APPENDIX E: PRESENT CONDITIONS OF THE KLANG RIVER AND THE BASIN

TABLE OF CONTENTS

		PAGE
1.	GENERAL DESCRIPTION OF THE BASIN	E-1
2.	PRESENT CONDITIONS OF RIVERS	E-2
3.	EXISTING FLOW CAPACITY OF RIVERS	E-7
4.	RIVER AND RELATED STRUCTURES	E-8
	4.1 River Structures	E-8
	4.2 Bridges	E-9
5.	EXISTING URBAN DRAINAGE SYSTEM	E-12
6.	EXISTING EX-MINING POND	E-14

LIST OF TABLES

TABLE NO.	LIST	PAGE
E-1	Principal Features of Bridges	E-17
E-2	River Conditions around the Bridges	E-18
E-3	Estimate for Soundness of Bridges	E-19
E-4	Overall Estimate for Bridges	E-20
E-5	Existing Ex-mining Ponds for Each Catchment Area	E-21

LIST OF FIGURES

FIGURE NO.	LIST	PAGE
E-1	General Area Map of the Klang River Basin	E-22
E-2	Longitudinal Profile of the Klang River and Tributaries	E-23
E-3	Existing River Reserve for Downstream of the Klang River	E-24
E-4	Discharge Capacity of the Klang River $(1/3) - (3/3)$.	E-25~27
Е-5	Discharge Capacity of the Gombak River	E-28
E-6	Discharge Capacity of the Batu River	E-29
E-7	Plan and Section of Puchong Drop	E-30
E-8	Location Map of Tidal Gate	E-31
E-9	Location Map of Bridge $(1/2) - (2/2)$	E-32~33
E-10	Distribution Map of Existing Ex-mining Pond	E-34

•

.

APPENDIX E. PRESENT CONDITIONS OF THE KLANG RIVER AND THE BASIN

1. GENERAL DESCRIPTION OF THE BASIN

The Klang River basin with a catchment area of 1,288.4 $\rm km^2$ occupies the central third of Selangor State on the west coast of Peninsular Malaysia.

The basin is bounded by latitudes of $2^{\circ}55'N$ and $3^{\circ}25'N$ and longitudes of $10^{\circ}20'E$ and $10^{\circ}50'E$. It extends roughly for 55 km from the north to south and 56 km from the east to west. The seaward edge of the basin faces the Straits of Malacca to the West.

The 120 km long Klang River originates in the main range at an altitude of 1,330 m in the east of the Basin. It then follows a predominantly southwesterly direction, flowing past Kuala Lumpur, then turns west after Puchong Drop, and drains into the Straits of Malacca.

There are two major tributaries in the upper basin. These are Gombak and Batu Rivers, which merge into each other before joining the Klang River in the City Center.

In the upper basin, approximately 15 km upstream of the City Center, there are the Klang Gates Dam and the Batu Dam. Above the dam sites, the terrain is mountainous with fairly steep slopes. In some of the lower areas, there are rubber plantations and other cultivated vegetation, but for the most part, the mountains are covered by tropical jungle.

The metropolitan area of Kuala Lumpur stands at the heart of the Klang River basin. There is a broader flood plain here, providing available space for what has become the largest concentration of population in the nation. Besides being the capital city and center of government, Kuala Lumpur is also the center of industry and commerce. Consequently, it is also the hub of significant transportation and communication networks.

Urban and suburban types of development extend in some places to the tops of the low hills and within 2 to 3 km of the dam sites. These developments, together with the refilling of many ex-mining ponds, have brought about the severe problem of increased rainfall run-off and the accompanying land erosion.

In the lower stretch downstream of Kuala Lumpur, the topography is low and rolling. The hills are mostly covered by rubber and oil palm plantations with isolated spots of original jungle type vegetation scattered throughout. The low lying areas are used in a number of ways, but are mostly under cultivation.

The river in this section is continuous with a well defined bed. The lowest stretch of the basin near the river mouth is occupied by flat coastal plains where mangroves flourish along the water edge with coconut palms further inland. Here, the Klang River is meandering in its path. General area map of the Klang River is shown in Fig. E-1.

2. PRESENT CONDITIONS OF RIVERS

The Klang River and its two main tributaries, the Gombak and Batu Rivers are characterized by relative smooth bed slopes, as illustrated in Fig. E-2. The system drains a total catchment area of 1,288.4 km². Broadly speaking, the Klang River can be classified into three stretches, namely an upstream stretch with steep slope, a middle stretch between confluence with the Gombak River and a point at about 10 km downstream of the Puchong Drop, where a slope transition occurs, changing from the steep slope of approximately 1/2,300 and a lower stretch downstream with relatively gentle slopes, where the bed slope of the river further decreases gradually from approximately 1/2,300 to 1/10,000 at the river mouth.

The Gombak and Batu Rivers possess only a single upstream stretch, with characteristics similar to that of the upstream stretch of the Klang River.

Longitudinal river profiles and cross sections had been obtained throughout the entire length of the Klang River, with no reports of active meanders.

Local erosion occurs at meanders along the middle stretch, while bank erosion in the lower river stretch is probably affected by tidal action. Soils loosened from banks in the lower river stretch may be contributing towards siltation at the river mouth, while formation of sand bars and shoals in the upper and middle river stretches are largely affected by sediment deposits from housing development sites. The existing river reserve for downstream stretch of the Klang River is illustrated in Fig. E-3.

(1) Upstream River Stretch

a) Upstream Stretch of the Klang River

The upstream of Klang River drains a catchment of approximately 189 km². The stretch lying between the existing Klang Gates Dam site and the confluence with the Gombak River is approximately 13 km long. The estimated sediment run-off at the point of the Klang Gates Dam is $476 \text{ m}^3/\text{km}^2/\text{yr}$. The average slope of this stretch is approximately 1/520. It flows mainly in a southerly direction to Ulu Klang before turning west flowing almost parallel to Ampang Road before changing into a southwesterly direction after crossing Tun Razak Road to enter the city center of Kuala Lumpur. The upstream stretch of the Klang River ends at the confluence with the Gombak River right in the heart of Kuala Lumpur city near its crossing with Tun Perak Road.

The banks of the entire upstream stretch of the Klang River almost fully occupied right from the dam site to the Gombak River confluence, being lined with legitimate housing developments or squatter settlements, with little open space in between adjoining settlements. The area upstream of the Klang Gates Dam is covered with tropical forest reserve.

b) The Gombak River

The stretch of the Gombak River from the proposed dam site to the confluence with the Klang River is approximately 15 km long. It drains a catchment of approximately 130 km² before its confluence with the Klang River. The average slope of this stretch is 1/460. Its general flow direction is south-southwest over the entire stretch. This section from about 1.5 km downstream of its confluence with Sg. Batang Pusu to the Tun Razak Road crossing has also been densely populated, mainly with legitimate housing developments, though a few squatter settlements have been found amongst the legitimate developments. The stretch upstream of Kampung Tangut (1.5 km downstream of the Batang Pusu confluence) is relatively uninhabited.

The area upstream of the proposed Gombak Dam site is relatively unforested, with available space for living along the valley.

c) Batu River

The Batu River is the major tributary of the Gombak River, it merges first with the Gombak River at a point in the vicinity of the Putra World Trade Center some 2 km before the Gombak River joins the Klang River. The Batu River drains a catchment of approximately 145 km² before its confluence with the Gombak River. The stretch of the Batu River lying between the existing Batu Dam site and its confluence point is approximately 14 km long. The average slope of this stretch is 1/360. The banks of the section of the River between the Ipoh Road crossing and the Segambut Road crossing is most densely populated, about half by legitimate housing developments and half by squatter settlements, with practically no open space between adjoining settlements. The stretch upstream of the Ipoh Road crossing remains relatively

uninhabited, being occupied by a large track of ex-mining land which had only recently been worked. There exists a large cluster of ex-mining ponds on the right bank of the Batu River, mainly around the Jinjang River, with some smaller ones near the Keroh River.

The area upstream of the Batu Dam site is covered by tropical forest reserve.

River improvement works, including dredging and lining of the river courses, have been carried out along some 2.72 km of the Gombak River and an additional 1.13 km of the Batu River, just upstream of its confluence with the Gombak River.

(2) Middle River Stretch

The middle stretch of the Klang River lies between its confluences with the Gombak and Damansara Rivers, covering a distance of some 30 km. This stretch runs through relatively low rolling country, bounded on the west by the hills of Damansara district and on the south by hills of the Petaling districts on which are sited the housing estates of Overseas Union Garden and Salak South Garden. The slope of the river in this stretch changes from the relatively steep value of 1/700 to a relatively gentle value of 1/2,300. Within this stretch, the river changes course three times.

River improvement works have been carried out over some 19 km length in this stretch. The bulk of the roots covering 18 km were executed around the abrupt 180° bend stretching from some 5 km upstream of Puchong Drop to some 13 km downstream. This length of the river has been dredged. At the portion about 4 km upstream of the Damansara confluence, when the river goes through a series of sharp meanders, the river has been straightened by short-cutting through the meanders in addition to just dredging alone.

The river improvement work had been carried out for the stretch of 1 km in the city center, just downstream of the Klang-Gombak confluence. This involves both the dredging and lining of the river banks of the Klang River from downstream of the Jamek Mosque to the Sulaiman Bridge.

Tidal effects are felt only in the downstream river stretch, possibly up to the Klang-Damansara confluence.

(3) Lower River Stretch

The lower river stretch commences downstream of the confluence of the Klang River and its last major tributary, the Sq. Damansara. This stretch runs through flat low lying plains, initially in a general westerly direction, though the river meanders substantially along its seaward approach, for about 12 km straight-line distance before making a 45° turn towards the south at the point where it is joined by its last minor tributary, the Sg. Pulus, before making its final approach to the This stretch of the river is also characterized by substantial sea. meandering. The width of the river increases with distances from the Klang-Damansara confluence, varying from 50 m just downstream of the confluence to a width of 300 m in a slight distance upstream of the river mouth. The series of 3 largest meanders is just upstream of the river mouth, occupying about half the rectilinear distance between the Klang-Pulus confluence and the river mouth.

The slope of this lower river stretch is very gentle varying from about 1/2,300 at the Klang-Damansara confluence to less than 1/10,000 when the river meets the sea.

A small section of the river, which lies about 2 km downstream of the Klang-Damansara confluence, has been cut short to remove two of the sharpest meandering loops out of the river course.

Active sand mining is going on along the middle section of the Sg. Kayu Ara, the largest upstream tributary of the Sg. Damansara.

3. EXISTING FLOW CAPACITY OF RIVERS

Existing flow capacity of three rivers, the Klang, Gombak and Batu Rivers are estimated under the conditions described below.

- The cross sections and longitudinal profiles of the rivers are based on the results of river survey carried out in this study.
- Water level at initial point of the river mouth of the Klang River is 1.948 m.
- Estimation of longitudinal profile of the water level is based on the non-uniform flow method.

- Flow capacity is estimated under the bankful condition.

Figs. E-4, E-5 and E-6 show flow capacity and river width of each river.

The results of calculation are summarized as follows:

- The stretch between river mouth and Klang Town has a flow capacity of more than 2,000 m^3/s because of large river width and levee.
- The stretch between Klang Town and Sg. Damansara have a flow capacity of less than 200 m³/s. Low lying area without levee in this stretch may be inundated due to high tide alone.
- The stretch between Sg. Damansa and Sg. Rasau has comparatively small river section and a flow capacity of 0 \sim 200 m³/s. In this area, the ground level is still low and affected by high tide.
- The stretch between Sg. Rasau and Puchong Drop has 400 \sim 600 \textrm{m}^3/\textrm{s} of flow capacity.

- In the upstream stretch of Puchong Drop, the flow capacity decreases gradually to the upstream from 300 m³/s.
- As for the Gombak River, the improved stretch between the confluence with the Klang River and the Batu River has flow capacity of 300 m³/s. In the upstream stretch of the confluence with the Batu River, a flow capacity is $60 m^3/s$.

- The Batu River has 80 m³/s of flow capacity.

4. RIVER AND RELATED STRUCTURES

In the Klang River and its tributaries, there exist the following river and related structures besides the existing two dams.

The river improvement works of the Kuala Lumpur Flood Mitigation Project (KLFMP) and existing two dams are described in Appendix H.

4.1 River Structures

<u>Gabion</u>

In certain stretches of the Gombak River, Gabions were installed in order to restore the river banks eroded due to flooding.

