The rocks on the slope which are about to fall and any remained or unused materials on the berm such as rebound materials of the shotcrete shall be delivered to and disposed of at a specified spoil bank, using a small tractor shovel and a 8 ton dump truck.

The period of the shotcreting, amounting to 1,900 m³ (\neq 13,000 m² x 0.15 m) is estimated about fourteen (14) months.

The whole schedule of the rehabilitation works related to the left bank open-cut excavation slope is illustrated in Table 11.1.

11.3. <u>Cost Estimates and Tentative Implementation Schedule of</u> the Proposed Rehabilitation Project

For each implementation program as mentioned in 11.2 above, the construction cost was roughly estimated and its result is tabulated in Tables 11.3 through 11.7. The total cost of the proposed rehabilitation project is shown in Table 11.2.

The annual cost disbursement is exhibited as per Table 11.8, and the implementation schedule of the proposed rehabilitation project is shown in Table 11.9.

11.4. Loss of Power Generation Due to Decrease in the Reservoir Water Level During Implementation of the Proposed Rehabilitation Project

Among the proposed rehabilitation schemes, the rock filling work on the dam upstream face slope is sure to affect the operation of the Binga Power Plant since this work has to be carried out with the reservoir water level kept at L.W.L. in the dry season to avoid the underwater construction, and the others have no

relation with the output of the plant because each scheme is able to be put into effect irrespective of the reservoir water level.

In regards to the period in a particular year for implementing the above rock filling work, a six months period starting from December to May was selected because the mean monthly inflow to the Binga reservoir was found comparatively small according to the monthly mean inflow records in the past 20 years from 1967 through 1986. The average inflow amount for this particular period was 28.6 $m^3/sec.$, while for the rest of a year, it was 106.0 $m^3/sec.$ The former is less than the maximum discharge of 92.0 $m^3/sec.$ utilized for the Binga Power Plant, thus being able to keep the L.W.L. of the reservoir.

The Binga reservoir operation for the power generation should be based on the concept that water is stored up to the H.W.L. during the months of August and September in the rainy season, then the power plant is operated with the reservoir water level being kept at the H.W.L. up to the end of the next dry season or the end of April or May next year, and thereafter, the plant is operated continuously until the water level shall have reached the L.W.L. in July.

In view of the above, the power plant is forced to be operated with the L.W.L. instead of the H.W.L. which is otherwise expected during the rehabilitation works on the dam upstream face slope, thereby the power generation decreases so much. The mean monthly power generation during a period of 1977 through 1986 is shown in the following table in which the mean during December to May indicates 124.3 GWh. The loss of power generation for the same period can be obtained as 124.3 x (1-2.742/3.202) = 17.9 GWh, accordingly. The values of 2.742 and 3.202 above designate the utility raito of the plant (m^3/KWh) at the H.W.L. (EL.575 m) and L.W.L. (EL.555 m) respectively.

Mean Monthly Power Generation (During 1977 through 1986)

			. (GWh)
Month	Generated Power	Month	Generated Power
Dec.	25.8	June	27.5
Jan.	16.8	July	42.0
Feb.	20.5	Aug.	64.5
Mar.	19.0	Sept.	72.4
Apr.	19.6	Oct.	58.1
May	22.6	Nov.	47.0
Sub-total	124.3	Sub-total	311.5
	Total		435.8
	· · · · · · · · · · · · · · · · · · ·		

11 -

13

Tentative Work Schedule of Binga Dam Rehabilitation Project Table 11.1

.

ttan of Caborer	1000172 +		1110 610	10001/		-	-	. W								
and Works	T II 01 6 8 2	2 1:2:3	4:5:6	8 2	6 10 11 1	2 1 2	5 ₹ •	9 2	1 8 5	1 10 11	12 1	2 3 4	4 5 6	nn 1	01 5	61 . 17
Dem Upstreen Face Perskiltestom								· - · · · · · · · · · · · · · · · · · ·			·					
Preparation &																
Temporary Facilities								· · · · ·		•••••	····•					
Stripping of Quarry Site							· · · ·									
Collection of Rock Neterials & Filling																
Riprapping																
Dem Toe Protection Retain ine Mall Rehabilitation		· · · · · · · · · · · · · · · · · · ·			-			• • •								
Preparation & Temotary Pacilities										-						
Collection of Rock Materials & Grading																
Filiting of Rock Materials						(Dry Se	(mosta									
Riprepping								P								
demoval of Debris from beft Bank Excavated Slope		· · · · · · · · · · · · · · · · · · ·		••••••				······	· • • · • • • • • • • • • • • • • • • •							
Freparation & Temporary Facilities																
Removal of Debris									· · · · ·							
Shotcreting for left Eark Excavated Slope								 								
Freperation & Temporary Facilities																
Shotcreting								!								
Disposal of Umused Materiels														, , , , , , , , , , , , , , , , , , ,		
Controlled Reservoir Water Level EL.575.00	н.н.											·	·····			
ET. 565.00																
EL.555.00	Rainry Season	L. H. L Dry Seeson		Rainy See	83 -	Dry Bry S	LICS I		Rainy See	g.	Ê	Seescon		Reitry Sc	,	
		· · · · · · · · · · · · · · · · · · ·			\$			* - - -	•	¥	-	•				

١.

11 - 14

. .

Table 11.2 Summary of Cost Estimates

of Binga Dam Rehabilitation Project

IIn i	t	•	US\$
U 4 4 4			UUU

Item	Amount	Remarks
1. Cost for Rehabilitation Work		:
Dam Upstream Face Rehabilitation	1,310,000	-
Dam Toe Protection Retaining Wall Rehabilitation	481,000	
Removal of Debris from Left Bank Excavated Slope	61,000	
Shotcreting for Left Bank Excavated Slope	898,000	
Sub-total	2,750,000	
2. Cost for Investigation		
Survey	28,000	
Drilling	105,000	
Seismic Prospecting	14,000	
Various Tests	23,000	
Sub-total	170,000	
3. Right of Way	0	
4. Engineering	165,000	(1.×0.06)
5. NAPOCOR Administration	60,000	(1.×0.02)
6. Contingency	555,000	(1.×0.20)
7. Total	3,700,000	· · · · ·

Table 11.3 Cost Breakdown of Dam Upstream Face Rehabilitation

\$ 1,310,000

Item	Specification	Unit	Q'ty	Unit Price	Amount	Romarks
Direct Cost						
Stripping of Quarry Site		772	25,000	4.3	107,500	Including clearing & waste disposal
Removal of Debris from Quarry	Collection & Hauling	ฑึ	15,000	8.6	129,000	Including waste disposal
Filling of Rock Materials	Collection, Hauling & Filling	m².	50,500	11.8	595,900	Including rearrange- ment of the existing slope and riprap work
Miscellaneous Works		L.S	1		41,600	
Sub-total		•			874,000	
Indirect Cost						
Temporary Facilities	(25%)	L.S	1		218,000	
Field Administration	(10%)	L.S	1		87,000	
General Administration	(15%)	L.S	1		131,000	
Sub-total					436,000	
Total		· · · ·			1,310,000	

Table 11.4 Cost Breakdown of Dam Toe Protection Retaining Wall Rehabilitation

\$ 481,000

Itom	Specification	Unit	Q'ty	Unit Price	Amount	Romarks
Direct Cost						
Removal of Debris from Quarry	Collection & Hauling	тi	15,000	8.6	129,000	Including waste disposal
Filling of Rock Materials	Collection, Hauling & Filling	m	15,000	11.8	177,000	Including riprap work
Miscellaneous Works		L.S	1		15,000	
Sub-total					321,000	
Indirect Cost		- <u>-</u>				
Temporary Facilities	(25%)	L.S	1		80,000	
Field Administration	(10%)	L.S	1		32,000	
General Administration	(15%)	L.S	1		48,000	
Sub-total					160,000	
Total					481,000	

Table 11.5 Cost Breakdown of Removal of Debris from Left Bank Excavated Slope

\$ 61,000

Item	Specification	Unit	Q'ty	Unit Price	Amount	Remarks
Direct Cost						
Removal of Debris		ฑํ	7,700	5.0	' 38,500	Including waste disposal
Miscellaneous Works		L.S	1		2,000	
Sub-total					40,500	
Indirect Cost					· · · · · · · · · · · · · · · · · · ·	
Temporary Facilities	(25%)	L.S	1		10,300	
Field Administration	(10%)	L.S	1		4,100	
General Administration	(15%)	L.S	1		6,100	
Sub-total					20,500	
Total					61,000	
				- - -		

Table 11.6 Cost Breakdown of Shotcreting for Left Bank Excavated Slope

\$ 898,000

Item	Specification	Unit	Q'ty	Unit Price	Amount	Remarks
Direct Cost						
Shotcreting	15 _{cm} Thick with Mesh	ส์	1,900	253.0	480,700	
Removal of Unused Materials	Debris & Rebound Materials	ฑํ	1,900	5.0	9,500	Including waste disposal
Miscellaneous Works		L.S	1		107,800	
Sub-total					598,000	
Indirect Cost						
Temporary Facilities	(25%)	L.S	1		150,000	1
Field Administration	(10%)	L.S	1		60,000	
Coneral Administration	(15%)	L.S	1		90,000	
Sub-total					300,000	
Total				-	898,000	
			2. 			

Talbe 11.7 Program of Investigations for Binga Dam Rehabilitation Project

- - 	Amount	\$		105 000			2000 · ± T		23,000	000 ° 017	
t a l	Unit Price	(0.25\$/m ²)		(9EA¢ /	W (those)	بر ۲۳ ۲۳			Т		
To	Quantity	Topographic Survey	: 110,000 m ²								
Left Bank	Excavated Slope	Topographic Survey	: 30,000 n ²				· · · · · · · · · · · · · · · · · · ·				
Quarry Site		Topographic Survey	: 20,000m	300 m	(50 $_{ m m} imes 6$ holes)	006 ^w	(150 $_{ m m} imes 9$ holes)	Rock Test	L.S.		
Dam Downstream	Toe	Topographic Survey	: 40,000m ²								
Dam Upstream Face		Cross Sectional Survey (EL.555 m to Dam Crest,	20_{m} interval):20,000 m ³		 						
Place	Item	Survey		The illine	20 7 7 7 7	Seismic	Prospecting		Various lests	L O T B L	

н И

)	Unit : US\$)
I t e	Total Cost	1990	1 8 8 1	1992	1993	1994	1995
1. Cost for Rehabilitation Work							
Dam Upstream Face Rehabilitation	1,310,000			250,000	1,060,000		
Dam Toe Protection Retaining Wall Rehabilitati	n 481,000				140,000	341,000	
Removal of Debris from Left Bank Excavated Slo	e 61,000					61,000	
Shotcreting for Left Bank Excavated Slope	898,000					360,000	538,000
Sub-total	2,750,000			250,000	1,200,000	762,000	538,000
2. Cost for Investigation	170,000	110,000	60,000			· ·	
3. Right of Way	0						
4. Engineering	165,000	30,000	100,000	35,000			
5. NAPOCOR Administration	60,000	10,000	10,000	10,000	10,000	10,000	10,000
6. Contingnency	555,000	10,000	20,000	50,000	240,000	150,000	85,000
7. Total	3,700,000	160,000	190,000	345,000	1,450,000	922,000	633,000

Yearly Expenses for Binga Dam Rehabilitation Project

Table 11.8

	1988	1 9	58	1990	19.9.1		1992	5	6 3 3	1994		1995	
Item	2 0	0 2 6	9	2 6 10	2 0	63 0	6 10	8	OF T	2 6 10	2	0	0
	4	12	8 12	4	4	12	r-1 60	स ल	сч н сч		N	60	
Reasibility study													
Application to NEDA for Loan	••• •••				· · · · · · · · · · · · · · · · · · ·								
Loan Agreement							-			: ••••••••••••••••••••••••••••••••••••			
Further Investigations										·			
Design & Prequalification											·		
Bidding & contract			. :	•							-		
Dam Upstream Face Rehabilitation		-											
Dam Toe Protection Retaining Wall									••••••		÷		
Rehabilitation								·····				·····	
Left Bank Excavated Slope Rehabilitation											_		
						_	•••		+ 	•••			

Ś

Table 11.9 Tentative Implementation Schedule of

Binga Dam Rehabilitation Project

Table 11.10 Tentative Work Schedule of Binga Dam Rehabilitation Project

.

(Dam Upstream Face Only)

		St Y	ear	(1992	1				2 n	γþ	ear	~	199	3)			
Item of Schemes and Works	7	8	<u>Б</u>	0	1 12		2	3	4	ŝ	9	~	°c0	ത	10		12
Dam Upstream Face Rehabilitation				 												÷	[
Preparation & Temporary Facilities																	
Stripping of Quarry Site																	
Collection of Rock Materials & Filling										1							
Riprapping													<u></u>				
Controlled Reservoir Water Level					 	 							 				[
																••••	
EL. 575.00 -	····																
		••••										$\overline{}$					
EL. 565.00	······	•••••	••••••							•••••	~			•••••	•••••	•••••	
	·····	•••••					<u>ء</u> د ت	l			<u> </u>					••••••	
EL. 555. 00 -]				1	T			••••				
							ں بر					č		¢			
	₹ 	<u>-</u>	06920]	2 2	easo.	_	i- י י		P	<u>À</u>	0000 0000	 5	· · · · · · ·	
										ļ					[·····		
									••••	••••			••••				-

Table 11.11 Summary of Cost Estimates of Binga Dam Rehabilitation Project

(Dam Upstream Only)

		and the second
Item	Amount	Remarks
1. Cost for Rehabilitation WOrk		
Dam Upstream Face Rehabilitation	1,310,000	
2. Cost for Investigation		
Survey	20,000	
Drilling	105,000	
Seismic Prospecting	14,000	
Various Tests	21,000	
Sub-total	160,000	
3. Right of Way	0	
4. Engineering	80,000	(1.×0.06)
5. NAPOCOR Administration	30,000	(1.×0.02)
6. Contingency	260,000	(1.×0.20)
7. Total	1,840,000	

Unit : US\$

Table 11.12 Program of Investigations for Binga Dam Rehabilitation Project

(Dam Upstream Face Only)

						:
Place				1 0	t a l	
	Dam Upstream Face	Dam Downstream	Quarry Site			4
Item				uuantity	UNIT Frice	HIDOUT
	Cross Sectional Survey	Topographic Survey	Topographic Survey	Topographic Survey		\$9
Survey	(EL.555 m to Dam Crest, 20m interval): 20,000m	: 40,000m [*]	: 20, 000m²	: 80, 000m²	(0.25 \$/m [†])	20,000
00			300 m		(350 \$/m)	105,000
2 			(50 m× 6 holes)			
Seismic			900 m		(15 \$/m)	14 000
Prospecting			(150 m× 9 holes)			
-			Rock Test	•		21 000
Various lests						
Total			:			160,000

Table 11.13 Yearly Expenses for Binga Dam Rehabilitation Project

(Dam Upstream Face Only)

(Unit : US\$)

L t t	Total Cost	1990	1991	1992	1993	1994	1995
1. Cost for Rehabilitation Work							
Dam Upstream Face Rehabilitation	1, 310, 000			250,000	1, 060, 000		
2. Cost for Investigation	160,000	100,000	60,000				
3. Right of Way	0						
4. Engineering	80, 000	20,000	40,000	20,000			
5. NAPOCOR Adiministration	30, 000	5, 000	5, 000	10, 000	10,000	0	0
6. Contingnency	260, 000	10,000	20,000	20, 000	210, 000	0	0
7. Total	1, 840, 000	135,000	125,000	300, 000	1, 280, 000	0	0

Table 11.14 Tentative Implementation Schedule of Binga Dam Rehabilitation Project

(Dam Upstream Face Only)

	• ••	8 8		*	8 8 6	<u> </u>	1	0 6 6			991		19	9 2	· · · ·	6 6	3
I t e m	2 4	9 8	10 12	2 4	6 8	10 12	2 4	6 8	10 12	2 4	80 9	10 2	4	8	2 2	69 60 1	2
feasibility study															·	, 	
Application to NEDA for Loan						l	· · · · · · · · · · · · · · · · · · ·				•••••						
Loan Agreement								}									
Further Investigations							B										
Design & Prequalification																	
Bidding & contract											I						
Dam Upstream Face Rehabilitation								• 									
			ĺ														

and a second second

12. ECONOMIC ANALYSIS

12. Economic Analysis

12.1. Project Costs and Loss of Power Generation Associated

with the Project

Shown below are annual cost disbursements of the Binga Dam Rehabilitation Project and estimated loss of power generation caused by a decrease in the reservoir water level incidental to implementation of the Project.

