

	CC017	
***************************************	RUN No.	
	77 TH COAL GASIFICATION TEST RUN	
	17 TH COAL GAS	
	RG.	

1987.11. 5 . (Thu.)

DATE

1.PURPOSE of RUN

1) INVESTIGATIONS of GASIFICATION-CHARACTERISTIC for CBA2, SJE2 and CBA1 cal.

2.COAL SAMPLE and OPERATION CONDITION COAL SAMPLE—A

Sample number	mber	CBA2	-		
Proximate	Proximate analysis Ultimate analysis	Ultimate	analysis	Ash components	
Ash V.M. F.C.	10.94 % 45.01 % 44.05 %	OHZON	71.58 5.73 1.16 21.20 23 23 23 24 24 24 24 24 24 24 24 24 24 24 24 24	Si 02 Al 203 Ca0 K20 Na 20	३६ ३६ ३६ ३६
	(ORV BASE)		(D.A.F)		

OPERATION CONDITION-A

Flow rate of Oxygen Flow rate of carrier gas Flow rate of pulverized coal Position of main-lance over bath surface Molten iron temperature on discharge to gasifier	13.3 10.0 35,0	n		
Flow rate of carrier gas Flow rate of pulverized coal Position of main-lance over bath surface Molten iron temperature on discharge to gasifier	35.5		Nm3/hr	·
Flow rate of pulverized coal Position of main-lance over bath surface Molten iron temperature on discharge to gasifier	35,	O	Nm3/hr	
Position of main-lance over bath surface Molten iron temperature on discharge to gasifier on coal easification		9	Kg/hr	
Molten iron temperature on discharge to gasifier	ĬŽ.	Ö	E	
Molten iron temperature on discharge to gasifier				
on discharge to gasifier				
on coal easification	155	12	ပူ	
101000000000000000000000000000000000000	1500	8	ပ္	
on discharge to pot car	ì		ņ	
Basicity of slag	37		-	
Weight of coal			wet Kg	
Weight of burnt lime			<u>\$</u>	

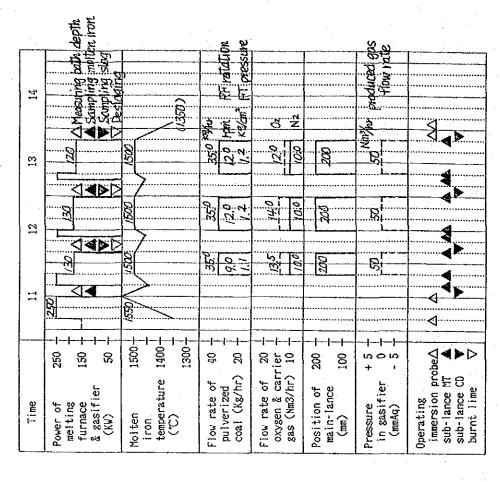
•	Ach comp
SJE2	sis IIItimate analysis
liber	Proximate analysis [111 imate analysis Ast comm

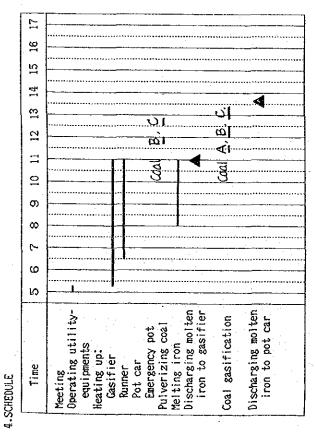
COAL SAMPLE - B

Proximate	analysis	Proximate analysis Ultimate analysis	analysis	Ash components	nents
Ash V.M. F.C.	2.68 50.15 % 47.17 %	OEZON	2, 7, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,	S102 A1203 Ca0 K20 Na20	
(DRV RACE)		(3 4 0)			

	10.0 Na3/nr 35,0 Kg/hr 200 mm		 1500 °C	ا.5 ث	22 wet Kg 0 Kg
Weight of molten iron Flow rate of Oxygen	Flow rate of carrier gas Flow rate of pulverized coal Position of main-lance	over bath surface Molten iron temperature	on discharge to gasifier on coal gasification	on discharge to pot car Basicity of slag	Weight of coal

		_
	CC017	
	RUN No.	
		-
	RUN	


COAL SAMPLE - C


Sample number	mber	CBA1			
Proximate	analysis	Proximate analysis Ultimate analysis	malysis	Ash c	Ash components
Ash V.M. F.C.	17.03 42.73 % 40.24 %	OHZOS	69.68 5.76.87 1.12 1.78 1.71 1.71	Si02 A1203 Ca0 K20 Na20	३९ ३ २ ३९ ३ ९ ३९
	(ORY BASE)		(0.A.F)		

OPERATION CONDITION - C

Weight of molten iron

Flow rate of Oxygen
Flow rate of carrier gas
Flow rate of pulverized coal
Flow rate of carrier gas
Flow rate of coal
Flow rate gas
Flow rate of coal
Flow rate gas
Flo

ſ		
	CC018	,
	SUN NO.	
-		,
	TEST RUN	
	18 TH COAL GASIFICATION TEST RUN	
	TH COAL	
	8/	-
	S.S.	

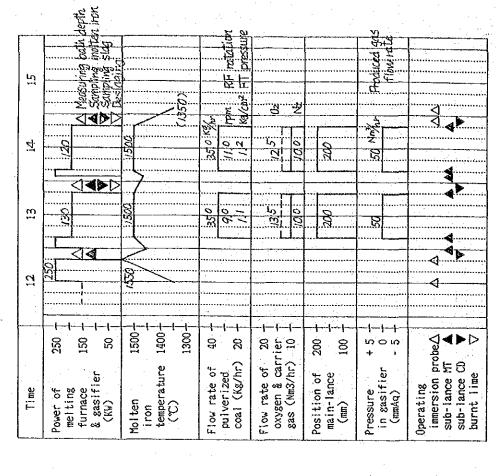
1987.11.12 . (Thu.)

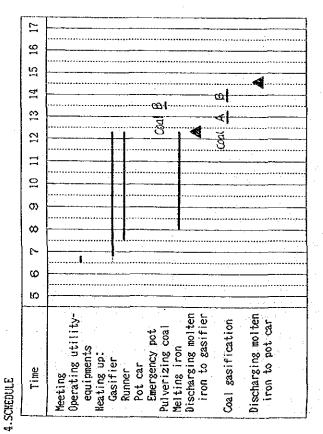
DATE

1.PURPOSE of RUN
1) INVESTIGATIONS of GASIFICATION-CHARACTERISTIC for BIS and BUILC1 COAL.

2.COAL SAMPLE and OPERATION CONDITION COAL SAMPLE - A.

Sample number		BJS			
Proximate	Proximate analysis Ultimate analysis	Ultimate	analysis	Ash components	nents
Ash V.M. F.C.	424 4997 45.79 45.79	OHZOW	58.57 57.68 24.03 6.52 6.53 8.88 8.88 8.88 8.88 8.88 8.88 8.88 8	S102 A1203 Ca0 K20 Na20	38 38 38 38 39
	(DRY BASE)	_	(D.A.F)		


OPERATION CONDITION-A


Weight of molten iron	300	Ks
Flow rate of Oxygen	13,3	Nm3/hr
Flow rate of carrier gas	10.0	Nm3/hr
Flow rate of pulverized coal	35.0	Kg/hr
Position of main-lance	200	
over hath surface		
Molten iron temperature		
on discharge to gasifier	1550	ပူ
on coal gasification	1500	ပ္
on discharge to pot car	ı	Ų
Basicity of slag		
Weight of coal	. 78	wet Kg
Weight of burnt lime	0	8 *

		Ash components	S102 A1203 Ca0 K20 Na20
		SΥ	S102 A1202 Ca0 K20 Na20
		Ultimate analysis	74.50 5.43 % 1.36 % 18.26 % 0.45 %
	Bu IIC1	ltimate	
	ಹ		OHZON
LE—B	mber	analysis	5.65.9 5.65.9 5.86.96 56.96.96
COAL SAMPLE - B	Sample number	Proximate analysis	Ash V.M. F.C.

(0 A F) (ORY BASE)

Weight of molten iron	300	50
Flow rate of Oxygen	12.6	Mm3/hr
Flow rate of carrier gas	10.0	NE3/hr
Flow rate of pulverized coal	35.0	Kg/hr
Position of main-lance	200	
over bath surface		
Molten iron temperature		
on discharge to gasifier	;	ပု
on coal gasification	1500	ပု
on discharge to pot car	1350	ပူ
Basicity of slag	1.51	
Weight of coal	27.	vet Kg
Weight of burnt lime	0	× ×

_		_
	CC019	
	RUN No.	
	19 TH COAL GASIFICATION TEST RUN	
	SCIN.	

1987.11.18 (Wed.)

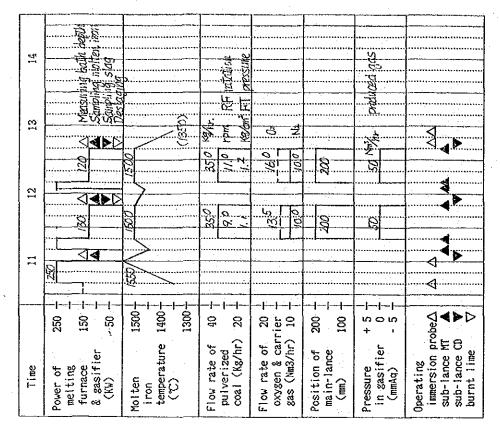
DATE

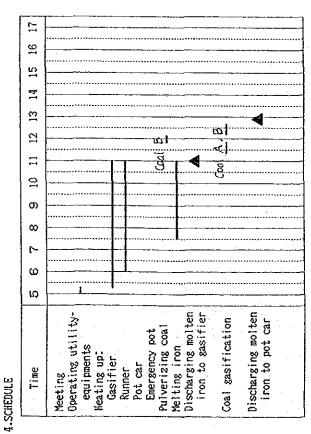
1.PURPOSE of RUN
1) INVESTIGATIONS of GASIFICATION-CHARACTERISTIC for BJS and BSIA1 coal

2.COAL SAMPLE and OPERATION CONDITION COAL SAMPLE - A

Sample number		BJS			
Proximate	analysis	Proximate analysis Ultimate analysis	analysis	Ash components	"
Ash V.M. F.C.	#4.97 #5.79 #5.79	OHZON	8. 7. 7. 7. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9.	S i 02 A I 203 Ca 0 K20 Na 20	३६ ३६ ३६ ३६
	(DRY BASE)		(D.A.F)		

OPERATION CONDITION-A


Nm3/hr wet Kg Kg Kg∕hr ⊞ 10.0 35.0 200 1550 1500 1.5 22 0 Molten iron temperature
on discharge to gasifier
on coal gasification
on discharge to pot car
Basicity of slag
Weight of coal Weight of molten iron Flow rate of Oxygen Flow rate of carrier gas Flow rate of pulverized coal Position of main-lance over bath surface


COAL SAMPLE - B

	r	
		३९ ३९ ३९ ३९ ३
	Ash components	S 102 A 1203 Ca0 K20 Na20
	analysis	73.73 7.72 7.72 7.72 7.72 8.35 8.35 8.35 8.35 8.35 8.35 8.35 8.35
BSIA1	Ultimate	OHNOW
aber	analysis	45.63 44.63 49.64 49.64 49.64
Sample number	Proximate analysis	Ash C.n.

(DRY BASE)

Weight of molten iron	300	39	
Flow rate of Oxygen	15.8	Nat3/hr	
Flow rate of carrier gas	10.0	Na3/hr	
Flow rate of pulverized coal	35.0	Kg/hr	
Position of main-lance	200		
over bath surface			
Molten iron temperature			
on discharge to gasifier	1.	υ	
on coal gasification	1500	ပ္	
on discharge to pot car	1350	ပ္	
Basicity of slag	1.5		
Weight of coal	2/.	wet Kg	
Weight of burnt lime	0	Ks	

26. NOV. 83

CC01 - 20 RUN No. TH COAL CASIFICATION TEST RUN

\$

1987.10.

DATE

1. PURPOSE OF RIN

1) INVESTIGATIONS OF GASIFICATION-CHARACTERISTIC FOR

2. COAL SAMPLE and OPERATION CONDITION COAL SAMPLE—A.

Ash components 近で, - 空, o な女で女な な女な女な Proximate analysis | Ultimate analysis (0.A.F) Sample number 854B 4.49 % 47.25 % 48.26 % ASA V. M.

(DRY BASE)

OPERATION CONDITION-A

Kg Nm3/hr Nm3/hr Kg/hr set Ks . 8 jr 5 jr 8 1550 Weight of molten iron
Flow rate of Oxygen
Flow rate of carrier gas
Flow rate of pulverized coal
Position of main-lance
over bath surface on discharge to sasifier on coal sasification on discharge to pot car Molten iron temperature Basicity of slag Veight of coal Veight of burnt lime

COAL SAMPLE - B

		>t > e > e > e > e	
	nents	***************************************	
	Ash components	Si 02 Al 208 Ca 0 K20 Na 20	
	aralysis	73.75 5.80 7.25.7. 7.80 7.80 7.80 7.80 7.80 7.80 7.80 7	
B4282	Ultimate	OHMON	(D.A.F.)
	ınalysis		
Sample number	Proximate analysis Ultimate analysis	Ash 229 V-M. 47,28 F.C. 50.8	(ORY BASE)
			_

320 Kg 15.7- NE3/hr / 10.0 NE3/hr 35.0 Kg/hr 200 ma	1500 1500 1500	20 wet Ke
Weight of moiten iron Flow rate of Oxygen Flow rate of czrrier gas Flow rate of pulverized coal Position of main-lance over bath surface	Noten iron temperature on discharge to gasifier on coal gasification on discharge to pot car	basicity of siag Weight of coal Weight of burnt lime

TEST000-1

1987. 46. 26 . (Thu.)

PATE

COAL SAMPLE - E

Sample number		BuzAl		
Proximate	Proximate analysis Ultimate analysis	Utimate	analysis	Ash components
Ash V.∺. F.C.	7.06 xx 44.92 xx	OHNO W	4 12 - 73 0 Et 42 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	S102 A1203 Ca0 K20 N220

(DRY BASE) (0.A.F.)

Weight of molten iron	300	.9
Flow rate of Oxygen	191	N#3/hr
Flow rate of carrier gas	10.0	Nn3/hr
Flow rate of pulverized coal	35.0	Kg/hr
Position of main-lance	200	Ħ
over bath surface		
Moiten iron temperature		
on discharge to gasifier	1	្
on coal sasification	1500	رړ ا
on discharge to pot car	350	ပ္
Basicity of slag	1.5	
Weight of coal	7/	56t Ks
Weight of burnt line	0	50

Power of 250	,	Ska ska	•	otation messore.				
11 12 130	14	N N N N N N N N N N N N N N N N N N N		k į	4 4	E .		
11 12 12 1500 1	m	2 V4 P V		W 5 4	بتوسر المرابا		-65	
150 - 150 -		₹	->					
11000 1500 1	(ব্ৰ		8]= 4	41-1-	18		
	11		, , , , , , , , , , , , , , , , , , , 					***************************************
Flower of melting furmace & gasifie (KW) Molten iron temperatuu (°C) Flow rate o pulverizec coal (kg/l Flow rate o oxysen & c gas (Nm3/h Position of main-lance (mm) Pressure in gasifie (mm) Operating immersion sub-lance burnt lime		1		^	Ë		- 1 - 1	probe∆ 4T A C0 ♥
	Time	Power of melting furmace & gasified (KW)	Molten iron temperatui (C)	Flow rate c pulverized coal (Kg/h	Flow rate o oxygen & c gas (Nm3/h	Position of main-lance (mm)	Pressure in sasífie (mmAq)	Operating immersion is sub-lance because lance burnt line

Time Meeting Operating utility-	9	<u></u>	∞	σ ₁	2	= -	2	10 11 12 13	14 15 16	<u>e</u>	7
equipments Heating up. Gasifier Rumer									 		
Pot car Emergency pot		<u> </u>					- 1	<u>0</u>	 		
ruiverizing coai Melting iron Discharzing molten	••••••				-		3	1	 ***********		
iron to gasifier				********		· · · · · ·			 		
Coal gasification					3	_	<u> </u>	<u>ω</u> Ι	 ······		
Discharging molten iron to not car				********		••••••			 · · · · · · · · · · · · · · · · · · ·		

ſ		1
	021	
	CC01 021	
	CUN NO.	
-	군.	
	~	
1	2	١
	TEST	
	TH COAL GASIFICATION TEST RUN	
	GASIFI	
ŀ	COAL	
	Ŧ.	

	SS	

) - 2 - 21 - 261

DATE

1. PURPOSE of RUN

1) INVESTIGATIONS of GASIFICATION-CHARACTERISTIC for BSIC1

2.COAL SAMPLE and OPERATION CONDITION COAL SAMPLE—A

Sample number		BSICI			
Proximate	Proximate analysis Ultimate analysis	Ultimate	ana!ysis	Ash components	
Ash V.M. F.C.	0,265 % 46.95 % 50.40 %	OHNON H	4.20-12.0 4.834478 2.334348343483434343434343434343434343434	Si02 A1203 Ca0 K20 Na20	३९ ३९ ३९ ३६ ३६

(DRY BASE) (D.A.F)

OPERATION CONDITION-A

Weight of molten iron	300	83
Flow rate of Oxygen	13.4	Na3/hr
Flow rate of carrier gas	10.0	Nm3/hr
Flow rate of pulverized coal	35	Kg/hr
Position of main-lance	200	Ħ
over bath surface		
Noiten iron temperature	-	
on discharge to gasifier	1550	ပ္
on coal gasification	1500	ပ္
on discharge to pot car		ပူ
Basicity of slag	1.5	
Veight of coal	ຊ	wet Kg
Weight of burnt lime	0	<u>.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>

COAL SAMPLE - B

Sample number	mber	Burci	<u>.</u> स		-
Proximate analysis Ultimate analysis	analysi	s UIt	mate	analysis	Ash components
Ash V.M. F.C.	1. 90 46.04 52.06	OERON		五元-80 8.4×44 33353535	S102 A1203 Ce0 K20 K20

(DRY BASE) (0.4.F.)

300 Kg 12. Nm3/hr 10.0 Nm3/hr 35 Kg/hr 200 ma	1500 CC 1.5 cc Kg 20 ket Kg 0 Kg
Weight of molten iron Flow rate of Oxygen Flow rate of carrier gas Flow rate of pulverized coal Position of main-lance over bath surface	Moiten iron temperature on discharse to gasifier on coal sasification on discharse to pot car Basicity of Slas Weight of coal

,	•	
	No. CCOZI	
\mid	<u>S</u>	$\frac{1}{2}$
	TEST RUN	
	GASIFICATION .	
	COAL	
	Ē	
	35	

1987.12.2.

DATE

1.PURPOSE of RUN
1) INVESTIGATIONS OF GASIFICATION-CHARACTERISTIC for

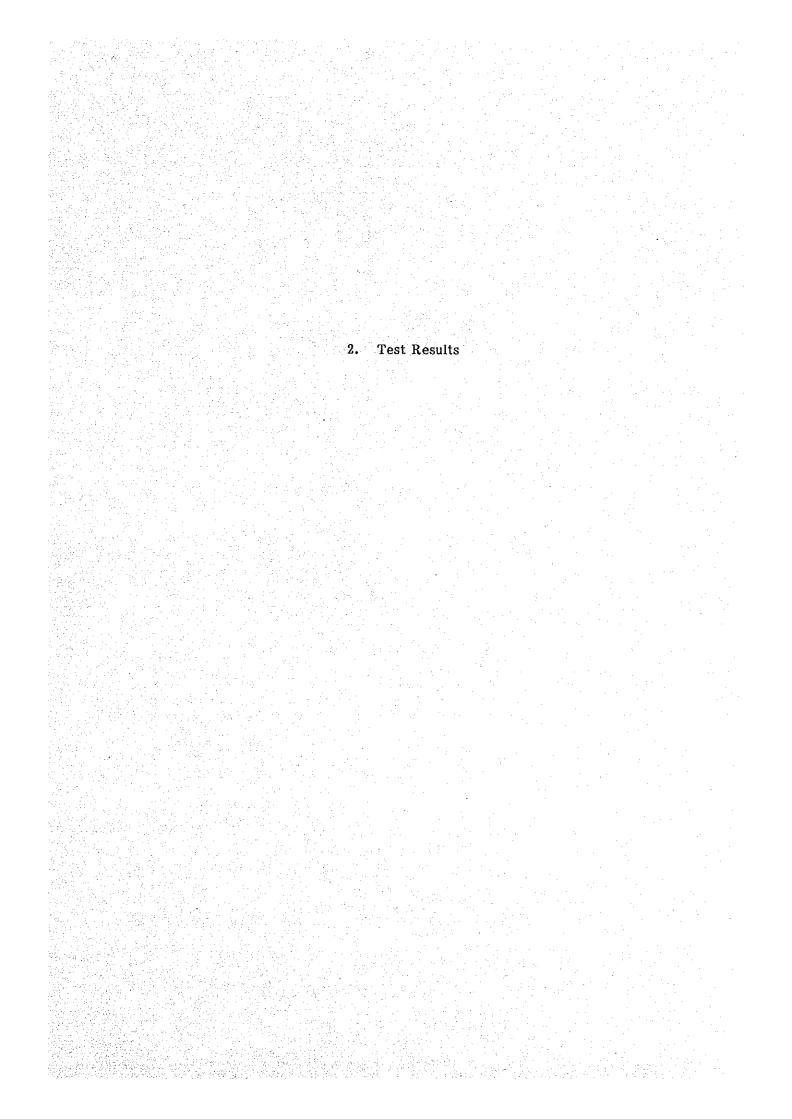
2.COAL SAMPLE and OPERATION CONDITION COAL SAMPLE—A.

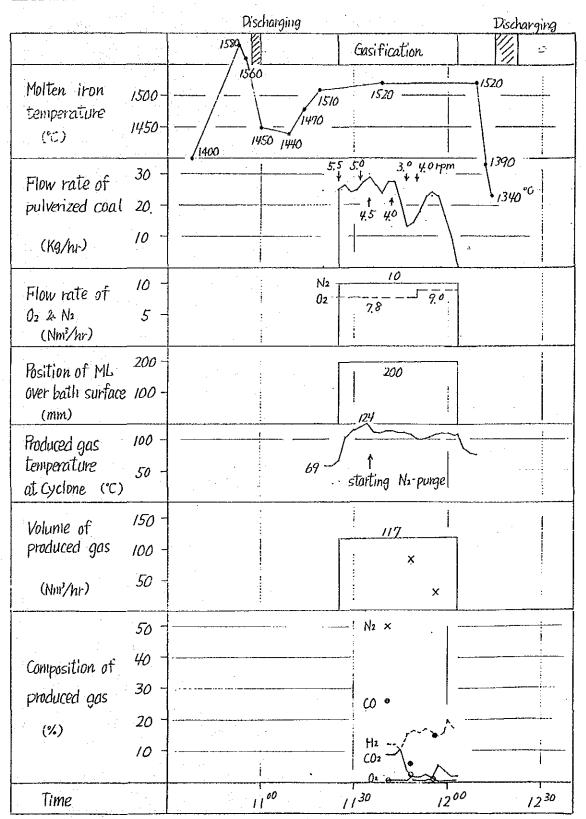
	ents	36 56 56 56	
	Ash components	S102 A1203 Ca0 K20 Na20	
	analysis	કે જ કેર કે જ કે∻ કે જ	(D.A.F)
	Ultimate	OHZOW	
nber	Proximate analysis Ultimate analysis	\$6 }6 }6 \$4	(DRY BASE)
Sample number	Proximate	Ash V.M. F.C.	

