4350	4350	4350	4350	4350	4350	Fig. 4.6 (Curva B)
ω ₆₀ ^M ₆₀ I _f (1-n)• £ × 10 ⁻⁶	68,9	187,0	0,	0	83,1	129,4	112,8	57,6	133,6	174,5	33,8	20,2	47,5	Fórmula (3.4)
K ₁ •K ₂ •K ₃ •K ₄ •K ₅	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	Cuadro 4.6, Cuadro 4.8, Cuadro 4.9, Cuadro 4.10, Cuadro 4.11
K ₆	0,65	0,87	0,87	0,87	0,87	0,97	0,97	1,0	1,0	1,0	1,0	1,0	1,0	Cuadro 4.12
$V_f = \omega_{60}^{M} M_{60}^{I} I_f^{(1-n)} \cdot \ell \cdot K_6 \times 10^{-6}$	44,8	162,7	0	0	72,3	125,5	109,4	57,6	133,6	174,5	33,8	20,2	47,5	Fórmula (3,4) Total 981,9 V
										<u></u>				

Excede el valor de límite de 430 V (Al utilizarse el cable blindado con un coeficiente de blindaje de 0,43 para 60 Hz, resulta Vf = 422,2 V.)

Ejemplo de cálculo para el cálculo estimativo de la inducción (1) - 3

Distancia de separación b (m)	90	80	40	0	50	60	70	110	130	110	80	220	370 380	
Distancia de separación promedio bm (m)	85	60	20	25 -	55	65	90	120	120	95	150	295	375	
Longitud de exposición paralela l (km)	0,3	0,7	0	0	0,3	0,5	0,5	0,3	0,7	0,8	0,2	0,2	0,6	
М ₈₀₀ (µH/km)	161	218	0	0	233	203	153	113	113	146	85	26,8	16,0	Fig. 4.5
M ₈₀₀ •ℓ (μH)	48,3	152,6	0	0	69,9	101,5	76,5	33,9	79,1	116,8	17,0	5,4	9,6	
1-n	0,375	0,375	0,375	0,375	0,375	0,375	0,375	0,375	0,375	0,375	0,375	0,375	0,375	Cuadro 4.5, Fig. 4.8
Ascendente I _P (A)	10,22	10,22	10,22	10,22	1.0,22	10,22	10,22	10,22	10,22	10,22	10,22	10,22	10,22	(El valor J _p del conductor desnudo se fija en 0,73 veces)
Descendente I _p (A)	14,23	14,23	14,23	14,23	14,23	14,23	14,23	14,23	14,23	14,23	14,23	14,23	14,23	(Igual que arriba)
Ascendente $\omega_{800}^{M}_{800}^{J}_{P}^{(1-n) \cdot \ell \cdot \lambda} \times 10^{-3}$	4,65	14,70	0	0	6,73	9,78	7,37	3,27	7,62	11,25	1,64	0,52	0,92	Formula (3.8) Grado de equilibrio $\lambda = 1/200$, Cuadro 4.7
Descendente $\omega_{800}^{M_{800}}J_{p}(1-n)\cdot \ell \cdot \lambda \times 10^{-3}$	6,48	20,47	0	0	9,37	13,61	10,26	4,55	10,61	: 15,66	2,28	0,72	1,29	Fórmula (3.8) Grado de equilibrio $\lambda = 1/200$, Cuadro 4.7
K ₁ •K ₂ •K ₃ •K ₄ •K ₅	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	
к ₆	0,84	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	Cuadro 4.13
Ascendente $V_{n(Ascendente)} = \omega_{800}^{M} + \omega_{800}^{J} + \omega_{800}^{J}$	3,91	14,70	0	0	6,73	9,78	7,37	3,27	7,62	11,25	1,64	0,52	0,92	Fórmula (3.8) Total 67,71 mV
Descendente $V_{n(Descendente)} = \omega_{800}M_{800}J_{p}(1-n) \cdot \ell \cdot \lambda \cdot \kappa_{6} \times 10^{-3}$	5,44	20,47	. 0	0	9,37	13,61	10,26	4,55	10,61	15,66	2,28	0,72	1,29	Fórmula (3.8) Total 94,26 mV
$V_{n} = V_{n}(Ascendente)$ $V_{n} = V_{n}(Ascendente)$ $V_{n} = V_{n}(Ascendente)$														Total de las lineas ascendente y descendente $\sqrt{67,71^2 + 94,26^2} = 116,1 \text{ mV}$

Excede el valor de límite de 5 mV (Al utilizarse el cable blindado con un coeficiente de blindaje de 0,01 para 800 Hz con grado de equilibrio de 1/400 (λ = 52 dB), resulta Vn = 0,80 mV.)

