CHAPTER 6
ROAD USER BENEFITS

## CHAPTER 6 ROAD USER BENEFITS

Road user benefits were quantified in terms of vehicle operating cost (VOC) savings and time savings, valued at economic prices, between "with" and "without" project cases.

#### 6.1 VOC SAVINGS

In the feasibility study phases of the Study, vehicle operating costs in Thailand were thoroughly reviewed and updated. The Programing Section of DOH has been carrying out an exercise of updating DOH's standard VOC data including field data collection for various VOC components. The Study Team closely collaborated in the DOH effort and has utilized the results of their latest surveys.

#### 6.1.1 Typical Vehicles

Vehicles were classified into motorcycle (MC), passenger car (PC), light bus (LB), medium bus (MB), heavy bus (HB), light truck (LT), medium truck (MT) and heavy truck (HT) categories, as in the Master Plan Study.

The basic characteristics of typical vehicles are shown in Table 6.1.1.

Table 6.1.1 CHARACTERISTICS OF TYPICAL VEHICLES

(Unit: Baht)

| Type of<br>Vehicle | Typical<br>Vehicle | No.of<br>Tires   | Selling<br>Price | Economic<br>Cost | Economic<br>Cost less<br>Tires |
|--------------------|--------------------|------------------|------------------|------------------|--------------------------------|
|                    |                    |                  |                  |                  |                                |
| MC                 | Honda TG 125       | 2                | 33,500           | 24,187           | 23,895                         |
|                    | Suzuki TRZ         |                  |                  |                  |                                |
| PC                 | Toyota Corona      | 4                | 470,000          | 218,742          | 215,052                        |
|                    | (1600 cc)          |                  |                  |                  |                                |
| LB                 | Toyota Hilux       | 4                | 251,500          | 194,550          | 190,130                        |
| мв                 | Isuzu MPR59LU      | 6                | 489,500          | 414,628          | 399,424                        |
| НВ                 | Hino BY341         | <sup>1</sup> . 6 | 1,500,000        | 1,284,011        | 1,252,479                      |
| LT                 | Toyota Hilux       | 4                | 245,500          | 189,144          | 184,724                        |
| мт                 | Isuzu MPR59LU      | 6                | 477,500          | 403,816          | 388,612                        |
| нт                 | Hino FM176         | 10               | 999,000          | 823,223          | 787,550                        |

#### 6.1.2 VOC Under Ideal Conditions

#### 1) Components of VOC

VOC was analyzed by the following components:

- Fuel
- Oil
- Tires
- Maintenance
- Capital
- Overhead

#### 2) Road Classification

The basic costs of each VOC component were estimated for a level tangent road, paved and laterite, by speed. The following classes of roads were considered:

| Classification | Surface Condition |
|----------------|-------------------|
| Paved Road     | Good              |
|                | Good/Fair         |
|                | Fair              |
|                | Fair/Poor         |
|                | Poor              |
| Laterite Road  | Good              |
|                | Fair              |
|                | Poor              |

#### 3) Basic Cost Components

The basic VOC component costs were calculated for a paved road in good condition and a laterite road in good and poor conditions, based on the latest information.

#### a) Fuel Costs

According to the retail prices fixed by the Fiscal Policy Office, Ministry of Finance in 1988, the prices of premium petrol, regular petrol and high-speed diesel were 8.9, 8.2 and 6.3 Baht per liter, respectively. The taxes and oil fund included in these prices are shown in the table below:

#### FINANCIAL AND ECONOMIC COST OF FUEL

(Unit: Baht/liter) TAIRS PINANCIAL COST **BCONONIC COST** Oil Retail Price Br-retinery Import Harketing Total Import Business Type of Fund Breise & Duty **Puel** Price Price Margin Municipal fares PREMIUM PETROL 8.90 0.1356 4.3204 4.4440 0.6220 Locally Refined 3.6984 8.90 0.8220 0.0100 0.6809 3.7651 3.1431 Imported REGULAR PETROL 0.0545 8.20 4.4440 3.7015 3.1206 0.5809 Locally Refined 0.5996 8.20 0.0100 4.4440 2.5655 0.5809 3.1484 Imported HIGH-SPEED DIESEL 6.30 0.1670 2.5250 3.9420 0.4858 Locally Refined 3,4562 6.30 2.5250 3.6341 0.0100 0.4858 3,1483 Imported

From this table, economic unit costs of fuel were estimated at 4.32, 3.70 and 3.94 Baht per liter, for premium petrol, regular petrol and high-speed diesel, respectively, for locally refined products and 3.77, 3.15 and 3.63 Baht per liter, respectively, for imported products.

The average economic costs of fuel were calculated at 4.18, 3.57 and 3.83 Baht per liter, respectively, for premium petrol, regular petrol and high-speed diesel on the basis of the shares of locally refined and imported fuel in the Thai market as shown below:

AVERAGE COSTS OF FUEL

|                                                                  |                   | (Unit: Baht/liter)   |
|------------------------------------------------------------------|-------------------|----------------------|
| Type of Fuel                                                     | Financial<br>Cost | Economic<br>Cost     |
| PREMIUM PETROL Locally Refined 76% Imported 24% Average Price    |                   | 4.32<br>3.76<br>4.18 |
| REGULAR PETROL Locally Refined 76% Imported 24% Average Price    | 5                 | 3.70<br>3.15<br>3.57 |
| HIGH-SPEED DIESEL Locally Refined 65% Imported 35% Average Price |                   | 3.94<br>3.63<br>3.83 |

The unit costs of fuel, including average financial and economic transport costs of 0.20 and 0.15 Baht per liter for 250 km transportation, respectively, are shown below:

**FUEL COSTS** 

|                   |                   | (Unit: Baht/liter) |
|-------------------|-------------------|--------------------|
| Type of Fuel      | Financial<br>Cost | Economic<br>Cost   |
| Premium Petrol    | 9.1               | 4.33               |
| Regular Petrol    | 8.4               | 3.72               |
| High-speed Diesel | 6.5               | 3.98               |
|                   |                   | 1,43144.0          |

Considering the kind of fuel used by vehicle type, the fuel costs by vehicle type were calculated as shown below:

### USAGE OF DIFFERENT KINDS OF FUEL BY VEHICLE TYPE

(Unit: %) Vehicle Premium Regular High-Speed Type Petrol Petrol Diesel MC 100 PC 65 25 10 LB 10 10 80 LT 10 10 80 MB, HB, MT, HT 100

#### FUEL COSTS BY VEHICLE TYPE

|                                       |                 | (Unit: Baht/liter) |
|---------------------------------------|-----------------|--------------------|
|                                       | Vehicle<br>Type | Economic<br>Cost   |
| 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | MC              | 3.72               |
|                                       | PC              | 4.14               |
|                                       | LB              | 3.99               |
|                                       | LT              | 3.99               |
| MB,                                   | HB, MT, HT      | 3.98               |

DOH's current standards for variations in fuel consumption by speed on paved roads (good condition) and laterite roads (good and poor condition) were reviewed and found sound, and therefore adopted as shown in Appendix 6.1.1.

Fuel costs per kilometer by vehicle type and speed were calculated by combining the fuel consumption data and fuel costs per liter as shown in Table 6.1.2.

Table 6.1.2 FUEL COSTS BY VEHICLE TYPE AND SPEED

(Unit: Baht/km) Speed MC PC LBMBHBLTМΤ HTPaved Road (Good Condition) 20 0.123 0.622 0.571 0.784 1.239 0.622 0.784 1,362 . 30 0.1190.4480.4880.6381.1310.488 0.638 1,244 40 0.117 0.395 0,431 0.588 1.0530.431 0.588 1.158 50 0.1180.3710.4050.6381.131 0.405 0.638 1.244 G()0.124 0.357 0.389 0.708 1.298 0.389 0.708 1,427 70 0.132 0.354 0.392 0.8061.516 0.392 0.806 1.667 80 0.1450.367 0.407 0.971 0.407 1.744 0.971 1.918 90 0.390 Laterite Road (Good Condition) 20 0.135 0.628 0.697 0.933 1.480 0.697 0.933 1,635 30 0.1310.492 0.5510.760 1.352 0.551 0.760 1.493 0.488 40 0.1290.435 0.700 1.258 0.488 0.700 1.37550 0.130 0.407 0.457 1.352 0.760 0.457 0.760 1.481 60 0.138 0.403 0.4390.850 1.557 0.4390.850 1.71370 0.1520.407 0.450 0.9681.819 0.4500.9681.713 80 0.422Laterite Road (Poor Condition) 20 0.1520.676 0.7961,066 1.672 0.796 1.066 1.85330 0.1450.542 0.628 0.868 1.538 0.628 0.868 1.679 40 0.1400.4820.5550.812 0.5551.453 0.8121.56050 0.1420.464 0.5260.8941.5720.5260.894 1,692

#### b) Oil Costs

The average price of motor oil for motorcycles, petrol-driven and diesel-powered vehicles are 39, 42 and 35 Baht per liter, respectively. The economic unit costs of oil were calculated at 30.95, 34.01 and 27.65 Baht per liter for motorcycles, petrol-driven and diesel-powered vehicles, respectively, by deducting the customs duty and business tax on oil from the average price of oil.

Based on the economic unit costs of motor oil for each type of fuel and the percentage shares of each kind of fuel used for each vehicle type, the oil costs per liter by vehicle type were calculated as shown below:

OIL COSTS BY VEHICLE TYPE

(Unit: Baht/liter)

| Vehicle<br>Type | Economic<br>Cost |
|-----------------|------------------|
| MC              | 30.95            |
| PC              | 33.37            |
| LB              | 28.92            |
| LT              | 28.92            |
| MB, HB, MT, HT  | 27.65            |

DOH's current standards for variations in oil consumption by speed on paved roads (good condition) and laterite roads (good and poor condition) were reviewed and then adopted in this study as shown in Appendix 6.1.2.

The oil costs per kilometer by vehicle type were calculated by combining the oil costs per kilometer and the oil consumption data as shown in Table 6.1.3.

Table 6.1.3 OIL COSTS BY VEHICLE TYPE AND SPEED

|           |          |           |        |       |       |       | (Unit: | Baht/km) |
|-----------|----------|-----------|--------|-------|-------|-------|--------|----------|
| Speed     | MC       | PC        | 4.1    | МВ    | НВ    | LT    | мт     | НГ       |
| Paved Ros | ad (Good | Conditio  | on )   |       |       |       |        |          |
| 20        | 0.003    | 0.017     | 0,020  | 0.039 | 0.055 | 0,020 | 0.039  | 0.055    |
| 30        | 0.003    | 0.017     | 0.020  | 0.039 | 0.055 | 0,020 | 0.039  | 0.055    |
| 40        | 0.003    | 0.017     | 0.020  | 0.039 | 0.055 | 0.020 | 0.039  | 0.055    |
| 50        | 0.003    | 0.017     | 0.020  | 0.039 | 0.055 | 0.020 | 0.039  | 0.055    |
| 60        | 0.003    | 0.017     | 0.020  | 0.039 | 0.055 | 0.020 | 0.039  | 0.055    |
| 70        | 0.003    | 0.017     | 0.020  | 0.039 | 0.055 | 0.020 | 0.039  | 0.055    |
| 80        | 0.003    | 0.017     | 0.020  | 0.039 | 0.055 | 0.020 | 0.039  | 0.055    |
| 90        | -        | 0.017     | -      | -     |       |       | -      | -        |
| laterite  | Road (G  | ood Cond: | ition) |       |       |       |        |          |
| 20        | 0.003    | 0.020     | 0.029  | 0.053 | 0.072 | 0,029 | 0.053  | 0.072    |
| 30        | 0.003    | 0.020     | 0.029  | 0.053 | 0.072 | 0.029 | 0.053  | 0.072    |
| 40        | 0.003    | 0.020     | 0.029  | 0.053 | 0.072 | 0.029 | 0.053  | 0.072    |
| 50        | 0.003    | 0.020     | 0.029  | 0.053 | 0.072 | 0.029 | 0.053  | 0.072    |
| 60        | 0.003    | 0.020     | 0.029  | 0.063 | 0.072 | 0.029 | 0.053  | 0.072    |
| 70        | 0.003    | 0.020     | 0.029  | 0.053 | 0.072 | 0.029 | 0.053  | 0.072    |
| 80        | _        | 0.020     | -      | -     | -     | ***   | -      | -        |
| Laterite  | Road (P  | oor Cond  | ition) |       |       |       |        |          |
| 20        | 0,006    | 0.033     | 0.040  | 0.075 | 0.111 | 0.040 | 0.075  | 0.111    |
| 30        | 0.006    | 0.033     | 0.040  | 0.075 | 0.111 | 0.040 | 0.075  | 0.111    |
| 40        | 0.006    | 0.033     | 0.040  | 0.075 | 0.111 | 0.040 | 0.075  | 0.111    |
| 50        | 0,006    | 0.033     | 0.040  | 0.075 | 0.111 | 0,040 | 0.075  | 0.111    |