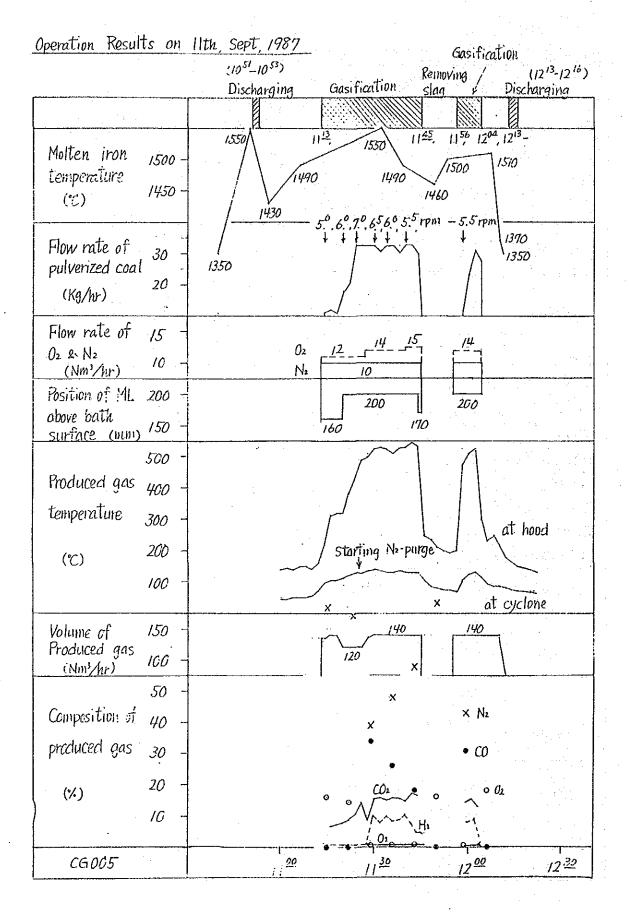
OPERATION CONDITION - A

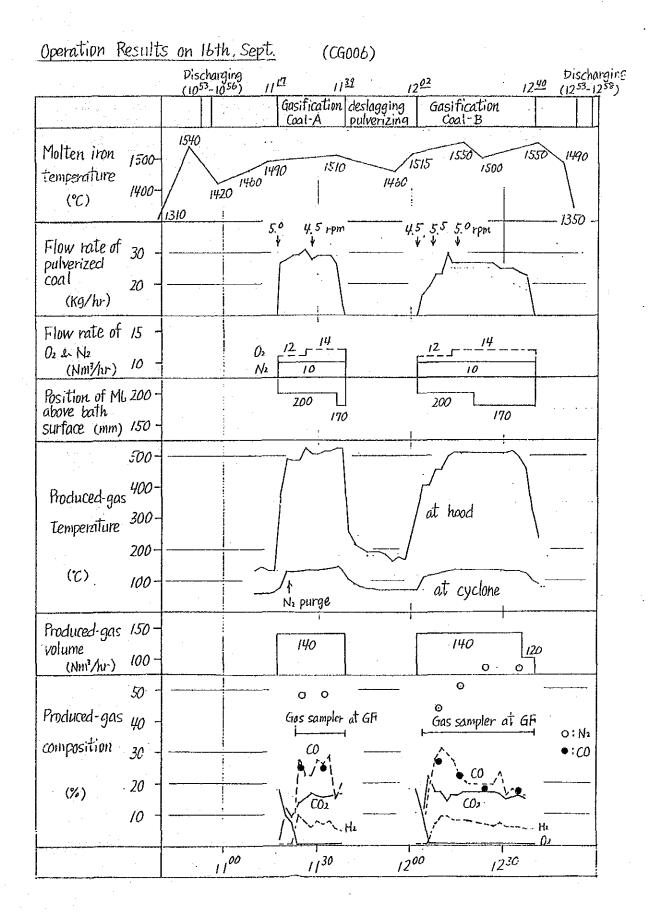
Weight of molten iron	99	<u>%</u>
Flow rate of Oxygen		Nm3/hr
Flow rate of carrier gas	10.0	Nm3/hr
Flow rate of pulverized coal	ž	K\$/hr
Position of main-lance	300	
over bath surface		
Nolten iron temperature		
on discharge to gasifier	1550	ပူ
on coal gasification	1500	ပူ
on discharge to pot car	-	ပူ
Basicity of slag	1.5	
Weight of coal	-	vet Ks
Weight of burnt lime	0	χ. 80

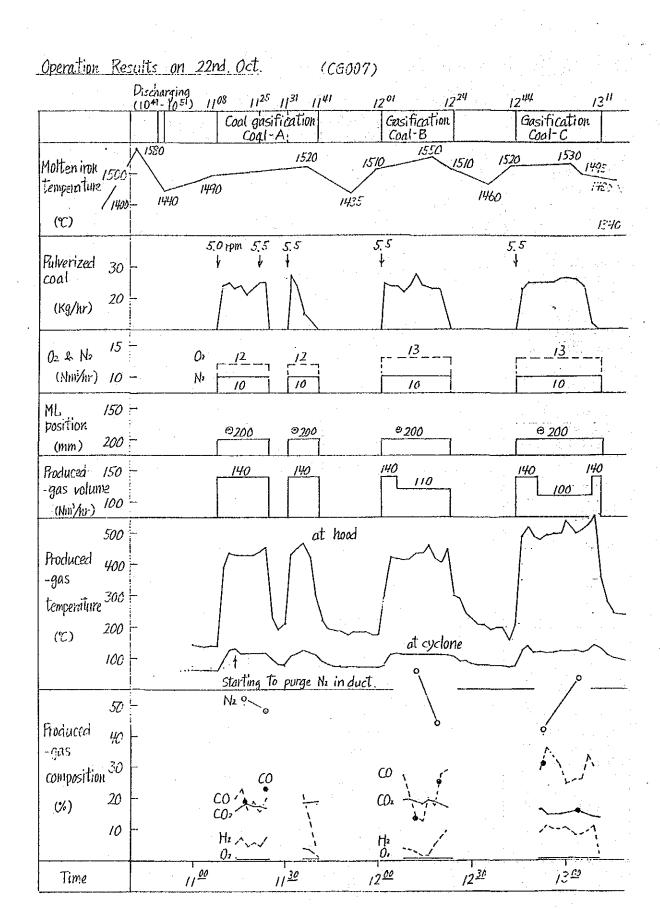
	Ash components	S102 A1203 Ca0 K20 K20
	Proximate analysis Ultimate analysis	THE S. H.
Sample number	mate analysis	47.08 47.08
Samp	Proxi	Ash V.N. F.C.

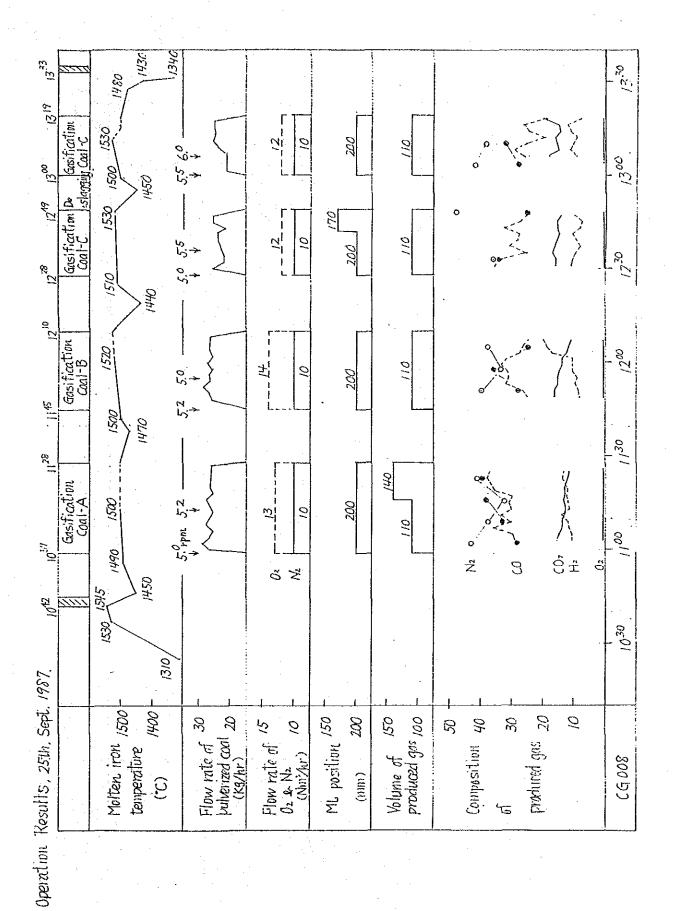

(D.A.F.) (DRY BASE)

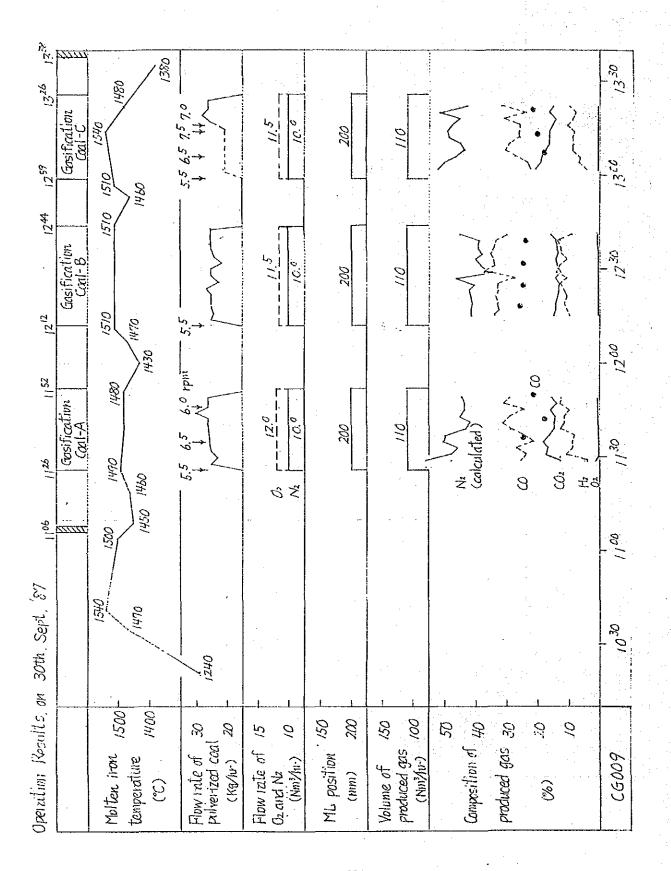

Weight of molten iron	300	. <u>9</u>
Flow rate of Oxygen	14.4	N#3/hr
Flow rate of carrier gas	10.0	NE3/hr
Flow rate of puiverized coal	35	Kg/hr
Position of main-lance	. 200	E
over bath surface		
Molten iron temperature		
on discharge to gasifier	:	Ų
on coal gasification	1500	۲Ş
on discharge to pot car	(350	ပူ
Basicity of slag	1.5	
Weight of coal	50	wet Kg
Weight of burnt lime		.92
_		


4.SCHEDULE

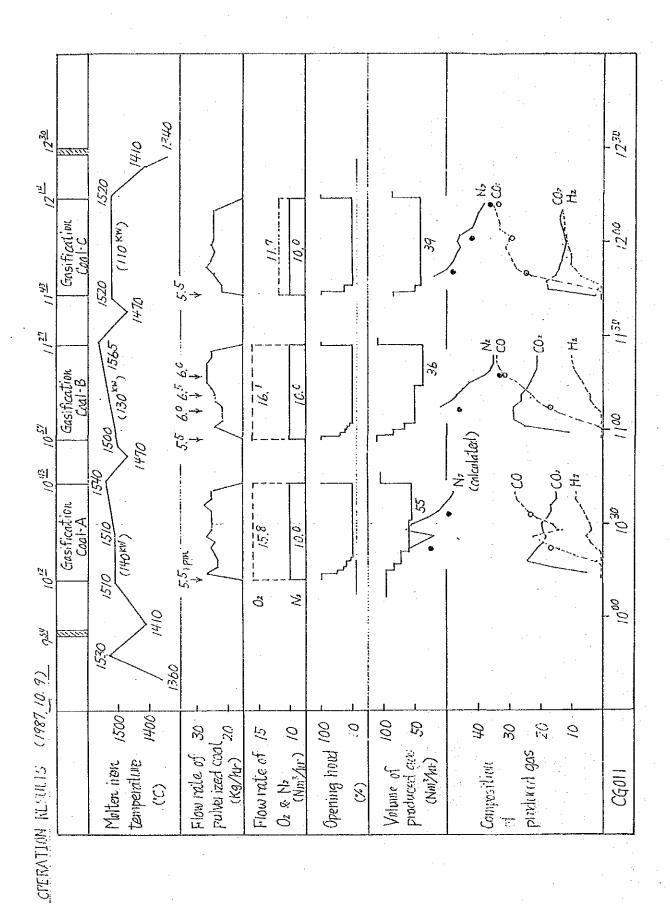

	-
[::	
10 11 12 13 14 15 16 17	
15	
14	
13	<u>U</u> <u>U</u>
12	w <u>«</u>
111	,0
8 8	
2	
ဖွ	
S.	
Time	Meeting Operating utility- equipments Heating up: Gasifier Runner Pot car Emergency pot Pulverizing coal Melting iron Discharging molten iron to gasifier Coal gasification Discharging molten iron to pot car

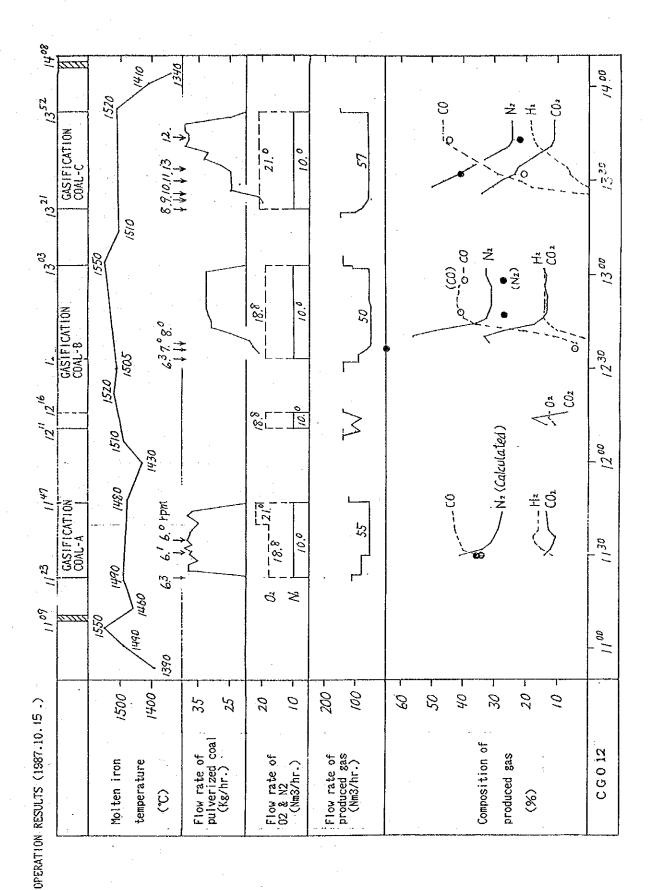

	Silver Si		c -)		
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Néasting Dath Séméling m. Séméling sla Séméling sla		1972 CF rotation 1962 FT Pressure	N. N	N. (In the state of the state o
13	2410		2.00	5470 000	25
12	251 250 251		35.0 10io 10io	200 200	8 4
11				272175	
	550 250	1400-	40 -	200   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100	+
Tine	Power of melting furmace & gasifier (KW)	Molten iron temperature (T)	Flow rate of pulverized coal (Kg/hr)	oxygen & carrier gas (Nm3/hr) 10 Position of 200 main-lance (mm) 100	Pressure + 5 in gasifier 0 (maAq) - 5 Operating immersion probe \times \text{sub-lance CD} \text{ burnt lime } \text{ V}



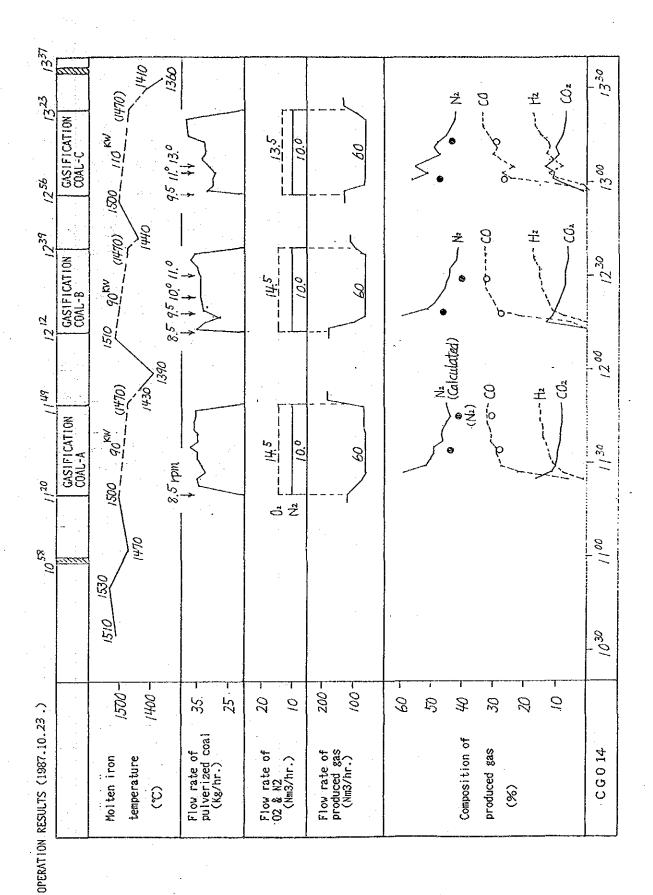





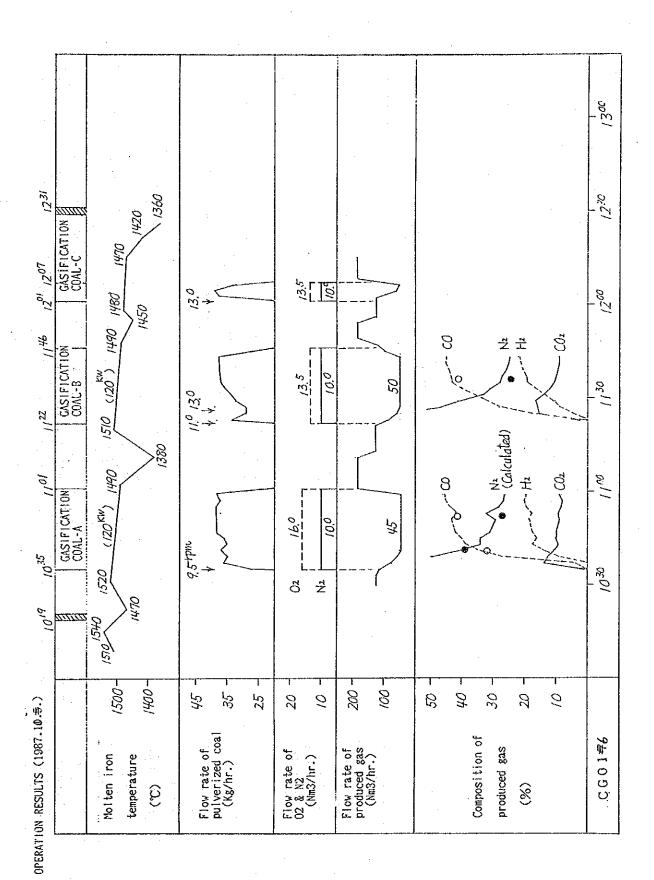



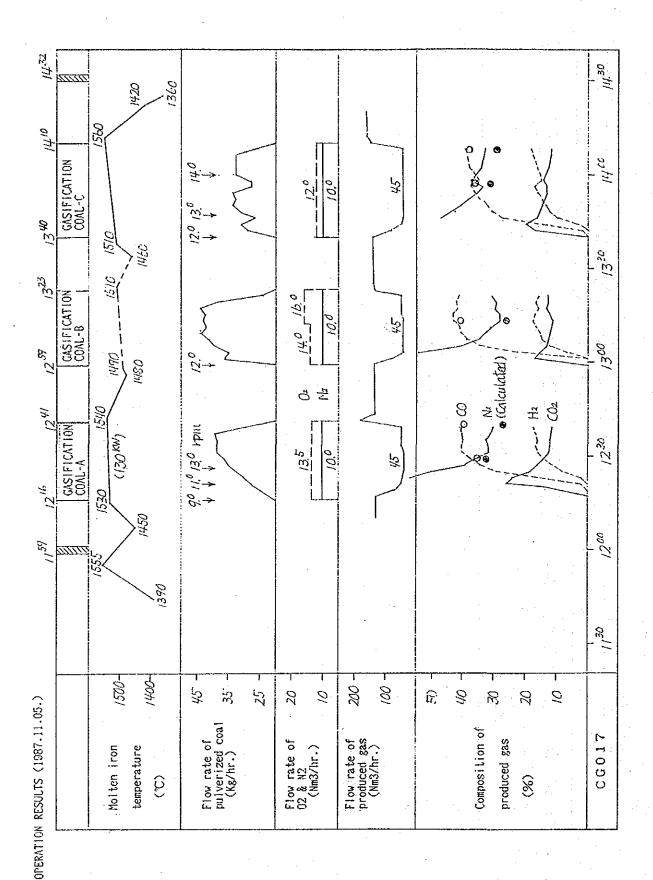



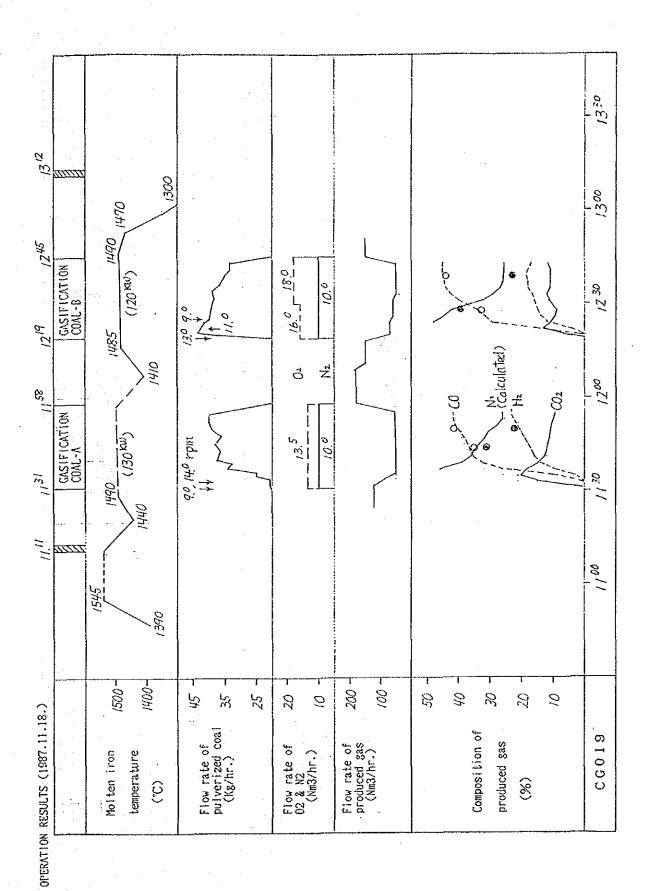


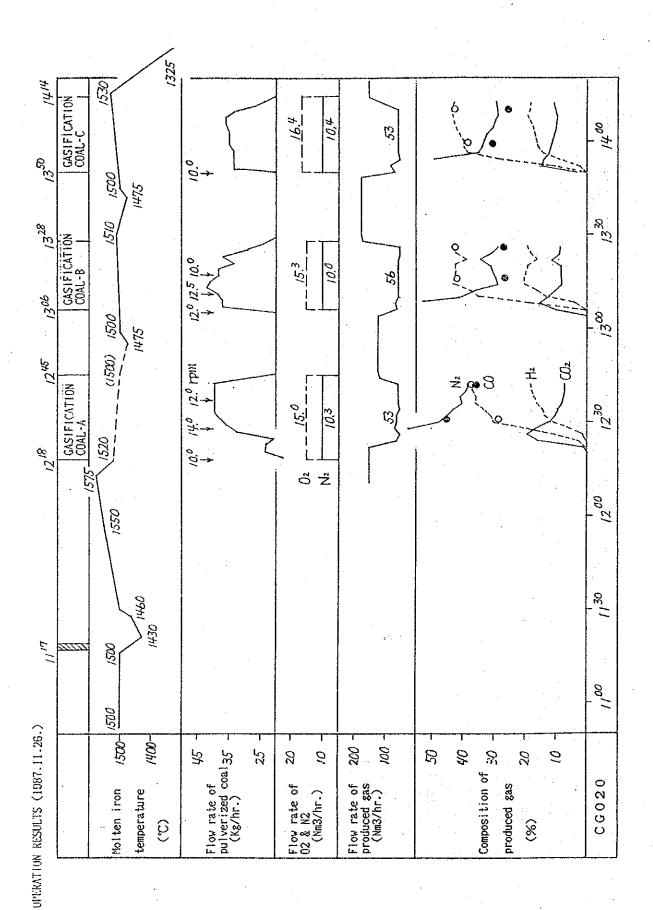



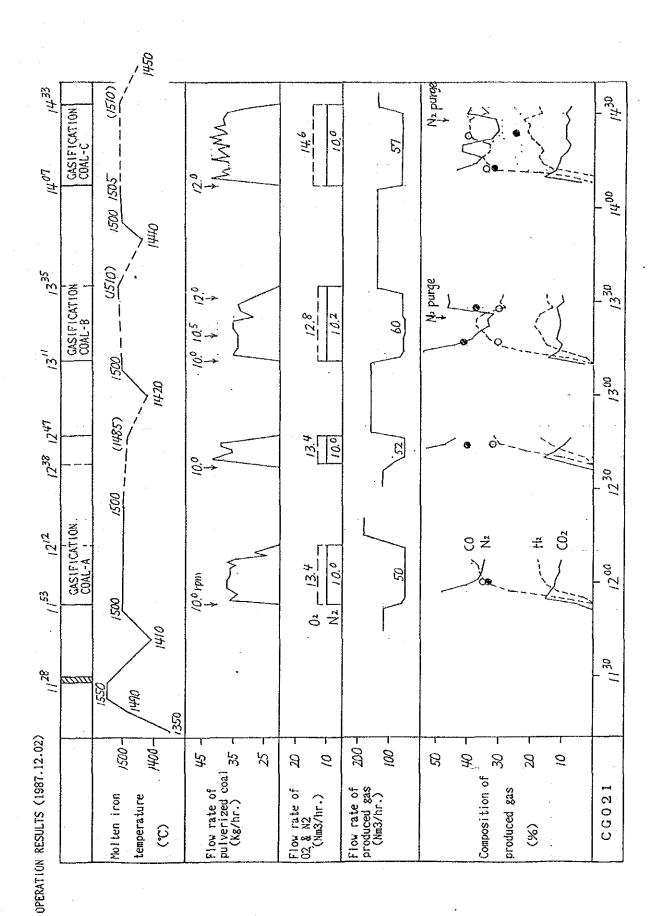

·		1		<del></del>					ı <u>-</u> !
Gasification 1329 1345 Gani-B	1540		13.3		0	o No (calculated)	99 >>		0 [330
1237 (2.	1480					ź so	8 9	¥	730 (390
1203 Gasification	1490 1520	 	01		· ///	\$ \$ 	***		17 00 71
Casification (143	230		14.5		0 N. V. V		9 50	CO	de¦/
1049	1530		0, 14.5	200	011				00 11
TION RESULTS (1987 10.6)	1500-	Flow rate of 30 - pulverized coal (Kg/hr) 20 -	Flow rate of 15 - 02 and N3 10 - 10 - 10 - 10 - 10 - 10 - 10 - 10	Jion 150 -	Volume of 150 produced gas 100	- 0h 110!	preduced gas 30 – (%)	-01	01
JON RESUL	Molten iron temperature (°C)	Flow rate pulveriza (Kg/10	Flow rate 02 and N	ML position (mm)	Volume (	Composition	produced (%)		CB010





۲				<del> </del>	4		
\$ 1272Z	3.60		į.				0,771
13 47 ON	8					8 <del>z</del> ( )	H- 007
20 GASIFICATION COAL-C	(90 KW)		21.7	53			330
13.20 COA	1490	L .					
1303	(\$225)		; <del>[</del>			8 <del>ž</del>	7 H
1	0	*	100			\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	
GASTFICATION,	(90 kw)	}	0.01	55		0	
1,225	2 %-				•	uted)	7
1208						(co) (co) N3 (calculated)	<b>元</b> 25
139 12 GASTFICATION COAL-A	(90 KW)	}	5 795	25		(co) (co)	1200
/39  CASIF	(90 km)	*	18.5			0	
2	] }}		02 N2				1130
2 200	<del> </del>						
	1,420					e j	00//
	200	1 1	7 7	- 007	-		
.20.)	1500	35	20 .	72	09	2 2 6 2	07
1987.10	iron ture	te of	te of 1r.).	ce of gas		tion of 1 gas	0 13
OPERATION RESULTS (1987.10.20.)	Molten iron temperature (°C)	Flow rate of pulverized coal (kg/hr.)	Flow rate of 02 & N2 (Nm3/hr.).	Flow rate of produced gas (Nm3/hr.)		Composition of produced gas (%)	ပ
T10N RE							······
OPERA	•						



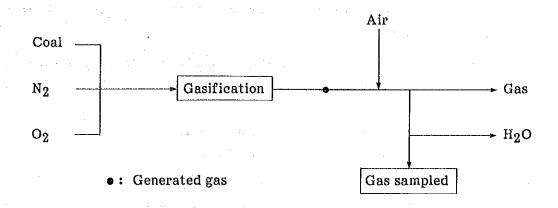


10 ²⁸ 10 ⁴⁹ 11 ¹⁶ 11 ³² 12°°° 12'7 12 ⁴⁵ GASIFICATION GASIFICATION GASIFICATION COAL-COAL-COAL-B	150 1410 9.		0, 145 - 13.5 - 13.5 - 10.0 - 10.0 - 10.0	30 / 00	00	i ii	$\frac{1}{100} \frac{1}{1100} \frac{1}{1130} \frac{1}{1200} \frac{1}{1200}$
OPERATION RESULTS (1987.10.27.)	Molten iron 1500- temperature 1400-	Flow rate of 35 - (Kg/hr.) 25 - 25 -	Flow rate of 20 - 02 & NE (Nm3/hr.) / 0 -	Flow rate of 200 - produced gas (Nm3/hr.)	- 09	Composition of 40 produced gas 30 - 20 -	/0 - CG015
OPERATION	-	·				-	












## ATTACHMENT 8-3

- 1. Material Balance Based on Gas Sampled from Inside to Gasifier
- 2. Material Balance Based on Gas Sampled from Position just before IDF

1. Material Balance Based on Gas Sampled from Inside to Gasifier

#### 1. Material Flow



As shown in material flow, coal,  $N_2$  and  $O_2$  become generated gas by gasification. We want to know an information of generated gas, however air from the atmosphere mixes and reacts with generated gas before we get gas sample.