Drop Structures

In the upstreams of the Batu and Gombak Rivers, two drop structures were constructed for maintaining the river bed. In the middle stretch of the Klang River there exists a drop structure of 3 m height and 40 m length named as Puchong Drop. A plan and typical section of this drop are shown in Fig. E-7.

Е – 8

<u>Levee</u>

In the upstream of the Klang River at the Kampong Baru area, a levee with a height of about 3 m has been built for flood protection. Also, a similar levee may be found in the middle stretch of this river.

In the downstream of the Klang River, between the Puchong Drop and the river mouth, for the protection against high tidal waters, there is a levee of 3 m in height and about 30 km in length.

<u>Sluice Gate</u>

In the low lying areas of the Kampong Baru and some regions, some sluice gates are installed to protect the land areas from flooding during high water levels in the river. Also in the lower stretch of the Klang River about 30 tidal sluice gates are installed. Location of these tidal gates are shown in Fig. E-8.

Drainage

There are many drainage pipes along the river in and around the city areas.

4.2 Bridges

Downstream of the dam sites of the Klang, Gombak and Batu rivers, there are 58 bridges. Although most of these are concrete bridges, there are also 3 railway bridges. The locations of these bridges are shown in Fig. E-9. The principal features of the bridges and river conditions around them in the urgent project area are also shown in Tables E-1 and E-2.

Some of those bridges are supported by closely spaced piers and also located relatively close to each other, especially in the city center. This restriction has often resulted in flooding in the upstream of the river. The existing river improvement plan stipulates the deepening of river beds to enhance the river flow capacity. However there exists no plan to replace any of these bridges. Then it may be necessary to undertake the necessary structural measures to improve the stability of the bridge foundations in case of no replacement.

In order to evaluate the effect on the flood flow due to these bridges, the study on the following items was carried out under the present conditions.

a) Span Length

The span length is the most important factor besides the clearance to estimate the soundness of the bridge related to the flood. The flood flows with a lot of debris, especially driftwood. It is necessary to have a span length long enough so that this driftwood in the flood does not obstruct the flow. Past studies have shown that it is desirable that the span to have a length more than 12.5 meters for a 25 meters bridge.

b) Clearance

The clearance should be taken as the gap between soffit level of the bridge and maximum water level; which is decided considering the present river bank level. However, since it seems that the current estimate of maximum water level is in error, in this study it is defined that the clearance should be more than 0 meter for the time being.

c) Reduction Rate of River Width due to Piers

If the reduction rate comes to over six percent, it is said, from the past study, that the natural river flow is disturbed and the flow capacity of river is rapidly decreased.

Reduction Rate of Cross Sectional Area of the River at the Bridge

The cross sectional area of the river at many bridges has been reduced. Some of these reductions are caused by the construction of the bridge, that is, the length of bridge is much shorter than the original river width. Other factors are caused by sediment or structures under the bridge. It is desirable that the maximum reduction rate should be less than 20 percent.

e) Actual Flood Damage due to Bridge

In some studies, it is very difficult to verify whether the reason of the flood damage is related directly to the bridge. On the other hand, only two instances of flood damage have been reported which were clearly caused by bridges.

f) Scouring

The scouring depth is obtained from the ratio of maximum water height to pier width. The depth of pier footing should be deeper than the scouring depth calculated from Larsen's formula. However, since the footing depth of piers for all the bridges is not obvious, the rule of thumb used for this study is that the effect of scouring becomes severe if the ratio exceeds five. On the other hand, the best shape of piers to give the least drag to the river bed is a long oval shape, as the square pier accelerates scouring. Therefore, the shape of piers is a factor in studying the possibility of scouring.

The result of the study of existing bridges based on the criterias mentioned above is shown in Table E-3. As seen, most of the bridges do not have enough clearance and the possibility of scouring is still very high due to the ratio and piers shape described before. In addition, the cross sectional area of the river at the bridge is decreased owing to the various reasons. Many bridges are built at the river bend portion, causing obstruction and disturbance to the floods, and there

are many pipeline or pipe bridge crossing at level lower than the main bridges.

The overall estimate for flood damage due to the bridges are based on (1) span length, (2) clearance, (3) width reduction ratio, (4) area reduction ratio, and (5) actual flood damage reported. The effect of pipeline crossings, etc. is also taken into consideration. These results are shown in Table E-4.

As a result of the overall estimate, the following four bridges are identified as potential problems, under their existing conditions itself, they are the Jalan Tun Perak Bridge (upstream side), Jalan Tun Razak Bridge (upstream side), Jalan Damai Bridge and Jalan Segambut Bridge. Of these bridges, the Jalan Tun Razak, is already planned for renovation under the on-going river improvement project. The rest of the bridges are to be reconstructed based on the river improvement plans of this Master Plan, and are dealt with in Appendix J.

5. EXISTING URBAN DRAINAGE SYSTEM

As described in the APPENDIX G, urban areas, especially Kuala Lumpur city center are often flooded not only along the main rivers such as the Klang, Gombak and Batu Rivers but also along some of its tributaries and drains.

The main causes of flooding along tributaries and drains are as follows:

- Insufficient depth or width of river or drain.
- Sedimentation in river bed together with dense vegetation growth on its banks.
- Rapid housing development which causes heavy silting and increase of peak discharge.

- Backwater from main river.
- Clogging and choking with rubbish and other waste materials.
- Breached river banks/levees.
- The settlements are situated in low lying areas without any drainage systems.

Urban drainage works within the Klang River basin have been carried out by DID Federal Territory, DID Selangor, City Hall and Municipalities such as Petaling Jaya, Klang and Shah Alam. In addition to these, some drains were constructed by housing developers after approval from related agencies when they developed the housing schemes.

Drainage works have been implemented based on "Urban Drainage Design Standards and Procedures for Peninsular Malaysia", established by DID in 1975. According to this design standards and procedure, the drainage systems are planned for the design flood of a 2-year return period storm in the residential areas and a 5-year return period storm in commercial and industrial areas. In addition, wherever possible the system is designed to contain the 100-year storm within the proposed reserves, to prevent any major damage from a major storm. These improved drainage works are described in Appendix H.

Among these drainage works, improvement of drains within Kuala Lumpur conurbation have been carried out based on the "Kuala Lumpur Flood Mitigation Project Drainage Improvement, Master Drainage Plan" which was prepared by DID in 1978. The summary of this Master Drainage Plan is as follows:

a) The Master Drainage Plan covers the catchment of all trunk drains within Kuala Lumpur conurbation. The area is 409 km² (158 miles²) and includes the Federal Territory, Petaling Jaya and sections of Petaling, Ulu Langat and Gombak Districts. This Master Drainage Plan deals with 364 km (226 miles) of trunk drains serving total minimum areas of about 40 hectares (100 acres).

- The studies and works undertaken in this Master Drainage Plan included:
 - preparing design standards and procedures
 - preparing a preliminary master drainage plan
 - detailed survey of the trunk drainage system
 - detailed design and construction of priority works
 - preparing master working plans
- C)

b)

The estimated costs for drainage improvement was M\$128,691,000 as at 1978 price level.

Based on this Master Drainage Plan, inner water drainage works has been carried out with minor modifications by agencies concerned.

These local improvements of the drainage system causes an increase of run-off peak discharge and possibility of inundation in the downstream area. Hence, the design scale of drainage system especially for newly developed areas should take into overall considerations of the whole downstream river, the flow capacity, improvement plan and etc.

6. EXISTING EX-MINING POND

(1) General

In the Klang Valley, the development of tin mines commenced in the middle of the last century in the Ampang area.

As of 1986, in the basin, total active mining area is about 1,400 ha and existing ex-mining areas amounts to some 6,900 ha. The exmining areas developed into housing schemes is some 4,100 ha.

In the Kuala Lumpur City there exists no active mining area. Most of these ex-mining areas is scheduled for housing or industry development or reclamation.

(2) Present Status of Ex-mining Pond

The total area of ex-mining ponds, located in the basin upstream of Puchong Drop of the Klang River, is about 650 ha. Some of these ponds are partially used for fish breeding, but some have simply been abandoned. Some ponds have been colonized by squatters who settled on their edges, and used the ponds as dumping grounds for their wastes.

However, the water in most of the uncolonized ponds is generally clean. From the viewpoint of flood mitigation, these ponds may be greatly useful for retarding run-off from their catchment. Fig. E-10 shows the location of existing ex-mining ponds in the Kuala Lumpur conurbation area.

Number and area of existing ex-mining ponds for each river basin is shown in Table E-5. The sizes of these ponds differ substantially, ranging from 0.5 ha to 90 ha. The deepest pond has a water depth of about 30 m at its deepest point.

Most of these ex-mining ponds have been ear-marked as potential sites for housing or industrial development in the near future. Only several deep ponds are to remain without being slated for refilling because of expensive construction cost.

(3) Use of Ex-mining Pond for Flood Mitigation

There are two uses to which the ex-mining ponds can be put in the context of flood mitigation.

The first is for regulation of run-off discharge into the main river or its tributaries. For this purpose, the pond needs to be of a comparatively large capacity. It might be located near the rivers and at a level where it is able to control the discharge into the river by gravity flow. The active depth of a regulation pond will be limited to 4 to 5 m according to the river depth.

The second is for flood control of developed areas far away from the river. For this purpose, the ponds may have a comparatively small size, since they act as storage for a small area only.

In case these ponds are located downstream of a newly developed area, these ponds may serve the dual purpose of sediment trap during the construction period. The depth of these ponds will be decided by the downstream river conditions.

The intended development of the ex-mining ponds into multipurpose ecological parks serving both flood mitigation (during periods of intense rainfalls) and recreational (during dry and relatively dry periods when only the permanent pond is filled) needs is expected to bring beneficial social effects to the surrounding communities.