#### c) Tire Costs

Data on the unit prices of tires were obtained from interviews with major tire manufacturers conducted by DOH, and the results are shown below:

FINANCIAL AND ECONOMIC COST OF TIRES

(Unit: Baht)

|                 | <u>,</u>      | SINGL          | E TIRES                                    | SET OF TIRES INC. SPARE |       |                   |               |
|-----------------|---------------|----------------|--------------------------------------------|-------------------------|-------|-------------------|---------------|
| Vehicle<br>Type | List<br>Price | Discount 1 (%) | Av. Selling<br>Price/<br>Financial<br>Cost | Тах                     |       | Financial<br>Cost | Economic      |
| МС              | 261           | 13             | 227                                        | 81                      | 146   | 454               | 292           |
| PC              | 1,170         | 25             | 878,                                       | 140                     | 738   | 4,390             | 3,690         |
| LB              | 1,410         | 25             | 1,058                                      | 174                     | 884   | 5,290             | 4,420         |
| MB              | 3,460         | 25             | 2,595                                      | 423                     | 2,172 | 18,165            | 15,204        |
| нв              | 7,180         | 25             | 5,386                                      | 881                     | 4,505 | 59,246            | 49,555        |
| LT              | 1,410         | 25             | 1,058                                      | 174                     | 884   | 5,290             | 4,420         |
| MŤ              | 3,460         | 25             | 2,595                                      | 423                     | 2,172 | 18,165            | 15,204        |
| нт              | 5,170         | 25             | 3,878                                      | 635                     | 3,243 | 42,658            | 35,673        |
|                 |               |                |                                            |                         |       |                   | the second of |

Based on the unit economic costs of tires and the tire consumption rate data currently adopted by DOH (see Appendix 6.1.3), tire costs by vehicle type and speed were calculated as shown in Table 6.1.4. Conversion indices for variations due to speed and road conditions were taken from "Quantification of Road User Savings IBRD Occasional Paper No. 2, 1966", as shown in Appendix 6.1.4.

Table 6.1.4 TIRE COSTS BY VEHICLE TYPE AND SPEED

|           | 1        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | · · · · · · · · · · · · · · · · · · · |                |                |       | (Unit:    | Baht/km) |
|-----------|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|----------------|----------------|-------|-----------|----------|
| Speed     | M/C      | P/C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | L/B                                   | M/B            | H/B            | L/T   | M/T       | Н/Т      |
| Paved Roa | ıd (Good | Conditio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | on)                                   |                |                | 2.7   |           |          |
| 20        | 0.005    | 0.031                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.044                                 | 0.161          | 0.301          | 0.044 | 0.161     | 0.328    |
| 30        | 0.006    | 0.035                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.049                                 | 0.181          | 0.338          | 0.049 | 0.181     | 0.369    |
| 40        | 0.007    | 0.041                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.057                                 | 0.211          | 0.394          | 0.057 | 0.211     | 0.430    |
| 50        | 0.008    | 0.048                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.068                                 | 0.248          | 0.464          | 0.068 | 0.248     | 0.506    |
| 60        | 0.010    | 0.056                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.079                                 | 0.289          | 0.541          | 0.079 | 0.289     | 0.590    |
| 70        | 0.011    | 0.066                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.092                                 | 0.338          | 0.633          | 0.092 | 0.338     | 0.691    |
| 80        | 0.013    | 0.078                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.110                                 | 0.402          | 0.753          | 0.110 | 0.402     | 0.822    |
| 90        |          | 0.094                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <del>.</del> .                        | -              | ~              |       |           |          |
| Laterite  |          | in formation of the second of | San Barrier                           |                |                |       |           |          |
| 20        | 0.010    | 0.069                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.082                                 | 0.303          | 0.570          | 0.082 | 0.327     | 0.673    |
| 30        | 0.012    | 0.077                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.093                                 | 0.341          | 0.641          | 0.093 | 0.368     | 0.758    |
| 40        | 0.013    | 0.090                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.108                                 | 0.396          | 0.745          | 0.108 | 0.428     | 0.880    |
| 50        | 0.016    | 0.106                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.126                                 | 0.465          | 0.874          | 0.126 | 0.502     | 1.032    |
| 60        | 0.018    | 0.124                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.148                                 | 0.544          | 1.023          | 0.148 | 0.587     | 1.208    |
| 70        | 0.022    | 0.144                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.173                                 | 0.635          | 1.195          | 0.173 | 0.686     | 1.411    |
| 80        |          | 0.172                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <b>-</b>                              | . <del>-</del> | . <del>.</del> |       | · · · · · | · . –    |
| Laterite  | Road (Po | or Condi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | tion)                                 | •              |                |       |           |          |
| 20        | 0.031    | 0.224                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.260                                 | 0.958          | 1.846          | 0.260 | 0.958     | 1.985    |
| 30        | 0.032    | 0.235                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.272                                 | 1.003          | 1.933          | 0.272 | 1.003     | 2.079    |
| 40        | 0.034    | 0.244                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.284                                 | 1.046          | 2.014          | 0.284 | 1.046     | 2.166    |
| 50        | 0.036    | 0.259                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.300                                 | 1.107          | 2.132          | 0.300 | 1.107     | 2.293    |
| 9.9       | 3.000    | 3.200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.000                                 |                |                |       |           |          |

#### d) Maintenance Costs

Economic vehicle maintenance costs per kilometer were estimated on the basis of monthly maintenance costs and annual kilometerages by vehicle type.

Monthly maintenance costs and annual kilometerages were obtained from the results of the DOH survey as shown below:

### MONTHLY MAINTENANCE COSTS

(Unit: Baht/month

|   |             | •   |       |          | <u> </u>  |                  |             |
|---|-------------|-----|-------|----------|-----------|------------------|-------------|
|   |             | MC  | PC    | ГВ       | мв нв     | LT               | MT HT       |
| _ | <del></del> |     |       |          |           |                  |             |
| F | inancial    | 190 | 1,100 | 1,050 2, | 600 9,200 | 1,050            | 2,600 4,600 |
| E | conomic     | 150 | 900   | 880 2,   | 100 7,700 | 088              | 2,100 3,800 |
|   |             |     |       |          |           | 444 <u>212</u> 5 |             |

### ANNUAL KILOMETERAGE AND AVERAGE SPEED BY ROAD TYPE

|                 | * : | Paved<br>(Good Condi | tion)             | Laterite<br>(Good Condi |                    | Laterite<br>Poor Condi | tion)           |
|-----------------|-----|----------------------|-------------------|-------------------------|--------------------|------------------------|-----------------|
| Vehicle<br>Type |     | Annual A             | verage<br>Speed K | Annual A                | verage<br>Speed Ki | Annual A<br>Lometrage  | verage<br>Speed |
|                 | MC  | 13,000               | 55                | 12,000                  | 45                 | 10,500                 | 30              |
| , i             | PC  | 23,000               | 70                | 20,000                  | 50                 | 16,250                 | 25              |
|                 | LB  | 34,000               | 60                | 31,800                  | 50                 | 27,400                 | 30              |
| . 5             | МВ  | 40,000               | 60                | 37,800                  | 50                 | 33,400                 | 30              |
|                 | HB  | 100,000              | 60                | 94,000                  | 50                 | 60,000                 | 30              |
|                 | LT  | 30,000               | 60                | 28,000                  | 50                 | 24,000                 | 30              |
|                 | MT  | 40,000               | 60                | 36,700                  | 45                 | 33,400                 | 30              |
|                 | нт  | 75,000               | 60                | 67,500                  | 45                 | 60,000                 | 30              |

Appendix 6.1.5 shows the maintenance costs by road type, and Table 6.1.5 shows the maintenance costs by vehicle type and speed by using the indices of maintenance requirements on different types of road and speed as shown in Appendix 6.1.6.

Table 6.1.5 MAINTENANCE COSTS BY VEHICLE TYPE AND SPEED

|            |          | <del></del>                             |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (Unit: | Baht/km) |
|------------|----------|-----------------------------------------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|----------|
| Speed      | MC       | PC                                      | LB      | MB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | HB           | LT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | MT     | НГ       |
|            | -        |                                         |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |          |
| Paved Ros  | ad (Good | Conditio                                | on)     | ing the state of t |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | e je   |          |
| 200        | 0.100    | 0.510                                   | 0.050   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |          |
| 20         | 0.168    | 0.512                                   | 0.350   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.304        | 0.396                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.889  | 0.858    |
| 30         | 0.148    | 0.454                                   | 0.310   | 0.629                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.049        | 0.351                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.715  | 0.690    |
| 40         | 0.136    | 0.413                                   | 0.293   | and the second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.877        | 0.331                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.598  | 0.577    |
| 50         | 0.132    | 0.400                                   | 0.284   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.823        | 0.322                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.561  | 0.542    |
| 60         | 0.141    | 0.435                                   | 0.311   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.924        | 0.352                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.630  | 0.608    |
| 70         | 0.153    | 0.470                                   | 0.332   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.029        | 0.376                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.702  | 0.677    |
| 80         | 0.162    | 0.497                                   | 0.353   | 0.715                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.173        | 0.400 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.799  | 0.772    |
| 90         |          | 0.529                                   | -       | <b>-</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -            | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -      | -        |
| 1.00       |          |                                         |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | - 1. The state of |        |          |
| Laterite   | Road (Go | od Condi                                | ition)  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |          |
| ·          |          | 0.004                                   | A . A A |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |          |
| 20         | 0.191    | 0.681                                   | 0.400   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.502        | 0.455                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.050  | 1.034    |
| 30         | 0.167    | 0.603                                   | 0.357   | The state of the s | 1.208        | 0.405                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.845  | 0.831    |
| 40         | 0.153    | 0.549                                   | 0.336   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.011        | 0.381                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.706  | 0.695    |
| 50         | 0.151    | 0.540                                   | 0.332   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0,983        | 0.377                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.688  | 0.677    |
| 60         | 0.161    | 0.577                                   | 0.357   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.069        | 0.406                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.747  | 0.735    |
| 70         | 0.173    | 0.623                                   | 0.380   | 0.764                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.188        | 0.432                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.831  | 0.818    |
| 80         |          | 0.702                                   | ·       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <del>-</del> | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | _      | •••      |
| Laterite   | Road (Po | or Condi                                | ition)  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        | •        |
| Earca a to | 11000    | , , , , , , , , , , , , , , , , , , , , |         | the transfer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | • •          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.5    | . '*     |
| 20         | 0.197    | 0.706                                   | 0.432   | 0.847                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.914        | 0.494                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.937  | 0.945    |
| 30         | 0.171    | 0.624                                   | 0.385   | and the second of the second of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.540        | 0.440                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.754  | 0.760    |
| 40         | 0.160    | 0.569                                   | 0.362   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.287        | 0.414                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.630  | 0.635    |
| 50         | 0.156    | 0.559                                   | 0.358   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.252        | 0.410                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.613  | 0.618    |
|            | V1100    | 3,000                                   | 3.000   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |          |

#### e) Capital Costs

Capital costs were calculated in terms of the annual capital cost and annual kilometerage. The annual capital costs of typical vehicles were calculated by using the following equation:

$$A = (P-L) * CRF + L * i$$

where,

A: Annual capital cost

P: Economic value of vehicle

L: Salvage value of vehicle

i: Annual rate of interest, 12%

CRF: Capital recovery factor

$$CRF = \frac{i * (1 + i)^n}{(1 + i)^n - 1}$$

#### where, n: Vehicle life in years

The results of the calculation are shown in Table 6.1.6, and Appendix 6.1.7(1)-(6) shows relevant data.