Furthermore we analyzed gas component as dry.

Therefore we should estimate real gas component by material balance calculation.

# 2. Assumption

- Oxygen in the air from the atmosphere reacts with CO and  $H_2$  in the generated gas, generating  $CO_2$  and  $H_2O$ .
- If summation of each content of gas components such as CO,  $CO_2$ ,  $H_2$ ,  $H_2O$ ,  $N_2$  and so on would not be 100%,  $N_2$  content would be modified to make the summation 100%.

#### 3. Calculation Method

By making material balance for  $H_2$ ,  $O_2$  and  $N_2$  around gasifier we can know the following unknown values.

Unknown values:

- gas components in generated gas (CO, CO₂, H₂, O₂, N₂, H₂O, H₂S, COS)
- 2) amount of generated gas
- 3) amount of air from the atmosphere
- 4) H₂O content in sampled gas

Known values:

- 1) property of coal (ash, moisture, C, H, O, N, S)
- operation conditions (coal feed rate, carrier gas flow rate, oxygen flow rate)
- gas components in sampled gas (CO, CO₂, H₂, O₂, N₂, H₂S, COS)
- (1) Hydrogen balance

$$HSUI = \frac{22.4}{18} \times CFR \times Moi/100$$

HGEN = 
$$\frac{22.4}{2}$$
 × CFR×(100 - Ash - Moi)/100×H/100

$$HGAS = (Y + 0.79Z - X) \times (H_2GS + H_2SGS)/100$$

$$HJO = X$$

(2) Nitrogen balance

$$NGEN + 0.79Z + CGFR = NGAS$$

$$NGEN = \frac{22.4}{28} \times CFR \times (100 - Ash - Moi)/100 \times N/100$$

$$NGAS = (Y + 0.79Z - X) \times N2GSD/100$$

(3) Oxygen balance

OSUI = 
$$\frac{11.2}{18}$$
 CFR×Moi/100

OGEN = 
$$\frac{22.4}{32}$$
 × CFR×(100 - Ash - Moi)/100×O/100

$$OGAS = (Y + 0.79Z - X) \times (COGS/2 + CO2GS + O2GS + COSGS/2)/100$$

$$OJO = X/2$$

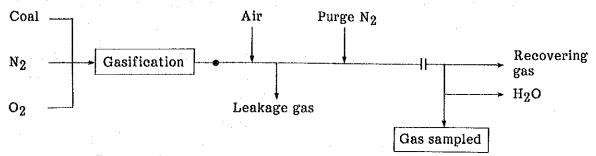
# (4) Gas compositions in generated gas

co :  $Y \times CO/100 - 0.21Z \times \eta co \times 2 = (Y + 0.79Z - X) \times COGS/100$  $Y \times CO_2/100 + 0.21Z \times \eta co \times 2 = (Y + 0.79Z - X) \times CO_2GS/100$  $CO_2$ : :  $Y \times H_2/100 - 0.21Z \times (1 - \eta co) \times 2 = (Y + 0.79Z - X) \times H_2GS/100$  $H_2$  $= (Y + 0.79Z - X) \times O2GS/100$ Y×O 2/100  $O_2$  $= (Y + 0.79Z - X) \times N_2GS/100$ :  $Y \times N_2/100 + 0.79Z$  $N_2$  $= (Y + 0.79Z - X) \times H_2SGS/100$  $H_2S$ : Y×H 2S/100  $= (Y + 0.79Z - X) \times COSGS/100$ cos: YxCOS/100  $Y \times H_2O/100 + 0.21Z \times (1-\eta co) \times 2 = X$ H₂O:

Assumption: neo is given under the following assumption

$$K = \frac{\text{CO} \times \text{H}_2\text{O}}{\text{CO}_2 \times \text{H}_2} = \frac{\text{COGS} \times \text{X}}{\text{CO}_2\text{GS} \times (\text{Y} + 0.79\text{Z} - \text{X}) \times \text{H}_2\text{GS}/100}$$

X, Y and Z can be calculated by three simultaneous equations of (1), (2) and (3).


Therefore gas composition in generated gas can be also calculated by the upper equation (4).

Ash	Ash in coal (%)
Moi	Moisture in coal (%)
C	Carbon in coal (%) (d.a.f.)
H	Hydrogen in coal (%) (d.a.f.)
0	Oxygen in coal (%) (d.a.f.)
N	Nitrogen in coal (%) (d.a.f.)
S	Sulfur in coal (%) (d.a.f.)
CFR	Coal feed rate (kg/h)
CGFR	Carrier gas flow rate (Nm ³ /h)
OFR	Oxygen flow rate (Nm ³ /h)
COGS	CO content in sampled gas (%)
CO ₂ GS	CO ₂ content in sampled gas (%)
H ₂ GS	${ m H_2}$ content in sampled gas (%)
O ₂ GS	O ₂ content in sampled gas (%)
$N_2GS$	$N_2$ content in sampled gas (%)
H ₂ SGS	$H_2S$ content in sampled gas (%)
COSGS	COS content in sampled gas (%)

СО	CO content in generated gas (%)
$CO_2$	CO ₂ content in generated gas (%)
H ₂	H ₂ content in generated gas (%)
02	O ₂ content in generated gas (%)
N ₂	N ₂ content in generated gas (%)
H ₂ S	H ₂ S content in generated gas (%)
cos	COS content in generated gas (%)
H ₂ O	H ₂ O content in generated gas (%)
Y	Amount of generated gas (Nm ³ /h)
Z	Amount of air (Nm ³ /h)
X	Amount of H ₂ O in sampled gas (Nm ³ /h)
AA	Summation of gas components in sampled gas (%)
$N_2GSD$	N ₂ content in sampled gas after modification
	$(N_2GSD = N_2GS + 100 - AA)$
$Y_2$	Amount of leakage gas (Nm ³ /h)
$N_2P$	Amount of purge N ₂ (Nm ³ /h)
HSUI	Hydrogen amount in moisture in coal (Nm ³ /h)
HGEN	Hydrogen amount in coal (Nm ³ /h)
HGAS	Hydrogen amount in sampled gas (Nm ³ /h)
HJO	Hydrogen amount in H ₂ O in sampled gas (Nm ³ /h)
NGEN	Nitrogen amount in coal (Nm ³ /h)
NGAS	Nitrogen amount in sampled gas (Nm ³ /h)
OSUI	Oxygen amount in moisture in coal (Nm ³ /h)
OGEN	Oxygen amount in coal (Nm ³ /h)
OGAS	Oxygen amount in sampled gas (Nm ³ /h)
OJO	Oxygen amount in H ₂ O in sampled gas (Nm ³ /h)
η <b>c</b> ο	Utilization ratio of oxygen in air to burn CO
FI	Recovering gas flow rate (m ³ /h)
ρ <b>0</b>	Design value of density of recovering gas (kg/m ³ )
ρ	Actual density of recovering gas (kg/m ³ )
То	Design value of temperature of recovering gas (°C)
T	Actual temperature of recovering gas (°C)
PPI	Pressure difference in bag filter (mmH ₂ O)
Po	Design value of pressure of recovering gas (mmH2O)

2. Material Balance Based on Gas Sampled from Position just before IDF

#### 1. Material Flow



Generated gas

| : Gas flow meter

As shown in material flow, coal,  $N_2$  and  $O_2$  become generated gas by gasification. After that, air from the atmosphere mixes and reacts with generated gas and then a part of gas leaks from the space between hood and gasifier. Furthermore purge  $N_2$  comes in from main lance hole and bag filter. After taking these change, gas passes through gas flow meter and is sampled at the position just before IDF in gas recovering duct.

In this material flow, we would know about an information of real generated gas.

#### 2. Assumption

- (1) Oxygen in the air from the atmosphere reacts with CO and  $H_2$  in the generated gas, generating  $CO_2$  and  $H_2O$ .
- (2) If summation of each content of gas components such as CO, CO₂,  $H_2$ ,  $H_2O$ ,  $N_2$  and so on would not be 100%,  $N_2$  content would be modified to make the summation 100%.

# 3. Calculation Method

By making material balance for  $H_2$ ,  $O_2$  and  $N_2$  around gasifier we can know the following unknown values.

Unknown values:

- 1) gas components in generated gas (CO, CO₂,  $H_2$ , O₂,  $N_2$ ,  $H_2O$ ,  $H_2S$ , COS)
- 2) amount of generated gas
- 3) amount of air from the atmosphere
- 4) amount of leakage gas
- 5) H₂O content in sampled gas

Known values:

- 1) property of coal (ash, moisture, C, H, O, N, S)
- operation conditions (coal feed rate, carrier gas flow rate, oxygen flow rate, recovering gas flow rate)
- gas components in sampled gas (CO, CO₂, H₂, O₂, N₂, H₂S, COS)

		Generated gas	After gasifier	Gas flow meter	Gas sampled
Gas amount	(Nm ³ /h)	Y	Y+0.79Z	Y+0.79Z-Y2+N2P	1
CO	(%)	CO	COI	COII	COGS
$co_2$	(%)	$CO_2$	$CO_2I$	CO2II	CO ₂ GS
$H_2$	(%)	H2	$H_2I$	$H_2II$	$_{ m H_2GS}$
H ₂ O	(%)	H ₂ O	H ₂ OI	H ₂ OII	/
$o_2$	(%)	$\circ_2$	$O_2$ I	O ₂ II	$o_2$ GS
$N_2$	(%)	$N_2$	$N_2I$	$N_2II$	N ₂ GS
H ₂ S	(%)	$N_2S$	$H_2$ SI	$H_2SII$	H ₂ SGS
COS	(%)	cos	COSI	COSII	COSGS
		<b>†</b>	J	<b>†</b>	
		Air	Leakage	Purge N ₂	·
		Z Nm	^{3/} h Y ₂ Nm ³ /h	N ₂ P Nm³/h	

# (1) Hydrogen balance

Y + 0.79Z - Y₂ + N₂P = FI×D  
D = SQRT 
$$\left(\frac{\rho O}{\rho}\right) \times \left(\frac{\text{To+273}}{\text{T+273}}\right) \times \left(\frac{10^4 - \text{PDI}}{\text{Po}}\right)$$
  
A = (100 - H₂OII)/100  
B = (Y + 0.79Z - Y₂ + N₂P)/(Y + 0.79Z - Y₂)

# (2) Oxygen balance

OSUI + OGEN + OFR = 
$$Y \times (CO/2 + CO_2 + H_2O/2 + O_2 + COS/2)/100$$
  
OSUI + OGEN + OFR + 0.21Z =  $(Y + 0.79Z) \times (COI/2 + CO_2I + H_2OI/2 + O_2I + COSI/2)$   
=  $Y_2 \times (COI/2 + CO_2I + H_2OI/2 + O_2I + COSI/2, + (Y + 0.79Z - Y_2 + N_2P) \times (COII/2 + CO_2II + H_2OII/2 + O_2II + COSII/2)/100$ 

CO: COI = COGS $\times$ A $\times$ B CO2: CO2I = CO2GS $\times$ A $\times$ B H₂O: H₂OI = H₂OII $\times$ B O₂: O₂I = O₂GS $\times$ A $\times$ B COS: COSI = COSGS $\times$ A $\times$ B

× OSUI + OGEN + OFR + 0.21Z = 
$$(Y + 0.79Z)\times B\times (A\times (COS/2 + CO_2GS + O_2GS + COSGS/2) + H_2OII/2)/100$$

# (3) Nitrogen balance

NGEN + CGFR = 
$$Y \times N_2/100$$
  
NGEN + CGFR +  $0.79Z = (Y + 0.79Z) \times N_2I/100$   
NGEN + CGFR +  $0.79Z - Y_2 \times N_2I/100 + N_2P = (Y + 0.79Z - Y_2 + N_2P)$   
 $\times N_2II/100$   
 $(Y + 0.79Z - Y_2) \times N_2I/100 = (Y + 0.79Z - Y_2 + N_2P) \times N_2II/100 - N_2P$   
 $N_2II = N_2GS \times A$   
NGEN + CGFR +  $0.79Z = (Y + 0.79Z) \times B \times (A \times N_2GS/100$   
 $- N_2P/(Y + 0.79Z - Y_2 + N_2P))$   
...... (3)

From equation (1) and (2), Y and Z can be calculated, if  $H_2OII$  could be assumed a certain value.

After that we check whether both sides in equation (3) are equal or not, if they are OK, we can have all components in generated gas.

Ash	Ash in coal (%)
Moi	Moisture in coal (%)
C	Carbon in coal (%) (d.a.f.)
H	Hydrogen in coal (%) (d.a.f.)
, <b>O</b>	Oxygen in coal (%) (d.a.f.)
N	Nitrogen in coal (%) (d.a.f.)
S	Sulfur in coal (%) (d.a.f.)
CFR	Coal feed rate (kg/h)
CGFR	Carrier gas flow rate (Nm ³ /h)
OFR	Oxygen flow rate (Nm ³ /h)
COGS	CO content in sampled gaas (%)
CO ₂ GS	CO ₂ content in sampled gas (%)
$H_2GS$	H ₂ content in sampled gas (%)
$O_2GS$	${ m O}_2$ content in sampled gas (%)
$N_2GS$	N ₂ content in sampled gas (%)
$H_2SGS$	H ₂ S content in sampled gas (%)
COSGS	COS content in sampled gas (%)
CO	CO content in generated gas (%)

$CO_2$	CO ₂ content in generated gas (%)
$H_2$	H ₂ content in generated gas (%)
$O_2$	O ₂ content in generated gas (%)
N ₂	N ₂ content in generated gas (%)
$H_2S$	H ₂ S content in generated gas (%)
COS	COS content in generated gas (%)
H ₂ O	H ₂ O content in generated gas (%)
Y	Amount of generated gas (Nm ³ /h)
Z	Amount of air (Nm ³ /h)
X	Amount of $H_2O$ in sampled gas $(Nm^3/h)$
AA	Summation of gas components in sampled gas (%)
N ₂ GSD	N ₂ content in sampled gas after modification
	$(N_2GSD = N_2GS + 100 - AA)$
$Y_2$	Amount of leakage gas (Nm ³ /h)
N ₂ P	Amount of purge N ₂ (Nm ³ /h)
HSUI	Hydrogen amount in moisture in coal (Nm ³ /h)
HGEN	Hydrogen amount in coal (Nm ³ /h)
HGAS	Hydrogen amount in sampled gas (Nm ³ /h)
HJO	Hydrogen amount in H ₂ O in sampled gas (Nm ³ /h)
NGEN	Nitrogen amount in coal (Nm ³ /h)
NGAS	Nitrogen amount in sampled gas (Nm ³ /h)
OSUI	Oxygen amount in moisture in coal (Nm ³ /h)
OGEN	Oxygen amount in coal (Nm ³ /h)
OGAS -	Oxygen amount in sampled gas (Nm ³ /h)
OJO	Oxygen amount in H ₂ O in sampled gas (Nm ³ /h)
ηςο	Utilization ratio of oxygen in air to burn CO
FI	Recovering gas flow rate (Nm ³ /h)
ρΟ	Design value of density of recovering gas $(kg/m^3)$
ρ	Actual density of recovering gas (kg/ $m^3$ )
 То	Design value of temperature of recovering gas (OC)
T	Actual temperature of recovering gas (°C)
PPI	Pressure difference in bag filter (mmH ₂ O)
Po	Design value of pressure of recovering gas (mmH ₂ O)

#### ATTACHMENT 9-2

- Production Cost Comparison between Methanol and Methanol/Urea Co-products
- 2. Comparison of Electricity Generation Cost

 Production Cost Comparison between Methanol and Methanol/Urea Co-products

Production Cost Comparison between Methanol and Methanol/Urea Co-products

#### 1. Objective of the Study

This study has been carried out to grasp the cost comparison between methanol production and methanol/urea co-production from Banko coal on the basis of the master plan established in the 2nd stage.

(Note): The results of the study is cited from the Interim Report (Stage II), March 1988.

#### 2. Outline of the Case Study

Fuel methanol production and fuel methanol/urea co-production are taken up out of possible products for the Proposed Project and the following two cases have been set up.

Case 1 is to produce only fuel methanol of which total plant capacity is 5,000 t/d and can be defined as a base case, since fuel methanol is expected as the most prospective derivatives of coal in Indonesia.

Master plan and overall block flow diagram of Case 1 are shown in Fig. 1 and 2.

Case 2 is to produce 4,060 t/d of methanol as well as 1,750 t/d of urea through ammonia. Since a demand of urea in Indonesia will still grow up, this case is selected. However, a viability of this case will mainly depend on a sales price of urea after a decade and possibility of natural gas supply for a new project in Indonesia, since PUSRI has urea production facilities starting from natural gas in Palembang and there is enough amount of natural gas resources to produce urea but not enough for export.

Master plan and overall block flow diagram of Case 2 are shown in Fig. 3 and 4.

- 3. Assumptions for Financial Analysis
- 3-1 Master Plan Case 1
- 3-1-1 Production Schedule
  - (1) Annual Production;

1,600,000 t of chemical grade methanol

(2) Plant Construction Period; 1990 - 1993 (4 years)

where 30% completion at the end of 1990

60% completion at the end of 1991

80% completion at the end of 1992

100% completion at the end of 1993

(Note); In this financial study, it is assumed that escalation factor is out of considerations. Therefore, time schedule such as 1990 - 1993 is assumed only for reference.

(3) Project Life;

1994 - 2023 (30 years)

where 70% of full operation in 1994

85% of full operation in 1995

100% of full operation in 1996 and after

(4) Annual Operation Days; 320 days

#### 3-1-2 Finance

(1) Debt/Equity Ratio;

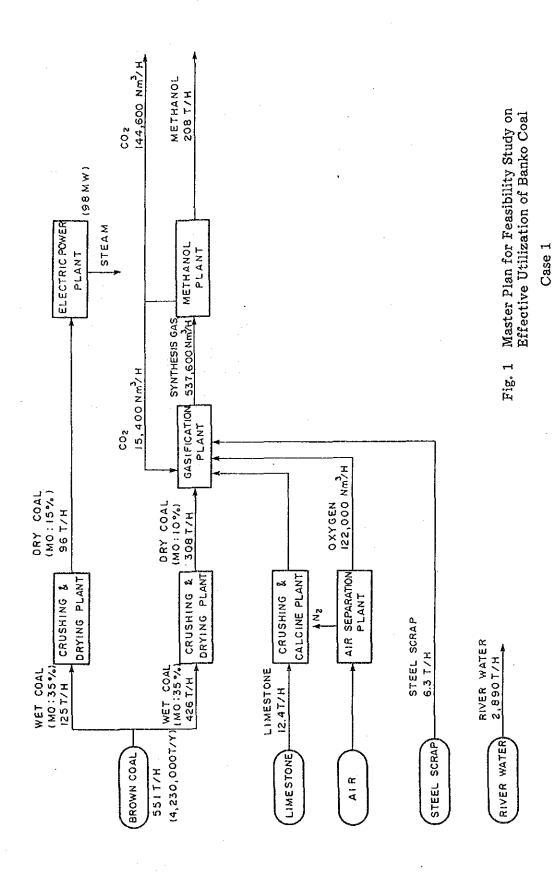
75/25

(2) Currency

For Annual Revenue/Expenditure; Rupiah

For Capital Investment;

Yen


Exchange Rate;

0.18 Yen/Rupiah

Accordingly, debt is repayed by exchanging Rupiah for yen at the above exchange rate.

(3) Debt Repayment Schedule

Terms of 12 years after commitment, including 4 years of grace period with 8 years equal payments of principal.



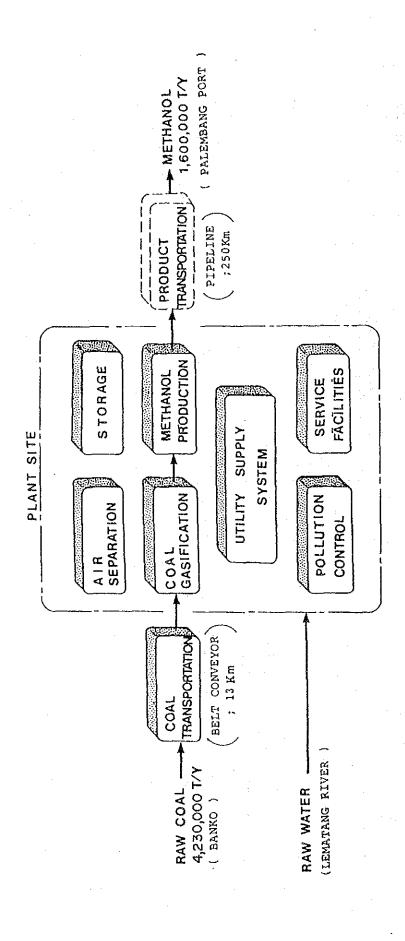



Fig. 2 Overall Block Flow Diagram (Case 1)



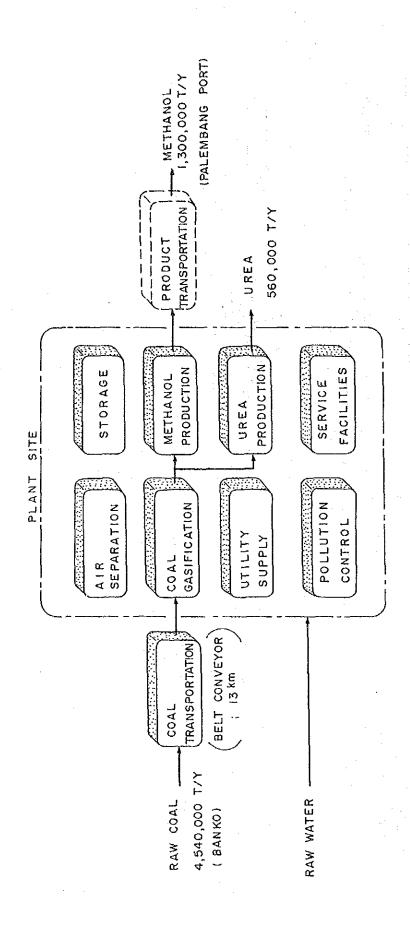



Fig. 4 Overall Block Flow Diagram (Case 2)

# (4) Interest

1) Long-term Loan; 8% per annum

Assumed supplyer's credit (7.2% p.a.) plus bank loan and project risk premium.

Short-term Loan; 8% per annum 2)

A short term loan would be raised commensurate with annual cash deficiency and would be repayed after development loan.

Interest during Construction Period 3)

> In accordance with a general rule in similar projects, interest paid or accrued during construction period is capitallized and amortized over a 10-year period from 1994.

#### 3-1-3 Escalation

No escalation is assumed.

#### 3-1-4 **Price and Costs**

- (1) Sales Price of Methanol at Plant Gate; 194 Rp/kg (35 ¥/kg, 175 \$/t)
- (2) Capital Investment Costs
  - Fixed-capital Investment; 1)

	10 ⁶ Rupiah	(10 ⁶ Yen)
Coal Gasification	301,900	(54,500)
Coal Transportation	43,800	(7,900)
Methanol Synthesis	188,400	(34,000)
Air Separation	89,200	(16,100)
Power Generation	99,700	(18,000)
Support Facilities	159,600	(28,800)
Equipment Transportation	63,700	(11,500)
Contingency	47,600	(8,600)
Total	993,900	(179,400)

(Note); Construction cost of each plant was reviewed based on the As the result, total fixed-capital revised master plan.

investment cost was slightly increased in comparison with that of previous estimation in the study of FY1985.

			106 Rp/y	(10 ⁶ ¥/y)
2)	Working Capital;		50,216	(9,064)
÷	(Note); Working capital is add	led as	cash-flow at the	end of the project.
3)	Start-up Expense;	. :	6,882	(1,242)
4)	Operator Training Cost;		2,598	(469)
5)	Investment Schedule;		Shown in Table	1

Table 1 Investment Schedule

			and the second s	
	1990	1991	1992	1993
Fixed Capital	30%	30%	20%	20%
Working Capital	-		<b>t</b>	100%
Start-up Expense	-	-		100%
Operator Training	. <del>-</del>	<del>-</del> .	-	100%

# (3) Annual Expense

# 1) Fixed Costs

# i) Depreciation and Amortization

	• •	Period	Am	ount
		Years	10 ⁶ Rp/y	(10 ⁶ ¥/y)
	- Boiler, Power Plant, Cooling Tower, Buildings	15	13,702	(2,473)
	- Others	10	94,296	(17,020)
ii)	Maintenance		23,172	(4,182)
iii)	Insurance		9,269	(1,673)

(Note); Capital investment for the plant construction including expense and interests during construction period is depreciated and amortized based on straight line method.