<u>C.Y.</u>	Cost of the Project	Loss of Capacity	Loss of Energy
	$(US$ \times 10^3)$	(MW)	(GWh)
1990	160		
1991	190	-	
1992	345	Max. 34.7	3.7
1993	1,450	Max. 30.4	14.2
1994	922	-	
1995	633		-
Total	3,700	-	17.9

The maximum load of the Grid in 1992 is expected to reach 3,773 MW at generation end, the above loss of capacity accounts for no more than 1.0% thereof accordingly. This loss of capacity is expected to occur over a period of six months from December, 1992 through May, 1993. As it is temporary in nature, no additional capacity is particularly required to be input to the Grid. However, the loss of energy should be replenished by some other alternative power source. This issue is discussed in the latter part of the section.

12.2. Capacity and Annual Generated Energy of the Binga Power Plant

The Binga Dam Rehabilitation Project consists of:

- 1) Dam Upstream Face Rehabilitation,
- 2) Dam Toe Protection Retaining Wall Rehabilitation, and
- 3) Left Bank Excavated Slope Rehabilitation.

Since the implementation of the above each rehabilitation scheme will yield no direct profit, it is impossible to make a usual economic analysis or a cost-benefit analysis of the individual scheme.

As far as an investment to the rehabilitation project is concerned, however, it is not allowed to invest money without any discussion on the economic and financial analysis. It goes without saying that the investment should not exceed the economic and financial values of the Binga Power Plant which are valued in terms of the plant capacity and annual generated energy.

In appraising the value of the Binga Power Plant, the following figures were used for the plant capacity, annual generated energy and the plant factor calculated therefrom.

•	Generation End	Sending End
Plant Capacity (MW)	100	99.7
Annual Generated Energy (GWh)	435.8	434.5
Plant Factor (%)	49.75	49.75

N.B.: Annual generated energy was obtained by averaging the actual records of the past 10 years from 1977 through 1986

12.3. Unit Prices Applied to Appraisal on the Binga Plant Value

The Binga plant value is appraised on the basis of the costs of other alternative power sources which could substitute in terms of the plant capacity and annual generated energy. For this purpose, the typical power sources listed in "NAPOCOR Power Development Program, June, 1988" were considered as the alternative power sources. The main features of these power sources related to calculations of the fixed costs are tabulated in Table 12.1. Table 12.2. exhibits the annual fixed costs at sending end of the relevant power sources expressed in US\$/kWyear. In this table, the station use rate was assumed by JICA study team.

Further, shown in Table 12.3 are the main features of the alternative power sources and the existing oil-fired thermal plant related to calculations of the variable costs. In this table, the features related to the economic analysis were assumed by JICA study team, and related to the financial analysis were extracted from the said NAPOCOR Power Development Program.

Tables 12.4 and 12.5 show the results of calculations of the variable costs according to Table 12.3, which values are used for the economic and financial analyses. In these tables, the variable O/M ratio and station use rate were assumed by JICA study team. Aside from the above, the variable cost of the geothermal power plant was calculated as shown in Table 12.6.

From the calculation results shown in Tables 12.2, 12.4 and 12.5, the total cost per kW is obtained with the plant factors used as parameters, as represented in Tables 12.7 and 12.8 and Figs. 12.1 and 12.2. In this connection, the variable cost of the geothermal power plant used for the economic analysis was regarded as nil in view of utilization of free domestic resources.

12.4. Economic and Financial Analyses

12.4.1. Evaluation of Power Loss

The loss of power generation due to a decrease in the reservoir water level during the rehabilitation work can be evaluated in terms of the variable cost of the existing oil-fired thermal power plant. In this connection, the Bataan power plant with a higher thermal efficiency as compared to the others is operated with the most priority given, and therefore the loss of power generation at Binga would probably be made up for by the power plants with a rather low thermal efficiency such as Manila, Sucat and Malaya. Based on the above concept, the loss of power generation at Binga is evaluated as follows:

<u>C.Y.</u>	Beonomic	Value	(US\$x10 ³)	Finar	ncial	Value	$(\text{US}\$x10^3)$
1992		104	n An Angelander († 1997) An Angelander († 1997) An Angelander († 1997)			116	
1993	·	399				445	

12.4.2. <u>Annual Levelized Cost Calculated for the Proposed</u> Rehabilitation Works

The annual levelized costs of the proposed rehabilitation works and the loss of power generation caused thereby are shown in economic and financial terms as below:

<u>C.Y.</u> <u>E</u>	conomic Cost (US\$x	10 ³) Financia	l Cost (US\$x10 ³)
1990	160		160
1991	190		190
1992	449		461
1993	1,849		1,895
1994	922		922
1995	633		633
Present Wor	th 5,381.2	an an tha an An tha an tha	5,458.8
Annual Leve Cost	lized 876.1		888.7
- N.B.: Present worth was calculated with a discount rate of 14%, the standard year of 1995.
 - The above present worth was levelized with a discount rate of 14% applied over a period of 15 years from 1996 through 2010.

12.4.3. Appraisal on the Binga Plant Value

The appraisal on the Binga plant value in terms of the plant capacity and the annual generated energy can be done in comparison with economic and financial costs of the most economical alternative power source. The discount rate used for the appraisal shall be 14%.

As is apparently seen in Figs. 12.1 and 12.2, the geothermal power plant is found relatively costly. In order to conduct a severe appraisal, the geothermal was put aside, instead, the gas turbine and the coal-fired were considered for the applicable alternative power sources.

(1) Appraisal in Terms of Gas Turbine Costs

The appraisal on the Binga plant value in terms of the gas turbine cost revealed the following result:

	Economic Cost (US\$x10 ³)	Financial <u>Cost (US\$x10³)</u>
Plant Capacity (99.7 MW)	6,557.3	6,557.3
Annual Generated Energy (434.5 GWh)	17,587.3	22,990.7
Total	24,144.6	29,548.0

(2) Appraisal in Terms of Coal-Fired Costs

12

٦

In appraising the Binga plant value in terms of the coal-

fired cost, it should be reminded that the plant factor is as large as 70.27%. If the Binga plant capacity (99.7 MW) be replaced by that of the coal-fired plant, the variable cost is cheaper than that of the existing oil-fired plant, thus the coal-fired plant is able to be operated up to the ceiling plant factor of 70.27%. In this case, the annual generated energy indicates 613.7 GWh. Since the Binga plant produces an annual energy of 434.5 GWh, the balance 179.2 GWh is regarded as the saved energy of the oil-fired plant which bears the costly variable cost.

As the result of the above appraisal, the following figures were obtained:

	Rconomic Cost (US\$x10 ³)	Financial <u>cost (US\$x10³)</u>
Plant Capacity (99.7 MW)	23,082.5	23,082.5
Annual Generated Energy		
Coal-fired (613.7 GWh)	10,922.0	12,656.3
0il-fired (∆179.2 GWh)	△5,038.6	Δ 5,614.3
Total	28,965.9	30,124.5

To compare the above two appraised costs, the former, the gas turbine cost, is smaller than the latter, the coal-fired cost.

12.4.4. Justification for Implementation of the Project

The cost relating to the proposed Binga dam rehabilitation project is compared with the Binga plant value as follows:

	Economic <u>Analysis</u> (US\$x10 ³)	Financial <u>Analysis</u> (US\$x10 ³)
- Cost		ч. -
Present worth as of 1995 (C1)	5,381.2	5,458.8
Annual levelized cost during 1996 thru 2010 (C2)	876.1	888.7
- Binga plant value per year (B)	24,144.6	29,548.0
- Ratio		
R1 = C1/B (%)	22.29	18.47
R2 = C2/B (%)	3.63	3.01

As shown above, the ratio of the cost relating to the proposed rehabilitation project to the Binga plant value per year indicates about 23% with the single payment present worth as of 1995 applied, and about 3.7% with the capital recovery cost over a period of 15 years applied. In the meanwhile, the Binga dam rehabilitation project is assessed in terms of enhancement of the safety factor as follows:

The current dam indicates the safety factor of 1.0 against a 79 year return period (T1) earthquake as mentioned in the foregoing Section 7 "Dam Stability". Further, it was revealed that the present safety factor against earthquake would be enhanced by the implementation of the project up to that corresponding to a 400 year return period earthquake. This means that structures which can resist a 79 year return period external force are reinforced by the rehabilitation work so as to resist a 400 year return period external force.

Probability (P) of an external force of a 'T' year or longer return period acting on the structure during the rest of its life time 'L' years is expressed:

12

 $P = (1 - e^{-L/T})$

Besides, supposing that the structure which can resist a 'T' year return period external force would lose its original function or its entire value if it be given a force of a longer than "T" year return period, an expected value of such a damage (Y) can be obtained from probability of the damage multiplied by the value of the structure (A). Hence, the following equation is established:

$Y = P \times A$

This equation, however, considers no time factor. For instance, a value of damage expected two years hence is deemed to be the same as that ten years hence. The time factor is such that values expected in different years should be rectified on a certain standard year using a discount rate (i). Accordingly, the value two years hence is set as $A.P/(1+i)^2$, and the value ten years hence as $A.P/(1+i)^{10}$. Taking this time factor into account, 'P' in the above equation can be approximately replaced by 'q' shown below:

$$q = \frac{1/T}{\ln\{(1+i)/(1-1/T)\}} \{1 - \exp(-\frac{i + (1/T)}{1 + i} \cdot L)\}$$

Hence,

 $Y = q \cdot A$

where,

T	:	Return	period of	an external	force	causing	failure
		of the	structure	(year)			

L : Remaining life time of the structure (year)

i : Discount rate

A : Value of the structure (annual levelized value)

Y : Expected value of the damage (annual levelized value)

Then, in the case where the structure is remedied so as to resist the external force of 1/T2 probability instead of 1/T1, a decrease of the expected value of the damage can be sought as benefit, being represented by $B = Y1 - Y2 = (q1 - q2) \cdot A$. If putting into this equation T1 = 79 years, T2 = 400 years, L = 15 years (corresponding to the rest of life time from 1996 to 2010), and i = 0.14, we can obtain q1 = 0.076 and q2 = 0.016, and then, on the assumption that the Binga plant value (A) stands at US\$24,145/year, $B = (q1 - q2) \times A = 0.060 \times A = US$1,450 \times 10^3$.

From the above, it is found out that a decrease of the levelized expected value of the damage, that is an expected annual benefit (B) to be brought about by the rehabilitation work is larger than the levelized cost of the project $C2 = US\$876.1 \times 10^3$ or B/C2 is represented by 1.66. Hence, the proposed rehabilitation project can be justified from the economic point of view.

With regard to the value of the structure 'A' as employed in the above process, only the plant value equivalent to the cost of the most economical alternative power source to replace the Binga plant was considered for this time. However, disadvantage brought about by failure of the Binga dam to the regional society in both mental and physical aspects should be as well taken into account. Such disadvantage is sure to give an adverse impact on the regional society which can not be valued in the monetary term because its valuation is placed at one's disposal. In this sense, the plant value employed here can be regarded as the minimum one accordingly.

12.4.5. <u>Economic Analysis on the Proposed Measures</u> for Removing the Sediments

The Binga power plant is located just downstream of the Ambuklao dam for which the report "Ambuklao Dam Rehabilitation Project" was prepared and submitted by JICA to NAPOCOR in March, 1988. In this report, a scheme of removing sediments

from the riverbed at and downstream of the Ambuklao tailrace outlet was studied, and the method of dredging was proposed as one of the suitable methods, giving a suggestion that the above sediment problem should be further investigated in relation to sedimentation at the upper reaches of the Binga reservoir.

In compliance with the above suggestion, another method of removing the sediments around the Ambuklao tailrace outlet was studied in the framework of the Binga Project; the method of flushing away the sediments by an artificial flood from the Ambuklao spillway. Following hereunder is a comparative study of the above two methods i.e. methods of dredging and flushing.

The construction cost and increment of power generation owing to reduction of the riverbed level for the former, and loss of power generation due to a dead discharge and increment accrued thereby for the latter are shown in the table below:

<u>C.Y.</u>	Method of Dre	dging	Method of	Flushing
	Construction Cost	Increment of Energy	Loss of <u>Energy</u>	Increment of Energy
	(US\$x10 ³)	(GWh)	(GWh)	(GWh)
1996	1,330	2.6	49.0	3.0
1997		2.7	49.0	3.0
1998	730	2.7	49.0	3.0
1999		2.7	49.0	3.0
2000	730	2.7	49.0	3.0
2001		2.7	49.0	3.0
2002	730	2.7	49.0	3.0
2003		2.7	49.0	3.0
2004	730	2.7	49.0	3.0
2005		2.7	49.0	3.0
2006	730	2.7	49.0	3.0
2007	and the second	2.7	49.0	3.0
2008	730	2.7	49.0	3.0
2009		2.7	49.0	3.0
2010	730	2.7	49.0	3.0

Comparison Between Dredging and Flushing Methods

From the above comparison, it was found out that irrespective of loss and increment of power generation, the difference between both methods is found relatively small, and also that the method of flushing can be implemented intentionally in the rainy season when the plant has a large reserve capacity. Therefore evaluation on both methods was not done from the viewpoint of the fixed cost for the plant capacity but from the viewpoint of the variable cost for the power generation.

According to the above table, the present worth as of 1995 was calculated with the discount rate 14% applied, and the variable cost set as 28.117 US\$/MWh for the economic analysis and 31.330 US\$/MWh for the financial analysis. The result of the calculation is shown below:

Results of Calculations for Present Worth as of 1995

	Economic Cost	Financial Cost
Method of Dredging		
Construction Cost (US\$x10 ³)	2,962.7	2,962.7
Increment of Energy (US\$x10 ³)	∆463.8	△ 516.8
Total (US\$x10 ³) C1	2,498.9	2,445.9
Method of Flushing		: : :
Loss of Energy (US\$x10 ³)	8,462.3	9,429.3
Increment of Energy (US\$x10 ³)	△518.1	△ 577.3
Total (US\$x10 ³) C2	7,944.2	8,852.0
<u>Ratio (C2/C1)</u>	3.2	3.6

As shown above, the method of flushing entails a large loss of power generation incidental to the dead discharge from the spillway, thus indicating more than three times the amount of loss caused by the method of dredging.

12.5. Summary and Conclusions

As stated above, implementation of the Binga Dam Rehabilitation Project would cost approximately US\$3,700x10³ and will force the power generation to be reduced temporarily because the reservoir water level must be lowered as required to perform the relevant works.

The above total cost including that equivalent to loss of the power generation amounts to as much as US5,381x10^3$. However, taking into consideration that the effects of the proposed rehabilitation would last long after the completion of the works, the annual levelized cost of the rehabilitation work shows US\$ 876×10^3 . This amount accounts for 3% or so of the Binga plant value per year or US24,145x10^3$ /year. Subsequently, the above annual levelized cost is compared with the decrease of the expected value of the damage, that is an expected annual benefit, amounting to US1,450 \times 10^3$ which can be achieved in enhancement of the safety factors of the relevant structures by the rehabilitation work. The comparison shows the ratio of about 1:1.6, which apparently gives the economic justification to this project.

As regards the measures for removing the sediments around the Ambuklao tailrace outlet, the method of flushing away the sediments by an artificial flood was studied and compared with the method of dredging which had been studied in the Ambuklao Dam Rehabilitation Project. As a result, it has turned out that the former method involves a large loss of power generation due to the dead discharge from the spillway, and hence, is much less advantageous than the latter method.

12.6. Economic Analysis - Supplement

The economic analysis in the foregoing sections was based on the project cost including the left bank excavated slope rehabilitation scheme and the dam toe protection retaining wall rehabilitation scheme as well as the dam upstream face rehabilitation scheme.

In this section, however, the economic analysis is done from a different standpoint that the above former two schemes should be implemented in the framework of the regular maintenance program, thus focusing on the rehabilitation cost only for the dam upstream face scheme, and also that the Binga plant value is appraised, only in terms of the generated energy (KWh), on the basis of the variable cost of the oil-fired thermal plant.

12.6.1. Estimated Cost of Dam Upstream Face Rehabilitation Scheme and Loss of Generated Energy

Shown below are annual cost disbursements of the scheme, amounts of lost energy due to being forced to reduce the reservoir water level during the works, and power costs corresponding thereto, and shown further below are the present worth of those costs as of 1995 and the annual cost levelized over a period of 15 years from 1996 to 2010.

The present worth and the annual levelized cost are calculated with the same discount rate (i) 14% as for the foregoing section, and the unit price per KWh to value the lost energy refers to the variable cost of the oil-fired thermal plant, 28.117 US\$/MWh shown in Table 12.4.

