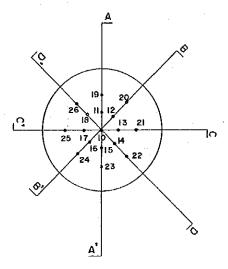


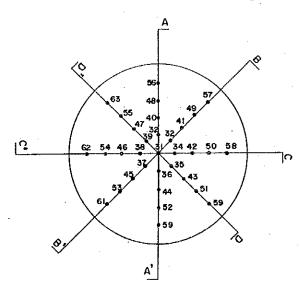
Fig. 43 Horizontal and Vertical Sections of No. 1 Coal Heap for Spontaneous Combustion Test Showing Thermometers Installed Position


Fig. 44 Change of Measured Temperature at each Measured Point (No. 1 Coal Heap)

Below 0.5 meters from the top

Below 10 meters from the top

Below 15 meters from the top



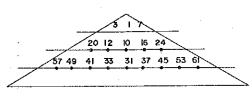
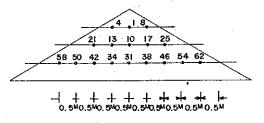
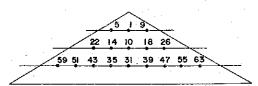


Fig. 45 Final Measured Temperature (No. 1 Coal Heap)

A~A' Section



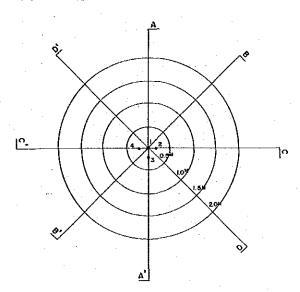
 $B \sim B'$ Section

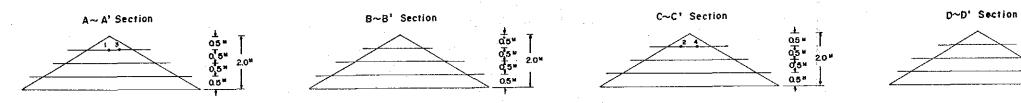


0.5M 0.5M 0.5MO.5M

 $C \sim C'$ Section

 $D \sim D'$ Section


Level	Measuring point	Tempe	
	1	65	75
	2	50	55
level	3	55	60
	4	50	50
B 1	5	50	55
ιo.	6	60	65
o	7	60	65
	. 8	50	60
	9	55	55


Level	Measuring point	Temperature -10cm* °C
	10	80
•	11	55
	12	55
	13	50
	14	50
	15	60
vel	16	65
m level	17	60
	18	50
10	19	50
	20	50
	21	45
	22	50
	23	55
	24	50
	26	50
	23	40
	†	

Level	Measuring	Temperature	
	point	-10em*C	-40cm*
	31	70	65
	32	60	60
İ	33	65	60
	34	60	60
	35	60	60
	36	70	75
	37	70	65
	38	70	50
!	39	60	65
İ	40	60	60
/e]	41	60	60
[e]	42	60	55
1.5 m level	43	60	60
 	44	60	60
	45	60	60
i	46	65	50
	47	50	55
	48	55	50
	49	50	55
	50	50	50
;	51	50	55
	52	60	55
	53	60	60
	54	50	
	55	50	55
i	56	50	
İ	57	60	?
İ	58	45	
İ	59	45	
<u> </u>	60	55	.,
• 1	61	60	?
J	62	45	
:	63	50	

(Note) * shows measured depth

Fig. 46 Horizontal and Vertical Sections of No. 2 Coal Heap for Spontaneous Combustion Test Showing Thermometers Installed Positions and Observation Results

Change of measured temperature at each point (No. 2 coal heap)

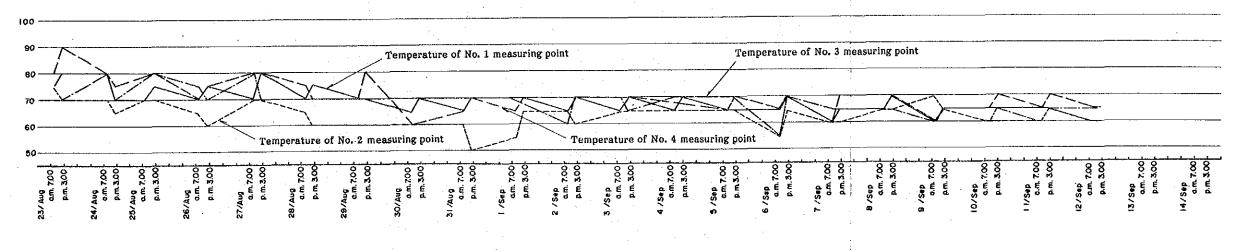
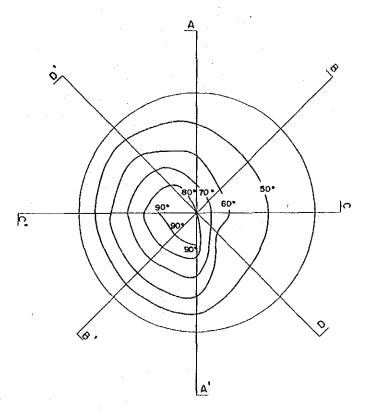
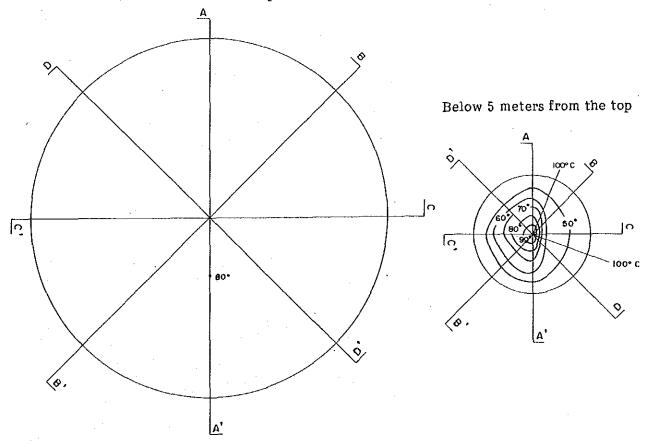
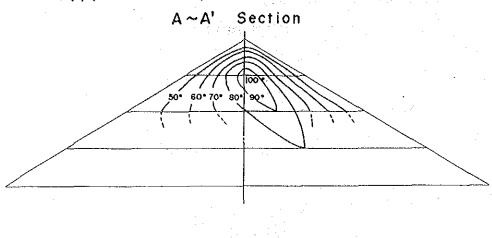
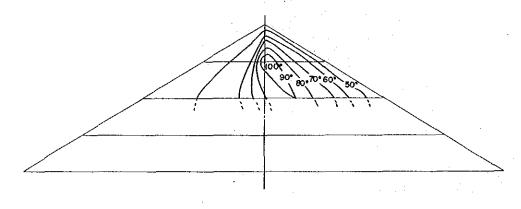
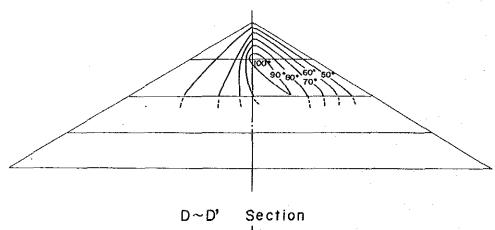



Fig. 47 Isothermal Line of the Inside of No. 1 Coal Heap at PM 7:00 on 22 August, 1987 (1) (Horizontal Section)

Below 10 meters from the top

Below 15 metes from the top Below


Fig. 48 Isothermal Line of the Inside of No. 1 Coal Heap at PM 7:00 on 22 August, 1987 (2) (Vertical Section)

B~B' Section

C~C' Section

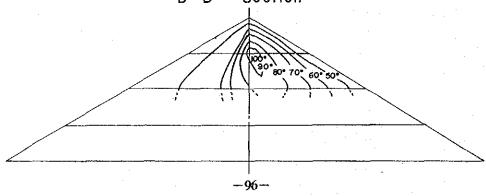
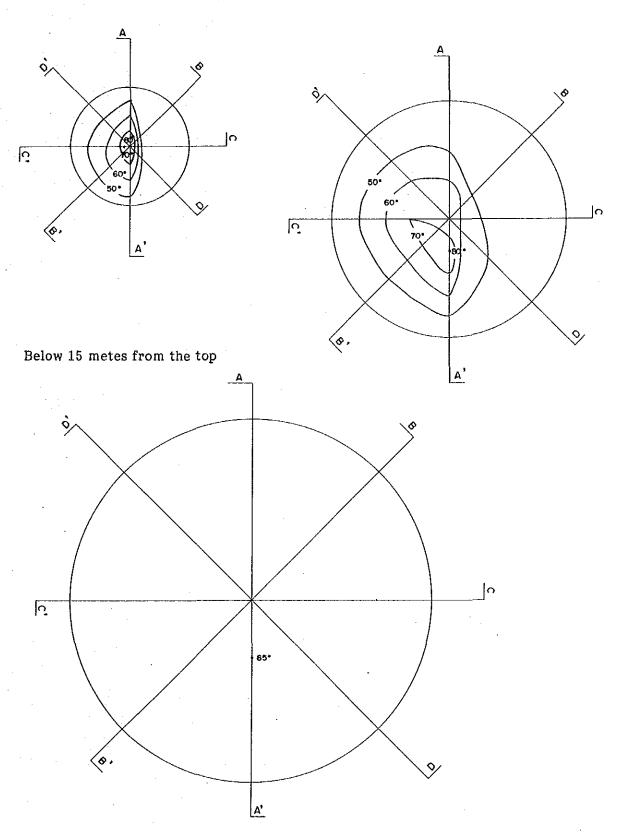



Fig. 49 Isothermal Line of the Inside of No. 1 Coal Heap at AM 11:00 on 2 September, 1987 (Horizontal Section)

Below 5 meters from the top

Below 10 meters from the top

ATTACHMENT 6-2

1. Relationship between Depth, Ash and Sodium Content

- 1. Relationship between Depth, Ash and Sodium Content
 - Fig. 50 Relationship between Total Ash (%) and Sodium Oxide in Ash
 - Fig. 51 Relationship between Sodium Content and Sampling Depth below Surface

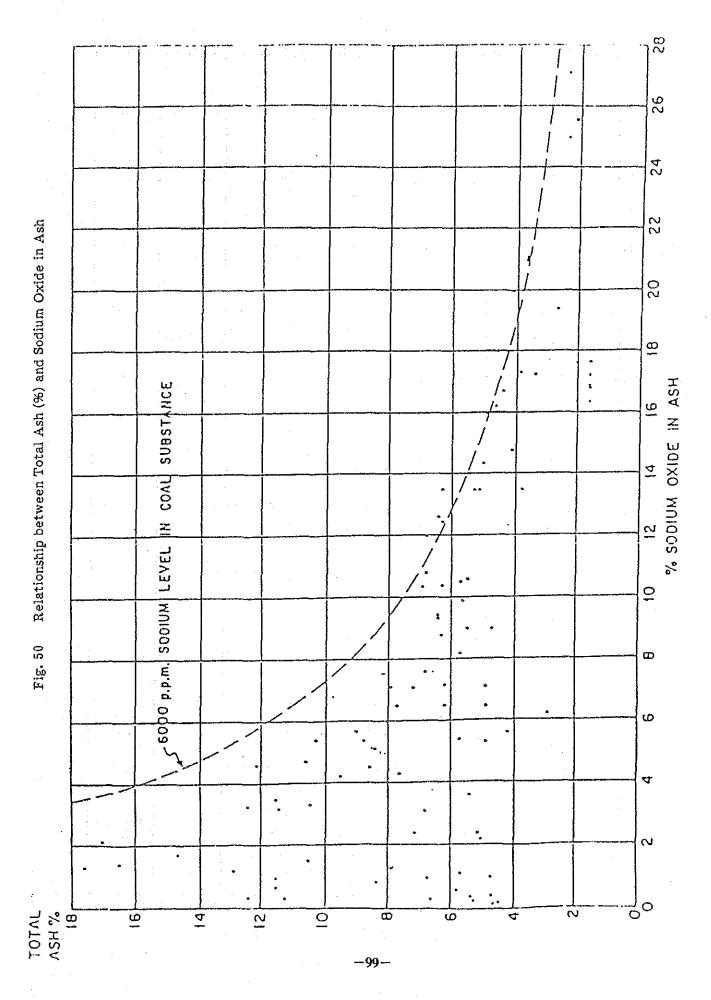
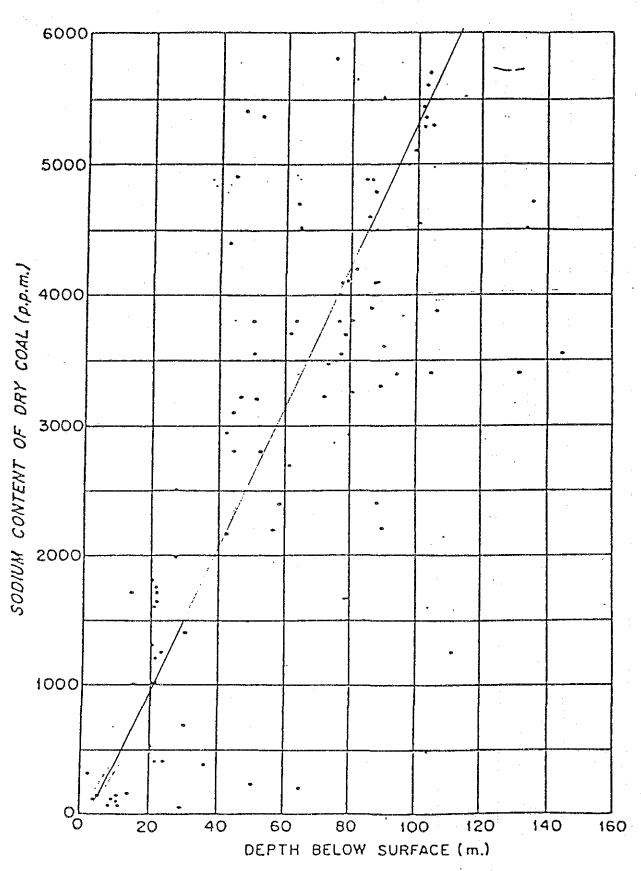
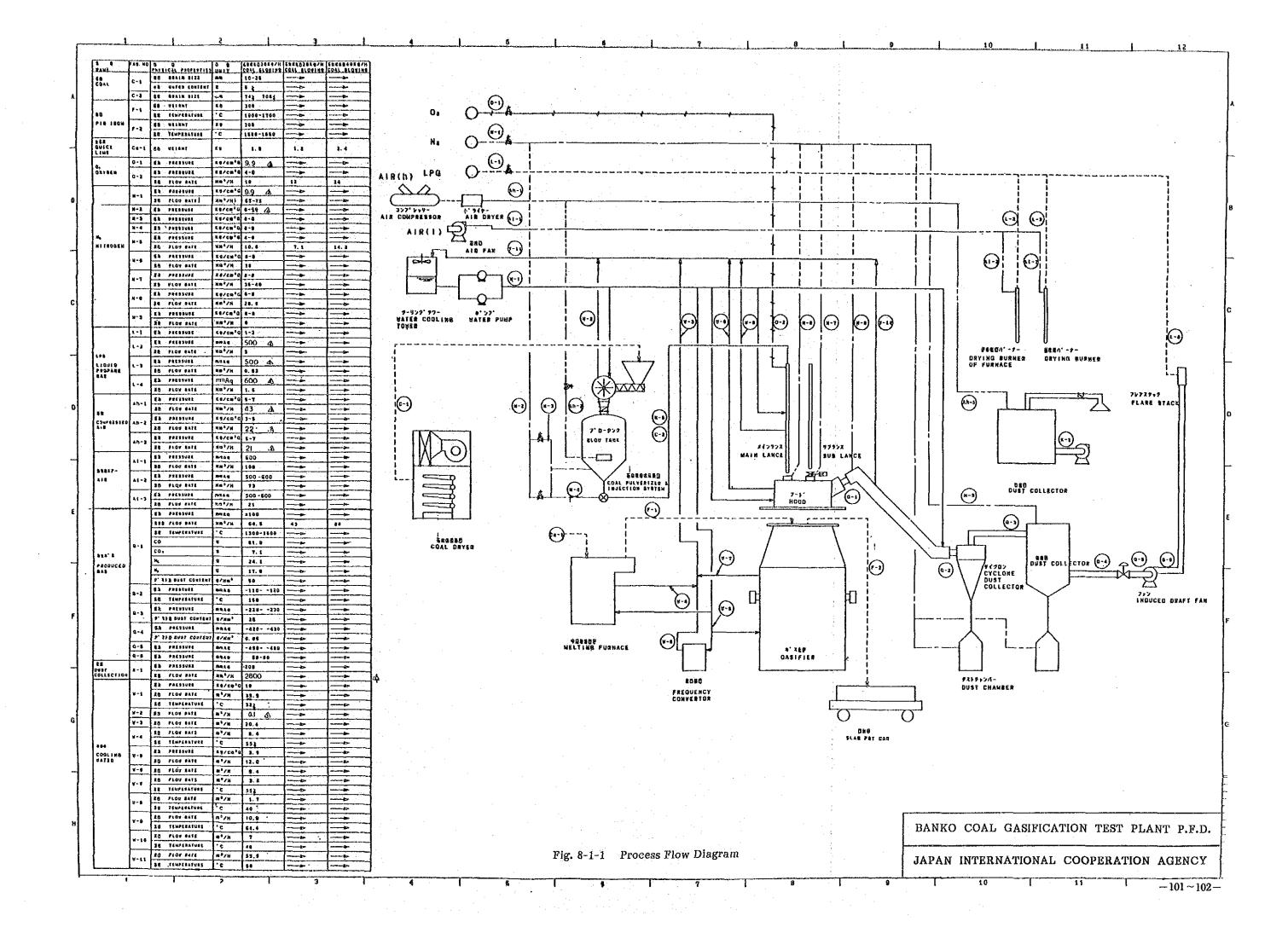
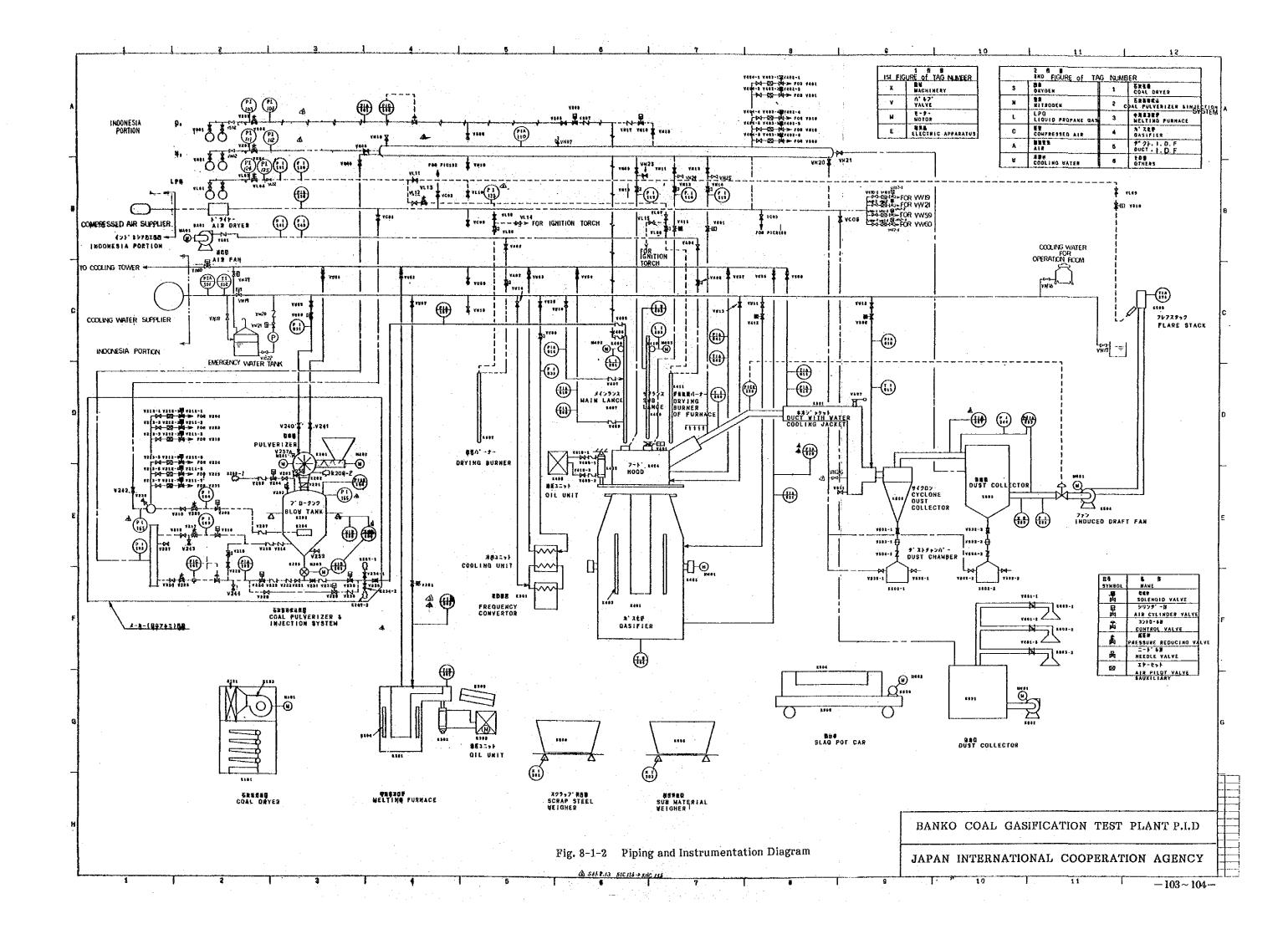
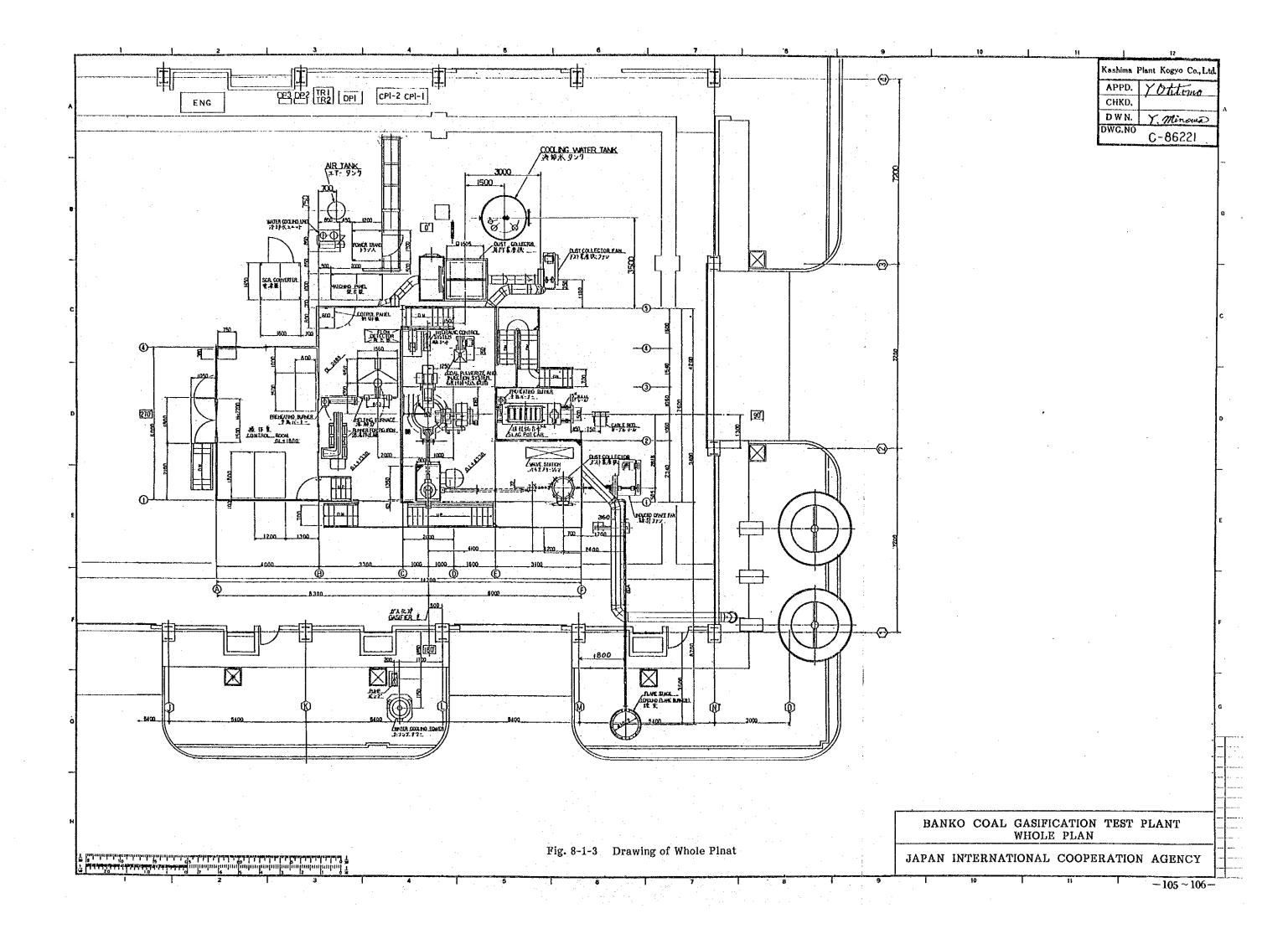