		10 ⁶ Rp/y	(10 ⁶ ¥/y)
2)	Variable Costs		
	i) Raw Materials ¹⁾	•	
	- Coal	67,895	(12,255)
	- CaCO ₃	665	(120)
	ii) Superviser and Operating Labor		
	- Foreign Staff ²⁾		
	- Local Labor	2,715	(490)
	iii) Catalysts and Chemicals	3,413	(616)

(Note); 1) In the study of preliminary evaluation of economic feasibility in FY1985 and FY1986, \$14.85/t-coal was assumed as raw material cost. In this study, coal cost was assumed to be \$14.48/t on the basis of the study on coal mining cost in FY1986 (for details, see the Interim Report III, page 71-102). Cost of lime stone consumed in gasification plant and fluidized-bed boiler was estimated to be \$4.83/t assuming that it was one-thrid of coal cost.

2) Foreign staff decrease in number as the project proceeds.

Table 2 Costs for Foreign Staffs

Op. Year	1st	2nd	3rd	4th	5th	6th-30th
Year	1994	1995	1996	1997	1998	1999-2023
% on 1st year	100	70	50	30	10	0
Cost, 10 ⁶ Rp/y	7,900	5,530	3,950	2,370	790	0
(Cost, 10 ⁶ ¥/y)	(1,426)	(998)	(713)	(428)	(143)	(0)

		106 Rp/y	_(10 ⁶ ¥/y)_
iii)	Plant Overhead Costs	10,615	(1,916)
iv)	Administration Expenses	5,307	(958)

#### 3-1-5 Evaluation Criteria

- (1) Financial Statement
  - 1) Profit and Loss Statement
  - 2) Cash Flow Statement
  - 3) Balance Sheet
- (2) IRR on Total Project Cost before Tax

In accordance with the following equation, cash flow is discounted to the present value as of 1985.

$$\sum_{i=0}^{n} \frac{(Cin, i - Cout, i)}{(1+r)^{i}} = 0$$

where,

Cin, i; cash-inflow at ith year from 1985

Cout, i; cash-outflow at ith year from 1985

r; discount rate (=IRR)

n; project life (1990-2023)

i = 0 at 1985

Cash-inflow	Cash-outflow
· Sales Proceeds	<ul> <li>Investment excluding interest during construction period.</li> </ul>
<ul> <li>Residual value of investment</li> </ul>	<ul> <li>Total operating expenditure excluding depreciation and interest</li> </ul>

# 3-2 Master Plan Case 2

#### 3-2-1 Production Schedule

(1) Annual Production;

Methanol 1,300,000 t (Chemical grade)
Urea 560,000 t (Ditto)

(2) Plant Construction Period; Same as with Case 1

(3) Project Life;

Same as with Case 1

(4) Annual Operation Days;

Same as with Case 1

# 3-2-2 Finance

Same as with Case 1.

#### 3-2-3 Escalation

Same as with Case 1.

#### 3-2-4 Price and Costs

(1) Sales Price of Products at Plant Gate;

Methanol

194 Rp/kg (35 ¥/kg, 175 \$/t)

Urea

166 Rp/kg (30 ¥/kg, 150 \$/t)

(Note); Sales price of methanol is same as that in Case 1. Sales price of urea at plant gate was assumed referring to the preliminary evaluation study on urea production cost executed in FY1986 in which international FOB price and transportation cost of urea from plant to Palembang were estimated to be 170-180 \$/t and 25 \$/t respectively.

#### (2) Capital Investment Costs

# 1) Fixed-capital Investment;

	10 ⁶ Rupiah	(10 ⁶ Yen)
Coal Gasification	301,900	(54,500)
Coal Transportation	45,400	(8,200)
Methanol Synthesis	162,900	(29,400)
Ammonia/Urea Synthesis	154,000	(27,800)
Air Separation	89,200	(16,100)
Power Generation	139,600	(25,200)
Support Facilities	164,600	(29,700)
Equipment Transportation	63,700	(11,500)
Contingency	56,600	(10,200)
Total	1,177,800	(212,600)

(Note); Construction cost of each plant was reviewed based on the

information in FY 1987. As the result, total fixed-capital investment cost was almost same as that of estimation in FY1986.

		10 ⁶ Rp/y	(10 ⁶ ¥/y)
2)	Working Capital;	57,839	(10,440)
	(Note); Working capital is added	as cash-flow at the	end of the project.
3)	Start-up Expense;	7,490	(1,352)
4)	Operator Training Cost;	3,202	(578)
5)	Investment Schedule;	Same as with C	ase 1
Anı	nual Expense		erio de la composición dela composición de la composición de la composición dela composición dela composición dela composición de la composición dela composición del composición del composición dela composición del composición dela com
1)	Fixed Costs		
	i) Depreciation and Amortization	n	
	<u>P</u>	eriod An	ount
		Years 10 ⁶ Rp/y	(10 ⁶ ¥/y)
	•	15 16,952	(3,060)
	Plant, Cooling Tower, Buildings		
	- Others	10 110,614	(19,966)
	ii) Maintenance	27,770	(5,012)
	iii) Insurance	11,108	(2,005)
÷	(Note); See the relevant note in 3	-1-4 (3).	
		10 ⁶ Rp/y	(10 ⁶ ¥/y)
2)	Variable Costs	<del></del>	
	i) Raw Materials ¹⁾		
	- Coal	72,825	(13,145)
	- CaCO ₃	715	(129)
	ii) Superviser and Operating Labo	or	
	- Foreign Staff ² )		
	- Local Labor	3,346	(604)
	iii) Catalysts and Chemicals	3,324	(600)
٠	(Note); 1) See the relevant note	in 3-1-4 (3).	•

(3)

# 2) Foreign staff decrease in number as the project proceeds.

Table 3 Costs for Foreign Staff

					_	
Op. Year	1st	2nd	3rd	4th	5th	6th-30th
Year	1994	1995	1996	1997	1998	1999-2023
% on 1st year	100	70	50	30	10	0
Cost, 10 ⁶ Rp/y	9,651	6,756	4,825	2,895	965	0
(Cost, 10 ⁶ ¥/y)	(1,742)	(1,219)	(871)	(523)	(174)	(0)

		10 ⁶ Rp/y	$(10^6 \text{ Y/y})$
3)	Plant Overhead Costs	12,997	(2,346)
4)	Administration Expenses	6,499	(1,173)

# 3-2-5 Evaluation Criteria

Same as with Case 1

# 4. Results and Evaluation

# 4-1 Results

Results are summerized in Table 4.

Profit and loss statement and cash flow statement are shown in Table 5 to Table 8.

Table 4 Results of Financial Analysis

· · · · · · · · · · · · · · · · · · ·		
Case	Case 1 (Methanol Production)	Case 2 (Methanol/Urea Co-production)
IRR on Total Investment	13.0%	12.2%
First Year to Have Profit before Tax (Year from Operation Starts)	3rd	3rd
Clear off of Accumulated Loss (Year from Operation Starts)	6th	7th
Pay off of All the Debts (Year from Loan Raised)	12th	12th
Minimum Sales Price (IRR=Interest Rate (8%))	Methanol 148 Rp/kg (26.7 ¥/kg) (175 \$/t)	Methanol 194 Rp/kg (35 ¥/kg) Urea 37 Rp/kg (6.7 ¥/kg) (33.4 \$/t)

(Note); Minimum sales price of urea are calculated under fixed price of methanol.

Table 5 Profit and Loss Statement of Case 1

ć	F		#4	Expenditure	ø)			Profit		ŗ
ear Year	revenue	Variable Cost	Fixed	General	Interest Paid	Total	Before Tax	(Tax)	Net Profit	Ketained   Earning
	217.2	یا	140.4	LO O	10		10	0		9-02-
	263.7	o	40,		L.C		· [			8
m	310.2	78.6	40,	6 21	57.5	292.5	17.8	0	17.8	9-08-
-	310.2		40.	ıΩ	œ		တ	0		-50.7
	310.2	100	40.	ιΩ	S		3	0		2-2-
	310.2	-#	40.	ю	$\sim$		S	evi.		25.8
	310.2	***	140.4		က		56.7	30.2	35.5	61.3
	310.2	74.7	40.		٦#		4	4		101.6
	310.2	-	40.	'n	0		79.2	6		144.4
3 10	310.2	74.7			0		79.2	é		187.2
	310.2	74.7		10	0		173.5	o,		280.9
	310.2	74.7		10	0		173.5	o	93.7	374.5
	310.2	74.7		ıĠ.	0		173.5	6	93.7	468.2
	310.2	74.7		io	0		173.5	о О	93.7	561.9
_	310.2	4		ī	0		173.5	o,	93.7	655.6
_	310.2	74.7			0		187.2	86.1	101.1	7.957
	310.2	74.7	32.4	io.	0	123.1	187.2	ů.	101.1	857.8
	310.2	74.7	32.4	'n.	0	123.1	187.2	φ.	101	958.9
	310.2	₹Ħ	32.4	ı.	0	123.1	187.2	86.1	101.1	090,
	310.2	₹.	32.4	က်	9	123.1	187.2	÷		,161
	310.2	4.	32.4	ري. دي	0	3	187.2	ė.	101.1	,262
-	310.2	4	32.4	го	0	123.1	187.2	Ġ		,363.
_	310.2	74.7	_	ຜ	0	3	187.2	6		,464.
	310.2	4.	32.4	ĸ.	0	123.1	187.2	86.1		,565.
	310.2	74.7	_	'n	0	123.1	187.2	é		.999,
	310.2	4		ĸ,	0	123.1	187.2	ė,		,767.
	310.2	4		ري. دي	0	123.1	187.2	မ်		,868.
	310.2	4	32.4		0	123.1	28	86.1	101.1	,969.
	310.2	74.7		πò	0	123.1	187.2	ó		.070.
	310.2	4.		اني	0	123.1	r-	ဖြ	101.1	2,171.9
<del></del>	<u> </u>			ļ	<u> </u>					
		0 000			_					

Table 6 Cash Flow Statement of Case 1

(Unit: 109 Rupiah)

(IRR: 13.0%)

Year   OP   Year   1990   1991   1992   1993   1994   1 1995   2 1996   3 1997   4 1998   5 1999   6 2000   7 2001   8 2002   9 2003   10 2004   11 2005   12 2006   13 2007   14 2008   15 2009   16 2010   17 2011   18 2012   19 2013   20 2014   21 2015   22 2016   23 2017   24 2018   25 2019   26 2020   27 2021   28		1				
1991 1992 1993 1994 1995 2 1996 3 1997 4 1998 5 1999 6 2000 7 2001 8 2002 9 2003 10 2004 11 2005 12 2006 13 2007 14 2008 15 2009 16 2010 17 2011 18 2012 19 2013 2014 21 2015 22 2016 23 2017 24 2018 25 2019 26 2019 2018 25 2019 26 2019 2018 2019 2018 2019 2019 2019 2019 2019 2019 2019 2019 2019 2010 2011 2011 2011 2012 2014 2015 2016 2017 2018 2017 2018 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020		Profit Before Tax	Depreciation/ Amortization	Interest Paid	Cash Flow	DCF (Base; 1985)
1991 1992 1993 1994 1 1995 2 1996 3 1997 4 1998 5 1999 6 2000 7 2001 8 2002 9 2003 10 2004 11 2005 12 2006 13 2007 14 2008 15 2009 16 2010 2011 18 2012 19 2011 18 2012 2014 2015 2014 2015 2014 2015 2016 2017 2018 2017 2018 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020	-298.2		_	-	-298.2	-161.6
1992 1993 1994 1995 2 1996 3 1997 4 1998 5 1999 6 2000 7 2001 8 2002 9 2003 10 2004 11 2005 12 2006 13 2007 14 2008 15 2009 16 2010 2011 18 2012 19 2013 2014 21 2015 22 2016 23 2017 24 2018 25 2019 26 2020 27	-298.2			_	-298.2	-143.0
1993   1994   1   1995   2   1996   3   1997   4   1998   5   1999   6   2000   7   2001   8   2002   9   2003   10   2004   11   2005   12   2006   13   2007   14   2008   15   2009   16   2010   17   2011   18   2012   19   2013   20   2014   21   2015   22   2016   23   2017   24   2018   25   2019   26   2020   27	-198.8	_	_	_	-198.8	-84.4
1994     1       1995     2       1996     3       1997     4       1998     5       1999     6       2000     7       2001     8       2002     9       2003     10       2004     11       2005     12       2006     13       2007     14       2008     15       2009     16       2010     17       2011     18       2012     19       2013     20       2014     21       2015     22       2016     23       2017     24       2018     25       2019     26       2020     27	-258.5	· -		°. —	-258.5	-97.0
1995     2       1996     3       1997     4       1998     5       1999     6       2000     7       2001     8       2002     9       2003     10       2004     11       2005     12       2006     13       2007     14       2008     15       2009     16       2010     17       2011     18       2012     19       2013     20       2014     21       2015     22       2016     23       2017     24       2018     25       2019     26       2020     27		-70.6	108.0	70.4	107.8	35.8
1996     3       1997     4       1998     5       1999     6       2000     7       2001     8       2002     9       2003     10       2004     11       2005     12       2006     13       2007     14       2008     15       2009     16       2010     17       2011     18       2012     19       2013     20       2014     21       2015     22       2016     23       2017     24       2018     25       2019     26       2020     27		-27.8	108.0	65.7	145.9	42.9
1997   4 1998   5 1999   6 2000   7 2001   8 2002   9 2003   10 2004   11 2005   12 2006   13 2007   14 2008   15 2009   16 2010   17 2011   18 2012   19 2013   20 2014   21 2015   22 2016   23 2017   24 2018   25 2019   26 2020   27		17.8	108.0	57.5	183.2	47.6
1998     5       1999     6       2000     7       2001     8       2002     9       2003     10       2004     11       2005     12       2006     13       2007     14       2008     15       2009     16       2010     17       2011     18       2012     19       2013     20       2014     21       2015     22       2016     23       2017     24       2018     25       2019     26       2020     27		29.9	108.0	46.9	184.8	42.5
1999     6       2000     7       2001     8       2002     9       2003     10       2004     11       2005     12       2006     13       2007     14       2008     15       2009     16       2010     17       2011     18       2012     19       2013     20       2014     21       2015     22       2016     23       2017     24       2018     25       2019     26       2020     27		43.0	108.0	35.4	186.4	37.9
2000     7       2001     8       2002     9       2003     10       2004     11       2005     12       2006     13       2007     14       2008     15       2009     16       2010     17       2011     18       2012     19       2013     20       2014     21       2015     22       2016     23       2017     24       2018     25       2019     26       2020     27		55.5	108.0	23.7	187.2	33.7
2001     8       2002     9       2003     10       2004     11       2005     12       2006     13       2007     14       2008     15       2009     16       2010     17       2011     18       2012     19       2013     20       2014     21       2015     22       2016     23       2017     24       2018     25       2019     26       2020     27		56.7	108.0	13.5	187.2	29,8
2002     9       2003     10       2004     11       2005     12       2006     13       2007     14       2008     15       2009     16       2010     17       2011     18       2012     19       2013     20       2014     21       2015     22       2016     23       2017     24       2018     25       2019     26       2020     27		74.7	108.0	4.5	187.2	26.4
2003     10       2004     11       2005     12       2006     13       2007     14       2008     15       2009     16       2010     17       2011     18       2012     19       2013     20       2014     21       2015     22       2016     23       2017     24       2018     25       2019     26       2020     27		79.2	108.0	0	187.2	23.3
2004     11       2005     12       2006     13       2007     14       2008     15       2009     16       2010     17       2011     18       2012     19       2013     20       2014     21       2015     22       2016     23       2017     24       2018     25       2019     26       2020     27	0 -	79.2	108.0	0	187.2	20.7
2005     12       2006     13       2007     14       2008     15       2009     16       2010     17       2011     18       2012     19       2013     20       2014     21       2015     22       2016     23       2017     24       2018     25       2019     26       2020     27		173.5	13.7	0	187.2	18.3
2006     13       2007     14       2008     15       2009     16       2010     17       2011     18       2012     19       2013     20       2014     21       2015     22       2016     23       2017     24       2018     25       2019     26       2020     27		173.5	13.7	0	187.2	16.2
2008     15       2009     16       2010     17       2011     18       2012     19       2013     20       2014     21       2015     22       2016     23       2017     24       2018     25       2019     26       2020     27	3   -	173.5	13.7	. 0.	187.2	14.3
2009     16       2010     17       2011     18       2012     19       2013     20       2014     21       2015     22       2016     23       2017     24       2018     25       2019     26       2020     27	4 -	173.5	13.7	0	187.2	12.7
2010     17       2011     18       2012     19       2013     20       2014     21       2015     22       2016     23       2017     24       2018     25       2019     26       2020     27	5 -	173.5	13.7	0	187.2	11.2
2011     18       2012     19       2013     20       2014     21       2015     22       2016     23       2017     24       2018     25       2019     26       2020     27	6   -	187.2	. 0	0	187.2	9.9
2012     19       2013     20       2014     21       2015     22       2016     23       2017     24       2018     25       2019     26       2020     27	7   -	187.2	0	0	187.2	8.8
2013     20       2014     21       2015     22       2016     23       2017     24       2018     25       2019     26       2020     27	8 -	187.2	0	0	187.2	7.8
2014     21       2015     22       2016     23       2017     24       2018     25       2019     26       2020     27	9   -	187.2	0	0	187.2	6.9
2015     22       2016     23       2017     24       2018     25       2019     26       2020     27	0.	187.2	0	0	187.2	6.1
2016     23       2017     24       2018     25       2019     26       2020     27		187.2	0	0	187.2	5.3
2017     24       2018     25       2019     26       2020     27		187.2	0 `	0	187.2	4.8
2018     25       2019     26       2020     27	1	187.2	0	0	187.2	4.2
2019 26 2020 27		187.2	. 0	0	187.2	3.7
2020 27		187.2	0	. 0	187.2	3,3
		187.2	0	,0	187.2	2.9
2021 28		187.2	0	0	187.2	2.6
		187.2	. 0	0	187.2	2.3
2022 29		187.2	0	0	187.2	2.0
2023 30	0 -	187.2	0	0	237.4	2.3
Total	tal -1,053.7	4,022.1	1,148.5	317.6	4,484.8	0.0

Table 7 Profit and Loss Statement of Case 2

Dotained	retained Earning	Similar	-94.9	-142.2	138.8	-122.6	-92.3	-47.9	5.5	44.6	87.2	129.9	232.3	334.7	437.1	539.5	_	753.4		976.5	1,088.0	1,199.6	1,311.1	1,422.7	1,534.2	1,645.8	757.	1,868.9	1,980.4	092.	2,203.5	315.		
	Net Profit	Profit	-94.9	27.7	. w	16.3	30.3	≪1	53.4	•	42.7	42.7			102.4	102.4					111.5			•			•	111.5		Ξ		Ħ.		
Profit	(Tax)	(Tax)	0	c	0	0	0	0	5.2	33.3	36.3	36.3	87.2	87.2	87.2	87.2	87.2	95.0	95.0	95.0	95.0	95.0	95.0	95.0	95.0	95.0	95.0	95.0	95.0	95.0	95.0	95.0	-	-
	Before Tax	Tax			6	16.3	30.3	44.4	00	$\sim$	79.0	5	189.6	189.6	189.6	189.6	189.6	206.6	206.6	206.6	206.6	206.6	206.6	206.6	206.6	206.6	206.6	206.6	206.6	206.6	6	206.6		
	Total	Total	336.5	340 6	341.8	328.9	314.9	300.7	286.6	272.8	266.2	266.2	155.5	ro.	R)	155.5	ß	138.6	138.6	138.6	138.6	138.6	138.6	ന	138.6	ഹ	ന	138.6	138.6	138.6	138.6	138.6		
	Interest Paid	Paid	83.8	70.2	70.8	59.8	47.8	34.6	20.5	9.9	0	6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	. 0		
Expenditure	General	General			10.0		O)		Q2	Ġ,	19.5	ga i	တ	g)	O)	ø	O	19.5	O)	ð	ð	19.5	တ	o)		ത	Ġ,	19.5		Φ				
#1	Fixed Cost	Cost	166.4			•	166.4	166.4	166.4	166.4	166.4	166.4	55.8	55.8	55.8	55.8	55.8	38.9	38.9	38.9	38.0	38.9	38.9	38.9	38.9	38.9	38.9	38.9	38.9	9 8 8	38.9	38.9		
	Variable Cost	Cost	8.99	75.4	85.0	83.1	81.2	80.2	80.2	80.2	80.2	80.2	80.2	80.2	80.2	80.2	80.2	80.2	80.2	80.2	80.2	80.2	80.2	80.2	80.2	80.2	80.2	80.2	80,2	80.2	80.2	80.2		
D curous	anreasur					it.	E.	5	£5.	ដូ	345.2	ម្នាំ ម	٠. ت	٠. ک	~11	***	***	TH	<b>441</b>	5	<del>1</del> 5.	د ا	ξ.	£	ξή. Ω	5	5.	₹7	45.	45.	45.	45.		•
e	Year	100	**1	6	60	4	гo	w	<b>i~</b>	800	Ġ ,	01	ï	27	5	14	<b>G</b>	16	17	8	<u>හ</u>	20	21	22	23	24	25	56	27	28	53	30		
	Year		1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2002	2006	2002	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023		

Table 8 Cash Flow Statement of Case 2

(Unit: 10⁹ Rupiah) (IRR: 12.2%)

Year	OP Year	Investment	Profit Before Tax	Depreciation/ Amortization	Interest Paid	Cash Flow	DCF (Base; 1985)
1990		-353.4	***	<u> </u>	_	-353.4	-198.4
1991	İ	-353.4	_	-	-	-353.4	-176.7
1992		-235.5		-	_	-235.5	-105.0
1993		-304.1		••	_	-304.1	-120.7
1994	1	_	-94.9	127.6	83.8	116.4	41.2
1995	2		-47.3	127.6	79.3	159.6	50.3
1996	3	•-	3.4	127.6	70.8	201.7	56.6
1997	4		16.3	127.6	59.8	203.7	51.0
1998	5		30.3	127.6	47.8	205.6	45.8
1999	6	· _	44.4	127.6	34.6	206.6	41.0
2000	7	_	58.5	127.6	20.5	206.6	36.5
2001	8		72.4	127.6	6.6	206.6	32.6
2002	9	-	79.0	127.6	. 0	206.6	29.0
2003	10	<del></del>	79.0	127.6	. 0	206.6	25.8
2004	11	_	189.6	16.9	0	206.6	23.0
2005	12	_	189.6	16.9	0	206.6	20.5
2006	13	-	189.6	16.9	0	206.6	18.3
2007	14	_	189.6	16.9	0	206.6	16.3
2008	15	_	189.6	16.9	0	206.6	14.5
2009	16	-	206.6	0	0	206.6	12.9
2010	17	_	206.6	0	. 0	206.6	11.5
2011	18	-	206.6	0	0	206.6	10.3
2012	19		206.6	0	0	206.6	9.1
2013	20	-	206.6	0	0	206.6	8.1
2014	21	-	206.6	0	0	206.6	7.3
2015	22	-	206.6	0	0.	206.6	6.5
2016	23	-	206.6	0	0	206.6	5.8
2017	24		206.6	0	0	206.6	5.1
2018	25	-	206.6	0	0	206.6	4.6
2019	26	-	206.6	0 .	0	206.6	4.1
2020	27	-	206.6	0	0	206.6	3.6
2021	28	-	206.6	0	0	206.6	3.2
2022	29	_	206.6	0	0	206.6	2.9
2023	30	-	206.6	0	0	264.4	3.3
	Total	-1,246.4	4,287.7	1,360.4	403.1	4,862.7	0.0

#### 4-2 Evaluation

#### (1) Profit and Loss

From the viewpoint of profitability, both projects of Case 1 and Case 2 are financially viable. After the projects record deficit for the first two years, they record surplus from the third year onward.

The cumulative deficit of Case 1 is cleared off in the 6th year but that of Case 2 is in the 7th year.

## (2) Internal Rate of Return before Tax

As far as IRR is concerned, the resulting 13.0% of IRR on Case 1 and 12.2% on Case 2 cannot be considered as a high rate in general standard due to large investment costs. However, if low cost funds such as the interest rate of 8% assumed in this study is arranged, both cases are considered to be viable.

## (3) Debt Repayment

Debt repayment is accomplished in eight years from start of plant operation in both cases. This period is not so long term in consideration of thirty years of project life.

#### (4) Evaluation

Profitability of Case 1 is superior to that of Case 2 from the viewpoint of IRR. Provided that the crude oil price rises higher than 30\$/bbl which corresponds to 35\forall /kg of methanol price at plant gate, the viability of the project Case 1 would be enhanced because the noncommercial Banko coal is not affected by oil.

			• .		
2.	Comparison of Ele	ectricity Ge	eneration C	Cost	
i san				,	
•					·
\$ 100 miles	•			•	* *
7. The second of			•		

#### 1. Objective of the Study

This study has been carried out for the purpose of preliminary evaluation of economic feasibility on the case of electricity generation from Banko coal by using the fluidized-bed boiler (FBB) in order to compare with the economic evaluation of coal gasification combined-cycle (CGCC) power generation.

As a matter of convenience for cost comparison between this plant and CGCC power plant, the same gross generating capacity (900 MW), and assumptions of economic factors such as electricity generation schedule, finance, sales price and raw material cost were selected in this study.

Note): These results are abstructed and compiled from the Interim Report III (FY 1986) and the Interim Report, Stage II (March, 1988) on the Feasibility Study on Effective Utilization of Banko Coal in the Republic of Indonesia. For details, refer to these reports.