Sistema de alimentación directa Via doble Conductividad de la tierra $\sigma = 0.03 \text{ s/m}$ Corriente de carga del vehículo ferroviario, corriente de perturbación equivalente (Ascendente $I_p = 200 \text{ A}$ (Descendente $I_p = 400 \text{ A}$ $J_{p} = 14 A)$ $J_{p} = 19,5 A)$ Subestación SS Puesto de seccionamiento de alimentación 59 100 200 Linea de comunicación: ***) *** Alambre desnudo (2,9 mm) 300 (Lugares de cruce, cable) 400 500

Corriente de inducción electrostática y tensión de inducción electrostática

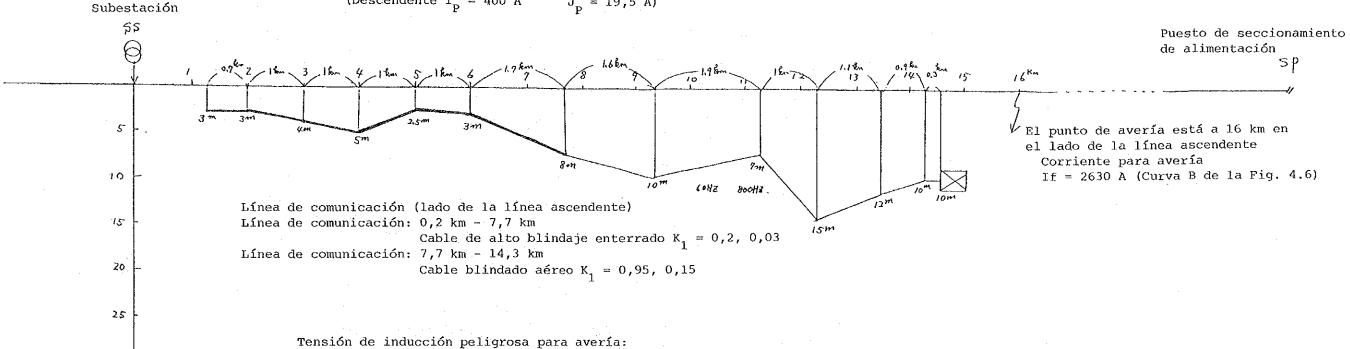
	80	40	0	50	60	70	110	130	110	80	220	370 380		
85	60	20	25	55	65	-90	120	120	95	150	295	375		
0,3	0,7	0	0	0,3	0,5	0,5	0,3	0,7	0,8	0,2	0,2	0,6		
														<u> </u>
77	- 150	1050	750	177	128	69	39	39	62	25	6,6	4,1	Fig. 4.22	
23,1	1.05	0	0	53,1	64	34,5	11,7	27,3	49,6	5,0	1,3	2,5	$\Sigma V_{s} \ell = 377,1 (V \cdot km)$	
													$V_{\rm S} = 73.9 \text{ V } (\Sigma \ell = 5.1 \text{ km})$	Menos del valor de límite
													$V_s = 72,7 \text{ V } (\Sigma l^{-1} = 5,19 \text{ km})$	Se agrega 90 m de longitud del cable del lugar de cruce
													Fig. 4.23 I _s = 0,85 mA	Menos del valor de límite
	85 0,3 77	85 60 0,3 0,7 77 - 150	85 60 20 0,3 0,7 0 77 - 150 1050	85 60 20 25 0,3 0,7 0 0 77 -150 1050 750	85 60 20 25 55 0,3 0,7 0 0 0,3 77 -150 1050 750 177	85 60 20 25 55 65 0,3 0,7 0 0 0,3 0,5 77 -150 1050 750 177 128	85 60 20 25 55 65 90 0,3 0,7 0 0 0,3 0,5 0,5 77 -150 1050 750 177 128 69	85 60 20 25 55 65 90 120 0,3 0,7 0 0 0,3 0,5 0,5 0,3 77 -150 1050 750 177 128 69 39	85 60 20 25 55 65 90 120 120 0,3 0,7 0 0 0,3 0,5 0,5 0,3 0,7 77 -150 1050 750 177 128 69 39 39	85 60 20 25 55 65 90 120 120 95 0,3 0,7 0 0 0,3 0,5 0,5 0,3 0,7 0,8 77 -150 1050 750 177 128 69 39 39 62	85 60 20 25 55 65 90 120 120 95 150 0,3 0,7 0 0 0,3 0,5 0,5 0,3 0,7 0,8 0,2 77 -150 1050 750 177 128 69 39 39 62 25	85 60 20 25 55 65 90 120 120 95 150 295 0,3 0,7 0 0 0,3 0,5 0,5 0,3 0,7 0,8 0,2 0,2 77 -150 1050 750 177 128 69 39 39 62 25 6,6	85 60 20 25 55 65 90 120 120 95 150 295 375 0,3 0,7 0 0 0,3 0,5 0,5 0,3 0,7 0,8 0,2 0,2 0,6 77 -150 1050 750 177 128 69 39 39 62 25 6,6 4,1	85 60 20 25 55 65 90 120 120 95 150 295 375 0,3 0,7 0 0 0 0,3 0,5 0,5 0,3 0,7 0,8 0,2 0,2 0,6 77 150 1050 750 177 128 69 39 39 62 25 6,6 4,1 Fig. 4.22 3,1 105 0 0 53,1 64 34,5 11,7 27,3 49,6 5,0 1,3 2,5 \(\text{EV}_s = 377,1 \) \(\text{V*km}\) \[\text{V}_s = 73,9 \text{V}(\text{EL} = 5,19 \) \(\text{km}\) \[\text{V}_s = 72,7 \text{V}(\text{EL} = 5,19 \) \(\text{km}\)