Table 6.1.6 CAPITAL COSTS BY VEHICLE TYPE AND SPEED

(Unit: Baht/km)

| 4           |                 |          |        |                    |                              |                              | —————————————————————————————————————— |           |
|-------------|-----------------|----------|--------|--------------------|------------------------------|------------------------------|----------------------------------------|-----------|
| Speed       | MC              | PC       | LB     | MB                 | HB                           | LT                           | .₩B                                    | т         |
| <del></del> | 4 4             |          |        |                    | _                            |                              |                                        |           |
| Paved Ro    | ads (Goo        | d Condit | ion)   |                    |                              | 11.17                        | \$25 to \$10.                          |           |
|             |                 |          |        | 4 017              | 2,459                        | 1.322                        | 1.865                                  | 2.125     |
| 20          | 0.447           | 1.989    | 1.190  | 1.917              | 2.304                        | 1.230                        | 1.760                                  | 1.973     |
| 30          | 0.413           | 1.837    | 1.110  | 1.809              |                              | 1.150                        | 1.667                                  | 1,843     |
| 40          | 0.384           | 1.707    | 1.040  | 1.713              | 2.169                        | 1.081                        | 1.583                                  | 1.729     |
| 50          | 0.359           | 1.596    | 0.980  | 1.627              | 2.050                        |                              | 1.508                                  | 1.630     |
| 60          | 0.337           | 1.498    | 0.926  | 1.550              | 1.944                        | 1.020                        | 1.440                                  | 1.542     |
| 70          | 0.318           | 1.413    | 0.878  | 1.480              | 1.849                        | 0.965                        | and the second second                  | 1.463     |
| 80          | · · · · · · · · | 1.336    | 0.835  | 1.416              | 1.763                        | 0.917                        | 1.378                                  | 11.400    |
| 90          | <del></del> .   | 1.268    |        | . · · <del>-</del> | - 1 - 1 - <del>- 1</del> - 1 | - 1945 - 1945 <del>- 1</del> |                                        |           |
|             |                 |          |        |                    |                              |                              | ing Assert                             |           |
| Laterite    | Road (G         | ood Cond | ition) |                    |                              | a the second                 | Barrier Commencer                      |           |
|             | 1 Territoria    |          |        | 4 F 4 - 2          |                              |                              |                                        |           |
| 20          | 0.500           | 2.352    | 1.380  | 2.247              | 2.865                        | 1.532                        | 2.186                                  | 2,493     |
| 30          | 0.463           | 2.182    | 1.291  | 2.126              | 2.694                        | 1.431                        | 2.069                                  | 2.323     |
| 40          | 0.431           | 2.036    | 1.213  | 2.019              | 2.545                        | 1.341                        | 1.964                                  | 2.176     |
| 50          | 0.403           | 1.909    | 1.145  | 1,922              | 2.411                        | 1.264                        | 1.870                                  | 2.049     |
| 60          | 0.379           | 1.798    | 1.084  | 1.834              | 2.291                        | 1.195                        | 1.785                                  | 1.935     |
| 70          | 0.358           | 1.699    | 1.030  | 1.754              | 2.183                        | 1.133                        | 1.707                                  | 1.834     |
| 80          |                 | 1.611    |        | _                  |                              | _                            |                                        | - Table 1 |
| . 00        |                 | 1,011    |        |                    |                              |                              |                                        |           |
| Laterite    | Road (P         | oor Cond | ition) |                    |                              |                              | 1.                                     |           |
| DAUCELLO    |                 |          |        |                    |                              |                              |                                        |           |
| 20          | 0.583           | 3.252    | 1.991  | 2.988              | 3.838                        | 2.215                        | 2:907                                  | 3.327     |
| 30          | 0.540           | 3.030    | 1.870  | 2.835              | 3.621                        | 2.075                        | 2.758                                  | 3.112     |
| 40          | 0.502           | 2.834    | 1.762  | 2.697              | 3.429                        | 1.952                        | 2.624                                  | 2.922     |
| 50          | 0.471           | 2.663    | 1.668  | 2.573              | 3.256                        | 1.843                        | 2.503                                  | 2.736     |
| 50          | . 0:4:1         |          | 1,000  | -,                 |                              |                              |                                        |           |

#### f) Overhead Costs

Overhead costs per km were calculated as shown in Table 6.1.7 by dividing the annual overhead costs obtained from the results of the DOH survey by the annual kilometerages shown in Appendix 6.1.7(5).

#### ANNUAL OVERHEAD COSTS

(Unit: Baht/year)

| LB    | MB     | НВ    | MT HT        |  |
|-------|--------|-------|--------------|--|
| 2,700 | 12,900 | 2,300 | 7,600 38,000 |  |

Table 6.1.7 OVERHEAD COSTS BY VEHICLE TYPE AND SPEED

|                |               |                |       |       |                |               | (Unit: Baht/km) |                                       |
|----------------|---------------|----------------|-------|-------|----------------|---------------|-----------------|---------------------------------------|
| Speed          | M/C           | P/C            | L/B   | M/B   | H/B            | L/T           | M/T             | H/T                                   |
|                |               | ***            |       |       |                |               |                 | · · · · · · · · · · · · · · · · · · · |
| Paved Road     | i (Good C     | onditio        | n)    |       |                |               |                 |                                       |
| 20             | _             | _              | 0.107 | 0.413 | 0.557          |               | 0.244           | ñ .co+                                |
| 30             | · <u>-</u>    | -              | 0.099 | 0.386 | 0.516          | , •••         |                 | 0.691                                 |
| 40             |               |                | 0.091 | 0.362 | 0.481          |               | 0.228           | 0.633                                 |
| 50             |               |                | 0.085 | 0.341 | 0.450          |               | 0.213           | 0.585                                 |
| 60             |               |                | 0.079 | 0.323 | 0.423          |               | 0.201<br>0.190  | 0.543                                 |
| 70             |               | -              | 0.075 | 0.306 | 0.399          |               | 0.180           | 0.507                                 |
| 80             | _             |                | 0.070 | 0.291 | 0.378          |               | 0.171           | 0.475                                 |
| 90             | -             |                |       | 0.201 | 0.010          | <del></del> . | 0.111           | 0.447                                 |
| •              |               |                |       |       |                |               |                 | -                                     |
| Laterite I     | Road (Good    | d Condi        | tion) |       |                |               |                 |                                       |
|                |               |                | • •   |       |                |               |                 |                                       |
| 20             |               | -              | 0.107 | 0.413 | 0.557          | -             | 0.244           | 0.691                                 |
| 30             |               | _              | 0.099 | 0.386 | 0.516          | _             | 0.228           | 0.633                                 |
| 40             |               | -              | 0.091 | 0.362 | 0.481          |               | 0.213           | 0.585                                 |
| 50             | _             | <b></b> -      | 0.085 | 0.341 | 0.450          |               | 0.201           | 0.543                                 |
| 60             | -             | -              | 0.079 | 0.323 | 0.423          |               | 0.190           | 0.507                                 |
| 70             | _             | ~ <u>-</u> .   | 0.075 | 0.306 | 0.399          |               | 0.180           | 0.475                                 |
| 80             |               | <del>-</del> : |       | _     | -              | -             | -               |                                       |
|                |               |                |       |       |                |               |                 |                                       |
| Laterite F     | toad (Poo     | r Condi        | tion) |       |                | •             |                 |                                       |
|                | ***           | -<br>-         | 0.107 | 0.413 | 0.557          | _             | 0.244           | 0.691                                 |
| 20             |               |                |       |       |                |               | 0.228           | 0.633                                 |
| 20<br>30       |               | -              | 0.099 | 0.386 | บ.อเก          |               |                 |                                       |
| 20<br>30<br>40 | Unite<br>MORE |                | 0.099 | 0.386 | 0.516<br>0.481 | -             | 0.213           | 0.585                                 |

#### 4) Cost Variation by Road Condition

The basic operating costs of vehicles on paved good condition roads (RC1), laterite good and poor condition roads (RC4 and RC7) were determined as described above. The basic costs of VOC components for other road conditions such as paved good/fair, paved fair, paved poor and laterite fair were calculated by means of interpolation assuming an appropriate order in VOC by surface conditions. The assumed order is shown below:

$$RC2 = RC1 + 1/3 (RC4 - RC1)$$

$$RC3 = RC1 + 2/3 (RC4 - RC1)$$

$$RC5 = RC4 + 1/2 (RC4 - RC1)$$

$$RC6 = RC4 + 1/3 (RC7 - RC4)$$

where, RC1: VOC for paved good

RC2: VOC for paved good/fair

RC3: VOC for payed fair

RC4: VOC for paved fair/poor or laterite good

RC5: VOC for paved poor

RC6: VOC for laterite fair

RC7: VOC for laterite poor

Table 6.1.8 shows VOC on a level tangent road by road class at different speeds.

Table 6.1.8 VOC ON LEVEL TANGENT ROAD

(Unit: Baht/km)