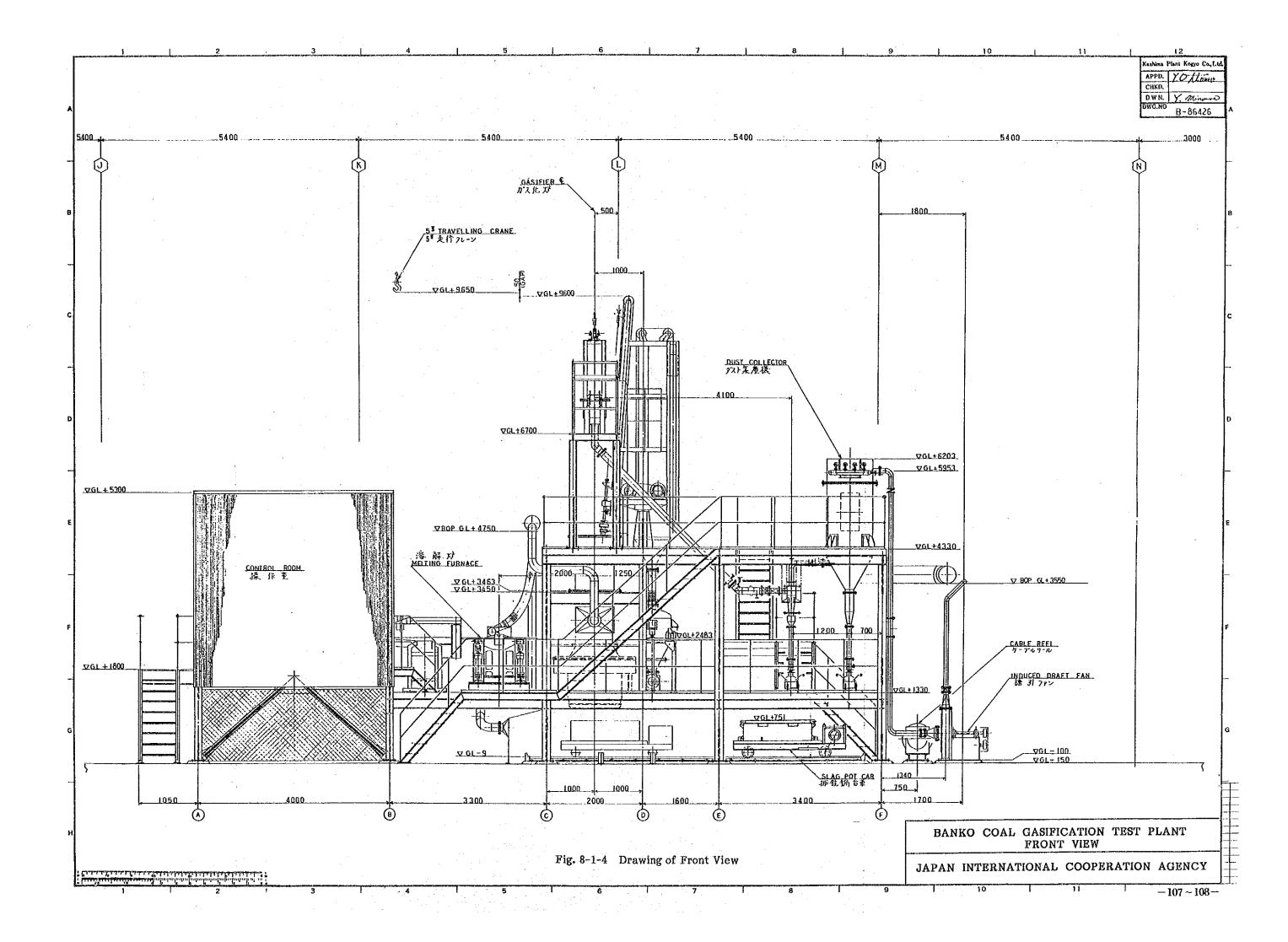
Fig. 51 Relationship between Sodium Content and Sampling Depth Below Surface

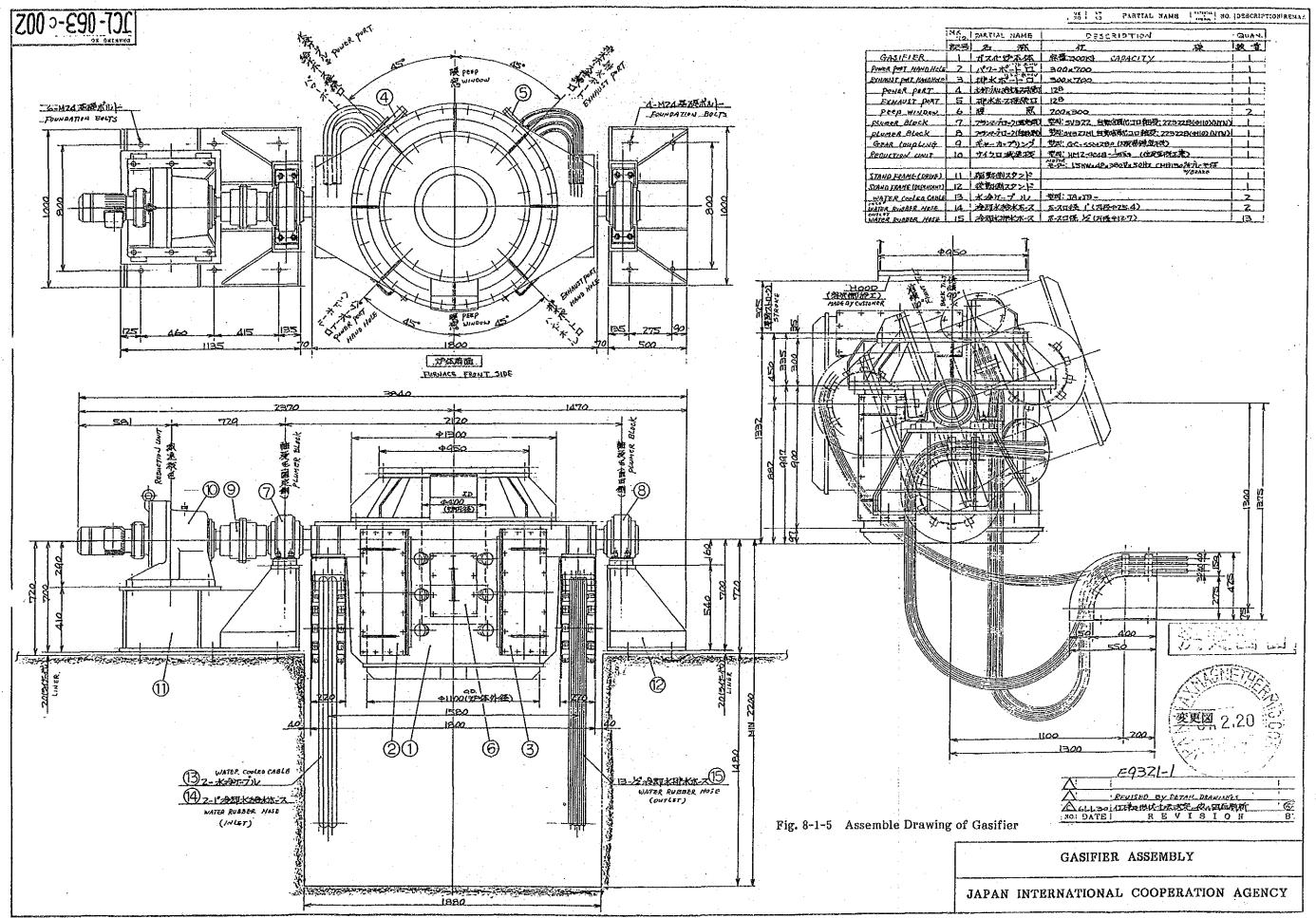
ATTACHMENT 8-1


- 1. Figures and Tables of Gasification Test Plant
- 2. Technical Specification for Erection Work
- 3. Request for Quotation


1. Figures and Tables of Gasification Test Plant


Fig. 8-1-1	Process Flow Diagram
Fig. 8-1-2	Piping and Instrumentation Diagram
Fig. 8-1-3	Drawing of Whole Plant
Fig. 8-1-4	Drawing of Front View
Fig. 8-1-5	Assemble Drawing of Gasifier
Fig. 8-1-6	Assemble Drawing of Main Lance and Sub-lance


Table 8-1-1 (1) ~ (3) Design Condition


Table 8-1-2 Schedule of Construction Work and Trial Run

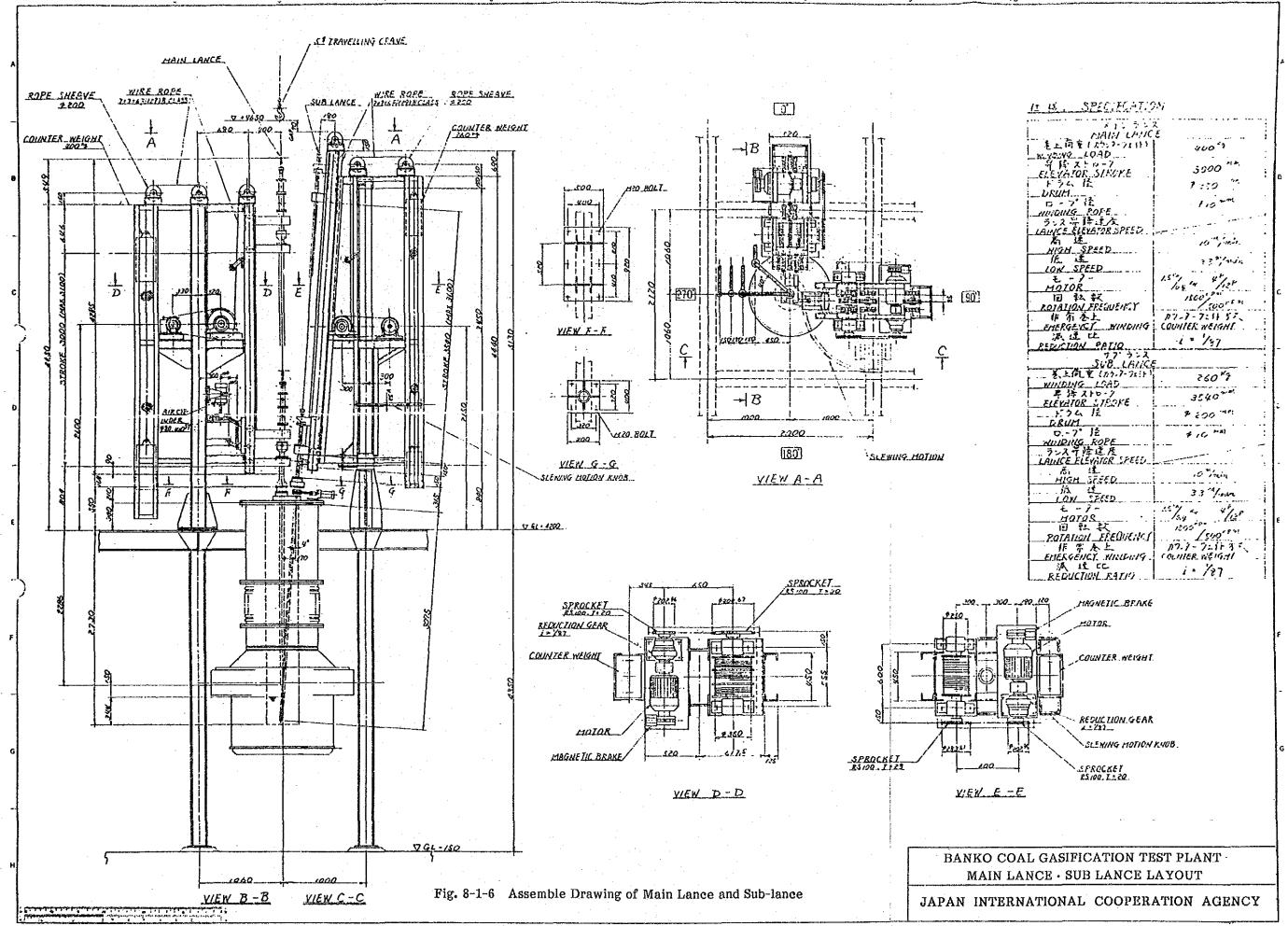


Table 8-1-1 (1) Design Condition

	ITEM	DES	IGN CONDITION	МС		
1.	Climate Data	Ambient Temperature				
		Daily maximum temp	Daily maximum temperature			
		Yearly maximum tem	perature	31.5°C		
		Daily minimum tempe	Daily minimum temperature			
		Yearly minimum tem	perature	22.5°C		
		Daily normal/average	temperature	24.0°C at 7:00		
		Daily normal/average	Daily normal/average temperature			
		Daily normal/average	temperature	26.5°C at 18:00		
	•	Relative Humidity				
		Daily maximum humi	dity	96% 24°C at 7:00		
		Daily minimum humic	lity	47% 32°C at 13:00		
		Daily normal humidit	y	92% at 7:00		
	•	Daily normal humidit	у	62% at 13:00		
		Daily normal humidit	у	79% at 18:00		
2.	Materials					
	(1) Coal	Moisture	Max. 35%			
		Size	- 50 mm			
	(2) Calcined Lime	Component	90% CaO	over		
		en en en en en en en en en en en en en e	4-8% CO ₂			
		Size	- 30 mm			
	(3) Scrapped Iron	Component	Fe 93-96	%		
			C 3-3.59	%		
			Si 1-2%			
		Size	about 110 n	nm dia.		
3.	Utilities	•				
	(1) Oxygen	as cylinders				
		Purity	99% over			
	•	Temperature	ambient ter	mperature		
	• .	Pressure	10 kg/cm ² 0	t 1		
	(2) Nitrogen	as cylinders		-		
	÷ .	Purity	99% over			
		Temperature	ambient ter	nperature		
		Pressure	10 kg/cm ² G	1		

Table 8-1-1 (2) Design Condition

	ITEM	DESIGN CONDITION	
(3)	Electric Power	Frequency Phase	50Hz 3 phase
		Voltage	380 V ± 10%
		Power	Max. 350 KVA
(4)	Compressed Air	Temperature	ambient temperature
	*:	Pressure	Min. 6 kg/cm ² G
(5)	Compressed Air		
(*)	for Instrumentation	Temperature	ambient temperature
		Pressure	Min. 6 kg/m ² G
		Dew point	0oC
(6)	Cooling Water	Water analysis	
(*)	o o o mig , i d o o i	Color	20 Pt.Co
		Turbidity	<u> </u>
		Odor	No
		Taste	No
		PH	6.5
		Solid Content	4.1 ppm
		Conductivity	
		Organic Contnet	4.4 ppm KMnO4
		Free CO ₂ Content	No
		Alkalinity	0.00
		Phenol phtalein	0 ppm CaCO3
		Methyl orange	40.0 ppm CaCO3
		Carbonate Hydroxide	0 ppm CaCO3 0 ppm CaCO3
		Bicarbonate	40.0 ppm CaCO3
		Hardness	40.0 ppm CaCO3
		Calcium	4.28 ppm Ca++
		Magnesium	1.72 ppm Mg ⁺⁺
		Iron content	negative
		Sulfate content	negative
		Phosphate	negative
		Ammonium content	negative
		Nitrate content	negative
		Silica content	-
		Chloride content	7.10 ppm Cl ⁻
		Residual chlorine	$0.30 \overline{\text{Cl}_2}$
		Temperature	25-27°C
		Pressure	Min. 10 kg/cm ² G
(7)	Liquefied Petroleum (Gas	i da de la companya da de la companya da de la companya da de la companya da de la companya da de la companya d
,	1-01.00 x 011.010dill (as cylinder	
		Calorific Value	24000 kcal/Nm ³ over
		Temperature	ambient temperature
		Pressure	2 kg/em ² G

Table 8-1-1 (3) Design Condition

ITEM	DESIGN CONDITION	
. Waste		
(1) Cooling Water	Temperature	inlet temperature
		+ Max. 10°C
(2) Dust	Component	Fe tot. 40 - 50%
	**	C 10 - 25%
	Flow rate	3 kg/h
(3) Slag	Basicity	CaO/SiO ₂ = 1.5
	Flow rate	2.4 kg/h
(4) Produced Gas	Flow rate 64.5 Nm ³	

Table 8-1-2 Schedule of Construction Work and Trial Runs

1986		1987			
Oct.	Nov.	Dec.	Jan.	Feb.	Mar.
k					
				· }	
	Oet.			Oct. Nov. Dec. Jan.	Oct. Nov. Dec. Jan. Feb.

2. Technical Specification for Erection Wor	rk
	•
na ang mga katalang kalang kalang mga Propinsi Salang Kalang	
	•
	•.
	•
enter auch der Albert der State in Weiter der State in der Angeleiten der Angeleiten der Angeleiten der Angele Die Bertreiten der Mangeleiten der Angeleiten der Angeleiten der Angeleiten der Angeleiten der Angeleiten der	
그렇다 회사 중점 않았다. 그리고 하는 한 경우 그리고 말했다. 그 그 그 그리고 하는 것이다.	

Technical Specification for Erection Work

1. Mechanical Work

(1) General

- 1) The Contractor shall install the plant always bearing in mind that the plant after completed will function most satisfactorily.
- 2) The Contractor shall always use his best expertise in carrying out the installation work.
- 3) The installation process, installation procedure, welding procedure, piping procedure, painting procedure, inspection standard and so on, which are necessary for the erection work will be informed by the Consultant with drawing or documents principally.
- 4) The Contractor shall give a notice to the Consultant immediately after occurrence of any unexpected trouble while performing the works.
- 5) The Contractor shall ensure that the tools and measuring instruments shall be handled by skilled workers well acquainted with the mechanism and function of such tools and instruments.
- 6) All tools and measuring instruments for the installation work shall function properly and shall be checked at regular intervals and maintained in good condition.
- 7) Existing overhead crane in the building shall be available for the erection of the plant.
- 8) Temporary facilities and services (electrical power, air and water, etc.) necessary for erection of the plant shall be available at the battery limit.

(2) Preparing for Installation

 The Contractor shall visually examine to see if the floor is sufficiently dry and free from cracks.
 Morever, the Contractor shall visually inspect all anchor bolt holes to ensure absence of foreign matters which, if found, shall be removed.

- 2) The contractor shall confirm, together with the Consultant's and Supplier's, datum line and datum levels, for deciding to the levels, positions and direction of the plant to be installed.
- 3) Temporary bench marks shall be fixed by the Contractor on the floor surface for the identification of the accurate level of equipment to be installed.
- 4) Permanent bench marks and permanent center marks shall be fixed by the Contractor. The Permissible tolerances in levels of bench marks shall

(3) Installation of Machines

1) Alignment of Machines

be +1.0 mm from the datum levels.