#### 2. Outline of Power Plants

- 2-1 Coal Gasification Combined-cycle Plant (CGCC)
- 2-1-1 Design Basis

(1) Type of Power Plant : Combined Cycle Generation

(2) Generating Power

Gross Generating Power : 900 MW

Available Generating Power : 855 MW

Net Generating Power : 835 MW

(Power to Gasification Plant : 20 MW)

(3) Annual Operation Days : 320 d/y

(4) Plant Location : Tanjung Priok

(5) Electricity Transmission : Switchyard of Power Plant

Note*): Electricity will be sold to PLN.

## (6) Feed Coal Specification:

C, % : 27.4
V.M., % : 32.8
Ash, % : 4.8
Mo., % : 35.0
Total, % : 100.0
HV, Keal/kg : 4,430

(7) Coal Receiving : Bunker Hopper at Mine Site

(8) Utilities : All the utilities except raw water and coal are generated

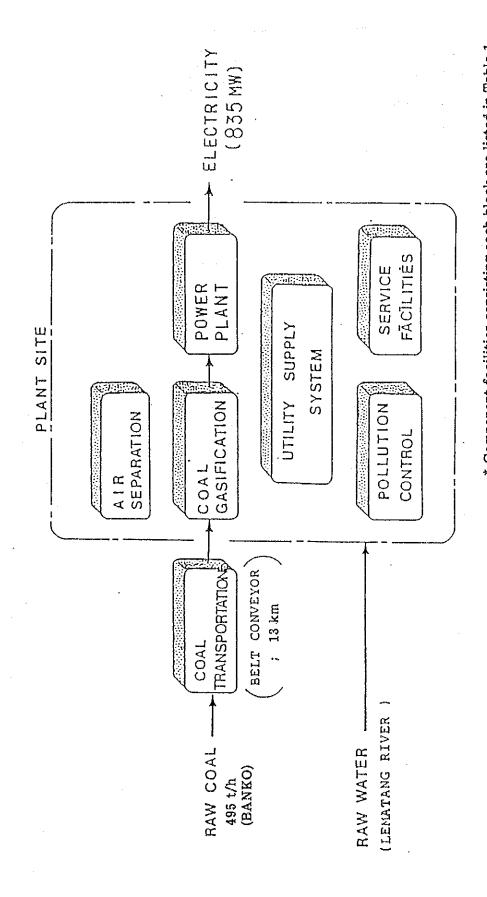
inside the plant

Conditions:

HP St'm : 480°C, 65 kg/cm²G

MP St'm : 250°C, 40 kg/cm²G

LP St'm : 155°C, 3.5 kg/cm²G


BFW (I) : 110°C, 5 kg/cm²G

BFW (II) : 110°C, 55 kg/cm²G

C. Water: 30°C (Supply)/37°C (Return)

## 2-1-2 Plant Configuration

Fig. 1 shows the scope of coal gasification and electricity generation complex devided into seven blocks each of which has its individual function. The component facilities in each block are listed in Table 1.



* Component facilities consisting each block are listed in Table 1. Fig. 1 Overall Block Flow Diagram

# Table 1 Plant Configuration

- Belt Conveyor System
   Primary Crusher/Feeder
   Overland Coal Conveyor
- 2) Coal Gasification
  Coal Storage and Handling
  Coal Pretreatment
  Coal Gasification
  Gas Cooling/Dedusting
  Calcination
- 3) Air Separation Plant Air Separation Liquid Oxygen Tank Liquid Nitrogen Tank
- Gas Turbine/Generator
  Steam Turbine/Generator
  Heat Recovery Steam Generator (HRSG)
  HP & LP Steam Circuit
  Power Distribution
  Water Cooling
  Raw Water Intake/Pretreatment
  Instrument/Plant Air Supply
- 5) Pollution Control/Safety System
  Waste Water Treatment
  Solid Waste Disposal
  Flare/Blowdown
  Fire Fighting

# 6) Service Facilities

Administration Office

Laboratory

Warehouse

Accommodation

Canteen

Cafeteria

Leisure Center

Mosque

Communication System

Maintenance Shop

Potable Water Supply

## 2-1-3 Electricity Generation

Process Flow Diagram
 See Fig. 2.

## (2) Process Description

- The plant comprises three combined cycle blocks. Each consists of two 100 MW class gas turbines, two heat recovery steam generators (HRSG) and a steam turbine.
- 2) The gas turbine/generator packages convert about 31% of the fuel energy into electric power and release almost all the remainder as waste heat in the exhaust gas at about 530°C. This wasted energy is recovered for use as heat. The heat recovery steam generator (HRSG) positioned on the exhaust paths reduce the exhaust temperature to about 130°C and recover the gas turbine losses by converting them into steam. The stream is used to drive steam turbines to generate additional power and process steam. Thus the gross efficiency of power plant becomes about 45%.
- The HRSG is of dual pressure system and produces two different pressure steams.

HP steam:  $65 \text{ kg/cm}^2\text{G} \times 480^{\circ}\text{C}$ LP steam:  $3.5 \text{ kg/cm}^2\text{G} \times 155^{\circ}\text{C}$ 

The feedwater is first heated in feedwater tank and then in the LP economizer. Evaporation takes place in forced circulation LP evaporator and transferred to the process. HP part of the HRSG has the same system as that of LP part, though superheater is furnished in this case, and is placed in series in the exhaust gas stream. A part of HP steam is transferred to the process and the remainder is used to drive steam turbine. MP steam (40 kg/cm 2 G x 250°C) is input to the intermediate stage of the steam turbine.

#### (3) Major Equipment

Specifications and the number of units of major equipment are listed in Table 2.



Fig. 2 Simplified Process Flow Diagram (CGCC)

Table 2 Major Equipment (CGCC)

Description	Q'ty	Specification
Gas turbine/generator package	6	100 MW
Heat recovery steam generator	6	HP: 65 kg/cm ² G x 480°C x 168 t/h LP: 3.5 kg/cm ² G x 156°C x 46 t/h
Steam turbine/generator unit	3	100 MW
Steam condenser	3	390 t/h x 722 mmHgV
Vacuum pump	3	722 mmHgV
Condensate pump	9 (3 standby)	215 m ³ /h x 100m
Feedwater tank	3	10 m ³
HP feedwater pump	9 (3 standby)	200 m ³ /h x 750 m
LP feedwater pump	9 (3 standby)	$250 \text{ m}^3/\text{h} \times 75 \text{m}$
Cooling tower	1	100,000 t/h
Fuel gas compressor unit	6	115,000 $Nm^3/h \times 17 kg/cm^2$
Demineralized water plant	1	100 t/h
Raw water pump	3 (1 standby)	1,630 t/h x 30m
Feed water pump for gasification	2 (1 standby)	640 t/h x 550 m

# 2-1-4 Utility Requirement

See Table 3 and Fig. 3.

Table 3 Utility Requirement

Coal	495	t/h (external supply)
Raw Water	2,960	t/h (ditto)
Electricity	835,000	kW (outside supply)
ditto	20,000	kW (internal supply)
Cooling Water	119,100	t/h (ditto)
BFW	1,703	t/h (ditto)
HP Steam	189	t/h (ditto)
LP Steam	273	t/h (ditto)

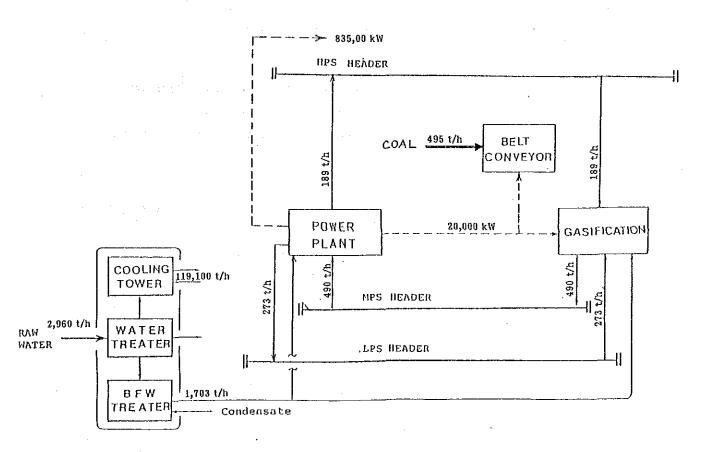



Fig. 3 Utility Flow Diagram (CGCC)

## 2-2 Fluidized-bed Boiler Plant (FBB)

## 2-2-1 Design Basis

(1) Type of Power Plant : Thermal Power Plant with Fluidized-bed Boiler

(2) Generating Power

Gross Generating Power: 900 MW

Net Generating Power: 818 MW

(For Home Consumption: 82 MW)

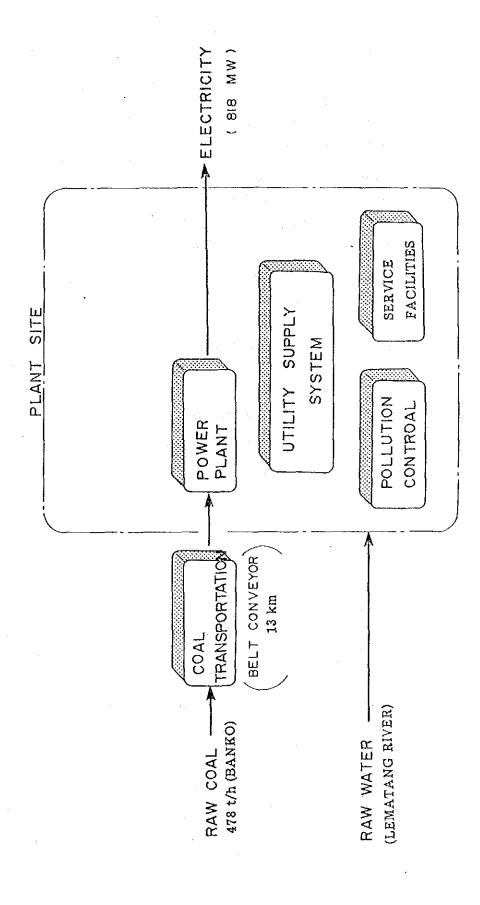
(3) Annual Operation Days : 320 d/y

(4) Plant Location : Tanjung Prick

(5) Electricity Transmission : Switchyard of Power Plant (Note): Electricity will be sold to PLN.

(6) Feed Coal Specification : Same to the coal for CGCC Plant

(7) Coal Receiving : Bunker Hopper at Mine Site


(8) Utilities

All the utilities except raw water and coal are generated insdie the plant. Drying of coal is carried out by utilizing the heat of boiler flue gas. Cooling water for main condenser is supplied at 30°C and returned at 37°C.

#### 2-2-2 Plant Configuration

Fig 4 shows the scope of power plant devided into five blockes each of which has its individual function.

The component facilities in each block are listed in Table 4.



* Component facilities consisting each block are listed in Table 4.

Fig. 4 Overall Block Flow diagram

## Table 4 Plant Configuration

- Belt Conveyor System
   Primary Crusher/Feeder
   Overland Coal Conveyor
- 2) Coal and Limestone Handling Coal Storage and Handling Coal Pretreatment Limestone Storage and Handling
- 3) Power Plant & Utility System
  Gas Turbine/Generator
  Steam Turbine/Generator
  Coal Fired Fluidized Bed Boiler
  Power Distribution
  Water Cooling
  Raw Water Intake/Pretreatment
  Instrument/Plant Air Supply
- 4) Pollution Control/Safety System
  Waste Water Treatment
  Solid Waste Disposal
  Flare/Blowdown
  Fire Fighting
- Administration Office
  Laboratory
  Warehouse
  Accommodation
  Canteen
  Cafeteria
  Leisure Center
  Mosque
  Communication System
  Maintenance Shop
  Potable Water Supply

# 2-2-3 Electricity Generation

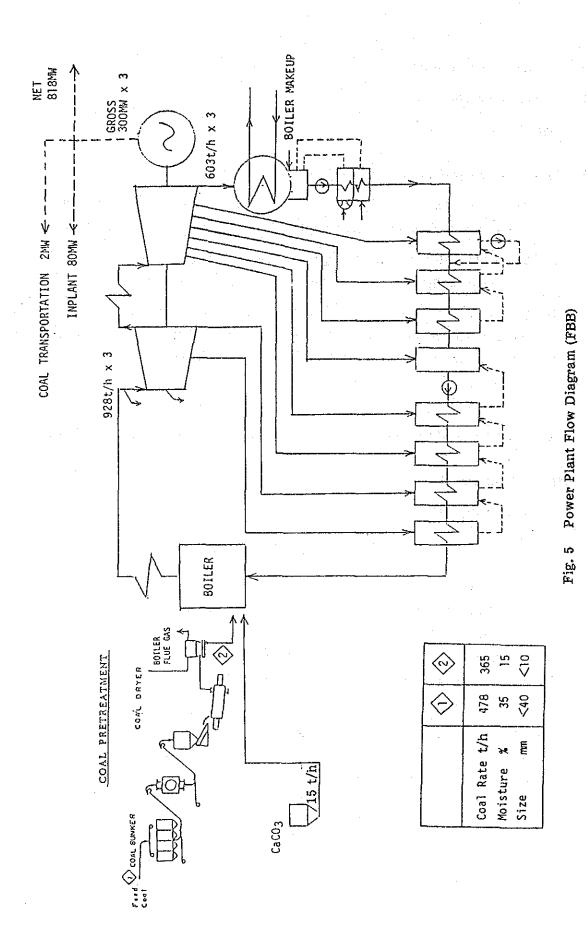
(1) Process Flow Diagram

See Fig. 5.

## (2) Process Description (Fig. 5 & Fig. 6)

- 1) The plant comprises of three trains. Each train consists of 300 MW single reheat steam turbine generator set and 3 units of fluidized bed boiler.
- 2) The fluidized bed boiler is especially suitable for burning the difficult-burn coal such as lignite with high water content and anthracite.
- 3) The feedwater is heated by 3 units of LP feedwater heaters, deaerator, and 4 units of HP feedwater heaters. The steam for heating of each feedwater is extracted from the respective steam turbine bleeding point.

## (3) Major Equipment


Specifications and the number of units of major equipment are listed in Table 5.

## 2-5 Utility Requirement

See Table 6 and Fig. 7.

Table 6 Utility Requirement

Coal	478	t/h (external supply)
Raw Water	1,680	t/h (ditto)
Electricity	818,000	kW (outside supply)
ditto	82,000	kW (internal supply)
Cooling Water	155,000	t/h (ditto)
CaCO ₃	15	t/h



-290<u>-</u>

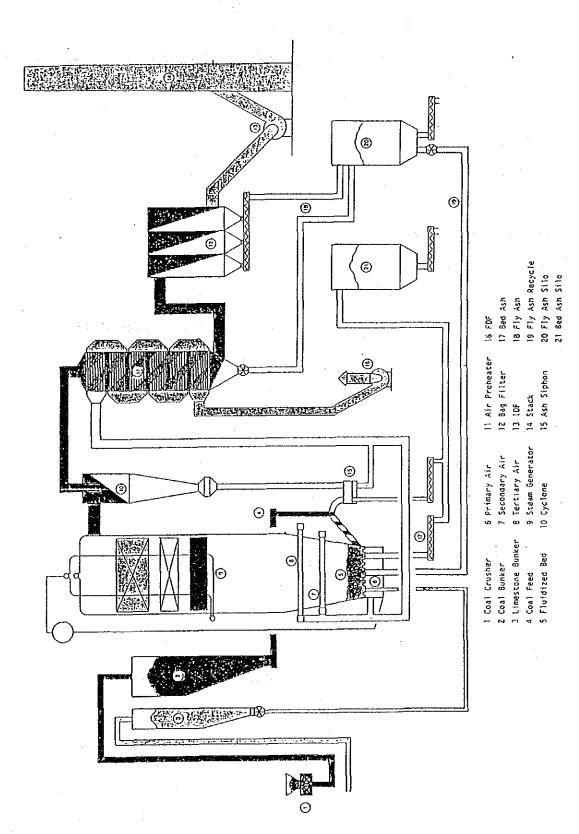



Fig. 6 Scheme of Fluidized Bed Boiler

Table 5 Major Equipment (FBB)

	Description	Q'ty	Capacity
1.	Coal Handling Section		
	1.1 Primary Crusher	3	200 t/h
	1.2 Dewatering Drum	3	160 t/h
2.	Thermal Power Plant Section		
	Fluidized bed boiler	9	310 t/h
	Steam turbine/generator unit	3	300 MW
	Steam condesner	3	603 t/h x 700 mmHgV
,	Vacuum pump	3	700 mmHgV
	Condensate pump	9 (3 standby)	360 m ³ /h x 200 m
	Feedwater tank	. 3	10 m ³
	HP feedwater heaters	12	928 t/h
	Deaerators	3	928 t/h
	LP feedwater heaters	9	702 t/h
	Boiler feed pumps	9 (3 standby)	510 t/h x 198 at
	Cooling tower	1	155,000 t/h
	Demineralized water plant	3	35 t/h
	Raw water pump	2 (1 standby)	1,900 t/h x 30m

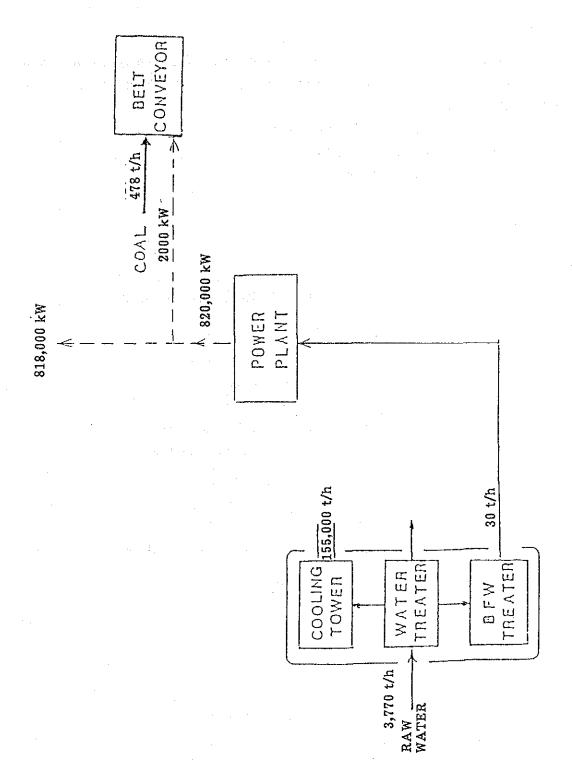



Fig. 7 Utility Flow Diagram (FBB)

#### 3. Financial Analysis

Financial viability and profitability of the Project was evaluated by means of financial statements* and internal rate of return (hereafter referred to as IRR) on total project investment.

* Projected Profit and Loss Statement Projected Cash Flow Statement Projected Balance Sheet

## 3-1 Assumptions

(1) Electricity Generation Schedule

1) Net Generating Power : 835 MW (CGCC), 818 MW (FBB)

2) Average Load Factor : 66%

3) Plant Construction Period: 1990 - 1993 (4 years)

where 30% Completion at the end of 1990

60% Completion at the end of 1991

80% Completion at the end of 1992

100% Completion at the end of 1993

4) Project Life : 1994 - 2023 (30 years)

where 70% of full operation in 1994

85% of full operation in 1995

100% of full operation in 1996 and after

5) Annual Operation Days : 320 days

#### (2) Finance

1) Debt/Equity Ratio : 75/25

2) Currency

For Annual Revenue/Expenditure ; Rupiah

For Capital Investment ; Yen

Exchange Rate ; 0.18 Yen/Rupiah

Accordingly, debt is repayed by exchanging Rupiah for yen at the above exchange rate.

#### 3) Debt Repayment Schedule

Terms of 12 years after commitment, including 4 years of grace period with 8 years equal payments of principal.

#### 4) Interest

- i) Long-term Loan; 8% per annum Assumed supplyer's credit (7.2% p.a.) plus bank loan and project risk premium.
- ii) Short-term Loan; 8% per annum

  A short term loan would be raised commensurate with annual cash deficiency and would be repayed after development loan.
- iii) Interest during Construction Period

  In accordance with a general rule in similar projects, interest paid or accrued during construction period is capitalized and amortized over a 10-year period from 1994.

#### (3) Escalation

No escalation is assumed.

#### (4) Ex-Power Plant Price of Electricity

Supply to Jakarta:

Case E-5,7 : 43 Rp/kWh (7.76 ¥/kWh)

Case E-6,8 : 53 Rp/kWh (9.57 ¥/kWh)

Supply to Adjacent Area:

Case E-4,9 : 64 Rp/kWh (11.55 Y/kWh)Case E-1,10 : 78 Rp/kWh (14.08 YkWh)

Note*) Ex-Power Plant Price was assumed referring to the electric rate in Indonesia as of April 1984 and estimated sales cost. Estimation of price in each case is shown in Table 7.

Table 7 Sales Price and Cost Estimation of Electricity

(Unit: Rp/kWh)

		т —	,	are represent	
Case	Case E-5,7	Case E-6,8	Case E-4,9	Case E-1,10	
Average Sales Price of PLN	1	98			
Administration and Distribution Cost of PLN	30%	20%	20%	20%	
Transmission Loss	15%	15%	15%	0%	
Sub-total (	2 45% 44	35% 34	35% 34	20% 20	
Transmission Cost to Java	3 11	11	-		
Total 2 + 3 = 6	<b>4</b> ) 55	45	34	20	
Ex-Power Plant Price	43	53	64	78	

# 3-2 Capital Investiment Costs

## 3-2-1 CGCC Plant Case

# (1) Fixed-capital Investment:

	-	10 ⁶ Rupiah	(10 ⁶ Yen)
	Coal Gasification	461,500	(83,300)
	Coal Transportation	41,000	(7,400)
	Power Plant/Support	304,200	(54,900)
	Facilities		
	Equipment Transportation	89,200	(16,100)
	Contingency	44,300	(8,000)
	Total	940,200	(169,700)
(2)	Working capital	39,100	(7,058)
	Note): Working capital is added as o	eash-inflow at the er	nd of the project.
(3)	Start-up Expense:	4,300	(777)
(4)	Operator Training Cost:	2,400	(430)
	Note): Table 8 shows the investmen	t schedule.	

Note): Table 8 shows the investment schedule.

Table 8 Investment Schedule

1990	1991	1992	1993
30%	30%	20%	20%
_		-	100%
<b>60%</b>			100%
	-	<b>804</b>	100%
	30%	30% 30%	30% 30% 20%

## 3-2-2 FBB Plant Case

(2)

# (1) Fixed-capital Investment:

	10 ⁶ Rupiah	(10 ⁶ Yen)
Coal Transportation	39,900	(7,200)
Power Plant/Support Facilities	736,800	(133,000)
<b>Equipment Transportation</b>	74,200	(13,400)
Contingency	42,700	(7,700)
Total	893,600	(161,300)
Working capital:	33,820	(6,105)

Note): Working capital is added as cash-inflow at the end of the project.

(3)	Start-up Expense:	4,160	(750)
(4)	Operator Training Cost:	2,070	(374)

Note): Investment schedule is same as the CGCC Plant Case.

## 3-3 Annual Expense

## 3-3-1 CGCC Plant Case

# (1) Fixed Costs

1) Depreciation and Amortization 1)*

			Period	Am	ount
			Year	10 ⁶ Rupia/Year	(10 ⁶ Yen/Year)
		· Boiler, Power Plant,	15	18,986	(3,427)
		Cooling Tower, Buildings			
		· Others	10	79,900	(14,422)
	2)	Maintenance		21,163	(3,820)
	3)	Insurance		8,465	(1,528)
(2)	Var	iable Costs			
	1)	Raw Material (Coal)2)*	•	41,285	(7,452)
	2)	Superviser & Operating Labor			
		<ul> <li>Foreign Staff^{3)*}</li> </ul>		100	
		· Local Labor		2,476	(447)
	3)	Chemicals		404	(73)
(3)	Pla	nt Overhead Costs		9,934	(1,793)
(4)	Ad	ministration Expenses		4,970	(897)

- Note): 1) Capital investment for the plant construction including expenses and interests during construction period is depreciated and a amortized based on straight line method.
  - 2) In the strategic study in FY1984, mining cost was estimated at \$13.88/ton-coal. In this study \$14.85/ton-coal is assumed as raw material costs by adding 7% to the mining cost as overhead.
  - 3) Foreign staff decrease in number as the project proceeds. (See Table9)

Table 9 Costs for Foreign Staff

Op. Year	1st	2nd	3rd	4th	5th	6th-30th
Year	1994	1995	1996	1997	1998	1999-2023
% on 1st year	100	70	50	30	10	0
Cost, 10 ⁶ rupiah/year	7,457	5,220	3,729	2,237	746	0
(Cost, 10 ⁶ yen/year)	(1,346)	(942)	(673)	(404)	(135)	(0)

## 3-3-2 FBB Plant Case

## (1) Fixed Costs

1) Depreciation and Amortization  $^{1)*}$ 

			Period	Am	ount
			Year	10 ⁶ Rupia/Year	(10 ⁶ Yen/Year)
		· Boiler, Power Plant,	15	49,269	(8,893)
		Cooling Tower, Buildings			
		• Others	10	29,086	(5,250)
	2)	Maintenance		20,388	(3,680)
	3)	Insurance		8,155	(1,472)
(2)	Var	riable Costs			
	1)	Raw Material (Coal)2)*		39,867	(7,196)
	2)	Superviser & Operating Labor			
		<ul> <li>Foreign Staff^{3)*}</li> </ul>			
		· Local Labor		2,166	(391)
	3)	Chemicals		1,224	(221)
(3)	Pla	nt Overhead Costs		8,748	(1,579)
(4)	Adı	ministration Expenses		4,377	(790)

Note): 1 - 3: Same as the CGCC Plant Case.

## 3-4 Evaluation Criteria

- 1) Financial Statement
  - a) Profit and Loss Statement
  - b) Cash Flow Statement
  - c) Balance Sheet
- IRR on Total Project Cost before Tax(For details, see the Interim Report II (FY 1985), page 218 219.)

## 3-5 Results and Evaluation

#### 3-5-1 Results

Results of the financial analysis for CGCC Plant Case and FBB Plant Case are summarized in Tables 10 and 11 respectively. Profit and loss statements and cash flow statements for Case E-4 and E-9 are shown in Table 12 through 15.

