5.2.4 Study of the Optimum Discharge Rate

To determine the planned water pumping rate of newly constructed wells, the past record of the water pumping rate and the proper water pumping rate should be studied.

(1) Past records of water pumping rate

Table 5.2.4-1 shows the change in the water pumping rate of five wells constructed in the Phase II Project. Table 5.2.4-2 shows the water pumping rate and the lowering of the water level measured upon construction in the Phase II Project. The water pumping rate of wells just after construction (March, 1987) was set at 63 m³/hr, but it decreased to about 55 m³/hr about half a year later. The probable cause is that, in about half a year, fine sand around the well has been washed away and the well has stabilized.

To determine the planned water pumping rate of a planned well, it is a general method to calculate the proper water pumping rate from the relation between the water pumping rate and the lowering of water level based on the results of the step-drawdown tests. Fig 5.2.4-1 shows the relation between the water pumping rate and the lowering of water level in the existing wells of the Balad Wellfield. In these figures, the lowering of water level is comparatively small when the water pumping rate is below 55 m³/hr, but it becomes extremely large when the water pumping rate exceeds 55 m³/hr. So 55 m³/hr can be regarded as the elastic limit water pumping rate in an overall evaluation of the well group in the Balad Wellfield.

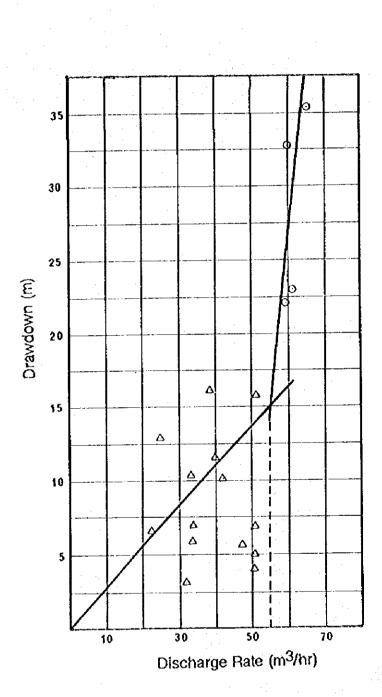
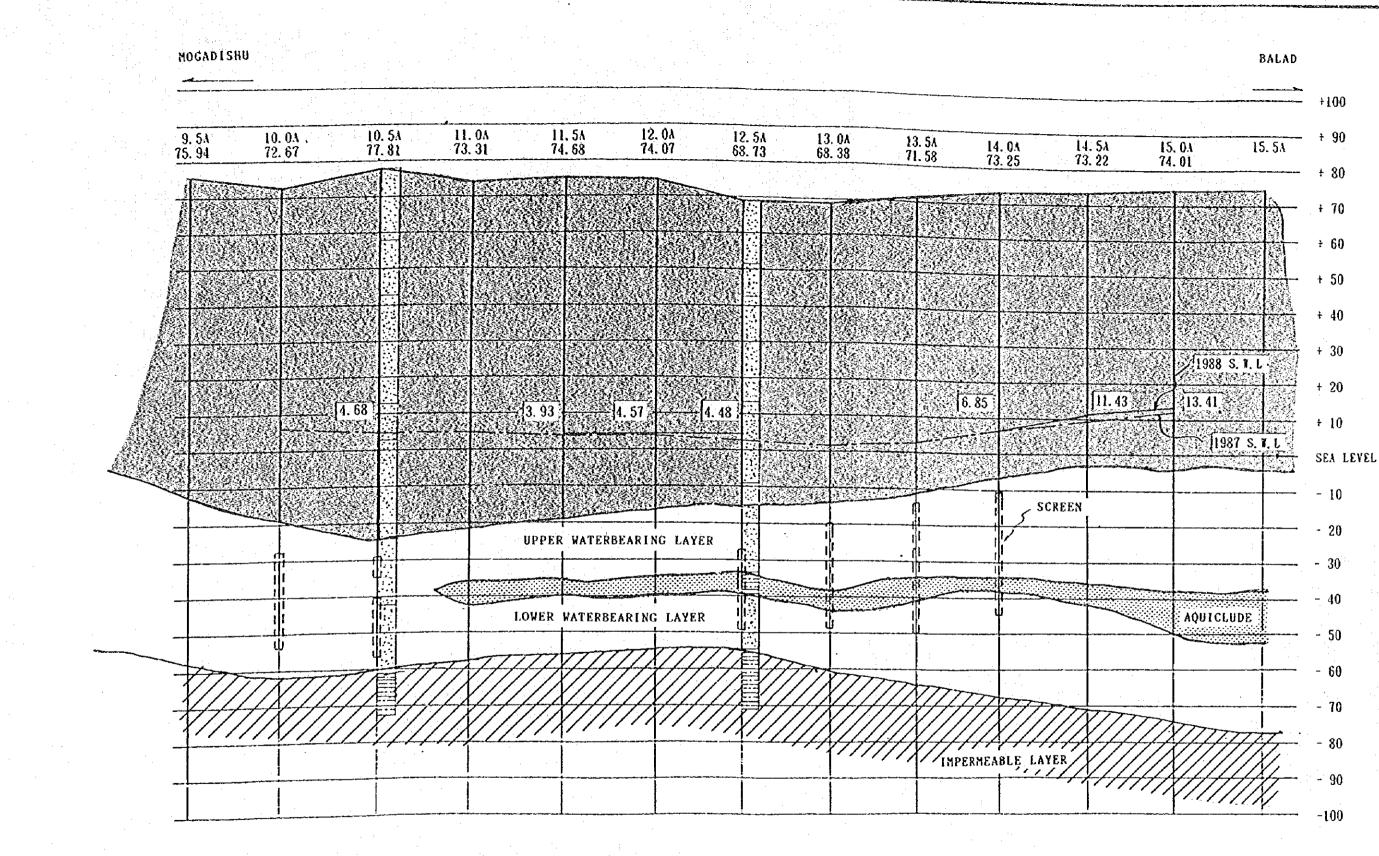
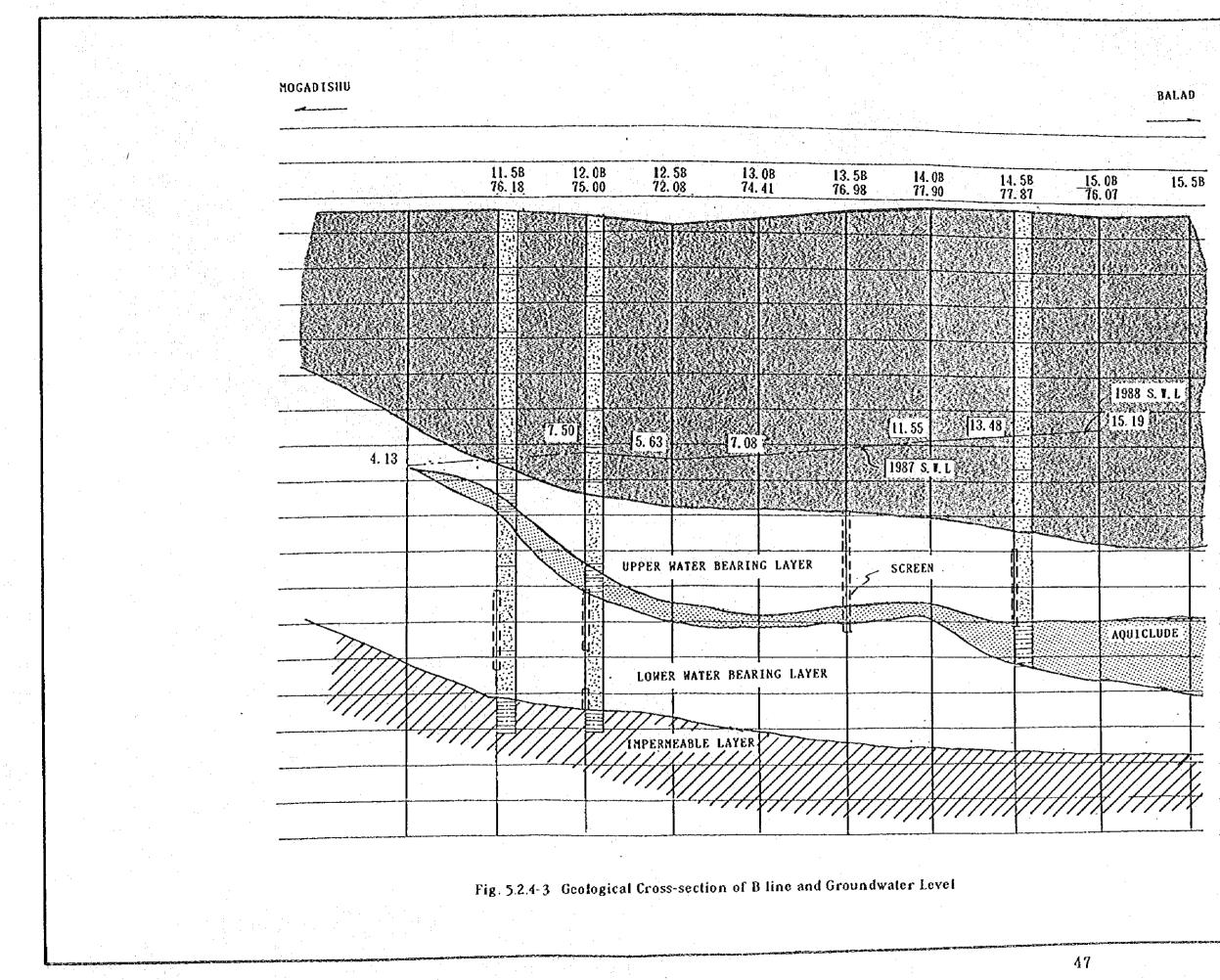
Well No.	Discharge Rate (m³/hr)							
	March, 1987	Oct., 1987	Jan., 1987	Sep., 1987				
10.5A	60.2	55.0	\$5.0					
11.5B	62.9	55.0	54.0	<u> </u>				
12.0B	60.2	50.0	55.0	-				
12.5A	54.3	55.0		55.0				
14.5B	59.4	55.0						
Average	59.4	54.7						

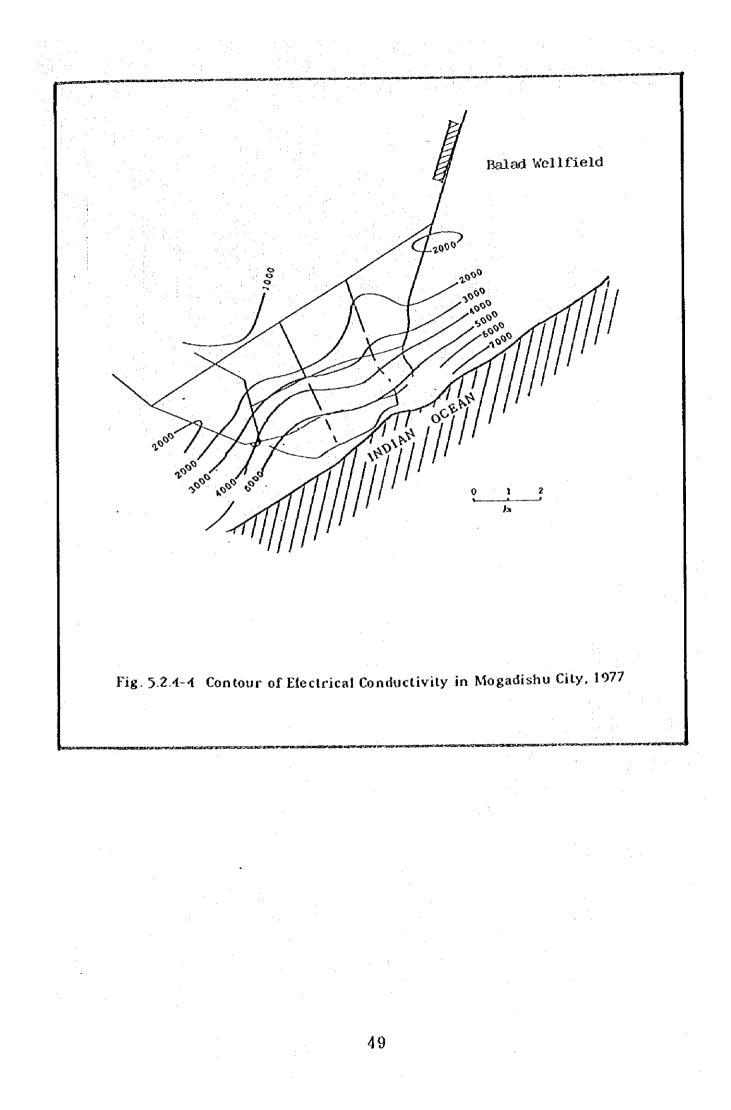
Table 5.2.4-1Fluctuation of Discharge Rate of the WellsConstructed in Phase II Project

Table 5.2.4-2 Discharge Rate and Drawdown

on the Basis of Pumping Test in the Phase II Project

Well No.	Discharge Rate	Drawdown
	Q(m³/hr)	s (m)
10.0A	50.3	4.01
11.0A	22.5	6.58
11.5A	31.7	3.22
12.0A	33.5	6.05
12.58	33.5	10.85
13.0A	51.1	15.85
13.0B	51.1	4.92
13.5A	50.3	6.85
13.5B	29.4	9.10
14.0A	47.2	5.71
14.5A	40.0	11.67
15.0A	42.1	10.13
15.0B	25.0	13.15
10.5A	60.2	22.83
11.58	62.9	35.43
12.08	60.2	32.56
12.5A	54.3	23.02
14,5B	59.4	21.96
	· · · · · · · · · · · · · · · · · · ·	


Fig. 5.2.4-1 Relation between Drawdown and Discharge Rate on the Basis of Pumping Tests in Phase II Project

. †	100
+	90
ł	80
ł	70
ł	60
ł	50
ł	40
ł	30
ł	20
ł	10
S	EA LÉVEL
-	10
-	20
-	30
-	40
-	50
	60
-	70
~	80
-	90
-1	00

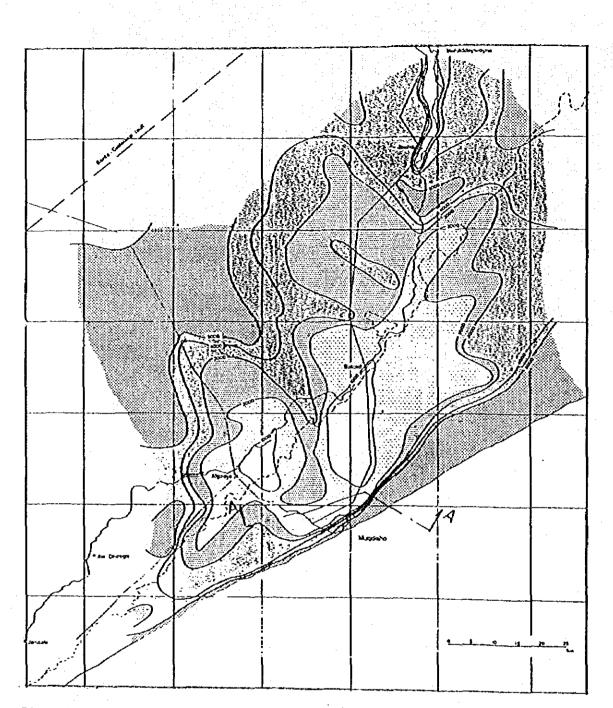
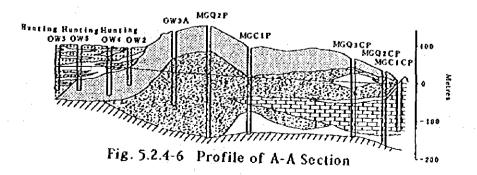



Fig. 5.2.4-5 Contour of Electrical Conductivity in Mid Benaadir District, 1983

(2) Study on the proper water pumping rate from the hydrogeological point of view

1) Hydrogeological circumstances

a Aquifers

At the Balad Wellfield, an aquifer exists over a range of 0 m above sea to about -80 m, with the layer thickness varying as much as 40 m to 70 m. An aquiclude of 5 m to 15 m is interposed in the aquifer (Refer to Figs.5.2.4 -2, 3). The upper permeable layer presents a white color and consists of medium sand. This layer is the main aquifer for the existing wells. The lower permeable layer presents white and brown colors and consists of alternate shale and limestone layers of fine sand and medium sand. The interposed aquiclude presents light brown and gray colors and consists of extremely fine sand and fine sand, and is in a subconsolidated condition.

b. Water quality

Electrical conductivity in the vicinity of Mogadishu City is distributed as shown in Figs 5.2.4-4 and 5. As these figures show, the electrical conductivity is high in the portion along the coast, and it decreases gradually toward the north, being below $1,000 \Box s/cm$ in some confined portions. It is judged that in the coastal area, quality of groundwater is degraded by its being saline, and in the northern part where the electrical conductivity is low, the quality of groundwater is improved by the recharge of fresh water into groundwater from the Shabeelle River (refer to Fig.52.4-6). And as a result of water quality tests in the field survey, water of the Balad Wellfield is potable because the water quality is within the standard of WHO.