- a) Prior to the installation of machines, the lower part of machines and the top surface of the floor shall be thoroughly cleaned so as to be free from rust preventive paint, oil grease, dust, etc., and covers of anchor holes and foreign materials in the anchor bolt holes shall be removed.
- b) Positioning of machines shall be determined using bench marks and center marks.
 The Contractor shall carry out the alignment.
- c) Grouting for the anchor bolt hole shall be carried out
- always after temporary alignment of machines.

 d) After the grout in the anchor bolt holes has completely hardened, the anchor bolts shall be tightened and the

final alignment shall be made.

e) The final inspection of alignment shall be made generally in presence of the Consultant's and Supplier's Supervisor, the results of which shall be submitted to the Consultant for his approval.

2) Assembling of Machine Parts

- a) Each machine shall be assembled in compliance with drawings and documents.
- b) Where required, rust preventive paint and/or oil coated at the shop must be thoroughly washed of, prior to be the assembling at the site, and any rust, foreign matter, etc., if found, must be removed.
- c) During the site assembling of the machine, special attention must be paid to the matchmarks.
- d) Seals, gasket and the like shall be set at the correct positions and shall be tightened uniformly.
- e) Wood, synthetic resin, copper hammer, etc. shall be used for insertion of parts in assembling.
- f) In the handling of parts during assembling, care shall be taken for the following:
 - In the lifting of temporary storage of heavy and long items, no strain must be generated.
 - In temporary storage of parts, suitable blocks shall be provided.

Precision parts in particular must be protected with a cover provided.

(4) Field Bolting

Unless stipulated otherwise in the drawing, the tightening of bolts at the site shall be performed as stated below. Field connection of other materials if required shall also be in accordance with the drawings or the Consultant's specific instruction.

- 1) Tools used shall be suitable for the dimensions of bolts and nuts and the tightening work.
- 2) The tightening force shall be determined by the Contractor referring to appropriate standards and a most suitable method shall be selected such as torque wrench, turn-of-nut or bolt elongation, etc.
- 3) The Contractor shall submit to the Consultant for prior approval a proposal for the method and operating procedure of such tightening work.

4) Flushing work for piping shall be performed by the Contractor according to the provisions Japanese Standards, drawings and documents.

Prior to flushing work, instruments and control valves, etc. shall be removed and short pipes and/or hoses shall be installed for the portion of instruments and control valves, etc.

Short pipes and/or hoses and other necessary equipment and materials for flushing work shall be provided by the Contractor according to the provisions of the drawings and documents.

(2) General Precautions

In carrying out piping work the Contractor shall be fully aware of piping systems, pressure, flow amount, temperature, fluid characteristics in order to prevent any accidents which may result from defective work.

(3) Pipe Work

- 1) Pipes shall, as a rule, be cut mechanically be mean of pipe cutters, pipe gas cutters, high-speed cutters or the like.
- 2 Bevels for welding shall be cut as accurately as possible in according with the drawings.
- Cut faces and bevel faces shall be free from cracks, flaws or slags.
- 4) Welding

Prior to welding, surfaces to be welded shall be completely cleaned to be free from such detrimental objects as rest, oil grease, etc.

Welding shall be in accordance with JIS standards.

Pipe jointing except by welding:

- a) Threads shall be cut by treading machines which shall be provided by the Contractor.
- b) Compounds or Teflon seal tapes shall be used for screwing and rejoining, except when a seal weld is specified, and these materials shall be provided. Packing such as hemp, jute, etc. shall not uses for

(5) Inspection

1) Upon completion of the alignment work of each equipment and before grouting, the Contractor shall carry out an alignment inspection which shall generally be witnessed by consistent with drawings and documents.

The Contractor shall not proceed to further work without the said inspection.

2) After inspection of equipment, the Contractor shall carry out the final inspection, generally in presence of the Consultant's or Supplier's Supervisor.

In the final inspection, the Contractor shall inspect and measure main parts of equipment and ensure that the equipment has been correctly assembled and installed with satisfactory accuracy.

Due care of the following in particular shall be taken.

- a) Condition of bolts as tightened particularly those subjected to vibration.
- b) Lubrication of where friction and rotating motions take place.
- c) Should any defects be detected during the final inspection, the Contractor shall repair the defects so that they will not pose any hindrance to the subsequent tests and testing, etc.
- d) The Contractor shall submit without delay a written report on the final inspection results to the Consultant for approval.

2. Piping Work

(1) General

- 1) This specification covers the general requirements for installation of all piping and piping system at the site.
- 2) Piping system covered herein are for fluids such as oxygen, nitrogen, LPG, compressed air, cooling water, oil and pulverized coal, etc.
- 3) Piping materials shall be prefabricated by the Client prior to shipment.

screwing.

Projection of seal tape to internal pipe shall be avoided.

c) After pipes have been screwed in screw type flange, pipe edges shall be flush with the flange surface. If pipe edges project from the flange surface such edges shall be finished by a grinder or file without damaging flange surfaces.

In all cases, screwing less than the specified length of thread engagement shall be avoided.

5) Flushing for Piping

General:

The flushing work shall be to clean the inside of pipes by removing rust and other foreign matters.

All equipments and materials necessary for flushing work shall be provided by the Contractor.

Flushing oil, if required, shall be disposed most carefully.

The used oil shall be disposed in an appropriate manner off the site.

6) Inspection & Testing at the Site All pipe works installed at the site prior to flushing shall be air pressure tested by the Contractor. The test pressure shall be maintained for more than one hour.

3. Electrical Work

The electrical installation shall be complete in all respects and any item not included in the specification but essential for proper installation and functioning of the electrical system shall be deemed to be included in the scope of the specification whether specifically mentioned in this specifications or not.

(1) Conduit

- 1) Exposed conduit shall be installed either parallel with or perpendicular to structural members, unless impractical, and grouped wherever possible.
 - Conduits shall have a sufficient number of supports to structure framework by means of approved pipe straps, brackets, racks or other approved means.
- 2) Where all thread nipples are used between boxes and electrical equipment, they shall be installed so that no treads are exposed.
- 3) Conduit attachment to all electrical equipment including junction boxes, pull boxes, switches, push button stations, starters, etc., shall be made by the use of double steel locknuts.
 - Threaded insulated bushing shall be used on the end of each conduit terminating in such equipment.
- 4) Conduit will be cut square and reamed. Joint will be coated with an electrical conductive sealant, and screwed tight to a shoulder in fittings and bushings to complete a continuity bond.
- 5) At the switchboard end, threaded insulated bushings for power and control conduits shall be installed.

 For power conduit 1 1/2" and larger, an installed washer drilled with the correct size holes for the individual power conductors shall be installed.
- 6) Conduit shall be protected immediately after installation by means of installing flat non-corrosive metallic discs and steel bushings at each end. Discs shall not be removed until it is necessary to clean conduit and pull cable or wire.
- 7) Prior to pulling in cables, each conduit shall be thoroughly cleaned inside by pulling a wire brush cleaner and then a swab through the conduit to remove all sand and particles of concrete.
- 8) No more than the equivalent of three 90 degree bends will be placed in any one conduit run.

 Field bent, with approved tools, or factory bent elbows may be used on circuits 1000 volts and below.

9) Heating of conduit to facilitate bending is prohibited.

(2) Pullboxes, Junction Boxes and Supports

- 1) Pullbox shall be provided on all conduit runs exceeding 200-ft. and at a maximum of 200-ft. intervals.
- 2) All pullboxes, junction boxes, cabinets, switches and other electrical equipment shall be solidly supported prior to installation of conduit.
- 3) Holes for necessary conduit shall be made in each pullbox, junction box, cabinet, switch or other enclosure.
- 4) Pullboxes, junction boxes and enclosures shall be surface mounted, set true and plumb and shall be secured rigidly to the building or supporting steel or masonry walls.

(3) Cable Racks

- Cable racks shall be installed either parallel with or perpendicular to structure members and shall be rigidly secured to structure steel, supporting steel, concrete slabs or masonry walls.
- 2) Cable rack supports shall be installed at 0'0" centers or less.
- 3) All cables or wire shall be lashed to the rungs of the cable trays on all vertical runs and at all points of taken-off or entry.
- 4) All cables or wires places in cable racks shall be aligned to make a neat looking installation.
- 5) All cable or wire take-offs from cable racks shall be supported in such a manner as to make a neat rigid installation.

(4) Wiring

- 1) Once a cable having paper of V.C. insulation is opened preparatory to splicing or terminating, the splicing or terminating shall proceed immediately and continue uninterrupted until completed.
- 2 All cable or wire take-offs from cable racks to conduit shall be supported in a manner so they will not rub the sides of the rack.

- 3) All equipment requiring control wiring must be wired with multiconductor color coded control cable.
- 4) Control cable through five conductor will be installed in 1" conduit.

Control cable of six conductor and above will be installed 1 1/4" conduit.

Control cable shall be run separate to power cables.

- 5) Circuits of different voltage shall not be included in one conduit or cable.
 - All lighting circuits shall be run in conduit separate from equipment and control circuits.
- 6) When cables are laid at the high temperature places, trays, duct and rucks shall be protected by sheet steel covers, asbestos and so on.
- 7) Where there is a possibility of mechanical damage, cable trays, ducts, racks shall be protected by sheet steel covers.
- 8) In general, wires and cables for instruments except instrument panel shall be as follows:

USE WIRES and/or CABLES
Instrument signal 600 V grade PVC insulated and

sheathe control cables with copper

shield tape. 2.0 mm² or above

Control signal 600 V grade PVC insulated and

sheathed control cables.

2.0 mm² or above

Thermocouple line Compensating lead wires

(5) Instrument Piping

- Tap hole for pressure and/or differential pressure of Venacontracta tapes orifice, in general, shall be 12 mm diameter, and tape tubing to be welded to tap hole shall generally be 100 mm long and 21.7 mm outer diameter.
- 2) Tap tubing from tap tubing with process isolation valve to instrument such as pressure and/or differential pressure transmitter shall be 21.7 mm outer diameter.

- 3) Tubing for pressure and/or differential pressure shall generally be carbon steel pipes.
 - Material of tubing shall be selected in accordance with process requirements.
- 4) Pneumatic control lines shall be 6 mm inside diameter and 8 mm outside diameter, copper tubing.

(6) Grounding

1) Grlounding conditions shall have the following sizes:

EQUIPMENT	CONDUCTOR SIZE
Motor below 3.7 kw	5.5 mm ² or above
7.5 kw	8.0 mm ² or above
15.0 kw	14.0 mm ² or above
37.0 kw	22.0 mm ² or above
above 37.0 kw	$38.0 \text{ mm}^2 \text{ or above}$
High voltage	38.0 mm ² or above
Main line of grounding	100.0 mm ² or above
Low voltage panel	5.5 mm ² or above

- 2) Grounding conductors shall be laid in such a manner as not to touch other cable and conductors.
- 3) The earthing electrodes for the following equipment shall be installed separately from the ones for motors and motor control to avoid malfunction of the equipment.

EQUIPMENT	EARTHING RESISTANCE
PLC	less than 10 ohm
Thyristor unit	less than 10 ohm
(Induction heater)	

(7) Tests

- Contractor shall perform test to insure the workmanship, methods, inspection and materials used in the erection and installation of the equipment.
 - He shall provide all necessary test equipment and provide reasonable cooperation to manufacturer's representatives who will witness the test.
- 2) All test shall be scheduled by the Contractor and cleared by the Owner's engineer.
 - No testing shall be performed without this clearance.

- 3) The Owner will approve final acceptance of the power wiring when all wiring considered as a complete system functions to operate all connected electrical equipment in the proper manner.
- 4) Upon completing wiring works, the following tests and inspections shall be made before energizing cables and wires.
 - a) Measurement of earth resistance
 - b) Measurement of insulation resistance
 - c) Check of phase rotation
 - d) Check of cable connection
 - e) Others
- 5) After completing the above tests and inspections, the Contractor shall furnish four copies of all test data. If, in the opinion of Engineers, test results shown improper performance and such deficiencies are due to negligence or unsatisfactory installation by the Contractor, the Contractor shall furnish all labor and materials required to remedy the situation to the satisfaction of the engineer.
- 6) During no load and load test, the Contractor shall keep several reliable men on duty to repair, adjust or modify.

그는 그리고 그렇게 모으면 된 것이 그 그 가장이는 것들은 그 그리고 가고 있다.	
"你是我们的,我们就是我们的人们的,我们就是什么,我们就是一个人的。" 化二氯甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基	
원모는 하면 남자들이 가는 문제한 나는 것이 가지 않는 것이 되었습니다.	•
생하는 하는 사람들이 하는 사람들은 사람들이 되었다. 그는 사람들은 사람들이 되었다면 하는 것이다.	•
たひょう こうはた 都装した ようしんしょ ほうじゅう しょうけい しゅうしゅ しょうさい コーニー・コー	•
14kg 4 (프로젝트 1814년 1917년 - 1817년 - 1814년 - 1814년 - 1814년 - 1814년 - 1814년 - 1814년 - 1814년 - 1814년 - 1814년 - 181	
단점을 된 후에 가는 사람이 가장 하는 사람들이 되고 있다.	
第二十二章 1000 1100 1100 1100 1100 1100 1100 11	
表情 (1) 在一点海头,在一块一点,一头一大小大小头大大小,一头大小一只一只一点一点,一	
计出版 "我们的,我就是我们的一个一直,我们是一个一个人,我们就是一个一个一个人,我们就是一个一个	
医弗雷氏试验 美国人名英格兰人姓氏 化二氯甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基	
3. Request for Quotation	÷
	•
	•
	•
	•
(4) 佐藤 (4) はいこうしょ (4) はいしょう (4) はいしょう (4) はいしょう (4) はいしょう	
大大大型 医克拉氏 化二氯化二氯化二氯化甲基甲基二甲基化二氯化甲基化二氯化甲基化二二二氯化二二二二氯	
유민이에 가는 사람들은 사람들은 그렇게 하는 사람들이 가는 사람들이 되었다. 그는 사람들이 되었다.	
	•
计记录数据 经净货 医乳腺 医皮肤 医皮肤 医皮肤 化二氯甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基	
"群霸"的"其代",特别说:"不是什么,我没有,一个一只一个有一个一个人。"	
化环境的过去式和过去分词 医皮肤 化二氯化二氯化物 经自由证券 化二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十	
왕대왕 발표 [1985] 경기 (1987) 전 (1987) 그는 그는 사람이 있는 그리고 있는 것이다.	
#####################################	

REQUEST for QUOTATION

Date Issued: th June 1986

Inquiry No. MP6-002

Dear Sirs.

We, Japan International Cooperation Agency INDONESIA Office (hereinafter called JICA), request you (hereinafter called Bidder) to quote in accordance with the applicable documents hereunder specified (hereinafter called Basic Documents), the fixed lump sum price (hereinafter called Price) in ten (10) copies valid for 90 days for the following construction of the Coal Gasification Test Facilities, to be installed in SERPONG OF INDONESIA provided that, it will be understood that unless exceptions, deviations or alternatives are clearly defined and listed separately, the Basic Documents will be deemed to be accepted by Bidder.

1. Scope of Work

Construction of the coal gasification test facilities in the existing pilot plant building at SERPONG OF INDONESIA.

Please refer the attached Requisition No. MP6-002.

2. Basic Document

Requisition No. MP6-002.

Project Specification No. MP6-002.

3. Schedule

Supply of equipment and materials --- the end of September, 1986

Mechanical completion — the end of January, 1987

.4. Supervisory Services

Not required.

5. Payment Term

The payment will be carried out in Rupiah in cash within 1 (one) month after JICA receives the Bill which will be issued by the Contractor on or after the date of Completion of Construction.

The date of Completion of Construction shall be regarded as that on which the work has passed the mechanical test.

6. Closing Date

12:00 Noon on 15th July 1986.

7. Others

Quotation shall be written by English and submitted with one original and ten copies.

8. Note

- 1) This is not an order.
- The inquiry number must be clearly indicated in quotation and documents attached hereto.
- 3) JICA reserves the right to accept other than the lowest quotation and to accept or reject any quotation in whole or in part. Unless otherwise described herein, the cost of preparation for quotation shall be borne by Bidder.
- 4) Bidder who declines submitting a quotation or unsuccessful bidder shall return all the documents for inquiry purpose issued by JICA.

5) Quotation and any correspondence thereof shall be addressed to JICA, INDONESIA.

JICA, INDONESIA Assistant Resident Representative Mr. SUMIO AOKI

Japanese Embassy Compound Jl. Thamrin 24, Jakarta

TELEX: 44198 JICA IA

TELEPHONE: 326818, 322387,324247,321394

Yours very truly,

JICA, INDONESIA

Hideo Endo Resident Representative of Japan International Cooperation Agency Indonesia Office

Contents of Technical Specification for Erection Work

I Order Number

No.

II Project Name

BANKO PROJECT , Plant Installation Work

III Quanitity

One Complete Set

IV Date of delivery

Work completed: Jan.31th, 1987
Test work completed: Mar.25th,1987

V Place of delivery

The pilot plant Building Stage 1 in PUSPIPTEK, Serpong, Jakarta, The Republic of Indonesia

VI Specifications

1. General Outline

- (1) Weight for Erection work
- (2) Work schedule
- 2. Plant outline
 - (1) Location
 - (2) Climate data
 - (3) Seismic design
- 3. Applied codes and standards
- 4. Scope of Estimation
 - (1) Main Work
 - A. Foundation Work
 - B. Installation work for each facility
 - a. Outline of all works
 - b. Work for each facility
 - (a) Main facilities
 - (b) Spare parts, and others
 - C. Utility Work
 - a. Outline of all works
 - b. Pipe work specification for each fluid
 - c. Valve list

- D. Electrical and Instrument Work
 - a. Scope of Work
 - b. Battery limit of electrical instrument work
 - c. Electrical equipment list (supplied)
 - d. Instrument equipment list (supplied)
 - e. Electric wiring materials list
 - f. Instrument
- (2) Temporary Work and others
- (3) Materials for erection works
- (4) Machines and tools for erection works
- (5) Transportation
- (6) Construction Insurance
- (7) Test run
- (8) Document presentation
 - A. Document presentation at the estimation
 - B. Document presentation during works
 - C. Document presentation after completion
- 5. Out of scope
- 6. System of work responsibility
- 7. Responsibility, Guarantee
- 8. Technical regulations
 - (1) Order of Installation
 - (2) Outline of Welding
 - A. Outline of Welding
 - B. Recommendation of welding rod
 - C. Cautions

- (3) Outline of Painting
 - A. Necessary place of painting
 - B. Unnecessary place of painting
- C. Outline of painting and coloring (4) Inspection and passing standard
- - A. Assignment of Work
 - B. Items of Inspection
- 9. Outline of test works
 - (1) Outline
 - (2) Organization of Test run
 - (3) Preparation for test run
 - (4) No-load test run
 - (5) Individual load tests
 - (6) Synthetic load test run
- 10. General matters
- 11. Construction acceptance
- 12. Accompanying documents

Specification for Election Work

I Order Number

No.

II Project Name.

BANKO PROEJECT, Plant Installation Work

III Quantity

One Complete Set

IV Date of delivery

Work completed: Jan. 31th, 1987

Test work completed: Mar. 25th, 1987

V Place of delivery

The pilot plant Building Stage 1 in PUSPIPTEK, Serpong, Jakarta,

The Republic of Indonesia.

VI Specifications

1. Outline

This work is an installation work of BANKO Coal Gasfication Test Facilities that is constructed in PUSPIPTEK, Serpong, The Republic of Indonesia.

This contractor's works are opening of the packed facilities which had been transported there, arrangements, supplementation of acceptance, transportation in site, temporary laying, indoor foundation work, painting (only touch up), no-load test run, attendance of individual load test, attendance of synthetic load test run, cleaning, and so forth.

Detail informations are given afterwards.

(1) Weight for Erection work

	(ton)	(ton)	(ton)
	Main facilitíes	Spare Parts	Total
Packed Weight	abt 110	abt 24.7	abt 134.7
Installation Weight	abt 91.6	abt 22.3	abt 113.9

(2) Work schedule

Installation starts

Beginning of Oct., 1986

Installation completes
Test run starts

End of Dec., 1986

rest run starts

: Middle of Jan., 1987

Test run completes

Middle of Mar., 1987

2. Site information

(1) Location

The plant will be constructed in the pilot plant Building Stage 1 in PUSPIPTEK, Serperg, Jakarta, The Republic of Indonesia.

(2) Climate date (Indonesian data)

1) Ambient temperature
Daily maximum temperature
Yearly maximum temperature
Daily minimum temperature
Yearly minimum temperature
Yearly minimum temperature
Daily normal/average temperature

24°C(acceptable parameters)

Yearly minimum temperature 22.5°C
Daily normal/average temperature 24°C(at 07:00)
Daily normal/average temperature 30°C(at 13:00)
Daily normal/average temperature 26.5°C(at 18:00)

2) Relative humidity

Daily maximum humidity 96% (24°C at 07:00)
Daily minimum humidity 47%(32°C at 13:00)
Daily normal humidity 92%(at 07:00)
Daily normal humidity 62%(at13:00)
Daily normal humidity 79%(at18:00)

(3) Seismic design

Fe = kw

where, Fe = horizontal shear force
 k = seismic coefficient
 w = weight of the components

The "k" value is 0.2, as all the equipments are smaller than 16m and their specific period are shorter than 0.4 second.