<u>C.Y.</u>	Estimated Cost of the Scheme (US\$/10 ³)	Lost <u>Energy</u> (GWh)	Power Cost of Lost Energy (US\$10 ³)	Total <u>Cost</u> : (US\$10 ³)
1990	135		· · · ·	135
1991	125	-	··· · · · · · · · · · · · · · · · · ·	125
1992	300	3.7	104	404
1993	1,280	14.2	399	1,679
Total	1,840	17.9	503	2,343
Present Worth	2,579.0	- `	672.6	3,251.6
Annual Levelized Cost	1 419.9	- 	109.5	529.4

12.6.2. Appraisal of the Binga Plant Value

The Binga plant value is appraised, only in terms of the generated energy, with the variable cost of the existing oilfired thermal plant applied. The result is:

- Annual generated energy : 434.5 GWh (at sending end)
- Variable cost of the oil-fired : 28.117 US\$/MWh thermal plant
- Binga plant value (A)

$12,216.8 \times 10^3 \text{US}$

12.6.3. Economics

In the case where the Binga plant value (A) is set as 12,216.8 x 10^3 US\$, a decrease of the levelized expected value of the damage, that is an expected annual benefit (B) to be brought about by the proposed rehabilitation scheme is calculated using the same formulae as appeared in the foregoing section 12.4.4. The result of calculations gives B = 0.060 x A = 733 x 10^3 US\$, indicating B/C = 1.38.

The outcome of the economic analysis-supplement is as well justifiable, accordingly.

Eixed O/M.Cost (\$/kW-year) 0.50 (22.75) 14.50 0.21 0.21 28.39 28.39 Lead Time Forced Ourage Maintenance (Years) (Z) (Weeks) Main Features of Alternative Power Sources Related to Calculations of Fixed Costs 00 3.0 (3.0)i. o 1.0 1.0 1.0 0 0 3:0 3.0 0. . . э.0 0.4 4.0 Total Construction Cost (¥) (\$) Total(\$) 266.92 1,973.22 1,276.5 1,640.27 ı ı ŧ 1 61.9 1,758.2 0.06 61.9 213.8 435.3 465.5 422.6 70.0 82.9 434.8 628.5 495.l 321.5 472.5 321.5 1,209.9 1,202.5 976.7 1,126-3 526.3 716.0 3,471.8 1,115.5 4,515.4 7,639.1 2,925.0 No. of Units Installed Capacity (MM) 200 300. 200 700 600 609 110 055 440 600 600 2,400 110 1,100 12,1 I Table 2 x 300 2 x 300 2×300 8 x 300 2 × 300 x 50 4 x 50 14 x 50 6 x 50 8 x 55 2 x 55 2 x 55 8 x 55 20×55 Note : PDP A-11 and A-25 Commissioning 1989 1.989 1998 1991 1991 1997 1999 2000 1992 1995 1996 Year ī 1 æ ¢٩ Gas-turbine A Ъ -II Geo . BACMAN-I Ceo Tongonan Geo Gas-turbine Sub-rotal Sub-total Sub-cocal < ព o a Plants Coal

. .

	Plant Factor(2)	88.47	70.27	84.95			on Use Rate)]		(ə.			
	-year) 0.16	73.56	264.17	435.11			zys)(I-Stati	•	n. 1988 Pric	žlent US\$	66.92 73.22	40.27
	• C\$/ <u>KW</u> -	65.77	231.52	380.35			intenance d 365	· · ·	:10 ^c) (Ja	Equiv	-8 -2 -2 -2	-5 -1,6
	Fixed Cos int Rate (1) 0.12	58.20	200.55	328.38 .			^{±te})(1 – <u>Ma</u>	·	ost (unit :) [E.C	5 213 4 1,758	1. 1,276
	Annual Discou	50.91	171.41	279.50			d Outage R2 100	- - - -	struction C		le 1,115. 4,515.	7,639.
Cost	Fixed Q/M Cost (m) (\$/KW -)	() 16ar () 0.50	14.50	22.15	•	•] + [(1 - Force	· · ·	Total Con	Plants	Gas-turbin Coal-fired	Geothermal
Fixed	Station Use Rate (P.U)	010.0	0.085	0.100	•		H + + + + + + + + + + + + + + + + + + +		** 	· · ·	· · · · ·	
2.2	Maintenance da ys/year (da ys)	14		42			- z (<u>1+1)</u>	· · · · · ·		ែដ	1	
	Forced Dutage Rate (%)	8	17	4			$\frac{1+1}{1+1}$			e r	100	
Tab	(Pate (a) (a)ue Rate (2) (2)	1.0	П°, с	1		-	+ i) ^x × - <u>i</u>	•		r 	1 00	က ရို
	ife Time R (n) (year)	20	30	D n			- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 			Ř	100	n []0
	istruction I eriod(k) (year)	_ #4	m r	3	•		× × v I			ř	1 1	1
. .	istruction Cou Cost(c) F i/KW)	186	822 640			•	(KW-year)		struction Co	Ř.		I
	stalled Con pacity (MW) (\$	x 50	× 300 ×(50) 1.1				d Cost (\$/		(Ra) of Con	Rs	1	l - - - -
	ц Сор С	14	0 03 7		н - ст. - ст. с. - с.		npual Fixe		ent Ratio	R	l l e p	I
	Plants	IS-Curbine	al-fired ochermal				Note : A		Disoursem	Plants	Gas-curbi Coal-fire	Geotherma1
		ö	ິວັບັ				12 -	16				· . · .

Main Features of Alternative Power Sources (Thermal Efficiency) Related to Calculations of Variable Costs (35.98) (35.98) (29.67) (31.28) (19.97) (%) (MBTU/MWh). Heat Rate (10,908) 487**°6**) 11,440 9,386 17,084 10,203 10,788 9,926 9,694 9,484 11,500 10,188 10,789 12,221 11,811 Heat Content (MMBTU/unit) Financial 22.70 6.21 6.35 Economic 24.73*** 5.80 * 6.12 ** 44.72 \$/cone 28.64 \$/bb2 16.95 \$/bb& Financial Fuel Cost (\$/Unit) Table - 12.3 42 \$/tone Economic 20 \$/bb& 15 \$/bb& א ו 1 1 Baraan - 1 רא ר Malaya - 1 Manila - l 4 1 ı **Gas-turbine** Coal-fired Geothermal Sub-rotal **Oil-fired** Sub-total Plants Sucat

Note : * = 9,200 Kcal/2 , ** = 9,700 Kcal/2 , *** = 6,700 Kcal/kg

Others = PDP A-11, A-15

							·	
Plant type	Fuel Cost (\$/Unit)	Heat content (MMBTU/Unit)	Fuel cost (\$/MABTU)	Heat rate (Ther (MBTU/MWh)	mal Efficiency) (%)	Variable O.M.Ratio (%)	Station use rate (%)	Veriable cost (\$/MW/h)
Gas-turbine	20 \$/bb&	5.80	3.45	11,500	(29.67)	Prof	1.0	40.477
Oil-fired			•					
(Manila, Sucat, Malaya)	15 \$/bb&	6.12	2.45	10,908	(31.28)	Ч	4.0	28.117
(Bataan)	15 \$/bb2	6.12	2.45	9,484	(35.98)	1	4.0	24.446
Coal —fired	42 \$/t	24.73	1.70	9,484	(35.98)	r	8.5	17.797
Geothermal	1 . 1	I .	F	17,084	(19.97)	ľ	10.0	0.000
							•	
Note : Variable	cost at Sendin	š End (\$∕MWh)=	Fuel cost (\$.	<u>/MBTU) × Heat ra</u>	te (MBTU/MW	$\frac{h}{x} \times \frac{1+Variabl}{10^{-2}}$	le O/M Ratio × 1	(0
	-				••		•••	·
							• • •	
•						. •		ſ

•

Plant type Fuel Cost Heat rate (Thermal Efficiency) Nariable O/MEato Station use rate Variable of (%) Vari	· .			- - -					
Gas-turbine $28.64/bb.4$ 6.350 4.51 $11,500$ (29.67) 1 1.0 52.913 Oil-fired $(11-fired)$ $(5.57b).6$ $(5.210$ 2.73 $10,908$ (31.28) 1 4.0 31.330 (Manila. Sueat, Malaya) $16.95/bb.6$ 6.210 2.73 $9,484$ (35.98) 1 4.0 27.240 (Bataan) $16.95/bb.6$ 6.210 2.73 $9,484$ (35.98) 1 4.0 27.240 Caal-fired $44.72/t$ 22.700 1.97 $9,484$ (35.98) 1 8.5 20.623 Geothermal $ 17,084$ (19.97) $ 10.0$ 19.254	Plant type	Fuel Cost (\$/Unit)	Heat content (MBTU/Unit)	Fuel cost (\$/MMBTU)	Heat rate (Therma (MBTU/MWh)	.1 Efficiency) (%)	Variabie O/M.Ratio (%)	Station use rate (%)	Vzrizble cos (\$/MWh)
(Manila, Sucat, Maleya) 16.95/bb& 6.210 2.73 10,908 (31.28) 1 4.0 31.330 (Bataan) 16.95/bb& 6.210 2.73 9,484 (35.98) 1 4.0 27.240 Coal-fired 44.72/t 22.700 1.97 9,484 (35.98) 1 8.5 20.623 Geothermal - 1.97 9,484 (19.97) - 10.0 19.254	Gas-turbine Oil-fired	28.64/bb&	6.350	4.51	11,500	(29.67)	rrt .	1.0	52.913
(Bataan) 16.95/bb& 6.210 2.73 9,484 (35.98) 1 4.0 27.240 Coal-fired 44.72/t 22.700 1.97 9,484 (35.98) 1 8.5 20.623 Coal-fired 44.72/t 22.700 1.97 9,484 (35.98) 1 8.5 20.623 Geothermal - - 17,084 (19.97) - 10.0 19.254	(Manila, Sucat, Malaya)	16.95/bb&	6.210	273	10,908	(31.28)	I	4.0	31.330
Coal-fired 44.72/t 22.700 1.97 9,484 (35.98) 1 8.5 20.623 Geothermal - 17,084 (19.97) - 10.0 19.254	(Bataan)	16.95/bb2	6.210	2.73	9,484	(35.98)		4.0	27.240
Geothermal - 17,084 (19.97) - 10.0 19.254	Coal-fired	44.72/t	22.700	1.97	9,484	(35.98)	Ĩ	8.5	20.623
	Geothermal	f .		I	17,084	(19.97)	· . I	10.0	19.254
		•							
	· ·								

Note : Variable cost at Sending End (\$/MWh) = Fuel cost (\$/MBTU) × Heat rate (MBTU/MWh) × (1+Variable 0/M Hatio × 10 1 - Station Use rate × 10-2

12 - 19

Table - 12.5 Variable Cost (Financial)

Table - 12.6 Steam Cost Calculation on Geothermal

Conditions of Evaluation

Generating End Price in 1988	11	0.3639 ₽/KWh
Station Use Rate	a ·	0.1
Forced Outage Rate	=	0.04
Maintenance Days per Year	=	42
Max. Limit	=	50

Steam Cost Calculation

Sending End Price in 1988

Sent - out Energy	= 50 MW x (1-0.04) x $(1-\frac{42}{365})$
	$x 0.9 \times 8.76h = 363.375$ GWh
Steam Cost	= $363.375 \times 0.3639 \div 0.9 = 146.925 \times 10^6 P$
	$146.925 \times 10^6 \mathbb{P} \div 21 = 6.996 \times 10^6 \$$
Unit Steam Cost	= 6.996 ÷ 363.375 = 19.254 \$/MWh

Note : PDP P.49 Table - 21

Table - 12.7

Total Economic Cost (\$/kW-year)

·.		Plant Factor			
Plants	0.0	0.2	0.4	0.6	0.8
Gas-turbine	65.77	136.69	207.60	278.52	349.43
0i1-fired	0.00	49.26	98.52	147.78	197.04
Coal-fired	231.52	262.70	293.88	325.06	356.24
Geothermal	380.35	380.35	380.35	380.35	380.35

Note		
(1)	Discount Rate	: 14 %
(2)	0il-fired	: Manila, Sucat, Malaya

Ťable - 12.8

Total Financial Cost (\$/kW-year)

	Plant Factor					
<u>Plants</u>	0.0	0.2	0.4	0.6	Ö.8	
Gas-turbine	65.77	158.47	251.18	343.88	436.58	
Oil-fired	0.00	54.89	109.78	164.67	219.56	
Coal-fired	231.52	267.65	303.78	339.91	376.05	
Geothermal	380.35	414.08	447.82	481.55	515.28	

l	lote			
	(1) Discoun	t Rate	: 14 %	
* .	(2) Oil-fir	ed	: Manila, Sucat, Malaya	

Fig.12.1 Economic Cost

Fig.12.2 Financial Cost

1.3. DAM SAFETY CONTROL SYSTEM

13. Dam Safety Control System

13.1. General

Continuous inspection and surveillance are essential in maintaining the project facilities in good operating condition. This will make the facilities to act to the best of their functions, stably and efficiently, and to obtain the desired results for plant investment.

The JICA Study Team had an opportunity to investigate the present conditions of the existing hydro power facilities in the Northern Luzon area of the Philippines. As a result of the investigation, it was concluded that the operation and maintenance of these facilities did not appear to be quite satisfactory. It was found that there was a big possibility for improvement in maintenance and operation of the hydro power system of the Philippines.

There are big differences between Japan and the Philippines in terms of power consumption, weather conditions, and scale and organization of power generation facilities. Taking into account the above differences, it was realized that there were big possibilities for more effective utilization of the facilities by improving the maintenance and operation organizations and by investing money on it.

If the above would lead to a certain increase in the production of the facilities, this could be equal to the investment required for installation of additional power facilities.

The improvement of the existing facilities is financially justified as the planned maintenance and operation costs, on a capital basis, would be one tenth of the investment required for provision of additional power facilities.

1

Although increase in power demand in the Philippines for the last few years have been low, the potential is still large, and it is obvious that in the future will increase considerably.

In anticipation of the expansion of the power facilities in the future, it is indispensable to improve and expand on the maintenance and operation of the existing power generating facilities. This will add to the efficient operation not only of the current but also of future power facilities which would be added to the system.

13.2. NAPOCOR Head Office

The current operation and maintenance situation of the hydro power facilities varies from plant to plant. Many of the existing plants have been in service for many years and, thus, are considered to be very old from operational point of view, others are newly constructed and, thus, in service for relatively few years and, apparently without serious problems.

For smooth operation of these facilities it is necessary to regularly analyze the maintenance, inspection and surveillance results, and to establish yearly and long-term maintenance programs. Budgeting and maintenance work including inspection, surveillance and repair work, should be carried out in accordance with the maintenance programs.

Besides, continuous surveillance by monitoring the behaviour of large and important civil structures should be made. The results should be analyzed regularly by specialized civil engineers.

For efficient execution of these tasks, it is recommended that a maintenance division/group be established in the Hydro Power Projects Department of the Head Office. A number of civil engineers as required should be assigned to the above maintenance division/group. (Refer to Figs.13.1and 13.2)

The Northern Luzon Regional Center of NAPOCOR, under which jurisdiction the Binga power plant is placed, plays a leading role in power supply to the Luzon Grid. In this capacity, the Center is responsible for the operation and maintenance of five hydro power plants with total capacity of 863 MW which includes such plants as Ambuklao, Angat and Magat.

The Center comprises about 1,591 NAPOCOR staff, mostly electrical and mechanical engineer. The five hydro power plants managed by the Center are located in four regions. It is maintained and operated by 1,120 operational staff (operation 455, maintenance 665) including engineers assigned to each power facilities.

The Center does not have any civil engineer except for the two hydrologists posted at the Angat power plant for flood forecasting and warning system operation. The Center has under its jurisdiction several large dams and other civil facilities. As such, it is responsible for surveillance and maintenance of these facilities. However, it is surprising that it does not include in its organization civil engineers with experience and background in surveillance and maintenance of such structures. This means that such surveillance and maintenance of the facilities is not done by civil engineers who are familiar with this type of work.

If the dams and other related civil structures are not properly surveyed and maintained, any serious problems which could certainly develop in the future, could be taken care of only at greater expense.

Therefore, it is recommended that at least two civil engineers and three assistant engineers be detailed for maintenance, surveillance and inspection of the civil structures of the hydroelectric projects under the jurisdiction of the Northern Luzon Regional Center, including Binga. (Refer to Fig.13.3)

13.4. Binga Powerstation

With regard to the Binga Project, it is recommended that the existing conditions of all civil structures of the project be clearly established and understood. This can be done by collecting all available data from the project completion and making a survey of the existing conditions of the structures.

Since many important design and construction data on the project have been lost with the passage of time, understanding of the current conditions of the structures would be more difficult to accomplish. Therefore, to properly understand the conditions of the structures, a serious study of all the existing data should be made. It is understood that many important data on the design and construction of the project are not available any more. Some of these data could be obtained by surveying the structures in the field with a purpose of obtaining the information required for evaluation of the existing conditions.

13.5. General Remarks

Implementation of the Safety Control System for each project should be carried out in accordance with the importance of the project or year of construction. Once the program has been implemented, the work should be performed systematically and at a minimum cost.