Sistema de alimentación directa

Tensión de inducción bajo condiciones normales:

de separación de la línea de comunicación es pequeña.

Conductividad de la tierra $\sigma = 0.2 \text{ s/m}$ Corriente de carga del vehículo ferroviario, corriente de perturbación equivalente (Ascendente $I_p = 200 \text{ A}$) (Descendente $I_p = 400 \text{ A}$) Resistencia de fuga del riel $J_{P} = 14 \text{ A}$ $J_{P} = 19,5 \text{ A}$ $1^{P}\Omega \cdot \text{km}$ Subestación Puesto de seccionamiento รร de alimentación 5 Linea de comunicación (lado de la linea ascendente) 10 Linea de comunicación: 0,2 km - 7,7 km Cable de alto blindaje enterrado $K_1 = 0.2, 0.03$ 15 Linea de comunicación: 7,7 km - 14,3 km 15M Cable blindado aéreo $K_1 = 0.95, 0.15$ 20 25

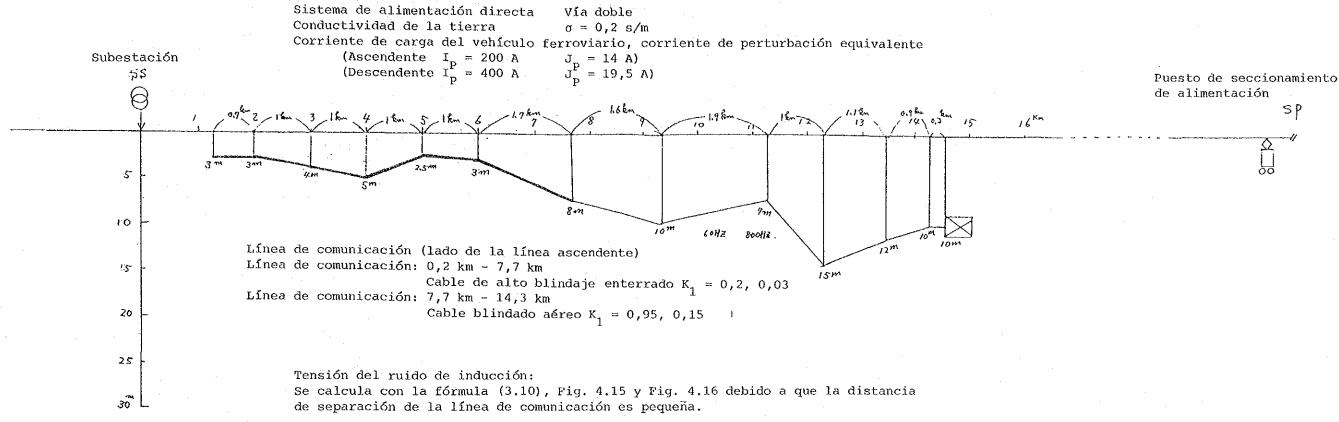

Via doble

Distancia de separación b (m)	3	3	4 1 2	5	2.5	3	8	10	7	15	12	10	10	
Distancia de separación promedio bm (m)	3,0	3,5	4,5	3,7	2,7	5,5	9,0	8,5	1.1.	13,5	11	10		
Longitud de exposición paralela l (km)	0,7	1,0	1,0	1,0	1,0	1,7	1,6	1,9	1,0	1,1	0,9	0,3		
Ascendente V _m /A·km (V/A·km)	0,077	0,08	0,084	0,078	0,074	0,086	0,111	0,114	0,104	0,097.	0,104	0,109		Fig. 4.13
Ascendente $V_m = (V_m/A \cdot km)I_P \cdot \ell$ (V)	10,78	16,0	16,8	15,6	14,8	29,24	35,52	43,32	20,8	21,34	18,72	6,54		$I_p = 200 \text{ A}$
K ₆	0,87	0,97	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0		Cuadro 4.12