Applied codes and standards
 JIS, JEC, new JEM, Japanese code and standards

4. Scope of Estimation(1) Main workA. Foundation work

No.	Items	Qty.	charg	ge	Note
- · · · · ·		(set)	Contractor	Indonesia	
1	Making holes for chemical anchor	one	O		Indoor found ation is concrete
2	Mortar work	11	0		already worked
3	Setting of base plate and chemical anchor	11	0		Including centering work
4	Ground concrete	n		0	
5	Making anchor holes for anchor bolts	13	·	0	Including centering work
6	Mortar work		o		
7	Setting of base plate and anchor bolts	31	o		

Refer to accompanying documents (10) ANCHOR PLAN

B. Installation work for each facility

a. Outline of all works

No.	Item	Q'ty	Contractor's	Note
Ì		(set)	charge	
$-\frac{1}{1}$	Planning	one	o	
2	Opening package &	"	o	Including rust remove
	Checking, Keeping			
3	Liner adjustment	13	o	
4	Arrangement,	11	о (
	fitting & finishing		-	-
5	Cleaning	1)	0	
6	Oiling	"	0	
7 [Putting in order	33	0	
8	Miscellaneous works		0	only touch up
9	Painting	.	0	only coden up
10	Refractory lining work	11	0	
11	Air-conditioning work		0	
1	of central operation	1	ì	
ĺ	room		İ	

b. Work for each facility Installation of each facility should be referred to "installation outline chart". Details of installation should be followed by "handling notes" or "installation point book" supplied afterwards.

Installation outline chart

No.	Device		lation	Level adjustment insta	llation	
	•	position	n / method	cla		
1	Flare stack	GL	direct hole (anchor flame)	straight liner	A	
2	Indoor rotation device	GL	chemical anchor	straight liner	В	
3	Structure,	GL	chemical	Pad	}	
	dust collector		anchor	(non-shrink mortar) or straight liner	С	
4.	other GL installation	GL	hole in anchor	straight liner	D	
5	Facilities needs accurate level ajustment like Lance elevator etc.	On the struct- ure	Setting bolts	liner + shimm	E	
6	Bolting fasten- ing besides Item 5	11	Setting bolts	straight liner	F	
7	Weld fastening facilities	11	Welding		G	
8	Fireproof material lining facilities	-	-		Н	
9	Others	-	direct setting		I	

(Note)

* Refer to accompanying documents (2)-(4)

The number of straight liner should be arranged minimum, tap welding should be done for slipping prevention.

	(a)	Main	facilit	ies				
								•
No.	Machine Name	Q'ty	Weigh		Class	Welding	Painting	Note
:		(set)	packed	naked				
1	Coal dryer	one	2.0	1.5	I		.	
2	Coal pulverizer	11	0.77		F			
3	Blow Tank	11	1.32		F	-		
4	Valve station & piping	13	1.78	1.17	F	0	0	For No.2 & 3
- 5	Transformer for	ii.	1.42	1.12	. с	· <u></u>	-	
6	Gasifier Pure water	11	0.6	0.5	С	. -	-	
_	cooling unit	11	3.36	3.05	E,H	_	_	
7 8	Gasifier	11	2.0	1.5	F,H		_	
9	Melting furnace Oil unit	**	0.4	0.3	C		_	
10	Lining materials	1 3	2.0	1.8	-	-	-	For No.1
11	Accessaries	31	0.65	0.5	_	:	-	, , ,
12	Slag pot	11	3.2	1.38	-	_		set on No.13
13	Slag pot car	11] ,,,	1.27	с,н	_		
14	Emergency pot	11	1.1	0.89		3	_	set on 1st floo
15	Runner for pig	11	0.8	0.65	H,I	-	-	w/caster
16	iron Main lance	1		0.2	-			set on No.18
17	Sub-lance	1	0.5	0.02	. ~	-	-	set on
18	Main lance	, n	2.4	1.9	E	_	~	No.19
19	elevator Sub-lance	11	1.7	1.3	E			
20	elevator Skirt hood	11	6.7	5.2	Е,Н	-	-	Oil unit
21	Duct with water	11	3.5	2.7	F	0	. 0	included
	cooling jacket					1	ļ	
22	Dust chamber	2	0.15	0.11	I F			
23	Dust collector	"	0.75	0.55	£		· .	ļ
ا ر	& Cyclone	l an fi	0.6	0.46	В	_	_	
24	Induced draft for	an { 11	3.6	2.75		0	0	outdoor
25	Flare stack Burner, Fan	111	0.39	0.3	B,G	. 0	0	
26	Hood & Duct] ,,	6.0	4.65	Ğ	0	0	ŀ

Total

47.69 37.02

No.	Machine Name	Q'ty		t(ton)	Class	Welding	Painting	Note
		(set)	packed	naked				
28	Dust collector & Fan	one	2.6	2.05	в,с	-		
29	Main lance deck	H	1.4	1.1	F	O	O	
30	Structure, Control room , etc.	11	40	35	c,G	0	0	
31	Cylinder coll- ected equipment	11	1.3	1.0	D	-		Outdoor
32	Air conditioner & cooling tower	53	1.3	1.0	D	-	•••	11
33	Castable refractories	13	2.1	1.9	-	_		For No.16, 17,18,19
34	Electrical & instrument item	s II	12.3	11.05		-	<u></u>	
35	Engine pump & pipes	11	2	1.5	D,I	0	Ö	

Total 63 54.6

Grand total 110.7 91.6

(b) Spare parts, and others

	en en en en en en en en en en en en en e			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				
No.	Facility Name	Q'ty (set)	Weight packed			Welding	Painting	Note
							·	
.1	Fork lift	one	7.2	7.2	Ι		-	no packing
2	Auxiliary(No.1)	11	2.1	1.6	I	-		lance, slag pot
3	" (No.2)	11	1.1	0.9	Ι			lance chip
4	Tools	16	1.3	1.0	· I	1		
5	Fireproof materials for Gasifire (spare)	11	11	10	Ι	-	-	
6	Fireproof materials for M.F. (spare)	. tf	2.0	1.6	Ι			no opening

Total 24.7 22.3

C. Utility Work

Piping works for each facility (02, N2, Compressed air line, cooling water, LPG)

a. Outline of all works

No.	No. Item		Char	ge	Note
		(set)	Contractor	Indonesia	
					e e e
1	Planning	one	0		
2	Opening, supplementa-	1	: : :	4 19	
	tion of acceptance	111	ο.		•
3	Measuring of	11	ο .		
٠.	plant site				٠
4	Processing of pipes,	11	О		Only dimension
7	finishing			:	line adjustment
5	Welding of pipes	21	0		
6	Setting of	111	0	, i	
	piping support	1 11			
	Repairing of pipes	11	. 0		. * 1
	Flashing, Blowing	31	0		
	Pickle, degrease	11	0		
	Airtight test		0		
11	Ventilation, turning on		0		
	fluid turning on				
	electricity				
12	Setting of Valves	11	0		Oiling of
		(cylinder valve's
					oiler included
13	Wiring & Installation	11	0 '		•
j	of Electrical Equipment	S			
14	Cleaning	j . "	0		
15	Putting in order	11	0		
·	Miscellaneous works	11	O	ļ	
17	Painting	31	0		touch up &
					processing parts
}	ļ ·				in site only
18	Remodeling of				_
~~	Flow detector	11	0		
19	Primary piping &	17	o	0	Flow
1,	Wiring work				detector
20	Building of gas	11		0	Refer to 5.
20	cylinders' house	. .			Out of scope
21	Piping around the	11	o		For
2.1	,		Ü		emergency
22	engine pump	n			- Charletone
22	Setting of N ₂ ,0 ₂ ,			0	
22	LPG Cylinders	11	_		
23	Installation of Oil		0		
	unit accumlator	,, ,			cumplied by
24	Oiling	"	0		supplied by
			÷		Indonesia
L	(Note 1) Fluid name of		L		

(Note 1) Fluid name of pipes and flow signs for piping should be charge of Contractor.

b. Piping work specification for each fluid

N	o. Fluid	Pressure (MAX)			Materials			Blow	in*m
	name	kg/cm ² G	Max	Min		in BL	on BL		
1	02	9.9	20	15	SUS304 ^{TPS} (sch40)	socket weld		N ₂ blow after cleaning	200
					:			with 4	
2	Pulverized	9.9	20	10	SUS304 ^{TPS} (sch80)	flange	flange	N ₂	25
3	N, LPG	9.9 2.0	25 20	15 20	SGP SGP	union union	union union	N ₂ N ₂	200 140
5	Air for combustion	600mmAq	80	32	SGP	weld- ing	over 65 =flange under 5 =union	. }	180
6	Make up water for air conditione	2.3	32	20	SGPW	union	union	water	100
7	Cooling water	10	100	15	SGP	weld- ing	over 65 =flange under 5 =union	water	650
8	Compressed air	6	25	8	SGPW	union	union	air	200
9	Oil	70 80	20	10	STPG38 &SUS304 ^{TPS} (sch80)	socket weld	union	air	95

°Pipes inside of the structure area is only connection work in accordance with domestic prefabrication. Dimension adjustment parts and so forth should be worked in accordance with piping diagram which is supplied afterwards.

Piping supports should be made in accordance with piping chart which is supplied afterwards.

*Refer to accompaing documents (5).

(Note)

°Flushing should be done for each pipe.

^{*}Dimension adjustment parts & proceed parts in site are not painted yet, so contractor should painted there after piping work.

Pipes outside of the structure area are handed as materials not processed.

c. Valve list (Except Instrument valve and fitting valve in devices) Bore and numbers of valve may be slightly changed later. · 1966年中央政治院院院的1966年966日安徽

Valve name	pressure	T	<u> </u>					d nan				
	(JIS)	Bore	02	*1	N ₂	LPG	*2	*3	*4	*5	*6	oil
			- 4				:					<u> </u>
		Ī					:				. 1	100
Safety	10K	20A	1	1			1 1		٠,		.	1.5
valve.		25A	 		1	·						2
		A8		}						1		:
		10A			l					2	_	
		15A			13	2			1	1	1	
		20A	1		11	7				2.	8	. :
	10K	25A	.		3					4		
Globe valve	1	32A	:				2		2	4		
		40A			·					6		
		50A								1	ĺ.,	
•		100A								.	2 -	6
	210K	15A 10A		4	'	7	+ 1		Marie de la companya		ž	"
Ball valve	10K	15A		4	3					'	1	
Needle	107	20A			1	2						
valve vaedie	10K	32A	ļ				2					
vaive	1	40A			1		-	1				
		10A			4	,	·	•			•	
Check valve	10K	15K		1	2							
OHCCK AGIAC	100	20A	1	ļ ·	1						1	l
	,	15A		2	2		l				. 2	
Valve	10K	20A	1		1	1	·				5.7	
drived by		40A			1							
Aircylinde	d	100A	1	1	l					4	İ	
•		15A			1						İ	1
Direct driv	/e 10K	40A] .				: .	2		
solenoid va	alve	50A		1				-	ļ	1		
Pressure	1 .	15A	1		1						1	
reducing	10K	20A	1		1	1		1			1	
valve		25A			1							
	Grand t	otal	3	8	48	14	4	4		30	12	6
	OTAIIG L				`		'					
•							l .		1	1		

N₂ + Pulverized Coal Air for Combusion

^{*1} *2

^{*3} Make up water for Air conditioner

Cooling water ×4

^{*}5 Compressed Air

D. Electrical and instrument work

a. Scope of work

All installation work for electrical and instrumentation equipment shown in the following table, lists and drawings shall be included in the scope of work.

No	Item	Q'ty	Contractor's	Note
		(set)	scope	
1	Erection of Electrical	one	0	Refer to the list
	& Instrumentation equipment			of Electrical &
				Instrumentation
2	Erection & wiring of Lighting,	n		equipment
4	Receptacles and MCB boxes of		U	
	welders for repair use.			
3	Erection of cable trays and	11	o	
	racks	11		
4	Erection of conduit	95	O	
5	Piping	11	0	•
6	Wiring		O	
7	Connection of cables and wires	"	0	
8	Grounding work including		0	(Note 1)
	measurement of earth resistanc		О	
9	Painting	21	O	
10	Measurement of insulation	11	0	
	resistance	11	o	
11	Check of wire & cable	17	o	
	connection		,	
12	No load test	11	0	
13	Sequence check	11:	О	Attendance
14	Individual load test	"	0	31
15	Synthetic load test run	**	o	11

(Note 1): The installation work for the independent earthing electrod for the following equipment shall be included in the scope of work.

(1)	For	electrical equipment	Earthing Resistance	less	
			than 10 ohm		
(2)	For	instrumentation	n -		
(3)	For	SCR Cubicle	11		
(4)	For	Slag Analyzer	11		
(5)	For	Iron Analyzer	Ð		

b. Battery limit of Electrical and instrument work

(a) Electric Power

The 380V 3 phase power is supplied from the power distributing panel PP-IB in the electric room at site. The Contractor shall include wiring work from the secondary terminals of MCB (630AF) in PP-IB to the test plant.

(b) Instrument Air

All wiring and all piping erection shall be included from outside of air compressor. Air compressor will be installed by Indonesia counterpart.

c. Electrical equipment list (supplies)

 -				·
No.	Symbol		stimate	note
1		W	eight(kg)	
			1 200	·
1	CP1-1	Control panel 1 (one) set	300	
2	" -2		200	ſ-
3	OP 1	Operating console	150	}
4	יי 2	rocar oberaring baner of	50	
		lance		1
5	3	wimic baner	70	
6	." 11	Local operating box	3	
1: _		for Crusher & S.C.		
7	" 12	Local operating box	3	
		for Rotary feeder		'
8	" 13	rocar oberating pox	3	
		for Coil cooling valve		
9	11 14	rocar oberating pox	3	
		for Induced draft fan	1 -	
10	" 16	Local operating box for	2	1
		air fan		,
11	" 17	rocar oberating pox for	2	
		Dust collector)	j
12	" 18	rocar oberating pox for	3	
		Slag pot car		
13	DP 1	380V power distributing panel "	120	
14	" 2	2007	50	
15	" 3	1004	50	
16	TR 1	Transformer 100kVA 3¢ 380/210 "(pcs)	500	
17	" 2	" 10kVA 1 \$\overline{1} 380/105 "	50	
18.	ENG	Engine generator 18kVA 380V "	850	
19		Control panel for Flare stuck 1 (one) set	100	
20		Power trans cubicle(Gasifier) "	2,000	,
21		SCR converter (:") "	1,500	·
22		Matching panel (")"	1,000	
23	!	Control panel (")"	200	ŀ
24		Control panel for Dust	5	.]
'		Collector		
25		" (Cyclone) "	5	
26		Control Panel for coal dryer "	10	
27		Interphone 1 complete set	<u> </u>	
28		Lighting]	1
29	`	MCB boxes of welder for		. 1
		repair use]	
30		Control Panel for engine pump 2 set	150	·
31	OP-19	Local Operating Box for l	3	
		Gasifier Cooling Valve	`	ļ
32		Control Panel for Cooling l	10	1
		Tower		. [
33		MCB Box for Air Conditioner 1	3]
			1	1

total (1)

abt 7,500kg

d. Instrument list (supplies) -1

No	Symbol	Name	Q'ty	estimate weight(kg)	Note
1 2 3 4			one " three(pc)) one	900 120 63kg/pcs 600	+ 40 ¹
5		Gas Analyzer (0 ₂ /H ₂ /C0 ₂ /C0 Air Dryer	one	500	constructed in plant site
6		Water heater for Gascromatograph	one	140	
		total(2)		2,449kg	

d. Instrument list (supplies)-2

No.	symbol	Name	, ,	estimate Note
			(pcs)	weight (kg)
7		Field Transmitter]	
	•	Pressure transmitter	6	
		Differential-pressure		
		transmitter	6	
İ		Orifice plates	2	
- [Vortex Flowmeter	4	
		Thermocouples	7	
ŀ		Resistance Thermometer	6	
ł		Load Cell	3	
ı		Local type pressure meter	6	
		" temperature meter	3	
		Local type flow meter	7	
8		Control valve	3	
.			,	70.000
9		Personal computer	,1	PC-9801 with
	•		(set)	Floppy desk and printer
10		Gas detector	6	Indicator:
		das deceeds		Instrument Pane
l		·		included
11		Slag Analyzer		Step down Tr
		JSX-60PX		(with
		Shaking mill		constructor)
		Water circulation pump		•
12		Iron Analyzer	1	Step down Tr
	•	EMIA-220	(set)	(with
1		Compressor	(===/	constructor)
I		Compressor		•
13		Attachment of off-line	1	Details are
ب.		analyzer, Jaw crusher	(set)	refered to
İ		Mill, Automatic Mortar,	\	chart
1		shiver, oven		•
		Surver, oven		
		Total	abt 1,	200kg
		Grand total	abt 11,0	150 Σα

e. Electric wiring material list

NO	DESCRIPTION	MATERIAL	SIZE	RATING QUANT	SUPPLER	REMARKS
	CABLE	600V CV	2sq x 3C		500 M	
	11	11	3.5sq x 3C	: .	200 M	
_	n ·	Ħ	5.5sq x 3C		35 M	
	, II	n	8sq x 3C		170 M	
	II	< n	50sq x 3C		50 M	
	H ·	n	60sq x 3C	** *** .	15 M	
.	11	n .	100sq x 3C		65 M	
	11	11	200sq x 30		40 M	:
	H	ii	3.5sq x 2C		140 M	
-	tı	II	5.5sq x 2C	· .	155 N	
<u>. </u>	11	tt .	14sq x 2C		60 M	
-	11	11	38sq x 2C		10 M	
-	1. 11.6 11	600 ^V CVV	2sq x 2C		500 M	
-	11 .	n	2sq x 3C		90 M	:
~-	11	11	2sq x 4C		300 M	
	t 1	13	2sq x 6C		300 M	
-	11	ti	2sq x 7C		80 M	
_	p	#1	2sq x 10C		500 M	
_	tt .	**	2sq x 15C		50 M	
_	11	ti .	2sq x 20C		120 M	• *
-	11	'n.	2sq x 30C		400 M	•
		600v cvv-s		•	80 M	
-	Ħ	11	2sq x 4C		50 M	
		11	2sq x 5C		100 M	<i>x</i>
	11	H	2sq x 6C		60 M	

NO	DESCRIPTION	MATERIAL	SIZE	RATING QUANT	SUPPLER	REMARKS
	11.	600V CVV-S	2sq x 10C		20 M	
	11	11 ,	2sq x 20C		50 M	
_	91	600V CV	100sq x 1C		170 M	
	11	2PNCT	2sq x 3C		10 M	
-	11	LKGB	2sq x 2C		165 M	
	,ti-	VCTF	0.75sq x 20	3	70 M	,
	WIRE	IV(G)	100sq	·	300 Ň	E1 x 2 E3 x 1
	u	†1	38sq		100 M	
_	n	11	14sq		100 M	
_	91	11	8sq		100 M	
_	u ·	11	5.5sq		300 M	•
_	11 To 12 To	11	1.25sq		300 M	
		IV(RED)	2sq		300 M	
	11	IV(WHITE)	2sq	·	300 M	
_	CABLE	LKGB	3.5sq x 2C		100 M	
_	CABLE TERMINALS				l Compl	ete set
	CABLE TERMINAL INSULATION TREAT- ING MATERIAL				1 Compl	ete set.
-	CONDUIT		C19		75 PCS	
-	H		C25		100 "	
_ ·	n		C31		80 "	
_	u	. •	C39		30 "	
	H		C51		10 "	
-	11 11		C63 C75		10 " 10 "	

МО	DESCRIPTION	MATERIAL	SIZE	RATING QUANT	SUPPLER REMARKS
***	ACCESSORIES FOR CONDUIT				1 Complete set
	CONDUIT SUPPORT MATERIAL				1 Complete set
••	COPPER SHEET (for Grounding)		900sq x 1.5	it	4 set
-	PIPE STANTION	s.s.	1500		9 PCS
	STEEL ANGLE	11	L6x50x50		25 " L= 5.5 M/PC
-	STEEL SHEET FOR LEVEL ADJUST	ti			1 Complete set
_	мсв вох				1 . **
- -	CABLE RACK	s.s.	SR-60		18 PCS Straight shape
-	. 11	11	SR-40		10 " "
_	31	11	SRLA-60		2 " L shape
_	11	11	SRLA-40		2 11 11
-	11	11	SRT-60		3 " T shape
-	11	11	SRI-60		2 11 11
_	ACCESSORIES FOR CABLE RACK				l Complete set
	CABLE RACK SUPPORT MATERIAL				1 Complete set
-	STEEL SHEET FOR CABLE PROTECTION				l Complete set
-	ASBESTO SHEET (for Cable Pro- tection)		184 . 		1 Complete set
					·

NO	DESCRIPTION	MATERIAL	SIZE	RATING QUANT	SUPPLE	r remarks
	RECEPTACLES		WN318		10 "	
-			-			
	11		WN3710		10 "	
•	PLUG		WF7002		10 "	
_	INTERPHONE	•	VK-413A		1 SET	
-	" HAND SET		VK-508C		4 11	
-	LIGHTING FACILITY	s. s.	FA42275K		16 SET	40WX2 AC100V
-	LAMP	•	40W		32 PCS	40W AC100V
-	INSULATING TAPE	·			1 Comp	lete set
-	BOLT, NUT		•		1 "	
•	CABLE	600V MLFC	150sq x 1C	:	30 M	(XALA)
•	Ŧŧ	1500V	150sq x 1C	4M x 4	16 M	(AJAX)
•	11	11	2sq x 1C	4M x 2	8 M	(AJAX)
	n	600A CAA	2sq x 2C	}	50 ห	(AJAX)
	31	11	2sq x 6C	· •	10 M	(AJAX)
	řs.	600V IV	8sq x 1C	;	20 M	(AJAX)
-	WATER COOLED CABLE	1500V	520	6.2M x 2	12.4M	(AJAX)
•	n		52o	14.5M×2	29 M	AJAX(for Gasifier)
-						-
	CABLE TERMINALS				1 SET	AJAX

f. Instrument material list

NO	DESCRIPTION	MATERIAL	SIZE	RATING QUANT	SUPPLER	REMARKS
	CABLE	600V CVV-S	2sq x 2C		960 M	
-	u	ži i	2sq x 3C		275 M	
-	11	11	2sq x 6C		60 M	
	11	n .	2sq x 8C		65 M	distriction
-	n .	. "	2sq x 10C		20 M	
-	11	11	2sq x 30C	÷	50 M	
. .	· · · · · · · · · · · · · · · · · · ·					
	CABLE	600V CVV	2sq x 2C		320 M	
-	: 11	11	2sq x 4C		240 M	٠.,
-	n	11	2sq x 8C		65 M	e e
•	*.					
•	COMPENSATED WIRE	RX-H	2sq x 1P		95 M	
•	11	11	2sq x 2P		45 M	
	tr ·	VX-G	2sq x 5P		55 М	
			-			
•	WIRE	IA(C)	1.25sq		300 M	
	11	, II	5.5sq	·	300 M	
	11	. 11	14sq		100 M	
•						
	CONDUIT		C19		60 PCS	
	u		C25		35 "	
	n		C31		20 "	
	ACCESSORIES FOR CONDUIT				1 SET	
	PIPING SUPPORT	-		•	1 ."	