Inspection, surveillance and maintenance of civil structures must be conducted regularly. The Northern Luzon Regional Center which has maintained the projects with large and important civil structures under its jurisdiction, should assign to each project at least one civil engineer with the responsibility for maintenance and inspection. In addition to the above duties, this engineer should also supervise the operation of the spillway gates, observe reservoir water levels, etc. (Refer to Fig. 13.4)

Fig. 13.2 ORGANIZATION CHART FOR NAPOCOR (ENGINEERING MAIN - HEAD OFFICE)

* newly proposed section

Fig. 13.3 ORGANIZATION CHART FOR NORTHERN LUZON REGIONAL CENTER

* newly proposed section

Fig. 13.4 ORGANIZATION CHART FOR BINGA HYDROELECTRIC PLANT

* newly proposed section / group

14. STANDARDS FOR DAM SAFETY CONTROL

14.1. General

The safety control of hydropower facilities covers wide area, such as safety against landslides at or near the project structures and around the reservoir, safety against floods and sedimentation, safety of the dam and its foundations, underground structures, generating equipment and facilities, and environmental conservation.

In this Section, safety control for the rockfill dam is discussed in greater detail.

For safety of rockfill dams, the following incidents should be prevented under any circumstances:

- (1) Flow over the top of the dam
- (2) Seepage through the dam or its foundations
- (3) Collapse of face of the dam caused by large earthquakes

Therefore, inspection, surveillance and maintenance of the dam and its auxiliary structures are very important, for the safety of the project.

For this, the following measures are required:

- (1) Monitoring
- (2) Inspection and surveillance

(3) Detail inspection and further investigations

11

14.2. Monitoring

Once abnormal behaviour or conditions have been detected in the dam, it is required to monitor regularly, for the purpose of

safety control, and determine how those behaviour and conditions would develop or progress. The frequency of monitoring should be determined properly taking into consideration the type and structural scale of the dam and the time elapsed after completion.

Dams are generally classified into the three stages according to the time elapsed after the completion in order-to judge the safety of the structure.

(1) First Stage

This is the stage which covers the initial reservoir filling period. The water pressure load acts on the dam for the first time. The dam shows variable reactions until the water reaches the maximum reservoir level. This first stage of observations is, no doubt, the most important for the safety of the dam. Monitoring, therefore, must be carried out carefully and frequently. The monitoring results must be analyzed quickly in order to evaluate the behaviour of the dam and its safety and to decide the mode and sequence of further water level rises.

(2) <u>Second Stage</u>

At this stage, monitoring is needed in order to determine whether the operating conditions of the dam could be judged to be normal, including seepages through the foundation rock. This period could cover 3 to 5 years.

(3) Third Stage

This stage covers the period during which monitoring of the dam is done with a purpose of maintaining the proper function of the structure through its lifetime. The period of this stage is the longest of the three stages.

The following table describes the frequency and type of monitoring normally used for rockfill dams:

Table 14.1.

Type of Monitoring and Frequency

	Appearance <u>Check</u>	Seepage	Deformation	Porewater <u>Pressure</u>
1st Stage	7 days	l day	l day	7 days
2nd Stage	1 month	7 days	1 month	1 month
3rd Stage	1 month	1 month	3 months	3 months

N.B.: Frequency is designated by an interval

As more than 30 years have passed since the completion of the Binga dam, and the structure itself and the foundation rock are supposed to be stable enough, it can be said that the dam should be classified in the third stage, and thus the type of monitoring and frequency may be effected accordingly as mentioned in the above table. The Binga dam had the first experience in executing the above monitoring on this occasion. In the framework of the scope of the Study, the seepage and dam deformation measurement devices were newly provided and installed by JICA. With this instrument, the monitoring was initiated and has been continued with more frequency than specified in Table 14.1 for the first year wherein the hydrological trend including the reservoir water level condition and rainfall intensity could be fully determined.

14.3. Inspection

Inspection of the dam on a regular basis and in accordance with some predetermined pattern can be very effective in preventing major problems or even failures from developing. Aside from this, inspections should also be performed after occurrence of a major event, such as large floods or earthquakes.

The regular inspection should be done once a month and the further inspection should also be done, in principle, when the following events take place:

- Flood discharge bigger than 3-year return period

- Daily inflow at the dam site equivalent to 3-year return period

- Earthquake stronger than one third of the design seismic coefficient

14.4. Detail Inspection and Repair Works

If abnormal behaviour or conditions are detected during the periodic inspection or from the collected monitoring data, a detail investigation must be undertaken to determine the causes.

The extent of the investigation will depend on the behaviour or condition of the structure. If the detail inspection reveals that the structure is not secured and the damage is serious, the repair works should be carried out immediately.

APPENDICES

(Tables and Figures for Sections 9 and 10)
No	D .	Title	Page
Table	9.1	Hydrologic Observation Period by Station	D - 1
Table	9.2	Correlation Coefficient of Monthly Rainfall for Observation Stations, Observed during Rainy Season, May - November	D - 2
Table	9.3	Maximum Monthly and Daily Rainfall at Binga Dam	D - 3
Table	9.4	The Periods during Which the Hourly Rainfall Data at the Binga Dam Site are Available	D - 9
Table	9.5	Maximum Rainfall (RT) of Consecutive Hours (T)	D - J
Table	9.6	Period for which the Reservoir Operation Records are Available	D - J
Table	9.7 ⁰ - X 2 ⁰ -	Period in Which Typical Magnitude Floods Occurred	D -
Tab1e	9.8	Hourly Inflow to the Binga Reservoir During Typical Flood Periods	D -
Table	9.9	Maximum Probable Daily Rainfall	D - 1
Table	9.10	Maximum Probable Inflow to the Binga Reservoir (Return Period : 200 years)	D -
Tab1e	9.10	Maximum Probable Inflow to the Binga Reservoir (Return Period : 10000 years)	D - 1
Table	9.11	Average Daily Spillway Discharges of Greater than 1,000 m ³ /sec and Maximum Daily Spillway Discharge	D - 4
Fig.	9.1	Major River Basins	D -
Fig.	9.2	Isohyetal Map Annual Average Rainfall (mm)	D - 4
Fig.	9.3	Hydrologic Observation Stations	D -
Fig.	9.4	Catchment Area of Binga Dam Basin	D -
Fig.	9.5	Correlation of Monthly Rainfall at Binga and Baguio City	D -
Fig.	9.6	Correlation of Monthly Rainfall at Binga Ambuklao City	D
Fig.	9.7	Relation between Monthly Rainfall and Maximum Daily Rainfall at Binga	D - 1
Fig.	9.8	Hourly Rainfall at Binga Damsite for the Period from July to October, 1980	D

No .	Title	Page
Fig. 9.9	Relation between (R_T/R_{24}) and $(T/24)$	D - 53
Fig. 9.10 (1)	Hourly Inflow to the Binga Reservoir During Typical Flood Period (May 22 - 30, 1976)	D - 54
Fig. 9.10 (4)	Hourly Inflow to the Binga Reservoir During Typical Flood Period (June 25 - July 3, 1976)	D - 57
Fig. 9.10 (7)	Hourly Inflow to the Binga Reservoir During Typical Flood Period (July 9 - 12, 1986	D - 60
Fig. 9.11 (1)	Inflow to the Binga Reservoir During Typical Flood Period (May 22 - 30, 1976)	D - 61
Fig. 9.11 (2)	Inflow to the Binga Reservoir During Typical Flood Period (June 25 - July 3, 1976)	D - 62
Fig. 9.11 (3)	Inflow to the Binga Reservoir During Typical Flood Period (July 9 - 11, 1986)	D - 63
Fig. 9.12	Maximum Probable Daily Rainfall at Binga	D - 64
Fig. 9.13	Rainfall Pattern for the Period of May 23 to May 30, 1976	D - 65
Fig. 9.14 (1)	Maximum Inflow to the Binga Reservoir (200-year Return Period)	D - 66
Fig.9.14 (2)	Maximum Inflow to the Binga Reservoir (10,000-year Return Period)	D - 67
Fig.9.15	Plan and Cross Section of Binga Spillway Crest	D - 68
Fig.9.16	Relation between the Discharge and the Gate Opening for Various Reservoir	D - 69
Fig.9.17 (1)	Maximum Probable Inflow (20% Over the 200-year Flood Inflow) and Reservoir Water Level by Type A Gate Operation	D - 70
Fig.9.17 (2)	Maximum Probable Inflow (10,000-year Flood Inflow) and Reservoir Water Level by Type A Gate Operation	D - 71
Fig.9.17 (3)	Maximum Probable Inflow (20% Over the 200- year Flood Inflow) and Reservoir Water Level by Type B Gate Operation	D - 72
Fig.9.17 (4)	Maximum Probable Inflow (10,000-year Flood Inflow) and Reservoir Water Level by the Type B Gate Operation	D - 73
	- ii -	

<u>No .</u>	Title	Page
Fig. 9.18	Relation between Reservoir Water Level and Spillway Discharge	D - 74
Fig. 9.19	Longitudinal Profile of the Plunge Pool (Along the Spillway Chute Center Line) and the Estimated Jet Trajectory Produced by the	D - 75
	Spillway flip Bucket	
Fig. 9.20	Water Level at the Downstream End of the Plunge Pool for the Spillway Discharge of 6,600 m ³ /sec and 2,602 m ³ /sec	D - 76
Fig. 9.21	Plan of the Plunge Pool	D - 77
Fig. 9.22	Cross Sections of the Plunge Pool	D - 78
Fig. 9.23	Velocity of Flow at the Spillway Flip Bucket	D - 79
Table 10.1	Specific Gravity and Unit Weight of the Sediment Materials by Sampling Location	D - 80
Table 10.2	Characteristics of Cross Sections of the Binga Reservoir (1979 Survey)	D - 81
Table 10.3	Maximum Daily Inflow and Average Daily Inflow	D - 83
Table 10.4	Model Flood Inflow of the Average Year by Tributary	D - 84
Table 10.5	Grain Size Distribution of the Reservoir Sediments during the Initial Period (1979)	D - 85
Table 10.6	Change in the Reservoir Storage Capacity to be Affected by the Anticipated Sedimentation	D - 86
Table 10.7	Main Characteristics of Each Cross Section of the Binga Reservoir (1986 Survey)	D - 87
Table 10.8 (1)	Main Characteristics of Each Cross Section of the Binga Reservoir and its Upstream Reaches (1986 and 1987 Surveys)	D - 89
Fig. 10.1	Measurement Lines of Cross Sections of the Binga Reservoir	D - 92
Fig. 10.2 (1)	Cross Section of the Binga Reservoir (1986 Survey)	D - 93
Fig. 10.3	Longitudinal Profiles of the Binga Reservoir Sediments	D - 100
Fig. 10.4	Locations of Sampling Reservoir Sediment Materials	D - 101
Fig. 10.5 (1)	Grain Size Distribution Curves of the Reservoir Sediments	D - 102

- iii -

<u>No.</u>	Title	Page
Fig. 10.6	Binga Reservoir Storage Capacity Curve	D - 105
Fig. 10.7	Progress of Sedimentation and Volume of Sediments in the Binga Reservoir	D - 106
Fig. 10.8	Comparison of the Binga Sediment Yields with Those of Other River Basins	D - 107
Fig. 10.9	Comparison of the Calculated Reservoir Sediment Elevation with the Actual Value	D - 108
Fig. 10.10	Relation between Average Daily Inflow and Maximum Daily Inflow to the Binga Reservoir	D - 109
Fig. 10.11	Model Flood Inflow of the Average Year (Including the Inflow from Sadyo River)	D - 110
Fig. 10.12	Grain Size Distrubution of the Reservoir Sediments during the Initial Period (1979)	D - 111
Fig. 10.13	Anticipated Progress of the Reservoir Sedimentation Toward 2022	D - 112
Fig. 10.14	Change in the Reservoir Storage Capacity to be Affected by the Anticipated Sedimentation	D - 113
Fig. 10.15	Anticipated Progress at the Reservoir	D - 114
	Sedimentation in the Area Around the Tailrace Outlet of the Ambuklao Power Plant	a territoria de la composición de la co
Fig. 10.16	Effects on the Water Levels in the Ambuklao Surge Tank by Further Accumulation of Sedimen tation in the Area Around the Ambuklao Tailra Outlet in Case of Sudden Load Increase	D - 115
Fig. 10.17	Change in the Minimum Opening Time for the Ambuklao Turbine Inlet Gate	D - 115
Fig. 10.18	Measurement Lines of Cross Sections of the Binga Reservoir and its Upstream Reaches	D - 116
Fig. 10.19 (1)	Cross Sections of the Upstream Reaches of the Binga Reservoir (1987 Survey)	D - 117
Fig. 10.20	Change in the Longitudinal Profiles of the Reservoir Sediment Deposits by the Ambuklao Reservoir Operation	D - 124
Fig. 10.21	Changes with Time of Discharges by the Ambukl Reservoir Operation and Scoured Depth of the Sediment Deposits in the Area Around the Tail Outlet	ao D - 125 .race
Fig. 10.22	Scouring Effects of Repeated Reservoir Operation on the Sediment Deposits Around the Ambuklao Tailrace Outlet	D - 126
Fig. 10.23	Change with Time in the Outflow from the Ambuklao Reservoir and its Water Level	D - 127
	- iv -	

1 Monthly rainfall) BUGUIAS ADAOAY KARAO BOBOK BAGUIO CITY	1900 92/1	1910		920	19:	30	1940	19	50	19	60 1 56/1	970	198	
Monthly rainfall) BUGUIAS ADAOAY KARAO BOBOK BAGUIO CITY	02/1	-				-		-	· · ·		66/1	78/1		•
BUGUIAS ADAOAY KARAO BOBOK BAGUIO CITY	02/1					•					66/1	78/1	- - 1 -	
ADAOAY Karao Bobok Baguio City -	02/1	-				1. Sec. 19	3	. 1					-	
KARAO BOBOK BAGUIO CITY	02/1	-	: :					· · · · · · · · · · · · · · · · · · ·	1 2 14 	i i i	66/1	76/9	}	· "
BOBOK BAGUIO CITY	02/1	•							-		68/3	1 79/9) 	
BAGUIO CITY	02/1	Į	•					-		4 J	\$6/1			83/6
BAGULO CITY -			 											84/12
	1					1			-	57				85
BINGA			• •									76/	/9	83/3
ROSALES			• :					•		;		71/5		84/4
BALNGAO					: ·			•				72/4	-	84/9
BINALONAN	•		:					•		• • • • •	, در جز	7		
AMBUKLAO DAM	ء - 							÷ ; .						
Daily rainfall)														· .
BINGA DAM			4			-				•		70		87/1
ÁNBIIKLAO DAM				ar i F							6	4		877
			•											
Hourly rainfall)										•				80 8
BINGA DAM	•		:											
Wind Velocity)														
BINGA DAM	÷	-			1	ц і.				:				

D

1

Table 9.1 Hydrologic Observation Period by Station

Table 9.2Correlation Coefficient of Monthly Rainfall for Observation
Stations, Observed during Rainy Season, May - November

(Upper Value : Correlation coefficient) Lower Value : Number of Data

Station Name	Binal- onan	Rosal- es	Balun- gao	Bugui- as	Adaoay	Кагао	A¤buk~ 1ao	Bobok	Baguio	Binga	Balat- ok Mines
Binalon- an		0.799 (41)	0.911 (85)	0.388 (42)	0.493 (31)	0.364 (50)	0.801 (40)	0.902 (76)	0_893 (87)	0.821 (77)	0.690 (81)
Rosales			0.767 (43)	0.985 (10)	- (1)	0.556 (20)	0.770 (14)	0.688 (43)	0.571 (43)	0.702 (35)	0.674 (42)
Balungao				0.379 (49)	0.431 (38)	0.392 (58)	0.777 (48)	0.895 (84)	0.844 (94)	0.739 (84)	0.651 (89)
Buguias					0.252 (61)	0.372 (63)	0.363 (50)	0.545 (71)	0.413 (73)	0.360 (68)	0.464 (66)
үдэсэх						0.478 (55)	0.223 (45)	0.560 (65)	0_586 (67)	0.657 (59)	0.463 (50)
Кагао	•						0.362 (57)	0.508 (75)	0.491 (77)	0.319 (64)	0.349 (77)
Anbuklao								0.951 (59)	0.946 (51)	0.839 (51)	0.703 (61)
Bobok									0.814 (118)	0,734 (102)	0.707 (110)
<mark>Baguio</mark> City										0.828	0.787 (189)
Binga											0.778 (159)
<mark>Balato</mark> k Mines											

Year	Max. monthly the year app estimation	reinfall in lied for (mm/month)	Max. monthly rainfall in	Max. daily rainfall in	
	Baguio	Ambuklao	Binga (mm/month)	(mm/day)	
1902	1238.0		705.0 *B	178.0	
1903	883.0	1	536.0 *B	135.0	
1304	984.0		584.0 *B	148.0	
1905	1029.0		, 605.0 ≭ B	153.0	
1906	1398.0	•	781.0 *B	198.0	
1907	1083.0		631.0 *B	160.0	
1908	1509.0		834.0 *B	211.0	
1909	1204.0		689.0 *B	174.0	
1910	1025.0	. *	604.0 *B	153.0	
1911	3382.0		1726.0 *B	438.0	
1912	1297.0		733.0 *B	185.0	
1913	2108.0		1119.0 *B	284.0	
1914	2511.0	· .	1311.0 *B	332.0	
1915	1120.0		649.0 *B	164.0	
1916	1335.0	•	751.0 *B	190.0	
1917	1180.0		677.0 *B	171.0	

Table 9.3 (1) Maximum Monthly and Daily Rainfall at Binga Dam

Note: *A Estimated from data taken at Ambuklao. *B Estimated from data taken at Baguio City.