Dof	Bridge			Bridge		····· ··· ···		Pier			Soffit
Ker.	Name		CH NO.	Length	Width	Width	Nos	Gross V	Snan	Shape	Level
NO 1			(km)	(m)	(m)	(m)		(m)	(m)	Griape	(m)
			(1447)		,						
к- 17	Jalan Sulaiman		20,46	49.40	15.70	1,5	2	3.0	15	Square	31.3
к- 18	Jalan Kinabalu	(flyover)	20.70	-	35.10	0.7	2	1.4	18	Square	33.8
к- 19	Jalan Cheng Lock	-	21.04	53.02	32,00	1.0	2	2.0	17	Square	30.3
K = 20	Davabumi Foot Bypass		21.23	36.20	6.00	0.8	2	1.6	12	Circle	30.8
K- 21	Leboh Pasar		21.43	43.40	18,70	-	0	_	-		29.7
K- 22	Jalan Tun Perak	(2 Lanes)	21.73	33.00	26.50	0.8/2	1/1	0.8/2	16/16	Circle	29.2
K- 23	Jalan Munshi Abdullah	(2 Lanes)	22.21	28.10	53,60	0.7/-	2/0	1.4/-	17/-	Circle	30,5
K 20	Jalan Dang Wangi	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	22.64	38.78	17.10	-	0	-	-	-	30.3
x = 25	Jalan Sultan Ismail		23.04	39.89	29.45	0.4	2	0.8	12	Circle	32.0
N= 20 V= 26	Jalan Tun Bazak	(2 Lanes)	24.60	57.72	27.20	1/1	2/2	2/2	10/10	Cir/Sou	32.2
N- 20 V- 26!	Jalan Damai	(broken)	26.43	0,1,1	3.00	-7 -	-,-		, 10		
N- 20 V- 27	Jalan Jelatek	(Droken)	26.88	52.62	22.50	0.6	2	1.2	14	Circle	37.7
N- 27	Near Sterling Drug		20.00	36 04	12 30	0.6	2	1.2	9	Circle	45.3
K- 20	Near Taman Seri Keramat Tend	rah	32 31	35 02	12,00	0.0	2	1 6	10	Circle	50.5
K- 29	Talan Uniu Klang Zoo	Jan	33 76	36.36	12.90	0.0	2	1.0	11	Circle	54 1
K- 30	Jalah Hulu Klang 200		33.75	20.00	11 60	0.0	~ ^		11	OTTOTE	56 0
K- 31	Jalan Melawaci Lina		34.99	30.24	11,02	_	0	. –	_		50.9
G- 1	Sultan Hishamuddin		38.26	30.25	16.25	1.0	1	1.0	15	Oval	30.0
G- 2	Jalan Parlimen		38,44	31.33	23.40	0.6	2	1.2	11	Oval	30.6
G- 3	Jalan Sultan Ismail	(flyover)	39.66	-	8.30	1.1	2	2.2	14	Circle	31,6
G- 4	(Jalan Putra) Near PWTC		40.24	_	26,35	1.0	2	2.0	10	Circle	34.0
G- 5	Jalan Ipoh	(2 Lanes)	40.56	31.20	21.00	0.6/0.6	2	1.2/1.	2 10	Circle	31,9
G- 6	Jalan Tun Razak	(2 Lanes)	41.00	31.20	26.15	0.7/0.7	2	1.4/1.	4 10	Circle	31,6
G- 7	Near Sentul Flats off Jalan	Pahang	43.00	28.40	2.45	1.3	2	2.6	12	Oval	38,0
G- 8	Jalan Kampung Puah Sabarang		43.85	24.15	1.80	-	0	-	-	-	38.1
G- 9	Jalan Chubadak Dalam		45.26	18.40	11.17	1.0	2	2.0	7	Oval	42.4
G = 10	Foot Bridge	(2 Lanes)	46.40	18.00	4.00	0.6/-	2/0	1.2/-	6/-	Square	43.8
G- 11	Jalan Batu Cave	(a =====;	49.39	19.10	6.31	1.1	3	1.1	9	Square	55.2
G- 12	Karak Highway	(flyover)	50,62		11,55	1.2	2	2.4	14	Circle	64.0
							~		1.0		20 1
B- 1	Jalan Tun Ismail		51.91	47.90	38.80	1.0	2	2.0	16	Square	32.1
B- 2	Jalan Kolam Air		52.81	33.50	11.17	0.7	2	1.4	11	Square	32.0
B- 3	2.5 Mile Jalan Ipoh Railway		53.16	23,00	4,46		0		-		34,/
B- 4	Jalan Selvadurai		53.58	27.80	11.88	0.4	2	0.8	8	Square	33.7
B- 5	Jalan Segambut		54.15	27,75	15.20	0.6	4	2.4	4	Circle	35,2
B- 6	Jalan Cenderuh		55,88	21.40	7,51	0.4	1	0.4	8	Circle	38,2
B- 7	4.25 Mile off Jalan Ipoh		56.10	20,50	7,38	0.3	1	0.3	11	Square	38,0
B- 8	4.5 Mile Jalan Ipoh		56,70	27.21	9,70	0.3	3	0.9	7	Square	41.4
B- 9	4.5 Mile Jalan Ipoh Railway		56,91	22.68	5,05	-	0	-	-	-	42.4
B- 10	7.5 Mile Jalan Ipoh Railway		60,85	22.85	4.26	-	0		-	-	51.0
B- 11	7.5 Mile Jalan Ipoh	(flyover)	60,88		11.03	0.9	2	1.8	16	Square	56.2
B- 12	Jalan Batu Cave		61.16	22.95	8.82	1.5	1	1.5	11	Oval	52.0
B- 13	Kg Nakhoda Bridge off Jalan	Sg Tua	64.36	25.01	5.40	-	0	-	-	-	64.6
B- 14	Kg Nakhoda Bridge off Jalan	Sugai Tua	65.36	21.70	4,28	-	0	-	-	-	64.1
B- 15	Near Dam Site		65.99	67.32	9,66	-	0	-	-	-	72.5

,

~

Table E-2 RIVER CONDITIONS AROUND THE BRIDGES

Ref. No.	Bridge Name		River Width (m)	River Area at Bridge (m2)	River Area near Bridge (m2)	Max. W.L.	River Bed	Max. W.H.	Location	Pipe, etc. Dimension
K- 17	Jalan Sulaiman	· · · ·	47.1	261.5	303.1	30,4	23.5	6,9	U/S (L)	Pipe w/pier, Pipe Truss w/pier
K- 18	Jalan Kinabalu	(flyover)	44.4	378.5	303,1	30.5	21.7	8.8	-	-
K- 19	Jalan Cheng Lock		53.0	186.0	228.8	30.8	24.7	6.1	- '	
K- 20	Dayabumi Foot Bypass		36.0	228.8	228.8	30.6	22.3	8.3		_
K- 21	Lebuh Pasar		41.0	152.5	184.8	29.8	23.7	6.1	D/S (L)	2 * Pipe w/pier, Pipe Truss w/pier
K- 22	Jalan Tun Perak	(2 Lanes)	33.1	40.6/67.7	112,9	29.9	25.2	4.7	U/S (L)	Pipe, Pipe Truss
K- 23	Jalan Munshi Abdullah	(2 Lanes)	20.3	92.3/99.8	123.0	30.9	26.3	4.6	U/S(S),D/S(S)	Pipe Truss, Pipe w/pier
K 24	Jalan Dang Wangi		27.3	60,5	73.3	30,7	26.2	4.5	U/S (S)	2 * Pipe w/pier
K- 25	Jalan Sultan Ismail		37.6	83.0	78.9	31.0	27.0	4.0	D/S(L)	Foot Path w/pier
K- 26	Jalan Tun Razak	(2 Lanes)	31.7	63.7/36.8	81.7	32,6	28.4	4.2	U/S (S) , D/S (S)	2 * Pipe w/pier, Pipe Truss
K- 26	Jalan Damai	(broken)							U/S (S)	Pipe
K- 27	Jalan Jelatek		44.0	100.0	127.3	37.2	32.5	4.7	U/S(S),D/S(S)	Pipe Truss w/pier, Pipe w/pier
K- 28	Near Sterling Drug		27.1	45.5	69.4	45.8	42,9	2.9	D/S(L)	Pipe w/pier
K- 29	Near Taman Seri Keramat Tenga	ĥ	32.0	51,5	84.1	51,3	47.4	3,9	-	-
κ– 30	Jalan Hulu Klang Zoo		34.2	60.0	41.6	53.1	51.0	2.1	U/S (L)	Pipe w/pier, Pipe, etc.
K- 31	Jalan Malawati Lima		31,5	55.5	68.2	57,8	54.2	3.6	-	-
G- 1	Sultan Hishamuddin		30.5	102.0	122,5	29.8	25.7	4.1	D/S (S)	Pipe
G- 2	Jalan Parlimen		35.7	128,0	164.9	30.9	25.2	5.7	U/S (S)	Pipe Truss w/pier
G- 3	Jalan Sultan Ismail	(flyover)	44.5	154,5	179.1	30.8	26.7	4.1	-	-
G- 4	(Jalan Putra) Near PWTC		32.0	98.5	88,4	30,8	27.8	3.0	D/S(L)	Foot Path w/pier
G- 5	Jalan Ipoh	(2 Lanes)	31,8	65,0	65.0	31.2	27.9	3.3	D/S(S)	Pipe w/pier
G- 6	Jalan Tun Razak	(2 Lanes)	30.8	53.0	159.4	31.6	28,6	3,0	D/S (S)	Pipe Truss
G 7	Near Sentul Flats off Jalan B	ahang	36.9	137.0	148.9	36.4	33.2	3,2	-	-
G- 8	Jalan Kampong Puan Sabarang		18.9	57.5	117.5	38.1	34,0	4.1	-	-
G- 9	Jalan Chubadak Dalam		21.9	60,5	41.3	39.9	38,6	1.3	D/S (U)	Pipe Truss
G-10	Foot Bridge	(2 Lanes)	17.0	25.5	48.8	43.9	41.6	2.3	-	-
G- 11	Jalan Batu Cave		19.0	51.5	40,5	53.6	50,6	3.0	U/S(S),D/S(S)	Pipe Truss, Pipe
G- 12	Karak Highway	(flyover)	42.5	191,0	35.2	56.8	55,3	1.5	D/S(L)	Foot Path
в- 1	Jalan Tun Ismail		49.0	141.5	271.1	31.8	28,2	3.6	V/S (S) , D/S (S)	Pipe, Pipe
B~ 2	Jalan Kolem Air		34.4	52,5	75,3	32.0	28,8	3.2	-	
B- 3	2.5 Mile Jalan Ipoh Railway		22.2	75.5	67,2	32,6	29,0	3.6	D/S(L)	Pipe
B- 4	Jalan Selvadurai		25.8	44.0	49.1	33,8	30,7	3,1	-	.
B- 5	Jalan Segambut		24.0	50.0	25.5	34.3	32,5	1.8	D/S(L)	Pipe w/pier
В~ б	Jalan Cenderuh		17.0	30.0	36.0	38.3	34.4	3.9		-
в- 7	4.25 Mile off Jalan Ipoh		22.2	20.0	40,9	38.4	35;5	2,9	-	.
B~ 8	4.5 Mile Jalan Ipoh		29.9	60.5	24.B	39,8	37.3	2,5	U/S (S) , D/S (L)	Pipe, Pipe w/pier
B- 9	4.5 Mile Jalan Ipoh Railway		31.5	84.0	30.3	40.1	38.0	2.1	-	. –
B- 10	7.5 Mile Jalan Ipoh Railway		21.0	48,5	50,6	49.5	47,6	1.9	-	-
B- 11	7.5 Mile Jalan Ipoh	(flyover)	50.5	299.0	50.6	49.8	48.0	1.8	-	-
B- 12	Jalan Batu Cave		22.3	56.0	50.6	50.7	48.5	2.2	U/S(S),D/S(L)	Pipe w/pier, Pipe w/pier & Pipe Truss
B~ 13	Kg Nakhoda Bridge off Jalan S	Sg Tua	27.9	96.3	131.0	63.5	58,4	5,1	-	-
B- 14	Kg Nakhoda Bridge off Jalan S	Sugai Tua	22.4	35.0	64.6	65,0	61.9	3.1	u/s(u), b/s(u)	Pipe Truss, Pipe Truss
B- 15	Near Dam Site		55.2	179,5	167.4	70.0	68.0	2.0	- -	

•

U/S means Up Stream.
D/S means Down Stream.
(L) means Lower level than the location of the bridge.
(U) means Upper level than the location of the bridge.