NO	DESCRIPTION	MATERIAL	SIZE	RATING QUANT	SUPPLER	REMARKS
	COPPER SHEET FOR GRANDING		900sq x 1.5t	:	2 PCS	
	ACCESSORIES FOR GRANDING				1 SET	
_	PIPE STANTION	:	L=1500		12 PCS	
-	STEEL ANGLE	s.s.	6tx50x50 L=5500	un en en en en	25 ¹¹	
-	STEEL SHEET FOR LEVEL ADJUST	`4f			1 SET	
	TERMINAL BOX			•	3 PCS	
	CABLE TERMINALS	.·	·		1 SET	
_	BOLT, NUT	s.s.			1 SET	. *
_	PIPE	SGP(W)	15A		10 SETS	
-	n i	STPT(Sch40)	L=5500 15A		2 11	
	11	SGP(B)	25A		2 ."	
	TUBE	sus304	8/6 L=4000		2 "	•
	ŧı	Ħ	10/80		2 "	
	COPPER TUBE	Cut(PVC)	6/40		10 "	
	u	Ð	8/60		10 "	
	ACCESSORIES FOR PIPING				1 SET	
_	UNISARM (Pipe with heater)	Cu	8/60		10 M	2200- 41M10
-	u	SUS316	10/80		10 M	2201- 40M41

(2) Temporary work and others

No.	Item	Q'ty	charg		Note
		(set)	Contractor	Indonesia	
1	All materials for temporary work	one	o		Scaffolding etc.
2	Office	11	0		
3	Lavatory	11		0	
4	Accomodation for workers	11	0		
5	Materials yard	11		0	
6	Meals for workers	11	0		
7	Telephone		0		
8	Facsimile	11	0		
9	Lighting apparatus	1 12	,0	. ا	
0	Work of 7),8),9)	111	0		
1	Security of office	1 "	0		
2	Electric source	11 1		0	
3	Industrial Water	"		0.	
4	Beverages	"		· 0	
5	Compressed air for work	,,			_
6	Overhead crane	"		0	Cap. 5t
7	Lighting equipments in the building	"		0	
Ì					
.					

(Note) * Fork lift (Cap., 5 tons) besides above-mentioned is lended free.

But fuel is contractor's scope.

^{*} Items 2),7),8),9),10) is happened to lended from Indonesia, but it should be estimated on this condition that these items should be distinguished from other ones.

(3) Materials for erection work

No	Item	Q'ty	charge	B	content	Note
		(set)		Indonesia		
		,			, ,	
}						
1	0, for construction	one	0	-		
2	Acetylene "	31	0			
3	Welding rod	11 •	o			•
	Fuel for machinery	11		o		engine pump
5	011 "	17		0		
				'		Hydraulical-
	, in the second		,			ly-operated
		:	,			oil, grease
6	Flushing Oil	11	0	-		
17	Oil cleaning	11	o			
8	Non-shrink mortar	11	0	!		
9	Cement	н'	0			
10	Sand	112	0			
11	Gravels	11	0		-	
12	Base plate	11	_		o	w/flare stack
1.~	pade pade	٠				anchor flame
13	Liner for installation	11	o	'		
14	Foundation B.N.	11	0		[chemical
'	2041143623011 27111					anchor
15	Structure B.N.	11	0			
16	Support for pipes	ti i	o			
17	U bolts, bands	11	0			
18	B.N. without item,	15	-		0	
*	No. 14,15,17					
19	Gasket for flange	2.0	·		0	
20	Seal tape for pipes	17				
21	Gland packing	11			٥	
22	Seats against rain	21	, o		-	
23	Pipes	31	,		o	w/Valve,
127	Tapes				-	joints
24	Wires	11			0	J
25	Bench mark	11	o	-		
26	Weskit	1,	o			
27	Joints processed in	11	0			
4	site		Ĭ			
28	Miscellaneous materials	33	,		[
120	not mentioned					
29	Materials of remodeling	n	o			
27	of flow detector		٦			
120		1,	o			for off-
30	Step down Tr.		٠	÷		line analyzer
			ļ]	Time analyzer

^(*1) Included in transported machineries

(4) Machines and tools for erection works

Contractor should prepare all machines and tools for installation of this Gasification Test Facilities.

Still more, as regards installation it is desirable that contractor can prepare

- A. Turning roller for welding 2 sets
- B. Wrecking car 1 set (Cap. 10 ton) x 3 days Wrecking car with gondola 1 set x 1 day

(5) Transportation

No.	Iter	1	Maker	JICA	Contractor	BPPT
			ĺ			
l	Transportaion in Japan	Maker -> Yokohama	0	•		
2	Loading	Yokohama port	}	0		
3	Marine transportation	Yokohama → Jakarta		O		
4	Cutwater	Jakarta		. 0		
5	Land transportation	Jakarta→ plant site				0
·6	Unloading	Plant site				- 0
7	Opening				0	
			1		1	_ :

All tools and machines (as to No.1-7) arranged by the contractor lies on the contractor's charges.

(6) Construction Insurance

No.	Kind of Insurance	Q'ty (set)	JICA	Contractor
1 2 3 4 5 6 7 8	Marine Cargo Insurance Construction Insurance Workmen's Compensation Insurance Employers' Liability Insurance Overseas Travel Accident Insurance Automobile Insurance Tax Other Insurance which contractor needs	one 11 11 11 11 11 11	0	0 0 0 0 0

(7) Test run

No.	Item	Q'ty (set)	IEE	Contractor	Note
1 2 3 4 5	No-load test run Individual load test Synthetic load test run Repairing Gathering data of test run	one n n	o (operate)	o o (attend) " o o	Period of 2 months

(Note) As reagards details of test run, see " 9. Outline of test works."

(8) Document presentation

A. Document presentation at the estimation

Time limit S61 / /

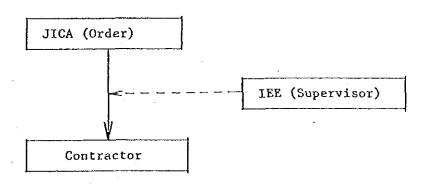
No	Item	Number of Issues
		Japanese English
1	Estimation sheet	
2	Estimation specification sheet	
	Time schedule sheet for erection work	e ades
4	Organization chart of erection work	
5	Planning of utilities's consumption	
6	Man-hour chart	
7	List of machine & material prepared	
	by the contractor	
8	Personal history of person in charge	

B. Document presentation during work

No.	Item	Number of Issues	
		Japanese	English
1 2	Minutes Daily report		
3	Inspection work report		

C. Document presentation after completion

No.	Item	Number of Issues		
		Japanese	English	
1 2 3	Construction record Test run report			


(Note) Contents of construction record should include

- A. Minutes during construction
- B. Inspection record, Test run record
- C. Actual time schedule & man-hour chart
- D. Daily report etc.

5. Out of scope

No.	Item	Q'ty (set)	Note
1	Outdoor foundation work	one	Refer to 4.(1)A
2	Construction of utilities cylinders' house	11	
3	Indoor wiring pit work	11	
4	Indoor lighting work	£1	Lighting around facilities within scope of estimate
5	Primary utilities' work	11	(*1)
6	Sanitary plumbing	"	-
7.	Land transportation of installation facilities	11	
8	Power distribution facilities	11	
9	Heat insulation work	<u> </u>	

- (*1) Engine pump work for emergency and cable building work upto power distributing panel (AC 380V, 3ϕ) should be included.
- 6. System of work responsibility

7. Responsibility, Guarantee

No.	Situation	Contra	Contractor's	
		Scope	Out of scope	
1	Damage of facilities at the opening			
2	Rust of facilities at the opening	1 1 1 1 1	O	
3	Robbery of facilities during work	0		
4	Damage of facilities caused by miswork	0		
5	Lack of materials " "	o		
6	Function error " "	o		
7	Accidents of workers	0		
8	Delay of working term	O		

Contractor should pay compensation regarding the contractor's responsibility above mentioned.

Also, contractor should pay all cost if reconstruction work on item No. 4, 6 occurs.

8. Technical regulations

- (1) Order of installation

 This should be based on 12. accompaning documents (12), but changes are accepted according to the proceeding of construction work with agreement of supervisor or manager.
- (2) Outline of welding

A. Outline of welding

Kind of welding	Outline of welding	
Fillet welding	Depth of weld should be over 70% & under 100% of thinner base metal's thickness.	
Butt-welding	Beveling type should be 60°V type or 50°V type.	

B. Recommendation of welding rod

Welding materials	Welding rod in use		
SS, SGP	Sumitomo	welding rod	01A, 200, 300
STPG	н	If .	03A
SUS304	11	11	308

C. Note

- a. Temper color caused by welding of SUS304 should be removed by the sandpaper, etc.
- b. Outline of each welding should be followed by the drawings.

(3) Outline of painting

- A. Necessary place of painting
 - a. weld fitting parts of pipes & processing ones in site
 - b. connecting parts of structure
 - c. setting bolts, head of anchor bolts
 - d. weld fitting part
 - e. touch up painting parts
 - f. fluid name of pipes, flow sign
- B. Unnecessary place of painting
 - a. place painted in Japan
 - b. SUS pipes
 - c. cast metals such as slag pot
 - d. standard device of maker (valve, oil cylinder, etc.)
- C. Outline of painting and coloring

Outline of painting is referred to 12. accompanying document (13). Coloring should be matched surrounding.

(4) Inspection and passing standard

A. Assignment of work

Contractor	Supervisor
0	
0	
	0
	Contractor O O

B. Item of inspection

No	Item	contents	Passing	Note
			standard	
ì	Structure	each floor level	± 3mm	
•	Mada Cont	position of installation	<u>+</u> 2mm	
2	Main & Sub-	hight of installation horizontal, vertical	0.1mm/m	
	elevator			
	Rotaring		under	measured
	facilities		0.05mm	Ъу
3	pump	centering of shaft	in face and	dial gauge,
•	blower, etc.		circle	space gauge
4	Piping, sleeve	color check	normal	
	flange weld	·		depth of
<u> </u>]		weld,
		1		Out of bead
5	Weld except	outlook	normal	
	item 4.			
6	Painting	coloring and	judged by	
•		spots	attendance	-
7	Pipes	shown in following page		
	airtight test			•

Outline of pipes airtight test These should be done before the pipe painting work.

No.	Piping line	kg/cm ² G test pressure	contents of inspection	passing standard
1	02	(N ₂) 10	Soap test	No bubbling
2	Pulverized coal + N ₂	(N ₂) 10	11	n n
3	N ₂	(N ₂) 10	11	ti
4	LPG	(N ₂) 2	- North and n	n
5	Air for combusion	(air) blower pressure	er H Der er gerögense	11
- 6	Make up water for air conditioner	(water) pump pressure	Check of leak by watching	No leak
7	Cooling water(go) (device is not included)	(water) pump pressure	11	: : : : : : : : : : : : : : : : : : :
8	Cooling water (return)	(water) 2	n 	II
9	Compressed air	(air) 6	Soap test	No bubbling
10	Oil pressure each using pressure	(hydraulically- operated oil)	Check of leak by watching	No leak

9. Outline of test works

(1) Outline

Each item of this outline shall be used for estimation of man power for organization of accident prevention and checking points in test run period. Contents in detail and passing standard is checked by supervisor according to data prepared by each maker. And, for reference, independent equipments like motor, fan, pump, dryer, and so forth have been tested in Japan and their inspection sheets & reports of test run are packed with each equipment.

(2) Organization of test run

A. No-load test run

	Contractor (Mechanical, Electrical instrumentation)
Conductor	· o
Assistant of conductor	O
Operator Operator	0
Check, record	0

B. Individual load test, Synthetic load test run

	Operation manager (IEE)	Operator (IEE)	Supervisor of installation work (IEE)
Conductor	0		
Assistant of conductor			o
Operator		0	•
Check, record	,	0	

(Note) Contractor should attend this period.

(3) Preparation for test run (checking items in following table)

	Checking items
Electricity	(1) Measurement of earth resistance (circuit, equipment) (2) Sequence check (3) Idling test (conductor, solenoid volve, LS) (4) Direction of motor's revolution (5) Alarm, indication (1) Quantity of oil in the oil unit (MF, Hood)
Oil pressure	(2) 0il temp. (3) Pressure (4) Reduction of air
Utility	(1) Pressure(2) Flow rate(3) Operating of dryer for instrument
Instrumentation	 (1) Range adjustment of equipments (2) 0 point ajustment (3) Sequence check (4) Confirmation of indicator & controller by transmitter's signal
Others	(1) Flashing of pipes

(4) No-load test run

No.	Name	Objective device	Checking items
1	Electrical rotar	Coal pulverizer Screw feeder	Abnormal sound Abnormal vibration
		Rotary feeder I.D.F. Dust collecting fan Burner fan	Mortar amp. Bearing temp.
2	Electrical reciprocator	Incling machine of Gasifier Main lance elevator Sub-lance elevator Slag pot car	Time required & limi switch adjustment Motor amp. Abnormal sound Abnormal vibration
3	Hydraulic reciprocator	Incling machine of M.F. Hood for gasifier	Stroke, time required pressure, Abnormal sound Indication of gauge
4	equipments drived by air cylinder	Valves drived by air cylinder , Instrument control valve	Speed controller adjustment L.S. adjustment Indication of gauge Operating confirmation from controller
5	Blow tank's loadcell for P.C. injection	Loadcell	Adjustment Accuracy confirma- tion by weighing test
6	Overall	M.F. Runner for pig iron Gasifier Hood for gasifier Lance & Sub-lance elevator Others	Relative location Intervention Inter-rock test Sequence idling test

(5) Individual load tests

No.	test item	Contents	Checking items
. 1	Utilities	(1)Passing cooling water	°Flow rate °Pressure
		(2)Ajustment of O ₂ ,N ₂ ,LPG Reducing valves, etc.	
		(3)Meter constant adjust- ment of controller	
2	Emergency test	(1)Power failure	"open"&"close" of
		<pre>(2)Suspension of water supply (3)Compressed air</pre>	valves (cylinder valve, solenoid valve °Counter weight of
		failure	lance&sub-lance
		(4)Engine pump operation	*Automatic operating of engine generator
3	Burner, Combustion test	(1)Burner's ignition for furnace (2)Burner's ignition for runner	°Rising temp. of furnace
4	Flare stack,	Flare stack's ignition & accidental fire test	Inspection of accidental fire
	Ignition test	a accidencal life test	(thermo-couple)
5	Melting test	Feed the pig iron in gasifier after scrap melting	Rising temp. of cooling water Melting time
			°Temp. of pig iron °Locus of discharging pig iron
			Electricity, Voltage,
6	Gasifier keeping test	Discharge the pig iron from gasifier after keeping in it for	Rising temp. of cooling water Measurement by sub-
·		certain time	lance *Locus of discharging pig iron
			°Amp., Electricity

No.	Item	Contents	Checking items
. 7	Coal drying test	Banko coal (120kg) drying in coal dryer	°Moisture measurement of coal before and after drying °Check of Amp.& smoke °Required time
8	Coal pulverizing	Pulverizing the dried coal & storing into blow tank	°Required time for pulvering °Grain size of pulverized coal °Amp. of motor
9	P.C.injection test	Giving pressure to blow tank and inject the P.C. and gather it by dummy bug filter	Pressure of blow tank Flow rate of N2 RPM of rotary feeder Volume of P.C. recovered Amp. of rotary feeder Comparison of caluculated volume of PC with recoved volume of it

(6) Synthetic load test run

Items of (5) Individual load tests are done in accordance with actual operation system.

Operation plans are prepared by the operation manager of IEE.

10. General matters

(1) When extension of construction work out of contractor's scope occurs, another agreement should be done.

(2) The period of guarantee is one year from the day of completion of construction (after load tests of each facility).

(3) Overhead crane lended free from Indonesia and fork lift transportated may be possible to use. But their operation should be done by contractor.

(4) Necessary drawings for installation in site should be supplied afterwards. But adjustment in site should be treated in

site condition, if necessary.

(5) Fitting and installation should be done by drawings and each specification. Order of construction and construction schedule should be determined with supervisor.

(6) Assembling of disintegrated facilities for the purpose of convenience in transportating should be done according to the marking which had been assembled in Japan or assembly drawings. And at this time, accracy of assembling should be keeped. (Fragile facilities are not apt to assemble.) This item should be in the scope of contractor.

(7) Plant enforcement should be done by the lisenced welder.

(8) Plant installation site should be cleaned and put in order

every day.

(9) Additional materials & man-hour by the modification for constructive convenience should not be regarded as the additional construction work, Also, necessary incidental works judged by common sence which are not listed on specification and drawings should not be regarded as the additional ones.

11. Construction acceptance

Construction acceptance is done by inspection of supervisor or operation manager after the completion of the construction and synthetic load test run. This should be regarded as JICA's passing and construction acceptance.

12. Accompaning documents

- (1) Location of construction site, PUSPIPTEK
- (2) Whole plan
- (3) Front view, side view
- (4) Grand floor layout, First floor layout 2nd, 3rd floor layout
- (5) Piping diagram (1/2)
- (6) Electrical drawings
 - A. External shape of control panel, operating panel, etc.
 - B. Developing connection diagram
 - C. Wiring work drawings (distribution diagram, mutual connection diagram, etc.)
- (7) Instrument drawings
 - A. External shape of indication panel, gascro anlyzer
 - B. Hook up chart
 - C. Wiring work drawings
 - D. Pipe work drawings
- (8) Cable tray arrangement drawing
- (9) Lighting, Receptables, welder for repair
- (10) Anchor plan
- (11) Utilities match point
- (12) Procedure of installation
- (13) Specification of painting
- (14) Work schedule (for reference)

ATTACHMENT 8-2

- 1. Test Conditions
- 2. Test Results

1. Test Conditions

\circ
C
9
77
i,i
-

•	
CG001.	
RUN No.	
<u> </u>	
Coal gasification -1	
Gad	

NO.	

1. PURPOSE of RUN 1) Coal gasification for BUIAL & BUIA1 coal 2)

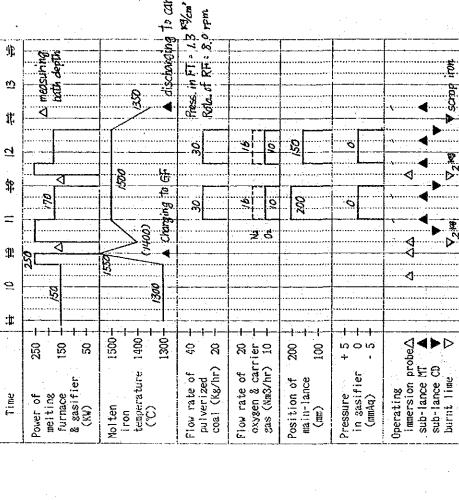
2.COAL SAMPLE and OPERATION CONDITION COAL SAMPLE - A

Sample number	BUIA1,	BUIA1, BUIA1		
Proximate analysis Ultimate analysis Ash components	Ultimate 2	nalysis	Ash compor	ents
Moisture 22.21 % Ash 5.21 % 35.03 % P.C. 36.17 % T.S. 0.31 %	OENO	75.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.	S102 A1203 Ca0 K20 Na20	ठेर घेर ठेर ठेर वेर

GERATION CONDITION - A

OPERATION CONDITION - B

Weight of moiten iren	300	3
Flow rate of Oxygen	041	Nm3/hr
Flow rate of carrier gas	001	Na3/hr
Flow rate of pulverized coal	\$ 0E	Kg/hr
Position of main-lance	200 /50	21111
over bath surface		
Motten iron temperature	-	
on discharge to gasifier	1550	ပ္
on coal sasification	1500	ပ္
on dischare to not car.	Z (320	ပ္
Basicity of slag	5.5	
Weight of coal	: 50	wet Kx
Weight of burnt lime	2,2	×.


DATE	1987.08.1	1987.08.1 9 . (Wed.)			
			/ 		
ନିକ			·.		
COAL SAMPLE - B	LE-B			-	
Sample number	ımber	100 pt			,
Proximate	e amalysis	Proximate analysis Ultimate analysis	analysis	Ash components	53
Yoisture Ash	34 34	UΉ	3-₹ 3 -₹	Si02 A1203	
×	3-8 3-8	20	३२ ४२	Ca0 X20	
T.S.	>€			Na20	

Height of molten iron
Flow rate of Oxygen
Flow rate of carrier gas
Flow rate of pulverized coal
Position of main-lance
Noiten iron temperature
on discharge to gasifier
on coal gasification
on dischare to pot car

Sasicity of slag
Weight of coal
Weight of coal

4.SCHEDULE

	150 1	1400	40 +	20 rrier 1
Time	Power of melting furnace & gasifier (KW)	Molten iron temperature (°C)	Flow rate of 40 - pulverized coal (Kg/hr) 20 -	Flow rate of 20 oxygen & carrier gas (Nm3/hr) 10
<u>.</u>				
17				
8 9 10 11 12 13 14 15 16	***************************************			
=======================================				
3 1/				
2 1			-	
-				
0 1				
6				
ω				
7				
မ				
ເລ				
Time	Meeting Operating utility- cquipments Heating up: Casifier Casifier	Pot car Emergency pot Pulverizing coal Melting from Discharging molten	Coal sasification	iron to pot car

TEST000-1

121	
No. C5002	
8	
	•
0	
2	
⊋.	
ļ	
\	^
0Z	
47	
150	
2	
13	
8, 1	
4	
Z,	
-	
Coal G	
2	
2nc	
ļ	-
RUN 2nd Ca	
⊋	
L	
L	_
	_
	_
	_
(Thu.)	
(Thu.)	
(Thu.)	
(Thu.)	
(Thu.)	
(Thu.)	
(Thu.)	