Table 9.3. (2)

Maximum Monthly and Daily Rainfall at Binga Dam

Year	Max. monthly the year app estimation	rainfall in lied for (mm/month)	Max. monthly rainfall in	Max. daily rainfall in	
	Baguio	Ambuklao	the year at Binga (num/month)	the year (mm/day)	
1918	2202.0		1164.0 *B	295.0	
1919	3462.0	-	1764.0 *B	448.0	
1920	2951.0	· · ·	1521.0 *B	386.0	
1921	1849.0		°996.0 ★B	252.0	
1922	1175.0		675.0 *B	171.0	
1923	2367.0		1243.0 *B	315.0	
1924	1546.0		852.0 *B	216.0	
1925	2957.0		1524.0 *B	384.0	
1926	909.0	2 1	548.0 *B	138.0	
1927	840.0	-	515.0 *B	130.0	
1928	933.0		560.0 *B	141.0	
1929	1646.0		901.0 *B	228.0	
1930	2113.0		1122.0 *B	284.0	
1931	1507.0	·	833.0 *B	211.0	
1932	1255.0		713.0 *B	180.0	
1933	2288.0		1205.0 *B	305.0	

Note: *A Estimated from data taken at Ambuklao. *B Estimated from data taken at Baguio City.

Table 9.3 (3)

Maximum Monthly and Daily Rainfall at Binga Dam

Year	Max. monthly the year app estimation	rainfall in lied for (mm/month)	Max. monthly rainfall in	Max, daily rainfall in the year (mm/day)	
	Bagulo	Ambuklao	Che year at Binga (mm/month)		
	1670.0		967 0 *P	220 0	
1934	15/9.0			313 0	
1935	2347.0		1233.U *B	141 0	
1936	1096.0		• 637.0 *B	101.0	
1937	1684.0	an a	917.0 *8	232.0	
1938	483,0		393.0 *В	99.0	
1939	1398.0		781.0 *B	198.0	
1940					
1941					
1942					
1943					
1944					
1945					
1946					
1947	1454.0		808.0 *B	204.0	
1948	1095.0		637.0 *B	161.0	
1949	700.0	· · ·	449.0 *B	113.0	

Note : *A Estimated from data taken at Ambuklao. *B Estimated from data taken at Baguio City.

D -

5

Table 9.3 (4)

Maximum Monthly and Daily Rainfall at Binga Dam

Bagulo Ambuklao the year at Binga (nm/month) the year (nm/month) <thte (nm="" month)<="" th="" year=""> te per at Binga</thte>	iaily all in	Max. dail rainfall	Max. monthly rainfall in	y rainfall in blied for (mm/month)	Year		
1950 1505.0 832.0 *B 211 1951 958.0 572.0 *B 144 1952 669.0 , 434.0 *B 109 1953 1190.0 682.0 *B 172 1954 411.0 311.0 *B 78 1955 556.0 380.0 *B 96 1956 1199.0 686.0 *B 173 1957 1103.0 1148.0 *A 291 1958 .738.0 820.0 *A 208 1959 414.b 529.0 *A 134 1960 276.0 405.0 *B 153 1961 1026.0 604.0 *B 153 1963 1458.0 810.0 *B 205 1964 1871.0 1006.0 *B 255	ear lay)	the year (mm/day)	the year at Binga (num/month)	Ambuklao	Baguio		
1951 958.0 572.0 *B 144 1952 669.0 , 434.0 *B 109 1953 1190.0 682.0 *B 172 1954 411.0 311.0 *B 78 1955 556.0 380.0 *B 96 1956 1199.0 686.0 *B 173 1957 1103.0 1148.0 *A 291 1958 .738.0 820.0 *A 208 1959 414.b 529.0 *A 134 1960 276.0 405.0 *A 102 1961 1026.0 604.0 *B 153 1962 1249.0 710.0 *B 180 1963 1458.0 810.0 *B 205 1964 1871.0 1006.0 *B 255	1.0	211.0	832.0 *B		1505.0	1950	
1952 669.0 , 434.0 *B 109. 1953 1190.0 682.0 *B 172. 1954 411.0 311.0 *B 78. 1955 556.0 380.0 *B 96. 1956 1199.0 686.0 *B 173. 1957 1103.0 1148.0 *A 291. 1958 738.0 820.0 *A 208. 1959 414.b 529.0 *A 134. 1960 276.0 405.0 *A 102. 1961 1026.0 604.0 *B 153. 1962 1249.0 710.0 *B 180. 1963 1458.0 810.0 *B 205. 1964 1871.0 1006.0 *B 255.	4.0	144.0	572.0 *B		958.0	1951	
1953 1190.0 682.0 *B 172. 1954 411.0 311.0 *B 78. 1955 556.0 380.0 *B 96. 1956 1199.0 686.0 *B 173. 1957 1103.0 1148.0 *A 291. 1958 738.0 820.0 *A 208. 1959 414.b 529.0 *A 134. 1960 276.0 405.0 *A 102. 1961 1026.0 604.0 *B 153. 1962 1249.0 710.0 *B 180. 1963 1458.0 810.0 *B 205. 1964 1871.0 1006.0 *B 255.	9.0	109.0	, 434.0 *B		669.0	1952	
1954 411.0 311.0 *B 78. 1955 556.0 380.0 *B 96. 1956 1199.0 686.0 *B 173. 1957 1103.0 1148.0 *A 291. 1958 738.0 820.0 *A 208. 1959 414.b 529.0 *A 134. 1960 276.0 405.0 *A 102. 1961 1026.0 604.0 *B 153. 1962 1249.0 710.0 *B 180. 1963 1458.0 810.0 *B 205. 1964 1871.0 1006.0 *B 255.	2.0	172.0	682.0 *B	-	1190.0	1953	
1955 556.0 380.0 *B 96. 1956 1199.0 686.0 *B 173. 1957 1103.0 1148.0 *A 291. 1958 738.0 820.0 *A 208. 1959 414.b 529.0 *A 134. 1960 276.0 405.0 *A 102. 1961 1026.0 604.0 *B 153. 1962 1249.0 710.0 *B 180. 1963 1458.0 810.0 *B 205. 1964 1871.0 1006.0 *B 255.	8.0	78.0	311.0 *B	•	411.0	1954	
1956 1199.0 686.0 *B 173. 1957 1103.0 1148.0 *A 291. 1958 738.0 820.0 *A 208. 1959 414.b 529.0 *A 134. 1960 276.0 405.0 *A 102. 1961 1026.0 604.0 *B 153. 1962 1249.0 710.0 *B 180. 1963 1458.0 810.0 *B 205. 1964 1871.0 1006.0 *B 255.	6.0	96.0	380.0 *B		556.0	1955	
1957 1103.0 1148.0 *A 291. 1958 738.0 820.0 *A 208. 1959 414.b 529.0 *A 134. 1960 276.0 405.0 *A 102. 1961 1026.0 604.0 *B 153. 1962 1249.0 710.0 *B 180. 1963 1458.0 810.0 *B 205. 1964 1871.0 1006.0 *B 255.	3.0	173.0	686.0 *B		1199.0	1956	
1958.738.0820.0 *A208.1959414.b529.0 *A134.1960276.0405.0 *A102.19611026.0604.0 *B153.19621249.0710.0 *B180.19631458.0810.0 *B205.19641871.01006.0 *B255.	1.0	291.0	1148.0 *A	1103.0		1957	
1959414.b529.0 *A134.1960276.0405.0 *A102.19611026.0604.0 *B153.19621249.0710.0 *B180.19631458.0810.0 *B205.19641871.01006.0 *B255.	8.0	208.0	820.0 *A	738.0		1958	
1960276.0405.0 *A102.19611026.0604.0 *B153.19621249.0710.0 *B180.19631458.0810.0 *B205.19641871.01006.0 *B255.	4.0	134.0	529.0 *A	414.b		1959	
19611026.0604.0 *B153.19621249.0710.0 *B180.19631458.0810.0 *B205.19641871.01006.0 *B255.	2.0	102.0	405.0 *A	276.0		1960	
19621249.0710.0 *B180.19631458.0810.0 *B205.19641871.01006.0 *B255.	3.0	153.0	604.0 *B		1026.0	1961	
1963 1458.0 810.0 *B 205. 1964 1871.0 1006.0 *B 255.	0.0	180.0	710.0 *B		1249.0	1962	
1964 1871.0 1006.0 *B 255.	5.0	205.0	810.0 *B		1458.0	1963	
	5.0	255.0	1006.0 *B		1871.0	1964	
1965 713.0 455.0 *B 115.	5.0	115.0	455.0 *B		713.0	1965	

Note: *A Estimated from data taken at Ambuklao. *B Estimated from data taken at Baguio City.

Table	9.3	(5)	Maximum Monthly and Daily
		• •	Rainfall at Binga Dam

Year	Max. monthly the year app estimation	rainfall in lied for (mm/month)	Max. monthly rainfall in	Max, daily rainfall in
	Baguio	Ambuklao	the year at Binga (mm/month)	(mm/day)
1966	1026.0		604.0 *B	153.0
1967	1560.0		858.0 *B	217.0
1968	1672.0	÷.	912.0 *B	231.0
1969		862.0	931.0 *A	236.0
1970		411.0	526.0 *A	133.0
1971			702.6	135.9
1972			2529.4	288,8
1973		-	424.2	122.2
1974	÷		1040.1	220,2
1975			479.3	142.2
1976			940.6	367.0
1977		593.0	690.0 *A	175.0
1978		1047.0	1098.0 *A	278.0
1979	1078.0		629.0 *B	159.0
1980			848.2	312.4
1981			560.4	94.2
An the particular second	and and a second se	· · · ·		

Note: *A Estimated from data taken at Ambuklao. *B Estimated from data taken at Baguio City,

D -

7

Table 9.3 (6) Maximum Monthly and Daily Rainfall at Binga Dam

Year	Max. monthly the year app estimation	y rainfall in blied for (mm/month)	Max. monthly rainfall in	Max. daily rainfall in
	Baguio	Ambuklao	the year at Binga (mm/month)	the year (mm/day)
1982			667.9	101.3
1983			632.9	152.9
1984			896.0	198.6
1985			885.4	191.4
1986		•	754.4	326.0
	I and the second	al an		
	n in de sets			
	di Taka Ali			
		-		

Note: *A Estimated from data taken at Ambuklao. *B Estimated from data taken at Baguio City.

Table 9.4The Periods during Which the Hourly RainfallData at the Binga Dam Site are Available

1980 6/5, 9/13~9/22, 9/25~9/29, 10/1~10/2, 10/4~10/6 1982 3/25, $3/31 \sim 4/1$, $4/4 \sim 4/5$, 4/9, $4/13 \sim 4/18$, 4/21, 5/1, 5/9 ~5/10, 5/14, 5/17~5/20, 5/22~5/23. 5/25 ~ 5/26, 5/28, 6/3, 6/8, 6/12, 6/14, 6/20~ 6/24, 6/26 ~7/3 1985 5/23, 5/25, 5/28 ~ 5/31, 6/3, 6/5, 6/7 ~ 6/11, 6/13 ~ 6/18, 6/20~7/2, 7/5~7/8, 7/11, 7/18 ~7/20 7/22 ~7/23, 7/27, 8/1 ~8/2, 8/3~8/6, 8/8~8/14, 8/18 ~ 8/23, 8/26~8/29, 9/2 ~ 9/10, 9/11~9/12, 9/19 9/21, $9/26 \sim 10/1$, 10/5, 11/19, $11/24 \sim 11/26$ 3/24, 7/6, 7/8 ~7/11, 7/17~7/21, 7/24~7/25; 1986 7/28 - 8/6, 8/8 - 8/9, 8/11 - 8/14, 8/16 - 8/18, 8/22 ~9/5, 9/15, 9/18, 9/20, 9/23 ~9/24, 9/26, 9/28 - 9/29, 10/3, 10/6-10/10, 10/23-10/24, 10/26, 11/1, 11/7, 11/8, 11/12, 11/16 \sim 11/19, 11/22

Table 9.5 Maximum Rainfall (RT) of Consecutive Hours (T)

231:0 273.9 24 371 109.5 157.7 0.5 0.682 0.5 181.2 0.662 273. 0; 736 0.5 2 0.667 0.5 ដ 0.458 0.665: 0.458 153.5 0.458 170.2 0.621 0.458 0.687 0.612 Ξ 255 67 0.635 0.584 0.417 0.574 0.576 0.417 157.9 0.417 0.417 10 235.5 64 132.5 0.511 0.578 147.4 0.538 0.562 0.375 61.5 0.375 118 0.375 0.375 σ 214.5 130 0.463 0.496 0.530 0.475 0, 333 107 0.333 0. 333 ŝ 0.333 58 184 0.476 0.530 0. 392 0.404 0.292 0.292 90.5 110.7 0.292 176.5 58 0.292 0.388 0.353 0.435 . 0, 25 0,340 0.25 161.5 0.25 81.5 0.25 . 93.2 42.5 9 145 0.365 0.292 76.2 0.278 0.391 0.208 40 0.208 0.208 0.208 67.5 0.348 0.338 0.233 63.7 0.167 0.271 129 0.167 62.5 0.167 \$ 0.167 5 0.173 0.303 0,240 0.125 0.283 0.125 0, 125 47.3 112.5 0.125 55.5 m 10 0.269 0.180 0, 133 36,3 0.256 0.083 0.083 29.5 0.083 41.5 0.083 . 95 2 0.108 0.042 0.073 0.151 0.142 25.0 20.0 0.042 15.5 0.042 0,042 56 $\left|\begin{array}{c} {}^{R}_{T} \\ {}^{R}_{T/R_{24}} \end{array}\right|$ RT/R24 ^RT/R₂₄ T /24 ^RT/R₂₄ T/24 T /24 T /24 ы Б H H R 1980.10.5 1985.6.22 1986.7.9 1982.7.3

Table 9.6 Period for Which the Reservoir Operation Records are Available

Station Name	1900	1	910	19	20	19	30	19	40	19	50	19	60 19	70 19	(year) 80
BIMGA DAM												•			
Daily inflow discharge								÷							. 87/3
Daily water level								. •					64/1		87/9
					•								54/1		87/9
Daily spilled discharge		•				•			ľ						38
Hourly water-level &		•			-	•									
generator output		•			-								e 1		ne
Spilling record(hourly)						.÷.	:	.1					- 64 		80
Wonthly inflow dischare				:		•							62/1		87/2
monienty mirrow discude		•			· . ·					• •			62		86
Annual inflow dischage														•	
AMBUKLAO DAM				·. •						· · ·					
19 9 9 9 9 9							·					58			86
Hourly spillway discharge		•													

Table 9.7

.7 Period in Which Typical Magnitude Floods Occurred

No.	Period	Maximu	n Inflow
1.	May 22 to 30, 1976	1,181.0 m ³ /s	éc (May 26)
2	June 25 to July 3, 1976	2,497.0	(June 30)
3	November 1 to 7, 1980	2,617.0	(Nov. 5)
4.	August 28 to 31, 1984	2,498.8	(Aug. 27)
5.	June 22 to 25, 1985	902.5	(June 22)
6.	June 28 to July 1, 1985	1,258.8	(June 29)
7.	July 9 to 11, 1986	939.1	(July 11)

Water Level ML QS1

Discharge through the Binga spillway Increment of the storage capacity Releases through the Binga power plant Inflow to the Binga reservoir ΔQ

QEI

QIN2 : TNIQ

Run-off inflow from the Binga dam basin excluding Ambuklao dam basin Discharge through the Ambuklao Spillway QS2

Releases through the Ambuklao power plant QE2

÷

.