Table 10 Results of Financial Analysis (CGCC Plant)

Case	Supply	to Jakarta	Supply to Adjacent Area						
	E-5	E-6	E-4	E-1					
Ex-plant Price of Electricity	43 Rp/ kWh (7.76 ¥ /kWh)	53 Rp/ kWh (9.57 ¥ /kWh)	64 Rp/ kWh (11.55 ¥ /kWh)	78 Rp/ kWh (14.08 ¥ /kWh)					
IRR on Total Investment	6.9 %	10.3 %	13.5 %	17.0 %					
First Year to Have Profit before Tax (Year from Operation Starts)	11th	7th	3rd	2nd					
Clear off of Accumulated Loss (Year from Operation Starts)	28th	13th	5th	2nd					
Pay off of All the Debts (Year from Loan Raised)	28th	15th	12th	12th					
Minimum Sales Price (IRR = Interest Rate)	46 Rp/kWh (8.31 ¥/kWh)								

Table 11 Results of Financial Analysis (FBB Plant)

	Supply	to Jakarta	Supply to Adjacent Area					
Case	E-7	E-8	E-9	E-10				
Ex-plant Price of Electricity	43 Rp/kWh (7.76 ¥/kWh)	53 Rp/kWh (9.57 ¥/kWh)	64 Rp/kWh (11.55 ¥/kWh)	78 Rp/kWh (14.08 ¥/kWh)				
IRR on total Investment	7.4 %	10.8 %	14.0 %	17.5 %				
First Year to Have Profit before Tax (Year from Operation Starts)	11th	4th	2nd	1st				
Clean off of Accumu- lated Loss (Year from Operation Starts)	24th	9th	3rđ	1st				
Pay off of All the Debts (Year from Loan Raised)	23th	14th	12th 12th					
Minimum Sales Price (IRR = Interest Rate)	44.7 Rp/kWh (8.08 ¥/kWh)							

## 3-5-2 Evaluation

As for economic comparison for power generation, generating system by fluidized-bed coal-fired steam cycle is slightly superior to that by CGCC though the difference in IRR between two systems is narrow.

Table 12 Profit and Loss Statement of Case E-4

(Unit: 10° Rupiah)

Retained	Earning	- 58.7	- 75.8	48 8.8	7.8	22.5	55.8	94.1	135.8	181.8	226.8	314.9	403.1	491.2	579.3	667.5	765.9	864.3	962.7	1,061.1	1,159.5	1,257.9	1,356.3	1,454.6	1,553.0	1,851.4	1,749.8	1,848.2	1,946.6	2,045.0	2,143.4		
	Wet Profit	- 58.7	- 17.2	27.0	39.1	32.2	33.4	38.2	42.7	45.0	45.0	88.1	88.1	88.1	88.1	88.1	98.4						,					:			98.4	 2,143.4	
PROFIT	(Tax)	0				19.1	28.5	32.5	36.4	38.3	38.3	75.1	75.1	75.1	75.1	75.1	83.8			_											83.8	1,825.9	
	Before Tax	- 58.7	- 17.2	27.0	39.1	51.3	61.9	70.7	79.1	83.3	83.3	163.2	163.2	163.2	163.2	163.2	182.2		<del>-</del> ;-											:	182.2	3,959.3	
	Total	248.3	247.4	243.9	231.8	219.6	209.0	200.2	191.8	187.5	187.6	107.7	107.7	107.7	107.7	107.7	88.7													-	88.7	4,036.2	
	Interest Paid	65.8	80.8	52.6	42.0	31.3	21.4	12.6	4.2	0				-																	0	290.8	7
EXPENDITURE	General	14.9																													14.9	447.1	
	Fixed Cost	7.821										128.5	48.6			48.6	29.6														29.6	1,972.7	
	Variable Cost	36.1	43.1	47.9	48,4	44.9	44.2							·					<del></del>			. :									44.2	1,325.6	
REVENUE		2 0 % 1	230.3	220.3	) ; ;																				•						270.9	8,005.5	
QP	Year	-	1 0	ı es	। द्य	വ	9	2	ω	თ	10	7.	12	13	<b>4</b>	15	97	17	18	57	50	21	22	23	24	25	26	22	28	28	30	Total	
	Year	1004	1001	1998	1997	1998	6661	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023		

Table 13 Cash Flow Statement of Case E-4

(Unit: 109 Rupiah)

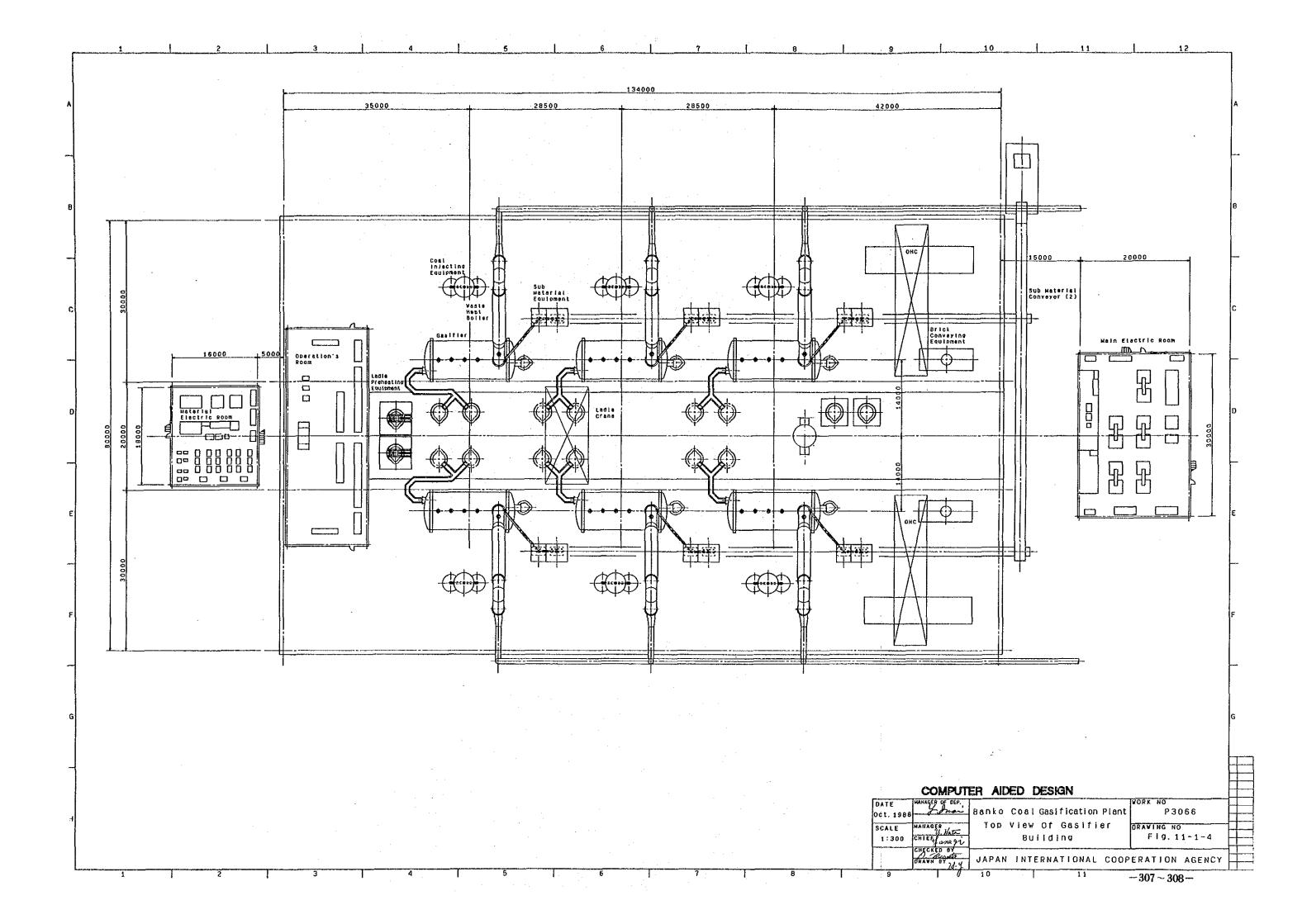
			· · · · · · · · · · · · · · · · · · ·			(011111 10	
Year	OP Year	INVESTMENT	Profit Before TAX	Depreciaiton/ Amortization	Interest Paid	CASH FLOW	DCF (Base; 1985)
1990		- 282.1	· -	_	·	- 282.1	- 150.0
1991		- 282.1	· •	_	· <b>_</b>	- 282.1	- 132.2
1992		- 188.0	•	_	_	- 188.0	- 77.7
1993		- 233.8	_	-	<b></b> .	- 233.8	- 85.2
1994	1	-:	- 58.7	98.9	65.8	106.0	34.0
1995	2		- 17.2		60.9	142.6	40.4
1996	3		27.0		52.6	178.5	44.5
1997	4	_	39.1		42.0	180.0	39.6
1998	5	<b>-</b> .	51.3		31.3	181.5	35.2
1999	6	-	61.9		21.4	182.2	31.1
2000	. 7	_	70.7		12.6		27.4
2001	8	_	79.1		4.2		24.2
2002	9		83.3		0		21.3
2003	10	<b>i</b> -	83.3	98.9			18.8
2004	11	-	163.2	19.0			16.6
2005	12		163.2	,			14.6
2006	13	-	163.2	(		}	12.9
2007	14		163.2	1			11.3
2008	15	-	163.2	19.0	_	/	10.0
2009	16	-	182.2	0	(	1.	8.8
2010	17	-			ĺ		7.8
2011	18	-			1	\	6.8
2012	19	- '	1		}	1 ) !	6.0
2013	20	-		- /	1	/	5.3
2014	21	~	/		1		4.7
2015	22		[	\	1	·	4.1
2016	23	-	<b>\</b>	\			3.6
2017	24	-	l \				3.2
2018	25	<b>)</b> -	)	) / )		)	2.8
2019	26	-					2.5
2020	27						2.2
2021	28	-					1.9
2022	29	-				182.2	1.7
2023	30	_	182.2	0	0	221.3	1.8
			i '				
	Total	- 986.0	3,969.3	1,083.8	290.8	4,397.0	0

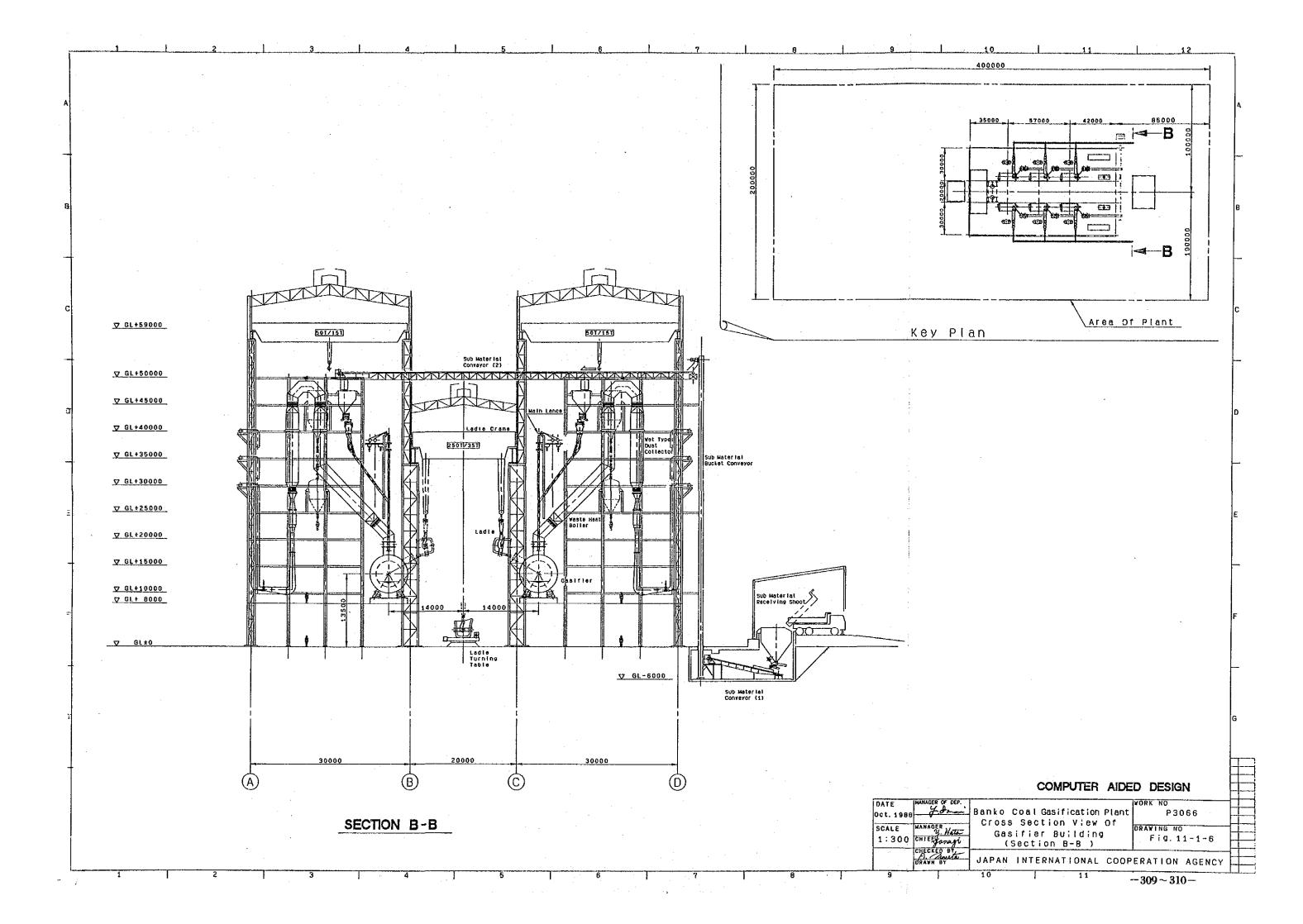
Table 14 Profit and Loss Statement of Case E-9

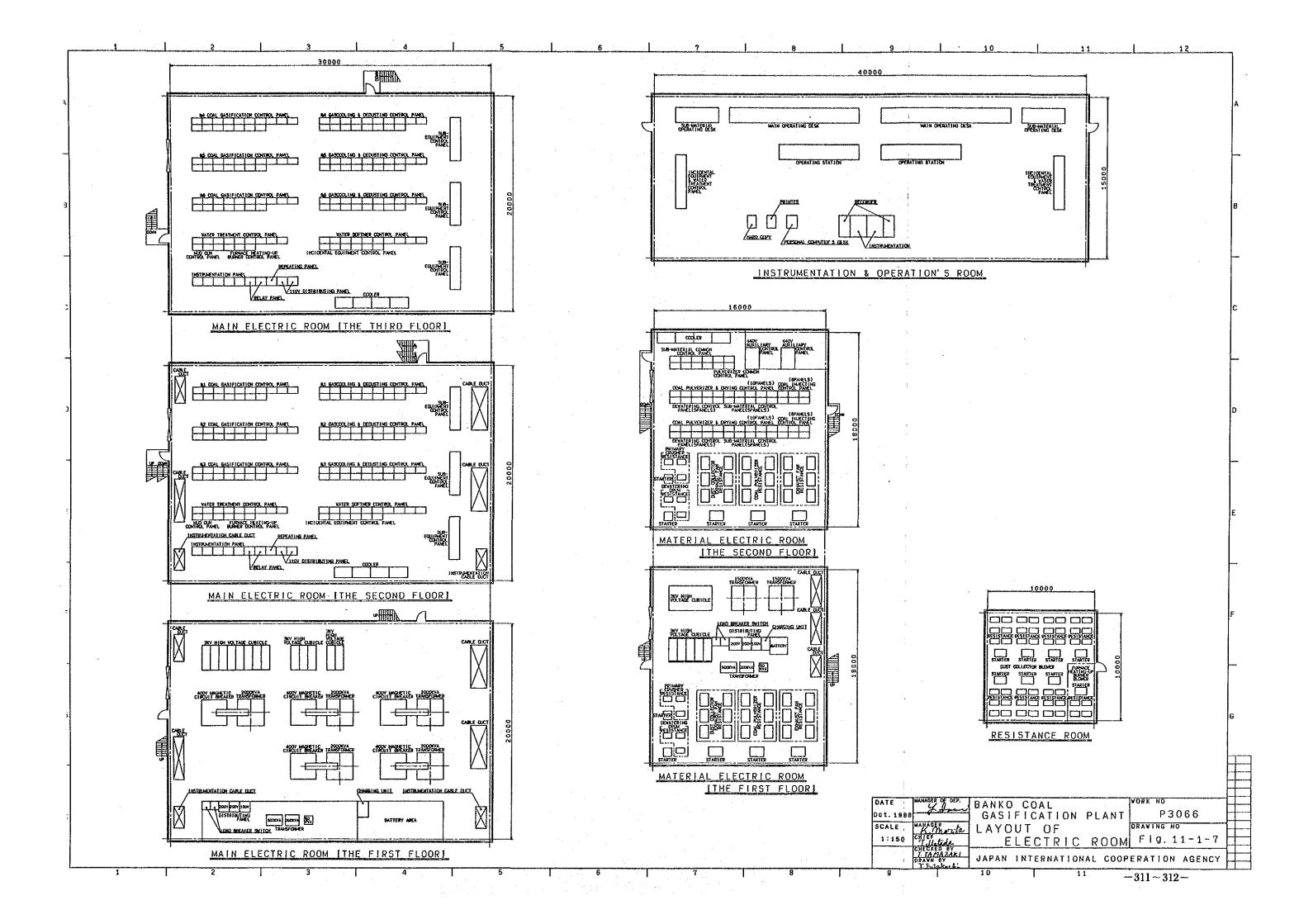
Rupiah)	בים בים לה מידור מידור מידו	Earning		ξ0	12.5		•	27.	75.		284.0		409.8	80.	S	22	693.2	90.	8	83.	,082.	, 18	,277.	537	.472.	•	,667.	,764.	,862.	,959.	ດວ	,154.	90
109		Net Profit	-33.8	<u></u>	_	•	•		.,	•	55.1		_:	8.07	_	70.8		97.4	91.4	97.4	~		97.4		97.4	97.4	97.4	97.4	-	94.76	97.4	97.4	2,154.6
(Unit:	Profit	(Tax)	υ	Ó	10.7		ζ,	۲.	H		•	<b>.</b> ⊶	60.3	~	60.3	ä	_:	83.0	'n.	φ.	es.	83.0	ä	ຕໍ	ä	ω.	ë	e,	ŝ	ω,	83.0	83.0	1,835.5
		Before Tax	-33.8	2	0	0	0	7d	•	98.1	0	102.1	က	131.1		131.1	ሎን	180.4	တ	$\infty$	$\infty$	80.	80	80.	80	80.	$\infty$	80.	80	$\infty$	180.4	80.	3,990.1
		Total	19.	80	215.3	04.	94.	84.	175.3	67	63.	63.	34.	34.	34	_:	ŝ	٠.	-4	-4		~++	~ H	+15	-H	-#1	-11	* **	~H	₹#	84.9	4	3,850.8
		Interest Paid	62.0	9	48.7	တ်	Ċ.	e.	8	•	0	0	0	0	9	0	0	0	ö	0	0	0	0	0	0	0	0	0	0	0	0	0	274.6
	Expenditure	General		~	13.1	ω,	13.1	_	13.1		13.1	-	-	13.1	_	ຕ	13.1	<del>ر</del> ې		13.1	က	13.1	13.1	13.1	13.1	က	13.1	13.1	13.1	13.1	13.1		393.7
	Ĥ	Fixed Cost	06.	06.	106.9	06.	06.	66.	90	06.	90	90			٠.	٠.		~	w.	~i	ഹ	m.	m	m.	m.	'n.	ai.	m	oo.	œ	œ	œ	1,886.2
		Variable Cost			46.5	45.2	د	က	43.3	'n		د	•	43.3	ო	ę	ς.,	٠	ω.	က	က	က	ŝ	'n	•		ŝ		6.3	•	•	43.3	1,296.4
		1	ıŭ.	'n	265.3	iū	Š.	55	55	ເດ	iO	iO	io.	Š	ນ	Š	ις.	(0)	io	ູດ	33	ស	ທີ	io.	Š.	io.	ŝ	ŝ	က္သ	မ္မာ	ເດ	83	
	 ე		<b></b> 1	63	m	খ	ß		~	 ∞	<u> </u>	10	1	12	13	₽.	15	9	17	18	13	20	53	22	23	7. 7.	22	56	2.1	28	29	30	Total
		Year	96	6	1996	9	5	Q.	2	9	2	2	2	9	20	90	2	20	8	Ξ	5	5	ᇊ	$\Xi$	d	5	5	5	S	8	20	Ö	

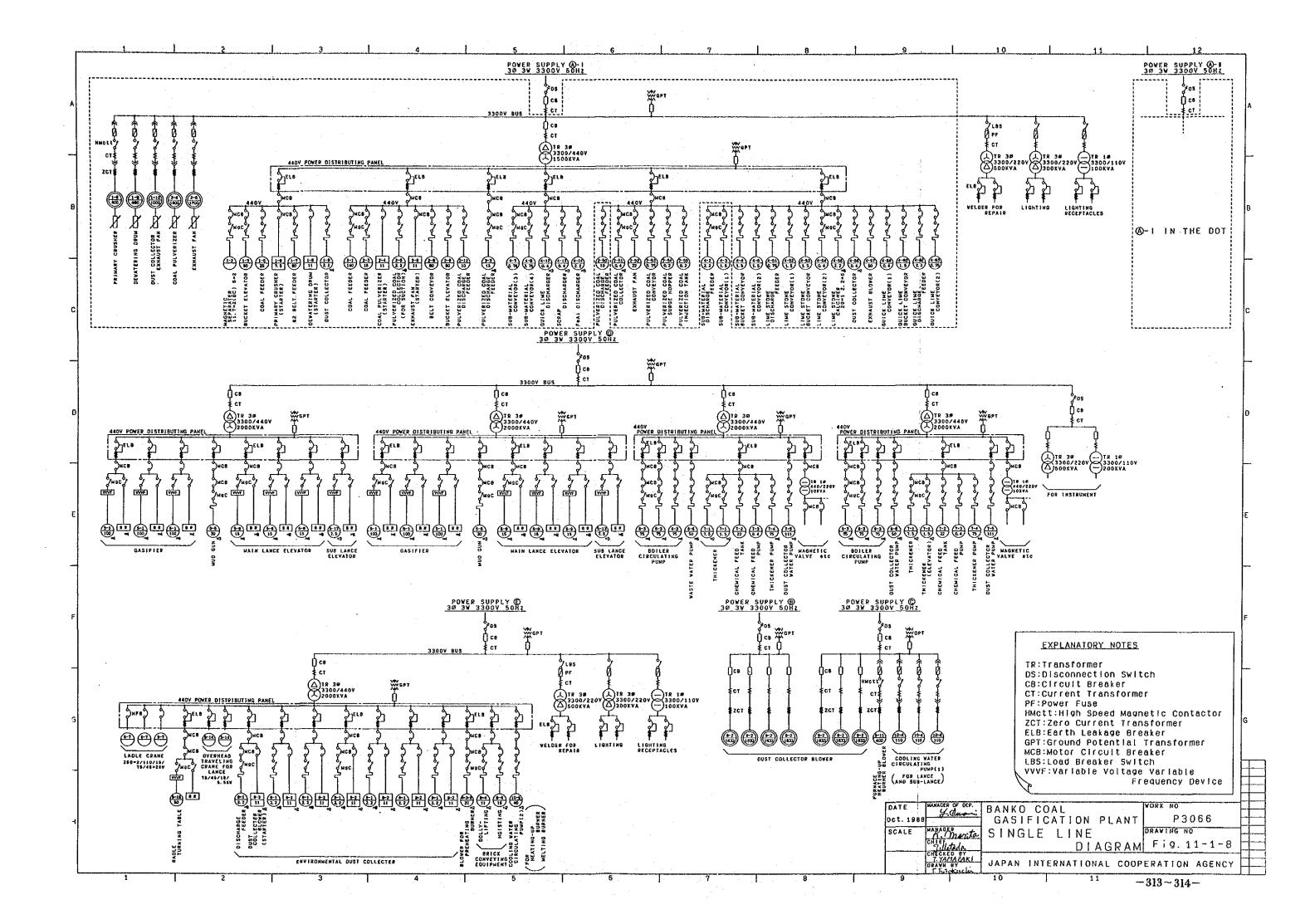
Table 15 Cash Flow Statement of Case E-9

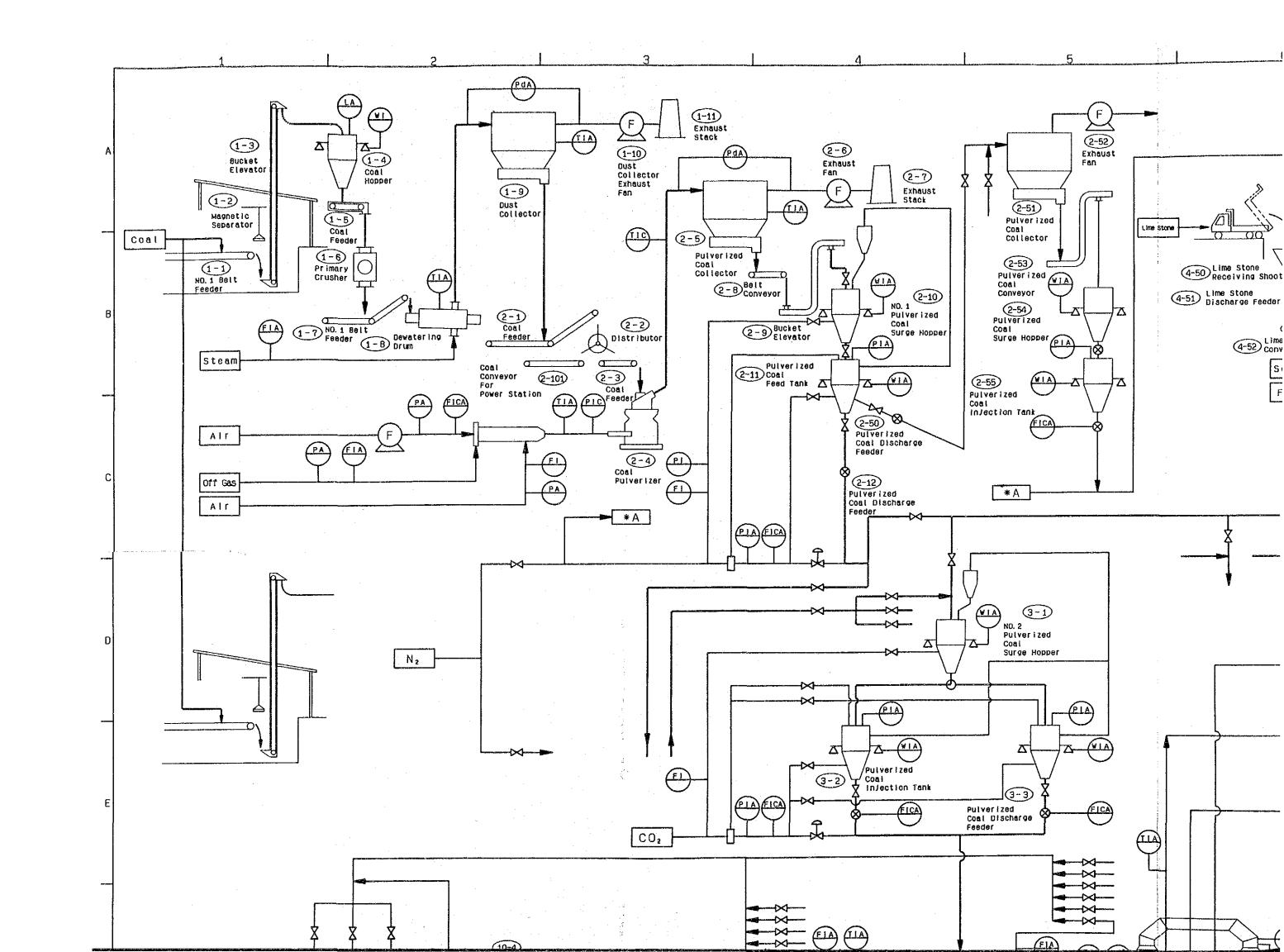
(Unit: 109 Rupiah)