Item	Unit	Value	Japanese Standard Value	WHO Standard Value
N03-N+N02-N	mg/l	0.04	under 10	-do-
Cl(chlorine)	mg/l	112	under 200	250
KMn04	mg/l	3.0	under 10	· · · ·
Ca+Mg	mg/l	140	under 300	200
Evaporation Residue	mg/1	810	under 500	1000
Ignition Residue	mg/l	580	-	-

Table 5.2.4-3 Result of Water Analysis

2) Coefficient of permeability

In order to obtain the coefficient of permeability in the vicinity of the Balad water source, a water pumping test was conducted on two existing wells (12.5 A, 14.0 A) in the field survey, and soil sampling was also made. The results of the water pumping test and the results of sample soil analysis are shown in Appendix. From these results and the results of the water pumping test on each well in the Phase II Project, a coefficient of permeability was obtained as follows.

a. From the results of water pumping test on 12.5 A (Theim's equation):

 $Q=2\pi k Ds / (2.3 \log R / r_0)$

Where,

Q:Discharge (m³/sec) 55/3600=0.0153

k : Coefficient of Permeability (cm/sec)

D: Thickness of Permeable layer (m) 40 m

s : Drawdown (m) 162 m

R : Influential radius (m) 500 m

ro: Well radius (m) 0.125 m

k = $(0.0153 \times 2.3 \times \log 500 / 0.125) / (2 \times 25 \times 40 \times 16.2)$ =3.11 x 10⁻⁵ m/sec=3.11 x 10⁻³ cm/sec

b. From the results of soil grain size distribution analysis (Creager's equation)

3 X 10⁻³ cm/sec

Table 5.2.4 - 4 Relation between D_{20} and K by Creager

dra	K (cm/sec)	Classification	d _{1.0}	K (c=/sec)	Classification
0.005	3.00x10-1	Coacse Clay	0.18	6.85x10-3	Fine Sand
0.01	1.05x10-*	Fine Silt	0.20	8.90x10-1	·
0.02	4.00x10-#	Course Silt	0.25	1.40x10**	
0.03	8. 50x 10-1	1. A.	0.30	2.20110-1	Kedium sand
0.04	1.75x10-4		0.35	3.20x10-1	
0.05	7.80x10"*		0.40	4.50x10-1	
0.06	4.60x10**	Ultra Fine Sund	0.45	5.80x10-1	
0.07	6.50x10-*		0.50	7.50x10-1	
0.05	9.00x10 •		0.60	1.10110-1	Coarse Sand
0.09	1.40110-1		0.70	1.60x10-1	
0.10	1.75x10-1		0.80	2.15x10-1	
0.12	2.60:10-1	Fine Sand	0.90	2.80x10-1	
0.14	3.80x10 1		1.00	3.60x10'	
0.16	5.10x10-1		2.00	1.80	· Fine Gravel

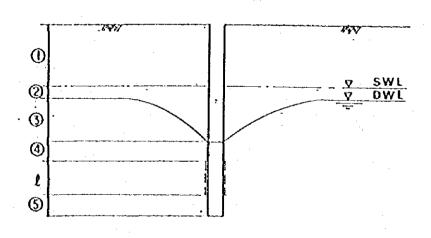
c. From the average of the results of water pumping tests in the Phase II Project

3.57 X 10⁻³ cm/sec (refer to Appendix 2-1) From the results shown above, the coefficient of permeability in the Project will be determined as 3 X 10⁻³ cm/sec. 3) Prediction of the lowering of water level

Judging from the geological structure, water quality contours and the change of the lowering of water level in the neighborhood, groundwater in the Balad Wellfield area is affected by the ingress of sea water. Especially the lowering of water level is predicted to be more than 5 m per year from the coefficient of permeability, transmissivity, recharge from the Shabelle River, the water pumping rate in the past. etc. in the Balad wellfield area. However, according to the past records, it is only about 0.3 m. The probable cause is that the level of groundwater is pushed up by ingress of sea water. Therefore, in order to predict the lowering of water level in the future in the Project, a water balance model considering the ingress of salt water must be set and a simulation technique must be used on this model. Simulation consists of Case 1 and Case 2. In Case 1, an overall balance of groundwater movement in a wide range from the Indian Ocean to the Shabeelle River is studied. In Case 2, the lowering of water table in a range of about 10 km X 5 km around the Balad wellfield is predicted for each of 22 years in the future. The results of this simulation are shown in Appendix 3-6. The lowering of water level in 20 years is a maximum of 5 m if water is pumped up continuously at a rate of $28,000 \text{ m}^3/\text{day}$. 4) Study on the length of the screen

To determine the length of the screen, the moving limit speed of sand is an important factor. This is because pump breakages due to sand ingress into the wells can cause well failures. According to the Waterworks Facility Standards, it is desirable that the influential speed of groundwater into the well should be below 15 mm/sec, and for the wells constructed in the Phase II Project, screens were installed to secure about 12 mm/sec as the target value. However, in the water pumping test conducted in the present study, an inflow of sand was noticed although in a small quantity, even at a water pumping rate of 55 m³/hr. Then, the entrance speed of groundwater at the position of the screen must be examined.

The influential speed of groundwater at the position of the screen is expressed in accordance with the following equation.


Where: V: Influential speed

- Q : water pumping rate
- A : Influential area
- r : radius of the screen
- 1 : length of the screen
- k : opening ratio of the screen

If V > Q / A, then from the above conditions, V > 8.8 mm/sec at Q=55 m³/hr on assumption of r = 0.25 m, 1 = 20 m and k = 11%. Therefore, in this project, the speed of sand inflow will be set at a maximum of V=8 mm/sec by considering that extremely fine sand flows in at an influential speed of 8.8 m/sec.

5) Study on the water pumping rate

From the condition of permeable layer distributions and the condition of groundwater level (Fig.5.2.3-1, 2) in the Balad Wellfield the water pumping rate of each planned well will be studied. The average thickness from the ground surface to the bottom surface of the permeable layer is 140.7 m. The necessary well depth on an assumption of a water pumping rate of 45 to 65 m³/hr is as follows.

Q : water pumping rate, (m^3/hr)

1 : average depth from the ground surface to the static water level (1988), (m)

2 : lowering of static water level in 20 years obtained from the results of simulation, (m)

- 3 : lowering of water level obtained from Fig.5.2.4-1, (m)
- 4 : length of submerged pump, (m)

5 : sand pit, (m)

where;

: length of the screen determined from the planned pumping rate. (m)

· · ·	· .					
Q(m ³ /hr)	45	50	55	60	65	Remarks
	65.5	65.5	65.5	65.5	65.5	
(2)	5.0	5.0	5.0	5.0	5.0	
3	13.3	14.8	16.2	29.0	36.0	
1	3.5	3.5	3.5	3.5	3.5	
6	10.0	10.0	10.0	10.0	10.0	
e	18.1	20.1	22.1	24.2	26.2	
Σ (m)	115,4	118.9	122.3	137.2	146.2	< 140.7m
Evaluation	0	0	0	0	×	

Table 5.2.4 - 5 Necessary Depth of Wells

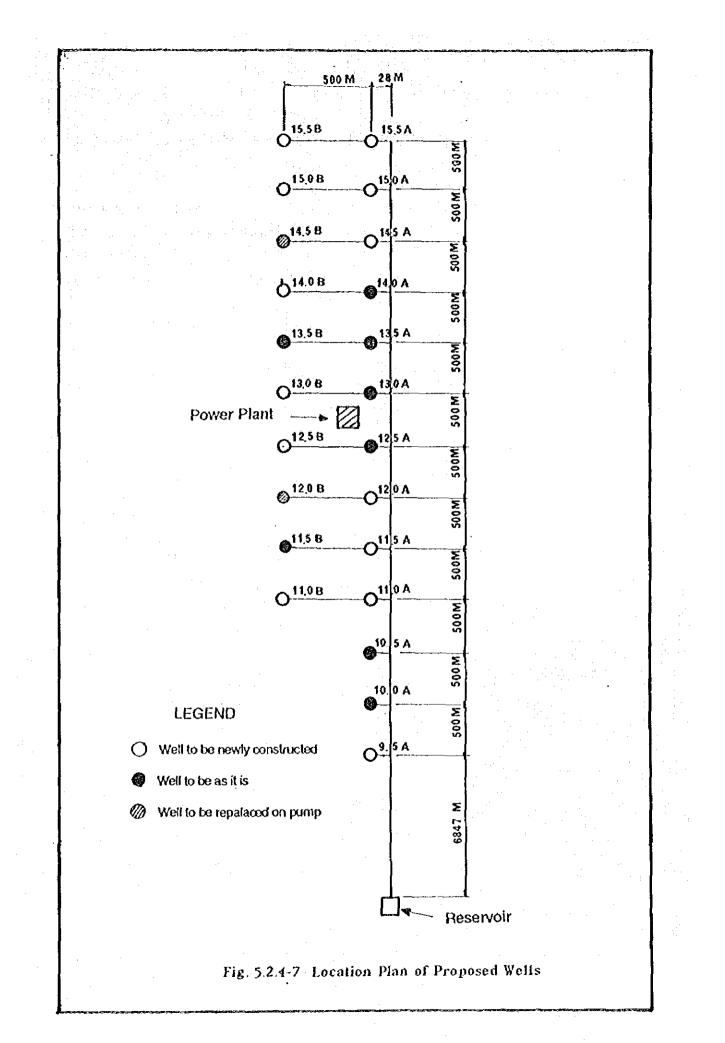
From the results given above, it is possible to pump up water up to a rate of 60 m³/hr. However, the permeable layer in this area is divided into two layers by an about 10 m-thick aquiclude, and a screen may be set at each of these two layers. Furthermore, a screen is set at a better position of the permeable layer for pumping, and there is no allowance of well depth in the case of 60 m³/hr as the target. For these reasons, it is preferable that the target pumping rate is to be less than 60 m³/hr.

(3) Determination of the planned water pumping rate per well to be newly constructed

As described above, the water pumping rate of most wells constructed in the Phase II Project has stabilized at about 55 m³/hr, the lowering of the water level becomes extremely large when the actual water pumping rate exceeds 55 m³/hr, and from the hydrogeological conditions, the permeable layer has no allowance in its depth for water pumping up at 60 m³/hr. Thus, the planned water pumping rate per well to be constructed in the Project shall be set at 55 m³/hr.

(4) Planned member of wells

The water intake rate of newly constructed wells shall be equal to the planned water intake rate less the possible water pumping rate of existing wells. Here, the relevant data are as follows. Planned water intake rate : $28,000 \text{ m}^3/\text{day}$


Possible water pumping rate of existing wells : $11,340 \text{ m}^3/\text{day}$ (According to replacement of two submersible pumps, 8,700+(55x24x2)=11,340)

Planned water intake rate per well to be newly constructed : $55 \text{ m}^3/\text{day}$ The planned number of wells as given by

N = (28,000 - 11,340) / (55x24) = 12.6 - - - 13 wells

(5) Newly constructed well arrangement plan

Of 13 wells to be newly constructed in the Project, 11 wells shall be arranged in the vicinity of the existing wells which will not be used in the future, so that the existing piping may be utilized effectively, and other two wells shall be arranged on the north of the existing wells where the condition of the permeable layer seems to be good. The well arrangement is shown in Fig.5.2.4 -7.

5.2.5 Power Supply Facilities

Power supply facilities are classified as power generating equipment and power transmitting equipment.

(1) Power generating equipment

The Balad Wellfield has no available commercial power source. Therefore, submersible pumps for the existing wells receive power supply (15 KV) from a power plant constructed in the central part of the well group (There is no commercial power supply plan for the future). The power plant has a total of seven generators including one Japanese-made generator installed in the Phase II Project, but two American-made generators and one Japanese-made generator of these seven generators can be operated practically at present. The life of six American-made generators which are operating and disassembled seemed to expired, so that it is difficult to reuse by rehabilitation.

(2) Power transmitting equipment

The designed length of transmission lines is based on the material of line, the fluctuation of line by wind force, and the interval of pole, so that partial replacement is capable as a temporary measure. However, it is incapable as a permanent measure because of different strength between existing line and new one. In addition, the decrepitude of connection at insulator will not advance as same as entire replacement. Therefore, the existing transmission line shall be replaced entirely in the Project. Existing porcelain insulators shall be replaced with salt-proof porcelains, etc., which withstand attached salt, sand or dust.

5.2.6 Other Facilities

(1) Replacement of meters installed to wells

To each well, a pressure gauge and a flow meter are installed, but nine flow meters (50%) are defective. The probable cause is an attachment of extremely fine sand or solidification of lime contained in the well water. Therefore, flow meters to be newly installed in the Project shall be in accordance with changed specification.

(2) Consolidation of radio communication system

Radio sets to connect between the power plant, MWA headquarters and

management vehicles for the purpose of maintenance and management and also repair of various facilities were installed but they were broken a half year ago, and at present personal communications using vehicles only are available. Therefore, it seems necessary to consolidate the radio communication system on the MWA side.

- 5.3 Basic Design of Facilities
- 5.3.1 Intake Facilities
 - (1) Design of submersible pumps
 - 1) Loss of head
 - a. Loss of head of pipes

Hazen-William's formula is used.

 $h = 10.666 \text{ x } \text{C}^{-1.85} \text{ x } \text{D}^{-4.87} \text{ x } \text{Q}^{1.85} \text{ x } \text{L}$

Where, V : average flow velocity (m/sec)

Q : flow (m^2/sec)

I : dynamic water gradient (m)

L : total length of pipes (m)

C : coefficient of velocity (110)

h : frictional loss head (m)

D : pipe inside diameter (m)

b. Loss of head due to valves

The following equation is used.

 $hn = f x v^2 / 2g$

Where, f : loss coefficient

v : flow velocity (m/sec)

g : acceleration of gravity (9.8 m/sec^2)

c. Loss of head of straight pipe portion of well primary piping

The Darcy-Weishboch's equation is used.

$hf = f_3 x (1 / D) x (v^2 / 2g)$

Where, f3: loss coefficient of straight pipe (m)

$f_3 = 0.04 + (1 / 1,000 D)$

D : pipe diameter of straight pipe (m)

Y : flow velocity (m/sec)

g : acceleration of gravity (9.8 m^2/sec)

1 : total length of straight pipe portion (m)

hf: Loss of head of straight pipe portion (m)

d Design flow

New well	:55 m ³ /hr = 0.917 m ³ /min =0.0153 m ³ /sec	:13 wells
Existing well	:55 m ³ /hr =0.917 m ³ /min =0.0153 m ³ /sec	: 5 wells
	: 40 m ³ /h r=0.057 m ³ /min =0.0111 m ³ /sec	

2) Calculation of loss of head of water conveying pipe

The loss of head (h) from 15.5 A to 15.0 A is obtained as follows. From D=0.15 m, L=500 m, Q=55 m³/hr $\times 2 = 0.0153 \times 2 = 0.0306 \text{ m}^3/\text{sec}$.

h =10.666 x 110^{-1.85} x $0.15^{-4.87}$ x $0.0306^{1.85}$ x 500 =14.48 m

The loss of head of the main pipe up to the Shek Muhidin Reservoir is obtained similarly, and the results are shown in Tables 5.3.1-1 and 2.

3) Loss of head from each submerged pump up to main pipe

The construction of piping from the submerged pump in the well up to the water conveying pipe is shown in Basic Design Fig.5.3.5-2. Each well has a pump-up pipe, a sluice valve and a check valve, and the pipe diameter of well primary piping is 150 mm. The loss of head of the water pump-up pipe in the newly constructed well is obtained as follows.

From C = 110, D = 0.1, Q = 55 $m^3/hr = 0.0153 m^3/sec$, 1 = 100 m.

 $h = 10.666 \times 110^{-1.85} \times 0.1^{-4.87} \times 0.0153^{1.85} \times 100 = 5.784 \text{ m}$

The loss of head of values and straight pipe portions is obtained as follows.

Check value f1 = 0.35, Sluice value f2 = 0.145

 $V=0.0153 / (0.152 \times \pi \times 0.25) = 0.866 \text{ m/sec}^{-1}$

 $f_{3=0.04+1/(1000 \times 0.15) = 0.0467}$

 $h = (0.35 + 0.145 + 0.0467 \times 4.5 / 0.15) \times 0.866^2 / (2 \times 9.8) = 0.073 m$

Therefore, the loss of head from each pump to a branch pipe is obtained as follows.

5.784 m + 0.073 m = 5.857 m

From the results shown above, the total lift is shown in Table 5.3.1-3.

Table 5.3.1-1 Loss of Head between Main Pipes

-
<u>୍</u> କ
×
<u>_</u>
90
<u>.</u>
õ
×
4
ж. •
4
h
x
ŝ
20
•
5
×
.666
ÿ
_
2
L
C

										· .				
с Д	Total	18.914	20.179	21.358	23.988	26.113	27.793	29.082	31.900	33.931	35.413	39.178	43.499	57 979
	Section Tota	18.914	1.265	1.179	2.630	2.125	1.680	1.289	2,818	2.031	1.482	3.761	4.325	14. 480
	¢ (۳)	6,840	500	500	500	500	500	500	500	500	500	500	500	2005
	Q1 · 8 5	0.129	0.118	0.110	0.101	0.0816	0.0649	0.0495	0.0365	0.0263	0.0192	0,0120	0.00568	0 0306 0 00158
Ø	m ³ /sec	0.331	0.315	0.304	0.289	0.258	0.228	0.197	0.167	0.140	0.118	0.0917	0.0611	
	שי / אר	1,190	1,135	1,095	1,040	930	820	7.10	600	505	425	330	220	(⁻
A	D-4.87	12.034	12.034	12.034	29.243	29.243	29.243	29.243	86.690	86.690	86.690	351.90	855.13	
	E	0.6	0.6	0.6	0.5	0.5	0.5	0.5	4.0	0.4	0.4	0.3	0.25	
υ	C-1-85	0.000167	0.000167	0.000167	0.000167	0.000167	0.000167	0.000167	0.000167	0.000167	0.000167	0.000167	0.000167	
	υ	110	110	0[]	110	110	110	0110	110	011	110	110	110	•
	Section	Reservior~9.5	9.5~10.0	10.0~10.5	10.5~11.0	11.0~11.5	11.5~12.0	12.0~12.5	12.5~13.0	13.0~13.5	13.5~ 14.0	14.0~14.5	14.5~15.0	1

e e		
2 Loss of Head from Lateral Pipe to Main Pipe	$(h = 10.666 \times C^{-1.85} \times D^{-4.87} \times Q^{1.85} \times L)$	
Table 5.3.1-2	Ч)	<u>د</u>

		U		a		ð	-			-
Section	v	C ^{-1.85} m D ^{-4.87} m ³ /hr m ³ /sec Q ^{1:85} Q(m) h(m) Remarks	E	D-4 - 8 7	.m ³ /.hr	m ³ /sec	Q1:#5	(m) 17	(ह म म	Remarks
B∼ A	110	10 0.000167 0.15 10290.5 55 0.0153 0.000438 500 4.014	0.15	10290.5	55	0.0153	0.000438	500	4.014	
A~main pipe	-	0 0.000167 0.2 2535.03 55 0.0153 0.000438	0.2	2535.03	55	0.0153	0.000438	28	28 0.055	:
A~main pipe		0 0.000167 0.2 2535.03 95 0.0264 0.00120	0.2	2535.03	95	0.0264	0.00120	28	28 0.152	•
A~main pipe	-	0 0.000167 0.15 10290.5 110 0.0306 0.00158	0.15	10290.5	110	0.0306	0.00158	28	28 0.811	· .