• •			•	BINGA C	DAM				MONIVIAC AND	
DATE	TIME	_ک	۲. L	DV	0S1	QE1	QINI	0.52	NIGUNEAU UAN	0180
	(HR)	ш (Ш	. L . M)	(M**3/S)	(M**3/S)	(S/E**W)	(W**3/S)	(W**3/S)	CM**3/S)	C14**3/S)
1976. 5.22	0.0	56	57.30	0.0	0,0	18.0560-		c	0100 5	(
	•	56	57,30	0.0	c		10.0540			2
	ر د د	У У	2 40						0560.1	0.9610
· · ·) (ว.∿ า`น					18.0560	0.0	17.0950	0.9610
)))	n i	01.00		0	18.0560	18.0560	0.0	17.0950	0.9610
•.) (+ 1	n i	22.2	23.8715	0.0	18.0560	41.9275	0:0	17.0950	24.8325
	2 ¢	o nu	1.40	23.8715	0	18.0560	41.9275	0.0	17.0950	24.8325
		Ο Λι	1.40	0.0	0.0	18.0560	18.0560	0.0	17.0950	0.9610
		Ο· Λι		23.8715	0	18.0560	41.9275	0.0	17.0950	24.8325
•	n v v	O A I	1 1 1 1 1	0.0	0.0	18.0560	18.0560	0.0	17.0950	0.9610
	0.6	ο in i	05.20	24.9566	0.0	18.0560	43.0126	0.0	17.0950	25.9176
	10.0	n i	7.50	0.0	0	18.0560	18.0560	0:00 · 0	17.0950	0.9610
	0.11	9 · 9 ·	2.55	23.8715	0	18.0560	41.9275	0.0	17.0950	24.8325
· · · ·	12.0	9 9 1	22	0.0	0.0	18.0560	18.0560	0.0	17.0950	0.9610
•	13.0	ю И	.7.50	-23.8715	0.0	18.0560	-5.8155	0.0	17.0950	-22.9105
	14.0	9 10	7.50	0.0	0	18.0560	18.0560	0.0	17.0950	0.9610
	0 0 0	ο. Γ	7.50	0	0.0	-18.0560	18.0560	0.0	17.0950	0.9610
		0 	02.7	0.0	0.0	1.8.0560	18.0560	0.0	17.0950	0.9610
•		ο, Ο,		-24.9566	0	18,0560	-6.9006	0.0	17.0950	-23.9956
		0 \ N 1		0.0	0	18.0560	18.0560	0.0	17.0950	0.9610
•	0.91	0		0.0	0	18.0560	18.0560	0.0	17.0950	0.9610
	20.02	0	1.40	0.0	0.0	18.0560	18.0560	0.0	17.0950	0.9610
	20 CC	0 v 0 v	. 4.7	0.0	0	18.0560	18.0560	0.0	17.0950	0.9610
•		o i A i	1.42 1.0	0.0	0	18.0560	18.0560	0.0	17.0950	0.9610
	23°0	0 1		24.9566	0.0	18.0560	43.0126	0.0	17.0950	25.9176
•	24.0	50	7.50	0.0	0.0	18.0560	18.0560		17.0950	0.9610

• 12 D

Table 9.8

(N**3/S) -0.8880 -0.8880 24.0686 -0.8880 -0.8830 -0.8880 -0.8880 22.9835 22.9835 -0.8880 24.0686 -0.8880 -0.8880 24.0686 22.9835 -0.8880 -0.8880 21.8984 -0.8880 21.8984 514.5195 466.3823 24.0686 22.9835 GIN2 . 0.0 AMBUKLAO DAM Qe2 (W**3/S) 16.4470 6.4470 6.4470 6.4470 6.4470 6.4470 6:4470 6.4470 6.4470 6.4470 6.4470 6.4470 6.4470 6.4470 6.4470 6.4470 6.4470 6.4470 6.4470 6.4470 6.4470 6.447.0 6.4470 6.4470 (N**3/S) 0.0 0.0 0.0 0.0 0.0 0.00 0.0 0.0 0.0 0.10 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Q S 2 15.5590 15.5590 15.5590 40.5156 15.5590 15.5590 15.5590 40.5156 15.5590 15.5590 15.5590 15.5590 39.4305 15.5590 15.5590 40.515.6 30.9666 39.4305 38.3454 39.4305 449.9355 39.4305 38.3454 (N**3/S) 0.0 QINI 15.5590 5.5590 5.5590 5.5590 5.5590 15.5590 5.5590 5.5590 5.5590 5.5590 5.5590 5.5590 5.5590 5.5590 5,5590 5.5590 5.5590 5.5590 5.5590 5.5590 5.5590 5.5590 5.5590 (W**3/S) а Ш (S/2**W) 000 0.0 0°0 0.0 0.0 0000 0.0 0.0 0:0 0.0 0.0 0.0 0.0 0:0 0.0 0.0 0.0 0. 0 0.0 0.0 0.0 Q.S.1... BINGA DAM DV . QS 23.8715 24:9566 22.7865 24.9566 23.8715 24.9566 22.7865 465.4946 23.8715 515.4077 23.871 (M**3/S) :0 0 0.0 0.0 0.0 0.0 00 0.0 0.0 0 0.0 000 0.0 567.50 567.80 567.80 567.85 567.85 567.90 567.60 567.60 567.65 567.70 567.90 567.50 567.50 567.65 567.70 567.70 567.75 567.75 568.00 (E. L.M) 567.55 567.55 568.05 ר. א TIME 4.0 5.0 0 0 0.2 00000 0,4 2 0 6.0 7.0 8.0 19.0 20.0 22.0 0.0 0.0 5 5 CHR) 0 1976. 5.23 DATE

6.4470

40.5156

5.5590

24.9566

568.10

) *

13

(N**3/S) 46.3856 70.2571 21.4290 46.3856 96.2988 96.2988 2:1: 2:554 22:3405 21.2554 47.2970 45.3005 45.3005 19.0853 20.1703 71.3422 22.3405 48.3821 70.2571 50.552 49.4672 50.552. 48.382 0.0 Q.I.N.Z AMBUKLAO DAM 24.6410 (S/S**W) 24.6410 24.6410 24.6410 24:-6410. 24 : 6410 24.6410 24.6410 24.6410 24.6410 24.6410 24.6410 24.6410 24.6410 24.6410 24.6410 24.6410 24.6410 24.6410 24.6410 24 6410 24.6410 24.6410 24 6410 .0 E 2 (M**3/S) 0.0 000 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0,00 0.0 0.0 0.0 0.0 0.0 Q S 2 71.9380 46.0700 69.9415 71.0266 69.9415 71.0266 46.0700 94.8981 43.7263 44.8113 20.9398 95.9832 20.9398 45.8964 146.9815 45.89.64 146.9815 173.0231 75.1933 7.4 1.082 75.1933 (M**3/S) 94.8981 94.8981 73.0231 0.0 GINTO 46.0700 46.0700 46.0700 46.0700 16.0700 46.0700 46.0700 46.0700 46.0700 46.0700 .6.0700 46.0700 46.0700 46.0700 46.0700 46.0700 46.0700 46.0700 46.0700 46.0700 46.0700 46.0700 46.0700 46.0700 46.0700 CM**3/S> QE1 (M**3/S) 0.0 0.0 0.0 0.0 0.0 0.0 00.0 0.0 000 0.0 0.0 0.0 0.0 0.0 0:0 0.0 0.0 0.0 0.0 0:0 QS1 BINGA DAM 25.8680 74.8698 100.9115 00.9115 29.1233 28.0382 29.1233 23 8715 24,9566 23.8715 24 9566 97 6563 98.7413 74.8698 49.9132 99.8264 99.8264 26.9531 26.9531 48.8281 48.8281 48.8281 (M**3/S) 0.0 0.0 0.0) D 568.30 568.25 568.30 568.50 568.90 569.15 569.40 569.60 569.80 570.00 570.20 568.10 568.15 568.20 568.40 568.70 569.05 569.25 570.45 570.70 570.95 571:20 571.45 57.1.70 E.L.M) 568.10 4.0 0.5 22.0 23.0 2.0 0 • 18.0 19.0 0.0 21.0 24.0 0.0 3.0 4.0 0.0 0.9 8.0 0.0 0.0 .0 2.0 <u>о</u>. с 7.0 IME 2.0 0 (HR) 1976. 5.24 DATE

				BINGAD	A		3	- - - - - - - - - - - - - - - - - - -	AMBIIKI AD DA	Σ
	DATE	TIME CHRS	W.L (E.L.M)	. DV (M**3/S)	QS1 (M**3/S)	QE1 (M**3/S)	QIN1 (M**3/S)	QS2 (M**3/S)	0E2 (M**3/S)	QIN2 (M**3/S)
	1976. 5.25	0.0	571.70	0.0	382.6389	63.8600	0.0	0.0	41.9440	
		1.0	572.00	155.1649	382.6389	63.8600	601.6636	0.0	41.9440	559.7195
		2.0	572.30	156.2500	382.6389	63.8600	602.7488	0.0	41.9440	560.8047
		3.0	572.50	104.1667	382.6389	63.8600	550.6653	0.0	41.9440	508.7212
	•	4.0	572.80	157.3351	382.6389	63.8600	603.8337	0.0	41.9440	561.8896
n i	•	5,0	573.15	184.4618	382.6389	63.8600	630.9604	0.0	41.9440	589.0164
- ·	• .	6.0	573.45	159.5052	382.6389	63.8600	606.0039	0.0	41.9440	564.0598
1 =		7.0	573.45	0.0	382.6389	63,8600	446 4988	0.0	41.9440	404.5547
		8.0	573.85	212.6736	382.6389	63.8600	659.1724	0.0	41.9440	617.2283
	• . •	0.0	574.00	80.2951	382.6389	63.8600	526.7937	0.0	41.9440	484.8496
		10.0	574.20	107.4219	382.6389	63.8600	553.9207	0.0	41.9440	511 9766
		11.0	574.40	106.3368	382.6389	63.8600	552.8354	0.0	41.9440	510.8914
		12.0	574.70	162.7604	382.6389	63.8600	609.2590	0.0	41.9440	567.3149
		13.0	574.70	0.0	382.6389	63.8600	446 4988	0.0	0776.17	404 5547
		14.0	574.40	-162.7604	382.6389	63.8600	283.7383	0.0	41.9440	241.7943
		15.0	574.10	-160.5903	382.6389	63.8600	285.9084	0.0	41.9440	243.9644
		16.0	574.90	431.8574	382.6389	63.8600	878.3562	0.0	41.9440	836.4121
		17 0	573.95	-511.0674	382.6389	63.8600	-64 5686	0.0	41.9440	-106.5126
		18.0	573.85	-54.2535	382.6389	63,8600	392.2451	0.0	41.9440	350.3010
		19.0	573.75	-53.1684	382.6389	63.8600	393.3303	0.0	41.9440	351.3862
		20.0	5.73.65	-53.1684	382.6389	63.8600	393,3303	0.0	41.9440	351.3862
		21.0	573.55	-53.1684	382.6389	63.8600	393,3303	0.0	41.9440	351.3862
		22.0	573,50	-26.0417	382.6389	63.8600	420.4570	0.0	41.9440	378.5129
		23.0	573.45	-27.1267	382.6389	63.8600	419.3718	0.0	41.9440	377.4277
		24.0	573.35	-53.1684	382.6389	63.8600	393.3303	0.0	41.9440	351.3862

(M**3/S) 795.0840 741.9158 927.4626 673.9270 231.6360 02.2109 230.3340 205.6626 166.7229 89.5359 270.5322 277.7590 482.4709 544.9622 711.5598 711.5598 793.9990 399.4534 816.3628 764.8679 528.7993 724.3074 -46.8254 272.6211 0.0 GINZ AMBUKLAO DAM 46.2500 46.2500 6.2500 46.2500 46.2500 46.2500 46.2500 \$6.2500 46.2500 16.2500 46.2500 46.2500 46.2500 46.2500 46.2500 46.2500 +6.2500 46.2500 46.2500 (N**3/S) 46.2500 46.2500 46.2500 46.2500 46.2500 46.2500 0 E S 6.0910 5.8480 721.0000 733.6130 710.8000 731.8000 751.7000 756.8379 652.2400 123.3270 202.0700 668.7000 690.0000 20.0000 721.80.00 386.6670 405.0000 264.5911 346.1111 346.111 (M**3/S) 00000 **GS2** 840.2490 841.3340 868.4609 843.5042 868.4609 997.5840 973.7126 946.5859 946.5859 1048.5823 1075.7090 1075.7090 180.9609 1077.8792 103.9209 103.9209 61.1690 1080.0493 1075.7090 946.5859 689.4246 972.6274 788.1658 973.7126 451.7944 (M**3/S) 0.0 GINJ 61.1690 61.1690 61.1690 61.1690 61.1690 61.1690 61.1690 61.1690 61.1690 61.1690 61.1690 61 1690 61.1690 61.1690 61.1690 61 1690 61.1690 61.1690 61.1690 61.16.90 61.1690 61.1690 61.1690 61 1690 (S/S**W) en 1 1 1 885.4170 885.4170 885.4170 885.4170 885.4170 885.4170 885.4170 885.4170 885.4170 885.4170 885.4170 885.4170 885.4170 885.4170 885.4170 885.4170 885.4170 4170 885-4170 (S/S**W) 885.4170 885.4170 885.4170 885.4170 885.4170 885.4170 885.4 **QS1** BINGA DAM DV 50.9983 -78.1250 101.9965 129.1233 129.1233 234.3750 131.2934 133.4635 -78.1250 -103.0816 -257.1614 -106.3368 -494.7915 129.1233 157.3351 -158.4201 27.1267 26.0417 -105.2517 157.3351 (M**3/S) 0.0 0.0 0.0 0.0 571.45 571.70 571.20 571.05 571.20 572.60 572.90 573.20 571 20 571.20 571.40 571.90 572.35 571.60 571 40 571.15 571.65 573.45 572.70 (E.L.M) 573.35 573.15 572.95 572.65 57.1.75 л. М 3.0 22000 22000 22000 22000 0.1 2.0 6.0 23.0 0.0 •••• 2.0 0.0 0 5 6.0 7.0 8.0 0.0 TIME (HR) 0.1 2.0 0 · M 4.0 5.26 DATE 1976.

D- 16

	· ·		· ·						
		Table 9.8 Ho	urly Inflow t	o the Binga	Reservoir Du	tring Typical	Flood Perioc	Is	
							• •		•••
•			-						
•	·		•						
	· · · · ·								•••
· .			. 18					-	
									• •
			BINGA D	AM			AI	MBUKLAO DA	×
DATE	LIME	M . L	D۷	Q S 1	QE1	QINI	Q S 2	QE2	QIN2
	(HR)	(E.L.M)	(M**3/S)	(M**3/S)	(14**3/5)	(M**3/S)	(M**3/S)	(M**3/S)	<pre></pre>
(() 1	(1 1 1	(<			(
12.5 .01	0 0 0 -	い い い い い			04.6700			0824.20	
)		80.272	212.7870	0612.40	7000 - 700 	410.0000	0824.25	-100.001-
	0	573.70	53.1684	212.7890	64.2750	330.2322	410.0000	52.9280	-132.6958
· · · ·	0 M	573.75	26 0417	212.7890	64.2750	303 1055	351.6670	52.9280	-101.4895
• • • •	4.0	573.70	-26.0417	212.7890	64.2750	251.0223	53.3330	52.9280	144.7613
	ى. ە	573.80	52.0833	212.7890	64.2750	329.1472	53.3330	52.9280	222.8862
· · · · · · · · · · · · · · · · · · ·	6.0	574.00	107.4219	212.7890	64.2750	384.4858	53.3330	52.9280	278.2249
	7.0	574.30	160.5903	212.7890	64.2750	437 6541	53,3330	52.9280	331.3931
	8.0	574.35	27.1267	212.7890	64.2750	304.1907	53.3330	52.9280	197.9297
	0.6	574.50	81.3802	212.7890	64.2750	358.4441	53.3330	52.9280	252.1831
	10.0	574.50	0.0	212.7890	64.2750	277 0640	53.3330	52.9280	170.8030
	11.0	574.45	-27.1267	212.7890	64.2750	249.9372	53,3330	52.9280	143.6763
	12.0	574.40	-28.2118	212.7890	64.2750	248.8522	53.3330	52.9280	142.5912
	13.0	574.40	0.0	212.7890	64.2750	277.0640	53.3330	52.9280	170.8030
	14.0	574.35	-26.0417	212.7890	64.2750	251.0223	52,5000	52,9280	145.5943
	15.0	574.35	0.0	212.7890	64.2750	277.0640	0.0	52.9280	224.1360
	16.0	574.40	26.0417	212.7890	64.2750	303.1055	0.0	52.9280	250.1775
	17.0	574.50	55.3385	212.7890	64.2750	332.4023	0.0	52.9280	279 4741
-	18.0	574.55	26.0417	212.7890	64.2750	303.1055	0.0	52.9280	250.1775
	19.0	574.60	28.2118	212.7890	64.2750	305.2756	0.0	52.9280	252.3476
	20.0	574.50	-54.2535	212.7890	64.2750	222.8105	0.0	52.9280	169.8825
	21.0	574.40	-55.3385	212.7890	64.2750	221.7254	0.0	52.9280	168.7974
	22.0	574.30	-53.1684	212.7890	64.2750	223.8956	0.0	52.9280	170.9676
	23.0	574.25	-26.0417	212.7890	64.2750	251.0223	0.0	52.9280	198.0943
, -	24.0	574.25	0.0	212 7890	64.2750	277.0640	0.0	52.9280	224.1360