|                                                               | 1 <u></u>                                |               | Road                                  | Type                                  |                                       |               |                                       |
|---------------------------------------------------------------|------------------------------------------|---------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------|---------------------------------------|
| Speed                                                         | RC1                                      | RC2           | RC3                                   | RC4                                   | RCô                                   | RC6           | RC7                                   |
| VO                                                            |                                          |               |                                       |                                       |                                       |               | -                                     |
| MC                                                            |                                          |               |                                       |                                       |                                       |               |                                       |
| 20                                                            | 0.746                                    | 0.777         | 0.808                                 | 0.839                                 | 0.886                                 | 0.883         | 0.969                                 |
| 30                                                            | 0.689                                    | 0.718         | 0.747                                 | 0.776                                 | 0.820                                 | 0.816         | 0.894                                 |
| 40                                                            | 0.647                                    | 0.675         | 0.701                                 | 0.729                                 | 0.771                                 | 0.767         | 0.842                                 |
| 50                                                            | 0.620                                    | 0.648         | 0.675                                 | 0.703                                 | 0.745                                 | 0.739         | 0.811                                 |
| 60                                                            | 0.615                                    | 0.643         | 0.671                                 | 0.699                                 | 0.741                                 |               |                                       |
| 70                                                            | 0.617                                    | 0.647         | 0.678                                 | 0.708                                 | 0.754                                 |               | 1 4                                   |
| 80                                                            |                                          |               | •                                     |                                       |                                       |               | -                                     |
| 90                                                            |                                          | formalis      |                                       |                                       |                                       |               |                                       |
| $(x,y)\in \mathcal{C}_{2}^{(k)} \times \mathcal{C}_{2}^{(k)}$ |                                          |               |                                       |                                       |                                       |               |                                       |
| PC                                                            |                                          |               | `.                                    |                                       |                                       |               |                                       |
| 10                                                            |                                          |               |                                       |                                       |                                       |               |                                       |
| 20                                                            | 3.120                                    | 3.330         | 3.540                                 | 3.750                                 | 4.066                                 | 4.130         | 4.891                                 |
| 30                                                            | 2.791                                    | 2.985         | 3.180                                 | 3.374                                 | 3.666                                 | 3.738         | 4.464                                 |
| 40                                                            | 2.573                                    | 2.759         | 2.944                                 | 3.130                                 | 3.409                                 | 3.474         | 4.162                                 |
| 50                                                            | 2.432                                    | 2.615         | 2.799                                 | 2.982                                 | 3.258                                 | 3.314         | 3.978                                 |
| 60                                                            | 2.363                                    | 2.549         | 2.736                                 | 2.922                                 | 3.202                                 |               |                                       |
| 70                                                            | 2.320                                    | 2.511         | 2.702                                 | 2.893                                 | 3.180                                 |               | •                                     |
| 80                                                            | 2.295                                    | 2.506         | 2.716                                 | 2.927                                 | 3.244                                 |               |                                       |
| 90                                                            | 2.298                                    |               | *                                     |                                       | •                                     |               |                                       |
|                                                               |                                          |               | 4                                     |                                       | 3                                     |               |                                       |
| LB                                                            |                                          | i<br>Talih je |                                       |                                       |                                       |               |                                       |
| 3303                                                          | na n | 45.0          |                                       | e e e e e e e e e e e e e e e e e e e |                                       |               |                                       |
| 20                                                            | 2.333                                    | 2.453         | 2.575                                 | 2.695                                 | 2.876                                 | 3.006         | 3.626                                 |
| 30                                                            | 2.076                                    | 2,190         | 2.306                                 | 2.420                                 | 2.593                                 | 2.711         | 3.294                                 |
| 40                                                            | 1.932                                    | 2.043         | 2.154                                 | 2.265                                 | 2.432                                 | 2.541         | 3.094                                 |
| 50                                                            | 1.842                                    | 1.953         | 2.063                                 | 2.174                                 | 2.341                                 | 2.441         | 2.977                                 |
| 60                                                            | 1.804                                    | 1,915         | 2.025                                 | 2.136                                 | 2.302                                 |               |                                       |
| 70                                                            | 1.789                                    | 1.905         | 2.021                                 | 2.137                                 | 2.311                                 |               |                                       |
| 80                                                            | 1.795                                    |               |                                       |                                       |                                       | •             |                                       |
| 90                                                            |                                          |               |                                       |                                       |                                       |               |                                       |
|                                                               |                                          | •*            |                                       |                                       |                                       |               |                                       |
|                                                               |                                          |               |                                       | •                                     | * * * * * * * * * * * * * * * * * * * | ty for each   |                                       |
| MB                                                            |                                          |               | e e e e e e e e e e e e e e e e e e e |                                       |                                       | The second of | 100                                   |
| 20                                                            | 4.022                                    | 4.266         | 4.509                                 | 4.753                                 | 5.119                                 | 5.284         | 6.347                                 |
| 20<br>30                                                      | 3.682                                    | 3.916         | 4.148                                 | 4.382                                 | 4.733                                 | 4.895         | 5.921                                 |
| 40                                                            | 3.506                                    | 3.739         | 3.971                                 | 4.204                                 | 4.553                                 | 4.703         | 5.702                                 |
| 50                                                            | 3.469                                    | 3.715         | 3.962                                 | 4.208                                 | 4.578                                 | 4.703         | 5.692                                 |
|                                                               | 3.539                                    | 3.800         | 4.061                                 | 4,322                                 | 4.714                                 |               |                                       |
| 5 60                                                          |                                          |               | 4.201                                 | 4.480                                 | 4.899                                 |               | 1.11                                  |
| 60<br>70                                                      | 3.642                                    | 3.921         | 4.201                                 |                                       |                                       |               |                                       |
| 70<br>80                                                      | 3.642<br>3.834                           | 3.921         | 4,201                                 |                                       |                                       |               | · · · · · · · · · · · · · · · · · · · |

Table 6.1.8 VOC ON LEVEL TANGENT ROAD (Cont'd)

(Unit: Baht/km)

|            |       |       | Road 1        | уре   |                | RC6                                     | RC7        |
|------------|-------|-------|---------------|-------|----------------|-----------------------------------------|------------|
| Speed      | RC1   | RC2   | RC3           | RC4   | RC5            | WCO                                     | <u>nor</u> |
| *.         |       |       |               |       |                |                                         | 141        |
| HB         |       |       |               |       |                |                                         |            |
|            |       |       | 0.000         | 7.046 | 7.612          | 8.010                                   | 9.938      |
| 20         | 5.915 | 6.292 | 6.669         | 6.483 | 7.028          | 7.408                                   | 9.259      |
| 30         | 5.393 | 5.756 | 6.120 $5.751$ | 6.112 | 6.654          | 7.000                                   | 8.775      |
| 40         | 5.029 | 5.390 | 5.753         | 6.142 | 6.727          | 7.019                                   | 8.773      |
| 50         | 4.973 | 5.362 | 6.018         | 6.435 | 7.061          |                                         |            |
| 60         | 5.185 | 5.602 | 6.398         | 6.856 | 7.544          |                                         |            |
| 70         | 5.481 | 5.939 | 0,500         | 0,000 |                |                                         |            |
| 80         | 5.866 |       |               |       |                | 100                                     | . •.       |
| 90         |       |       |               | •     |                |                                         |            |
|            |       |       |               |       |                |                                         |            |
| * M        |       |       |               |       |                |                                         |            |
| LT         |       | - 111 |               |       |                |                                         |            |
| 00         | 2.404 | 2.534 | 2.665         | 2.795 | 2.991          | 3.132                                   | 3.805      |
| 20<br>30   | 2.138 | 2.262 | 2.385         | 2.509 | 2.695          | 2.825                                   | 3.455      |
| 30<br>40   | 1.989 | 2.109 | 2.227         | 2.347 | 2.527          | 2.647                                   | 3.245      |
| 50         | 1.896 | 2.015 | 2.134         | 2.253 | 2.432          | 2.542                                   | 3.119      |
| 60         | 1.860 | 1.979 | 2.098         | 2.217 | 2.396          | 1                                       |            |
| 70         | 1.845 | 1.969 | 2.093         | 2.217 | 2.403          | . e                                     |            |
| 80         | 1.854 | 1.505 | 1,000         |       |                |                                         |            |
| 90         | 11001 |       |               |       |                |                                         | 111        |
| 30         |       |       |               |       |                |                                         |            |
|            |       |       |               |       | and the second |                                         |            |
| MT         |       |       |               |       | 2.5            |                                         |            |
|            |       |       |               |       |                |                                         | 0.100      |
| 20         | 3.982 | 4.252 | 4.523         | 4.793 | 5.199          | 5.257                                   | 6.187      |
| 30         | 3.561 | 3.815 | 4.069         | 4.323 | 4.705          | 4.778                                   | 5.686      |
| 40         | 3.316 | 3.565 | 3.815         | 4.064 | 4,439          | 4.509                                   | 5.400      |
| 50         | 3.270 | 3.538 | 3.806         | 4.074 | 4.477          | 4.514                                   | 5.393      |
| 60         | 3.364 | 3.646 | 3.930         | 4.212 | 4.637          |                                         |            |
| 70         | 3.505 | 3.812 | 4.118         | 4.125 | 4.886          |                                         |            |
| 80         | 3.760 |       |               |       |                | . · ·                                   | *s*=       |
| 90         |       | * .   |               | •     | •              |                                         | *. \       |
|            |       |       |               |       |                |                                         |            |
|            | •     |       |               |       |                |                                         |            |
| HT         |       |       |               |       |                |                                         |            |
|            |       |       | :             |       |                | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 0.040      |
| 20         | 5.419 | 5.812 | 6.205         | 6.598 | 7.188          | 7.369                                   | 8.912      |
| 30         | 4.964 | 5.346 | 5.728         | 6.110 | 6,683          | 6.865                                   | 8.374      |
| 40         | 1.648 | 5.026 | 5.405         | 5.783 | 6.351          | 6.515                                   | 7.979      |
| <b>5</b> 0 | 4.619 | 5.031 | 5.442         | 5.854 | 6.472          | 6.567                                   | 7.991      |
| 60         | 4.817 | 5.268 | 5.719         | 6.170 | 6.847          |                                         |            |
| 70         | 5.107 | 5.512 | 5.918         | 6.323 | 6.931          |                                         |            |
| 80         | 5.477 | •     |               | 1 m   |                |                                         |            |
| 90         |       |       |               |       | eg e           | ٠,                                      | * : :      |
|            | -     |       |               |       |                |                                         |            |

#### 6.1.3 VOC on Actual Road Links

The basic costs of VOC components were estimated for the ideal condition of level tangent roads. Actual VOCs should in principle be obtained by modifying basic VOCs for additional costs caused by road geometry such as grades and curves, and by speed changes by traffic restrictions.

#### 1) Gradients and Curves

For the study routes, no additional costs due to gradients and curves were considered, because only very minor changes were planned in geometry, and there would be little difference between with and without project cases as far as additional VOCs due to gradients and curves are concerned.

#### 2) Speed Changes

In this study, the speed change cycle due to narrow and wooden bridges was considered, and corresponding additional costs were determined by the coefficients given in SVOCT as in the Master Plan Study. Additional costs due to stops at intersections were considered wherever interchanges were proposed.

The number of vehicles stopped at intersections was estimated based on the relationship between forecasted traffic volume and intersection capacity and intersection waiting time. Appendix 6.1.8 shows details. Additional costs due to stops at intersections were calculated by applying the coefficients given in SVOCT as shown in Appendix 6.1.9.

#### 6.1.4 VOC Savings

The savings were calculated as the difference in total VOCs in the related road network of with or without project cases. They were calculated by vehicle type and then summed up.

As described in Chapter 3, heavy bus traffic was forecasted, by including medium bus traffic. It was, therefore, divided by using the percentages of heavy and medium buses as a result of the O/D survey conducted by the Study Team, which were estimated to be 80.2% and 19.8%, respectively.

In the calculation of VOCs on ML Projects, whose procedures are illustrated in Figure 6.1.1, unit VOCs were estimated based on the travel speed as determined by the relationship between traffic volume and travel speed as shown in Appendix 6.1.10.

As seen in Appendix 6.1.10, in this relationship, traffic volumes are expressed in terms of the number of passenger car units per hour. Therefore, they were estimated by the following

#### procedures:

- Known daily traffic volumes by vehicle type were translated into hourly traffic volumes by applying hourly traffic variation data obtained from the results of the traffic survey conducted by the Study Team.
- The hourly traffic volumes were converted into passenger car units (PCU) by equivalent factors by vehicle type shown below:

|              | 。 <u>1987年 - 日本日本日本</u> 学院内部大学学院 |
|--------------|----------------------------------|
| Vehicle Type | PCU                              |
| MC           | 0.5                              |
| PC           | 1.0                              |
| LB           | 1.5                              |
| MB           | 2.0                              |
| HB           | 2.5                              |
| LT           | 1.5                              |
| MT           | 2.0                              |
| HT           | 3.0                              |

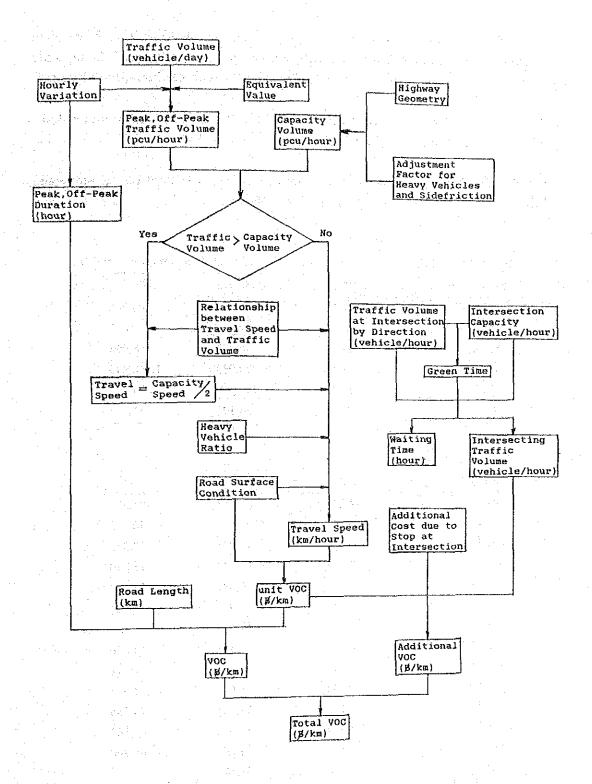



Figure 6.1.1. ELEMENTS AND FLOW OF CALCULATION OF VOCS FOR ML PROJECTS

When traffic volume exceeds road capacity, heavy congestion will occur. This causes an unstable flow, and travel speeds may vary anywhere from 0 to the capacity speed. In this study, the travel speed in this case was assumed to be about one half of the capacity speed.