•

Table 5.3.1-3 Calculation of Respective Pump Head

Total head 127.0 108.3 119.5 120.3 124.4 115.0 118.1 122.8 123.1 123.4 126.2 125.9 128.0 142.1 43.1 Actual 83.44 84.94 85.44 86.44 34.94 83.94 82.44 74.44 77.44 74.44 84.94 77.94 80.94 76.94 77.44 head water level 0.6 -6.0 -15.0 -16.5 -17.0 -17.5 -18.0 -16.5 -15.5 -14.0 - 9.5 -12.5 - 8.5 0.6 -- 6.0 Actual head Design 1 water level Resevoir 68.444 2 2 C Main pipe main pipe reservoir installed. nstalled. facilities have been installed. nstalled. installed 23.988 35.413 23.988 39.174 43.499 57.979 27.793 31.900 39.174 43.499 116-81 26.113 27.793 29,082 57.979 pipe have been have been Intake facilities have been have been 0.152 head of 0.152 0.055 0.811 0.20 0.20 0.20 0.20 0.811 0.20 0.20 0.20 0.20 0.20 A to Loss of Intake facilities Intake facilities facilities 4.014 4.014 4 014 4.014 to A 4.014 4.014 4.014 4.014 Ē 1 ł 1 I i I ρ lateral pipe Intake Intake 5.857 5.857 5.857 5.857 5.587 5.537 5.8.57 5.857 5 857 Pump to 5.857 5.587 5.587 5.587 5.587 5.587 Discharge (m³/hr) rate ŝ ŝ ŝ ŝ 55 6 4 9 ŝ 5 S.S 3 ŝ ŝ SS ŝ ŝ ŝ ა ს 55 40 ŝ 4 SS 15.08 15.5A 15.58 15.0A 14.5A 14.58 9.5A 10.0A 10.5A 11.0A 11.03 11.5A 11.58 12.0A 12.03 12.5A 12.5B 13.0A 13.0B 13.5A 13.58 14.0A 14.0B Well

4) Pump equipment plan

The pump shaft power is calculated in accordance with the following equation.

P=0.163 X r X Q X H X (1+) / n

where,

L : pump shaft power (kw)

r : weight of liquid / unit volume (1 kg/l)

Q : discharge rate (m^3/min)

H : total head (m)

n : pump efficiency (decimal)

: allowance (15%)

From the pump discharge rate and the total lift calculated before, the pump shaft pump (kw) is calculated.

For the submersible pump in 9.5 A,

 $Q = 55 \text{ m}^3/\text{hr}=0.917 \text{ m}^3/\text{min}$

H = 108.3 m

n = 0.66 (refer to Fig. 5.3.1-1)

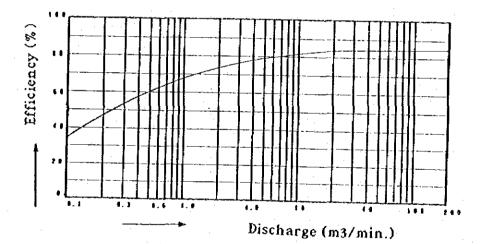


Fig. 5.3.1 - 1 Efficiency of Standard Pump

Therefore, the pump shaft power of the submersible pump from 9.5 A is :

P = 0.163 X 1 X 0.917 X 108.3 X 1.15 / 0.66 = 28.2 kw

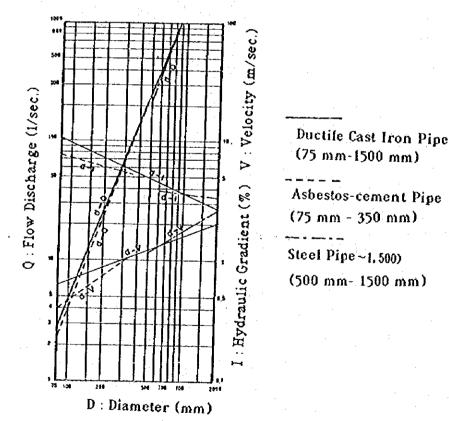
Calculation of other pump shaft power and analysis of motor output are shown in Table 5.3.1-4.5.

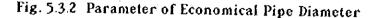
Well No.	Discharge	Pump head	Necessary	Selected	Remarks
	Rate		pump shaft	specific	:
	(m³/hr)	(m)	power	aotor	
			(kv)	(kw)	
9.5A	55m³/ዝ	108.3	28.2	30	
11.0A	55	115.0	29.9	30	
£1.0B	55	119.5	31.1	37	
11.5A	55	118.1	30.8	37	
12.0A	55	120.3	31.3	37	
12.0B	55	122.8	32.0	37	
12.5B	55	123.1	32.1	37	
13.0B	55	124.4	32.4	37	
14.0B	55	123.4	32.1	37	
14.5A	55	126.2	32.9	37	
14.5B	55	125.9	32.8	37	
15.0A	55	127.0	33.1	37	
15.0B	55	128.0	33.3	37	
15.5A	55	142.1	37.0	37	
15.5B	55	143.1	37.3	37	

Table 5.3.1-4 List of Selected Capacity of Pump for Respective Well

Table 5.3.1-5 List of Specification on Pump Facilities

Discharge	Pump head	Specification of motor	Number	Applied well
Rate				-
55m³/hr	115m	30kwx 380vx 50HZx 3Phase	2	9.5A 11.0A
55m³/hr	123m	37kwx 380vx 50HZx 3Phase	5	11.0B 11.5B 12.0A
				12.0B 12.5B 15.0A
55m³/hr	128m	37kwx 380vx 50HZx 3Phase	6	13.0B 14.0B 14.5A
				14.58 15.08
55m3/hr	143m	37kwx 380vx 50HZx 3Phase	2	15.5B 15.5A


(2) Design of intake well


The well casing diameter shall be 250 mm in accordance with the planned water pumping rate. The borehole diameter shall be 450 mm for economical reasons. The well casing material shall be steel, and the screen material shall be stainless steel. As a result of the study in 5.2.4, proposed depth for new well shall be 130 m on average in consideration of fluctuation of permeable layer's thickness and past actual result. An outline of the well body is shown in Basic Design Drawings.

5.3.2 Piping Facilities

(1) Water conveying pipes

In the Project, two wells, 15.5 A and 15.5 B, are constructed on the north of 15 A and 15 B and piping for conveying water pumped up from 15.5 A and 15.5 B (55 $m^3/hr \times 2$) is necessary. The pipe diameter is determined on the basis of Japanese criteria for waterworks(refer to Fig. 5.3.2), and the result is shown in Table 5.3.2.

Section	Discharge	Economical	Diameter of	Proposed
	Rate	diameter	existing pipe	diameter
	(m³/hr)	(ma)	(81月)	(mm)
15.5B-15.5A	55	170		150 (new line)
15.5A- 15.0	110	210		150 (new line)
15.0 - 14.5	220	290	200	250 (replace)
14.5 - 14.0	330	340	250	300 (replace)
14.0 - 13.5	425	370	400	usable
13.5 - 13.0	505	390	400	"
13.0 - 12.5	600	410	400	"
12.5 - 10.5	1010	510	500	
10.5 - 9.5	1190	600	600	

Table 5.3.2 Plan of proposed pipe

Cast iron pipes, ductile cast iron pipes, steel pipes and hard PVC pipes are available and they are different from each other in material, method of manufacture, standard dimensions, strength, etc. In the Project, hard PVC pipes shall be used because such pipes are easy to handle and economical in view of the project area being in the tropics and there being shortages of skilled labor and heavy machines.

(2) Well primary piping

Around the well, a sluice valve and a check valve shall be provided for the pump. The sluice valve is used when the pump is to be disassembled or when the water pumping rate is adjusted. The valve shall be a manual-type. The check valve is used to prevent water in the discharge pipe from flowing back when the pump stops. A ductile cast iron pipe shall be used for open piping which is exposed to ultraviolet rays. In order to know the water pumping rate of each pump for management purposes, a flow meter shall be an ultrasonic-type flow meter so that the water pumping rate can be measured from outside because calcium in groundwater will be fastened in the flow meter in a long time if it is installed inside, making the measurement impossible. The measurement of the water pumping rate is not required at all times, and therefore, two portable- type flow meters shall be provided for the entire Balad Wellfield.

5.3.3 Power Supply Facilities

(1) Design conditions

The electric power generating facilities consists of electric power generating facility and electric power transmitting facility. The generation capacity shall be determined by comparison between the valve which is needed continuously and the valve which is needed at the time of motor start-up. It shall be calculated in accordance with the equation based on the "Waterworks Facility Design Guidelines, Explanatory Descriptions" compiled under the supervision by the Ministry of Health and Welfare and the value of required power to be used in this equation shall be determined from the total input of required motor shaft power for pumps and the power for lamps, which are to become the load on the generator.

The rate of operation of a high speed Diesel engine is determined as 75%, and it is assumed that the maintenance time is included in working hours and even if it exceeds eight hours, the maintenance should be continued like the generator operation.

(2) Design of generating facility

1) Capacity needed continuously (Pmi)

 $Pmi = \Sigma Pm/\Sigma nm$

 $Qmi = (Pmi/PF) \times 1 - PF^2$

$$Pa = |Pmi^2 + Qmi^2|$$

Pg ≥ PA

Pe ≥ 1.36 X Pmi / nG

Where, Pmi : total input of continuous loads (kw)

 Σ Pm : total output for continuous loads (kw)

Lnm : overall efficiency of continuous load

Qmi : total reactive power for continuous load input (KVA)

Pf : overall power factor of continuous loads

Pa : apparent power for continuous load input (KVA)

Pg : generator capacity (KVA)

Pe : engine output (Ps)

nG : generator efficiency

Motors used in the Project include three 45 kw motors and five 30 kw motors for existing well pumps, 13 37 kw motors and two 30 kw motors

for new well pumps, two 1.5 kw motors for fuel pumps, and electric lamps require 5 kw, and therefore, the required power is :

 Σ Pm = 45 kw X 3 + 30 kw X 7 + 37 kw X 13 + 1.5 kw X 2 + 5 kw = 834 kw From this, the capacity needed continuously is obtained as follows.

 Σ nm = 0.84 (motor value for submerged pump)

Pf = 0.875 (37 kw motor)

n G = 0.92 (per factor 80%)

Pmi = 834 / 0.84 = 992.9 KVA

Qmi = (992.9 / 0.875) χ_{1} / 1-0.875² = 549.4

 $Pa = \sqrt{992.9^2 + 549.4^2} = 1134.8$

Pg = 1134.8 KVA

2) Capacity needed at motor start-up

Pas = $3V \times 18 \times 10^{-3}$

Ps = Pas X P x fs

Qs = Pas $\chi \sqrt{1 - P \times fs^2}$

 $Pa' = \sqrt{(Ps + Pm')^2 + (Qs + Qm')^2}$

 $P_g \geq Pa' / (1 + \alpha)$

 $P_e \ge 1.36 (P_s + P_m') / (1 + \beta)$

Is = $Ps \times 10^3 \times IsL / (V \times nm \times Pfs \times 3)$

where as ;

ß

Pas : apparent power at start-up of the load to start at the last time (KVA)

V : voltage (V)

Is : starting current of the load to start at the last time (A)

IsL : percentage of total load of starting current

Ps : input at start-up of the load to start at the last time

Pfs : power factor for above (decimal)

Qs : reactive power for above (KWA)

pa' : overall apparent power at start-up of the load to start at the last time (KVA)

Pm': total input of loads in continuous operation before start-up of the load to start at the last time (KW)

Qm' : reactive power for above (KWA)

(X) : short-time overload allowance for generation,

(decimal, normally about 0.5)

: short-time overload allowance for Diesel engine, (decimal, normally about 0.1) where, V = 380 V

 $Is = 45 \times 10^3 \times 1.8 / (380 \times 0.84 \times 0.85 \times 3) = 172$

lsL =180 % =1.8

Pfs = 0.85

Pm'= (834 kw - 45 kw) / 0.84=939.3 kw

note: The motor for well pump to start at the last time shall be 45

KW and be star-delta started because this starting system is simple in construction and requires a comparatively small

starting current.

 $Qm' = (939.3 / 0.95) \times / 1 - 0.95^2 = 308.7$

Pas = $3 \times 380 \times 172 \times 10^{-3} = 113.2 \text{ KVA}$

 $Ps = 113.2 \times 0.85 = 96.2 \text{ kw}$

 $Qs = 113.2 \text{ X} \int 1-0.852^2 = 59.6 \text{ KVAr}$

 $Pa' = \sqrt{(96.2 + 939.3)^2 + (59.6 + 308.7)^2} = 1099.0 \text{ KVA}$

Pg' ≥ 1099.0 / (1+0.5) =732.7 KVA < 1134.8 KVA

Therefore, the capacity needed continuously, 1134.8 KVA, shall be taken as the design capacity of the generator, and the total necessary capacity is calculated by adding transformer loss (380 V to 15 KV stepped up, 15 V to 380 V stepped down) of 4% at two points and a transmission loss of 2%, and assuming a generator operation rate of 75%. Total necessary capacity

= (1134.8 X (1 + 0.02 + 0.04)) / 0.75 = 1203 * / 0.75 = 1604 KVA

*1203: necessary capacity in operation

The capacity of the Japanese-made generator installed in the Phase II Project is 250 KVA, so that the respective capacity of proposed generator in the case of three new generators and four generators is as follows;

Three generators (1604 - 250) / 3 = 452 KVA

Four generators (1604 - 250) /4 = 339 KVA

The output in lowest combination of new and existing generators is as follows;

Three generators	452 X 2 + 250 = 1154 < 1203 KVA	
Four generators	393 X 2 + 250 = 1267 > 1203 KVA	

It is impossible to operate whole intake facilities in the case of three generators to be installed. Therefore, three generator should be newly installed. The specifications for these generators are as follows.

Capacity	: over 339 KVA		
Voltage	: 380 v/220 v		
Frequency	: 50 Hz		

Phase : 3 Prime mover : Diesel engine Quantity : 4

(3) Transformer

1) Primary transformer

The power plant for the Balad wellfield is located between the wells 12.5 A and 13 A, and the power generated in this plant (380 V) is stepped up by means of two transformer sets of 500 KVA capacity to 15 KV for transmission to northern and southern well groups. Pump motors are 30 kw X 11 units and 45 kw X 1 unit on the northern side and 30 kw X 4 units and 45 kw X 4 units on the southern side. The transformer capacity is determined in accordance with the following equation.

 $T = Pm X (1+\alpha) / (\Sigma n X Pf)$

where, T : transformer capacity (KVA)

 α : allowance 0.15 (normally 10 to 20%)

pf : overall power factor

 Σ n : 0.84 (described above)

Pf : 0.85 (described above)

The necessary transformer capacity TN on the northern side:

 $T_N = (30 \times 4 + 37 \times 8) \times (1 + 0.1) / (0.84 \times 0.85) = 641 - 500 = 141 \text{ KVA}$

The necessary transformer capacity TS on the southern side:

 $T_S = (30 \times 3 + 37 \times 5 + 45 \times 3) \times (1 + 0.1) / (0.84 \times 0.85)$

= 632 - 500 = 132 KVA

Therefore, there is a shortage of 141 KVA on the northern side and 132 KVA on the southern side. Then, transformers meeting the following specifications shall be added.

Transformer specifications

Capacity	: 150 KVA
Primary voltage	: 380 V (3-phase, 3-wire)
Secondary voltage	: 15 KV (3-phase, 3-wire)
Frequency	: 50 Hz
Quantity	:2 (1 on the northern side and 1 on the
	southern side)

2) Secondary transformer

The transformer capacity "T" for a pump motors for water pumping rate of 55 m 3 /hr to be newly constructed is:

T=37 X (1+0.2 *) / (0.84 X 0.85) =62.2 KVA

* 0.2 : allowance

Therefore, transformers meeting the following specifications shall be installed in order to complement this lack. Transformer specifications

Capacity	: 75 KVA
Primary voltage	: 15 KV (3-phase, 3-wire)
Secondary voltage	: 380 V / 222 V (3-phase, 3-wire)
Frequency	.
Quantity	

(4) Wiring

1) High voltage lines

Electric power, stepped up to 15 KV in the power facility, is transmitted to the transformer for each pump through high voltage The high voltage line used is a 22 mm² hand-drawn aluminum lines. In the Project, high voltage lines (about 3,000 m) with poles to wire. transmit power to two wells shall be newly installed for constructing wells at new positions. Existing high voltage lines are nearly 20 years old and badly damaged in some portions, so that existing high voltage lines shall be entirely replaced. Moreover, porcelain insulators on the existing high voltage lines leak when it rains, and therefore, all of them shall be replaced with those capable of withstanding high voltages. Cross-arms, on which these insulators are mounted, are wooden and have They shall be replaced at the time of insulator been deteriorated. replacement.

2) Low voltage lines

The transformer (to step down 15 KV to 380 V) for pump motors shall be mounted at a high position on the pole, and this transformer shall be wired to the pump through cables. The cable to be used shall be a CV cable.

5.3.4 Ancillary Facilities

The ancillary facilities in the Project include fences and lighting apparatus to be used for management around the well. Around the well, there are a motor, a well pump operation panel, valves, etc. which are all important and should not be neglected. Moreover, 380 V and 45 KV voltages for motors are supplied. To prevent dangers, therefore, fences shall be provided. As these fences, those which were removed in the Phase II Project shall be used as a rule, and this time, fences for two wells shall be added. Lighting apparatus shall be provided for nighttime management around the well. The light projector to be used shall be a mercury-arc lamp which consumes less power and shall be installed for 13 newly installed wells.