Ascendente V _m •K ₆ (V)	9,38	15,52	16,8	15,6	14,8	29,24	35,52	43,32	20,8	21,34	18,72	6,54		Total 247,6 V
к ₁	0,2	0,2	0,2	0,2	0,2	0,2	0,95	0,95	0,95	0,95	0,95	0,95		Cuadro 4.6
Ascendente $V_{m(Ascendente)} = V_{m} \cdot K_{1} \cdot K_{6} (V)$	1,88	3,10	3,36	3,12	2,96	5,85	33,74	41,15	19,76	20,27	17,78	6,21		Total de la línea ascendente 159,2 V
m(Ascendence) in 1 0			(20,27)						(138,9)					
Descendente V _m /A·km (V/A·km)	0,062	0,063	0,066	0,064	0,06	0,067	0,031	0,082	0,078	0,074	0,078	0,08		Fig. 4.14
Descendente $V_m = (V_m/A \cdot km)I_p \cdot \ell$ (V)	17,36	25,20	26,4	25.,6	24,0	45,56	51,84	62,32	31,2	32,56	28,08	9,6		$I_{\mathbf{p}} = 400 \text{ A}$
Descendente $V_m \cdot K_6$ (V)	15,10	24,44	26,4	25,6	24,0	45,56	51,84	62,32	31,2	32,56	28,08	9,6		Total 376,7 V
II V	0,2	0,2	0,2	0,2	0,2	0,2	0,95	0,95	0,95	0,95	0,95	0,95		Cuadro 4.6
Residents V = V *K *K (V)	3,02	4,89	5,28	5,12	4,8	9,11	49,25	59,20	29,64	30,93	26,68	9,12		Total de la línea descendente 237,0 V
Descendente V_{m} (Descendente) = $V_{m} \cdot K_{1} \cdot K_{6}$ (V) Total de las líneas ascendente y descendente V_{m} (ascendente) + V_{m} (descendente)			(32,22)						(204,8)					Total de las líneas ascendente y descendente 396,2 V

Se calcula con la fórmula (3.3), Fig. 4.13 y Fig. 4.14 debido a que la distancia

Excede el valor de límite de 60 V (Al usarse el cable blindado con coeficiente de blindaje de 0,096 para 60 Hz, resulta Vm = 59,9 V.)