	······································							·		· · ·
Ref. No.	Bridge Name		Span (m)	Clea- rance (m)	Width Reduct. Ratio (%)	Area Reduct. Ratio (%)	Max.W.H. / Pier Width	Shape of Pier	Actual Damage occured	Remarks
							•			
K- 17	Jalan Sulaiman		15	0.9	6	86	4.6	Square		
K- 18	Jalan Kinabalu	(flyover)	18	3.3	3	>100	12.6	Square		
K- 19	Jalan Cheng Lock		17	-0.5	4	81	6.1	Square		
K- 20	Dayabumi Foot Bypass		12	0.2	4.	100	10.3	Circle		River Bend Portion
K- 21	Leboh Pasar		-	-0.1	-	83	· -	-		
K- 22	Jalan Tun Perak	(2 Lanes)	16/16	-0.7	2/6	36/60	5.9/2.3	Circle		Structure under Bridge
K- 23	Jalan Munshi Abdullan	(2 Lanes)	17/-	-0.4	7/-	75/91	6.7/-	Circle		
K- 24	Jalan Dang Wangi	•		-0.4	-	93	-	-		River Bend Portion
K- 25	Jalan Sultan Ismail		12	1.0	2	>100	10.0	Circle		
K- 26	Jalan Tun Razak	(2 Lanes)	10/10	-0.4	б	78/45	4.2	Cir/Squ	ı V	River Bend Portion
K- 26	Jalan Damai	(broken)							1	
K- 27	Jalan Jelatek		14	0.5	3	79	7.9	Circle		
K- 28	Near Sterling Drug		9	-0.4	4	66	4.8	Circle		River Bend Portion
K- 29	Near Taman Seri Keramat Tend	qah	10	-0.8	5	61	4.9	Circle		
K- 30	Jalan Hulu Klang Zoo	-	11	1.1	5	>100	2.6	Circle		
K- 31	Jalan Melawati Lima		-	-0.9	. –	81	-			
c- 1	Sultan Hishamuddin		15	0.2	7	83	4.1	Oval		Abutment is in River
6-2	Jalan Parlimen		11	-0.3	3	78	9.5	Oval		Abutment is in River
C- 3	Jalan Sultan Temail	(f)vover)	10	n 8	5	96	3.7	Circle		Indemote 15 at the ver
C- 1	(Ja)an Butra) Moar DWTC	(IIJOVGI)	10	3.2	Б Б	5100	3.0	Circle		
G= 4 C= 5	Jalan Toob	(2 Lanes)	10	07	4	100	55	Circle		Sediment
с_ с	Jalan Tup Dagak	(2 Lanes)	10	0.7	5	33	<u> </u>	Circle		Sodiment
c- 7	Very Coptul Flate off Jalan	(Z Lanes)	10	1 6	7	02	2.5	Oual		There is a Drop
C- 0	Talan Varoung Duah Saharang	Fallang	12	1.0 1.0	, _	22. A Q	2.0	- Uvar		THEFE IS I DIOD
0-0	Jalan Kampung Puan Sabarang			2.0	-	100	1 2	01		
G- 3 c 10	Jarah Chubadak Daram	10 1	c'	2.0	2	2100	2.07	É en la ma		
6-10	FOOL Bridge	(Z Lanes)	0/-	-0.1	4/-	52	2.0/-	square		There is a Dree
0-11	Jalan Bacu Cave	(6)	14	1.0	6	>100 -	2.7	Square		THELE IS & DLOD
G- 12	Karak Highway	(Ilýover)	14	1.2	D	>100	1.2	circie		
B- 1	Jalan Tun Ismail		16	0.3	4	52	3.6	Square		
B- 2	Jalan Kolam Air		11	0.0	4	70	4.6	Square		Sediment
B- 3	2.5 Mile Jalan Ipoh Railway		-	2.1	-	>100	-			River Bend Fortion
B- 4	Jalan Selvadurai		8	0.0	3	90	7.7	Square		Erosion
B- 5	Jalan Segambut		4	1.0	10	>100	2.9	Circle		River Bend Portion
B- 6	Jalan Cenderuh		8.	-0.1	2	83	9.7	Circle		River Bend Portion
B- 7	4.25 Mile off Jalan Ipoh		11	-0.4	1	49	9.7	Square		River Bend Portion
B-8	4.5 Mile Jalan Ipoh		7	1.6	3	>100	8.3	Square		River Bend Portion
B- 9	4.5 Mile Jalan Ipoh Railway			2.3		>100	-	_		
B- 10	7.5 Mile Jalan Ipoh Railway			1.4	-	96	-			
B- 11	7.5 Mile Jalan Ipoh	(flyover)	16	6.4	4	>100	2.0	Square		
8-12	Jalan Batu Cave		11	1.2	7	>100	1.5	Ova1		
B 13	Kg Nakhoda Bridge off Jalan	Sor Tua	_	1.0	-	74				Abutment is in River
B- 14	Kg Nakhoda Bridge off Jalan	Sugai Tua	_	-0.9	-	54		-		
B- 15	Near Dam Site		-	2.5	-	>100	-	-		

х.

Ref. No.	Bridge Name		Span	Clea- rance	Width Reduct. Ratio	Area Reduct. Ratio	Actual Damage occured	Total Estimate	Max.W.H. / Pier Width	Shape of Pier	Possibi- lity of Scouring	Pipe etc.
K- 17 K- 18 K- 19 K- 21 K- 22 K- 23 K- 23 K- 23 K- 23 K- 23 K- 26 K- 26 K- 26 K- 27 K- 28 K- 29 K- 30 K- 31	Jalan Sulaiman Jalan Kinabalu (fly Jalan Cheng Lock Dayabumi Foot Bypass Leboh Pasar Jalan Tun Perak (2 L Jalan Munshi Abdullah (2 L Jalan Dang Wangi Jalan Sultan Ismail Jalan Sultan Ismail Jalan Tun Razak (2 L Jalan Damai (br Jalan Jelatek Near Sterling Drug Near Taman Seri Keramat Tengah Jalan Hulu Klang Zoo Jalan Melawati Lima	over) anes) anes) anes) oken)	А А А А А А А В В С А С В В А	A A C A B C A B C A B C A C C C C C C C	А А А А В/А А А А А А А А А А А	A A A C/B B/A A B/C C B B B B A A	Л А А А А А А С С А А А А А А А А	A B A C/B B/A A B/C C A B B B A B B	A C B C A B/A A C A C B A A A A A A A	C C B B B B B B C B B B B B A	B C C A B B A C B B B B B B A	C A A A C C B B C B B C A C A C A
G-1 G-2 G-3 G-4 G-5 G-6 G-7 G-8 G-9 G-10 G-11 G-12	Sultan Hishamuddin Jalan Parlimen Jalan Sultan Ismail (fly (Jalan Putra) Near PWTC Jalan Ipoh (2 L Jalan Tun Razak (2 L Near Sentul Flats off Jalan Pahan Jalan Kampung Puah Sabarang Jalan Chubadak Dalam Foot Bridge (2 L Jalan Batu Cave Karak Highway (fly	rover) anes) anes) g anes) over)	A B B B A C C/A C A	A B A A B A B A B A A A A	А А А А А В А В А А А А	A B A A C A C A B A A	А А А А А А А А А А А А	А В А А В В В В В В В В А	А В А В А А А А А А А А	A B B A A C C B	А В В В В А А А В В В В	Л В А С В А А А А А А С
B- 1 B- 2 B- 3 B- 4 B- 5 B- 6 B- 7 B- 8 B- 9 B- 10 B- 11 B- 12 B- 13 B- 14 B- 15	Jalan Tun Ismail Jalan Kolam Air 2.5 Mile Jalan Ipoh Railway Jalan Selvadurai Jalan Segambut Jalan Cenderuh 4.25 Mile off Jalan Ipoh 4.5 Mile Jalan Ipoh 4.5 Mile Jalan Ipoh Railway 7.5 Mile Jalan Ipoh Railway 7.5 Mile Jalan Ipoh (fly Jalan Batu Cave Kg Nakhoda Bridge off Jalan Sg Tua Kg Nakhoda Bridge off Jalan Sugai Near Dam Site	over) a Tua	C B A C C C B C A A A B A A A A A	A B A B A A A A A C A	А А А С А А А А А А А А А А А А А	B B A A A C A A A A B B A	А А А А А А А А А А А А А А А А А А А	B B C B B B A A B A B A B A	A A B A B B A A A A A A A	C C A C B B C C A A C A A A A	B B C B B C C A A B A A A A A	A C C A C A C A A C A A A A A

Rank (A) means that the brigde has no problem.Rank (B) means that the bridge has some problem.Rank (C) means that the bridge has severe problem.

E - 20

•

	·····	
Catchment Area	No. of Pond	Area (m2)
Sungai Jinjang (J)	10	1,111,000
Sungai Keroh (KR)	6	288,000
Sungai Kamusing (KS)	7	417,000
Sungai Batu (B)	8	1,909,000
Sungai Gombak (G)	5	442,000
Sungai Belongkong	1	70,000
Sungai Bunus	1	65,000
Sungai Ampang	9	400,000
Sungai Kerayong	26	777,000
Sungai Kuyoh	9	613,000
Sungai Klang		
a) upstream	3	49,000
b) downstream	6	339,000
Total	91	6,480,000

(Located within Area the Minimum Approach of in is 3.5 km Upstream of Puchong Drop)

(Existing Park Ponds)

Park	Area (m2)
Taman Tasik Perdana	18,750
Taman Tasik Ampang	31,250
Taman Tasik Titiwangsa	87,500
Total	137,400

A PPENDIX F: FLOOD RUN- OFF AND FLOODING MECHANISM

TABLE OF CONTENTS

				PAGE
1.	FLOOD	RUN-OFF	ANALYSIS	F-1
	1.1	General	Procedure	F-1
	1.2	Methodo	logy	F-2
		1.2.1	Simulation Model	F-2
		1.2.2	Rainfall Analysis	F-4
		1.2.3	Hydraulic Calculation of the Flooding Area	F-5
	1.3	Result	of Study	F-7
		1.3.1	Basin Division and River System Model	F-7
		1.3.2	Run-off Coefficient	F-7
		1.3.3	Base Flow	F-7
		1.3.4	Rainfall Analysis	F-7
		1.3.5	Calibration of the Model	F-9
		1.3.6	Probable Flood Discharge	F-10
		1.3.7	Design Discharge Distribution	F-10
2.	INUND	ATION AN	ALYSIS	F-11
	2.1	Existin	g River Discharge Capacity	F-11
	2.2	Inundat	ion Analysis	F-12

.

LIST OF TABLES

TABLE NO.	LIST	PAGE
F-1	Run-off Coefficient by DID Standard	F-14
F-2	Run-off Coefficient for the Sub-basin	F-14
F-3	Bar Chart of Available Record	F-15
F4	Recorded Hourly Rainfall Condition in Past Floods	F-16
F-5	Regression and Correlation for 30 Stations (1/3) ~ (3/3)	F-17~19
F-6	Annual Maximum Areal Rainfall	F-20
F-7	Probable Rainfall under the Various Methods	F-21
F-8	Probable Areal Rainfall	F-22

LIST OF FIGURES

•

,

FIGURE NO.	LIST	PAGE
F-1	General Flow Chart of Flood Analysis	F-23
F-2	River System Model for Flood Analysis	F-24
F-3	Thiessen Polygon Network	F-25
F'4	Frequency Curve of 2 Days Rainfall	F-26
F-5	Hourly Mass Curve in 1971 and 1972 Floods	F-27
F-6	Hourly Hyetograph in 1971 and 1972 Floods	F-28
F-7	Observed and Simulated Flood Hydrograph	F-29
F8	Probable Flood Discharge Distribution with Existing 2 Dams	F-30
F-9	Probable Flood Hydrograph at Sulaiman Bridge	F-31
F-10	Design Flood Discharge Distribution	F-32
F-11	Flood Risk Map for a 100 Year Return Period	F-33
F-12	Predicted Inundation Area and Depth (1)~(12)	F-34~45

.

APPENDIX F. FLOOD RUN-OFF AND FLOODING MECHANISM

1. FLOOD RUN-OFF ANALYSIS

1.1 General Procedure

In the Klang River basin, there exists Klang Gates Dam and Batu Dam. Besides, the river improvement works along the reach of Klang River, Batu River and Gombak River are on-going at present.

With due consideration of above conditions, flood run-off analysis aims at the following objects:

- to investigate the retardation effect for flood peak discharge by existing dams, and
- to formulate probable flood discharge distribution under present condition and with flood control works proposed by this Study.

For establishing the above objectives, the following study on flood run-off analysis is needed so as to simulate flood hydrograph at major site in the Basin.

- modelling of the river basin and channel,
- construction of a river system model in which the existing dams and proposed flood mitigation works are linked,
- rainfall analysis for determining the design rainfall duration, rainfall amount and pattern,
- run-off calculation for the present river condition and with proposed flood control works using results of rainfall analysis, and
- prediction of inundated area and depth in the target year.

Fig. F-1 shows the general procedures of flood run-off analysis.

1.2 Methodology

1.2.1 Simulation Model

As mentioned earlier, it is required to calculate the flood hydrograph in order to evaluate the effects for flood mitigation works.

In this Study, the Storage Function Method proposed by Dr. Kimura will be applied for the conversion of areal rainfall to flood hydrograph.

(1) Basic Equation

If flood run-off is assumed to be governed by Manning's formula, the storage amount (S_1) of a river basin or a river channel is expressed as an exponential function of run-off discharge (Q_1) .

$$S_1 = K^* Q_1^P$$

where, K, P : Constants for a basin or a channel

This equation of motion is combined with the following continuous equation for a river basin or a river channel.

a) For Basin

 $1/3.6 \text{ f*R}_{ave} \text{ A} - Q_1 = d/dt S_1$

where,	f	:	Inflow coefficient
	Rave	:	Average rainfall in the basin (mm/hr)
	А	:	Catchment area at the calculated point (km^2)
	T_1	:	Lag time (hr)
	Q1 (t)	:	$Q(t+T_1)$ (m ³ /sec)

Constants K, P and lag-time in the equation are initially estimated by means of the following empirical formulas which

are described by average river bed slope in sub-basin. These are then calibrated using the flood records.

$$K = 118.84 \cdot i^{0.3}$$
$$P = 0.175 \cdot i^{-0.235}$$

where, i : Average river bed slope

In the study, lag-time in sub-basin is roughly estimated by following empirical formula.