5.3.5 Basic Design Drawings

Basic Design drawings shall be as listed below (Refer to Basic Design Drawings).

1. Construction Plan of Balad Wellfield

2. Typical Section of Intake Facilities

3. Profile of Well

4. Installation Plan of Generators

5. Plan for Fencing Work

6. Installation Plan of Electric Facilities for Well

7. Plan of Electric Wiring for Starter Panel

5.4 Specifications of Main Equipment and Materials

Specifications and quantities of facilities determined in the facility design are shown in Table 5.4-1.

Item	Quantity	Specification
1. Intake facilities (1)Vell	13 wells	∮250 mm avg. depth130 m
		screen length 22 m
(2)Submersible pump	15	
New yell	2	55 m ³ /hr×115 m Hotor30 ky
	- 4	55 m ³ /hrx 123 m Notor37 kv
	5	55 m ³ /hr× 128 m Notor31 kw
	2	55 m3/hrx 143 m Hotor37 km
Replacement for	1	55 m ³ /hrx 123 m Hotor37 kw
existing well	1	55 m ³ /hr× 128 m Hotor37 kw
(3)Piping facilities	2 Wells	1150 flexible pipe, check
		valve, pressure gauge
(4)Flow meter	2	Supersonic vave type
2.Vater Conveyance Facilities	1	
(1)Conveyance pipe	500 m	∳150 am PVC
	28 m.	∳150 name P¥C
(2)Transmittal pipe	500 m	4150 mm PVC
	500 m	#250 mm PVC
	500 a	\$ 300 mm PVC
(3)Valve	2	. ∦150 m/a
3. Power supply facilities		
(1)Generator	4	339 KVA overx 380 Vx 50 HZ
		(including operation board)
(2)Main transformer facilities	2	150 KVA× 380V/15 KV× 50 HZ
(3)Tranformer facilities	11	75 KVAX 1.5 KVX 380 V/222V
for well		x 3Phasex 50 HZ
(4)Lighting facilities	13	Hercury-arc light100 W
		(source voltage220 V)
(5) Staging for transformer	13	~ /
(6)Electric vire	34.6 km	CV cable
(7)Electric pole	14	
Ancillary facilities	2 set	Wire-net fence for well

Table 5.4 Outline of proposed facilities

CHAPTER 6 IMPLEMENTATION OF THE PROJECT

CHAPTER 6 IMPLEMENTATION PLAN OF THE PROJECT

6.1 Project Implementing System

The implementing agency for the Project on the Somali side is the MWA (refer to Fig. 6.1). The general manager of the MWA will be responsible for contracting with the Consultant and Contractor. The Technical committee, which consist of the Project Manager, the Technical Director, the Director of Planning and Statistics, and so on, will be responsible for evaluation of technical specification and tender documents prepared by the Consultant. Prior to the commencement of construction, the Project Manager will arrange to implement the construction undertaken by the Government of Somalia and to prepare drilling rig, maintenance rig, etc. which were purchased in Phase I Project. The foreman in the Balad Wellfield will operate the generator and valve of conveyance pipe according to request of the Consultant. In addition, the operational method will be transferred to the staff stationed in the Balad Wellfield in the presence of the Project Manager and the Technical Director of MWA.

of Sanitation Project Finance Project Manager Engineering Water Development Agency Kydrology Technical operation Workshop & Director of Transport Technical Adviser Training Mogadishu Water Agency Administrative Organization Chart Ministry of Mineral and Water Resources Planning & Statistics Water Operation & Management General Manager Production Distribution Planning Director of Statistics Deputy General Manager Stores. Finance & Administration Kismayo Water Agency Fig. 6.1.1 Purchasing Director of Staffing Financial Adviser Billing Payroll Hargeisa Water Agency Director of Personnel Accountancy Registration

6.2 Division of Vork

The Project is to be completed by cooperation between two governments. The division of the work is shown below.

Table 6.2 Division of Work

Item	Japanese side	Somali side
Internal transportation (From Mogadishu Port to site)	0	
Exemption from custom duties, internal taxes and other fiscal levies for products purchased for the Project and Japanese nationals concerned	ſ	0
Security of necessary land		0
Construction of roads necessary for the Project		0
Clearance of land for proposed facilities		0
Construction of wells	0	
Replacement of submersible pumps for exisitng wells	0	
Laying of conveyance and transmission pipes	0	
Replacement of generators	0	
Construction and rehabilitation of transmission facilities for power supply	0	
Construction of electric facilities	0	
Rehabilitation of power plant house	0	[

6.3 Method of Work Execution

6.3.1 Execution Policies

The execution schedule from start-up to completion is executed in accordance with the execution plan prepared by the contractor and approved by the consultant. The execution plan clearly shows the work execution schedule, execution management, personal records of employees, personnel plan chart, execution method, etc.

6.3.2 Detail Design and Execution Management

The Project is divided into detail design and execution management. The contents of them are briefly as follows.

- 1) Detail design
 - a. Field survey

Complement to meteorological, hydrological, topographical and geological data, and data of construction materials, labor, work execution method, etc. obtained by the basic design and reconfirmation of the detail design at the field.

b. Detail design

Before commencement of preparation for bidding documents, design of detailed implementation calculation of detailed work costs, and set-up of work execution schedule.

c. Bidding operations

Preparation of bidding documents, assistance to bidder qualification review, witness of bidding, evaluation of bidding results, assistance to negotiation for work contracting, and assistance to conclusion of the work contract.

2) Execution management

a. Supervision

Discussion among the persons concerned before commencement, approval of design drawing, inspection of equipment and materials before shipment, control of work execution at the site, witness of equipment installation, preparation of operation reports during the work period, issuance of a work completion certificate and a payment certificate, completion inspection, etc. b. Operations upon completion of work

Issuance of a work completion certificate, proceedings for work completion and delivery, final operation reports, proceedings for operation completion, etc.

6.3.3 Equipment and Material Procurement Plan

The equipment and materials shall be products manufactured in Japan, manufactured in Somalia, or, when specifically permitted, manufactured in third countries.

As to products manufactured in Japan and manufactured in third countries, consultant's review shall be made on successful bidder's application documents for approval of equipment and materials to see if they satisfy the conditions of performance, strength, etc. described in the bidding specification. Thereafter, as necessary, consultant's inspection as witness test shall be made during the manufacturing period of the manufacturer or after completion of the manufacture, and after consultant's approval, products shall be packaged. Completely packaged products shall be shipped on board after consultant's approval.

Products manufactured in Japan shall be transported by sea up to the Mogadishu Port, and after clearing the customs, transported to the construction site. Products manufactured in the third country shall be transported by sea from the exporting country to the Mogadishu Port, and after clearing with customs, transported to the construction site, similarly to the case of products manufactured in Japan.

6.3.4 Plan for the Work to be done by the Government of Somalia

Of the work to be done by the government of Somalia, obtainment of the construction site, site preparation and construction of work roads shall be completed with the fund of Somalia by the time the Project is commenced.

6.4 Implementation Schedule of the Project

The project implementation schedule is shown in Table 6.4 and is expected to be 20.5 months after conclusion of the Exchange of Notes.

6.5 Approximate Project Cost

It is estimated that the cost to be done by the Somali side is about ¥20,000,000 including construction of the access road and hire of the machinery.

Table 6.4

Implementation of Schedule for Mogadishu Water Supply

Improvement Project (Phase III)

Accumulative month		 ო	t-			 	თ თ	2	-	2	<u>۳</u>	4	15	16	<u></u>	202 202		20 21	52	2
Item																				
Agreement and Approval of	4				<u>.</u>					· · · :										
Exchange of Notes	-4			•																
Detail design and			╎								;						· · ·		 	
Tendering					{			·	· ·		· ·			· · · ·						
Fabrication and transportation																				
of materials and machinery					-			- F -												
Construction undertaken by						 														-
Somali side					<u>.</u>	· · ·		•						• •		· · .				••••••••••••••••••••••••••••••••••••••
Preparation for construction					·					! 			-		 	· · · ·	(.,		<u> </u>
						<u></u>		· . 											- <u>.</u> .	
Construction of wells				:					╞	╎╻			╞							Γ
											· ·	1							· . ·	
Construction of power supply						[┢╴╏	-				}
•		<u> </u>															· · ·			
Construction of conveyance														╞╋╴	-	,			-	
pipes											·						· · ·		:	
Trial run and Arrangement						1		· ·								-			.	
∆ Agreement of	of Exchange	ц О	Notes					-			Inte	Internal		work in Japan	Japa	đ			:	• • •
Consultant and Contractor	id Contra		Agre	Agreement	ч		· .	7			Cons	truc.	Construction work	vork		•				
🗆 Authorization to Pay	i to Pay										0ce	10- 8D	Ocean and Land Transportation	Jd Tr	ansp	orta	tion		÷	

CHAPTER 7 OPERATION AND MAINTENANCE PLAN

7.1 Operation and Maintenance System

At present, the MWA is responsible for maintenance and management of the existing waterworks facilities in the entire Mogadishu City area, and it is expected that all facilities to be constructed in this project shall be placed under maintenance and management by a similar system. The present maintenance and management system and personnel are as shown in Table 7.1.

Assignment	Number	Stationing	Remarks
Head	2	1(HVA) 1(Balad Wellfield)	The person in MWA is also the head of Afgoi Wellfield.
Mechanics	4	Balad Wellfield	
Electrician	2	Balad Wellfield	· · · · · · · · · · · · · · · · · · ·
Well	3	Balad Wellfield	
maintenance			

Table 7.1 Organization and personnel for Maintenance

During the work execution period, engineers and technicians of the project team will be given on-the-job training for technology transfer from engineers of the Japanese side. After completion of the facilities, the members of the project team will be responsible for maintenance and management in accordance with the maintenance and management manual to be prepared by the consultant at the time of implementation design.

As to technical capability for operation and maintenance, it is judged that there will be no specific problem from the condition of maintenance and management of the existing facilities and from the conditions observed in the Phase II Project and in the basic survey. However, in order to improve the maintenance and management capability and transfer the maintenance and management know-how, it is desired that the Japanese expert should stay and give instructions, and at the same time, Somali engineers who are to be actually engaged in operation and repair should be trained in Japan.

7.2 Operation and Maintenance Costs

In order to supply safe water for drinking purpose after completion of the Project, it is prerequisite that the facilities can be maintained and managed with the income of water charge and the MWA can operate all its facilities on a sound financial basis.

So far, the MWA has continued its operation in the red, but since the year before last when additional water meters were installed, the operating condition has been remarkably improving. The MWA has scheduled to raise the water charge of 25 shillings per cubic meter at present to a doubled rate of 50 shillings in the coming year, to reduce the continuing deficit. CHAPTER 8 EVALUATION OF THE PROJECT

8.1 Effects of the Project

Mogadishu City at present suffers a stringent water shortage due to the qualitative problem in the Afgoi Wellfield and the pump damage and lack of power supply in the Balad Wellfield. The implementation of the Project will effect the followings directly and indirectly: 1) increase of discharge rate, 2) increase of income. 3) improvement of of living conditions, 4) assistance for the long-term plan.

(1) Direct effect

1) Increase of discharge rate

The Discharge rate in the Balad Wellfield will be increased from 8,700 m^3/day to 28,000 m^3/day , so that the daily water consumption per capita will be from 33 liters to 70 liters.

2) Increase of income

According to the increase of water consumption, it is expected that income of about 42.7 million shillings is increased. It will remarkably contribute to maintenance and operation, because the cost for the maintenance and operation in 1986 was about seven million shillings.

(2) Indirect effect

1) Improvement of living condition

It will be incapable to supply sufficient quantity of water to the people in the highland area, so that they will not take times to secure the living water as before.

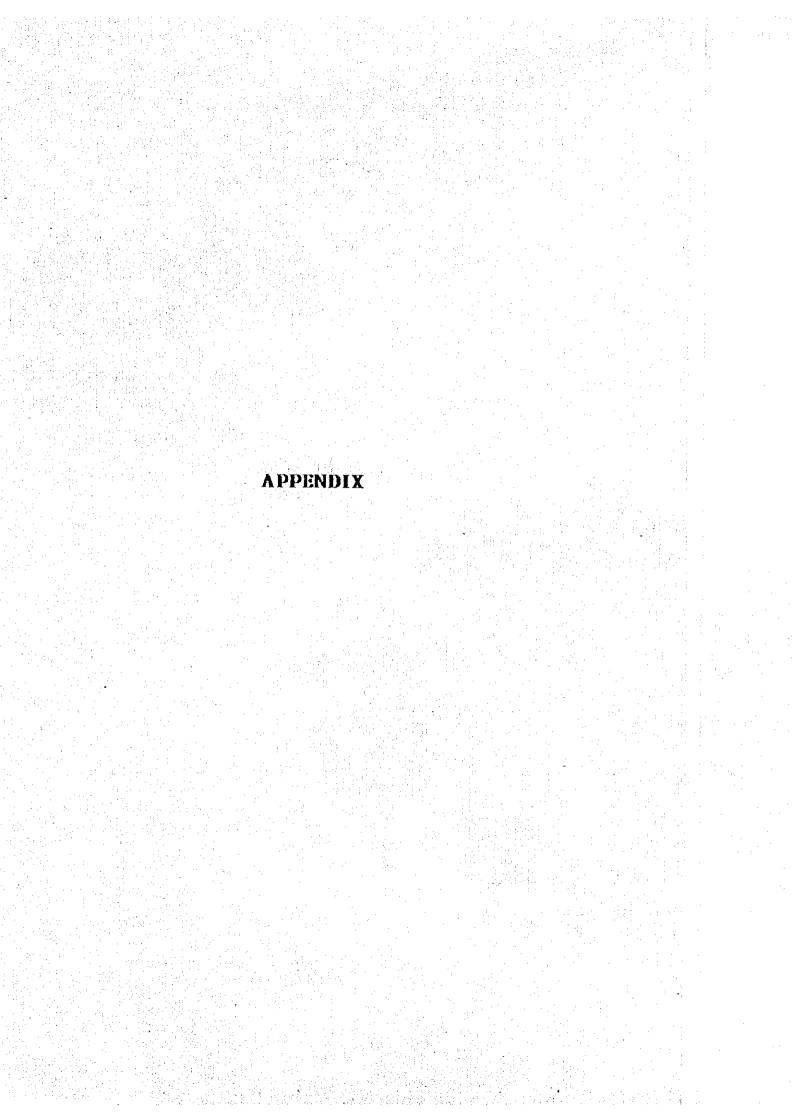
2) Assistance for long-term plan

According to the increase of discharge rate in the Balad Wellfield, it will be capable to complement the planned water supply rate in the Long-term Plan (Mogadishu Water Supply Expansion Stage 11B) and consequently reduce its construction cost.

CHAPTER 9 CONCLUSION AND RECOMMENDATIONS

CHAPTER 9 CONCLUSION AND RECOMMENDATIONS

As the results of field survey in Somalia and studies in Japan, the direct and indirect effects as described in Chapter can be expected from the implementation of the Mogadishu Water Supply Improvement (phase III). It can be said that the project will play an important and effective role not only to improve a stringent water shortage in Mogadishu City, but also to contribute the improvement of living condition.


It is confirmed that there is no organizational problem in MWA. The staff stationed in Balad Wellfield will be able to operate the facilities for maintenance by being through of the method after completion of the construction.

From the above mentioned situation, the request of the government of Somalia on the Project is judged to be reasonable, and it is concluded that the implementation of the Project under the grant aid by the Government of Japan is extremely significant.

The Project will be able to be implemented smoothly and effective under the cooperation of the Government of Somalia. Therefore, the following items are recommended to the Government of Somalia

- (1) Before commencement of the work, preparations shall be made without delay within the range of undertakings of Somali side.
- (2) Primarily, the Project is intended to improve the water shortage in Mogadishu City as a matter of urgency. But, since it is able to complement the planned water supply rate of the master plan (Stage 2B) being set up by the Government of Somalia at present, the MWA should review the master plan and consider an effective utilization of the Project.
- (3) The planned water intake rate of $28,000 \text{ m}^3/\text{day}$ in the Project can be continued for 20 years in the future because the groundwater level stabilizes with ingress of salt water. It is anticipated that groundwater in the Balad Wellfield will be salified in the future, so that it is necessary to check and control water quality at all times after completion of the facilities.

Furthermore, the facilities will be maintained and operated on the basis of the maintenance & operation manual prepared by Japanese side after completion of the construction, so that it is desirable to dispatch a Japanese expert in order to transfer technique of water supply for smooth maintenance & operation of the facilities. In addition, it is also desirable for Somali engineers to improve the capability of maintenance & operation and organization by means of being trained in Japan.

1. ORGANIZATION OF STUDY TEAM

Basic Design Study Team Name Mr. Masayuki MATSUSHIMA Mr. Osamu KOSEGAWA

<u>Position</u> Team Leader Coordinator

Mr. Mitsuru MASHIO

Mr. Suenori ISAYAMA

Mr. Yolchi HARADA

Water Supply Engineer Hydrogeology Engineer Equipment Engineer Ilome Post Kyoto Municipal Waterworks Bureau Japan International Cooperation Agency

Kyowa Engineering Consultants Co., Ltd. Kyowa Engineering Consultants Co., Ltd. Kyowa Engineering Consultants Co., Ltd.

Draft Final Report Explanation Team

Name	Position	Home Post
Mr. Akira MITAMURA	Team Leader	Kyoto Municipal
Mr. Mitsuru MASHIO	Water Supply	Waterworks Bureau Kyowa Engineering
Mr. Suenori ISAYAMA	Engineer Hydrogeology Engineer	Consultants Co., Ltd. Kyowa Engineering Consultants Co., Ltd.