Sistema de alimentación directa Vía doble Conductividad de la tierra $\sigma = 0.2 \text{ s/m}$ Corriente de carga del vehículo ferroviario, corriente de perturbación equivalente (Ascendente I $_{p} = 200 \text{ A}$ J $_{p} = 14 \text{ A}$) (Descendente I $_{p} = 400 \text{ A}$ J $_{p} = 19,5 \text{ A}$)


Distancia de separación b (m)	3	3	4	5	2.5	3	8	10	7	15	12	10	10	
Distancia de separación promedio bm (m)	3,0	3,5	4,5	3,7	2,7	5,5	9,0	8,5	11	13,5	11.	10		
Longitud de exposición paralela £ (km)	0,7	1,0	1,0	1,0	1,0	1,7	1,6	1,9	1,0	1,1	0,9	0,3		
Ascendente V _m /A·km (V/A·km)	0,077	0,08	0,084	0,078	0,074	0,086	0,111	0,114	0,104	0,097	0,104	0,109		Fig. 4.13
							<u>.</u>				 	ļ <u>-</u> -		
Corriente para avería I _f (A)	2630	2630	2630	2630	2630	2630	2630	2630	2630	2630	2630	2630		Curva B de la Fig. 4.6
$V_f = (V_m/A \cdot k_m) \cdot I_f \cdot \ell$ (V)	141,8	210,4	220,9	205,1	194,6	384,5	467,1	569,7	273,5	280,6	246,2	86,0	ļ	(Total 3280 V)
^K 2*K3*K4*K5	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0		Cuadro 4.8, Cuadro 4.9, Cuadro 4.10, Cuadro 4.11
к,	0,2	0,2	0,2	0,2	0,2	0,2	0,95	0,95	0,95	0,95	0,95	0,95		Cuadro 4.6
K ₆	0,87	0,97	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0		Cuadro 4.12
Ascendente $V_{f(Ascendente)} = V_{f} \cdot K_{1} \cdot K_{6}$ (V)	24,7	40,8	44,2	41,0	38,9	76,9	443,7	541,2	259,8	266,6	233,9	81,7		Total V _{f(ascendente)} = 2093 V
											ļ			
												<u> </u>		
													1	

Se calcula con la fórmula (3.6), Fig. 4.13 y Fig. 4.14 debido a que la distancia

de separación de la línea de comunicación es pequeña.

Excede el valor de límite de 430 V (Al usarse el cable blindado con coeficiente de blindaje de 0,13 para 60 Hz, resulta Vf = 423 V.)

Ejemplo de cálculo para el cálculo estimativo de la inducción (2) - 3

Distancia de separación b (m)	3	3	4	5	2.5	3	8	10	7	15	12	10	10	
Distancia de separación promedio bm (m)	3,0	3,5	4,5	3,7	2,7	5,5	9,0	8,5	11.	13,5	11	10		
Longitud de exposición paralela & (km)	0,7	1,0	1,0	1,0	1,0	1,7	1,6	1,9	1,0	1,1	0,9	0,3		
Ascendente V _n /A•km (V/A•km)	0,61	0,65	0,71	0,66	0,58	0,74	1,10	1,12	1,0	0,9	1,0	1,04		Fig. 4.15
Ascendente $V_n = (V_n/A \cdot km)J_p \cdot \ell$ (V)	5,98	9,1	9,94	9,24	8,12	17,61	24,64	29,79	14,0	13,86	12,6	4,37		$J_p = 14 \text{ A (Total 159,3 V)}$
K ₁	0,03	0,03	0,03	0,03	0,03	0,03	0,15	0,15	0,15	0,15	0,15	0,15		Cuadro 4.6
K ₆	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0		Cuadro 4.13
Ascendente $V_{n(Ascendente)} = V_{n} \cdot K_{1} \cdot K_{6} \cdot \lambda \times 10^{3} \text{ (mV)}$	0,896	1,37	1,49	1,39	1,22	2,64	18,48	22,34	10,5	10,4	9,45	3,28		Cuadro 4.7 Grado de equilibrio $\lambda = 1/200$ Total $V_{\text{n}}(\text{ascendente}) = 83,46 \text{ mV}$
	:		(9,01)						(74,45)					
Descendente V _n /A·km (V/A·km)	0,43	0,45	0,48	0,46	0,41	0,5	0,71	0,72	0,66	0,62	0,66	0,69		Fig. 4.16
Descendente $V_n = (V_m/A \cdot km)J_p \cdot \ell$ (V)	5,87	8,78	9,36	8,97	8,00	16,58	22,15	26,68	12,87	13,30	11,58	4,04	,	J _p = 19,5 A (Total 148,2 V)
K ₁	0,03	0,03	0,03	0,03	0,03	0,03	0,15	0,15	0,15	0,15	0,15	0,15		Cuadro 4.6
К ₆	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0		Cuadro 4.13
Descendente $V_{n(Descendente)} = V_n \cdot K_1 \cdot K_6 \cdot \lambda \times 10^3 \text{ (mV)}$	0,880	1,32	1,40	1,35	1,20	2,49	16,61	20,01	9,65	9,97	8,69	3,03		Cuadro 4.7 Grado de equilibrio $\lambda = 1/200$ Total V _n (descendente) = 86,6 mV
			(8,64)		 				(67,96)					
Total de las lineas ascendente y descendente $v_n = \sqrt{v_n(ascendente)}^2 + v_n(descendente)$														Total de las líneas ascendente y descendente V = 113,3 mV