 $TL = 0.047.L - 0.56 \qquad (L > 11.9 \text{ km})$ $TL = 0 \qquad (L < 11.9 \text{ km})$

where, TL : Basin lag-time (hour) L : River length (km)

b) For River Channel

$$\sum_{j=1}^{n} f_j I_j - QI = d/dt S_1$$

where, I_j : Inflow discharge into the channel from the basin, tributaries and/or upper boundary of the channel (m³)

- fi : Inflow coefficient
- T_1 : Lag time (hr)

 $Q_1(t) = Q(t+T_1) (m^3/sec)$

Discharge at lower boundary of channel after lag time

S1 : Apparent storage in channel

(2) Run-off Coefficient

Run-off coefficients from the drainage area is referred to DID Standard.

The coefficients used for various types of land use are listed in Table F-1.

(3) Base Flow

Base flow is defined as the discharge just before flooding occurs, and that of probable flood is determined from mean monthly discharge for the wet season.

1.2.2 Rainfall Analysis

(1) Areal Rainfall

Areal rainfall for various duration is estimated by means of Thiessen's method. However, the daily records in the Basin are almost available after 1961. But for the estimation of the areal probable rainfall, it is required to use annual maximum areal rainfall for more than 20 years. Therefore, the correlation analysis is carried out for grasping the relation among the stations, and for filling up the missing data in the Basin. Results of this correlation analysis is applied for estimation of areal rainfall after 1961.

(2) Probable Areal Rainfall

Probable areal rainfall is estimated by means of log-normal method, Iwai method, Ishihara-Takase method and Gumbel method. The most suitable method among the above is applied for the estimation of the probable rainfall comparing the results with the plotting position.

(3) Duration Time and Pattern of Probable Rainfall

Design duration time and pattern of probable rainfall is decided on the basis of the observed rainfall duration time and patterns.

1.2.3 Hydraulic Calculation of the Flooding Area

The inundation area-depth is worked out by hydraulic flooding calculation.

Hydraulic flooding calculation in the Klang River basin is composed of Ida method and modified storage function of the channel.

(1) Ida Method

For numerically calculating the water level of sub-critical flow by non-uniform calculations, the following standard successive calculating method should be used for compound cross sections:

$$\begin{cases} H_2 + \frac{D_2}{2g} \left(\frac{Q_2}{A_2}\right)^2 \\ he = \frac{1}{2} \left\{ \frac{N_1^2 Q_1^2}{A_1^2 R_1^{4/3}} + \frac{N_2^2 Q_2^2}{A_2^2 R_2^{4/3}} \right\} \Delta x \end{cases}$$

where, Di : Energy connection coefficient Ri : Hydraulic radius

Qi : Discharge

Hi : Water level

Ni : Manning's coefficient of roughness

g : Gravity acceleration

If the currents of columnar elements are not affected by each other as shown in the figure below, Ida derived the above formula on the assumption that the energy correction coefficient is constant through the entire section and both the water level and water surface slope are the same throughout the whole width of the section. In this case, D, N and R can be given as follows:

$$D = \alpha \frac{A^2 \int_0^B \frac{h^3}{n^3} d\xi}{\left(\int_0^B \frac{h}{n} \frac{5/3}{n} d\xi\right)^3}$$
$$N = \frac{\int_0^B h^{5/3} d\xi}{\int_0^B \frac{h^{5/3}}{n} d\xi}$$
$$R = \left(\frac{1}{A} \int_0^B h^{5/3} d\xi\right)^{3/2}$$

(2) Modified Storage Function

Inflow discharge into flooding plain should be retarded by the storage of the plain. Therefore, the storage of the flooding plain is expressed as an exponential function of the outflow discharge (Q) in the modified Storage Function Model.

$$S = K \times Q^P$$

where, K,P : Constants

Q : Outflow discharge in flooding plain

The constants of K,P should be estimated by least square method, based on the relationship among the water level, discharge and storage volume.

1.3 Result of Study

1.3.1 Basin Division and River System Model

Fig. F-2 shows the river system model for flood analysis. The river system model of the Klang River is modelled by 29 sub-basins, 21 river channels, and the existing Klang Gates Dam and Batu Dam. In addition, the proposed retention pond, retarding basin and diversion channel are linked to the river system model.

Target points are set at Sulaiman bridge and river mouth of the Klang River.

1.3.2 Run-off Coefficient

- Flood run-off coefficient

Preliminary run-off coefficient for the sub-basins is listed in Table F-2, based on run-off coefficient under various land use condition of DID standard. Maximum limit of rainfall to saturate the ground surface, is set at about 100 mm through the calibration.

1.3.3 Base Flow

Base flow for probable flood discharge is assumed from the average monthly discharge at Batu Sentul gauging station. The specific discharge of $0.05 \text{ m}^3/\text{sec/km}^2$, which corresponds to the average discharge, is distributed into sub-basins.

1.3.4 Rainfall Analysis

(1) Probable Areal Rainfall

For the estimation of probable areal rainfall, stations should be selected, based on recording period and availability of daily rainfall data (Table F-3).

A Thiessen's polygon network based on the stations is shown in Fig. F-3. At some stations, the available daily rainfall records are insufficient from 1961 to 1985. A regression and correlation analysis for 30 stations was carried out to fill up for the value of the missing data. The result of analysis is listed in Table F-4 and then, the annual maximum areal rainfall, that listed in Table F-5, can be obtained using conversion factor of Thiessen's polygon method.

Based on the annual maximum values, frequency analysis was done as listed in Table F-6. The probable areal rainfall (Table F-7) for three target areas is estimated by Gumbel method because the Gumbel method is widely applied for the water resources development projects in Malaysia. Frequency curve of annual maximum are plotted in Fig. F-4.

(2) Storm Pattern

Temporal distribution at annual maximum rainstorms in Peninsular Malaysia has been estimated for selected durations namely 1/2, 3, 6, 12, 24 and 72 hours in Hydrological Procedure 1.

Based on the data from July 1970 to June 1979, temporal distribution in the West Coast Region are illustrated as below.

The following could be seen from the above distribution.

i) 70 percent of 24 hours amount is concentrated in 6 hours.ii) 50 percent of 72 hours amount is concentrated in 24 hours.

Table lists the date of floods and availability of recording at the stations from 1971 to 1983.

Based on hourly mass curves and hyetograph of actual storm, rainstorm should be divided into 2 types;

- Monsoon depression type with large amount of rainfall, low intensity and long duration (2-3 days) as caused the 1971 flood.
- ii) Flash type with high intensity (30 mm/hr) of short duration (3-4 hrs), and such local distributions as caused flash floods and 1972 flood.

Fig. F-5, F-6 indicate the hourly mass curve and hyetograph of some stations in 1971 flood and 1972 flood.

1.3.5 Calibration of the Model

To calibrate the constant K and P used in the Model, the hydrographs were selected initially with the following considerations:

- Hourly rainfall available from 1970 to 1983
- Large magnitude of floods at Stations
- Floods with annual maximum occurrence at Stations

Initial selected hydrographs are listed below:

1971	Jan.	1	-	5
1972	Nov.	15		26
1973	Dec.	7	-	9
1974	Jun.	22		24
1975	Dec.	7	_	9
1977	Oct.	6		8
1.980	July	25		29
1981	Мау	24	-	26
1982	Apr.	2	-	May 1
1983	Jun.	6	_	14

Calibration was done through trial and error in comparison between the calculated flood hydrographs and the hydrographs observed, in Batu River at Sentul Railway Bridge and Gombak River at Circular Road Bridge in Jun. 1974, May 1981, and Apr. 1982. (Fig. F-7)

Finally, constants of sub-basins are taken up by multiplying 0.6 times to the initial values estimated by the empirical formula.

1.3.6 Probable Flood Discharge

Probable flood hydrograph at the target point and the other point are converted from the probable areal rainfall using the model.

The probable floods after Klang Gates and Batu Dams' completion under 2005 land use condition and the completion of river improvement works (2005 years' condition) are studied, resulting in Fig. F-8, F-9.

In addition, flood routing calculation with 2005 year's condition are studied under the following mitigation plan.

- Klang Gates Dam, Batu Dam, a retention pond, a diversion channel and a natural retarding basin.
- ii) Klang Gates Dam, Batu Dam, Gombak Dam, a retention pond and a natural retarding basin.

1.3.7 Design Discharge Distribution

Based on the alternative study, the design discharge distribution was determined as following conditions.

- i) 2005 year for the target
- ii) After regulation of Klang Gates and Batu Dams
- iii) After the completion of the improvement works
- iv) With a diversion, a retention pond and a natural retarding basin

Fig. F-10 shows the design flood discharge distribution formulated by the Master Plan Study.

2. INUNDATION ANALYSIS

Inundation analysis was carried out to identify flood areas and inundation depth (or flood water level) under the existing river conditions for the estimation of annual flood damage potential.

2.1 Existing River Discharge Capacity

Bankful discharge capacity of the Klang, Gombak and Batu Rivers were calculated by non-uniform and uniform flow computation methods under the following conditions, for the 2 cases of with and without retention pond and diversion channel.

- Assuming the existing river conditions with a Mannings roughness coefficient of 0.03.
- Assuming the future (2005) conditions for catchment area land use with an equivalent Mannings coefficient of 0.1

Flood run-offs for return period of 10-year, 30-year, 50-year, 80year and 100-year were computed by the Storage Function method by taking into account flood water retention in the catchment and water storage in the Klang Gates Dam and Batu Dam.

As a result of the above analysis the existing river discharge capacities were evaluated as follows:

- Improved reaches: Approx. 25-year frequency floods
- Non-improved reaches: 5~10-year frequency floods

The detailed computation results are presented in Data Book.

2.2 Inundation Analysis

Inundation analysis was carried out for 6 number frequency floods, ranging from 10 year to 200 year (10, 30, 50, 80, 100, 200 year frequency floods), under the following conditions that remained unchanged:

- River under the existing conditions
- Catchment area under the future (2005) land use conditions
- Without considering the proposed retention pond and diversion channel.
- Considering the existing two dams

The analysis of the results are shown in Fig. F-11.

REFERENCE

- 1. KUALA LUMPUR FLOOD MITIGATION PROJECT, HYDROLOGY APPENDIX, Bureau of Reclamation United States, Department of the Interior, DID, Ministry of Agriculture, Malaysia, 1980
- 2. HYDROLOGICAL PROCEDURE NO. 11, DESIGN FLOOD HYDROGRAPH ESTIMATION FOR RURAL CATCHMENTS IN PENINSULAR MALAYSIA, Drainage and Irrigation Division, Ministry of Agriculture, Malaysia, 1980
- 3. HYDROLOGICAL PROCEDURE NO. 16, FLOOD ESTIMATION FOR URBAN AREAS IN PENINSULAR MALAYSIA, Ministry of Agriculture, Malaysia, 1980
- 4. KUALA LUMPUR FLOOD MITIGATION PROJECT RIVER IMPROVEMENT WORKS, RIVER WORKS MASTER PLAN 1980 VOL. I REPORT AND EXHIBITS, Project Engineer Office, Flood Mitigation Planning, Kuala Lumpur, Drainage & Irrigation Department, Ministry of Agriculture, Malaysia, 1980
- 5. KUALA LUMPUR FLOOD MITIGATION PROJECT RIVER IMPROVEMENT WORKS, RIVER WORKS MASTER PLAN 1980 VOL. II APPENDICES, Project Engineer Office, Flood Mitigation Planning, Kuala Lumpur, Drainage & Irrigation Department, Ministry of Agriculture, Malaysia, 1980
- 6. KUALA LUMPUR FLOOD MITIGATION PROJECT RIVER IMPROVEMENT WORKS, RIVER WORKS MASTER PLAN 1980 VOL: III HYDRAULIC DESIGN CALCULATION, Project Engineer Office, Flood Mitigation Planning, Kuala Lumpur, Drainage & Irrigation Department, Ministry of Agriculture, Malaysia, 1980

Type of Drainage Area	Coefficient (C)
Business Areas Residential Areas Light Industrial Areas Unimproved Areas Streets Lawns: Sandy soil, flat 2% Sandy soil, av. 2 - 7% Sandy soil, steep 7% Heavy soil, av. 2 - 7% Heavy soil, av. 2 - 7%	$\begin{array}{r} 0.70 - 0.95 \\ 0.25 - 0.50 \\ 0.50 - 0.80 \\ 0.10 - 0.30 \\ 0.70 - 0.95 \\ \end{array}$ $\begin{array}{r} 0.05 - 0.10 \\ 0.10 - 0.15 \\ 0.15 - 0.20 \\ 0.13 - 0.17 \\ 0.18 - 0.22 \\ 0.25 - 0.35 \end{array}$