In the calculation of VOC for IM Projects, unit VOCs were estimated based on the design speed and the travel speed on the existing road.

The results of the calculation of VOC savings are summarized in Table 6.1.9 by study route, and the details are shown separately in the Route Report.

Table 6.1.9 VOC SAVINGS

| PHASE I PROJECTS |         | (Uni    | t: thousand Baht) |
|------------------|---------|---------|-------------------|
| Project No.      | 1994    | 2000    | 2008              |
| ML-1             | 77,362  | 239,797 | 404,206           |
| ML-2             | 28,562  | 39,535  | 89,418            |
| ML-4             | 65,543  | 88,702  | 358,698           |
| ML-5             | 105,206 | 320,988 | 1,548,475         |
| ML-7             | 105,799 | 151,219 | 238,926           |
| IM-23            | 27,961  | 36,196  | 51,124            |
|                  |         |         |                   |

#### PHASE II PROJECTS

| Project No.         1994         2000         2008           ML-3         74,227         109,363         182,535           ML-9         540,204         2,097,793         6,044,138           IM-1         9,986         12,936         18,350           IM-2         9,785         12,629         17,880           IM-11         27,513         36,489         51,199           IM-12         28,683         38,930         54,921           IM-13         11,580         15,706         22,752           IM-14         28,645         37,333         52,246           IM-15         37,355         50,505         72,791           IM-16         15,933         21,675         34,412           IM-17         21,233         29,982         46,568           IM-22         18,219         27,068         42,606           RH-2         36,886         46,260         46,260           RH-3         45,648         61,185           RH-5         85,832         117,434 | I HUOD II LIKOTECTO |         |           |           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|---------|-----------|-----------|
| ML-9       540,204       2,097,793       6,044,138         IM-1       9,986       12,936       18,350         IM-2       9,785       12,629       17,880         IM-11       27,513       36,489       51,199         IM-12       28,683       38,930       54,921         IM-13       11,580       15,706       22,752         IM-14       28,645       37,333       52,246         IM-15       37,355       50,505       72,791         IM-16       15,933       21,675       34,412         IM-17       21,233       29,982       46,568         IM-22       18,219       27,068       42,606         RH-2       36,886       46,260       46,260         RH-3       45,648       61,185       -                                                                                                                                                                                                                                                                      | Project No.         | 1994    | 2000      | 2008      |
| IM-1       9,986       12,936       18,350         IM-2       9,785       12,629       17,880         IM-11       27,513       36,489       51,199         IM-12       28,683       38,930       54,921         IM-13       11,580       15,706       22,752         IM-14       28,645       37,333       52,246         IM-15       37,355       50,505       72,791         IM-16       15,933       21,675       34,412         IM-17       21,233       29,982       46,568         IM-22       18,219       27,068       42,606         RH-2       36,886       46,260       46,260         RH-3       45,648       61,185       -                                                                                                                                                                                                                                                                                                                                 | ML-3                | 74,227  | 109,363   | 182,535   |
| IM-2     9,785     12,629     17,880       IM-11     27,513     36,489     51,199       IM-12     28,683     38,930     54,921       IM-13     11,580     15,706     22,752       IM-14     28,645     37,333     52,246       IM-15     37,355     50,505     72,791       IM-16     15,933     21,675     34,412       IM-17     21,233     29,982     46,568       IM-22     18,219     27,068     42,606       RH-2     36,886     46,260     46,260       RH-3     45,648     61,185     -                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ML-9                | 540,204 | 2,097,793 | 6,044,138 |
| IM-11       27,513       36,489       51,199         IM-12       28,683       38,930       54,921         IM-13       11,580       15,706       22,752         IM-14       28,645       37,333       52,246         IM-15       37,355       50,505       72,791         IM-16       15,933       21,675       34,412         IM-17       21,233       29,982       46,568         IM-22       18,219       27,068       42,606         RH-2       36,886       46,260       46,260         RH-3       45,648       61,185       -                                                                                                                                                                                                                                                                                                                                                                                                                                       | IM-1                | 9,986   | 12,936    | 18,350    |
| IM-12       28,683       38,930       54,921         IM-13       11,580       15,706       22,752         IM-14       28,645       37,333       52,246         IM-15       37,355       50,505       72,791         IM-16       15,933       21,675       34,412         IM-17       21,233       29,982       46,568         IM-22       18,219       27,068       42,606         RH-2       36,886       46,260       46,260         RH-3       45,648       61,185       -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | IM-2                | 9,785   | 12,629    | 17,880    |
| IM-13       11,580       15,706       22,752         IM-14       28,645       37,333       52,246         IM-15       37,355       50,505       72,791         IM-16       15,933       21,675       34,412         IM-17       21,233       29,982       46,568         IM-22       18,219       27,068       42,606         RH-2       36,886       46,260       46,260         RH-3       45,648       61,185       -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | IM-11               | 27,513  | 36,489    | 51,199    |
| IM-14       28,645       37,333       52,246         IM-15       37,355       50,505       72,791         IM-16       15,933       21,675       34,412         IM-17       21,233       29,982       46,568         IM-22       18,219       27,068       42,606         RH-2       36,886       46,260       46,260         RH-3       45,648       61,185       -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | IM-12               | 28,683  | 38,930    | 54,921    |
| IM-15     37,355     50,505     72,791       IM-16     15,933     21,675     34,412       IM-17     21,233     29,982     46,568       IM-22     18,219     27,068     42,606       RH-2     36,886     46,260     46,260       RH-3     45,648     61,185     -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | IM-13               | 11,580  | 15,706    | 22,752    |
| IM-16       15,933       21,675       34,412         IM-17       21,233       29,982       46,568         IM-22       18,219       27,068       42,606         RH-2       36,886       46,260       46,260         RH-3       45,648       61,185       -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | IM-14               | 28,645  | 37,333    | 52,246    |
| IM-17     21,233     29,982     46,568       IM-22     18,219     27,068     42,606       RH-2     36,886     46,260     46,260       RH-3     45,648     61,185     -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | IM-15               | 37,355  | 50,505    | 72,791    |
| IM-22     18,219     27,068     42,606       RH-2     36,886     46,260     46,260       RH-3     45,648     61,185     -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | IM-16               | 15,933  | 21,675    | 34,412    |
| RH-2 36,886 46,260 46,260<br>RH-3 45,648 61,185                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | IM-17               | 21,233  | 29,982    | 46,568    |
| RH-3 45,648 61,185 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | IM-22               | 18,219  | 27,068    | 42,606    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | RH-2                | 36,886  | 46,260    | 46,260    |
| RH-5 85,832 117,434                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | RH-3                | 45,648  | 61,185    |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | RH-5                | 85,832  | 117,434   |           |

#### 6,2 TIME SAVINGS

Time values were estimated separately for drivers and assistants and for passengers, as illustrated in Figure 6.2.1.

#### 6.2.1 Time Values of Drivers and Assistants

Time values of drivers and assistants were estimated based on their monthly wages and working hours as shown in Table 6.2.1

Table 6.2.1 TIME VALUES OF DRIVERS AND ASSISTANTS

| Vehicle Type | Monthly Wages* (Baht/month) | Working Hour (hour/month) | Time Value<br>(Baht/hour) |
|--------------|-----------------------------|---------------------------|---------------------------|
| MC           | 2,390                       | 240                       | 10.0                      |
| PC           | 2,390                       | 185                       | 12.9                      |
| LB           | 2,390                       | 200                       | 12.0                      |
| МВ           | 4,920                       | 200                       | 24.6                      |
| 1            | 8,450                       | 200                       | 42.3                      |
| LŤ           | 2,390                       | 220                       | 10.9                      |
| MT           | 3,850                       | 220                       | 17.5                      |
| НT           | 5,240                       | 220                       | 23.8                      |

<sup>:</sup> DOH Survey results

Note: Wages of MC, PC, LT were assumed to be the same as in LB. Working hours are the same as in the Master Plan Study.

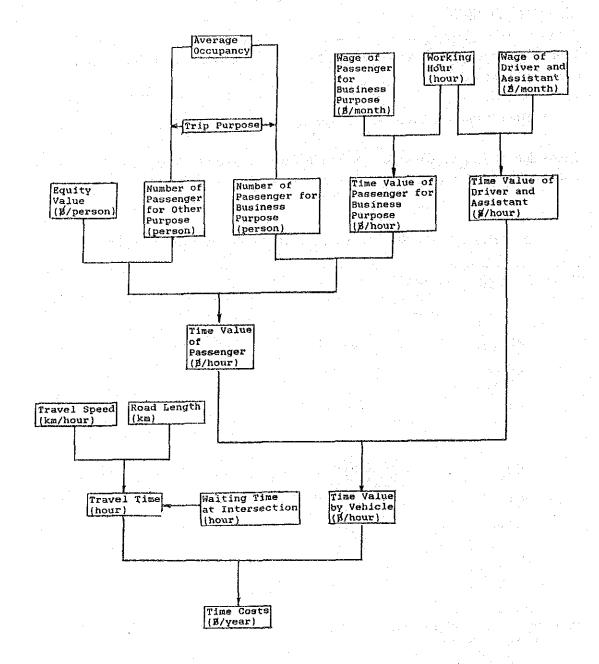



Figure 6.2.1 ELEMENTS AND FLOW OF CALCULATION OF THE COST

#### 6.2.2 Time Values of Passengers

The time values of passengers were estimated for business purpose trips and for trips for all other purposes. The former could be considered to reflect economic productivity. For the latter, the so-called equity value is often used.

Time values of passengers for business purpose trips were estimated based on the wages by type of employment and occupation prepared by Department of Labour, Ministry of Interior, and by working hours as shown below:

TIME VALUES OF PASSENGERS FOR BUSINESS PURPOSE TRIPS

|                                                                                        | thly Wages<br>aht/month) | Working Hour (hour/month) | Time Value<br>(Baht/hour) |
|----------------------------------------------------------------------------------------|--------------------------|---------------------------|---------------------------|
| мс                                                                                     | 2,490                    | 200                       | 12.5                      |
| PC                                                                                     | 6,040                    | 185                       | 32.6                      |
| LB                                                                                     | 2,490                    | 200                       | 12.5                      |
| МВ                                                                                     | 2,490                    | 200                       | 12.5                      |
| <b>HB</b> : HB : | 2,490                    | 200                       | 12.5                      |

The equity value of time was estimated to be 25 % of the overall average wage of Baht 4.13 per hour.

The number of passengers for business purpose trips was estimated on the basis of vehicle occupancy and the percentage of business trips.

Occupancy rates by vehicle type and the percentage of business trips were calculated based on the latest results of the O/D surveys conducted by the Study Team as shown below:

AVERAGE OCCUPANCY AND PERCENTAGE OF BUSINESS TRIPS

| Vehicle<br>Type | Number of Persons |       | Business Trips (%) |
|-----------------|-------------------|-------|--------------------|
| MC              | 1.2               | (1.0) | 15.0               |
| PC              | 2.4               | (1.0) | 45.5               |
| LB              | 6.2               | (1.1) | 37.7               |
| MB              | 17.6              | (1.6) | 32.0               |
| НВ              | 32.3              | (2.4) | 35.9               |

Note: Figures in parentheses show number of drivers and assistants.

The number of persons and the percentage of business trips are the same as in the Master Plan Study.