Excede el valor de límite de 1 mV. (En el caso de que el coeficiente de blindaje fuera 0,01 para 800 Hz y grado de equilibrio $\lambda=1/3000$ (69,5 dB), resulta Vn=0,73 mV.)

6. Medidas contra la inducción

En el caso de que excedan los valores de límite según los resultados de los cálculos estimativos de la inducción en las líneas de comunicación, es necesario que se tomen las medidas adecuadas contra los inconvenientes de inducción de manera que quede debajo del valor de límite.

Como medidas contra la inducción, están las medidas que se tomen en el lado del circuito de alimentación que corresponde al lado inductor y las medidas que se tomen en el lado de la línea de comunicación que corresponde al lado inducido.

En el caso del sistema de alimentación directa

- (1) Método de las contramedidas que se realicen en el lado del circuito de alimentación
 - (i) Instalar la línea de apantallamiento en las proximidades del circuito de alimentación para reducir la tensión de inducción y la tensión del ruido de inducción por los efectos de blindaje de la línea de apantallamiento.
 - (ii) Incrementar la resistencia de fuga a tierra del riel del circuito de alimentación y reducir la tensión de inducción disminuyendo la fuga de la corriente del riel hacia tierra.
 - (iii) Reducir la corriente perturbadora equivalente, utilizando el filtro en la locomotora, para disminuir la corriente de armónicas de orden superior que fluye por el circuito de alimentación.

- (2) Como métodos de las contramedidas que se realicen en el lado de la linea de comunicación pueden citarse los siguientes.
 - (i) En el caso de las líneas de comunicación desnudas, se reemplaza por cables bien equilibrados y tengan el blindaje electrostático y electromagnético.
 - (ii) Reemplazar los cables que no tengan la capa de blindaje o los cables con poca eficacia de blindaje por cables de alto blindaje con grandes efectos de apantallamiento.
- (iii) Reducir la tensión de inducción mediante el uso de los aparatos para reducción de inducción tales como la bobina de separación, bobina de drenaje de filtrado de ondas, supresores, etc.
 - (iv) En el caso de que fuera deficiente el equilibrio de los aparatos conectados a la línea de comunicación (por ejemplo el conmutador telefónico), se reduce la tensión del ruido de inducción mejorando el equilibrio utilizando las bobinas del tipo N, etc.
 - (v) Modificar la ruta de la línea de comunicación para aumentar la distancia de separación.
 - (vi) Las líneas de comunicación que utilicen los circuitos de retorno por tierra (circuitos telegráficos) deben modificarse en circuitos metálicos.
- (vii) Modificar el sistema de comunicación para adoptar el sistema de ondas portadoras o el sistema PCM (modulación por codificación de impulsos), etc.

METODO DE CALCULO ESTIMATIVO DE LA INDUCCION EN LA COMUNICACION EN EL SISTEMA DE ALIMENTACION DIRECTA DE ENERGIA

- Cuando no exista conexión de alambre de tierra -[MATERIAL DE APOYO PARA LAS INFORMACIONES TECNICAS SUMINISTRADAS]

Editado:

30 de setiembre de 1988

©Agencia de Cooperación Internacional del Japón

1988

Planificado y Editado: Agencia de Cooperación Internacional del Japón

Instituto para Cooperación Internacional

Edificio Kokusai Kyoryoku Center

10-5, Ichigaya-Kimuracho, Shinjuku-ku, Tokyo 162, Japón Teléfono: (03) 269-2357

Autor y redactor:

Consultores Eléctricos del Japón, Ltda.

Colaboración:

Compañía de Ferrocarriles del Japón Este

Centro de Servicios de Cooperación Internacional