Hydrological Procedure No. 16 Flood Estimation for Urban Areas in Peninsular Malaysia 1980 Ministry of Agriculture

Table F-2

RUN-OFF COEFFICIENT FOR THE SUB-BASIN

No.	C,A	Run-of	f Coe.	No.	C.A	Run-off	Coe.
	(km2)	1985	2005		(km2)	1985	2005
1 2 3 4 5 6 7 8 9 10 11 12 13	76.7 39.8 37.3 17.7 17.5 88.1 6.8 27.1 50.2 16.0 2.5 28.5 6.5	0.30 0.36 0.53 0.48 0.30 0.35 0.50 0.30 0.34 0.46 0.39 0.60	$\begin{array}{c} 0.30\\ 0.41\\ 0.39\\ 0.61\\ 0.56\\ 0.30\\ 0.49\\ 0.51\\ 0.32\\ 0.49\\ 0.54\\ 0.42\\ 0.63\\ 0.40\end{array}$	16 17 18 19 20 21 22 23 24 25 26 27 28	30.9 28.1 41.0 10.3 75.0 9.3 25.1 34.1 36.1 109.8 57.3 147.6 176.2	$\begin{array}{c} 0.47 \\ 0.41 \\ 0.52 \\ 0.49 \\ 0.36 \\ 0.41 \\ 0.50 \\ 0.35 \\ 0.30 \\ 0.30 \\ 0.31 \\ 0.33 \\ 0.35 \\ 0.35 \\ 0.37 \end{array}$	0.50 0.47 0.54 0.51 0.44 0.59 0.52 0.37 0.32 0.30 0.36 0.36 0.36 0.42
1415	38.5 5.0	0.40 0.59	0.46 0.52	29	49.4	0.37	0.38
· · · · · ·	Note : Upp Mid Low	er Basin dle Basin er Basin	(No. 1 ~ (No.16 ~ (No.24 ~	15) 23) 29)	458.2 km2 253.8 km2 576.4 km2	2-96-12-110,	

BAR CHART OF AVAILABLE RECORD Table F-3

F ~ 15

	3146002	I		l	I	I	I	1		1	I	I	I	0	0	0	0	0	0	0	0	0	0	0	0	0
	1009TÞE	l	1 1	I	1	ŀ	0	00	00	0	0	0	0	T	I	I	I	t	I	I	۱	I	I	I	I	I
able	3318156	00	- 0	I	0	L	0	I		ł	I	I	I	I	I	I	1	I	I	1	I	I	I	1	ł	1
/ail:	₽00८788	I	1 1	I	ł	I	0	00	00	0	0	0	0	0	0	0	0	0	0	0	0	0	o	0	0	0
: A1	3377002	Т	I I	ł	ł	I	0	00	0 0	I	I	I	I	I	1	1	ł	I	1	I	i	I	I	I	1	1
0	2377 <i>1</i> 067	10	00	0	0	0	0	1		I	I	I	I	I	I	I	ł	1	ł	l	I	I	I	ł	I	1
	\$00712£	ł	1 1	I	ł	I.	I	I	I I	I	I	ł	I	1	I	0	0	0	0	0	0	0	0	0	0	0
	3277003	Ι	II	I	ł	0	0	00	0 0	0	0	0	0	0	0	0	0	0	0	I	ł	0	0	0	Ì	0
	3217002	L	I F	0	0	0	0	00	00	0	0	0	0	0	0	Ö	0	0	0	0	0	0	0	0	0	0
	TOOLTZE	I	I I	I	0	0	0 (00	00	0	0	0	0	0	0	0	0	0	0	0	I	0	I	0	I	0
SODS	3576003	ł	1 1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	O	0	0	I	0	0	0
L FL(357600S	I	11	I	I	I	0	00	>	I	I	I	I	I	I	I	1	1	I	1	I	t	1	I	ł	I
PAST	3576007	00	0 0	0	0	j -	0	00	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	ī	0
NI I	2018115	Ì¢	00	I	0	l	0	1 <	00	0	0	0	0	0	0	0	I	0	0	0	0	0	0	0	0	0
NOLT	0 <i>L</i> 0 <i>L</i> TTE	00	- 0	0	0	0	0	0 0	00	0	0	0	0	0	I	0	0	0	0	0	0	0	0	0	0	0
IGNO	τοολττε	I	I I	I	1	i -	0	0 0	> 1	I	ı	i	1	I	I	I	I	1	I	t	ł	I	I	I	I	L
C TI	9009TTE	I	I I	ı	T	I	I	1	I I	0	0	0	0	0	0	0	0	I	0	0	0	0	0	0	0	0
INFA	5009TTE	I	I I	I	L	I	I	1	0	0	0	0	0	0	0	o	0	0	0	0	I	0	0	0	0	0
RA.	₽009TTE	I	11	I	I	1	ı	1 0	0 0	0	0	0	0	0	0	0	0	I	0	0	0	0	0	0	0	0
RLY	2009116	Ι	I	0	0	0	0	1	0	0	0	0	I	ŀ	0	0	0	I	ł.	I	I	I	I	i	I	I
DOH 1	700970E	I	L I	1	I	I	I	ſ	10	0	0	0	0	0	0	0	0	0	0	0	0	0	0	ī	0	I
RDED	S0T <i>L</i> T6Z	00)	0	0	0	0	I	I I	I	I	1	I	I	I	I	I	I	ł	I	I	I	I	I	I	I
RECO	T00 <i>L</i> T6Z	I	1 1	ł	I	I	,I	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	I	I	I
	. /	17	2 2	73	73	74	44	10 10	0 9	17		78	78	78	8/	6/	õ	õ	õ	ŝ	31	ц	딦	32	32	ñ
	ON P	z:	> >	с С	с U	z	υ	> (י בי בי	Э	н	י מ	К	, EH	>	z	ж Ж	ж Ж	z	÷	ж Ж	ж Ж	ж 4	ж ж	ິ ບ	3 N
	VLIO	E,	2 Q	AP	Ë	B	ЪЕ	Ю И И		MA	8	MA	AP	8	NO	B	ΑF	ЧŅ	B	0	AP	Я	S. Э́С	MA	Ē	р С
	STA		77	14	ማ	26	-1 1	ດ ເ ເ	242	Ч	ст Т	23	22	22	18	12	10	17	00	17	10	27	15	r~	۱ -۰۱	11
4		। न (I I N N	၊ က	၊ က	ן ק	। स	। ഗപ	ו היס			ו מ	ן 20	၊ ထ	۱ ۵	I თ	1	ו 0	і О	 0	1 	ן רו	 	ו 2	1	၊ က
ਸ਼ ਜੁ		1	i	7		1 7.	, ,	с- ī	- [- -			5	2	ñ,	7	- 1	ž	Š	1 8	õ Š	ω 	ω.	ω.	8	ŝ	I 8.
Tab		JAN	NON NON	APR	DEC	ЯĞ	DEC	NON C	APR	APR	1 O C I	MAR	APR	OCT	NON	B	AFR	МАУ	ND5	OCT	APR	MAY	SEP	APR	NON	NUC
	DATE	ຕ ແ ເ	53 F2	10	ဖ	21	თ '	o c	5 V 7 V	23	4	16	14	18	14	ഗ	ە	12	m	12	9	22	01	27	29	ഹ
	-																									

F - 16

. .

Base	<u></u>	0	rder of	High H	legress:	lon	
Station 1) 2914120	1) 3014083	2) 3014084	3) 3014089	4) 2915116	5) 3015082	6) 3015078	7) 8) 3014081 3115053
Reg.Coe Coe. A Coe. B Sump.NN	.866 ,905 5.875 297.	.735 .983 3.282 284.	.724 .992 -4.317 - 288.	.690 1.049 17.431 299.	.680 .965 -15,516 286,	.654 .933 -13.174 299.	.626 .616 .908 .917 1.288 -4.381 290. 300.
2) 2915116	2914120	3015078	3115053	3014083	3115079	3014084	3015082 3016075
Reg.Coe Coe.A Coe.B Sump.NN	690 953 16.614 299.	.667 .887 4.982 298.	.661 .877 11.945 299.	.648 .831 27.937 296.	.644 .845 20.783 299.	.642 .933 19.621 283,	.642 .637 .900 .936 5,929 14.030 285. 287.
3) 2917106	2917111	3016075	3016076	3115079	3116001	3215051	3115053 2918109
Reg,Coe Coe, A Coe, B Sump,NN	.875 1.072 -3.616 292.	.779 1.054 -15,218 230,	.753 .938 6.324 274.	.730 1.034 -2.006 297.	.729 .871 9.462 181.	.715 .886 9.209 206.	.712 .692 1.067 .938 -11.032 16.191 297. 295.
4) 2917111	2917106	3016075	3016076	3116001	3215051	3115079	3115053 2915116
Reg.Coe Coe, A Coe, B Sump.NN	.875 .933 3.372 292.	,706 ,921 2,910 229,	.700 .859 12.771 273.	.681 .864 -1.678 176.	.676 .747 30.942 205.	.659 .935 7.153 292.	.655 .632 .972 1.137 -2.517 -20.698 292. 291.
5) 2918109	3018107	2917106	3215051	3016075	3218101	3116001	3118069 3117870
Reg.Coe Coe.A Coe.B Sump.NN	.704 .869 9.146 285.	,692 1.067 -17,268 295.	.664 .964 ~10.226 208.	.651 1.154 -37.010 232.	.648 ,946 -11.176 288.	.647 .918 -3.629 182.	.644 .637 .910 1.070 -8.994 -36.338 268. 239.
6) 3014081	3014084	3014089	3015082	3014083	3015078	3115053	3115079 291412
Reg,Coe Coe, A Coe, B Sump,NN	.773 1.061 6.356 282.	.769 1.071 -1.998 286.	.723 1.002 -8.365 278.	.687 .979 8.757 287.	.684 1.061 -20.924 289.	.658 1.026 -8.784 290.	.652 .626 .974 i.101 4.039 -1.418 290. 290.
7) 3014083	2914120	3014084	3014089	3015082	3014081	3015078	2915116 3115053
Reg.Coe Coe. A Coe. B Sump.NN	.866 .105 -6.493 297.	.770 1.087 -3.001 281,	.749 1.136 17.965 - 285,	.724 1.084 •27.114 283.	.687 1.022 -8.945 287.	.680 1.055 26.097 - 296.	.648 .613 1.203 1.046 33.618 -17.391 296, 297.
8) 3014084	3014089	3014081	3014083	2914120	3015082	3015078	2915116 3115053
Reg.Coe Coe. A Coe. B Sump.NN	.819 1.006 -7.059 284.	.773 .943 -5,993 282.	.770 .920 2.760 281.	.735 1.017 -3.338 284,	.716 .988 -18.449 270.	.662 .994 -23.446 283.	.642 .629 1.072 .952 21.031 -11.210 283, 284.
9) 3014089	3014084	3014081	3014083	2914120	3115079	3015082	3115053 3015078
Reg.Coe Coe. A Coe. B Sump.NN	.819 .994 7.015 284.	.769 .934 1.866 286.	.749 .880 15.807 285.	.724 1.008 4.351 288	.682 .912 5.873 288.	.678 .989 -12.556 274.	.673 ,643 .948 .984 -4.427 -15,564 288. 287.
LO) 3015078	3015082	3014081	3014083	2915116	3014084	2914120	3016075 3014089
Reg.Coe Coe. A Coe. B Sump.NN	.769 1.038 -2.307 285.	.684 .943 19.728 289.	.680 .947 24.725 296.	.667 1.128 ~5.619 298.	.662 1.007 23.599 283.	.654 1.072 14.125 299.	.649 .643 .975 I.016 5.797 15.811 233. 287.
11) 3015082	3015078	3014083	3014081	3014084	2914120	3014089	3115053 2915116
Reg.Coe Coe. A Coé. B Sump.NN	.769 .964 2,223 285.	.724 .922 25.007 283,	.723 .998 8.348 278.	.716 1.012 18.670 270,	.680 1.037 16.083 286.	.678 1.011 12.700 274,	.657 .642 .967 1.111 7.669 -6.590 286. 285.
12) 3016075	3016076	3116001	2917106	3115079	3215051	3115053	2917111 3215035
Reg.Coe Coe. A Coe. B Sump NN	.922 .947 15.766 231	.814 1.014 -2.774	.779 .949 (4.439 230	.776 .964 16.655	.743 .848 22.957 207	.742 .987 7.981 233	.706 .661 1.086 .778 -3.159 34.248 229 233.