Table 6.2.2 shows the time values of passengers:

Table 6.2.2 TIME VALUES OF PASSENGERS

|                 | . :                                       |                             |                                  | line V                                                      | alues (8aht/hour)                                                   |       |
|-----------------|-------------------------------------------|-----------------------------|----------------------------------|-------------------------------------------------------------|---------------------------------------------------------------------|-------|
| Yehicle<br>Type | Number of<br>Passenger<br>(person)<br>(A) | Percentage of Business Trip | Time Yalue<br>(Baht/hour)<br>(C) | 8usiness Trip $(D) = \frac{(A) \times (B) \times (C)}{100}$ | Other Trip $(E) = \frac{(A) \times \{100 - (8)\} \times 4.13}{100}$ | Total |
|                 |                                           |                             |                                  |                                                             |                                                                     |       |
| нс              | 0.2                                       | 15                          | 12.5                             | 0.4                                                         | 0.7                                                                 | 1.1   |
| PC              | 1.4                                       | 45.5                        | 32.6                             | 20,8                                                        | 3.2                                                                 | 24.0  |
| L.B             | 5.1                                       | 37.7                        | 12.5                             | 24.0                                                        | 13.1                                                                | 37.1  |
| Н8              | 16.0                                      | 32.0                        | 12.5                             | 64.0                                                        | 25.1                                                                | 89.1  |
| Н8              | 29.9                                      | 35.9                        | 12.5                             | 134.2                                                       | 79.2                                                                | 213.4 |
|                 |                                           | :                           |                                  |                                                             |                                                                     |       |

#### 6.2.3 Time Values by Vehicle Type

Time values by vehicle type were estimated by combining the time values of drivers and assistants and those of passengers with average vehicle occupancy rates, as shown in Table 6.2.3

Table 6.2.3 TIME VALUES BY VEHICLE TYPE

|                 |                         | ht/hour)                                  |       |
|-----------------|-------------------------|-------------------------------------------|-------|
| Vehicle<br>Type | Drivers &<br>Assistants | Passengers                                | Total |
| MC              | 10.0                    | . 1.1                                     | 11.1  |
| PC              | 12.9                    | 24.0                                      | 36.9  |
| LB              | 12.0                    | 37.1                                      | 49.1  |
| MB              | 24.6                    | 89.1                                      | 113.7 |
| HB              | 42.3                    | 213,4                                     | 255.7 |
| LT              | 10.9                    | er en | 10.9  |
| MT              | 17.5                    | <del>_</del>                              | 17,5  |
| НТ              | 23.8                    |                                           | 23.8  |

#### 6.2.4 Time Sayings

Time savings were estimated as the difference in total time costs in the related road network of with or without project cases.

In the calculation of time savings on ML Projects, travel times in the cases of with or without project were calculated based on the study route length and the travel speed obtained by the relationship between traffic volume and travel speed. In the case of without project, waiting time at intersections was also considered.

In the calculation of time savings on IM Projects, travel times were calculated based on the study route length and on the design and travel speeds on the existing road.

The difference in time values on ML Projects and IM Projects due to the difference in road users was taken into consideration. However, the difference between the average wage of the Region and that of each Changwat was found to be within 20%. Therefore the time values shown in Table 6.2.3 were used in the calculation of time savings on ML Projects and IM Projects.

The results of the calculation of time savings are summarized in Tables 6.2.4, and the details are shown separately in the Route Report.

| The stage         | Table 6.2.4 | TIME SAVING |                       |
|-------------------|-------------|-------------|-----------------------|
| PHASE I PROJECTS  |             |             | (Unit: thousand Baht) |
| Project No.       | 1994        | 2000        | 2008                  |
| ML-1              | 52,542      | 103,234     | 137,475               |
| ML-2              | 16,493      | 24,871      | 88,961                |
| ML-4              | 25,072      | 37,676      | 228,231               |
| ML-5              | 115,967     | 428,365     | 1,348,348             |
| ML-7              | 56,237      | 84,719      | 142,219               |
| IM-23             | 7,737       | 10,196      | 14,673                |
|                   |             |             |                       |
| PHASE II PROJECTS | S           |             |                       |
| Project No.       | 1994        | 2000        | 2008                  |
| ML-3              | 35,595      | 56,855      | 107,074               |
| ML-9              | 864,164     | 1,635,826   | 3,780,942             |
| IM-1              | 4,027       | 5,298       | 7,663                 |
| IM-2              | 4,630       | 6,110       | 8,780                 |
| IM-11             | 6,603       | 8,770       | 12,023                |
| IM-12             | 7,205       | 9,577       | 13,227                |
| IM-13             | 5,665       | 7,760       | 11,151                |
|                   |             |             |                       |

3,118

4,872

6,190

6,368

3,122

22,061

31,372

48,462

IM-14

IM-15

IM-16

IM-17

IM-22

RH-2

RH-3

RH-5

4,107

6,719

8,441

9,080

4,859

28,542

41,799

63,962

5,910

9,902

13,526

14,332

7,722

CHAPTER 7
EVALUATION

## CHAPTER 7 EVALUATION

#### 7.1 ECONOMIC EVALUATION

An economic evaluation was made for each project road to determine whether its construction would generate benefits large enough to justify the investment. Items considered in the economic evaluation are described below:

#### 7.1.1 Costs

The methods of estimating construction costs, financial and economic, are explained in Section 5.1. Residual values and economic costs were estimated component by component. The disbursement schedule of construction was assumed to be 15% in the first year, 35% in the second year and 50% in the third year for all ML Projects starting at the beginning of 1991. For IM Projects, all except IM-2 and IM-12 were assumed to have a disbursement schedule of 35% in 1992 and 65% in 1993. For IM-2, this was assumed to be 45% in 1992 and 55% in 1993. For IM-12, because of its size, this was assumed to be 15% in 1991, 35% in 1992 and 50% in 1993. All RH Projects were assumed to be done in 1993. The cost of a 5-cm asphalt overlay was added in the 10th year for all projects with AC pavement. Since RH Projects were designed for seven years, no overlay was assumed within the project life.

#### 7.1.2 Benefits

#### 1) VOC and Time Savings

Economic benefits arise from projects because improved roads allow vehicles to have lower operating costs and shorter travel times. Benefits were taken as the difference in vehicle operating cost and travel time for with and without cases. The methods of determining vehicle operating costs and time values are presented in Chapter 6. Vehicle operating costs were determined as a function of surface type, speed and number of stop-go operations for each of eight vehicle types. In the calculation of benefits on ML Projects, vehicle operating speed was determined for each of five road surface conditions as a function of volume/capacity ratio. Capacity in terms of passenger car units of carriageway was determined by the num-

ber of lanes, side clearance width and heavy vehicle ratio in the traffic stream. A maximum speed of 80 kp/h was taken for heavy and medium trucks. Traffic volume was calculated on the hourly basis for peak hours and off-peak hours. Intersection capacity was determined by the number of approach lanes and the length of green time available for each direction, which in turn was determined proportionate to the ratio of intersecting traffic volumes. Speed of traffic when exceeding capacity was assumed to be one half of the saturation speed. VOC and travel time savings were calculated for peak hours and off-peak hours. The results were multiplied by respective duration to obtain daily and annual amounts.

The same procedures of benefit estimation were applied for IM and RH Projects, except for travel speed for which predetermined values were assigned depending on road class and surface condition.

#### 2) Maintenance Savings

It was assumed that the amount as allocated by means of DOH's K-Factor Method would be needed to maintain the existing surface conditions of the existing roads as they are now. This is a realistic assumption that allows a comparison with the prevailing situation rather than with an imaginary ideal situation. For the new project roads, similar routine maintenance would keep the surfaces in good condition, except in the 10th year when an overly is needed. The difference in routine maintenance costs for cases with and without the project was taken as maintenance cost savings. However, since ML-1, ML-2, ML-3, ML-4, and ML-7 require the construction of additional two-lane carriageways, their routine maintenance costs turned out to be higher than in the cases without projects. Thus maintenance cost savings for these cases turned out to be negative. In the case of ML-5 and ML-9, there is no existing road. Therefore, a parallel section of Route 3 was included for both with and without cases for the purpose of comparison. The difference in routine maintenance cost of Route 3 for the cases of with or without ML-5 or ML-9 was minor and was disregarded in the evaluation process.

#### 7.1.3 Evaluation Results

Cost and benefits were calculated on a yearly basis from 1991 to 2008. Conventional economic evaluation criteria were examined, i.e., internal rate of return, benefit cost ratio and net present value with an interest rate of 12% p.a.. Tables 7.1.1 and 7.1.2 summarize the results. For ML-1 and ML-5, the case with the opening year of 1992 was also tested, and the results are shown in Table 7.1.1. A cost and benefit statment for each project is shown in the Route Report.

Table 7.1.1 ECONOMIC EVALUATION SUMMARY

| PHASE      | I PROJECTS               |              |                        | A. V            |                     |
|------------|--------------------------|--------------|------------------------|-----------------|---------------------|
| <u> </u>   |                          |              |                        | (Unit: thou     | isand Bahi          |
|            | Economic<br>Construction | Total        | Net Present<br>Value   | Benefit<br>Cost | Internal<br>Rate of |
| Project    | Cost                     | Benefit      | (Discounted<br>at 12%) | Ratio           | Return<br>(%)       |
|            |                          |              | 1, 1                   |                 | <del></del>         |
| ML-1       | 317,675                  | 5,291,228    | 1,635,055              | 5.54            | 36.5                |
| 10 mg 1 mg |                          | (4,417,663)  | (1,532,943)            | (4.40)          | (30.8               |
| ML-2       | 197,763                  | 1,406,009    | 283,476                | 2.25            | 22.2                |
| ML-4       | 534,823                  | 3,832,328    | 644,678                | 2.03            | 19.7                |
| ML-5       | 1,020,239                | 19,029,843   | 4,907,436              | 5.23            | 30.6                |
|            |                          | (13,880,510) | (3,939,115)            | (3.71)          | (25.6               |
| М7         | 664,890                  | 3,926,336    | 821,595                | 2.10            | 21.9                |
| IM-23      | 147,322                  | 748,996      | 151,534                | 1.95            | 21.5                |
| PHASE      | II PROJECTS              | ·            |                        |                 |                     |
|            | Economic                 |              | Net Present            | Benefit         | Internal            |
|            | Construction             | Total        | Value                  | Cost            | Rate of             |
|            | Cost                     | Benefit      | (Discounted            | Ratio           | Return              |
| Project    | ·<br>                    |              | at 12%)                |                 | (%)                 |
| М3         | 373,297                  | 2,852,331    | 689,450                | 2.60            | 25.6                |
| М9         | 3,214,898                | 75,240,330   | 22,392,735             | 7.20            | 39.6                |
| IM-1       | 43,295                   | 294,867      | 72,659                 | 2.46            | 26.7                |
| IM-2       | 40,627                   | 301,212      | 79,041                 | 2.72            | 28.1                |
| IM-11      | 122,930                  | 723,162      | 159,912                | 2.14            | 23.9                |
| IM-12      | 216,902                  | 774,679      | 70,074                 | 1.28            | 15.1                |
| IM-13      | 71,884                   | 376,733      | 74,655                 | 1.93            | 21.7                |
| IM-14      | 120,628                  | 662,029      | 142,006                | 2.07            | 22.9                |
| IM-15      | 101,977                  | 920,963      | 263,797                | 3.29            | 32.5                |
| IM-16      | 104,335                  | 503,968      | 88,278                 | 1.76            | 19.9                |
| IM-17      | 85,744                   | 644,332      | 163,509                | 2.69            | 27.7                |
| IM-22      | 85,714                   | 524,402      | 116,910                | 2.26            | 23.7                |
| RH-2       | 47,511                   | 469,177      | 257,177                | 6.99            | 74.2                |
| RH-3       | 21,257                   | 630,502      | 382,502                | 20.91           | 150.1               |
| RH-5       | 38,360                   | 1,105,136    | 669,655                | 20.26           | 147.1               |

Note: ( ) Shows Openning year assumed at 1992 for ML-1 and ML-5.

where  $\hat{\mathbf{a}}_{i}$  is the second contribution of  $\hat{\mathbf{a}}_{i}$  and  $\hat{\mathbf{a}}_{i}$  is the second contribution  $\hat{\mathbf{a}}_{i}$ 

#### 7.2 IMPACT OF PROJECTS

None of the project roads is expected to become a major cause of changes in agricultural production, since the existing constraints on agriculture in the respective areas do not include land accessibility, with the possible exception of IM-16, although its impact on agricultural production would still be very minor. The impact of the project roads on industry, however, could be quite significant. They will certainly influence industrialists in selecting plant location. Combined with Government measures to discourage new industrial location within the Bangkok Metropolitan Region, these new highways will help the dispersion of industrial facilities away from Bangkok. They will, however, contribute to the further strengthening of the Central Region relative to other regions. They will also help tourism development, which has already been spreading rapidly in the area, along the Eastern Seaboard shoreline.