1. Purpose of Run 1) Coal Gasification Test for BSIA2 & BSIA2 Coal. 2)

2.COAL SAMPLE and OPERATION CONDITION COAL SAMPLE A

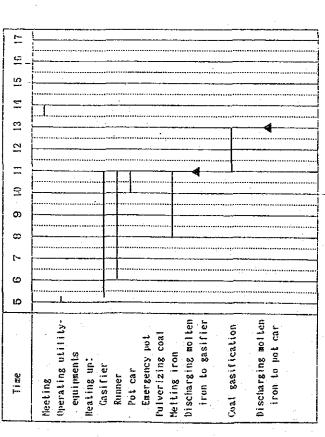
	Sample number	٠.	BSIA2 & BSIIA2	BSIIA2		
	Proximate	Proximate analysis Ultimate analysis	Uitimate	analysis	Ash components	nen ts
	Moisture	4.00 %	, D	75.73 % \$102	Si 02	> -€
	Ash	432 %	н	59 84	A1203	9-6
	×. ×.	43.80 %	z	1.16 %	CaO	>€
100	ڹ	% 88 Lt	0	17.03 %	K20	≻ ₹
7] S.	≽€	Ŋ	0,21	Na 20	> €

OPERATION CONDITION-A

Weight of molten iron	300	88
Flow rate of Oxygen	í	Nm3/hr
Flow rate of carrier gas	01,21	Nm3/hr
Flow rate of pulverized coal	20, 25	Kg/hr
Position of main-lance	200, 170	É
over bath surface		
Nolten iron temperature	÷	
on discharge to gasifier	1550	ຸ
on coal gasification	1500	ပ္
on dischare to pot car	<i>⇒</i> /320	ပ္
Basicity of slag	1.5	
Weight of coal	30	wel Kg
Weight of burnt lime	(1)	κ s

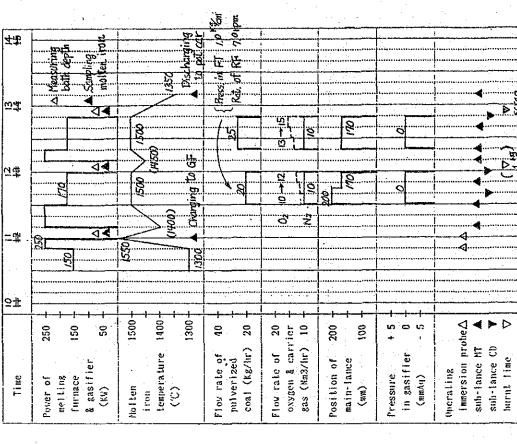
S	
\\	
Test	
Gasification	
Ē	
2nd	

æ €


COAL SAMPLE - B

Sample number	ber				
Proximate	analysis	Proximate analysis Ultimate analysis	analysis	Ash components	
Moisture	> -e	U	> •	Si02	> €
Ash	> e	Œ	> e	A1203	3€
V.M.	≽ -€	Z	8-6	CaO	3 •€
	ક્લ	0	≽ ୧	K20	≽ €
T.S.	3 -6			Na 20	≽ €

OPERATION CONDITION-B


leight of molten iron	300	× × × ×
Tow rate of Oxygen		Nm3/hr
Tow rate of carrier gas		Nm3/hr
low rate of pulverized coal		Kg/hr
Position of main-lance		E
over bath surface	•	
dolten iron temperature		
on discharge to gasifier		ပ္
on coal gasification		ပ္
on dischare to pot car		ឯ
Sasicity of stag	1.5	
Weight of coal		wet Ka
Weight of burnt lime		× %

After measuring bath depth

- 1) Raising bath temperature
 - 2) Injecting Oxygen 3) Checking burning
 - 4) Injecting PC

TEST000-1

ſ	٦	
1		
•		
ŧ		
ĺ	1	
1 00	1	
1 8	ì	Į
8		l
111		ĺ
CG003	1	ĺ
l		ł
1		İ
		į
0	•	į
22		i
. ــــ ا		ł
1 5		ĺ
C.		l
<u> </u>	-	Į
		۱
	j	ĺ
ŧ		ĺ
		l
	1	ĺ
l .		l
		ĺ
ì		ì
ļ .		
1		
ì		į
i		Ì
		į
į		į
+->	:	l
18		l
150		ł
i -		İ
1 5		I
1 0		
جـــــ		
.'\(\alpha\)		ł
		ł
sification		Ì
ע ו	1	Ì
169	1	
1 "		ł
		Į
- 8		
l Q		
*******		۱
ł		
ļ		ł
1 .		
1		
i ≰		١
RUN		
1		
	_	•

1987.08.10

DATA

1.Purpose of Run 1) Coal Gasification Test for BUIIB2 2)

2.COAL SAMPLE and OPERATION CONDITION COAL SAMPLE A

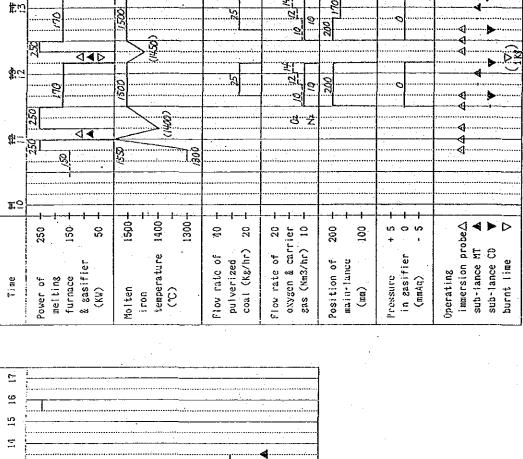
Sample number	-	BUM B2	·		
Proximate analysis (dry bose)	analysis bose)	Proximate analysis Ultimate analysis (day bose)	analysis f)	lysis Ash components	nents
Noisture	3-9	ပ	73.10 %	Si 02	96
Ash	2.29 %	×	5.80 %	A1203	38
¥.	* 85 Lt	z	1.25 %	Ca0	ક્લ
ن	48.02 %		18.51	K20	≽ €
1	3-8	Ŋ		Na 20	3-6

OPERATION CONDITION - A

Weight of molten iron	300	× 8
Flow rate of Oxygen	13.7	Nm3/hr
Flow rate of carrier gas	10.0	Nm3/hr
Flow rate of pulverized coal	25.0	Kg/hr
Position of main-lance	200	E E
over bath surface		
Molten iron temperature		
on discharge to gasifier	7550	ပ္
on coal gasification	1,500	ပ္
on dischare to not car	£ 1350	ပ္
Basicity of slag	1.5	
Weight of coal	30.	Wet Kg
Weight of burnt lime	(1)	20

COAL SAMPLE - B

ଚ କ


:	Sample number	nber				
	Proximate	analysis	Proximate analysis Ultimate analysis	analysis	Ash components	
	Moisture	8-6	υ	ક્શ	% Si02	३२
	Ash	3-€	Ħ	3+E	A1203	÷₹
	ж. Ж.	3-5	Z	3-8	Ca0	÷₹
		3-6	0	3 -8	K20	3-8
	⊤.s.	≽સ			Na 20	3-8

OPERATION CONDITION - B

Weight of molten iron	300	ж 99
Flow rate of Oxygen		Nm3/hr
Flow rate of carrier gas		NE3/hr
Flow rate of pulverized coal		Kg/hr
Position of main-lance		E 111
over bath surface		
Molten iron temperature	,	
on discharge to gasifier	٠	Ç
on coal gasification		ပု
on dischare to pot car		Ç
Basicity of slag	.5	
Weight of coal		wet Kg
Weight of burnt lime		κ

4. SCHEDULE

7 16 :5 Ľ က 2 == 2 ۵, ထ ~ ပ IJ Discharging molten Discharging molten Operating utilityiron to gasifier iron to pot car Coal gasification Pulverizing coal Emergency pot Melting iron equipments Heating up. Gasifier Pot car Runner ₹ime Meeting

Refs. in Fil

1) Raising bath temperature

2) Injecting Oxygen. 3> Tilling gasifier

4) Checking burnin

5) Injecting PC

After measuring bath depth

	CG 004	
	RUN No.	
	Run	
	Test	
	Coal Gasification Test R	
	ga	
-	44元	
]		
-	RUN	

1.PURPOSE of RUN 1) Coal gasification test run for BSTVB coal 2)

2.COAL SAMPLE and OPERATION CONDITION COAL SAMPLE A

Sample number	BSIVB			
Proximate analysis	Uitimate	analysis	Ash components	rents
Moisture V.M. T.C.	OHMO S	73.69 % 5.86 % 19.07 % 0.26	S102 A1203 Ca0 K20 Na20	इंट इंट इंट इंट इंट इंट

300 7.8 75.0 200 1550 1500 1350 1.5 20 Flow rate of Oxygen
Flow rate of carrier gas
Flow rate of pulverized coal
Position of main-lance
over bath surface
Molten iron temperature
on discharge to gasifier
on coal gasification
on dischare to pot car
Basicity of sias
Weight of coal OPERATION CONDITION - A Weight of molten iron

vet Kg Kg

63

1987.09.08 . (Tu)

DATE

COAL SAMPLE - B

Sample number	ıber			-	
Proximate	analysis	Proximate analysis Ultimate analysis	analysis	Ash components	İ
Moisture Ash V.M. F.C. T.S.	ठ२ ठ२ इ २ इ२ ठ २	OHZO	ठर ठ२ ठ <i>१</i> ३१	S102 A1203 Ca0 K20 Na20	१५ १५ १५ १५ १५

OPERATION CONDITION - B

300 Kg	Nm3/hr	Na3/hr	al Kg/hr						-	1.5	wet Kg
Weight of moiten iron	Flow rate of Oxygen	Flow rate of carrier gas	Flow rate of pulverized coal	Position of main-lance	over bath surface	Molten iron temperature	on discharge to gasifier	on coal gasification	on dischare to pot car	Basicity of slag	Weight of coal

Caergony pot Pulverizing con! Melting from Sischarging molten iron to sasifier Operating ability-equipments Discharging molten iron to pot car Coat gasification finating up: Gasifier Summer Pot car Meting 4.SCHEDELE

13001 immersion probe sub-lance M & sub-lance CD W Lurnt lime CC) Flow rate of 49 | galverized | cos1 (Kg/hr) 20 | Flow rate of 20 - oxygen & carrier gas (Nm3/hr) 10 0031 8 8 fressure in sasifier (maka) Position of main-lance (mm) CRED merating) Power of mething furnace witen 3) Confirming bath temperature about 1500°C

Starting to induce produced gas into new probe

9) Comfirming burning 8) Injecting PC. 6) Injecting Oz

4) Setting new probe for produced gas

5) Purging Na in new probe

2) Heating up bath temperature.

D Measuring both depth.

after 10 min.

9) Inducing produced gas into new probe.

 CG 005	111. http://doi.org/10.00000000000000000000000000000000000
 RUN No.	,
 Test Run	
cation Te	
 5th Coal Gasification	
 られる	
 RUN	

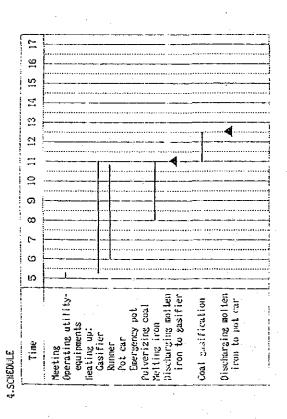
1. PURPOSE of RUN
1) Coal gasification test run for BSIC1 coal
2)

2.COAL SAMPLE and OPERATION CONDITION COAL SAMPLE—A

Sample number	mber	BSICL			
Proximate	Proximate analysis Uttimate analysis	Ultimate	analysis	Ash components	nents
Moisture Ash V.M. F.C.	2.65 xx 46.95 xx 50.40 xx 0.58 xx	OENO É	76.44% 5.83% 7.76% 0.60	\$102 A1203 Ca0 K20 Na20	\$5 36 36 36 38

CHERATION CONDITION-A

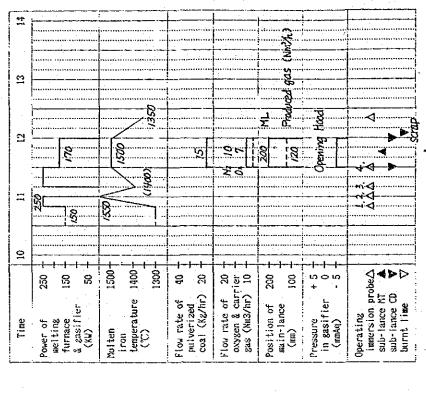
Weight of molten iron	300	% %
Flow rate of Oxygen	871	Nm3/lar
Flow rate of carrier gas	001	Na3/hr
Flow rate of pulverized coal	25.0	Kg/hr
Position of maintaine	200	æ
over bath surface	1	
Mothen from temperature	i i	
on discharge to gasifier	1550	Ų
on coal gadification	(500	ပ္
on dischare to pot car	1350	ņ
Sasicity of stag	 	
Weight of roal	70	wet Ks
Weight of burnt lime	0	.X.


	1		
÷ .			
1987.09.// (死)	and the state of t		
8	1		
DATE			જ

ନ୍ଦ

Sample number	L				
Proximate analysis Ultimate analysis	nalysis	Vitimate a	nalysis	Ash components	20
Moisture Ash 7.C. 7.C.	७ए ७२ ३२ ३ २ ३१	OEZO	કર કર કર જ્લ	Si02 A1203 CaU K20 Na29	26 26 25 36 3 6

OPERATION CONDITION - B


X X	Nm3/hr	Mm3/hr	K3/hr				Ų	స	ပု		WOT WE	60 50
300										in.		
Weight of molten iron	Flow rate of Oxygen	Flow rate of carrier gas	Flow rate of pulverized coal	Position of sain-lance	over bath surface	Notiten from temperature	on discharge to gasifier	or mal gasification	on dischare to pot car	Busicity of stag	Weight of coul	Weight of burnt line.

- 1) Measuring bath depth. 2) Heating up bath temperature.
- 3) Confirming bath temperature about 1500°C 4) Setting new probe for produced gas
 - 5) Purging Na in hew probe
- 6) Injecting Or 7) Confirming burning 8) Injecting PC.

after Kimin.

9) Inducing produced gas into new probe.

Starting to induce produced gas into new probe

198
DATE
CG-006
RUN NO.
Test Run
18
6th Coal Gasification
Coal
6th

SCN SCN

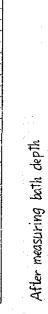
1. PURPOSE of RUN
1) Coal gasification test run for BUIA2 & BUIIA2 coal
2) Coal gasification test run for BUIICI

2.COAL SAMPLE and OPERATION CONDITION COAL SAMPLE—A

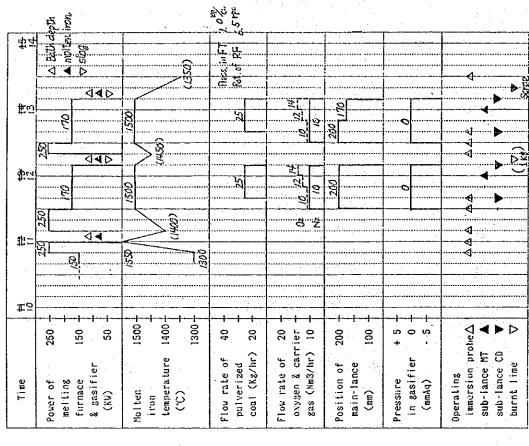
COAL SAMPLE - B

Sample number		Bulaz & Bullaz	BUILA2			
Provinute	analysis	Proximute analysis Ultimate analysis	analysis	Ash components	nts	
Moisture Ash V.M. F.C. T.S.	7. 24 50.63 50.63 24.53 50.53	UEZOW	75.91 6.03 6.73 6.73 6.73 6.73	S102 A1203 Ca0 K20 Na20		2434343434

OPERATION CONDITION - A


Weight of molten iron	300	38 24
Flow rate of Oxygen	t †!	Nm3/hr
Flow rate of carrier gas	001	Nm3/hr
Flow rate of pulverized coal	25.0	Kg/hr
Position of main-lance	; ŧ	III
over bath surface	200	
Molten iron temperature		
on discharge to gasifier	1550	ပု
on coal sasification	1500	ပု
on dischare to pot car	1	ပ္
Basicity of stag	1.5	
Weight of coal	/2	wet Kg
Weight of burnt lime		56 93

Sample number	вишст	
Proximate analysis	Ultimate analysis	Ash components
Moisture 1.90 % NSh 14.04 % F.C. 52.06 % T.S. 0.44 %	C 744 50 % H 5.43 % N 1.36 % O 18.26 % S 0.45	Si02 Ai203 % Ca0 % K20 % Na20 %


K8 Nm3/hr		開			ပု	٢	ţ		wet Kg	.¥.
300	0.01	25.0 200			1	1500	1350	r.	15	0
Weight of molten iron Flow rate of Oxygen	Flow rate of carrier gas	riow race of pulverized coal Position of main-lance	over bath surface	Molten iron temperature	on discharge to gasifier	on coal gasification	on dischare to pot car	Basicity of slag	Weight of coal	Weight of burnt lime

4.SCHEDULE

= 9 2 14 <u>~</u> 2 Ξ 5 a œ **~** ထ S Operating utility-Discharging molten Discharging molten iron to gasifier Coal gasification iron to pot car Pulverizing coal Emergency pol Melting iron equipments Heating up: Pot car Gasifier Runner Time Meeting

- 1) Raising bath temperature
 - zo Injecting Oxygen. 3> Titting gasifier
 - 4) Checking burnin
 - 5) Injecting Pc

DATE 7th Coal Gasification Test Run RUN No. | CG007

1-PURPOSE of RUN

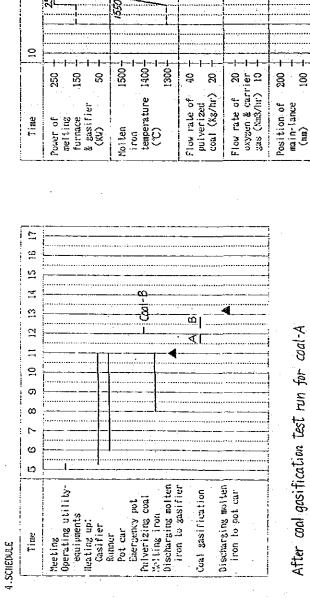
D God gasification test run for CBB1 2) God gasification test run for CBB2

3. COAL SAMPLE and OPERATION CONDITION COAL SAMPLE. A

Proximate analysis [Mkimake analysis 77.83 2.73 20.73 20.33 CBBI 5,79 % 47.09 % 0,33 % Sample maher Hoisbure Ash V.H. F.C.

OPERATION CONDITION-A

wet Kg Nuc.371)r 1550 5.5 on discharge to pasifier on coal gasification flow rate of pulverized coal resilien of main-lance on discharge to pot car Basicily of stag Veight of mother from Flow rate of expression law rate of carrier gas Notion iron temperature or bath surface Weight of coal Weight of burnt line


3) Cool gasification test run for AR4) 1987.09.22 · (Tu)

COAL SAMPLE - B

Weight of molten iron	300	Kg
Tow rate of Oxygen	7.8	Nm3/irr
Flow rate of carrier gas	0.01	Nm3/hr
Flow rate of pulverized coal	25.0	Kg/lir
Position of main-lance	200	
over bath surface	3	•
Notten iron temperature		
on discharge to gasifier	1	ņ
on coal gasification	1500	رې
on discharge to pot car	1350	ပ္
Rasicity of slag	 	
Weight of coal	٤/	wet Kg
Weight of burnt lime	ļ	50 2

Masuring bath lepth real motter, iron

After coal gasification test run for coal-A

9

100

Pressure in gasifier (mm/q)

- 1) Operating sublance-CD
 - 2) Sampling slag
- 5) Removing slag
- 4) Sampling molten iron
- 5) Turning of GF at 250 KW 6) Confirming bath temperature at 1500°C
 - 7) Setting new probe for

produced gas

- 4) Pressurizing in feed tank

Operating immersion probe∆ sub-lance MT ★ sub-lance CO ▼ burnt lime ♥

3) Closing pressure-releasing value for feedtank

1) Releasing feedtank pressure. 2) Pulverizing coal-B

4

8) Injecting 02

a control of the first that we will be the formation of the control of the contro	CG 008	
-	NIN NO.	To the content of the same at the same and the same of the same at
	ž	44
	test run	
	ficatim	
***************************************	coal gasificati	*****
	Str C	
	LN	
L	cc.	