F - 17

,

Base	Order	of High Regr	ession	
Station	1) 2)	3) 4)	5) 6)	7) 8)
13) 3016076 301	6075 3116001 :	2917106 3115079	3215051 3115053	2917111 3015078
Reg.Coe .	922 .841	.753 .748	.718 .701	.700 .638
Coe.A 1.	056 .985	1.066 1.088	.940 1.127	1.165 .907
Coe.B -16.	649 -9.517 ·	-6.739 -8.410	-1.677 -18.055	-14.873 10,322
Sump.NN 2	31. 161.	274. 277.	207, 277,	273, 277,
14) 3018107 291	8109 3215051 3	3118069 3117070	3218101 3217002	3117071 3016075
Reg.Coe .	704 .684	.673 .672	.668 .644	.635 .633
Coe. A ·i.	151 .954	1.043 1.260	1.114 1.592	1.157 1.323
Coe. B -10.	530 -1.541 -:	21.156 -60.487	-27.060 -77.807	-38.002 -59.024
Sump.NN 2	85. 203.	255. 234.	283. 69.	276. 227.
15) 3115053 321	5035 3115079 3	3215051 3016075	2917106 3016076	3116001 3014089
Reg.Coe .	848 .775	.747 .742	.712 .701	.689 .673
Coe. A .	848 .973	.857 1.013	.937 .887	.788 1.055
Coe. B 17.	906 8.279 1	13.717 -8.088	10.338 16.021	24,514 4.670
Sump.NN 3	00. 300.	209. 233.	297. 277.	184. 288.
16) 3115079 321	5051 3016075 3	3115053 3016076	3215035 2917106	3116001 3216001
Reg.Coe .	782 .776	.775 .748	.733 .730	.724 .718
Coe, A	904 1.038	1.028 .919	.851 .967	.792 .682
Coe, B 2.	555 -17.283 -	-8.511 7.731	14.229 1.940	19.065 37.458
Sump.NN 2	09. 233.	300. 277.	300, 297.	184. 79.
17) 3116001 301	6076 3016075 3	3215051 2917106	3115079 3117071	3115053 2917111
Reg.Coe .	841 .814	.752 .729	.724 .721	.689 .681
Coe. A 1,	015 .986	.860 1.149	1.263 1.040	1.269 1.157
Coe. B 9.	664 2.736	9.619 -10.870	-24.075 -14.826	-31.110 1.942
Sump.NN 1	61. 118.	94, 181.	184. 175.	184. 176.
18) 3116004 311	7070 3215051 3	3117071 3216001	3116001 3118069	3018107 3217064
Reg.Coe .	713 .702	.685 .661	.615 .615	.605 .602
Coe. A l.	447 .757	1.335 .889	1.125 1.432	.807 .952
Coe. B -94.	754 38.443 -7	73.336 15.739	-34.791 -79.873	23.917 60.786
Sump.NN	66. 36.	63. 66.	66. 64.	60. 24.
19) 3117070 311	7071 3118069 3	3116004 3217003	3215051 3018107	3216001 3217065
Reg.Coe .	772 .724	.713 .698	.676 .672	.671 .671
Coe. A .	962 .856	.691 .923	.902 .793	.826 .713
Coe. B 11.	066 24.625 6	35.505 32.444	23.818 47.993	22.083 63.764
Sump.NN 2	30. 233.	66. 75.	209. 234.	184. 79.
20) 3117071 311	7070 3116001 3	3217002 3116004	3217001 3216001	3215051 3115079
Reg.Coe .	772 .721	.708 .685	.680 .675	.672 .653
Coe.A 1.	039 .961	.992 .749	1.052 .773	.928 1.146
Coe.B-11.	502 14.251 1	9.233 54.913	-1.014 50.980	15.764 -5.884
Sump.NN 2	30. 175.	70. 63.	77. 72,	201. 289.
21) 3118069 321	6001 3117070 3	3217001 3217065	3218101 3018107	3217002 2918109
Reg.Coe .	726 .724	.696 .688	.679 .673	.665 .644
Coe.A .	847 l.168	1.132 .957	1.066 .959	1.067 1.099
Coe.B 38.	449 -28.756 -1	5.494857	-5.773 20.283	3.954 9.882
Sump.NN	76. 233.	81. 177.	259. 255.	74. 268.
22) 3215035 311	5053 3215051 3	8115079 3016075	2917106 3016076	3116001 3015075
Reg.Coe .	848 .770	.733 .661	.655 .638	.632 .623
Coe.A l.	179 l.037	1.175 1.285	1.153 l.102	.961 l.265
Coe.B -21.	113 -6.135 -1	6.719 -44.000	-18.407 -11.376	3.458 -45.164
Sump.NN 3	00. 209.	300, 233.	297. 277.	184. 299.
23) 3215051 311	5079 3215035 3	1116001 3115053	3016075 3016076	2917106 3116004
Reg.Coe .	782 ,770	.752 .747	.743 .718	.715 .702
Coe. A I.	106 ,964	1.163 1.167	1.180 1.064	1.129 1.321
Coe. B -2.	825 5,915 -1	1.187 -16.011	-27.085 1.784	-10.399 -50.765
Sump.NN 2	09, 209,	94. 209.	207. 207.	206. 36.
24) 3216001 321	7001 3118069 3	1115079 3217002	3117071 3117070	3116004 3115053
Reg.Coe .	768 ,726	.718 .694	.675 .671	.661 .650
Coe.A 1.	278 1,181	1.467 1.302	1.294 1.403	.1.124 1.628
Coe.B -52.	874 -45,421 -5	64.939 -46.471	-65.984 -89.472	-17.698-104.837
Sump.NN	79, 76,	79. 75.	72. 79.	66, 79.

Table F-5	REGRESSION ANI	CORRELATION	FOR	30	STATIONS	(3/3)

:	Base		O	der of	High R	egressi	on		
25)	Station 3217001	1) 3217002	2) 3217065	3) 3216001	4) 3217064	5) 3218101	6) 3118069	7) 3318127	8) 311707
	Reg.Coe Coe. A Coe. B Sump.NN	.850 .961 13.406 75.	.777 .693 42.147 28.	.768 .782 41.372 79.	.739 .962 40.234 42.	.700 .996 359 84.	.696 .883 13.686 81.	.684 1.141 25.825 84.	.680 .950 .964 77.
26)	3217002	3217001	3217065	3117071	3117070	3216001	3218101	3318127	311806
	Reg.Coe Coe. A Coe. B Sump NN	.850 1.041 -13.957 75.	.840 .802 8.609 20.	.708 1.008 -19.387 70.	.698 1.084 -35.169 75.	.694 .768 35.698 75.	.690 1.001 -8.232 75.	.681 1.147 18.394 75.	.665 .937 ~3.706 74.
27)	3217064	3217001	3217002	3116004	3216001	3218101	3117070	3117071	311806
	Reg.Coe Coe. A Coe. B Sump.NN	.739 1.039 -41.816 42.	.616 .991 -24.989 33.	.602 .050 -63.849 24.	.560 ,706 15.198 37.	.519 1.015 -49.058 187.	.456 1.100 -69.037 188.	.456 1.053 -57.238 180.	.450 .912 -38.598 181.
28)	3217065	3217002	3217001	3118069	3117070	2918109	3018107	3216001	291710
	Reg.Coe Coe. A Coe. B Sump.NN	.840 1.247 -10.737 20.	.777 1.443 -60.839 28.	.688 1.045 .896 177,	.671 1.211 - -26.745 184.	.622 1.095 19.734 183.	.613 1.482 -52.140 24.	.613 1.134 5.202 184.	.605 1.231 ~4.892 181.
29)	3218101	3217001	3217002	3118069	3318127	3018107	2918109	3117070	311707
	Reg.Coe Coe. A Coe. B Sump.NN	.700 1.004 .361 84.	.690 .999 8.221 75.	,679 .938 5,414 259.	.669 1.368 -9.718 285.	.668 .898 24.296 283.	.648 1.057 11.816 288,	.612 1.112 -25.349 239.	.609 1.024 -5.914 280.
30)	3318127	3217001	3217002	3218101	3216001	3018107	2918109	3115079	311806
	Reg.Coe Coe. A Coe. B	.684 .876 -22.628	.681 .872 -16.033 75	.669 .731 7.104	.640 .666 17.213	.619 .612 34.456	.583 .742 21,594	.582 .824 7.457	.571 .641 22.486

.

F - 19

.

					1 Day
SULAIMAN BR	IDGE	PUCHONG DROP	>	RIVER MOUTH	
Date	<u>R</u>	Date	R	Date	R
18.NOV 1961	54.4	6.JAN 1961	56.8	6.JAN 1961	66.1
30.0CT 1962	52.1	31.OCT 1962	52.1	30.NOV 1962	61.5
2.DEC 1963	73.8	2.DEC 1963	62.3	13.NOV 1963	54.0
3.MAR 1964	88.3	3.MAR 1964	81.1	3.MAR 1964	64.4
5.APR 1965	47.0	24 DEC 1965	50.0	14.FEB 1965	40.3
25.DEC 1966	38.2	4.DEC 1966	46.5	4.DEC 1966	53.4
17.JUN 1967	39.1	17.JUN 1967	45.5	17.JUN 1967	54.1
12.MAY 1968	46.2	14.DEC 1968	39.1	22.MAR 1968	35.7
30.MAR 1969	54.9	30.MAR 1969	47.9	2.JUN 1969	39.6
2.NOV 1970	77.2	2.NOV 1970	52.9	2.NOV 1970	32.4
4.JAN 1971	117.3	4.JAN 1971	114.2	4.JAN 1971	118.9
16.NOV 1972	40.0	16.NOV 1972	51.0	16.NOV 1972	44.5
24.FEB 1973	67.5	24.FEB 1973	64.6	24.FEB 1973	50.5
8.MAR 1974	61.1	8.MAR 1974	48.2	8 MAR 1974	37,5
10.FEB.1975	35.4	16.APR 1975	37.8	1.NOV 1975	44.3
25.AUG 1976	48.7	25.AUG 1976	47.0	25.AUG 1976	40.5
7.0CT 1977	.77.0	7.0CT 1977	74.0	7.0CT 1977	64.7
19.0CT 1978	54.5	19.0CT 1978	38.1	19.SEP 1978	40.6
7.JUN 1979	102.5	7.JUN 1979	87.7	7.JUN 1979	66.9
15.0CT 1980	72.4	15.0CT 1980	56.5	15.0CT 1980	67.5
24.MAY 1981	61.3	24.MAY 1981	55.7	30.APR 1981	41.2
17.MAY 1982	67.2	1.NOV 1982	67.0	11.MAR 1982	50.4
13.NOV 1983	87.8	13.NOV 1983	77.4	13.MOV 1983	51.4
5.NOV 1984	92.0	5.NOV 1984	65.4	5.NOV 1984	49.1
15.NOV 1985	52.6	15.NOV 1985	44.2	3.DEC 1985	34.5