	e de ¹ an de la composition de la composition de la composition de la composition de								· · · · · · · · · · · · · · · · · · ·
DATE	TIME	W.L (E.L.M)	BINGA DV (M**3/S)	0AM QS1 (M**3/S)	QE1 (M**3/S)	QIN1 (M**3/S)	, 0.52 (M**3/S)	48UKLA0 DAN 0621 (M**3/S)	01N2 (M** 3/5)
1976. 5.2	8 0.0	574.25	0.0	212.7890	79.0630	0 0	52 5000	007× 7	
	1.0	574.25	0.0	109.8340	79.0630	188.8970	0.0	54.3400	134 5570
•	0	574.25	0.0	109.8340	79.0630	188.8970	0.0	54.3400	134.5570
-	0	574.25	0.0	109.8340	79.0630	188.8970	0.0	54.3400	134.5570
	4 I	574.25	0.0	109.8340	79.0630	188.8970	4.7000	54.3400	129.8570
·	0	574.30	26.0417	109.8340	79.0630	214.9387	15.7500	54.3400	144.8487
D	0 0 1	574.40	53.1684	323.1660	79.0630	455.3972	131.1810	54.3400	269.8762
	0 ° °	04.470	0.0	336.8469	79.0630	415.9099	228.2460	54.3400	133.3240
] ;	ວຸ. ສຸດ	274.55	-26.0417	425.0000	79.0630	478.0212	357.3560	54.3400	66.3254
3	0°0'	574.55	0	425.0000	79.0630	504.0630	368.1941	54.3400	81.5291
•.	10.0	574.50	-27.1267	424.7500	79.0630	476.6860	351.9651	54.3400	70 3811
•	11.0	574.30	0.0	424.7500	79.0630	503.8130	352 9580	54.3400	96.5151
	0	574.25	-26.0417	438.1670	79.0630	491.1882	348.7561	54.3400	88.0923
	13.0	574.20	-27.1267	438.1670	79.0630	490.1030	346.6079	54.3400	89.1553
	14.0	574.15	-27.1267	421.3330	79.0630	473.2690	345.0339	54.3400	73.8953
	0,0	574.10	-27.1267	387.6111	79.0630	439.5471	342.9800	54.3400	42.2273
	0.0	574.05	-2.6.0417	265.7810	79.0630	318.8022	254.5880	54.3400	9.8743
•	0.71	573.90	-80.2951	209.0000	79.0630	207.7679	144.6580	54.3400	8.7699
	18.0	573.80	-54.2535	207.5000	79.0630	232.3095	125.7690	54.3400	52.2005
•	19.0	574.05	134.5486	0	79.0630	213.6116	131.1810	54.3400	28.0906
•	20.0	574.40	186.6319	0.0	79.0630	265.6948	236.9930	54.3400	-25.6379
	21.0	574.75	189.8871	9.3950	79.0630	278.3450	245.5100	54.3400	-21.5049
· ·	22.0	574.90	81.3802	112.7420	7.9.0630	273.1851	245.5100	54.3400	-26.6648
•	25.0	575.05	81.3802	130.1170	79.0630	290.5601	244.3690	54.3400	-8.1489
	24.0	575.10	27.1267	219.7500	79.0630	325.9397	243.2300	54.3400	28.3699

Table 9.8

-61.5574 -58.2304 -2.7729 -2.5950 50.7002 (M**3/S) 36.2179 141.0819 223.9349 25.0117 25.1716 -40.1750 -14.1880 -65.0773 -38.9808 -63.8833 245 .8466 234.7044 69.1392 149.4343 37.7914 29.7969 62.8672 62.6699 121.222 0.0 GINZ AMBUKLAO DAM 55.9840 55.9840 55.9840 55.9840 55.9840 QE2 (M**3/S) 55.9840 55.9840 55.9840 55.9840 55.9840 55.9840 55.9840 55.9840 55.9840 55.9840 55.9840 55.9840 55.9840 55.9840 5.9840 55.9840 5.9840 5.9840 5.9840 229.8400 191.6670 86.8030 3.9500 10.2500 19.2220 132.7040 243.2300 242.0730 240.9330 239.7940 232.9470 230.6580 238.6540 230.4800 230,0000 237.5150 235.1890 230.3530 32.7040 32.7040 35.8400 38.9760 198.0880 245.5100 (M**3/S) 0 S 2 0.0 283.8689 229.6154 230.7005 283.8689 256.7419 230.7005 229.6154 283.8689 283.8689 310.9956 310.9956 283.8689 283.8689 312.0806 509.9104 257.8271 38.1223 283.8689 364.1638 255.6571 337.0371 09.9104 229.6154 257.8271 (N**3/S) QIN1 81.7860 (M**3/S) о Ш 202.0830 (M**3/S) **QS1** BINGA DAM DV 27.1267 27.1267 0.0 0.0 53.1684 28.2118 -27.1267 -28.2118 -54.2535 -26.0417 26.0417 -54.2535 -53.1684 -54.2535 -53.1684 54.2535 -26.0417 80.2951 (M**3/S) . 0.0 0 00 0.0 0.0 575.10 574.95 574.80 E.L.M) 575.05 574.90 574.80 574.70 574.60 574.60 574.60 574.70 57.4.75 574.80 574.80 574.80 574.85 574.90 574.85 574.95 575.00 574.90 574.85 574.85 575.00 ر. ۲ 18.0 20.0 12.0 4.0 5°0 6.0 7.0 21.0 TIME CHRO 0.0 0. F 0.0 0.0 0.0 0.0 2.0 3.0 1976. 5.29 DATE

1

(S/2**W) -56.8292 127.6690 153.1290 96.8316 57.8708 57.6027 -47.8212 -76.9740 -46.1932 -73.3898 -35.1010 -13.7995 94.7755 79.6193 25.1980 -24.8020 121.4382 81.7333 62.1135 8.1963 64.1607 64.8927 38.4280 0 GIN2 АМВИКСАО DAM 56.3660 56.3660 56.3660 56.3660 56.3660 56.3660 56.3660 56.3660 56.3660 56.3660 56.3660 56.3660 56.3660 56.3660 56.3660 56.3660 56.3660 56.3660 6.3660 56.3660 56.3660 56.3660 56.3660 56.3660 (M**3/S) 6.3660 QE2 3.2500 7.3500 49.6330 181.1810 122.8200 240.3350 236.5630 233.3530 230.8550 229.8400 191.4800 114.8400 28.7100 6.8000 131.1810 130.0550 28.8850 26.7200 124.8180 121.0560 245.5100 19.4160 18.6840 17.9510 (M**3/S) **Q** \$2 212.7450 212.7450 347.3645 241.0278 2.12.8160 212.7450 157.4065 212.7450 212.7450 159.6476 185.6183 212 7450 240.9568 238.7867 131.3648 239 8717 239.8717 158.4915 268.1543 185.6183 212.7450 184.6042 239 9427 239.9427 (M**3/S) 0 QIN1 81.7260 81.7260 81.7260 81.7260 81.7260 81.7260 81.7260 81.7260 81.7260 81.7260 81.7260 81.72.60 81.7260 81.7260 81.7260 81.7260 81.7260 81.7260 81.7260 81.72.60 81.7260 81.7260 81.7260 81.7260 81.7260 (M**3/S) (M**3/S) 0.61 131.0190 131.0190 131.0190 131.0190 31.0190 31.01.90 31.09.00 31.0190 31:0190 131.0900 131.0900 131.0190 31.0190 31.0190 131.0190 131-0900 131.0900 131.0190 31.01.90 31.0190 31.0190 31.0900 31.0900 31.0190 as1 BINGA DAM -54.2535 -27.1267 -28.2118 134.5486 28.2118 27.1267 27.1267 27 1267 28.2118 -55.3385 -53.1684 55.3385 -81.3802 -27.1267 27.1267 26.0417 0.0 (M**3/S) 00 0.0 00 0.0 0 0.0 ΛQ 575.00 575.15 575.15 575.05 575.05 575.05 574.95 575.20 W.L E.L.M) 575.10 575.10 574.80 57.4.75 575.15 574.75 57.4.25 574.85 575.10 575.00 575.15 575.05 575.10 575.10 1.0 19.0 20.0 21.0 24.0 I IME. 0.0 0 2 0.2 4.0 0 2 6. 0 0.2 8.0 0 6 0 0 2:0 0 2 0.4 15.0 16.0 0.7 8.0 CHRY 1976. 5.30 DATE

						-			
								•	
		• • • •	BINGAD	AM			AM	IBUKLAD DAN	
DATE	IME	8.L	70	a S1	QE1	QIN1	Q S 2	Q E 2	QIN2
	HR)	(E.L.M)	(S/2**W)	(N**3/S)	(W**3/S)	(W**3/S)	(M**3/S)	(M**37S)	CM**3/S.
	i. At			-					
976. 6.25 (0.0	569.20	0.0	0.0	83.7000	0.0	0.0	53.8000	0.0
	0	569.15	-26.0417	0.0	83.7000	57.6583	0.0	53.8000	3.8583
	2.0	569.15	0.0	0.0	83.7.000	83 7000	0.0	53.8000	29.9000
	3.0	569.15	0.0	0.0	83.7000	83.7000	0.0	53.8000	29.9000
	4 0	569.15	0.0	0.00	83.7000	83.7000	0.0	53.8000	29.9000
	0 2	569.15	0.0	0.0	83.7000	83.7000	0.0	53.8000	29.9000
	6.0	569.15	0.0	0.0	8.3 ; 7 0 0 0	83.7000	0.0	53,8000	29,9000
	0.2	569.10	-23.8715	0.0	83.7000	59.8285	0.0	53,8000	6.0285
	0.8	569.10	0.0	0.0	83.7000	83.7000	0.0	53.8000	29.9000
	0	569.05	-24.9566	0.0	83.7000	58.7434	0,0	53.8000	4.9434
	0.0	569.00	-23.8715	0.0	83.7000	59.8285	0	53.8000	6.0285
	1.0	568.95	-26.0417	0.0	83.7000	57.6583	0.0	53.8000	3.8583
	0.2	568.95	0.0	0*0	83,7000	83,7000	0.0	53,8000	29.9000
• •	0.0	568.95	0.0	0.0	83.7000	83.7000	0.0	53.8000	29.9000
	4 . 0	568.95	0.0	0.0	83.7000	83.7000	0.0	53.8000	29.9000
	0.5	568.90	-24.9566	0.0	83.7000	58.7434	0.0	53.8000	4.9434
•	0	568.90	0.0	0.0	83.7000	83.7000	0.0	53.8000	29.9000
	2.0	568.90	0.0	0.0	83.7000	83.7000	0.0.	53.8000	29,9000
	8.0	568.90	0,0	0.0	83.7000	83.7000	0.0	53.8000	29,9000
	0.6	568.90	0.0	0.0	83.7000	83.7000	0,0	53.8000	29.9000
		568.90	0.0	0.0	83.7000	83.7000	0.0	53.8000	29.9000
1	0.1	568.90	0.0	0.0	83.7000	83.7000	5.5000	53.8000	24.4000
1.0) C	569.10	99.8264	0.0	83.7000	183.5264	454.1001	53.8000	-324.3733
		569.95	424.2617	0.0	83,7000	507.9617	480.3999	53.8000	-26.2380
10	0. 7	570.50	276.6926	0.0	83.7000	360.3926	422.3999	53.8000	-115.8071
ł									

- 21

D

(N**3/S) 32.0684 320.0132 137.7219 21.6052-31.1781 -4.9304 -102.1316 54.8000 -87.1078 -196.6998 16.9712 136.6368 -197:7999 -90.8000 -95.5000 -99.8000 -9.9.70.00 -143.3315 -143.5314 -203.6998 -201.2999 -152.7464 -101.3000 -169.573 -169.573 0.0 QIN2 AMBUKLAD DAM 54.8000 54.8000 54.8000 54.8000 54.8000 54.8000 54.8000 54-8000 54.8000 54.8000 54.8000 54.8000 54.8000 54.8000 54.8000 54.8000 54.8000 54.8000 54.8000 54.8000 54.8000 54.8000 54, 8000 54.8000 (M**3/S) 0 2 3 0 1 3 422.6001 363.8999 168.9000 168.2000 226.8000 227.0000 227,0000 25.8000 422.3999 422.3999 185.6000 227.0000 227.0000 227.0000 228.1000 21.1000 30.1000 30.0000 237.3000 24.0000 231.6000 131.6000 <W**3/S> 0.0 0. 0 0.0 Q S 2 85.1000 85.1000 85.1000 192.5219 94.6920 38.2684 85.1000 85.1000 85.1000 494.1709 472.4695 450.7681 374.8132 192.5219 191 4368 244.6052 138.2684 38.2684 112.2267 112.2267 139.3535 85.1000 85.1000 85.1000 (N**3/S) 0.0 GIN1 85.1000 85.1:000 85.1000 5.1000 85.1000 85.1000 85.1000 85.1000 85.1000 85.1000 85.1000 85.1000 85.1000 85.1000 85.1000 85.1000 85.1000 85 , 1000 85.1000 85:1000 85.1000 85,1000 85.1000 85.1000 85.1000 (M**3/S) a E 1 œ (M**3/S) 0.0 0.0 00 0.0 0.0 0.0 0. 0 0.00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0. 0 0.0 0.0 0.0 0.0 as1 BINGA DAM DV 09.5920 53.1684 289.7134 107.4219 07.4219 53.1684 409.0710 387.3696 27.1267 27.1267 54.2535 06.3368 53.1684 365.6682 59.5052 (N**3/S) 0.0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 574.30 571.30 573.50 574.90 574.60 574.70 574.70 574.75 574.80 574.80 574.80 574.80 574.80 574.80 574.90 574.90 572.75 573.30 574:00 574.20 <E.L.M) 570.50 ч. Г TIME (HR) 0.0 0 0 ۰ و 2.0 0.6 0.0 21.0 22.0 23.0 4.0 <u>,</u> 1976. 6.26 DATE

(N**3/S) -224.6415 -158.7000 -82.9267 -53.4951 -90.5920 54.2000 -200.5998 -199.8999 -196.5998 -242.3368 -66.8513 -117.2196 -115.4000 -90.1000 -141.5684 -64.0583 -63.8733 -64.5882 -67.7583 -73.5465 -148.231 -37.5465 -121.7417 -123.9118 Q I N Z 0 AMBUKLAO DAM -QE2 54.2000 54.2000 54.2000 54.2000 54.2000 54.2000 54.2000 (M**3/S) 54.2000 54.2000 54.2000 54.2000 54.2000 54.2000 54.2000 54.2000 54.2000 54.2000 54.2000 54.2000 54.2000 54.2000 54.2000 54.2000 54.2000 227.6000 189.7000 131.6000 231.6000 230.9000 228;5000 4.2000 12.0000 232.4000 232.4000 46.4000 229.6000 86.8000 167.0000 229.6000 19.4000 21.1:000 21.1000 122.0000 22.8000 23.8000 24.8000 58.8000 26.7000 26.7000 (M**3/S) 0 S 2 0.0 85.2000 85.2000 59.1583 56.9882 85.2000 85.2000 -24.3920 -21.1368 85.2000 32.0316 6706.7 58.0733 219.7486 138.3684 85.2000 166.5802 13.4118 111 2417 112.3267 139.4535 11.2417 139.4535 59.1583 56 9882 (M**3/S) Q I N 1 85.2000 5.2000 (N**3/S) 0 E 1 (S/S**W) 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0:0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 051 BINGA DAM -109.5920 -27.1267 -26.0417 -28.2118 134.5486 26.0417 53 1684 81.3802 -53.1684 27.1267 54.2535 28.2118 26.0417 54.2535 -26.0417 -28 2118 (M**3/S) 0.0 0.0 0.0 000 DV: 000 574.90 574.85 E.L.M. 574:90 574.90 574.80 574.80 574.80 57.4.75 574.60 574.40 574:20 574.55 574.70 574.70 574.60 574:65 574.70 574.80 57.4 . 45 574.60 574.85 574.90 575.00 574.95 574.90 E M 5 5 0.0 2.0 3.0 4.0 0 0 0 1.0 0 ... 6.0 8.0 о. У. О 14.0 0 6.0 0.12 19.0 23.0 24.0 24.0 TIME (HR) 7.0 8.0. 1976. 6.27 DATE