1) Coal gasification test run for BUIBI, BUIVBI & BUVBI coal
2) Coal gasification test run for BSIA2 & BSIIA2 coal

2.COAL SAMPLE and OPERATION CONDITION COAL SAMPLE A

		94345496 94315498
UVB1	Ash components	S102 A1203 Ca0 K20 Na20
BUIEL, BUIVEL BUYEL	Ultimate analysis	NH NN NN NN NN NN NN NN NN NN NN NN NN N
Sample number	Proximate analysis	Ash 4.08 % V.M. 4.92 % F.C. 50.00 % T.S. 0.91 %

OPERATION CONDITION-A

Weight of molten iron	300	.χ 30
Flow rate of fixygen	13.2	N#3/hr
Flow rate of carrier gas	10.0	Nm3/hr
Flow rate of pulverized coal	25.0	Kg/hr
Position of main-lance	200	
over bath surface		
Molten from temperature		
on discharge to sasifier	1550	Ç
on coal gasification	1500	ပု
on dischare to pot car		ပု
Basicity of slag	1.5	
Weight of coal	. 72	wet Ke
Weight of burnt lime	0	<u>.</u> 22

5 . (Fri)		10 Co. 10
1987.09.25 · (Fri)	And the state of t	1,100
DATE		6

3) Coal gasification test nin for AL coal 4)

COAL SAMPLE - B

Sample number	nber	BSIAZ.	BSIIA2		
Proximate	analysis	roximate analysis Ultimate analysis	analysis	Ash components	ents
Moisture Ash V.M. F.C. T.S.	45.62 % 44.88 % 40.20 % % % % % % % % % % % % % % % % % % %	OHNOW	75.73 5.87 % 1.16 % 17.63 % 0.21	S162 A1263 C20 N220	2-7 3-9 3-9 3-9 3-9 2-7 3-9 3-9 3-9 3-9 3-9

Weight of molten iron	300	% %
Flow rate of Oxygen	141	Nai3/hr
Flow rate of carrier gas	10.0	Mn3/hr
Flow rate of pulverized coal	25.0	Kg/hr
Position of main-lance	200	
over bath surface		
Molten iron temperature		
on discharge to sasifier	:	ပု
on coal gasification	1200	ပ္
on dischare to pot car	1	ţ
Basicity of slag	 53	
Weight of coal	15	wet Kg
Weight of burnt lime	0	20

RUN No. CG008	
· ex a mary . Mary and the control of the control o	***************************************
İ	
W.	
Ş	j

1.PURPOSE of RUN

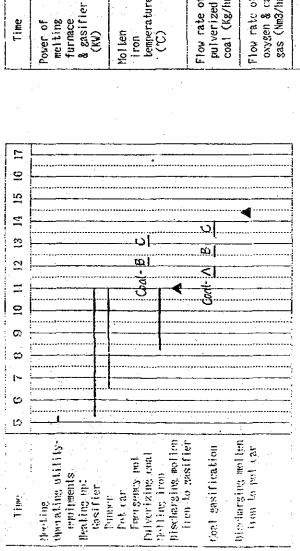
2.COAL SAMPLE and OPERATION CONDITION COAL SAMPLE + C

Sample number	AL		
Proximate analysis	100	Ash components	
Noisture - % Ash 15.2 % Y 41.97 % F.C. 42.97 % T.S. 1.93 %	ON HO () () () () () () () () () () () () ()	S102 A1203 Ca0 K20 Na20	≥२३२३२१३३३

OPERATION CONDITION - C

weight of molten iron	300	30 34
How rate of Oxygen	8.11	Nin3/hr
Flow rate of carrier gas	10.0	Nm3/hr
low rate of pulverized coal	25.0	Kg/hr
osition of main-lance	200	Ħ
over bath surface		
Molten iron temperature	-	
on discharge to gasifier	1	ပူ
on coal gasification	1500	ပု
on dischare to pot car	1350	ပ္
Basicity of stag	13.	
leight of coal	15	wet Kg
Weight of burnt lime	©	×

1987.09.25 . (FH) - DATE


 $\Box \Box$

COME SAMPLE - D

Sample number				
Proximate analysis Ultimate	Ultimate	analysis	Ash components	ents
Noisture Ash V.N. T.C.	OHNO	કેર કેર કેર કેર	S102 A1203 Ca0 K20 Na20	%₹ 5 ₹ %₹ 3₹ 3 ₹

Weight of molten iron		,50 Sec
Flow rate of Oxygen		Nm3/hr
Flow rate of carrier gas	1 .	Nm3/hr
Flow rate of pulverized coal		Kg/hr
Position of main-lance	-	
over bath surface		
Molten iron temperature		
on discharge to gasifier		ပ
on coal gasification		دي
on dischare to pot car		ပ
Basicity of slag		
Weight of coal	•	wet Ka
Weight of hurnt lime		X.

A.SHERALE

Rallı deş Matteri il-Slog Deslaggii Ĭ $\frac{\Delta}{SLarting 10}$ induce produced gas $\stackrel{\wedge}{\sim}$ \cong 0.9 Katur 2 1300十 Operating immersion probe sub-lance MT Sub-lance CD To sub-lance CD To burnt lime 1400 Flow rate of 20 oxygen & carrier gas (Nm3/hr) 10 1500 읎 40 8 8 130 pulverized coal (Kg/hr) temperature (°C) Pressure in gasifier (mm/q) Power of melting furnace & gasifier (KW) Flow rate of Position of main-lance (mm)

ido nou probe.

-191-

1		
i	×	1
ļ	B	i
ļ	Q	į
ì		į
i		:
ł	ં	i
	RUN No. CG009	
į	25	į
į	čź.	i
ŀ		i
:		ļ
l		i
t	ę,	ļ
į	Ť	ļ
ļ	٠	Ì
Ī	4-7	į
i	ંહ	I
:	+-1	ļ
į	9th coal gasification test run	i
į	. ङ	i
ŧ	J.7	i
ı	.B	į
ł	4	į
l	Ś	ŧ
į	2	٤
i	_ ~,	•
ŀ	\overline{z}	ļ
ļ	८	1
•		i
i	芸	1
÷	0	1
;		l
Į		l
į		i
į		l
	25	ł
ŀ	霳	ł
٠.		J

1.PURPOSE of RUN.
1) Investigation of gasification-characteristic
2) for SJE1, SJE2 and BJS coal,
2.COAL SAMPLE, and OPERATION CONDITION
COAL SAMPLE—A

Sample number	прег	SJE2			
Proximate	analysis	ate	ત્તું	Ash components	nenis
Moisture Ash V.M. F.C. T.S.	1.7.7.1 47.7.7.1 ********	០ដឧ០៧	70.44 5.48 22.84 0.17	S102 A1203 Ca0 K20 Na20	हर हर दर ह र इस

OPERATION CONDITION - A

_	Weight of molten iron	300	× ×
	Flow rate of Oxygen	12.1	Nm3/hr
	Flow rate of currier gas	10.0	Nm3/hr
	Flow rate of pulverized coal	25.0	
	Position of main-lance	200	甚
	over bath surface		
	Molita iron temperature		
	on discharge to gasifier	1550	ပူ
	on coal gasification	1500	ပ္
	on dischare to pot car	{	ပု
	Basicity of slag	1.7	!
-	Weight of coal	91	wet Ks
	Weight of burnt lime	0	30 ×

7.27	3
2	1381.03.70
•••	1.41

66

COAL SAMPLE - B

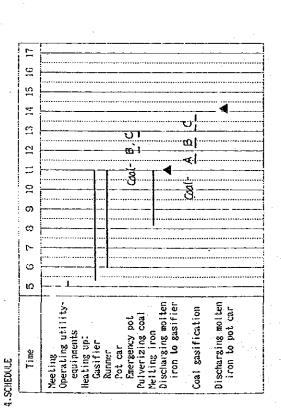
4	96 56 56 95
Ash components	S102 A1203 Ca0 K20 Na20
analysis	68.52 5.68.52 24.63.83 0.52
Ultimate	OHZOW
analysis	45.79 45.79 45.79 145.79
Proximate	Moisture Ash V.M. F.C.
	Proximate analysis Ultimate analysis Ash components

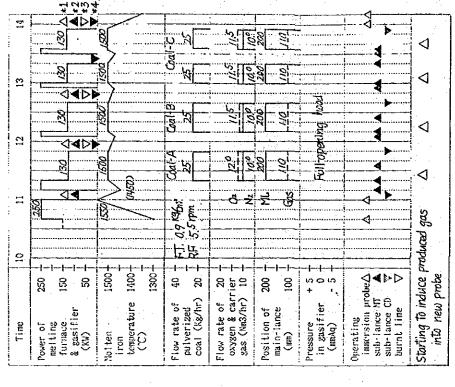
Kg Xa3/hr	Nm3/br Kg/lir tm	ಗೆ ಗೆಗೆ	Ke et Ke et Ke
300	200 200 200 200 200	1200	0
Weight of molten iron Flow rate of Oxygen	Flow rate of carrier gas Flow rate of pulverized coal Position of main-lance	over bath surface Molten iron temperature on discharge to gasifier on coal gasification on dischare to pot car	Busicity of stag Weight of coal Weight of burnt lime

RUN NO. CG009 S.

1.PURPOSE of RUN 1) 2)

2.COAL SAMPLE and OPERATION CONDITION COAL SAMPLE — C


Sample number		SJE1			
Proximate	Proximate analysis Ultimate analysis	Ul timate	analysis	Ash components	
Moisture Ash V.M. F.C.	7.44 % 57.00 % 41.51 %	OEZO	70.5. 2.5.99 22.53 22.53 25.53	S 102 A 1203 Ca0 K20 Ya 20	२६ ३६ ३६ ३६ ३६


OPERATION CONDITION-A

Weight of moiten iron	300	32
Flow rate of Oxygen	11.6	Nm3/hr
Flow rate of carrier gas	10.0	Nm3/hr
Flow rate of pulverized coal	25.0	Kg/hr
Position of main-fance	200	
over bath surface		
Molten iron temperature		
on discharge to gasifier	l	ပူ
on coal gasification	1500	ပ
on dischare to pot car	1350	ပ္
Basicity of stag	1.5	
Weight of coal	rΣ	8) 17"
Weight of burnt lime	0	×.

Ash components 1987.09.30 . (Wed.) COAL SAMPLE - D Sample number DATE ନ୍ତ

K3	Nu3/hr	Nm3/hr	Kg/hr	uus			<u>.</u>		ξ Σ		wet Kg	0 %
Weight of molten iron	Flow rate of Oxygen	Flow rate of carrier gas	Flow rate of pulverized coal	Position of main-lance	over hath surface	Molten iron temperature	on discharge to gasifier	on coal gasification	on dischare to pot car	Basicity of slag	Weight of coal	Weight of burnt lime

- *1 \triangle Measunng bath depth
 - *2 Sampling molten iron
 - x3 ▼ Sampling stag
 - *4 V Deslaging

No. CG010	,		
N N	,		
test run			
ts ts			
gasification			
9	, ,		
Coa	-		
101			
	1	i	
35°	,	٠	

1. PURPOSE of RUN
1) Investigation of gasification-characteristic
3 for CBC, CBAI and CBA2 coal

2.COAL SAMPLE and OPERATION CONDITION COAL SAMPLE - A

Sample number CBC Proximate analysis Ultimate analysis		Proximate analysis Ultimate analysis		
--	--	--------------------------------------	--	--

)			
Proximate:		amalysis Ultimate analysis	analysis	Ash components	ents
Moisture Ash V.M. F.C.	47.08 47.08 46.77 55.55	OEZOV	72.72 5.88 % 20.05 % 0.37	S102 A1203 Ca0 K20 Na20	25 26 25 25 25 25 25 25 25 25 25 25 25 25 25

OPERATION CONDITION-A

Weight of molten iron	300	× ×
Flow rate of Oxygen	12.6	NES/hr
Flow rate of carrier gas	001	Nm3/hr
Flow rate of pulverized coal	250	K2/1::
Position of main-lance		THE STATE
over bath surface	707	
Molten iron temperature		
on discharge to sasifier	/220	ပု
on coal gasification	/200	ပု
on dischare to pot car	١	ပ္
Basicity of slag	1.5	
Weight of coal	9	wet Kg
Weight of burnt lime	1	8,4

DATE 1987./0.6 . (IU)	
1987./0. 6	
DATE	

69

COAL SAMPLE - B

Sample number	mber	CBA2			
Proximate	analysis	Proximate analysis Ultimate analysis	analysis	Ash components	nts
Moisture Ash V.M. F.C.	10.94 45.01 44.05 44.05 44.05	OEZOŊ	71.56 5.73 38 82 21.20 88 88 88 0.35 88 88	S102 A1203 Ca0 K20 Na20	

 Weight of walten iron	300	- X
 Flow rate of Oxygen	11.5	Nm3/hr
 Flow rate of carrier gas	001	Nm3/hr
Flow rate of pitterized coal	250	Kg/hr
 Position of main-lance	.00	THE STATE OF THE S
 over bath surface	3	
 Molten iron temperature		
 on discharge to gasifier	1	ပ္
 on coal gasification	0051	ပ္
 on dischare to pot car	1	ပ္
 Basicity of slag	7.7	
Weight of coal	70	wet Kg
 Weight of burnt lime	l	% 82

RUN NO. | CG010 3

1987.09.

DATE

1.PURPOSE of RUN
1)
2)

2.COAL SAMPLE and OPERATION CONDITION COAL SAMPLE - C

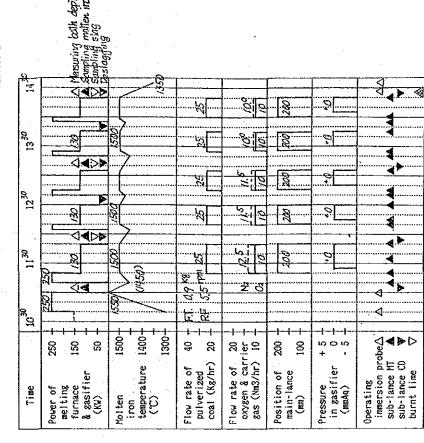
Ash components 69.85 1.72 1.72 1.71 1.71 1.71 Proximate analysis Ultimate analysis CBA1 SOREO 77.03 42.73 % 40.24 % Sample number Noisture Ash V.M. T.C.

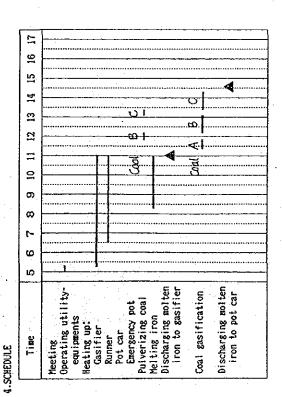
Nai3/hr 1350 1350 1.5 1.5 0 30.7 25.0 35.0 35.0 on discharge to gasifier on coal gasification on dischare to put car Flow rate of Unygen: Flow rate of currier gas Flow rate of pulverized coal over bath surface Moiten iron temperature Position of main-lance Weight of mollen inon

wet Kg Kg

Basicity of slag Weight of coal Weight of burnt lime

69


COAL SAMPLE - D


Ash components Proximate analysis | Ultimate analysis OHZO Sample number Moisture Ash V.M. T.C.

UPERATION CONDITION - D

Ks Nai2/in	Nn3/hr	Ks/hr		Ş	ပူပူ	k Keet Kg
Weight of molten iron Flow rate of Oxygen	Flow rate of carrier gas	Flow rate of pulverized coal	Position of main-lance over bath surface	Molten iron temperature on discharge to gasifier	on coal gasification on dischare to not car	Basicity of stag Weight of coal Weight of burnthime

CPERATION CONDITION - C

1987.10.09 . (Fr.)

DATE

RUN No. CGOIL 11th coal gasification test run 25

1.PURIOSE of RUK
1) Investigation of gasification-characteristics
23 for BSIVA1 BU1A1 and SJJ cool

2.COAL SAMPLE and UNTRATION CONDITION COAL SAMPLE A

Same	. :		BSIA1		
roximate	analysis	Proximate analysis Ultimate analysis	analysis	Ash components	ents
Moisture Ash V.M. F.C.	Noisture – 28 % Ash 44.29 % 47.00 44.03 % 7.00 44.08 % 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.	OHNOW	73.73 6.77 7.75 7.75 7.70 7.70 7.70 7.70 7.70 7	S102 A1203 Ca0 K20 Na20	≥ ₹ 5₹ 5 ₹ 5 ₹

vet Kg Kö 1 50 55 Weight of molten iron Flow rate of Oxygen Flow rate of carrier gas Flow rate of pulverized coal over bath surface Molten iron temperature on disciarge to gasifier on coal gasification on dischare to pot car OPERATION CONDITION - A Position of main-lance Basicity of slag Weight of coal Weight of burnt line

M:3/hr

99

COAL SAMPLE - B

Same Come	Name of the	Вит41		
Proximate	ana lysis	analysis Ultimate analysis	analysis	Ash components
Moisture Ash V.M. F.C.	7.06 44:92 48:02	OEZO	76.73 5.47 38 1.28 38 38 15.43 38 38	S102 Ca0 Ca0 K20 Na20

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
7.
low rate of pulverized coal
on discharge to gasifier
-
on dischare to pot car
•

	CGOIL	
	0	-
l	S	
		į
		i
	•	•
		İ
		Ì
		ļ
ı		1
ŀ		ĺ
l		ļ
		ļ
	1	
	-	İ
	_≨	

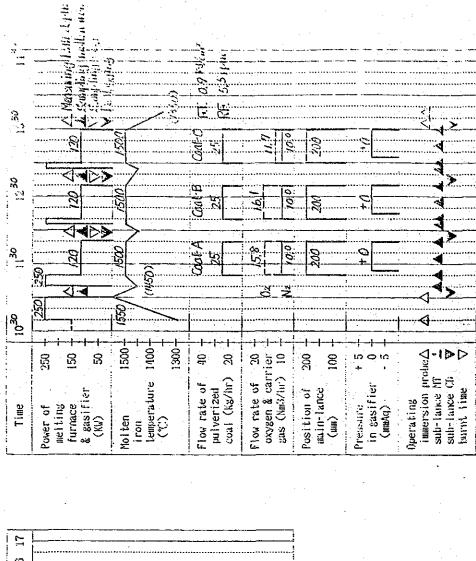
1.PURPOSE of RUN
2)

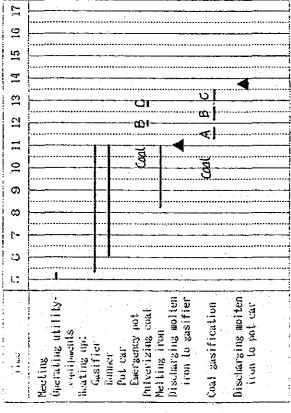
2.COAL SAMPLE and OPERATION CONDITION COAL SAMPLE—C

	SJJ			
Foximate analysis Ultimate analysis	Ultimate an	SISK TI	Ash components	ants
Moisture – % Ash 11.85 % 47.28 % F.C. 4077 % T.S.	OHZOW	67.83 % 5.67 % 1.06 % 25.18 % 0.26	S102 A1203 Ca0 K20 Na20	३९ ३९ ३९ ३९ ३६

OPERATION CONDITION - C

Weight of molten iron	300	% %
Flow rate of Oxygen	11.7	Ma3/hr
Flow rate of carrier gas	10.0	N#3/hr
Flow rate of pulverized coal	25.0	Kg/hr
Position of main-lance	200	ICENT
over bath surface		
Molten iron temperature		
on discharge to gasifier	;	ပ္
on coal gasification	1500	ပ္
on dischare to pot car	1350	ပ္
Basicity of slag	 	
Weight of coal	9	wet K8
Weight of burnt lime	0	% 26


E
1987.10.09
DATE


.

		ents	कर कर कर कर कर
		Ash components	Si 02 A 1203 Ca 0 K20 Na 20
COAL SAMPLE - D		analysis	कर कर रुर रु
	mber	Proximate analysis Ultimate analysis	OHNO
			\$6 \$6 \$4 \$ 9 6
	Sample rumber	Proximate	Moisture Ash V.M. F.C.

2	Na3/hr	as N#3/hr	1 coal Kg/hr	12131		ń		٦,			**************************************	
#C1011 00 100 10 110 10 1	Flow rate of Oxygen	Flow rate of carrier gas	Flow rate of pulverized coal	Position of main-lance	over bath surface	Molten iron temperature	on discharge to gasifier	on coal gasification	on dischare to pot car	Basicity of slag	Weight of coal	Weight of burnt lime

4.SCHEDALE

CC012	
SUN No.	
·	1
TEST R	
TH COAL GASIFICATION TEST I	
COAL GAS	
12 T	
RUN	

1987.10. /5 · (Thu.)

DATE

1. PURPOSE of RUN
1) INVESTIGATIONS of GASIFICATION-CHARACTERISTIC for BUILB2, BSIC1 and BSIVB coal

2.COAL SAMPLE and OPERATION CONDITION COAL SAMPLE - A

Ash components Proximate analysis | Ultimate analysis BUIL B2 CHROS 2.29 47.58 se se 50.13 se se se Sample number A Sh C A Sh

(DRY BASE)

(0.A.F)

OPERATION CONDITION-A

Ks Nm3/hr vet Ks Ks N#3/hr Kg/hr 300 18.5 30.0 200 1550 1500 1500 1.5 /8 on coal gasification on discharge to pot car Basicity of slag Weight of coal Molten iron temperature on discharge to gasifier Flow rate of pulverized coal Flow rate of Oxygen Flow rate of carrier gas Position of main-lance Weight of molten iron over bath surface

COAL SAMPLE - B

Sample number		BSICI			
Proximate	Proximate analysis	Ultimate analysis	analysis	Ash components	ş;
Ash V.M. F.C.	2.65 % 46.95 % 50,40 %	OHNOW	76.41 5.83 1.40 0.76 0.60 888888	S102 A1203 Ca0 K20 Na20	३६ ३६ ३६ ३६

(DRY BASE)

Weight of molten iron	300	<u>\$</u>
Flow rate of Oxygen	1,91	Nm3/hr
Flow rate of carrier gas	10.0	Ma3/hr
Flow rate of pulverized coal	30.0	Kg/hr
Position of main-lance	200	
over bath surface		÷
Molten iron temperature	-	
on discharge to gasifier	1	ţ
on coal gasification	1500	ပ္
on discharge to pot car	i	ţ
Basicity of slag	1.5	
Weight of coal	8/	wet Kg
Weight of burnt lime	0	≫

CC012	-
RUN No.	
S.	

COAL SAMPLE - C

Sample number	umber	ВЯТВ			
Proximate	Proximate analysis Ultimate analysis	Ultimate	analysis	Ash c	Ash components
Ash V.M. F.C.	****** 57.77 7.85 7.85 7.85 7.85 7.85 7.85 7.8	OHZOW	2.7.7.7.0.0.0.2.7.7.7.0.0.0.0.0.0.0.0.0.	S102 A1203 Ca0 K20 Na20	36 36 36 36

(DRY BASE)
OPERATION CONDITION—C

	Weight of molten iron		300	Ks	
	Flow rate of Oxygen		0.89	Nm3/hr	
	Flow rate of carrier gas		10.0	Na3/hr	
	Flow rate of pulverized coal		8	Kg/hr	
	Position of main-lance		200 200	臣	
1	over bath surface				
	Molten iron temperature			t.	
٠.	on discharge to gasifier		1550	Ų	
	on coal gasification	5.7 5.	1500	ပ	
	on discharge to pot car		1350	ပူ	
	Basicity of stag		.5		
	Weight of coal		1.7	wet Kg	
	Weight of burnt lime		0	3	
				ı.	