 $\Lambda -$

2. SCHEDULE OF FIELD SURVEY IN MOGADISHU

Basic Design Study Team

	Da		Schedule	Activity
Aug	. 31	Wed.	Leave Tokyo	Travel
Sep.	. 3	Sat.	Arrive in Mogadishu	1) Courtesy call to MWA (Mogadishu
				Water Agency)
		ta La seconda		2) Explanation of Inception Report
	4	l Sun.	Mogadishu	1) Balad Wellfield (Well, Power Plant)
			(Field survey)	2) Afgai Weilfield
				3) Mogadishu City, Water Supply
	÷ ;			Condition
		Mon.	Mogadishu	1) Inspection of Water Facilities
			(Field survey)	2) Discussion on Existing Water
				Facilities and Condition of Water
		1999 - 1999 -		Supply
	6	Ťue.	Mogadishu	1) Discussion with the staff of MWA
		· · · · ·		2) Courtesy Call to M.M.W.R(Ministry of
		· . • •		Mineral and Water Resources) and
				Hearing on Kismayo Water Project
	7	Wed	Afgoi	1) Survey of the Shabelli river and Afgoi
				area
				2) Explanation of Japan's Grant Aid to
				MWA
				3) Discussion on Minutes of Discussions
	8	Thu.	Mogadishu	Arrangement of survey data
	9	Fri.	Mogadishu	Arrangement of survey data
	10	Sat.	Mogađishu	Meeting and Signing of the Minutes of
				Discussion
	11	Sun.	Balad	
	••	0011.	Duiud	Survey of the Shabelli river
				Messrs. Matsushima and Kosegawa leave Somalia
	12	Mon.	Balad	
	•••	inton.	Dulad	Survey of Balad Well Field and Power
	13	Tue.	Balad	Plant
	1.5	100.	Dalag	Survey of Balad Well Field and existing
	14	Wed.	Polod and Manualishing	equipment
	15	Thu.	Balad and Mogadishu Balad	Survey of Balad well Field and Marketing
	16	Fri.		Pumping Test of Well No. 12.5A
	17	Sat.	Mogadishu	Arrangement of survey data
	18		Balad	Pumping Test of Well No.14.0A
		Sun	Mogadishu	Arrangement of Survey data
	19	Mon.	Mogadishu	1) Hearing on damaged submersible
				pump and condition of electric
				facilities
	á.	1 2		2) Data collecting at UNDP
	20	Tue.	Balad	1) Hearing on condition of existing
				generators
				2) Measurement of static water level
				3) Removal of pump casting

 $\Lambda - 2$

21	Wed.	Afgoi and Mogadishu	1) Sampling of groundwater at Afgoi well field
22	Thu.	Mogadishu	 Water quality test Data collecting Arrangement of collected data and survey data
23	Fri.	Mogadishu	Arrangement of collected data and survey data
24 25	Sat. Sun.	Mogadishu Mogadishu	Final meeting with the staff of MWA Final meeting with the staff of MMWR
27	Tue.	Leave Mogadishu Arrived inJapan	
•			

A – 3

Draft Final Report Explanation Team

Dat	e		Schedule	Activity
Dec.	11	Sun.	Leave Tokyo	Travel
	13	Tue.	Arrive in Mogadishu	1) Courtesy call to MWA (Mogadishu
				Water Agency)
				2) Submission of Report to MWA
				3) Courtesy call to MMWR
	14	Wed.	Balad and Mogadishu	1) Field Survey of Balad Wellfield (Well,
				Power Plant)
				2) Hearing on condition of facilities
				3) Internal meeting
	15	Thu.	Mogadishu	Discussion with staff of MWA
	16	Fri.	Afgoi, Mogadishu	1) Survey of Shabelli River
			0	2) Preparation of Minutes of Discussions
	17	Sat.	Mogadishu	Meeting and Signing of Minutes of meeting
	17	Sat. Sun.	Leave Mogadishu	Travel
	10	5011.	Arrive in Nairobi	
	19	Fri.	Nairobi	1) Report to the staff of JICA Kenya office
			Leave Nairobi	2) Report to the secretary of the Embassy of Japan in Kenya
	22	Thu.	Arrive inTokyo	

3. LIST OF THE PERSONS CONTACTED Basic Design Study 1) Ministry of Mineral and Water Resources Mr. Abdullahi Mohamed Hersi : Minister Mrs. Nuro Seikh Abdulleh : Vice Minister Mr. Mohamed Osmar Asad : Director General Mr. Mohamed Yusuf Awate : Director of Hydrology 2) Mogadishu Water Agency Mr. Aden Farah Shirwa : General Manager Mr. Abdullahi Mohamed Osman : Deputy General Manager Mr. Mohamed Rabille Goud : Project Manager Mr. Osman Abdullahi Kulnie : Technical Director Mr. Jama Isamail : Financial Director Mr. Osaman Haji Ali : Planning Director Mr. Shek Mohamed Aweys : Electric & Power Plant Superintendent Mr. Mohamed Said Musa : Head of Balad Power Plant 3) Kismayo Water Agency Mr. Mohamed Xassan : Project Manager Draft Final Report Explanation 1) Ministry of Mineral and Water Resources Mr. Abdullahi Mohamed Hersi : Minister Mrs. Nuro Seikh Abdulleh : Vice Minister 2) Mogadishu Water Agency Mr. Aden Farah Shirwa : General Manager Mr. Mohamed Rabille Goud : Project Manager Mr. Osman Abdullahi Kulnie : Technical Director Mr. Mohamed Abdi Beyle : Project Accountant 3) The Embassy of Japan in Kenya Mr. Toshio Ishigami : Second Secretary 4) JICA Kenya Office Mr. Kenji Kumagishi : Resident Representative Mr. Ryuji Matsunaga : Assistant Resident Representative

4. MINUTES OF DISCUSSIONS

MINUTES OF DISCUSSIONS ON

THE MOGADISHU WATER SUPPLY IMPROVEMENT PROJECT (Phase III) IN THE SOMALI DEMOCRATIC REPUBLIC

In response to the request made by the Government of Somali Democratic Republic for the Mogadishu Water Supply Improvement Project, Phase III (hereinafter referred to as "the Project"), the Government of Japan decided to conduct a Basic Design Study on the Project and entrusted the Japan International Cooperation Agency (JICA) to send the Basic Design Study Team (hereinafter referred to as "the Team") headed by Mr. Masayuki Matsushima, a senior engineer of Kyoto Municipal Waterworks Bureau from August 31 to September 27, 1988.

The Team had a series of discussions on the Project with the officials concerned of the Government of Somali Democratic Republic, headed by Mr. Aden Farah Shirwa, General Manager of Mogadishu Water Agency and conducted a field survey in Mogadishu City.

As a result of the study, both parties have agreed to recommend to their respective Governments that the major points of understanding reached between them, attached herewith, should be examined towards the realization of the Project.

September 10, 1988

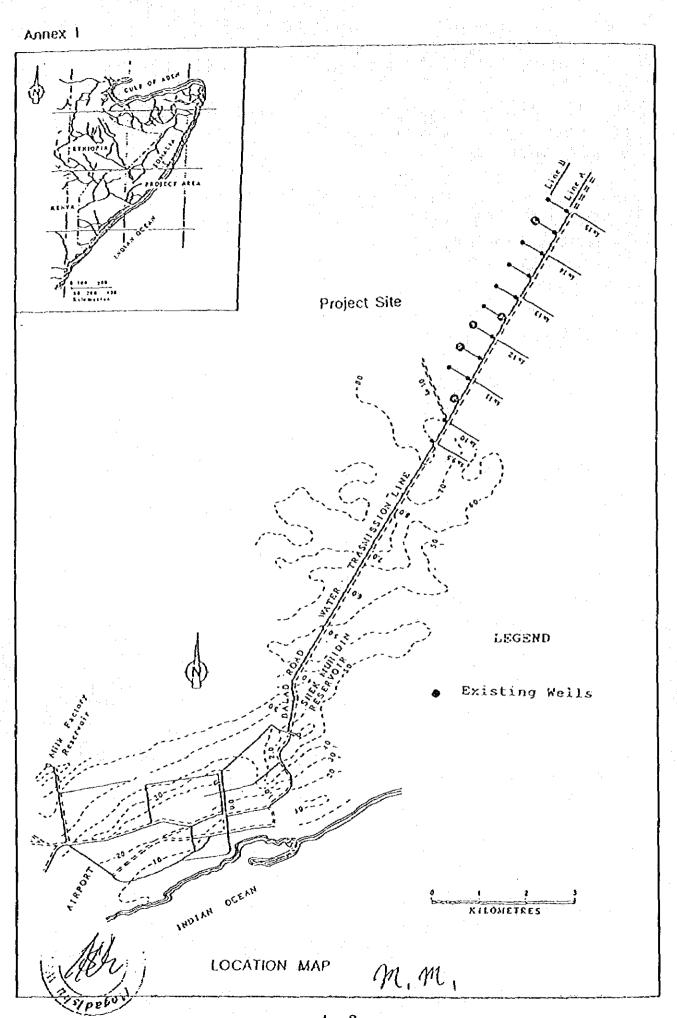
Aden Farah Shirwa General Manager

Mogadishu (Mater Agency (MWA)

^oebou

Masayuki Mateusting

Masayuki Matsushima Leader JICA Study Team


A – 6

- Attachment
- 1. The objective of the Project is to improve the present shortage of water supply in Mogadishu City by means of drilling new wells in Balad Well field.
- 2. The site of the Project is at Balad Well Field, which is located 9 to 16 km northeast from the center of Mogadishu City (Site map is attached as Annex I).
- 3. The content of the Project shown by the Government of Somalia is to construct new wells and to rehabilitate the existing water supply facilities in Balad Well Field(refer to Annex II).
- Mogadishu Water Agency of the Ministry of Mineral and Water Resources is responsible for the administration & execution of the Project.
- 5. The Japanese Study Team will convey to the Government of Japan the desire of the Government of Somali Democratic Republic that the former takes necessary measures to cooperate by providing materials and equipment and other items within the scope of Japanese economic cooperation programme in Grant form.
- 6. The Somalia side has understood Japan's Grant Aid System explained by the Team.
- 7. The equipment, materials, and vehicles purchased under the Grant shall be exclusively for the Project and shall not be used for other purposes.
- 8. The Government of Somali Democratic Republic will take necessary measures listed in Annex III on condition that the Grant Aid is extended to the Project.

M. M.

Λ — 7

Λ-- 8

.

Annex II

. . .

The main components of the Project, which will improve the present water shortage in Mogadishu City, are summarized as follows:

- 1) Construction of new wells:
 - new wells for relieving the present water shortage in the City.
- 2) Provision of materials for the construction of new wells: submersible motor pumps, generators, transformers,

pipe materials, wiring cable, consumables and etc.

- 3) Provision of materials for improving the existing intake facilities: generators, transformers, pipe materials, wiring cable, consumables and etc.
- Provision of equipment for operation and maintenance: accessaries for drilling machine, equipment of workshop, tools for electric work and etc.

M. M.

Annex III

Arragements to be taken by the Government of Somali Democratic Republic.

- 1. To secure land necessary for the construction of the facilities and to clear, fill and level the site as needed before the commencement of the construction.
- 2. To construct and prepare the access road to the Project site.
- 3. To provide the space necessary for temporary offices, working areas, stock yards and others.
- 4. To ensure prompt unloading, tax exemption and customs clearance at port of disembarkation in Somali Democratic Republic, of the products purchased under the Grant.
- 5. To exempt Japanese nationals engaged in the Project from customs duties, internal taxes, and other fiscal levies which may be imposed in Somali Democratic Republic with respect to the supply of the products and the services under the verified contracts.
- 6. To accord without delay to Japanese nationals whose services may be required in connection with the supply of the products and services under the verified contract such facilities as may be necessary for their entry into Somali Democratic Republic and stay therein for the performance of their work.
- 7. To maintain and use properly and effectively the facilities constructed under the grant.
- 8. To bear all the expenses, other than those to be borne by the grant, necessary for the construction of the facilities.
- 9. To bear commissions to the Japanese foreign exchange bank for the banking services based upon the Banking Arrangement.
- 10. To provide machinery free of charge that were purchased under the previous Project(rig, compressor, etc).

M. M.

A--10

Draft Final Report Explanation

Minutes Of Discussions

On The Draft Final Report Of The Basic Design Study On The Mogadishu Water Supply Improvement Project (Phase III) In The Somali Democratic Republic

In response to the request made by the Government of the Somali Democratic Republic, the Government of Japan decided to conduct a basic design study on the Mogadishu Water Supply Improvement Project (Phase III) (hereinafter referred to as "the project") and entrusted the study to the Japan International Cooperation Agency (JICA). JICA sent to the Somali Democratic Republic the study team from August 31 to September 27, 1988.

As the result of the study, JICA prepared a draft final report and dispatched a mission, headed by Mr.Akira Mitamura, Senior Engineer, Water Purification Section, Technical Division, Kyoto Municipal Waterworks Bureau, to explain and discuss it from December 11 to December 22, 1988.

The Team had a series of discussions on the project with the officials concerned of the Government of Somalia, headed by the Mr.Aden Farah Shirwa, General Manager of Mogadishu Water Agency.

After Clarifying its contents, both parties had agreed to recommend to their respective governments that the major points of understanding reached between them, attached herewith, should be examined towards the realization of the project.

December 17, 1988

Akira Mitamura Leader JICA Study Team

Aden Farah Shirwa General Manager Mogadishu Water Agency (MWA)

A-11

ANNEX 1

The Items of the proposed facilities are summarized as follows:

1. Intake Facilities

- (1) Construction of new wells
- (2) Installation of pump for new wells
- (3) replacement of pump for existing wells
- (4) Piping Facilities
- (5) Flow meter
- 2. Conveyance and transmission pipes
 - (1) Conveyance pipe
 - (2) Transmission pipe
- 3. Power Supply Facilities
 - (1) Generating facilities
 - (2) Main Transforming facilities
 - (3) Sub-transforming facilities
 - (4) Staging for sub-transformer
 - (5) Electric wiring
 - (6) Electric pole
- 4. Ancillary Facilities
 - (1) Net fence for well
 - (2) Lightings for wells

三田村 史,

ATTACHMENT

MAJOR POINTS OF UNDERSTANDING:

1. The Somalia side agreed in principle to the basic design proposed in the Draft Final Report. The items of proposed facilites are shown in ANNEX 1

But the Government of Somalia stated as follows.

1) All of the existing generators except a generator provided by the former project should be ruplaced to new ones as for the generating facilities.

2) At least 3 transportation vehicles and 1 truck are required. The study team promised to convey its request to the government of Japan.

- 2. The Somalia side understood the system of Japan's Grant Aid Program and confirmed the measures to be taken by the Somalia side towards the realization of the Project as agreed upon in the "Minutes of Discussion" signed on December 17,1988.
- 3. Ten copies of the Final Report on the Project will be submitted to the Government of Somafia by April, 1989.

三田村 晃,

5. LIST OF COLLECTED DATA

- 1) Nogadishu Water Agency
 - (1) Feasibility study for Nogadishu Water Supply Expansion, Preliminary Report, Yolume I, April 1977, Sir Alexander Gibb & Partners (Africa)
 - (2) Source Investigation For Mogadishu Water Supply Expansion Volume I Technical Report, June 1980, Sir Alexander Gibb & Partners (Africa)
 - (3) Nogadishu Water Supply Expansion, Second Water Resouces Investigation, Final Report, February 1985 Sir Alexander Gibb & Partners (Africa)

Volume I- EngineeringVolume II- Hydrogeology and HydrologyPart 1Volume III- do-Part 2Volume IV- Appendices A and B

- (4) Nogadishu Water Supply Expansion Stage 2B
 Draft Report On Final Design, Volume 1, August 1985
 Sir Alexander Gibb & Partners (Africa)
- (5) Mogadishu Water Supply Expansion Stage 2A, Completion Report,
 December 1987, Sir Alexander Gibb & Partners (Africa)
 Volume 1 Project description and Finacial information
 Volume 2 Operational and Technical datails
 Volume 3 Wellfield development and Test pumping

Volume 4 - As made drawings

- (6) Mogadishu Groundwater Investigation Projects, 1988 Eng. Abdi Farah Abdulle
- (7) Hydrogeology & Well Construction Criteria Report The Ralph H. Parsons Company
- (8) Balance sheet (1985, 1986)
- (9) Water charge sheet
- (10) Drawings

•Mogadishu Water System

A - 14

•Shek Muhidin Reservoir Plot and Grading Plan

•Water System Flow Diagram

•Milk Factory Reservoir Plot and Grading Plan

•Power Plant Plot and Grading Plans, Sections and Details

•Power Plant Piping Plan

•Mogadishu Water Supply Expansion Stage 2A

Supplied Area

•Nogadishu Water Supply Expansion Stage 2B

Location Map

Location of Works and Overhead Line Routes

Layout of Bulk Supply System

Schematic Layout Bulk Supply Systems

2) Ministry of National Planning

- (1) The Five Year National Development Plan 1987 -1991
 - Directorate of Planning, Ministry of National Planning, September 1988
- (2) Annual Development Plan 1988

Directorate of Planning, Hinistry of National Planning, January 1988

3) United Nations Development Programme Mogadishu (UNDP)

(1) Somalia Annual Development Report 1986

United Nations Development Programme Mogadishu, August 1987

4) Others

(1) Monthly Bulletin, July 1988

Somali Chamber of Commerce, Industry and Agriculture

(2) Foreign Investment Law, 1987

6. DRAWDOWN AND PERMEABILITY COEFFICIENT ON THE BASIS OF

DISCHARGE RATE

	1		τ	1
Well No.	Drawdown	Discharge		Permeability
		01-141-5	Thickness	Coefficient
10.01	s (m)	$Q(m^3/hr)$	М(m) 42	k(cm/sec)
10.0A	4.01	50.3		
11.04	6.58	22.5	36	3.48x10-3
11.0B	7.00	34.1	67	2.66x10-3
11.54	3.22	31.7	37	9.75x10-2
12.OA	6.05	33.5	38	5.34x10-3
12.5B	10.85	33.5	58	1.95x 10-3
13.0A	15.85	51.1	46	2.56x10-3
13.0B	4.92	51.1	62	6.14×10-2
13.5A	6.85	50.3	53	5.12x10-3
13.58	9.10	29.4	65	1.82x10-3
14.0A	5.71	47.2	60	5.05x 10- 3
14.5A	11.67	40.0	67	1.87x 10-3
15.0A	10.13	42.1	70	2.17x10-3
15.08	13.15	25.0	59	1.18x10-3
0.5A	22.83	60.2	35	2.76x10-3
11.5B	35.43	62.9	65	1.00x 10-3
2.0B	32.56	60.2	60	1.13x10-3
2.5A	23.02	54.3	40	2.16x10-3
4.5B	21.96	59.4	62	1.60×10-3

Average

3.57x10-3

7. DATA ON THE COST ESTIMATE FOR MAINTENANCE FEE

1. Fuel Fee

The quantity of fuel consumed at Balad Well Field will be caluculated on the basis of under-mentiond conditions.