An inevitable consequence of an obvious development prospect is a rapid rise in land price. This has already been taking place at an alarming scale. The project roads may accelerate the process.

#### 7.3 IMPLEMENTATION PROGRAM

#### 7.3.1 Construction Schedule

Considering the necessary period for detailed design and tender and contract negotiations, the construction of the project roads was assumed to start at the beginning of 1991 for ML Projects and IM-12. For IM Projects, the start of construction was assumed to be one year later. Figures 5.1.1, 5.1.2 and 5.1.3 show the respective construction schedules by work category. For ML-1 and ML-5 in the case of an opening year of 1992, all work should be advanced by two years.

#### 7.3.2 Fund Requirements

The first half of 1988 was an extraordinary period. A sudden construction boom triggered by a surge in exports and foreign investment caused a shortage of construction materials and an ensuing price escalation on a massive scale. Government countermeasures and industry efforts succeeded in holding down inflation since then, but at a higher level than before the start of the boom. The construction cost estimates shown in Section 5.1.3 incorporate recent price levels which are considered reasonable. It is unlikely that price increases on a scale comparable to those of 1988 will be repeated in the near future. Domestic prices of construction materials and other inputs were assumed to increase at a rate of 4% per year, considering past trends under normal circumstances and the proven prudence in the management of the Thai economy. Price increases of foreign components were also assumed at 4%

a year, considering the general inflation and exchange rate changes under medium term prospects. Fund requirements were calculated from the construction costs at 1988 prices and the assumed price increases. The results are shown in Tables 7.3.1.

Table 7.3.1 shows the fund requirements in the case of an opening year of 1994 for all project roads, and in the case of an opening year of 1992 for ML-1 and ML-5.

Table 7.3.1 FUND REQUIREMENT FOR PROJECTS

(Unit: million Baht)

| Priject        | Total<br>at<br>1988  |               | 1989             |                                |                | 1990           |               |                    | 1991             |                    | :<br>                | 1992                 |                                              |                      | 1993                 |                        |                       | Total                 |                        |
|----------------|----------------------|---------------|------------------|--------------------------------|----------------|----------------|---------------|--------------------|------------------|--------------------|----------------------|----------------------|----------------------------------------------|----------------------|----------------------|------------------------|-----------------------|-----------------------|------------------------|
|                | Price                | Local         | For.             | Total                          | Local          | For.           | Total         | Local              | For.             | Total              | Local                | For.                 | Total                                        | Local                | For.                 | Total                  | Local                 | For.                  | Total                  |
| ML PROJE       | crs                  |               |                  |                                |                |                |               |                    |                  |                    |                      |                      |                                              |                      |                      |                        |                       |                       |                        |
| ML-1           | 347.9                | -<br>(27.6)   | (26.7)           | (54.3)                         | (67.0)         | (64.8)         | (131.8)       | 29.8<br>(99.3)     | 28.9<br>(96.3)   | 58.7<br>(195.6)    | 86.8                 | 84.0                 | 170.8                                        | 107.5                | 104.1                |                        | 209.7<br>(193.9)      |                       | 412.8<br>(381.7        |
| ML-2<br>ML-3   | 224.5<br>417.2       |               | -                | _                              | -              | -              |               | 19.2<br>35.8       | 18.6<br>34.6     | 37.8<br>70.4       | 46.7<br>86.8         | 45.2<br>84.0         | $\begin{array}{c} 91.9 \\ 170.8 \end{array}$ | 69.4<br>128.9        | $67.2 \\ 124.9$      | 136.6<br>253.8         | 135.3<br>251.5        | 131.0<br>243.5        | 266.3<br>495.0         |
| ML-4           | 593.3<br>1105.0      | _             | <del>-</del>     | _                              | -              |                | _             | 50.9<br>94.7       | 49.2<br>91.8     | 100.1<br>186.5     | 123.4<br>229.9       | 119.5<br>222.6       | 242.9<br>452.5                               | 183.3<br>341.5       | 177.6<br>330.7       | 360.9<br>672.2         | 357.6<br>666.1        | 346.3<br>645.1        | 703.9<br>1311.2        |
| ML-7           | 754.0                | (87.6)        | (84.8)           | (172.4)                        | (212.5)        | (205.8)        | (418.3)       | (315.7)<br>64.6    |                  |                    | 156.8                | 151.9                | 308.7                                        | 233.0                | 225.7                | 458.7                  | (615.8)<br>454.4      | (596.3)<br>440.2      | (1212.1<br>894.6       |
| ML-9           | 3569.7               |               | · <del>-</del> . |                                |                | -              |               | 408.0              | 395.1            | 803.1              | 954.6                | 924.6                | 1879.2                                       | 772.2                | 747.9                | 1520.1                 | 2134.8                | 2067.6                | 4202.4                 |
| TOTAL (        | 7011.6<br>7011.6)    | (115.2)       | (111.5)          | (226.7)                        | _<br>(279.5)   | (270.6)        | (550.1)       | 703.0<br>(993.5)   | 680.8<br>(962.1) | 1383.8<br>(1955.6) | 1685.0<br>(1368.3)   | 1631.8<br>(1325.2)   | 3316.8<br>(2693.5)                           | 1835.8<br>(1386.8)   | 1778.1<br>(1343.3)   |                        |                       | 4076.8<br>(4012.7)    |                        |
| IM PROJE       | CIS                  |               |                  |                                |                |                |               |                    | · ·              |                    |                      |                      |                                              |                      |                      |                        |                       |                       |                        |
| IM-1<br>IM-2   | 49.3<br>46.4         | <del>-</del>  |                  | -                              | <u>-</u>       | -              | <u>-</u>      | , i . <del>-</del> | -                | -                  | 10.3 $12.4$          | 9.9<br>12.0          | $\begin{array}{c} 20.2 \\ 24.4 \end{array}$  | 19.8<br>15.8         | 19.2<br>15.3         | 39.0<br>31.1           | 30.1<br>28.2          | 29.1<br>27.3          | 59.2<br>55.5           |
| IM-11<br>IM-12 | 139.2<br>245.3       | <del>-</del>  |                  | _                              | _              | -              | -             | 21.0               | 20.4             | 41.4               | 29.0<br>51.0         | 28.0<br>49.4         | 57.0<br>100.4                                | 55.9<br>75.8         | 54.2<br>73.4<br>31.5 | 110.1<br>149.2<br>64.0 | 84.9<br>147.8<br>49.3 | 82.2<br>143.2<br>47.8 | 167.1<br>291.0<br>97.1 |
| IM-13<br>IM-14 | 81.0<br>136.4        | -             | <del>-</del>     | **                             | -              | -              | -             |                    | -<br>-           | <u>-</u>           | 16.8<br>28.4         | 16.3<br>27.5         | 33.1<br>55.9<br>47.2                         | 32.5<br>54.8<br>46.3 | 53.1<br>44.9         | 107.9<br>91.2          | 83.2<br>70.3          | 80.6<br>68.1          | 163.8<br>138.4         |
| IM-15<br>IM-16 | 115.3<br>118.3       | <del>-</del>  | <u>-</u>         | -<br>-                         | _<br>          | . <del>-</del> | 129           | -                  |                  | -                  | 24.0<br>24.6         | 23.2<br>23.8         | 48.4<br>39.9                                 | 47.5<br>39.2         | 46.0<br>37.9         | 93.5<br>77.1           | 72.1<br>59.5          | 69.8<br>57.5          | 141.9<br>117.0         |
| IM-17<br>IM-22 | 97.5<br>95.8         | ••            |                  |                                |                |                | <b>-</b><br>  | -<br>-             | _                | -                  | 20.3<br>19.9<br>39.0 | 19.6<br>19.3<br>37.8 | 39.2<br>76.8                                 | 38.5<br>60.8         | 37.3<br>58.9         | 75.8<br>119.7          | 58.4<br>99.8          | 56.6<br>96.7          | 115.0<br>196.5         |
| IM-23          | 164.0                | ••            | -                | nga n <del>i</del><br>Historia | <del>-</del>   |                | <del></del>   | -                  |                  | 41. 4              | 275.7                | 266.8                | 542.5                                        | 486.9                | 471.7                | 958.6                  | 783.6                 |                       | 1542.5                 |
| TOTAL          | 1288.5               | -             | <del>-</del> .   | -                              | . <del>-</del> | <del>_</del>   | <del></del> - | 21.0               | 20.4             | 41.4               |                      | 200.0                | 04210                                        |                      |                      |                        |                       | <u></u>               |                        |
| RH PROJE       | ects                 |               |                  |                                |                |                |               |                    |                  | ·                  |                      |                      | _                                            | 32.7                 | 31.7                 | 64.4                   | 32.7                  | 31.7                  | 64.4                   |
| RH-2<br>RH-3   | 52.9<br>23.7<br>42.4 | <u>-</u><br>- | <del>-</del>     | <u>-</u> -                     |                |                | <u>-</u><br>- | -                  | -<br>-<br>-      | -<br>-<br>-        | -<br>-               | -                    | -<br>-<br>-                                  | 14.6<br>26.2         | 14.2<br>25.4         | 28.8<br>51.6           | 14.6<br>26.2          | 14.2                  | 28.8                   |
| RH-5<br>TOTAL  | 119.0                |               | _                | rse.                           | ·              |                | <del>-</del>  | <b></b>            | <b></b>          | _                  | <u>.</u> .           | ers.                 | _                                            | 73.5                 | 71.3                 | 144.8                  | 73.5                  | 71.3                  | 144.8                  |

GRAND 8419.1 - 724.0 701.2 1425.2 1960.7 1898.6 3859.3 2396.2 2321.1 4717.3 5066.5 4907.0 9973.5 TOTAL (1407.5)(115.2) (111.5) (226.7) (279.5) (270.6) (550.1) (1014.5)(982.5) (1997.0)(1644.0)(1592.0)(3236.0)(1947.2)(1886.3)(3833.5)(5000.4)(4842.4)(9843.3)

Note: () shows opening year assumed at 1992 for ML-1 and ML-5.

CHAPTER 8
CONCLUSION

## CHAPTER 8 CONCLUSION

1) Ranking of ML Projects by IRR is shown in Table 8.1.

Table 8.1 RANKING BY IRR OF ML PROJECTS

| Project<br>No. | Origin - Destination            | Length<br>(km) | IRR<br>(%) |
|----------------|---------------------------------|----------------|------------|
| ML-9           | Bangkok - Chon Buri New Highway | 81.7           | 39.6       |
| ML-1           | Chon Buri Bybass                | 13.6           | 36.5       |
| ML-5           | Chon Buri Pattaya New Highway   | 50.3           | 30.6       |
| ML-3           | A.Sattahip - C.Rayong           | 44.6           | 25.6       |
| ML-2           | M. Pattaya - A. Sattahip        | 27.3           | 22.2       |
| MI7            | A.Min Buri - C.Chachoengsao     | 40.9           | 21.9       |
| ML-4           | A.Klaeng - C.Chanthaburi        | 61.9           | 19.7       |

ML-9 shows the highest IRR of 39.6% and ML-4 the lowest IRR of 19.7%. All seven projects are therefore worth implementing with the opening year of 1994.

For the opening year of 1992, the IRRs of ML-1 and ML-5 are 30.8% and 25.6%, respectively, still high figures.

It is highly desirable to construct ML-5 and ML-9 as early as possible, since these new high-ways will connect Bangkok and the Eastern Seaboard area to support the development of the latter.

The preliminary design of ML-9 was done with the possibility of making it a toll road in mind. The design speed was set at 120 kp/h, and all intersections with major roads were assumed to be grade separated.

#### 2) IM Projects

Ranking of IM Projects by IRR is shown in Table 8.2.