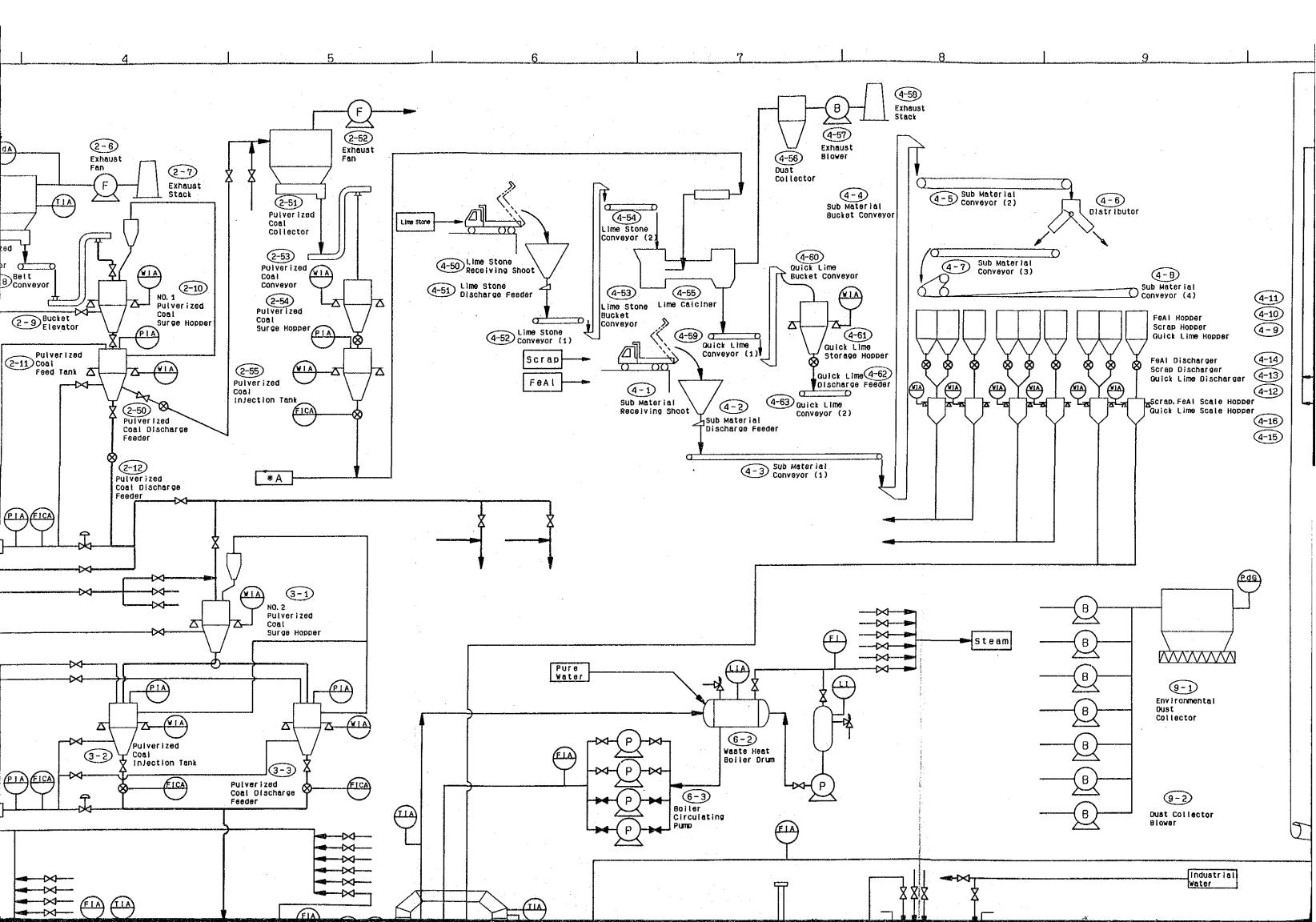

						(Unit:	10 ⁹ Rupiah)
Year	OP Year	Investment	Profit Before Tax	Depreciation/ Amortization	Interest Paid	Cash Flow	DCF (Base; 1985)
1990		-268.1	-	_	-	-268.1	-139.4
1991		-268.1		_	_	-268.1	-122.3
1992		-178.7		_	-	-178.7	-71.5
1993		-218.8	<b>-</b>	_		-218.8	-76.8
1994	1	_	-33.8	78.4	62.0	106.6	32.8
1995	2	-	7.0	78.4	56.8	142.2	38.4
1996	3	_	50.0	78.4	48.7	177.1	42.0
1997	4		60.5	78.4	39.6	178.4	37.1
1998	5	-	70.9	78.4	30.5	179.8	32.8
1999	6	-	81.1	78.4	20.9	180.4	28.9
2000	7	_	90.1	78.4	12.0	180.4	25.3
2001	8	-	98.1	78.4	4.0	180.4	22,2
2002	9	-	102.1	78.4	0	180.4	19.5
2003	10	<b>-</b>	102.1	78.4	0	180.4	17.1
2004	11	-	131.1	49.3	. 0	180.4	15.0
2005	12	_	131.1	49.3	0	180.4	13.2
2006	13	-	131.1	49.3	0	180.4	11.6
2007	14	_	131.1	49.3	0	180.4	10.1
2008	15	_	131.1	49.3	0	180.4	8.9
2009	16	-	180.4	0	0	180.4	7.8
2010	17	-	180.4	0	0	180.4	6.8
2011	18	-	180.4	0	0	180.4	6.0
2012	19	-	180.4	0	0	180.4	5.3
2013	20	_	180.4	0	0	180.4	4.6
2014	21	-	180.4	0	0	180.4	4.1
2015	22	_	180.4	0	0	180.4	3.6
2016	23	_	180.4	0	0	180.4	3.1
2017	24	_	180.4	0	0	180.4	2.7
2018	25	-	180.4	0	0	180.4	2.4
2019	26	-	180.4	0	0	180.4	2.1
2020	27		180.4	0	0 0	180.4	1.9
2021	28		180.4	0	0	180.4	1.6
2022	29		180.4	0	0	180.4	1.4
2023	30		180.4	V	U	214.2	1.5
	Total	-933.7	3,990.1	1,029.9	274.6	4,394,7	0

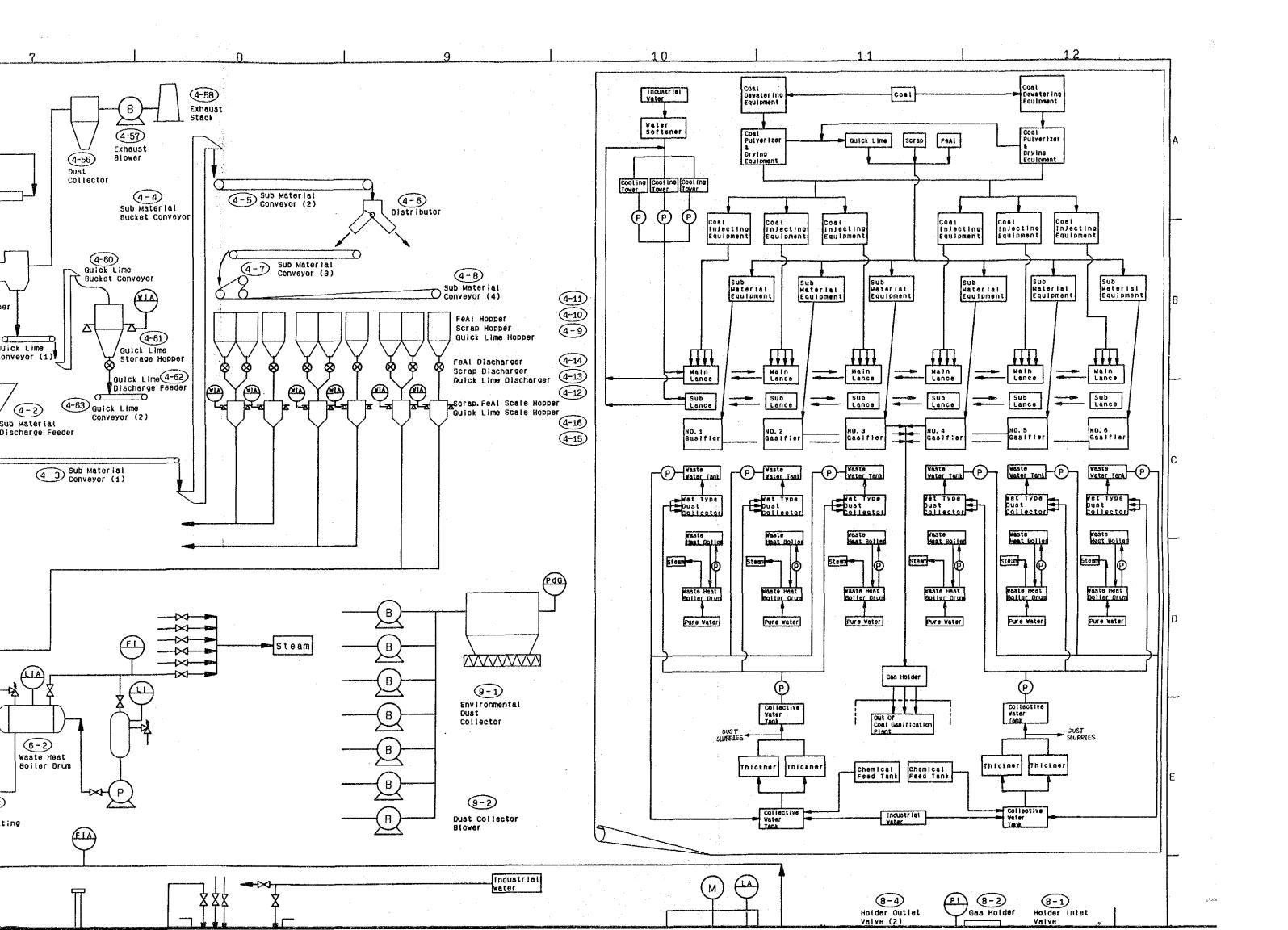

# ATTACHMENT 11-1

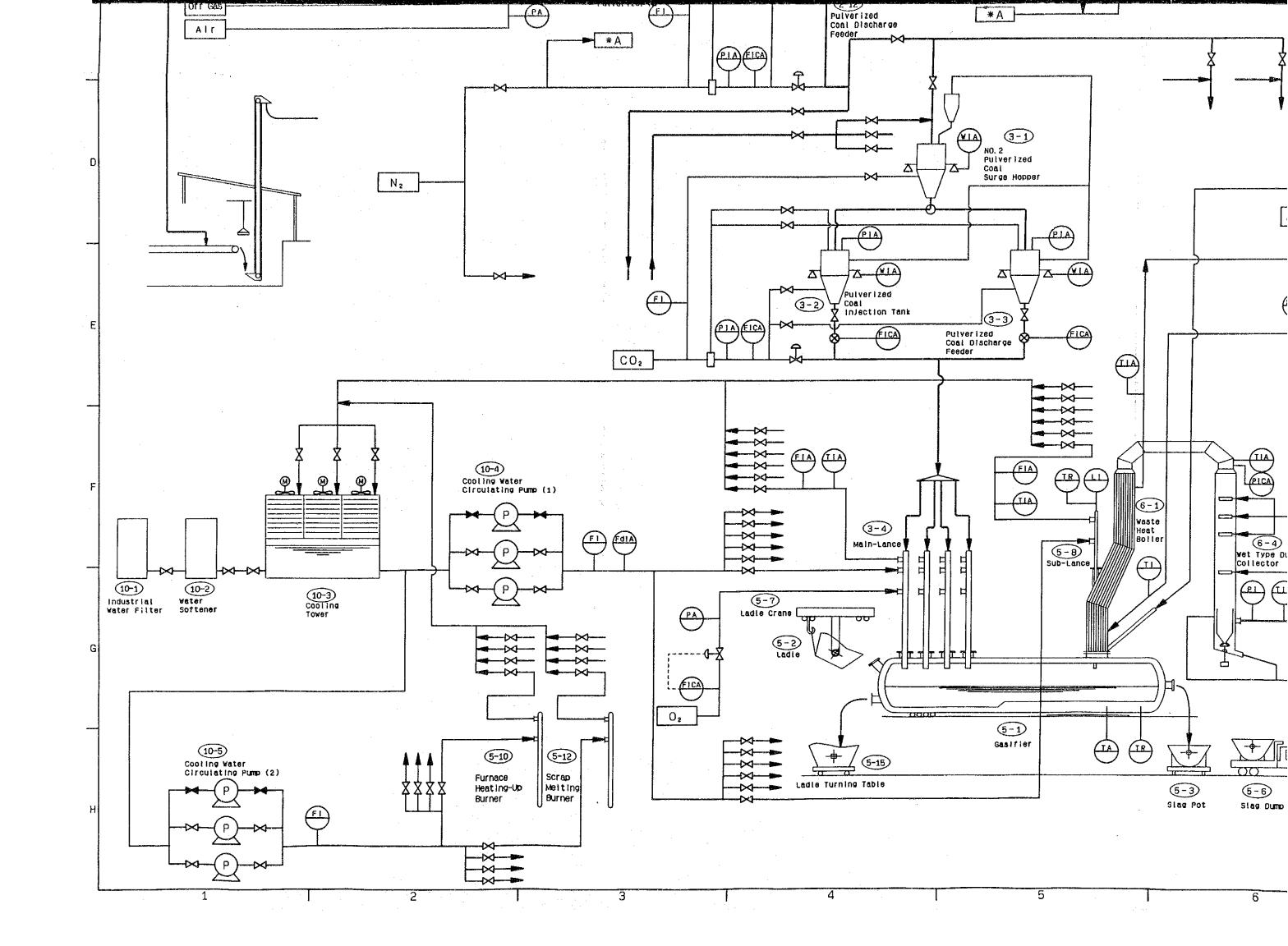

- 1. Figures for Conceptual Design of On-site Facilities
- 2. Equipment List (Gasification Plant)

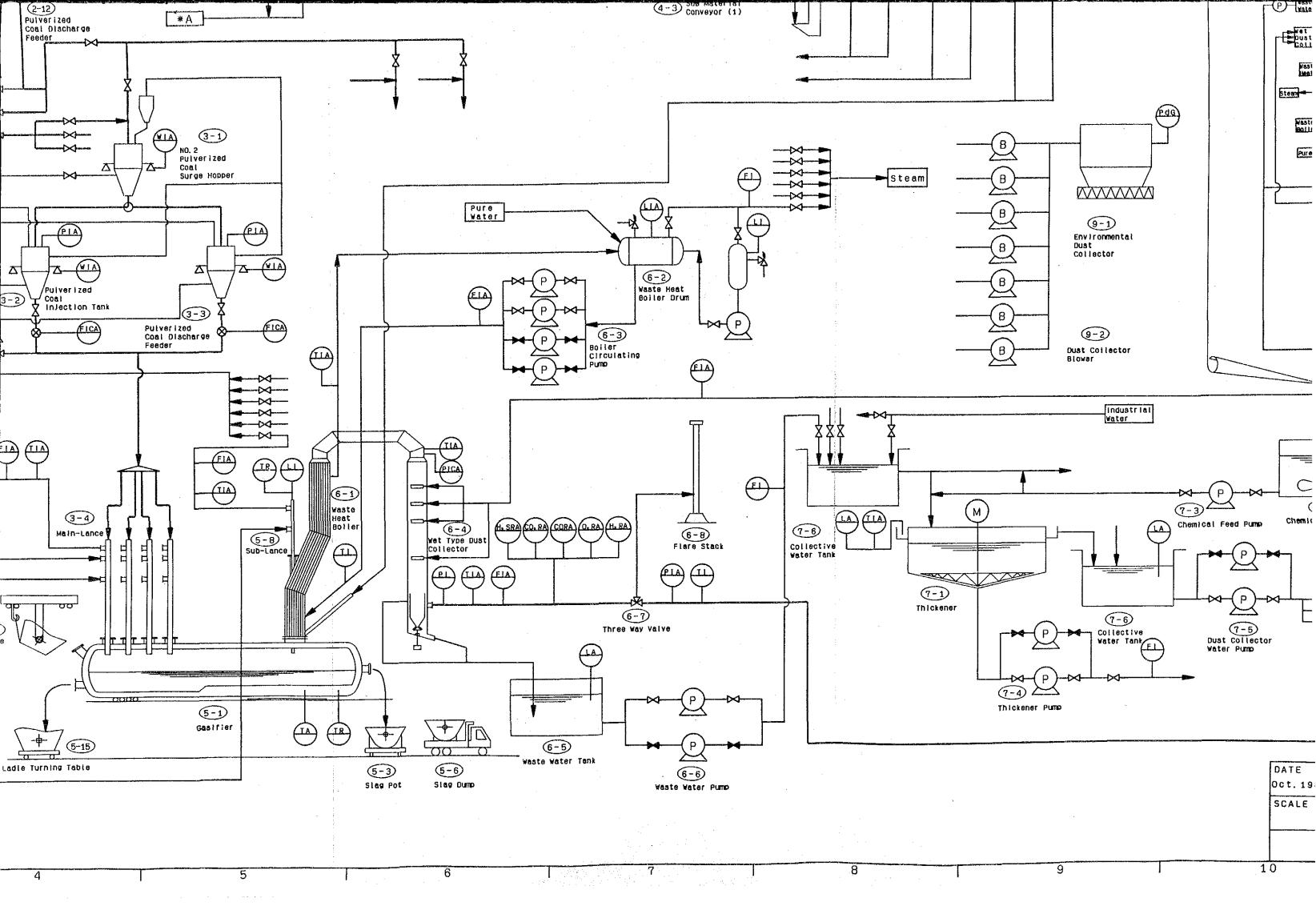

## 1. Figures for Conceptual Design of On-site Facilities

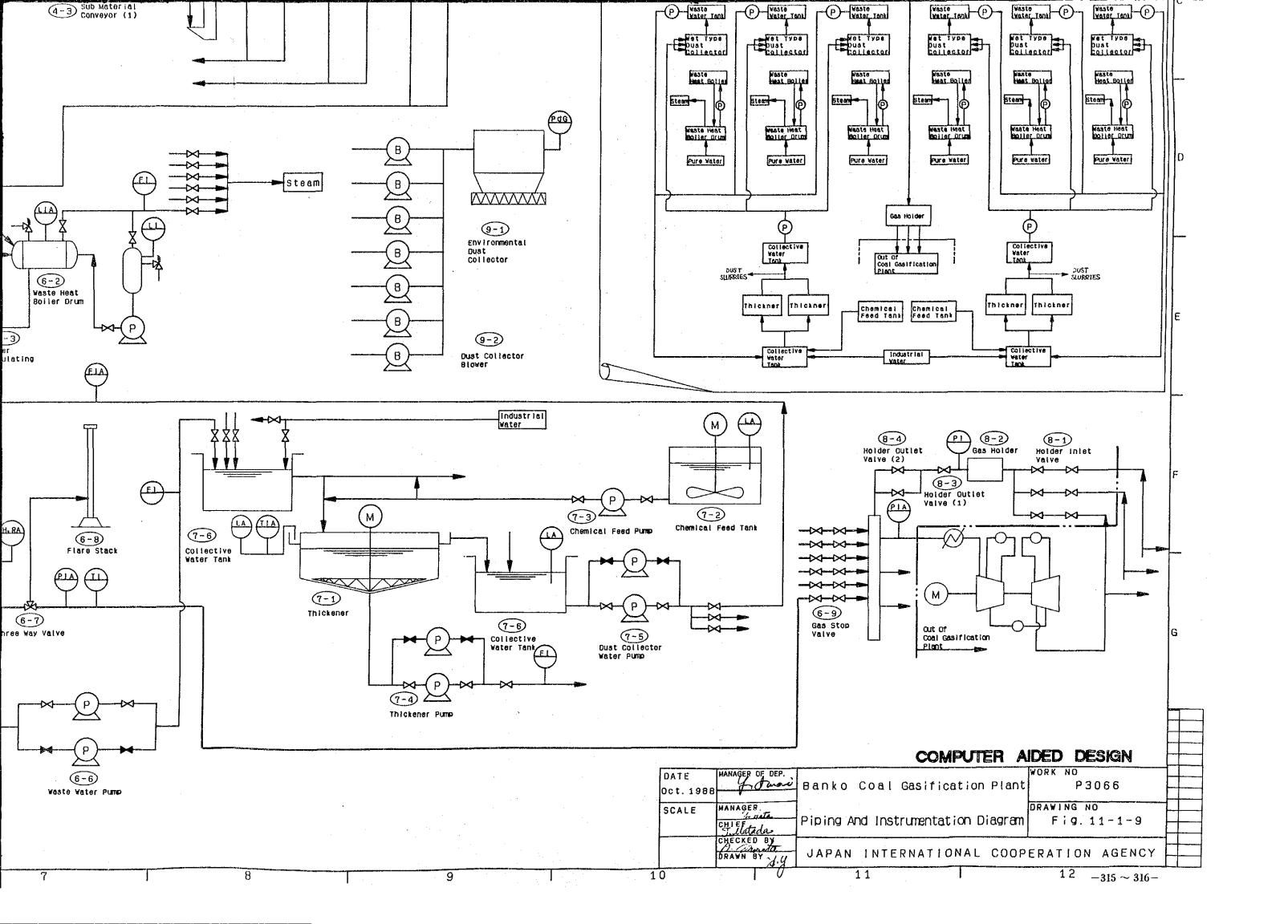

Fig. 11-1-4	Banko Coal Gasification Plant, Top View of Gasifier Building
Fig. 11-1-6	Banko Coal Gasification Plant, Cross Section Vies of Gasifier
	Building (Section B-B)
Fig. 11-1-7	Banko Coal Gasification Plant, Layout of Electric Room
Fig. 11-1-8	Banko Coal Gasification Plant, Single Line Diagram
Fig. 11-1-9	Banko Coal Gasification Plant, Piping and Instrumentation
	Diagram
Fig. 11-1-10	Banko Coal Gasification Plant, Process Building (Elevation)
Fig. 11-1-34	Administration Office
Fig. 11-1-35	Dining Building
Fig. 11-1-35	Dining Building
Fig. 11-1-37	Gate House
Fig. 11-1-38	Maintenance Office
Fig. 11-1-39	Warehous & Workshop (Mechanical)
Fig. 11-1-40	Warehouse & Workshop (Electrical & Instrument)
and the second s	