Total discharge	:28000 m3/day(19.44 m³/min.)
Pump Head	:125 m
Pump Efficiency	:66%
Generator Efficien	:y:92%
Other electric pow	er such as for light:8 Kw
Loss	:6 %
Fuel percetage of a	liesel engine :0.20 kg/psh
Weight of fuel	:0.83

Total output of diesel engine

```
(0.163x125x19.44+8)x1.06x1.36/(0.66x0.85x0.92)=1128.7
```

```
1kw=1.36Ps
```

```
Consumed fuel per day
```

```
1128.7x0.2/0.83x24=6527 l/day
```

```
Fuel for Vehicles
```

170 *l*/day

```
Total fuel consumption per day
```

6700 l

```
Fuel fee
```

```
6700x45 shi./e=301,500 Shi.
```

2. Salary for the staff

10,600,000 shi/(2x365)=14,520 shi.

3. Others

(5,000,000+2,600,000+1,500,000+6,400,000)/(2x365)=21,230 Shi.

8. WELL INVENTORY

ð, NELL	INVENIORI				
Well No.	10.0A	Location	Balad Well Field	Completed	Jan.20, '70
Owner	MWA	Contractor	Parsons	Surveyed	Sep.14, *88
					

					r	
	Item		Const.	Rehab.	B/D 田	Remarks
Elevatio	<u>ิ</u>		72.67 m			
Drilling	dia.					
Well dia			13 ³ /8 in.			
Well Dep	th		140 m			
Static W	ater J	Level	67.3 m	69.73 m	-	
Dynamic	Water	Level		73.75 m		
Casing	Mate	rial				
Screen	Loca	tion	120-140 m			
	Mater	rial	Steel (95/8	ia.)		
{	Open	ing Ratio	· · · · · · · · · · · · · · · · ·			
Pump	style	8		Submersibl	e	
	Capa	city(motor)		· · · · · · · · · · · · · · · · · · ·		Current 46(A)
	Discl	harge Rate			· · · · · · · · · · · · · · · · · · ·	a de la constante de
Conditio	n				Operating	
Actual D	ischar	rge Rate		44.0 m³/hr	29.0 m³/hr	Pressurel.6 kg/cm ²
Electric	Opera	ation Board	· · · · · · · ·		Good	Voltage370(V)
	Light	ting	· · · · · · · · · · · · · · · · · · ·		Nil	
	Wiria	ng	· · · · · · · · · · · · · · · · · · ·		Good	
	Transformer		······································		Good	
 Piping	L			· · · · · · · · · · · · · · · · · · ·		
Water Qu	ality	E/C		<u>·</u>	1500	<u></u>
	}	РХ	· ·		6.6	

Others

Water Temperature 34°C

Λ-18

	10.5A	Location	Balad Well Field	Completed	Apr.23, '87
Owner }	AWA	Contractor	Nissaku	Surveyed	Sep.14, '88

	• • • • •					
	Itéa		Const.	B/D N		Remarks
Elevatio	n		77.81m			
Drilling	dia.					
Well dia	• :		10 in.	• • • • •		
Well Dep	th		150 m		· · ·	
Static W	ater	Level	73.40 д			
Dynamic	Water	Level	96.23m	86.62m	<u> </u>	
Casing M	ateri				·	
Screen	Loca	tion I	07 5-113 0	18.5-133-0	· · · ·	
	Mate	rial	Stainless			
	Open	ing Ratio	11%			
Pump	Styl	e	Submersib]	e Pump		_
	Capa	city(motor))			· · · · · · · · · · · · · · · · · · ·	Current 60(A)
	Disc	harge Rate				
Conditio	n		Operationg		· · ·	Pressure 1.8kg/cm ²
Actual D	ischa	rge Rate	(60.2m³/hr)	· · · · · · · · · · · · · · · · · · ·	
Electric	Oper	ation Board	Good		·	Yoltage 378(V)
	Ligh	ting	Good			
	Wiri	ng	Good			
	Tran	sformer				
Piping			Good			
Water Qua	ality	E/C				
		PH				

Others

Flow meter has been out of order.

A--19

•

Well No.	11.0A		ocation	Balad Well	Field	Completed	Mar.14, '
Owner	AWK	C	ontractor	Parsons		Surveyed	Sep.14, '
<u></u>	Item		Const.	Rehab.	B/D	ar i	Remarks
Elevatio	n		73.31m	1			
Drilling	dia.		-				
Well dia	•		9 ⁵ / ₈ in.				
Well Dep	th		134.1 m				
Static W	ater Level		63.8 m	68.92 m	68.63	m	
Dynamic	Water Leve	1		75.50 m	-		
Casing M	aterial						, ser per
Screen	Location	· · · · ·	83 7-109	127 8-134-1			
	Material		Steel (9 ⁵ /	, in.)		······	
	Opening R	atio					
Pump	Style				Remov	ed	
	Capacity(motor)					
	Discharge	Rate			}		· · · ·
Conditio	n				Unope	rating	
Actual D	ischarge R	ate		40.0m ³ /hr			
Electric	Operation	Board		·}	Remov	ed	· ·
•	Lighting		-	1	Nil		<u> </u>
	Wiring				Remov	ed	
	Transfórm	er		-	Renov	ed	
Piping	L				Remov	ed	
Water Qu	ality E/C		790µm/cm				· · · · · · · · · · · · · · · · ·
	cl-		60PP"				······································
Others			- <u>L</u>	<u> </u>			· · · · · · · · · · · · · · · · · · ·

								•
Well No.	11.0B	Location	Balad Well	Field	Compl	eted		
Owner	HWA	Contractor	Parsons		Surve	yed	14.9, '88	
		I				I		. <u> </u>
	Item	Const.	Rehab.	B/D	. M	1	Remarks	· · ·
Elevatio	n							
Drilling	dia.		· · · · ·				·····	
Well dia		9 ⁵ /8 in.						
Well Dep	th	No data	1					
Static W	ater Level	No data	72.05m	71.87	R	-		
Dynamic	Water Level	No data	79.05m					
Casing M	aterial	No data						
Screen	Location	No data						
	Katerial	No data		· · · · · · · · · · · · · · · · · · ·				
	Opening Rate				· .			····
Рилр	Style		Submersibl	e Out	of Ord	er		
	Capacity(motor	·)			·			<u> </u>
	Discharge Rate	,	· · · ·					
Conditio	ດ			Unope	rating			
Actual D	ischarge Rate	· · ·	35.4m³/hr			Digil	tal 453610	
Electric	Operation boar	d	· · · · · · · · · · · · · · · · · · ·	Good		- <u></u>	· · · · · · · · · · · · · · · · · · ·	
	Lighting		· · · · · · · ·	Good				
	Wiring		· · · · · · · · · · · · · · · · · · ·	Good				
	Transformer			Good				
Piping	· · · · ·			Good				
	ality E/C		<u> </u>					
Others	I ,	I	J	I		· · · ·		

A-21

Well No.	111.		Location	Balad Well				Jul. 30, '77
Owner	MWA		Contractor	Parsons		Survey	red	Sep.14, '88
	· ·							
	Item	- 	Const.	Rehab.	B/D	II	R	amarks
Elevatio	n		74.7 m					
Drilling	Dia.				n de la composition La composition de la c			
Well Dia	<u></u>		10 ³ /4 in.					and a second
Well Dep	th		118.3 m				· .	
Static W	ater	Level	64.9 m	71.10 m	70.75	M	48.12	
Dynamic	Vater	Level		74.32 m				
Casing M	ateri	al						
Screen	Loca	tion	85-118.3					
	Mate	rial	Stainless	Steel				
	Open	ing Ratio						
Punp	Styl	e		Submersibl	e Remo	ved		
	Capa	city(motor)			1		
	Disc	harge Rate						
Operatio	n .				Unope	rating		
Actual D	ischa	rge Rate			· <u>-</u>			
Electric	Oper	ation Boar	d		Remov	ed		
	Ligh	ting			Nil			
	Wiri	ng		· ·	Nil			
	Tran	stormer			usual			······································
Piping			•		Renov	ed		······································
Water Qu	ality	E/C	700 µm/cm					· · · · · · · · · · · · · · · · · · ·
		c1-	40 PP*					· · · · · · · · · · · · · · · · · · ·
Others					• • • • • • • • • •	·		······································
								• •

.

Well No.	11.5B		Location	Balad Well Fi	eld	Completed	Jan.24, '87
Owner	MWA		Contractor	Nissaku		Surveyed	Sep.14, '88
				4			
	ltem		Const.	B/D III			Remarks
Elevatio	n						
Drilling	dia.				[
Well dia	•		10 in.				· ·
Well Dep	th		146 m		[*		
Static W	ater Le	vel	66.47 m				· · · · · · · · · · · · · · · · · · ·
Dynamic	Water L	evel	101.90	n 82.57 m			
Casing	Hateri	al					
Screen	Locati	on	107.5-1	29.5 m			· · · · · · · · · · · · · · · · · · ·
	Materi	al	Stainle	ss Steel			· · · · · · · · · · · · · · · · · · ·
	Openin	g Ratio	11%				
Pump	ump Style		Submers	ible			
	Capaci	ty(moto	r)			Cur	rent 69(A)
	Discha	rge Rat	e				
Conditio	n			Operating		Pre	ssure 1.6kg/cm ²
Actual D	ischarg	e Raté	66.6 m ³	/hr -		Dig	ital 619060
Electric	Operat	ion [®] Boa	rð	Good		Vol	tage342(V)
	Lighti	ng		Good			
	Wiring			Good			
	Transf	ormer		Good			· ·
Piping		· · ·					
Water Qu	ality E	/C					
	P	H					
Others			I			F	
•							

A-23

Well No.		0A		ation		lad Well F	101		pleted	Jun.27, Sep.14,	<u> </u>
Owner	НЙА		Con	tractor	Pa	rsons			veyed	Sep. 14,	
·											
	Item	·· ·		Const	•	Rehab.	1_	B/D II		Remarks	
Elevatio	n			74.07m			·				
Dcilling	dia.										
Well dia	•		<u></u>	10 3/4i							· · · ·
Well Dep	th	: · :		121.1 a						·	۰
Static W	ater	Level		62.80 m		70.38 m	6	9.50 m		· · · · · · · · · · · · · · · · · · ·	<u> </u>
Dynamic	Water	Level	:			76.43 m					
Casing M	ateri	al						. <u></u>	· .		
Screen	Loca	tion		84.9-12	1.1	R			·	· · · · · · · · · · · · · · · · · · ·	,
	Mate	rial		Steel (6	5/8	in.)					
	Open	ing Rati	D					· .			
Punp	Styl	e				Submersit	le	Out of	Order		- -
	Capa	city(mot	or))								
	Disc	harge Ra	te								·.
Conditio	n			Operati	n <i>g</i>	· · · · ·			Pre	ssure 1.8k	g/cm²
Actual D	ischa	rge Rate	·	(60.2m ³	/hc)					
Electric	Oper	ation Bo	ard				U	noperat	ing		·
	Ligh	ting				· · ·	U	sual		· · · · · · · · · · · · · · · · · · ·	
	Wiri	ng					U	sual			-,
	Tran	sformer		·····			U	sual		· · · · · · · · · · · · · · · · · · ·	
Piping						······································					
Water Qu	ality	E/C		760µm/c	 ก		1	······································		- <u> </u>	
		¢1 ⁻		40 ppm			-+				,~
Others				l	ł	Ļ	- I .	·	I		
										e de la composición d Composición de la composición de la comp	

л-24

Well No.	12.	OB 1	Loc	ation	Ba	lad Well Fi	eld	Compl	eted	Mar.19	, 187
Owner	NWA	· · · · · · · · · · · · · · · · · · ·	Con	tractor	Ni	ssaku	<u> </u>	Surve		Sep.14	
	L			la				<u> </u>		!	
	Item		a da	Const.		Rehab.	 I .		T B	lemarks	
Elevatio	n					·					
Drilling	dia.							·····		· · · ·	
Well dia	4			10 in.		· · · · · · · · · · · · · · · · · · ·			1		
Well Dep	th		.	145.0 m							
Static W	ater	Level		68.10 m	:	67.50 m			• <u></u>].		
Dynamic	Water	Level	·	100.66 m	,	-					
Casing M	ateri	al	<u> </u>		-				1		
Screen	Loca	tion		106.5-12	э.	0 134-9-139-	 5				
	Hate	rial		Stainles							·
	Open	ing Ratio		11%		·····					
Pump	Styl	ė		Submersi	61	e Removed					
	Capa	city(moto	r)								
	Disc	harge Rate	e			···	·		1		
Conditio	n -			· · · ·		Unoperatin	g				
Actual D	ischa	rge Rate		60.2 m ³ /	'hc				Digi	tal 729	500
Electric	Oper	ation Boa	гđ			Vsual					· · · · ·
	Ligh	ting				Usual		·			
· · · · ·	Wiri	ng				Usual					
	Tran	sformer			_	Usual					
Piping	(Usual					
Water Qu	ality	E/C							1 .		
											· · · · · · · · ·

Well No.	12.5A	Loc	ation	Balad Well Fi	eld	Complete	d Jan.	1, '87
Owner	MWA	Con	tractor	Parsons		Surveyed	Sep.	14, '88
		n an						
	Item		Const.	B/D 11			Remar	ks
Elevatio	n		68.73 m					
Drilling	dia.	· · · ·		:				
Well dia	•		10 in.					
Well Dep	th		140.0 m					
Static W	ater Leve	1	66.07 m	63.85 m			· · · · · ·	
Dynamic	Water Lev	el	89.05 m					
Casing H	aterial						1. 	
Screen	Location		96.0-118	3.0 m				
	Material		Stainles	ss Steel				an a
	Opening	Rate	11 %					
Рияр	Style		Submersi	ible				
	Capacity	(motor)	•			···	•	
	Discharg	e Rate			[
Conditio	n			Unoperatio	8			
Actual D	ischarge	Rate	66.0 m ³ /	/hr		Ð	igital 7	16519
Electric	Operation	n board		Good				
	Lighting			Good				
	Wiring			Cood				· · · · · ·
	Transfor	ner		Cood				
Piping				Good			· · · · · · · · · · · · · · · · · · ·	····
Water Qu	ality E/C		810 µm/c	en				
	c1-		60 ppm					

Pumping test was carried out in this study.

A-26

Well No	. 12.5B	Loc	ation	Ba	lad Well Fi	eld	Comple	eted	Apr.20, '70
Owner	NWA	Сол	tractor	Pa	rsons		Survey	ved	Aug.14, '88
			<u> </u>	•					
	Item		Const.		Rehab.	B/D	E III	R	amarks
Elevatio	n		72.08 m						
Drillio	g Dia.								
Well Dia	3		10 ³ /4 in	1.					
Well Dep	oth		114.7 m					1	
Static 1	later Level		59.8 m		68.15 m	66.4	5 m		
Dynamic	Water Level				79.00 m	· · ·		 	· · · · · · · · · · · · · · · · · · ·
Casing }	laterial								
Screen	Location	~	85.8-114	1.8	A				
	Material		Steel (6 ⁵	/8	in.)		·		
•	Opening Ratio	0	· ·						·
Рилр	Style	·			Submersibl	e Rema	oved		
•	Capacity (moto	or)			⁻				
•	Discharge Ra	te							
Operatio	ם היי היי היי היי היי היי היי היי היי היי					υπορ	erating	······	· · · · · · · · · · · · · · · · · · ·
Actual É	ischarge Rate	н. н. 191			46.2 m³/hr				tal 32758
	Operation Boa					Remo	ved		
	Lighting						alled		·····
	Wiring	¹					alled		
·	Transformer		· · · · · · · · · · · · · · · · · · ·	-			alled		
Piping							alled		
	ality E/C		875 µm/c	n					
	cl		70 PP=						
Others								I	

Λ-27

Well No.	13.	UA	Lo		Balad Well		Compl		May 3, '70
Owner	HWA		Co	intractor	Parsons		Surve	yed	Sep.14, '88
			· · ·					p	
	Item	· · · ·		Const.	Rehab.	B/D	01		Remarks
Elevatio	n			63.38 m		 			
Dcilling	dia.		-					 	
Kell dia	•			10 3/4 in.					· · · · · · · · · · · · · · · · · · ·
Well Dep	th			117.1 m		· .			
Static W	ater	Level		55.7 m	67.12 m	-			
Dynamic	Water	Level			82.94 m	78.65	FR.		
Casing	Mate	rial						·	
Screen	Loca	tion		87.1-117.1	M				· · ·
	Mate	rial	.	Steel (65/8	in.)				.:
	Open	ing Ratio	>						
Pump	styl	e			Submersibl	e			
	Capa	city(moto	or)					Curr	ent 52(A)
	Disc	harge Rat	е						· · · · · · · · · · · · · · · · · · ·
Conditio	n	-	i i			Opera	ting	Pres	sure 1.9kg/cm ⁴
Actual D	ischa	rge Rate			48.6 m³/hr	44.0.0	a³/hr	Digi	tal 786003
Electric	Oper	ation Boa	ard			Insta	lled	Volt	age354(V)
	Ligh	ting				Insta	lled		
	Wici	ng				Instal	lled		· · ·
	Tran	sformer				Insta	lied		
Piping						Insta	lled		
Water Qu	ality	E/C		720 µm/cm					
		c1-		50 ppm					