Table 8.2 RANKING BY IRR OF IM PROJECTS

| Project<br>No. | t Origin - Destination            | Length (km) | IRR<br>(%) |
|----------------|-----------------------------------|-------------|------------|
| IM-15          | B.Klong Lunang - A.Min Buri       | 24.7        | 32.5       |
| 1M-2           | B. Nong Pru - A. Lao Khawn        | 35.9        | 28.1       |
| IM-17          | A.Lat Krabang - B.Khlong Tha Thua | 19.2        | 27.7       |
| IM-1           | A.Bang Len - B.Bang Noi Nai       | 18.7        | 26.7       |
| IM-11          | B. Channa Soot -A. Pho Thong      | 40.7        | 23.9       |
| IM-22          | A. Nong Chok - A. Bang Nam Prico  | 15.9        | 23.7       |
| IM-14          | A. Wang Noi - A. Thanyaburi       | 25.6        | 22.9       |
| IM-13          | A.Bang Pa-in - C.Ayutthaya        | 17.8        | 21.7       |
| IM-23          | J.R.32 - J.R.3022                 | 26.9        | 21.5       |
| IM-16          | A.Lam Luk Ka - B.Khlong 16        | 20.8        | 19.9       |
| IM-12          | A.Pho Thong - A.Sena              | 51.0        | 15.1       |

IM-15 shows the highest IRR of 32.5% and IM-12 the lowest IRR of 15.1%. All 11 IM Projects are therefore worth implementing with the opening year of 1994.

#### 3) RH Projects

Ranking of RH Projects by IRR is shown in Table 8.3.

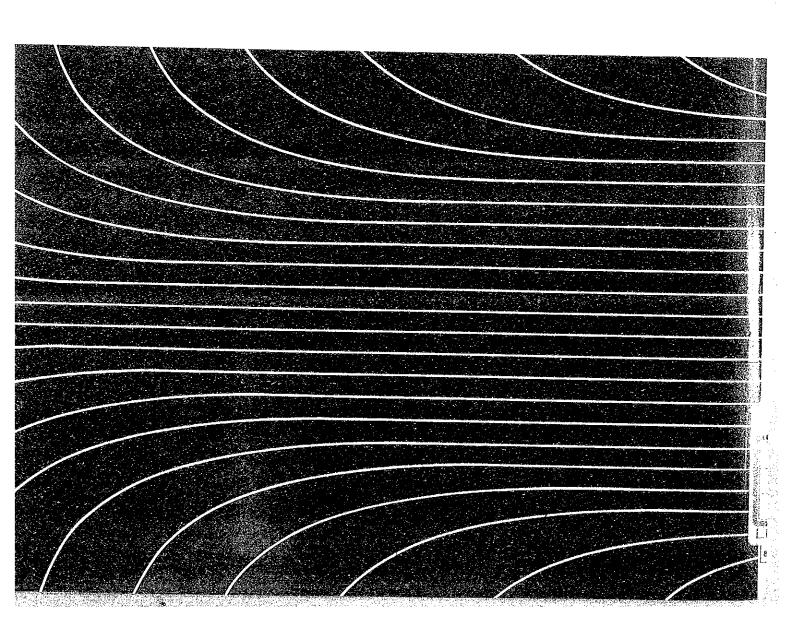
Table 8.3 RANKING BY IRR OF RH PROJECTS

| Project<br>No. | Link No.     | Length IRR (km) (%) |
|----------------|--------------|---------------------|
| RH-3           | 325 0200     | 17.9 150.1          |
| RH-5           | <br>344 0200 | 39.3 147.1          |
| RH-2           | 225 0100     | 39.5 74.2           |

All RH Projects shows high IRR and are worth implementing with the opening year of 1994.

A detailed summary of all ML, IM and RH Projects is shown below:

# SUMMARY OF FEASIBILITY STUDY FOR ROAD DEVELOPMENT STUDY IN THE CENTRAL REGION OF THAILAND


|                 | *.                                           |                                                          |                                                     |                |                        |                              | MAJOR CO                              | NSTRUCTION WORK                       |         |                      |              | <del></del>                                                                                         |
|-----------------|----------------------------------------------|----------------------------------------------------------|-----------------------------------------------------|----------------|------------------------|------------------------------|---------------------------------------|---------------------------------------|---------|----------------------|--------------|-----------------------------------------------------------------------------------------------------|
|                 |                                              |                                                          | STUDY PROJECT                                       |                |                        |                              | EARTHWORK                             |                                       | BRIDGE  | PROJECT              |              |                                                                                                     |
| NO.             | ORIGIN -<br>DESTINATION                      | LOCATION                                                 | JURISDICTION<br>UNDER:                              | LENGTH<br>(km) | PROPOSED<br>ROAD CLASS | PROJECTED<br>AADT<br>IN 2000 | Excavation & Embank't (thousand m³)   | AC or PCC Thickness (cm)              | Accumu- | COST (thousand Baht) | IRR<br>(%)   | REMARKS                                                                                             |
| L PROJI<br>ML-1 | ECTS* Chon Buri Bypass                       | Chon Buri                                                | DOH (Rt. 3)                                         | 13.6           | PD                     | 23,000-30,000                | 312                                   | PCC: 30.0                             | 520     | 348,000              | 2/ 5         | 2 and accorded intersections                                                                        |
| 1L-2            | M. Pattaya -<br>A. Sattahip                  | Chon Buri                                                | DOH (Rt. 3)                                         | 27.3           | PD                     | 11,000-13,000                | 768                                   | AC: 5.0                               | 218     | 225,000              | 36.5<br>22.2 | 3 grade separated intersections                                                                     |
| ML-3            | A. Sattahip -                                | Chon Buri/                                               | DOH (Rt. 3)                                         | 44.6           | PD                     | 9,000-12,000                 | 1,010                                 | AC: 10.0                              | 210     | 418,000              | 25.6         |                                                                                                     |
| ML-4            | C. Rayong  A. Klaeng -                       | Rayong/                                                  | DOH (Rt. 3,                                         | 61.9           | PD/SD                  | 14,000-18,000                | 1,762                                 |                                       | 872     | 594,000              | 19.7         |                                                                                                     |
| ML-5            | C. Chanthaburi Chon Buri-Pattaya New Highway | Chanthaburi<br>Chon Buri                                 | Rt. 316)<br>DOH (Rt. 36)                            | 50.3           | PD/P1<br>FD            | 26,000/7,000<br>21,000       | 2,417                                 | PCC: 28.0 (24 km)<br>23.0 (18 km)     | 1,252   | 1,105,000            | 30.6         | 2 grade separated intersections                                                                     |
| ML-7            | A. Min Buri -<br>C. Chachoengsao             | Bangkok -<br>Chachoengsao                                | DOH (Rt. 304)                                       | 40.9           | SD                     | 11,000-14,000                | 1,389                                 | 25.0 ( 8 km)<br>AC: 10.0              | 1,909   | 754,000              | 21.9         |                                                                                                     |
| ML-9            | Bangkok -<br>Chon Buri New<br>Highway        | Bangkok/<br>Samut Prakarn/<br>Chachoengsao/<br>Chon Buri | DOH (Rt. 36)                                        | 81.7           | PD                     | 17,000-40,000                | 5,973"                                | AC: 10.0 (66 km)<br>PCC: 28.0 (16 km) | 6,52221 | 3,570,000            | 39.6         | 4 grade separated intersections and 1 junction  1 Includes sand mat volume  2 3,261 m (one way) × 2 |
|                 |                                              |                                                          | Subtotal                                            | 320.3          |                        |                              |                                       |                                       |         |                      |              | Signal III (one may) A 2                                                                            |
| M PROJE         | CTS**  A. Bang Len -  B. Bang Noi Nai        | Nakhon Phathon                                           | n PWD                                               | 18.7           | F4                     | 600-1,000                    | 80                                    | AC: 5.0                               | 37      | 50,000               | 26.7         |                                                                                                     |
| IM-2            | B. Nong Pru -<br>A. Lao Khwan                | Kanchanaburi                                             | DOH (Rt. 3306)                                      | 35.9           | F4                     | 500-600                      | 230                                   | DBST                                  |         | 47,000               | 28.1         |                                                                                                     |
| IM-11           | B. Channasut - A. Pho Thong                  | Sing Buri/<br>Ang Thong                                  | RID                                                 | 40.7           | F2                     | 500-2,000                    | 234                                   | AC: 7.5                               | 27      | 140,000              | 23.9         |                                                                                                     |
| IM-12           | A. Pho Thong - A. Sena                       | Ang Thong/<br>Ayutthaya                                  | RID                                                 | 51.0           | F2                     | 1,000-1,600                  | 575                                   | AC: 10.0                              | 88      | 246,000              | 15.1         | New construction: 1.7 km                                                                            |
| IM-13           | A. Bang Pa-In -<br>C. Ayutthaya              | Ayutthaya                                                | DOH (Rt. 3059)                                      | 17.8           | F2                     | 1,500                        | 160                                   | AC: 10.0                              | _       | 81,000               | 21.7         |                                                                                                     |
| IM-14           | A. Wang Noi -<br>A. Thanyaburi               | Ayutthaya/<br>Phathum Thani                              | Rural Munici-<br>pality (Partly<br>of DOH Rt. 3189) | 25.6           | F3                     | 900-1,000                    | 276                                   | AC: 10.0                              | 140     | 137,000              | 22.9         | New construction: 5.0 km                                                                            |
| IM-15           | B. Khlong Luang -<br>A. Min Buri             | Phathum Thani/<br>Bangkok                                | Rural<br>Municipality                               | 24.7           | F2/F1                  | 2,500/5,200                  | 147                                   | AC: 10.0                              | . 72    | 116,000              | 32.5         | North section: F2 Class<br>South section: F1 Class                                                  |
| IM-16           | A. Lam Luk Ka -<br>B. Khlong 16              | Phathum Thani/<br>Nakhon Nayok                           | DOH (Rt. 3312)                                      | 20.8           | F3                     | 600-1,200                    | 180                                   | AC: 5.0                               | 337     | 119,000              | 19.9         |                                                                                                     |
| IM-17           | A. Lat Krabang -<br>B. Khlong Tha<br>Thua    | Bangkok/<br>Samut Prakhan/<br>Chachoengsao               | PWD                                                 | 19.2           | F2                     | 400-2,100                    | 208                                   | AC: 7.5                               | 65      | 98,000               | 27.7         |                                                                                                     |
| IM-22           | J.R. 304 -<br>A. Bang Nam Prico              | Bangkok/<br>Chachoengsao                                 | Rural<br>Municipality                               | 15.9           | F3                     | 1,100                        | 182                                   | AC: 7.5                               | 225     | 96,000               | 23.7         | New construction: 5.0 km                                                                            |
| IM-23           | J.R. 32 -J.R. 3022                           | Ayutthaya                                                | DOH (Rt. 3267)                                      | 26.9           | F1                     | 4,000-6,000                  | 124                                   | PCC: 23.0                             |         | 164,000              | 21.5         |                                                                                                     |
| · .             |                                              | <u> </u>                                                 | Subtotal                                            | 297.2          |                        |                              |                                       |                                       |         |                      |              |                                                                                                     |
| H PROJI<br>RH-2 | ECTS***<br>Rt. 225 Link 0100                 | Nakhon Sawan                                             | DOH                                                 | 39.7           | S2                     |                              | <u> </u>                              | AC: 5.0                               |         | 53,000               | 74.2         |                                                                                                     |
| RH-3            | Rt. 325 Link 0200                            | Samut Songkram                                           | DOH                                                 | 17.9           | S2                     |                              | _ :                                   | AC: 5.0                               |         | 24,000               | 150.1        |                                                                                                     |
| RH-5            | Rt. 34 Link 0200                             | Chon Buri                                                | рон                                                 | 39.3           | SI                     |                              |                                       | AC: 5.0                               | · —     | 42,000               | 147.1        |                                                                                                     |
|                 | · • · • · · · · · · · · · · · ·              |                                                          | Subtotal                                            | 96.2           |                        |                              |                                       |                                       |         |                      |              |                                                                                                     |
|                 |                                              |                                                          | Grand Total                                         | 713.7          |                        |                              | · · · · · · · · · · · · · · · · · · · |                                       |         |                      |              |                                                                                                     |

Note: \* Multi lanes highway construction projects. ML-5 and ML-9 are new construction projects.

\*\*\* Improvement projects of existing roads.

\*\*\* Pavement rehabilitation projects