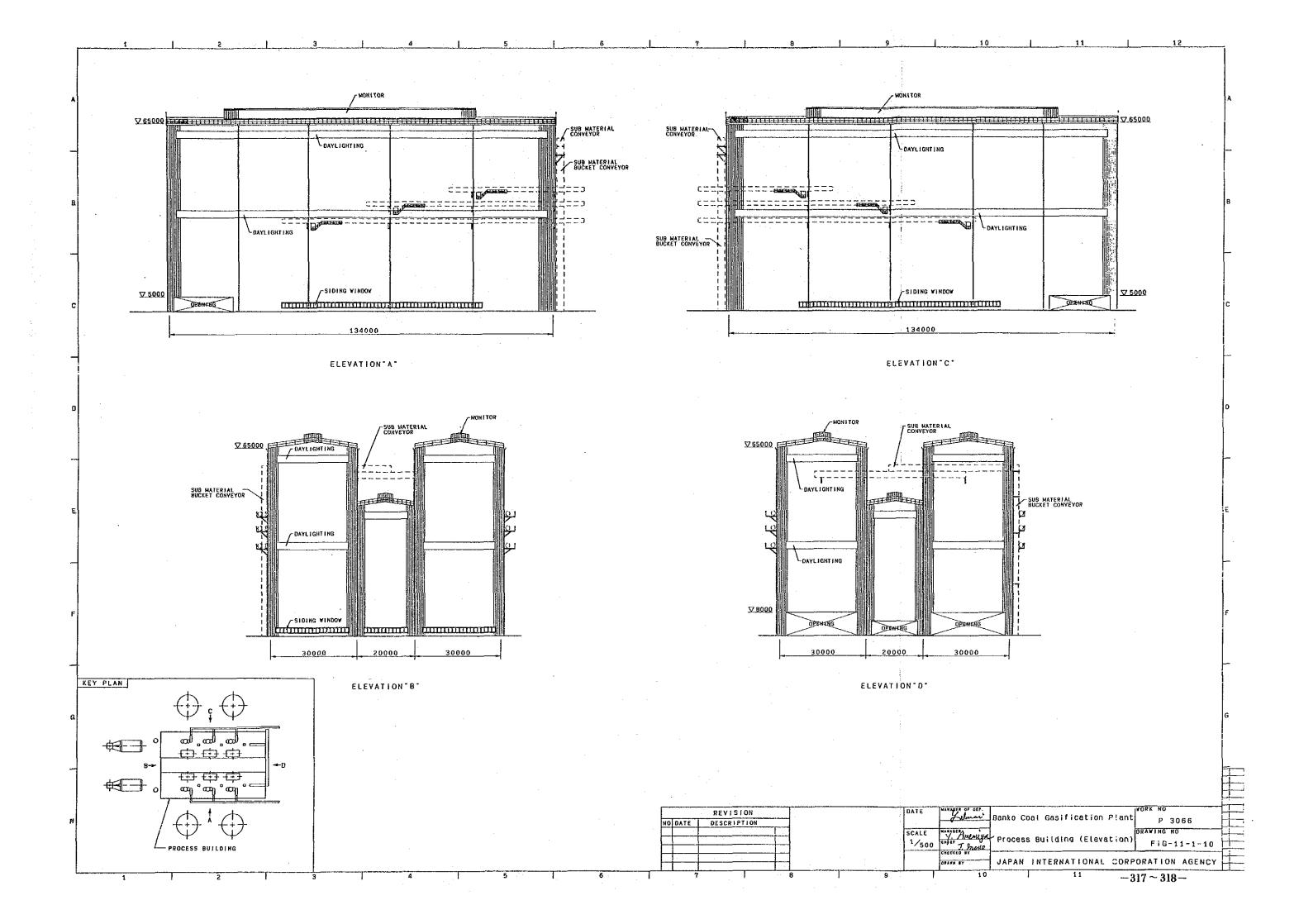


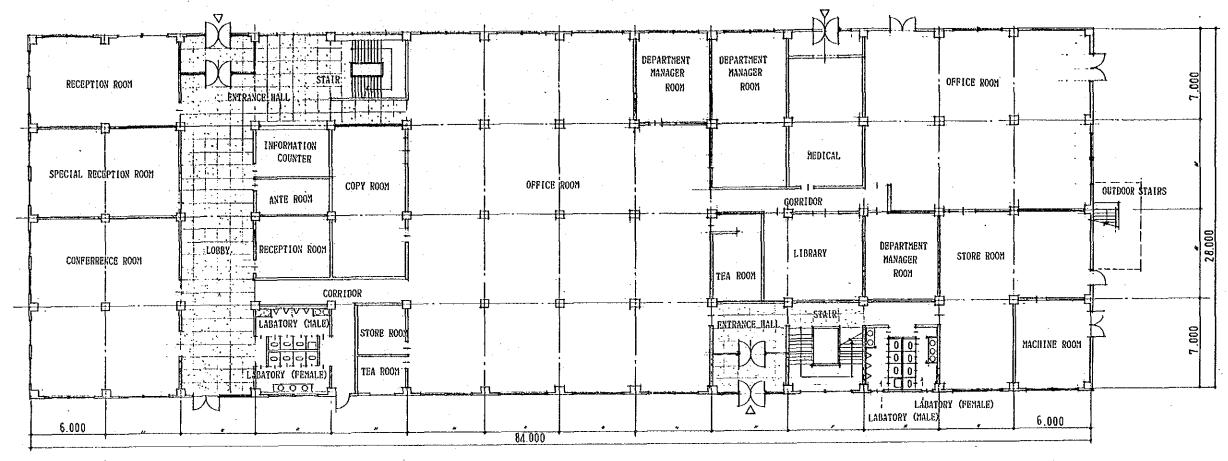



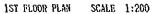



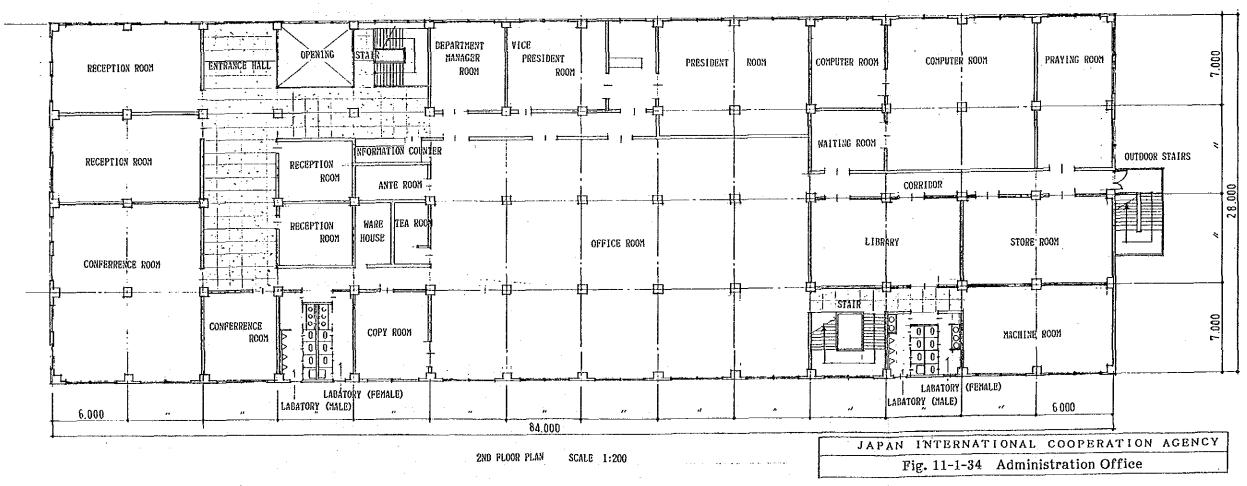



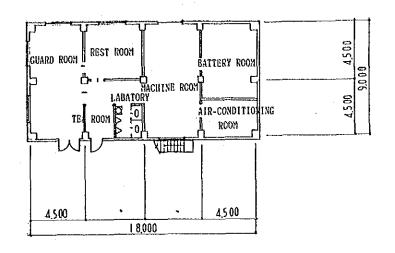







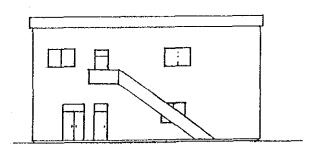







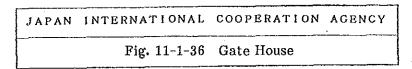




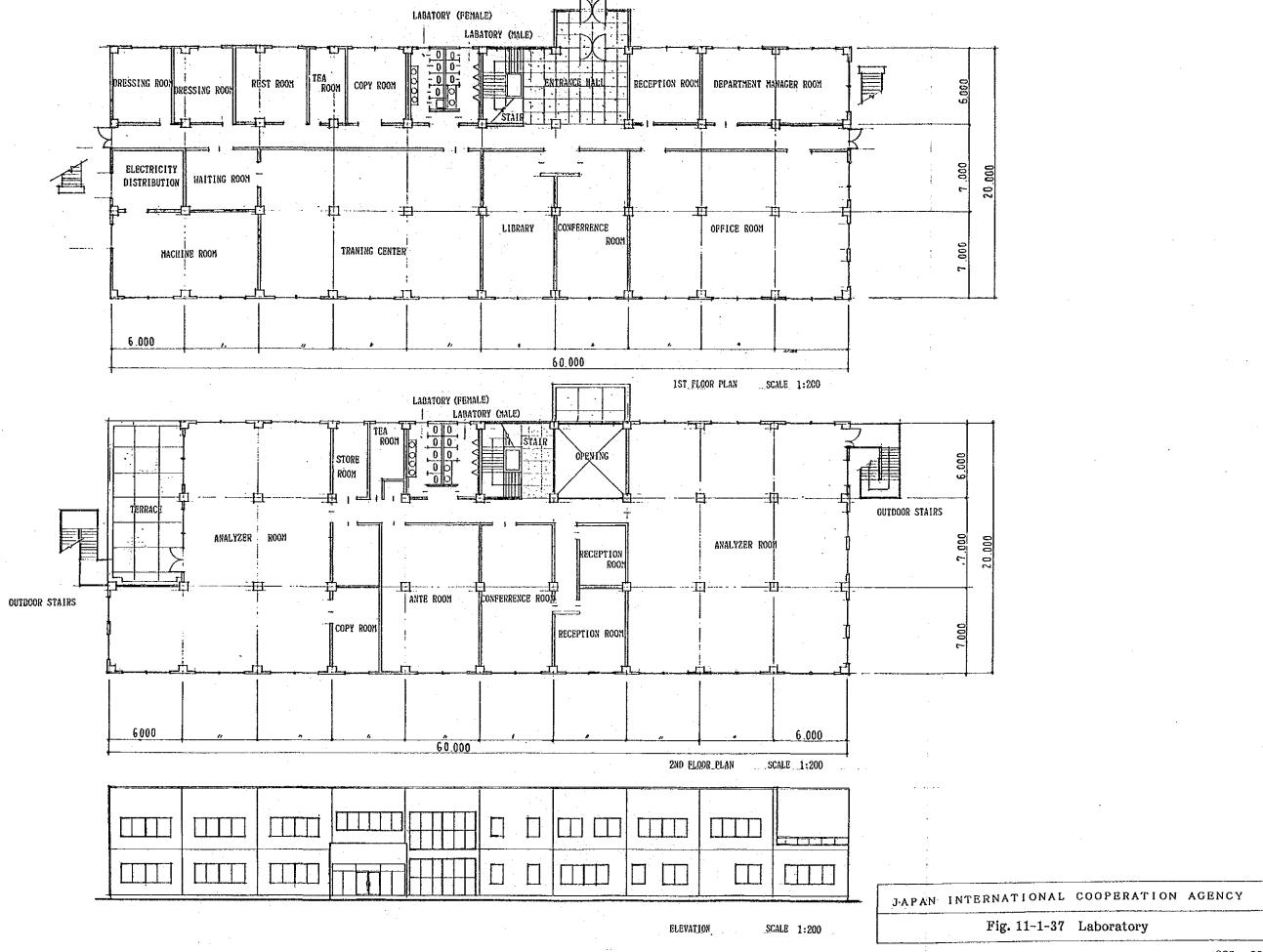

_ELEVATION SCALE 1:200

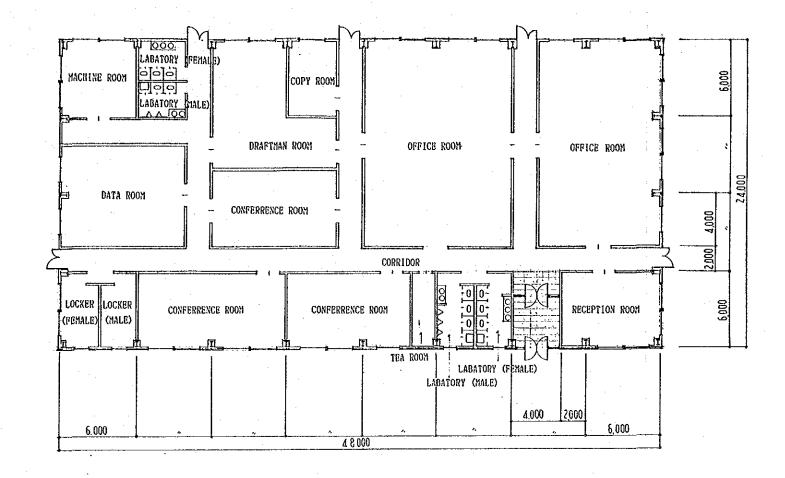


1ST FLOOR PLAN SCALE 1:200

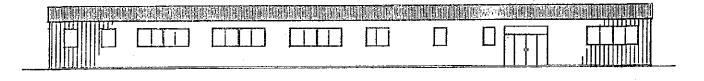



2ND FLOOR PLAN SCALE 1:200

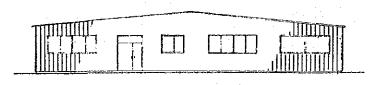




FLOOR PLAN

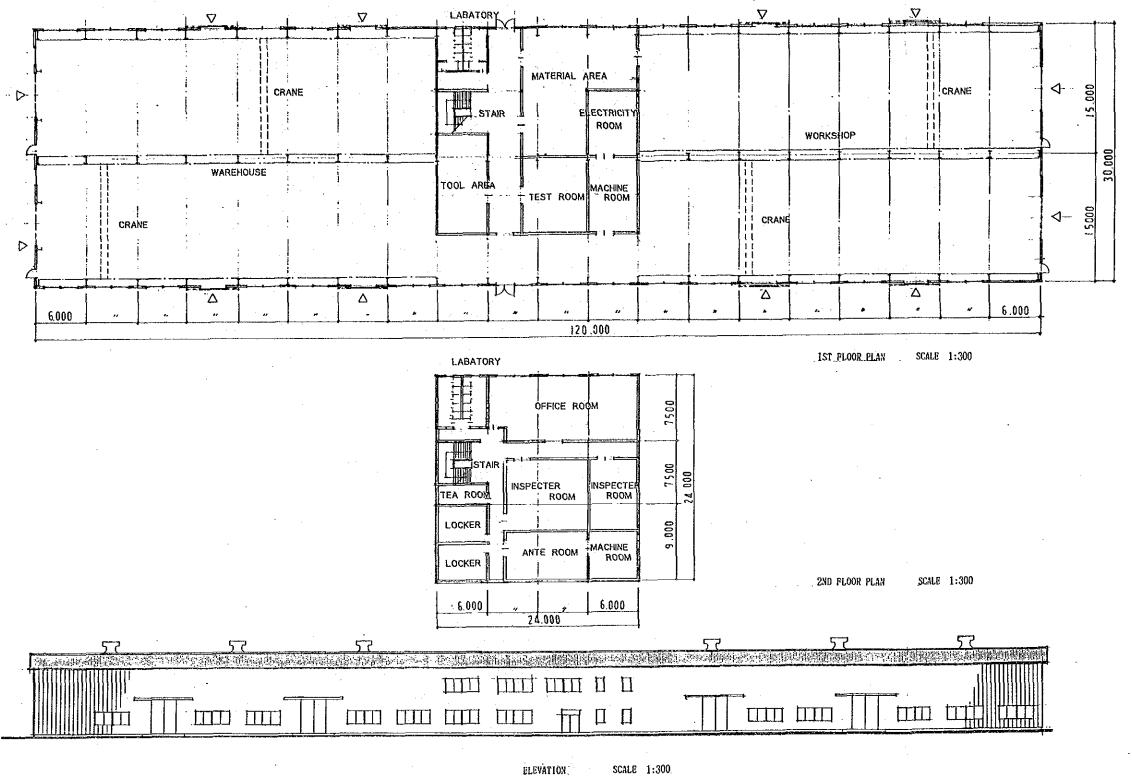
SCALE 1:200

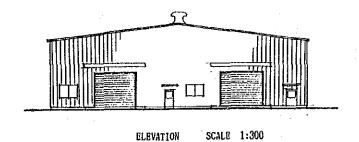



Equipment List (Gasification Plant)



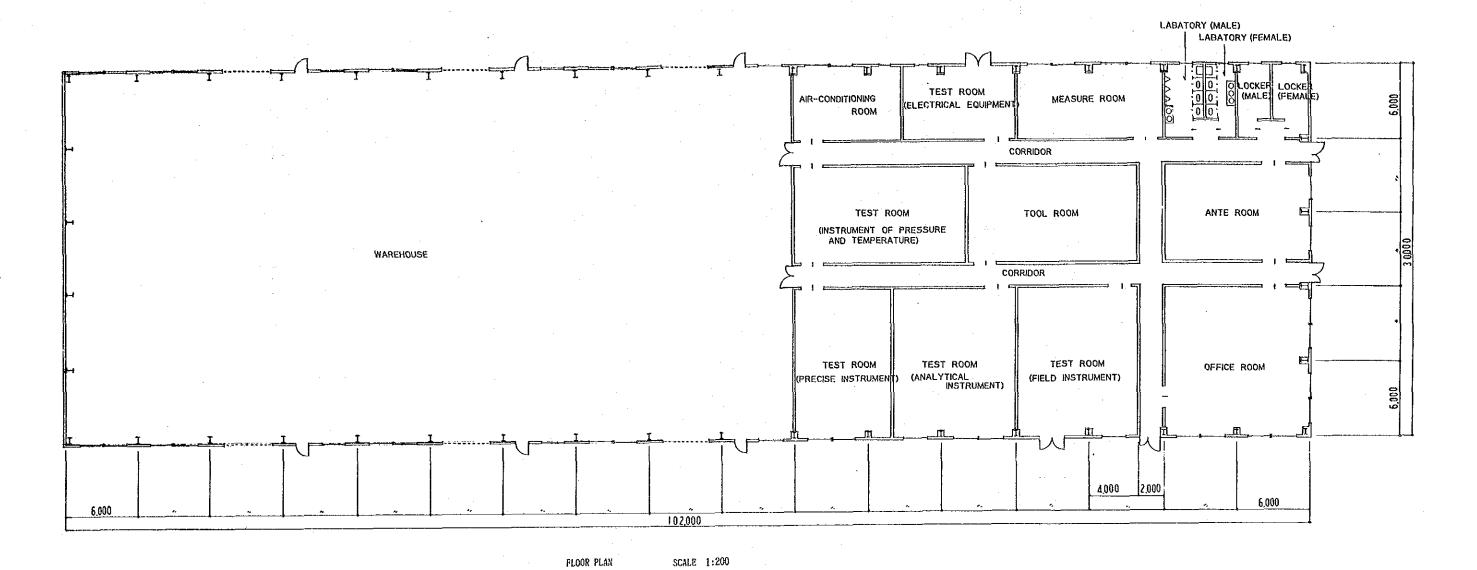


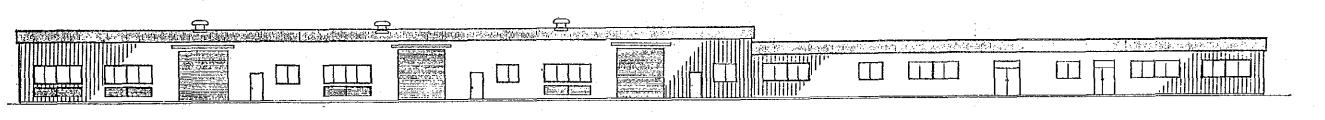


FLOOR PLAN SCALE 1:200




FLOOR PLAN SCALE 1:200




FLOOR PLAN SCALE 1:200





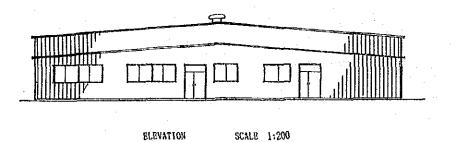


JAPAN INTERNATIONAL COOPERATION AGENCY

Fig. 11-1-39 Warehouse & Workshop (Mechanical)





ELEVATION SCALE 1:200



JAPAN INTERNATIONAL COOPERATION AGENCY

Fig. 11-1-40 Warehouse & Workshop (Electrical & Instrument)

 $-331 \sim 332 -$ 

EQUIPMENT LIST (Gasification Plant)

PROJECT BANKO PROJECT
TITLE COAL DEWATERING EQUIPMENT

EQUIPMENT					WEI	WEIGHT (ton)	e î	DESIGN	z	
ITEM NUMBER	SERVICE	REQD	TYPE	SPECIFICATION	EREC	TEST	OPN	PRESS Kg/cm ²	TEMP	REMARKS
1-1	No.1 Belt	2	Belt Conveyor	Belt Width: 1,800	82 33			0	50	Out of
	1 eece 1	·		Capacity :290 t/hr						Arddns
				Motor						
1-2	Magnetic	2	Magnet Type	Capacity : 290 t/hr	7.4 %			0	50	
	Separator			Magnet : 11.7 KW (DC)						
				Motor (Traverse) : 5 KW						
1-3	Bucket	2	Belt Type	Capacity : 290 t/hr	<b>8</b> 06			0	100	
	rievator			Motor : 50 KW						
1-4	Coal Hopper	0	Cylindrical Cone Type Steel Plate	14,500 & x 25,200 H (Cylinder Height 13,000 H) Cone Height 12,200 H)	214 3			0	80	
			,	Volume : 2,820 m ³						
€-T	Coal Feeder	23	Closed Type	Capacity : 240 t/hr	12 F			0	88	
			onain recuer	Motor : 25 KW						
1-6	Primary	63	Hammer Mill	Capacity : 240 t/hr	216 %			0	100	
	701100			Grain Size :40 m/m -> 2-3 m/m						
				Motor : 400 KW						

EQUIPMENT LIST (Gasification Plant)

PROJECT BANKO PROJECT
TITLE COAL DEWATERING EQUIPMENT

	REMARKS					4,5								W								
:	TEMP • C	20			700	·		100				08	08	08	08 08	08 08	08 08	08 80	08 08	08 08	08 08	08 08
DESIGN	PRESS Kg/cm ²	0			z,			٥				0.2	0.0	8.0	0.2	0.2	0.0	8.0	0 0	0.0	0.0	2.0
( u	OPN																					
WEIGHT (ton)	TEST			<del></del>							-											
WEI	BREC	140 %			4200 T			370 %			-	513	57 1.88	51.6	51.66	84 1 84 84 84 84 84 84 84 84 84 84 84 84 84	10 t-1 24 Bu Bu	다. 무리 명 명 명 명 명 명 명 명 명 명 명 명 명 명 명 명 명 명	() 14 14 18 18 18 18 18 18 18 18 18 18 18 18 18	10 t-1 24, Bu Bu	Ru Bu Bu	() +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1
	SPECIFICATION	For Belt Width: 900 mm	Capacity : 240 t/hr	Motor : 80 KW	Capacity : 240 t/hr	Water Content : 23.1% -> 15%	Motor : 490 KW	ре 7400 W x 26.3m L x 19m H	Capacity : $6,300 \text{ m}^3/\text{min}$ With Discharge Feeder	Motor : 2.2 KW x 8		Capacity : 6,300 m ³ /min	Capacity : Pressure Head	Capacity : Pressure Head Motor :	Capacity : Pressure Head Motor :	Capacity : Pressure Head Motor : 3,000 & x 10,	Capacity : Pressure Head Motor : 3,000 & x 10,	Capacity : Pressure Head Motor : 3,000 ø x 10,	Capacity : Pressure Head Motor : 3,000 & x 10,	Capacity : Pressure Head Motor : 3,000 & x 10,	Capacity : Pressure Head Motor : 3,000 & x 10,	Capacity : Pressure Head Motor : 3,000 \$\psi\$ x 10,
	TYPE	Belt Conveyor			Steam Tube	uryer		Suction Type	bag Filter			Single	Single Suction Turbo Type	Single Suction Turbo Type	Single Suction Turbo Type Steel Plate							
2	REQD	2			2	-		82				2										
	SERVICE	No.2 Belt	reeger		Dewatering	Drum Drum		Dust	4000 T T C C C T T C C C C T C C C C C C			Dust	Dust Collector Exhaust Fan	Dust Collector Exhaust Fan	Dust Collector Exhaust Fan Exhaust Stack							
EQUIPMENT	ITEM NUMBER	1-7			1-8			1-9				1-10			·							

BANKO PROJECT EQUIPMENT LIST (Gasification Plant) PROJECT TITLE

	REMARKS																			
N.	TEMP • C	80		80		08		300					120		80			80	80	
DESIGN	PRESS Kg/cm ²	0		0		0		0.1		·			0.1		0.2			0	0	
(ton)	OPN										·									
WEIGHT (t	TEST																			
WE	EREC	140 %		17.8 %		8 G 3		450 B		:			1000 %		56 ¥			19 8	15 3	
	SPECIFICATION	Capacity : 220 t/hr	Motor : 140 KW	ust Square Dumper Distributor	Approximate Dimension 5m x 5m x 5m	Capacity : 150 t/hr x 30m	Motor : 15 KW	7,000 W x 7,000 L x 12,200 H	Capacity : 150 t/hr	Product Particle Size : 74 µm X 70% Up	Product Water Content : 10% under	Motor : 1,600 KW	14.8m W x 26.3m L x 19m H	Capacity : $600,000  \text{m}^3/\text{hr}$ With Discharge Feeder	Capacity : 10,000 m ³ /min	Pressure Head : 500 mm Aq	Motor : 1,760 KW	4,000 & X 10,000	Capacity : 150 %/hr	Motor : 80 KW
TYPE		Closed Type	Chain reeder	Dumper Adjust		Closed Type	Japasu utauo	Vertical	worrer mil		<del></del>	<u>-</u> -	Suction Type	racer racer	Single	Turbo Type		Steel Plate	Belt Type	
2	REQD	2		. 23		67		8	٠				2		2			2	72	
	SERVICE	Coal Feeder		Distributor		Coal Feeder		Coal	Jactica				Pulverized	Collector	Exheust Fan			Exhaust Stack	Belt Conveyor	
EQUIPMENT	ITEM NUMBER	2-1		2-2		2-3		2-4					2-5	•	2-6			2-7	82	

EQUIPMENT LIST (Gasification Plant)

BANKO PROJECT COAL PULVERIZER AND DRYING EQUIPMENT

PROJECT TITLE

REMARKS TEMP 20 20 20 20 80 80 8 80 DESIGN PRESS Kg/cm² 0.1 0.1 0.1 S 0 S w 0 OPN WEIGHT (ton) TEST 54.3 8 **39**1 0.4 9 13.5 ₹ 0.6 9 ₩, EREC 0.13 35 5.8 \$ Feeder: 0.4 KW x 2 Unit 5.7m) 5.2m 5.7m) 5.2m) Pressure Head : 500 mm Aq : 6,000 Nm³/hr : 6,000 Nm³/hr Motor : 10 KW Speed Reducer : 25 rpm 0,61 t/hr : 1.4 %/hr : 210 t/hr : 150 t/hr X 0.75 KW SPECIFICATION 6,000 ø x 10,900 H (Cylindrical Height Conical Height : 210 m3 6,000 ø x 10,900 H Cylindrical Height Cone Height : 210 m³ ¥ : 80 XW 0,2 22 Discharge I Motor Capacity Capacity Capacity Rotary Feeder Capacity Capacity Rotary Feeder Capacity Volume Volume Motor Motor Motor Motor Single Suction Turbo Type Suction Type Bag Filter Steel Plate Cylindrical Type Steel Plate Pressure Vessel Belt Type Snake Conveyor TYPE No REQD Ç. ø Ø c) Pulverized Coal Conveyor No.1 Pulver-ized Coal Surge Hopper Exhaust Fan Pulverized Coal Feed Tank Pulverized Coal Pulverized Coal Pulverized Coal Discharge Feeder Discharge Feeder Collector SERVICE Bucket Elevator equipment Item Number 2-53 2-10 2-52 2 - 112 - 122-50 2-51 2-9