				· · ·	
Wéll No.	13.0B	Location	Balad Well Field	Completed	May 14, '70
Owner	НУА	Contractor	Parsóns	Surveyed	Sep.14, '88
	•	K	- 1	1	

ra de la contra de Este de la contra de	Item	- -	Const.	Rehab.	B/DШ	Remarks
Elevatio	n		74.41 m	· · ·		
Drilling	dia.					
Well dia	i. :	· · · · · · · · · · · · · · · · · · ·	10 3/4in.		·	
Well Dep	oth 👘		126.8 m		· · ·	
Static W	ater	Level	60.5 m	69.32 m	67.33 m	· · · · · · · · · · · · · · · · · · ·
Dynamic	Water	Level		74.24 m		
Casing M	lateri	al			· · ·	······································
Screen	Loca	tion	87.6-123.8	M		
	Mate	rial	Stainless	Steel (66/8	in.)	
	Open	ing Ratio			· •	
Pump	Styl	e		Submersibl	e Removed	
	Capa	city(motor))	······································			
	Disc	harge Rate				
Conditio	n ·		. :		Unoperating	
Actual D	ischa	rge Rate		51.6m³/hr		
Electric	Oper	ation Board			Removed	
	Ligh	ting			Nīl	
	Wiri	ng			Removed	
	Tran	sformer			Removed	
Piping					Removed	
Water Qu	ality	E/C	720 µm/cm			
		cl-	50 ppm			-

Hate Open Pump Styl Capa Disc Condition Actual Discha Electric Open	Level Level al al ition erial ning Ratio	······································	t. Rehab. m in. m 68.73 m 75.54 m	B/D 111 8 in.)	urveyed Sep.1	3, '88 ks
Elevation Drilling dia. Well dia. Well Depth Static Water Dynamic Water Casing Materi Screen Loca Mate Oper Pump Styl Capa Disc Condition Actual Discha Electric Oper	Level Level al al ation erial aing Ratio	71.57 a 10 4/5 121.6 a 57.80 a 84.3-12 Stainle	m in. m 68.73 m 75.54 m 21.6 m ess Steel (6 ^{5/}	\$ in.)	Remarl	
Elevation Drilling dia. Well dia. Well Depth Static Water Dynamic Water Casing Materi Screen Loca Mate Oper Pump Styl Capa Disc Condition Actual Discha Electric Oper	Level Level al al ation erial aing Ratio	71.57 a 10 4/5 121.6 a 57.80 a 84.3-12 Stainle	m in. m 68.73 m 75.54 m 21.6 m ess Steel (6 ^{5/}	\$ in.)	Remarl	ks
Drilling dia. Well dia. Well Depth Static Water Dynamic Water Casing Materi Screen Loca Mate Oper Pump Styl Capa Disc Condition Actual Discha Electric Oper	Level Level al al ation erial aing Ratio	10 1/5 121.6 m 57.80 m 84.3-12 Stainle	in. m 68.73 m 75.54 m 21.6 m ess Steel (6 ^{5/}			
<pre>Well dia. Well Depth Static Water Dynamic Water Casing Materi Screen Loca Mate Open Pump Styl Capa Disc Condition Actual Discha Electric Open</pre>	Level Level al al ation erial aing Ratio	121.6 m 57.80 m 84.3-12 Stainle	m 68.73 m 75.54 m 21.6 m ess Steel (6 ^{5/}			
Well Depth Static Water Dynamic Water Casing Materi Screen Loca Mate Oper Pump Styl Capa Disc Condition Actual Discha Electric Oper	Level al ation erial aing Ratio	121.6 m 57.80 m 84.3-12 Stainle	m 68.73 m 75.54 m 21.6 m ess Steel (6 ^{5/}			
Static Water Bynamic Water Casing Materi Screen Loca Mate Oper Pump Styl Capa Disc Condition Actual Discha Electric Oper	Level al ation erial aing Ratio	57.80 m 84.3-12 Stainle	m 68.73 m 75.54 m 21.6 m ess Steel (6 ^{5/}			
Dynamic Water Casing Materi Screen Loca Mate Oper Pump Styl Capa Disc Condition Actual Discha Electric Oper	Level al ation erial aing Ratio	84.3-12 Stainle	75.54 m 21.6 m ess Steel (6 ^{5/}			
Casing Materi Screen Loca Mate Oper Pump Styl Capa Disc Condition Actual Discha Electric Oper	al ation erial aing Ratio le	Stainle	21.6 m ess Steel (6 ^{5/}			
Screen Loca Hate Oper Pump Styl Capa Disc Condition Actual Discha Electric Oper	ntion erial ning Ratio Le	Stainle	ess Steel (6 ⁵⁷			
Hate Open Pump Styl Capa Disc Condition Actual Discha Electric Open	erial Ning Ratio Le	Stainle	ess Steel (6 ⁵⁷			
Pump Open Pump Styl Capa Disc Condition Actual Discha Electric Open	ning Ratio Le	······································				
Pump Styl Capa Disc Condition Actual Discha Electric Oper	e		Submersi	hle		
Capa Disc Condition Actual Discha Electric Oper			Submersi	hle		
Disc Condition Actual Discha Electric Oper	acity(moto		1	j.		
Condition Actual Discha Electric Oper		(r)			Current 54	(A)
Actual Discha Electric Oper	harge Rat	e				
Electric Oper				Operati	ng	
	rge Rate		51.6 m ³ /	hr 47.0 m ³	/hr Digital 89	7937
Liet	ation Boa	rd		Good	Voltage 35	5(V)
1	nting			without	hood	
Wiri	ing			Good		
Trar	nsformer			Good		
Piping	, _, _, _, _, , _			Good		· · · · ·
Water Quality	E/C	740 µm,	/cm	1		
	c1-	60 ррл				
Others	1		l	······		

A-30

Well No.	13.	5B	Location	Balad Well	Field	Comple	eted	May 23,	'70
Owner	MWA		Contractor	Parsons		Surve	yed	Sep.12,	188
				· ·		· · · · · · · · · · · · · · · · · · ·			
	Item		Const.	Rehab.	B/D	<u>n</u>		Remarks	
Elevatio	n					[
Drilling	dia.	· · · · ·	·····	···					
Well dia	•	·····	10 ^{3/4} in	•	: .				
Well Dep	th		119.6 л						
Static W	ater	Level		71.15 a	· · · · · · · · · · · · · · · · · · ·		·		
Dynamic	Water	Level	-	80.25 m	82.28	R			
Casing H	ateri	al		····		•			
Screen	Loca	tion	85.9-119	.6 13					
	Mate	rial	Stainles	s Steel (65/8	in)				
	Open	ing Rate							
Pump	Styl	e		Submersible				· ·	/ •
	Capa	city(motor)				Curre	ent 55(A)	
	Disc	harge Rate	· · · · · · · · · · · · · · · · · · ·						
Conditio	n		· ·		Opera	ting	Press	sure 2.0k	g/cm
Actual D	ischa	rge Rate		37.2 m ^s /hr	37.0	m³/hr	Digit	al 99829	6
Electric	Oper	ation boar	·d		Good				
	Ligh	ting			Good			· · · · · · · · · · · · · · · · · · ·	· .
	Viri	ng			Good				
	Tran	sformer			Good				
Piping		·····			Good				
Water Qu	ality	E/C							
		cl-							
Others	J				•	······································			
				f = g + i g					

A -- 31

.

Well No.	14.0		{	cation	Balad Well Parsons		Surve	ved	Jun. 5, '70 Sep.12, '88
Owner	MWA			atractor			<u> </u>		
					1			Б	amarks
	Item			Const.	Rehab.	B/D	<u></u>		3441 85
Elevation)		- <u>-</u>			 	÷	· · · · ·	
Dcilling	Dia.	· · · ·			1				
Well Dia				103/4 in.		 			
Well Dept	t h	·		120.0 m				} 	· · · · · · · · · · · · · · · · · · ·
Static Wa	ater L	evel			67.04 m				
Dynamic N	later	Levél	· · · · ·		72.75 m	76.50	<u>ß</u>		
Casing Ma	ateria	1						<u> </u>	
Screen	Locat	ion		84.9-120.0	a	·		 	· · · · · · · · · · · · · · · · · · ·
ſ	Kater	ial		Stainless	Steel (65/8	in.)			
	Openi	ng Ratio	, ,						
Pump	Style				Submersible			[
	Capac	ity (moto	r)					Curr	ent 51(A)
ļ	Disch	arge Rat	e					[
Operation	n		•	· · ·		Opera	ting	Press	ure 1.6 Kg/cm ²
Actual Di	ischar	ge Rate			51.6 m ³ /hr	42.0	m³/hr	Digi	tal 494602
Electric	Opera	tion Boa	rd			Good		Volt	age 380(V)
- F	Light	ing				Nil	:		
F	Wirin	8		· · · · ·		Good	• • · · · · · · · ·		·
	Trans	former			{	Good	·····		
I Piping		_ 				Good		<u> </u>	
Water Qua	ality	E/C		· · · · · · · · · · · · · · · · · · ·		<u> </u>			
		cl				1		1	
	l_		_ _	1	l	1		1	

Λ-32

		n an	en 1915 - Antonio Status, en 1917		
Well No.	14.08	Location	Balad Well Field	Completed	Mar. 3, '70
Owner	MWA	Contractor	Parsons	Surveyed	Sep.14, '88

Well No.	14.	.0B I	ocation	Balad Well	Field	Compl	eted	Mar. 3,	'70
Owner	MWA	() ()	ontractor	Parsons		Surve	yed	Sep. 14,	'88
		· · · · · · · · · · · · · · · · · · ·	h				\$ <u></u>		
	Item		Const.	Rehab.	B/D	Ш		Remarks	
Elevatio	n			······	·		· · ·		
Drilling	dia.		:						
Well dia	••••	· · · · · · · · · · · · · · · · · · ·	95/8 in.	· · · · · · · · · · · · · · · · · · ·					
Well Dep	th	······	121.9 m						
Static W	ater	Level	- -	67.13 п	66.35	л			
Dynamic	Water	Level	-	88.03 m				• • • • • • • • • • • • • • • • •	
Casing	Hate	rial							
Screen	Loca	tion	82.3-119.0	m	Į	·			
	Mate	rial	Stainless	Steel (95/8	in.)				
	Open	ing Ratio				· · ·			
Pump	styl	е		Submersibl	e Remov	/ed			
	Capa	city(motor)							
	Disc	harge Rate							
Conditio	n j	· · ·			Unoper	ating			· · · · · ·
Actual D	ischa	rge Rate		19.3 m³/hr					
Electric	Oper	ation Board			Remove	ed .			
	Ligh	ting			Nil	· .			· .
	Viri	ng	· ·		Remove	d			
	Tran	sformer					-	<u>-</u> -	
Piping									
Water Qu	ality	E/C							
	•	c1-					· · · · · · · · · · · · · · · · · · ·		

No fence

Λ-33

				an a	
Well No.	14.5A	Location	Balad Well Field	Completed	Jun.11, 170
Owner	MWA	Contractor	Parsons	Surveyed	Sep. 12, '88
	L	<u>P</u>			••••••••••••••••••••••••••••••••••••••

	Item	Const.	Rehab.	B/D III	Remarks
Elevatio	on				
Drilling	g dia.				
Well dia	1.	10 3/4 in.			
Well Der	oth	119.9 m			
Static 1	later Level		63,88 m	61.79 m	
Dynamic	Water Level		75.55 m		
Casing N	faterial				
Screen	Location	85.0-120 m			
	Haterial	Steel (65/8	in.)		
	Opening Ratio				
քսաք	Style		Submersibl	e Out of Ord	er
	Capacity(motor))				
	Discharge Rate		· · · · · · · · · · · · · · · · · · ·		
Conditio	on			Unoperating	
Actual I	Discharge Rate		43.8m³/hr	· · · · · ·	Digital 174928
Electric	Operation Board				
	Lighting			Installed	
	Wiring	· ·		Nil	
	Transformer			Installed	
Piping				Installed	
Water Qu	ality E/C				······································
	c1-				

 $\Lambda - 34$

.

		and a second s			
Well No.	14.5B	Location	Balad Well Field	Completed	Feb. 4, '87
Owner	HWA	Contractor	Nissaku	Surveyed	Sep.12, '88

	Item	n da anti-	Const.	B/D ∭			Rem	arks
Elevatio	n					{		
Drilling	dia.						·	
Well dia	•	· · · · · · · · · · · · · · · · · · ·	10 in.			· ~		
Well Dep	th	oth	130.0 m	······				
Static W	ater	Level	66.00 m	64.39 m	····			
Dynamic	Water	Level	87.96 m		· · ·			
Casing H	ateri	al			···			
Screen	Loca	tion	97.0-119.0		·			
	Mate	rial	Stainless	Steel				
	Open	ing Ratio	11 %					
Pump	Styl	e	Submersibl	e				
·	Capa	city(motor)						
	Disc	harge Rate						<u> </u>
Conditio	n .			Unoperating				· · · · · ·
Actual D	ischa	rge Rate	72.0 m³/hr		· · · · · · · · · · · · · · · · · · ·			
Electric	Oper	ation Board		Good				
	Ligh	ting		Good	· · · · · · · · · · · · · · · · · · ·			
	Wiri	ng		Cood			·	
	Tran	sformer		Good	· · ·			
Piping			Good	······································		• -		
Water Quality E/C			·······				· · ·	
		cl-		·	<u> </u>		<u>_</u>	
Others		L			· · · · ·	I		
							· . ·	

Kell No.	15.0A	Location	Balad Well Field	Completed	Mar.19, '70
Owner	NVA	Contractor	Parsons	Surveyed	Sep.12, '88
		 International contractions Anticipation of the second contraction of t			

	ltem	Const.	Rehab.	B/D Ш	Remarks
Elevatio	on				
Drilling dia.			· · ·		
Well dia	3.	95/8 in.			
Well Dep	pth	112.8 л			
	later Level		62.00 m	60.60 m	
	Water Level	·	72.13 m		
	faterial		[
Screen	Location	77-110 m	· ·		
	Material	Steel (95/3	in)	1 	<u></u>
	Opening Rate				
Pump	Style		Submersible	Removed	
-	Capacity(motor)				· · · · · · · · · · · · · · · · · · ·
	Discharge Rate				
Conditio	L			Unoperating	
	Discharge Rate		41.6 m³/hr	<u> </u>	
	Operation board			Good	
	Lighting			Good	
	Wiring	·		Good	
· · ·	Transformer	,,,,	· · ·	Good	
Piping				Cood	
	uality E/C	· · · · · · · · · · · · · · · · · · ·			
votel A	cl ⁻			· · · · · · · · · · · · · · · · · · ·	
<u></u>	L i	L	1	<u> </u>	<u> </u>

Others

A-36

•

Well No.	15.	OB	Location	Balad Well	Field	Completed	Mar.26, '70
Owner	HWA		Contractor	Parsons		Surveyed	Sep.12, '88
							
	ltem		Const.	Rehab.	B/D	Ш	Ramarks
Elevatio	n						· · · · · · · · · · · · · · · · · · ·
Drilling	; Dia.						
Well Dia	1	:	10 ³ /4 i	n ,			
Well Der	th		113.0 m				
Static 1	later	Level		62.15 m	60.88	fil.	
Dynamic	Water	Level		75.30 m			
Casing M	lateri	al					
Screen	Loca	tion	81-110	ä			······································
Mat		rial	Stainle	ss Steel (6 ⁵⁷⁸	in.)		
	Open	ing Ratio)			2 - 8 ¹	· · · ·
Pump	Styl	6		Submersibl	e Out o	f Order	
	Capacity(m		or)				
	Disc	harge Rat	e				
Conditio	n	· · · · · · · · · · · · · · · · · · ·			Unoper	ating	· · · · · ·
Actual I	lischa	rge Rate	·]	42.0 m ³ /h	ur i		
Electric	Oper	ation boa	ird		Good		
	Ligh	ting			Good		
	Wici	ng			Good		
	Tran	sformer			Good		
Piping	•	· · · · · · · · · · · · · · · · · · ·			Good		
Water Qu	ality	E/C					
		c1					
Others							
		·					

Λ-37

------.* .