				•			•		-	
	·,		e at			•				
				-						
							•.	••••		-
			<u>.</u>	BINGA D	AM		•	44	MALIXI AN DAM	
DATE	TIME		۳.L	ν	. a S 1	QE1	0 I N 1	0.S2		01 N 2
	(HR)		(E.L.M)	(W**3/S)	(W**3/S)	(W**3/S)	(M**3/S)	(M**3/S)	(1/**3/S)	(M**3/S)
) ())) , , , , , , , , , , , , , , ,	•				•••				ì	
1710. 0.28	0.0		574.90	0.0	0.0	83.6000	0.0	126.7000	53.0300	0.0
	1.0		574.80	-54.2535	329.8999	83.6000	359.2461	127.7000	53.0300	178.5161
:	2.0		574.75	-27.1267	216.7000	83.6000	273.1729	127.7000	53.0300	92.4429
	3.0	:	574.65	-54.2535	216.0000	83.6000	245.3464	128.9000	53.0300	63.4164
	4.0		574.70	27.12.67	216.0000	83.6000	326.7266	128.9000	53.0300	144.7966
	о N	: •	574 80	54.2535	111.5000	83.6000	249.3535	128.9000	53,0300	67.4235
	0.9		574.85	28.2118	111.7000	83.6000	223.5118	128.9000	53.0300	41.5818
	2.0		574.90	26.0417	111.9000	83.6000	221.5417	131.1000	53.0300	37.4117
	8°. O		574 95	28.2118	112.1000	83.6000	223.9118	240,0000	53.0300	-69.1180
	0°6		575.05	53.1684	320.7500	83.6000	457.5181	336.5000	53.0300	67.9883
· · · ·	10:0	. •	574.90	-81.3802	395.2000	83.6000	397.4194	248.9000	53.0300	95.4895
			574.75	-81.3802	355.3999	83.6000	357.6194	144.2000	53.0300	160.3894
	12.0		574.50	-134 .5486	318.0000	83.6000	267.0510	131.2000	53.0300	82.8210
	13.0	•	574.50	0.0	214.0000	83.6000	297.5999	227.4000	53.0300	17.1699
	14.0	•	574.60	54.2535	214.5000	83.6000	352.3533	244.2000	53.0300	55.1233
•	15.0		574.55	-28.2118	384.7000	83.6000	440.0879	340.7000	53,0300	46.3582
	16.0		574.60	28.2118	384.7000	83,6000	496.5115	336.5000	53.0300	106.9817
	17.0	•	574.60	0.0	384.7000	83.6000	468.2998	336.6001	53.0300	78.6699
	8	. •	574.50	-54.2535	633.0000	83.6000	662.3462	474.5000	53.0300	134.8164
	19.0		574.50	0.0	632.0000	83.6000	715.5999	533.8000	53.0300	128.7700
•	20.0		574 50	0.0	632.0000	83.6000	715.5999	532.6001	53.0300	129.9700
	21.0		574.55	26.0417	632.5000	83.6000	742.1414	531.6001	53.0300	157.5115
	22.0	•	574.60	28.2118	632.5000	83.6000	744.3115	530.6001	53.0300	160.6816
	23.0		574.60	0.0	634.0000	83.6000	717.5999	529.2000	53,0300	135.3701
•••	24.0		574.60	0,0	634:0000	83.6000	717.5999	454.1001	53.0300	210.4700

			Table 9.8	Hourly Inflow	to the Binga	Reservoir D	uring Typica	1 Flood Perio	spo	
									ہ - بر - ۲	•
. •	•	- 14 - 12 - 1					·	:	•	
	•				•		•			•
				BINGA D	AM			A	MBUKLAO DA	N.
•	DATE	TIME	_J. 3	D۷	Q S 1	0E1	QINI	Q S 2	0E2	GINZ
		(HR)	(E.L.M)	(W**3/S)	<hr/>	(M**3/S)	<pre><w**3 s=""></w**3></pre>	(W**3/S)	(M**3/S)	(M**3/S)
	1976. 6.29	0.0	574.60	0.0	634.0000	82.8000	0.0	454.1001	55.0000	0.0
		1.0	574.40	-109.5920	0.0	82.8000	-26.7920	357.0500	55.0000	-438.8420
·		2.0	574.40	0.0	0.0	82.8000	82.8000	332.6001	55.0000	-304.8000
		3.0	574.35	-26.0417	0.0	82.8000	56.7583	332.2000	55.0000	-330.4414
		4.0	574.40	26.0417	0.0	82.8000	108.8417	331.8000	55.0000	-277.9583
D		2.0	574.50	55.3385	0.0	82.8000	138.1385	331.3999	55.0000	-248.2614
	•	6.0	574.60	54.2535	0.0	82.8000	137.0535	331.0000	55,0000	-248.9465
2		2.0	574.70	53.1684	0.0	82.8000	135.9684	331.0000	55.0000	-250.0316
5		8.0	574.80	54.2535	0.0	82.8000	137.0535	331.2000	55.0000	-249.1465
		0.6	574.90	54.2535	0.0	82.8000	137.0535	308.7000	55.0000	-226.6465
		10.0	574.85	-26 0417	0.0	82.8000	56.7583	226.8000	55.0000	-225.0415
		11.0	574.80	-28.2118	0.0	82.8000	54.5882	227.6000	55.0000	-228.0116
. •		12.0	574.85	28.2118	0.0	82.8000	111.0118	239.4000	55.0000	-183.3881
		0	574.85	· 0 • 0	0.0	82.8000	82 8000	295.1001	55.0000	-267.3000
	•	14.0	574.85	0	161.7000	82.8000	244.5000	589.2000	55.0000	-399.7000
		15.0	574.65	-109.5920	346.5000	82,8000	319.7078	705.5000	55.0000	-440.7922
		16.0	574.55	-54.2535	408.0000	82.8000	436.5461	709.8000	55.0000	-328.2539
		17.0	574.40	-81.3802	405.5000	82.8000	406.9194	704.3999	55.0000	-352.4805
		18.0	574.20	-106.3368	402.0000	82.8000	378.4629	699.7000	55.0000	-376.2371
		19.0	574.20	0.0	398.5000	82.8000	481.2998	969.1001	55.0000	-542.8003
		20.0	574.10	-54.2535	333.6001	82.8000	362.1462	969.2000	55.0000	-662.0537
	•	21.0	574.15	27.1267	312.0000	82.8000	421.9265	716.0000	55.0000	-349.0735
		22.0	574.40	133.4635	401.5000	82.8000	617.7632	873.6001	55.0000	-310.8369
		. 23.0	574.40	0.0	580.3000	82.8000	663.0999	1779.2000	55.0000-	-1171.1001
		24.0	574.50	55.3385	906.2000	82.8000	1044.3381	1744.8999	55.0000	-755.5618

(M**3/S) 715.1318 560.4268 558.5999 164.1948 477.2168 834.4304 535.9692 489.4592 573.0708 614.4197 592.9797 527.7380 593-4001 54.0000 503.4683 5.09.6448 586.2314 695.6316 594.8416 512.2000 326.9612 123.4412 214.7693 260.2051 QIN2 0.0 AMBUKLAO DAM 52.9000 52.9000 52.9000 52.9000 52.9000 52.9000 52.9000 52.9000 52.9000 52.9000 52.9000 52.9000 5.2., 9000 52.9000 52.9000 52.9000 52.9000 52.9000 52.9000 52.9000 52.9000 52.9000 52.90.00 (N**3/S) 0 E 2 1306 3999 474.8999 675.0000 1672.8999 1587.3999 1270.2000 1277.5000 525.0000 630.0000 670.7000 675,0000 1807.5000 502,0000 8999 616.0000 272.7000 907.700 898.3000 792.6001 1757.6001 1761.1001 744.8999 1604.0000 339.0000 1177.6001 (W**3/S) 1008.3 Q S 2 1490.7051 1952.7000 2396.7314 2372.5999 2372.5999 2254.7195 1581,7998 2421.4314 2418.4414 1858.1379 2443.0317 2388.3267 1883.6692 2160.0303 2496.5691 2418.5708 2016.0796 2081.3682 2292.5447 1983.8611 1678.3411 1556.0947 2440.6592 . (M**3/S) 0.0 QINI 82.6000 82.6000 82.6000 82.6000 82.6000 82.6000 82.6000 82.6000 82.6000 82.6000 82.6000 82.6000 82.6000 82.6000 32.6000 82.6000 82.6000 (W**3/S) 82.6000 82.6000 82.6000 82.6000 82.6000 82.6000 82.6000 a E 1 2196.3999 1809.5000 2493.3000 2331.7000 1960.0000 1499.2000 973.3999 2173.8000 2367.3000 2392.0000 2309.8000 2278.6001 2290.0000 2290.0000 2578.8999 2602.2000 2551.8999 1393.2000 1268.7000 1341.0000 1912.5000 906.2000 1248 6001 1870.1001 1945.6001 (M**3/S) QS1 BINGA DAM DV 236.5451 186.6319 187.7170 -53.1684 -53.1684 80.2951 159.5052 460.0693 -244.1406 -215.9288 -321.1804 -398.2202 53.1684 26.0417 -295.1387 -213.7587 164.9305 -184.4618 27.1267 -164.9305 (M**3/S) 0..0 00.0 0.0 0.0 573.70 575.20 575.50 575.20 574.75 574.35 573.75 573.00 572.65 572.65 572.65 572.75 573.20 573.55 573.45 573.35 573.40 573.45 573.45 574.00 574.35 574.50 573.95 573.55 (E.L.M) 573.4 м. Г 16.0 13.0 4.0 17.0 22.0 18.0 9.0 20.0 21.0 0. M 2.0 8.0 0.0 10.0 0 0 8 0 0 24:0 .0. .0 1.0 2.0 3.0 TIME CHR) 1976. 6.30 DATE

- 26

D

Table 9.8

(M**3/S) 0.0 -815.0366 181.3347 -8.6069 -773.3469 -754.5168 -624.1733 -586.2000 -608.4270 -745.8684 -724.7632 -181.3000 -731.4353 -75.2585 -77.0586 -685.4951 -78.5732 351.2000 -856.4731 -820.3953 -712.5037 -417.1001 -340.1001 -313.7730 -77.4001 QIN2 AMBUKLAO DAM 47.5000 47.5000 47.5000 47.5000 47.5000 47.5000 17.5000 47.5000 47.5000 47.5000 47.5000 47.5000 47.5000 47.5000 47.5000 47.5000 47.5000 47.5000 47.5000 47.5000 47.5000 17:5000 (N**3/S) .7.5000 47.5000 0 E 2 2290.0000 1885.3000 1775.8000 1779.2000 1784.0000 1784.0000 1790.3999 1876.3999 1893.3999 1893.3999 1835.8000 1593.7000 1576.3000 340.0000 104.2000 1114.3000 120.0000 124.0000 128.0000 167.8000 180.2000 1853.6001 909.6001 1117.8000 170.6001 (M**3/S) Q S 2 0.0 1117.7634 1223.0730 1240.5000 1058.1531 970.3999 1092.9268 1146.5833 1152.4048 216.1367 084.4268 062.9048 928.6963 970.3999 098.4414 901.5266 1199.1267 178.0315 1138.4348 1153.1931 876.5000 878.0000 892.3647 1092.2415 1087.8999 (M**3/S) GIN10 79.7000 79.7000 79.7000 79.7000 9.7000 7000 79.7000 0002.62 0.00.2 . 6, 70.000 9.7000 9.7000 9.7000 9.7000 9.7000 79.7000 0002.6 79.7000 9.7000 9.7000 9.7000 79.7000 9.7000 9.7000 79.7000 (M**3/S) ш 1164.0000 (M**3/S) 1807.5000 1014.8000 1092.3000 1160.8000 1170.5000 1151.5000 1063.5000 1059.5000 970.0000 890.7000 890.7000 901.3999 942.2000 986.5000 992.7000 794.7000 796:8000 1030.1001 977.6001 986.1001 798.3000 008.2000 904.6001 051 ... BINGA DAM 27.1267 157.3351 52.0833 -80.2951 -27.1267 -185.5469 -80.2951 -53.1684 106.3368 210.5035 133.4635 27.1267 26.0417 26.0417 27.1267 27.1267 -157.3351 (M**3/S) 0.0 0.0 0.0 0.0 0.0 0.0 20 572.60 572.60 573.45 573.30 573.20 573.70 572.90 572.60 572.90 573.80 573 40 573.45 (E.L.M) 573.85 573.85 573.30 573.35 573.45 573.20 573.25 573.30 573.35 573.35 573.35 н. К. 0 • 2.0 о. У 4.0 5.0 0000 0000 54 W 2 - 0 16.0 17.0 20.0 21.0 22.0 TIME (HR) 1976. 7 DATE

) - 27

AM	ATNGA DAM
JAM QS1	DV QS1
(M**3/S) ((H**3/S) (H**3/S) (
1008.2000	0.0 1008.2000
304.0000	-578.3418 304.0000
301.5000	366.7532 301.5000
301 5000	-53.1684 301.5000
296.5000	-157.3351 296.5000
296.5000	-156.2500 296.5000
292.8000	-78.1250 292.8000
224 4000	26.0417 224.4000
191,0000	52.0833 191.0000
192.0000	52.0833 192.0000
193,0000	26.0417 193.0000
193.0000	26.0417 193.0000
193.8000	26.0417 193.8000
193.8000	-26.0417 193.8000
194 5000	104.1667 194.5000
247.6000	79.2101 247.6000
299.5000	53.1684 299.5000
300.5000	52.0833 300.5000
251.5000	158.4201 251.5000
203.0000	1185.9807 203.0000
205.5000	-920.1387 205.5000
209 5000	241.9705 209.5000
214.0000	241.9705 214.0000
217.5000	162.7604 217.5000
220 7000	54.2535 220.7000

				. 11. 11.			 • .		
•			BINGA	DAM			AI	MBUKLAO DA	Σ
DATE	E TIME (HR)	K K K	DV (M**3/S)	QS1 (M**3/S)	QE1 (M**3/S)	QIN1 (M**3/S)	QS2 (M**3/S)	QEZ (M**3/S)	QINZ (M**3/S)
· · · · ·				• • •					
1976.	7.3 0.0	575.10	0 0	220.7000	84.5000	0.0	693.3000	46.9000	0.0
	•	575.10	00	0.0	84.5000	84.5000	683.6001	46.9000	-646.0000
•	2.0	575.20	54.2535	0.0	84.5000	138.7535	682.0000	46.9000	-590.1462
]	0 20	575.30	55.3385	0.0	84.5000	139.8385	681.6001	46.9000	-588.6614
D	4.0	575.40	55.3385	0.0	84.5000	139.8385	680.8000	46.9000	-587.8613
- :	5.0	575.40	0.0	0.0	84,5000	84.5000	680.0000	46.9000	-642.3999
29	6.0	575.30	-55.3385	0.0	84.5000	29.1615	679.8999	46.9000	-697.6382
	2 0	575.20	-55,3385	0.0	84.5000	29 1615	679.0000	46.9000	-696.7383
	8.0	575.10	-54.2535	0.0	84.5000	30.2465	551.6001	4.6.9000	-568.2534
	0.6	575.50	219.1840	0.0	84.5000	303.6838	506.7000	46.9000	-249.9160
	10.0	574.35	-625.0000	0.0	84.5000	-540.5000	506.3999	46.9000-	1093.7998
	11.0	574.70	188.8021	0 * 0	84.5000	273.3020	506.3000	46.9000	-279.8979
•	12.0	575.00	162.7604	0.0	84.5000	247.2604	495.0000	4.6.9000	-294.6394
	13.0	575.30	163.8455	11.2200	84.5000	259.5654	482.7000	46.9000	-270.0344
	14.0	575.30	0.0	0.0	84.5000	84.5000	533.1001	46.9000	-495.5000
	15.0	575.50	109.5920	24.1000	84.5000	218.1920	602.0000	46:9000	-430.7078
	16.0	575.70	109.5920	24.1000	84.5000	218.1920	601.0000	46.9000	-429,7078
	17.0	575.40	-163.8455	27.8700	84.5000	-51.4755	600.0000	46.9000	-698.3752
	18.0	575.00	-219.1840	8.0000	84.5000	-126.6840	599.6001	46.9000	-773.1838
·	19.0	574.45	-297.3088	0 0	84.5000	-212.8088	596.0000	46.9000	-855.7087
	20.0	574.00	-241.9705	0.0	84.5000	-157.4705	590.0000	46.9000	-794.3704
	21.0	573.60	-212.6736	0 0	84.5000	-128.1736	589.0000	46.9000	-764.0735
	. 22.0	573.00	-319.0103	0.0	84.5000	-234.5103	560.0000	46.9000	-841.4102
	23.0	572.60	-209.4184	0.0	84.5000	-1.24.9184.	559.6001	46.9000	-731.4182
	24.0	572.20	-209.4184	0:0	84.5000	-124.9184	556.0000	46.9000	-727.8181