			T,C	5	•									•										
			hate depth	Solta in						r.						:								
Γ.	1	·		100	<u>a</u>	Γ.			,		- <u>ç</u>	-									ή			
			. 9	50	200					25	-x										1			
		•••••	:≩		20.00					7		<u>.</u>						•••••			ļ			
-	#		<u>7</u>	1 2	12/				- <u>6</u>	-		, ·							 		 			
			···×	'n.	SOLC,				(9350)	l	Ç	۲		· · · · · ·		••••	· • • • • • • • • • • • • • • • • • • •			· • • • • • • • • • • • • • • • •	1	\leq		
			_<	나		-				ļ ₁										1		⊴.	4	
				8		200	••••	·····	•••••	33.		•••••		·····	0.0		200	•••••	, , , , , , , , , , , , , , , , , , ,	s†	 	• • • • • • • • • • • • • • • • • • • •	•••••	
2	3			[国								4	Ľ				+		1		d	
	`		~	14		 ,	}			ļ			ļ,				••••			· · · · · · · · · · · · · · · · · · ·				
				. 1		S									[[•••••		1	∢	ş.z	•••••
				প্ল		1560			******	35				927	10.0		8			<u></u>	ļ			
1						ļL	····		••••••	- J			 	L	 	l				.L		٠٩	\$	
}	77		<]4	\triangleright		/_						ļ,								<u> </u>		4 P	
				<u> </u>		500				8				Ы До.	0.0		200		ļ <u>.</u>					
		~	4	9		15				100				<u>∞</u>	5	-	4		Ş	3	\vdash			
1		2 <u>2</u>					"								2]	4	d.,	
:	: }			√	L	\leq	_								_						┼	4	Þ	
		3	• • • • •			15.50		~	<u> </u>					•				• • • • • • • • • • • • • • • • • • • •		•••••	·			•••••
1.			_			ļ															_			
\vdash			-1-	 			-	_	1300	t	-1-			- -	-	1	 - -			-11-	┼	_		
١.		250	1	120	20	1500	`	1400	်ဗ္တ	유		ន	ន	ē	10	006	3	138	4	O IA	1	immersion probe∆	4 >	>
		'				-	•					$\overline{}$		Έ.	<u> </u>		١.	1		•		5.	- 0	
		. ,	22	· ` !	r.			temperature		p	g	coai (Kg/hr)	ં	g	gas (Nm3/hr)	ېو	. 8			in gasifier (mmAq)		C 1	sub-tance mi	잍
1	₽ i	J.	90	g :	gasıtıer (KW)	1	÷	at		불	pulverized	\$	13.	₩ •3	(<u>m</u> 3	9	main-lance		မ	* * * * * * * * * *	182	0 1	2 2	burnt lime
.		يا	melting	furnace	gas (E)	9	2	ğ	<u>ට</u>	=	ķ		2	86	<u> </u>	;	5 2	E	i i	n gasi (mmAq)	62	er.	<u> </u>	ţ,
	٠. ا	Power of	<u>a</u>	Ĕ,	₩°Œ	Molton	100	2	٠.	Flow rate of	공	8	į	oxygen & carrier	83	Position of	3 4	5	Pressure	ت ت	Operating	Ē	탏	3
L						×			· · · · ·	1			1			L	<u>-</u>		L		L	 -		

Time 5 6 7 8 9 10 11 12 13 14 15 16 17

Meeting Unility- Casifier Runner Pot car Runner Pot car Emergency bot Discharging molten iron to pot car iron to pot car iron to pot car iron to pot car

,		_
	CG013	
	No.	
	\$	
	3 TH COAL GASIFICATION TEST RUN	
	COAL	
1	₽	
	$\tilde{\omega}$	
ŀ		
	S S	

1.PURPOSE of RUN
1) INVESTIGATIONS of GASIFICATION-CHARACTERISTIC for BUILA2, BUILC2 and BUILB1

2.COAL SAMPLE and OPERATION CONDITION COAL SAMPLE—A.

Sample number	mber	BUIAZ, BUIIAZ	UIIA2	
Proximate	Proximate analysis Ultimate analysis	Ultimate	analysis	Ash components
Ash V.M. F.C.	3.29 46.08 50.63 %	OEZON	75-91 6.03 1.08 22 75.73 25 0.25 25 25 25	Si 02 A1 203 Ca 0 K2 0 Na 2 0
	(DRY BASE)		(D.A.F)	

OPERATION CONDITION-A

	Weight of molten iron		300	%
-	Flow rate of Oxygen		18.5	Na3/hr
	Flow rate of carrier gas		10.0	Nm3/hr
	Flow rate of pulverized coal	:	35.0	Kg/hr
	Position of main-lance		, 200 7	E
	over bath surface	÷		
	Molten iron temperature			
	on discharge to gasifier		1550	ပူ
	on coal gasification		1500	ပူ
	on discharge to pot car		ì	ပူ
	Basicity of slag		1.5	
	Weight of coal	· ·	21	wet Kg
	Weight of burnt lime		0	3
_				

COAL SAMPLE - B

1987.10. 20 . (Tue)

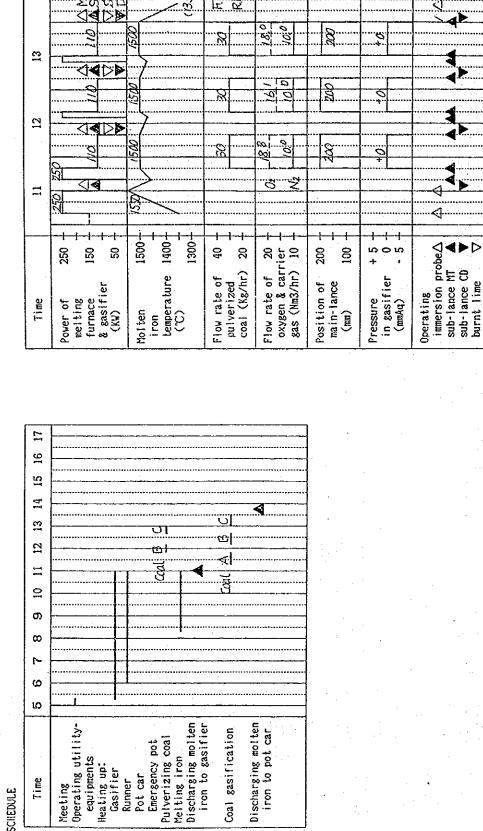
DATE

Ash components 74.50 5.43 1.36 18.26 19.45 19.45 19.45 Proximate analysis Ultimate analysis BullC1 7.90 46.04 28 52.06 28 28 Sample number Ash V.M. F.C.

(0.A.F.) (DRY BASE)

Weight of molten iron	300	2
Flow rate of Oxygen	17.6	Nn3/hr
Flow rate of carrier gas	10.0	Nm3/hr
Flow rate of pulverized coal	35.0	Ke/hr
Position of main-lance	200	
over bath surface		
Moiten iron temperature		
on discharge to gasifier	1	ပူ
on coal gasification	1200	ပ
on discharge to pot car	1	ပူ
Basicity of slag	1.5	
Weight of coal	2.1	wet Kg
Weight of burnt lime	0	Kg

. CC013
RUN No.
RUN


COAL SAMPLE - C

Sample number	ımber	BUIIB1,	BUILBI, BUMBI, BUVBI	uVB1	
Proximate	Proximate analysis Ultimate analysis	Ultimate	analysis	Ash co	Ash components
Ash V.M. F.C.	45.92 x x 50.06 x x x x x x x x x x x x x x x x x x x	OEZOW	5.55.75 5.00 5.00 5.00 5.00 5.00 5.00 5.	S102 A1203 Ca0 K20 Na20	36 26 26 36 36
	(ORY BASE)		(D.A.F)		

(ORY BASE)
OPERATION CONDITION— C

Weight of molten iron	300	χ. 20
Flow rate of Oxygen	21.1	Nn3/hr
Flow rate of carrier gas	10.0	NE3/hr
Flow rate of pulverized coal	35.0	Ks/hr
Position of main-lance	200	THE STATE OF THE S
over bath surface		
Molten iron temperature		
on discharge to gasifier	\$550·	ပ္
on coal gasification	1500	ပူ
on discharge to pot car	1350	ပူ
Basicity of slag	1.5	
Weight of coal	21	wet Kg
Weight of burnt lime	C	χ

2

∄ me

Meeting

Heating up: Gasifier Runner Pot car

٠,
CG014
RUN No.
RUN
4 TH COAL GASIFICATION TEST RUN
COAL GASIF
#1 4)
S.

1987.10.23 (Fri)

DATE

1.PURPOSE of RUN

1) INVESTIGATIONS OF GASIFICATION-CHARACTERISTIC for CBB1, CBC and SJJ.

2.COAL SAMPLE and OPERATION CONDITION COAL SAMPLE A

Ash components 7,82 2,27 20,73 35 35 35 35 35 35 35 35 35 Proximate analysis | Ultimate analysis CBBI 47.77 47.09 43.69 83.88 Sample number ASh V. M.

(D.A.F) (ORY BASE)

OPERATION CONDITION-A

Kg Nm3/hr Nm3/hr vet Kg Kg &/a ₽ 35.0 25.0 200 1550 1500 1.5 22 22 Weight of molten iron Flow rate of Oxygen Flow rate of carrier gas Flow rate of pulverized coal on discharge to pot car Basicity of slag Weight of coal Weight of burnt lime Molten iron temperature on discharge to gasifier on coal gasification Position of main-lance over bath surface

COAL SAMPLE-B

		34 34 34 34 34
	Ash components	
	Ash cor	Si02 A1203 Ca0 K20 Na20
	analysis	72. 22 5.88 % 1.48 % 20.05 % 0.37 %
CBC	Proximate analysis Ultimate analysis	OHZON
	analysis	46. 15 477.08 46.71 48.33 33.33 33.33
Sample number	Proximate	Ash V.A. F.C.

(ORY BASE)

Weight of molten iron	300	<u>.</u> 9
Flow rate of Oxygen	14.5	Nn3/hr
Flow rate of carrier gas	10.0	Vm3/hr
Flow rate of pulverized coal	35.0	Kg/hr
Position of main-lance	200	
over bath surface	•	
Molten iron temperature		`
on discharge to gasifier	•	ပူ
on coal gasification	1200	ပူ
on discharge to pot car	ł	ပူ
Basicity of slag	1.5	
Weight of coal.	22	wet Kg
Weight of burnt lime	0	\$

ſ		7
	41000	
	9	
	<u>§</u>	
	2	
	⊋	
_		_

o demonstrated	Sample number	SII		•	
Proximate	Proximate analysis Ultimate analysis	Ultimate	analysis	Ash	Ash components
Ash V.M. F.C.	47.78 47.78 40.77 40.77	OHZOW	67.83 5.67.83 1.06 25.18 0.26 888888	Si 02 A1203 Ca0 K20 Na20	केर केर केर केर

(DRY BASE)

OPERATION CONDITION— C

	OF ENAL FOR CONDITION				
	Weight of molten iron		300	32	
	Flow rate of Oxygen	_	13.6	Nm3/hr	
. :	Flow rate of carrier gas		10.0	N#3/hr	
	Flow rate of pulverized coal		35.0	K8/hr	
	Position of main-lance		88		
, i i	over bath surface				
	Molten iron temperature				
	on discharge to gasifier		#55B	ပူ	
	on coal gasification	14. 14.	1500	ţ	
	on discharge to pot car		1350	ပူ	
	Basicity of slag		1.5		
	Weight of coal		2	wet Kg	
	Weight of burnt lime		0	K8	
					_

14

 Ξ

2

1					
ļ				-1-1-1	
	250	1500 1400 1300 	20	low rate of 20 oxygen & carrier gas (Nm3/hr) 10	200
		ω	ئے _ گ	7 arr	
စ္ည	+ 00 0 +	atur	7 2 2 5 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	ಕ್ಕಾರ್ಡ್ ಕ್ರಾಂಗ್	n of ance
Time	Power of melting furnace & gasifier (KW)	folten iron temperature (で)	Flow rate of 40 pulverized coal (Kg/hr) 20	Flow rate of 20 oxygen & carrier gas (Nm3/hr) 10	Position of main-lance (mm)
	Por # %	Molten iron temper (°C)	<u>r</u> = 3	9 × 8	Pos
L				I	L.,
	•				
17					
9 10 11 12 13 14 15 16 17					
15			······		
₫.					
60			<u>ت</u>	<u> </u>	
2		OI .			
		- B	<		
		<u>g</u> ∢	<u> </u>		,
=				*************	
8					
2					
9					
LQ.					- "
	٥	ន	<u> </u>		·
	# # # # # # # # # # # # # # # # # # # #	Soal Soal	non to gasiller al gasification	2 g 2 g	
	t ut	Numer Pot car Emergency pot Iverizing coal Iting iron Scharging mot	± 5 ± 5	- O	
Tine	eting herating ut equipments ating up: Gasifier	Numer Pot car Emergency Hverizing	gasi gasi	2 C	
-	Meeting utility- operating utility- equipments Heating up: Gasifier	Number Pot car Emergency pot Pulverizing coal Melting iron Discharging molten	Coal gasification	iron to pot car	
	≥ 0 ≠		<u> </u>	<u> </u>	

4 1

Pressure in gasifier (mmAq)

Operating immersion probe∆ sub-lance MT ★ sub-lance CD ▼ burnt lime ▼

H. 1.1 Kg/km² Rfs 8.5 pm

			L	i
	•			
				•
F		···		
17				
16				
15				
₹*				
3 1			<u>ت ت ت</u>	S
1:	***************************************	OI .	13	
9 10 11 12 13 14 15 16	***************************************	<u></u>	<	
11		- 8 •	, S	
2			3	
6				
ဆ				
2				
i		***************************************		
9				
ເວ	<u> </u>			
	≱		<u> </u>	E 2
		Pot Coal Hoff	iron to gasifier al gasification	5 5 7
	ceting or cerating or cequipments sating up; Gasifier Casifier	Notiner Pot car Emergency bot Iverizing coa Iting iron scharging mol	o ga ific	5 C
Тіке	ing ing ing ing ing ing ing ing ing ing	Pot car Emergenc Iverizin Iting ir schargin	n t.	월 Ē
	Meeting Operating utility- equipments Heating up: Gasfier	Nounce Pot car Emergency pot Pulverizing coal Melting iron Discharging molten	iron to gasifie Coal gasification	utscharging motiten iron to pot car
<u> </u>	ΣΟ #	<u>& £ a</u>	ه ن	

f	·	1
	50015	
	RUN NO.	
	RCN.	
	15 TH COAL GASIFICATION TEST	
	OAL GASIFIC	
	15 TH CC	
	RUN	

1987.10.27 . (Tue.)

DATE

1.PURPOSE of RUN

1) INVESTIGATIONS of GASIFICATION-CHARACTERISTIC for AR, CBB2 and AL

2.COAL SAMPLE and OPERATION CONDITION COAL SAMPLE—A

Sample number	mber	AR	-		
Proximate	analysis	Proximate analysis Ultimate analysis	analysis	Ash components	ents
Ash v.m. F.C.	2.25 47.4 49.75 75.88 88.88	OHZON	71.13 20.04 20.04 2.24 2.24	Si 02 A1203 Ca0 K20 Na20	३ २ ३२ ३२ ३२ ३२
	(DRY BASE)	•	(D.A.F)		

OPERATION CONDITION-A

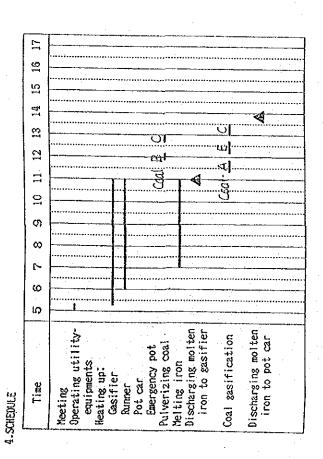
Weight of molten iron	8	0	* 8
Flow rate of Oxygen	#1	∞.	Na3/hr
Flow rate of carrier gas	<u> </u>	0	Nm3/hr
Flow rate of pulverized coal	35	35.0	Kg/hr
Position of main-lance	8	Q	
over bath surface			
Molten iron temperature			
on discharge to gasifier	15	20	ပူ
on coal gasification	iŭ.	200	ပ္
on discharge to pot car	1		ပူ
Basicity of slag	1.5	2	
Weight of coal	. 22	ς.	wet Kg
Weight of burnt line	C		ŏ ≱

COAL SAMPLE - B

	Ash components	56 96 96 96	
	Ash c	Si02 A1203 Ca0 K20 Na20	
	analysis	73.08	:
CBBI	Ultimate	NOZEO	(D.A.F.)
tber	analysis	5.96 % 46.15 % 47.89 %	_
Sample number	Proximate analysis Ultimate analysis	Ash V.M. F.C.	(DRY BASE)

Kg Nm3/hr	Na3/hr Kg/hr	<u> </u>	ပ္	ပူပူ	wet Kg Kg
300	10.0 35	200	•	158	1.5 C
Weight of molten iron Flow rate of Oxygen	Flow rate of carrier gas Flow rate of pulverized coal	Position of main-lance over bath surface	Molten iron temperature on discharge to gasifier	on coal gasification on discharge to pot car	Basicity of slag Weight of coal Weight of burnt lime

CG015 RUN No.


COAL SAMPLE - C

Sample number		AL			
Proximat	Proximate analysis Ultimate analysis	Ultimate	analysis	Asho	Ash components
Ash V.M. F.C.	15.12 41.91 42.97 42.97	OHZON	52.10 1.03 14.63 14.63 193 193 193 193 193 193 193 193 193 19	Si 02 A 1203 Ca 0 K20 Na 20	ठर ठर ठर ठर इर
	(DRY BASE)		(0.A.F)		

OPERATION CONDITION-C

wet Kg Kg 1550 1350 1350 20 0 300 13.6 35.0 200 Molten iron temperature
on discharge to gasifier
on coal gasification
on discharge to pot car
Basicity of slag
Weight of coal Flow rate of carrier gas Flow rate of pulverized coal Position of main-lance over bath surface Weight of moiten iron Flow rate of Oxygen

	h deptir en iron		:				
14	A Naswing ball deptu Esulphing mater for Supping slag		FF (1 Kg/cm)				
13			35	\$ E9	200	0+	4
12	24 3 D		152	301	200	0	**************************************
11	20 N		35	02 /4 5 N2 /0.5	700	1.0	A R
	250	1300	40 <u>-</u>	20 _ ier _ 10 _	200	- - - -	
Time	Power of melting furnace & gasifier (KW)	Molten iron temperature (°C)	flow rate of pulverized coal (Kg/hr)	Flow rate of 20 oxygen & carrier gas (Nm3/hr) 10	Position of main-lance (mm)	Pressure in gasifier (mmAq)	Operating immersion probe sub-lance MT & sub-lance CD •

		7
	CC016	
	UN 180	
-	<u>~</u>	
	TEST RUN	
	TH COAL GASIFICATION TEST RUN	
	COAL GASI	
	16 TH (
1	~	
	\$	

1987.10.30.(Fri.)

DATE

1.PURPOSE of RUN
1) INVESTIGATIONS of GASIFICATION-CHARACTERISTIC for BSIA2, SIE1 and CBA2

2.COAL SAMPLE and OPERATION CONDITION COAL SAMPLE - A

Ash components Proximate analysis Ultimate analysis BSIA2 OHROW 45.62 45.62 49.88 49.88 Sample number Ash V.M. F.C.

(0.A.F) (DRY BASE)

OPERATION CONDITION-A

wet Ks Ks Nm3/hr Kg∕hr ≣ 300 16.1 10.0 35.0 200 1550 1500 1.5 22 22 on discharse to gasifier on coal gasification on discharse to pot car Basicity of slag Weight of coal Flow rate of pulverized coal Flow rate of Oxygen Flow rate of carrier gas Molten iron temperature Position of main-lance Weight of molten iron over bath surface

COAL SAMPLE - B

Sample number	nber	SJE1		
Proximate	analysis	Proximate analysis Ultimate analysis	analysis	Ash components
Ash v.m. F.C.	7.49 57.00 1.53 47.53 55 55 55	OHNOW	70.32 % 5.40 % 1.03 % 22.51 % 0.24 %	S102 A1203 R20 R20 Na20

(DRY BASE)

Weight of molten iron	300	. 2 2
Flow rate of Oxygen	13.5	Nn3/hr
Flow rate of carrier gas	10.0	Na3/hr
Flow rate of pulverized coal	35.0	Kg/hr
Position of main-lance	200	THE
over bath surface		
Molten iron temperature		
on discharge to gasifier	;	ပူ
on coal gasification	1500	ပူ
on discharge to pot car	l	ပူ
Basicity of slag	1.5	
Weight of coal	21.	wet Kg
Weight of burnt lime	0	50

i		ì
	CC016	
	RUN No.	
	RUN	

Sample	Sample number	しひだん			
Proxima	Proximate analysis Ultimate analysis	Ultimate	analysis	Ash	Ash components
Ash V.M. F.C.	10.94 45.01 44.05 44.05	OHZON	71.56 5.73 1.16 21.20 0.35 88	Si 02 A1 203 Ca 0 K20 Na 20	३६ ३६ ३ ६ ३६ ३६
	(DRY BASE)		(D.A.F)		

	Weight of molten iron		300	.5 <u>5</u>	
	Flow rate of Oxygen	1	(E)	Nm3/hr	
	Flow rate of carrier gas		10.0	N#3/hr	
	Flow rate of pulverized coal		35.0	Kg/hr	
	Position of main-lance		8		
	over bath surface				
	Molten iron temperature				
	on discharge to gasifier		1556	ပ္	
	on coal gasification		1200	ပ္	
1	on discharge to pot car		1350	ပ္	٠
	Basicity of slag		1.5		
	Weight of coal		21.	wet Kg	
	Weight of burnt lime		0	8	
		_		•	