9. RECORD OF PUMPING TESTS

RECORD OF CONTINUOUS PUNPING TEST (1/5)

Location : No.12.5A Date : Sep.15

Static Water Level : G.L.- 64.76 m

Discharge : 40,000 1/sec

(40m/sec)				
Time	Time since	Water Level	Drawdown	Remarks
Interval	Pumping	G.L		
	starting			
(min)	(min)	(11)	(m)	
	0	64.76		
0.5	0.5			
0.5	1.0	79.20	14.44	
0.5	1.5	79.36	14.60	
0.5	2.0			
0.5	2.5			
0.5	3.0			
0.5	3.5			
0.5	4.0	79.36	14.60	
0.5	4.5			
0.5	5.0			
1.0	6.0	79.40	14.64	
1.0	7.0	76.59	11.83	
1.0	8.0	76.21	11.45	
1.0	9.0	75.96	11.20	$2.4(kg/cm^2)$
1.0	10.0	75,88	11.12	2.4(kg/cm ²)
2.0	12.0	75.87	11.11	2.4(kg/cm ²)
2.0	14.0	75.84	11.08	2.4(kg/cm ²)
2.0	16.0	75.83	11.07	$2.4(kg/cm^2)$
2.0	18.0	75.83	"	$2.4(kg/cm^2)$
2.0	20.0	75.83	"	2.4(kg/cm ²)
5.0	25.0	75.92	11.16	2.4(kg/cm ²) '
5.0	30.0	75.94	11.18	2.4(kg/cm ²)
5.0	35.0	75.95	11.19	2.4(kg/cm ²)
5.0	40.0	75.97	11.21	2.4(kg/cm ²)
5.0	45.0	75.962	11.20	2.4(kg/cm ²)
5.0	50.0	75.97	11.21	2.4(kg/cm ²)
5.0	55.0	75.98	11.22	2.4(kg/cm ²)
5.0	60.0	75.98	11.22	2.4(kg/cm²)
	Time Interval (min) 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	TimeTime sinceIntervalPumping starting (min)(min)00.50.50.51.00.51.50.52.00.52.50.53.00.53.50.53.00.53.50.53.00.53.50.53.00.53.50.55.01.06.01.07.01.08.01.07.01.08.01.010.02.014.02.014.02.016.02.018.02.025.05.030.05.035.05.040.05.050.05.050.0	TimeTime sinceWater LevelIntervalPumping starting (min)G.L064.760.50.50.51.079.200.51.50.52.00.52.50.53.00.53.50.53.00.53.50.53.00.53.50.53.00.53.50.55.01.06.01.079.401.07.076.591.08.075.862.012.075.872.014.075.832.018.075.832.020.075.955.030.075.955.055.075.975.055.075.975.055.075.98	Time Time since Water Level Drawdown Interval Pumping G.L starting (min) (m) (m) 0 64.76 0.5 0.5 0.5 1.0 79.20 14.44 0.5 1.5 79.36 14.60 0.5 2.0 0.5 2.0 0.5 3.0 0.5 3.0 0.5 3.0 0.5 3.0 0.5 3.0 0.5 3.0 0.5 3.0 0.5 5.0 1.0 6.0 79.40 14.64 1.0 7.0 76.59 11.83 1.0 10.0

A-38

RECORD OF CONTINUOUS PUHPING TEST (2/5)

Location : No. 12.5A

Date : Sep.15

Static Water Level : G.L.- 64.76 m

Discharge : 50,000 1/sec

Measuring	Time	Time since	Water Level	Drawdown	Remarks
Time	Interval	Pumping	C.L		
		stopping		an a	
(hr) (min)	(min)	(min)	(m)	 (m)	
		0	75.98		
••••••	0.5	0.5		•	• • • • • • •
•	0.5	1.0	78.08	13.32	P=0.6kg/cm ²
	0.5	1.5	79.09	13.33	
•	0.5	2.0	79.43	14.67	
:	0.5	2.5	79.71	14.95	
:	0.5	3.0	80.04	15.28	
:	0.5	3.5	80.26	15.50	
:	0.5	4.0	80.35	15.59	
:	0.5	4.5	80.41	15.65	
	0.5	5.0	80.45	15.69	P=0.03kg/cm ²
:	1.0	6.0	80.50	15.74	
:	1.0	7.0	80.51	15.75	
:	1.0	8.0	80.56	15.80	
1	1.0	9.0	80.57	15.81	
:	1.0	10.0	80.59	15.83	
1	2.0	12.0	80.60	15.84	
	2.0 .	14.0	80.62	15.86	
:	2.0	16.0	80.63	15.87	
1	2.0	18.0	80.64	15.88	
:	2.0	20.0	80.66	15.90	
:	5.0	25.0	80.72	15.96	
1	5.0	30.0	80.73	15.97	
:	5.0	35.0	80.73	"	
:	5.0	40.0	80.73	"	
. .	5.0	45.0	80.75	15.99	
;	5.0	50.0	80.76	16.90	
					······································
1:00	10.0	60.0	80.78	16.02	

RECORD OF CONTINUOUS PUMPING TEST (3/5)

Max

Location : No. 12.5A

Date : Sep.15

Discharge : 55,000 1/sec

Static Water Level : G.L.- 64.76 m

	(55m³/sec)	**************************************	T		T
Measuring	Time	Time since	Water Level	Dravdovn	Remarks
Time	Interval	Pumping	G.L		
		stopping			
(hr) (min)	(min)	(min)	(m)	(a)	
:		0	80.78		
:	0.5	0.5			
·	0.5	1.0	80.93	16.17	
•	0.5	1.5	80.96	16.20	
:	0.5	2.0	80.98	16.22	
:	0.5	2.5	80.99	16.21	
:	0.5	3.0	80.99		
:	0.5	3.5	80.99		
:	0.5	4.0	80.99		
:	0.5	4.5	80.99	"	
:	0.5	5.0			
:	1.0	6.0			
:	1.0	7.0	81.00	16.22	
:	1.0	8.0	81.00		
;	1.0	9.0			
:	1.0	10.0			
;	2.0	12.0			
:	2.0	14.0	· · · · · · · · · · · · · · · · · · ·		
:	2.0	16.0			
:	2.0	18.0			
:	2.0	20.0			:
:	5.0	25.0			
:	5.0	30.0			
:	5.0	35.0		· · · · · · · · · · · · · · · · · · ·	<u> </u>
:	5.0	40.0			
:	5.0	45.0			·····
•	5.0	50.0			
:	5.0	55.0			
:	5.0	60.0			

RECORD OF RECOVERY TEST (4/5)

Location : No. 12.5A

Date : Sep.15

l/sec Static W

Discharge :

Static Water Level : G.L.- 64.76 m

Measuring	Time	Time since	Water Level	Recovery	Remarks
Time	Interval	Pumping	G.L		
a de la composición d Persente de la composición de la composi Persente de la composición de la composic		stopping			
(hr) (min)	(min)	(min)	(m)	(m)	•
•		0	81.00		· · · · · · · · · · · · · · · · · · ·
•	0.5	0.5	65.53	15.47	
*	0.5	1.0	62.45	18.55	
•	0.5	1.5	63.30	17.70	
•	0.5	2.0	64.65	16.35	
••••••••••••••••••••••••••••••••••••••	0.5	2.5	65.21	15.71	
**	0.5	3.0	65.30	15.70	
1	0.5	3.5	65.32	15.68	
	0.5	4.0	65.28	15.72	
:	0.5	4.5	65.25	15.75	
:	0.5	5.0	65.23	15.77	······································
:	1.0	6.0	65.16	15.84	
:	1.0	7.0	65.11	15.89	
	1.0	8.0	65.06	15.94	
:	1.0	9.0	65.03	15,97	
:	2.0	10.0	65.00	16.00	
:	2.0	12.0	64.98	16.02	
;	2.0 :	14.0	64.92	16.08	
:	2.0	16.0	64.89	16.11	
:	2.0	18.0	64.86	16.14	
•	5.0	20.0	64.85	16.15	
	5.0	25.0	64.82	16.18	
:	5.0	30.0	64.80	16.20	· · · · · · · · · · · · · · · · · · ·
. :	5.0	35.0	64.78	16.22	
:	5.0	40.0	64,76	16.24	
:	5.0	45.0			
:	5.0	50.0			
;	10.0	60.0			

RECORD OF PUMPING TEST (5/5)

Location : No. 12.5A Date : Sep.15

Static Water Level : G.L.- 64.76 m

Discharge : 40,000 1/sec

Neasuring	Time	Time since	Water Level	Drawdown	Remarks
	Interval	Pumping	G.L		
1 1 1110		stopping			
(hr) (min)	(min)	(min)	(m)	(m)	
:		0	64.76		
•	0.5	0.5			
	0.5	1.0	17.57	12.81	
	0.5	1.5	74.67	9.91	
•	0.5	2.0	76.12	11.36	
:	0.5	2.5	77.06	12.30	
:	0.5	3.0	75.27	10.51	
;	0.5	3.5	75.66	10.90	
;	0.5	4.0	76.48	11.72	
;	0.5	4.5	76.76	12.00	
:	0.5	5.0	76.93	12.17	
:	1.0	5.0	77.05	12.29	
:	1.0	7.0	77.11	12.35	
:	1.0	8.0	77.16	12.40	
:	1.0	9.0	77.18	12.42	
*	1.0	10.0	77.19	12.43	
:	2.0 :	12.0	77.25	12.49	
:	2.0	14.0	77.28	12.52	
:	2.0	16.0	77.30	12.54	
:	2.0	18.0	77.33	12.57	
:	2.0	20.0	77.34	12.58	<u> </u>
:	5.0	25.0	77.35	12.59	
:	5.0	30.0	77.37	12.61	
:			ана стала 		
:					
			<u>.</u>		
<u>.</u>		· · · · · · · · · · · · · · · · · · ·			
:		· · · · · · · · · · · · · · · · · · ·			
:					

RECORD OF CONTINUOUS PUMPING TEST (1/6)

Location : No. 14.0A

Date : <u>Sep.17</u>

Discharge : 30,000 1/sec

Static Water Level : G.L.- 66.32 m

procuatife .	(30.0m ³ /se	c)		c water bere	
Measuring	Time	Time since	Water Level	Drawdown	Remarks
Time	Interval	Pumping	G.L		
		stopping			
(hr) (min)	(min)	(min)	(M)	(m)	
:		0	66.32		
	0.5	0.5			
•	0.5	1.0	76.49	10.17	
• • • • • •	0.5	1.5	77.24	10.92	
:	0.5	2.0	77.42	11.10	
.	0.5	2.5	77.49	11.17	
•	0.5	3.0			
:	0.5	3.5			
:	0.5	4.0			
•	0.5	4.5	75.68	9.36	
:	0.5	5.0	75.09	8.77	
:	1.0	6.0	75.01	8.69	
	1.0	7.0	74.75	8.43	
:	1.0	8.0	73.90	7.58	
:	1.0	9.0	73.83	7.51	
I	1.0	10.0	73.75	7.43	
:	2.0	12.0	73.73	7.41	
:	2.0	14.0	73.71	7.39	
: .	2.0	16.0	73.72	7.40	
•	2.0	18.0	73.73	7.41	
:	2.0	20.0	73.74	7.42	
:	5.0	25.0	73.78	7.46	P=2.0kg/cm ²
:	5.0	30.0	73.78	"	
:	5.0	35.0	73.78	"	
:	5.0	40.0	73.78	"	
:	5.0	45.0			
•	5.0	50.0			
1	5.0	\$5.0			
1:00	5.0	60.0			

		······································		and the second
······································				iste 1995 - State State 1996 - State State State State
		Date	: Se	p.17
37,500	_1/sec	Stati	c Water Leve	1 : G.L <u>66.32</u>
7.5m³/s	ec)			
Time	Time since	Water Level	Recovery	Remarks

A .

Heasuring	Time	Time since	Water Level	Recovery	Remarks
Time	Interval	Pumping	G.L		
		stopping			
hr) (min)	(min)	(mín)	(m)	(m)	a da anti-
		0	73.78		
	0.5	0.5	76.00	9.68	
i	0.5	1.0	76.60	10.28	
1	0.5	1.5	76.90	10.59	
:	0.5	2.0	77.02	10.70	
:	0.5	2.5	76.94	10.17	
:	0.5	3.0	76.90	10.58	
:	0.5	3.5	76.80	10.48	
:	0.5	4.0	76.80	"	
	0.5	4.5	76.80	"	
:	0.5	5.0	76.80	"	
•	0.5	6.0	76.82	10.50	
;	1.0	7.0	76.82	11	1
•••••••••••••••••••••••••••••••••••••••	1.0	8.0	76.82	"	
	1.0	9.0	76.84	10.52	
	1.0	10.0	76.85	10.53	
:	2.0	12.0	76.87	10.55	
:	2.0	14.0	76.89	10.57	
:	2.0	16.0	76.89	"	
:	2.0	18.0	76.89	. "	<u> </u>
:	2.0	20.0	76.89	"	
• .	5.0	25.0	76.91	10.59	P=0.6kg/cm ²
: 30	5.0	30.0	76.87	10.55	
:	5.0	35.0	76.885	10.57	
:	5.0	40.0	76.885		
:	5.0	45.0			
1	5.0	50.0			
:	5.0	55.0	1	· · · · · · · · · · · · · · · · · · ·	
1:00	5.0	60.0			

Discharge : 37,500 1/se

Λ-44

RECORD OF CONTINUOUS PUMPING TEST (3/6)

Location : No.14.0A

Date : Sep.17

Static Water Level : C.L.- 66.32m

Discharge : 38,700 1/sec

	(38.7m/sec	1			el : 6.L <u>00.32</u> R
Measuring	Time	Time since	Water Level	Drawdown	Remarks
Time	Interval	Pumping	G.L		
		starting		. *	
(hr) (min)	(min)	(min)	(m)	(m)	
		0	76.885	· · · · · · · · · · · · · · · · · · ·	
•	0.5	0.5	77.04	10.72	
	0.5	1.0	77.24	10.92	
	0.5	1.5	77.44	11.12	· · · · · · · · · · · · · · · · · · ·
:	0.5	2.0	77.50	11.18	
•	0.5	2.5	77.63	11.31	· · · · · · · · · · · · · · · · · · ·
:	0.5	3.0	77.79	11.47	······································
:	0.5	3.5	77.95	11.63	
:	0.5	4.0	78.05	11.73	
:	0.5	4.5	78.09	11.77	· · · · · · · · · · · · · · · · · · ·
:	0.5	5.0	78.13	11.81	
:	1.0	6.0	78.16	11.84	
:	1.0	7.0	78.17	11.85	
1	1.0	8.0	78.18	11.86	
:	1.0	9.0	78.20	11.88	
:	1.0	10.0	78.21	11.89	
:	2.0	12.0	78.23	11.91	
:	2.0	14.0	78.25	11.93	
:	2.0	16.0	78.26	11.94	
:	2.0	18.0	78.26	"	
:	2.0	20.0	78.28	11.96	
:	5.0	25.0	78,31	11.99	· · · · · · · · · · · · · · · · · · ·
:	5.0	30.0	78.31		
: 30	5.0	35.0	78.33	12.01	
:	5.0	40.0	78.35	12.03	
:	5.0	45.0	78.38	12.06	
	5.0	50.0	78.385	"	
:	5.0	55.0	78.41	12.09	
1:00	5.0	60.0	78.42	12.10	···· ·································

RECORD OF CONTINUOUS PUMPING TEST (4/6)

Location : No.14.0A Date : <u>Sep.17</u> Static Water Level : G.L.-<u>66.32</u> m

Discharge : 38,700 1/sec

(38.7m/sec) Time since | Water Level | Drawdown Remarks Heasuring Time G.L. Interval Pumping Time starting 2 (n) (m) (min) (hr) (min) (min) 65.0 78.435 12.12 : 78.450 12.13 70.0 0.5 : 78.465 12.15 0.5 75.0 : 78.470 11 0.5 80.0 : 85:0 78.500 12.18 0.5 : 95.0 78.520 12.20 10.0 1 12.23 78.550 105.0 10.0 1:35 ; : : : : : : ; : **;** 4 : : : : : : : : : : : ż

RECORD OF RECOVERY TEST (5/6)

Location : No.14.0A

Date : Sep.17

l/sec Discharge :

Static Water Level : G.L.- 66.32 m

Measuring	Time	Time since	Water Level	Drawdown	Remarks
Time	Interval	Pumping	G.L		
		stacting			
(hr) (min)	(min)	(min)	(m)	(m)	
		0	78.55		
•	0.5	0.5	64.65	<u>.</u>	
*	0.5	1.0	64.17	14.38	
	0.5	1.5	65.58	12.97	
1	0.5	2.0	66.32	12.23	· · · ·
t	0.5	2.5	66.53	12.02	
	0.5	3.0	66.55	12.00	
•	0.5	3.5	66.57	11.98	
• •	0.5	4.0	66.57	"	
:	0.5	4.5	66.58	11.97	
: :	0.5	5.0	66.59	11.96	
:	1.0	6.0	66.55	12.00	
:	1.0	7.0	66.54	12.01	
;	1.0	8.0	66.53	12.02	· · · · · · · · · · · · · · · · · · ·
:	1.0	9.0	66.52	12.03	
;	1.0	10.0	66.51	12.04	
	2.0	12.0	66.50	12.05	
:	2.0	14.0	66.50	11	
:	2.0	16.0	66.48	12.07	
	2.0	18.0	66.47	12.08	
<u></u>	2.0	20.0	66.47	• "	
:	5.0	25.0	66.44	12.11	
:	5.0	30.0	66.43	12.12	
: 30	5.0	35.0	66.40	12.15	· · · · · · · · · · · · · · · · · · ·
:	5.0	40.0	66.40	"	
*	5.0	45.0	···		
	5.0	50.0		-	
:	5.0	55.0		-	
1:00	5.0	60.0			·

RECORD OF CONTINUOUS PUNPING TEST (6/6)

Location : No.14.0A

Date : Sep.17

Discharge : 37,500 1/sec

Static Water Level : G.L.- <u>66.32</u> m

	<u></u>		a sa si sa	r	
Measuring	Time	Time since	Water Level	Drawdown	Remarks
Time	Interval	Pumping	G.L		
: 		starting		· · ·	
(hc) (min)	(min)	(min)	(m)	(m) (m)	
		0	66.40		n an ann an Aonaichtean an Aonaichte Ann an Aonaichtean an
•	0.5	0.5			
	0.5	1.0	76.36	9.96	
•	0.5	1.5	77.28	10.88	
;	0.5	2.0	77.38	10.98	
:	0.5	2.5	77.43	11.03	
:	0.5	3.0	77.47	11.07	
:	0.5	3.5	77.42	11.02	an a
•	0.5	4.0	77.28	9.88	
:	0.5	4.5	76.90	10.50	
:	0.5	5.0	76.82	10.42	
;	1.0	6.0	76.47	10.07	
•	1.0	7.0	76.43	10.03	
:	1.0	8.0	76.47	10.07	
:	1.0	9.0	76.45	10.05	
:	1.0	10.0	76.46	10.06	
:	2.0	12.0	76.47	10.07	
;	2.0	14.0	76.45	10.05	
:	2.0	16.0	76.47	10.07	
:	2.0	18.0	76,50	10.10	
•	2.0	20.0	76.56	10.16	
:	5.0	25.0	76.56	"	
	5.0	30.0	76.58	10.18	
: 30	5.0	35.0			
:	5.0	40.0			
:	5.0	45.0			
:	5.0	50.0			
;	5.0	55.0		······································	
1:00	5.0	60.0	· · · · · · · · · · · · · · · · · · ·		