2 Days

SULAIMAN BRI	DGE	PUCHONG DROP		RIVER MOUT	'H
Date	R	Date	R	Date	R
22-23.MAR 1961	72.5	5-6.JAN 1961	73.6	12-13.JUN 1961	70.5
9-10.0CT 1962	89.8	30-31.OCT 1962	93.7	30-31.0CT 1962	96.7
12-13.NOV 1963	96.1	12-13.NOV 1963	105.8	12-13.NOV 1963	104.4
2-3,MAR 1964	91.9	2-3.MAR 1964	69.6	2-3.MAR 1964	86.2
26-27.SEP 1965	67.7	10-11.0CT 1965	56.1	4-5.APR 1965	63.2
10-11.JUL 1966	81.7	4-5.DEC 1966	65.4	4-5.DEC 1966	59.1
3-4.NOV 1967	60.0	16-17.JUN 1967	64.3	16-17.JUN 1967	56.0
15-16.MAY 1968	54.9	2-3.JUL 1968	64.7	15-16.MAY 1968	53.4
30-31.MAR 1969	79.2	2-3.JUN 1969	57.3	30-31.MAR 1969	65.1
30-31.MAR 1970	97.8	15-16.APR 1970	62.1	30-31.MAR 1970	83.6
4-5.JAN 1971	182.4	4-5.JAN 1971	104.5	4-5.JAN 1971	188.3
2-3.APR 1972	72.8	15-16.NOV 1972	78.6	15-16.NOV 1972	83.7
4-5.APR 1973	100.1	16-17.DEC 1973	72.4	16-17.DEC 1973	88.6
8-9.MAR 1974	76.0	8-9.MAR 1974	55.8	8-9.MAR 1974	65.2
1-2.SEP 1975	63.3	1-2.SEP 1975	66.6	1-2.SEP 1975	63.2
24-25.AUG 1976	60.8	24-25 MAR 1976	54.8	17-18.OCT 1976	59.5
26-27.AUG 1977	104.3	6-7.0CT 1977	76.0	6-7.0CT 1977	90.5
19-20.0CT 1978	102.2	19-20.0CT 1978	57.2	19-20.0CT 1978	74.9
6-7.JUN 1979	122.5	6-7.JUN 1979	81.6	6-7.JUN 1979	107.9
15~16.OCT 1980	96.8	15-16.0CT 1980	80.0	15-16.OCT 1980	74.4
30-1.MAY 1981	84.5	30-1.MAY 1981	69.8	30-1.MAY 1981	82.6
7-8.FEB 1982	109.6	28-29.NOV 1982	73.3	7-8.FEB 1982	84.9
19-20.JUL 1983	108.7	13-14.SEP 1983	64.9	12-13.NOV 1983	94.9
5-6.NOV 1984	108.8	5-6.NOV 1984	63.7	5-6.NOV 1984	85.1
8-9.JUL 1985	79.3	1-2.0CT 1985	49.4	9-10.DEC 1985	71.1

3 Days

SULAIMAN BR	IDGE	PUCHONG DROP		RIVER MOUT	R MOUTH	
Date	R	Date	R	Date	R	
17-19.NOV 1961	86.2	27-29.APR 1961	89.4	7-9.MAR 1961	79.7	
9-11.OCT 1962	104.8	30-1.NOV 1962	107.3	30-1.NOV 1962	102.3	
12-14.NOV 1963	109.1	12-14.NOV 1963	114.2	12-14.NOV 1963	123.9	
1-3.SEP 1964	104.2	1-3.SEP 1964	96.6	1-3.SEP 1964	80.5	
13-15.0CT 1965	83.9	13-15.0CT 1965	69.3	14-16.FEB 1965	70,8	
10~12.JUL 1966	97.3	10-12.JUL 1966	87.0	20-22.NOV 1966	82,5	
3-5.NOV 1967	80.8	21-23.0CT 1967	73.4	15-17.JUN 1967	81.3	
17-19.JUL 1968	78.2	15-17.MAY 1968	82.7	2-4.JUL 1968	69.8	
19-21.MAY 1969	87.5	21-23.0CT 1969	75.7	21-23.0CT 1969	68.4	
29-31.MAR 1970	117.9	29-31.MAR 1970	99.2	15-17.APR 1970	74.5	
3-5.JAN 1971	244.8	3-5.JAN 1971	245.4	3-5.JAN 1971	230.5	
2-4.APR 1972	88.7	14-16.NOV 1972	104.0	14-16.NOV 1972	93.7	
20-22.OCT 1973	93.6	25-27 MAY 1973	87.6	20-22.OCT 1973	81.8	
8-10.MAR 1974	83.0	8-10.MAR 1974	73.4	8-10.MAR 1974	63.5	
30-1.SEP 1975	67.5	30-1.5EP 1975	68.7	14-16.APR 1975	75.4	
16-18.0CT 1976	75.7	16-18.OCT 1976	74.3	25-27.AUG 1976	66.0	
5-7.0CT 1977	167.9	5-7.0CT 1977	142.9	5-7.0CT 1977	111.1	
19-21.0CT 1978	117.7	19-21.0CT 1978	89.0	18-20.0CT 1978	64.8	
5-7.JUN 1979	126.0	5-7.JUN 1979	111.1	10-12.APR 1979	97.0	
15-17.OCT 1980	105.9	23-25.NOV 1980	96.6	22-24.NOV 1980	88.2	
1-3.APR 1981	96.0	31-2.APR 1981	12.4	31-2.APR 1981	89.5	
6-8.FEB 1982	117.3	6-8.FEB 1982	. 99.2	27-29.NOV 1982	112.0	
18-20.JUL 1983	138.4	11-13.NOV 1983	111.6	12-14.SEP 1983	93.7	
21-23,NOV 1984	129.3	21-23.NOV 1984	119.5	9-11.NOV 1984	93.4	
13-15 NOV 1985	86.0	9-11 DEC 1985	87.8	9-11.FEB 1985	73.1	

METHODS
VARIOUS
THE
UNDER
RAINFALL
PROBABLE
E-7
Table

SULAIMAN BRIDGE

3 Days	GUMBEL	251.7	230.6	223.8	209.5	193.8	181.3	159.5
ALL (MM)	IAMI	304.5	253.2	237.8	209.7	183.3	165.0	138.8
RAIN F.	TAKASE	230.3	210.7	203.3	190.3	176.7	165.1	146.8
	LOG-NORMAL	217.7	202.5	197.3	186.7	175.2	165.8	149.4
2 Days	GUMBEL	197.1	181.5	176.5	165.9	154.4	145.1	129.1
ALL (MM)	IMAI	215.9	190.1	181.8	166.1	150.4	138.7	120.5
RAIN F.	TAKASE	173.5	162.3	158.7	151.0	142.4	135.4	122.9
	LOG-NORMAL	181.3	168.9	164.7	156.1	146.7	139.1	125.6
1 Day	GUMBEL	151.7	138.9	134.7	125.9	116.3	108.7	95.4
ALL (MM)	IWAI	140.1	128.7	124.8	117.1	108.8	102.1	90.6
RAIN F	TAKASE	140.2	129.3	125.0	117.5	109.5	102.5	91.1
	LOG-NORMAL	147.4	135.3	131.1	122.8	113.8	106.6	94.1
E		200	100	80	50	30	20	10

PUCHONG DROP

3 Days	GUMBEL	230.3	211.3	205.2	192.3	178.2	166.9	147.2
ALL (MM)	IWAI	290.9	236.1	220.1	191.5	165.7	148.3	124.6
RAIN F	TAKASE	189.5	180.8	177.2	170.7	163.1	156.1	143.7
	LOG-NORMAL	193.6	180.9	176.6	167 7	158.0	150.1	136.2
2 Days	GUMBEL	184.6	169.7	164.8	154.6	143.5	134.6	119.1
ALL (MM)	IMAI	227.4	187.6	175.8	154.5	134.9	121.5	102.7
RAIN F	TAKASE	156.7	147.0	143.1	136.3	128.8	122.2	111.2
	LOG-NORMAL	160.8	150.1	146.4	139.0	130.8	124.1	112.4
1 Day	GUMBEL	131.3	120.6	117.1	109.8	101.8	95.5	84.4
ALL (MM)	IWAI	140.1	123.8	118.6	108.5	98.4	90.7	78.7
RAIN F	TAKASE	119.2	1.0LL	106.6	100.4	93.9	88.2	79.1
	LOG-NORMAL	117.7	109.5	106.7	101.0	94.7	89.7	80.8
н		200	100	80	50	30	20	10

RIVER MOUTH

3 Days	GUMBEL	211.5	193.8	188.2	176.2	163.0	152.5	134.3
ALL (MM)	IAMI	270.4	218.0	202.7	175.6	151.3	134.9	<u>112.8</u>
RAIN FI	TAKASE	176.8	164.8	160.1	151.9	142.9	135.1	122 3
	LOG-NORMAL	174.0	162.7	158.8	150.9	142.2	135.1	122.7
2 Days	GUMBEL	168.8	154.9	150.4	141.0	130.6	122.4	108.0
ALL (MM)	TWAT	216.2	174.5	162.4	140.9	121.5	108.6	91.1
RAIN F.	TAKASE	153.1	139.7	134.6	125.9	116.9	109.2	97.4
	LOG-NORMAL	137.9	129.2	126.3	120.2	113.6	108.1	98.5
1 Day	GUMBEL	122.1	111.9	108.6	101.7	94.0	88.0	77.4
ALL (MM)	IMAI	146.4	122.9	115.8	102.7	90.2	81.4	68.5
RAIN F.	TAKASE	101.2	95.3	92.9	88.7	84.0	7.9.7	72.6
	LOG-NORMAL	109.2	101.2	98.5	93.0	87.0	82.1	73.6
E		200	100	80	50	30	20	10

Table F-8 PROBABLE AREAL RAINFALL

			<u>Unit : mm</u>
т		SULAIMAN BRI	DGE
	1 DAY	2 DAYS	3 DAYS
			_
200	151.7	197.1	251.7
100	138.9	181.5	230.6
80	134.7	176.5	223.8
50	125.9	165.9	209.5
30	116.3	154,4	193,8
20	108.7	145.1	181,3
10	95.4	129,1	159.5

Ūr	١İ	t	:	mm	

T .	PUCHONG DROP					
	<u>1 DAY</u>	2 DAYS	3 DAYS			
200	131.3	184.6	230.3			
100	120.6	169,7	211.3			
80	117.1	164.8	205.2			
50	109.8	154.6	192.3			
30	101.8	143.5	178.2			
20	95.5	134.6	166.9			
10	84.4	119.1	147.2			

			<u>Unit:mm</u>
T		RIVER MOUTH	
	1 DAY	2 DAYS	3 DAYS
200	122.1	168.8	211.5
100	111.9	154.9	193.8
80	108.6	150.4	188.2
50	101.7	141.0	176.2
30	94.0	130.6	163.0
20	88.0	122.4	152.5
10	77.4	108.0	134,3
•			

ADIIL

			<u> </u>			
STATION	STATION NAME	GRID		SULAIMAN	PUCHONG	RIVER
NUMBER		REFERENCE	STATION	BRIDGE	DROP	MOUTH
2914120	LADANG GOLDEN HOPE	V1809300	2914120			0.01
2916077	LADANG BUKIT HITAM	VK025302	3014083			0.02
2917106	LADANG WEST COUNTRY BHG, BARAT	VK147293	3014084	1		0.03
3014081	LADANG MIDLANDS	VJ882391	3014080			0.01
3014083	LADANG HIGHLANDS	VJ831322	2014082			0.06
3014084		V1831302	3014081			0.00
3014089	LADANG BUKIT KEMUNING	VI040322	3015082			0.04
3013070	LADANG HARON	V1893335	3015078			0.08
2015005	LADANG KINRARA	VK060377	2916077		0.01	0.08
3115053	LADANG ELMINA	VJ898535	3016076	i	0.11	0.08
3115079	PUSAT P. GETAH SG. BULOH	VJ959495	2917106		0.04	0.03
3116001	IBU PEJABAT KAJICUACA MALAYSIA	VK055433	3116001	0.01	0.10	0.07
3117070	PUSAT PENYELIDIKAN JPT AMPANG	VK171492	3115079			0.07
3117071	LOHAIR BUKIT WELD, K.L.	VK123487	3115053	1		0.01
3118069	PEMASUKAN AMPANG	VK229493	3215051	0.07	0.04	0.03
3215051	FUSAT MENUAWAL KUSTA NEGARA	A103630	3117070	0.06	0.08	0.04
3216001	$\frac{1}{10} \frac{1}{10} \frac$	VK148615	2117070	0.00	0.00	0.07
3217001	IABATAN ORANG ASI I ULUGOMBAK	VK151644	2016001	0.07	0.12	0.07
3217065	LADANG WARDIEBURN	VK159560	3416001	0.14	0.09	0.03
2219101	STN TENALETRIK LLN, PONSOON	VK312552	3217064	0.24	0.15	0.01
1118127	JANDA BAIK	VK297681	3217001	0.08	0.05	0.03
			3217065	0.16	0.10	0.06
			3118069	0.08	0.05	0.03
			3218101	0.02	0.02	0.01
			3318127	0.05	0.04	0.02
			<u> </u>	1	[

1.00

TOTAL

1.00

1.00

Mark	Dept	:h(m)	
-))	
1)		<0.25	
2 >	0.25<=	<0.50	
3)	0.50<=	<1.00	
4)	1.00<=	<2,00	
5)	2.00<=	<3.00	
	3 007 5		

(1)) 0.25<=	<0.25 <0.50	Ca Patu		Sg. Gomb	ak		
(4) 1.00(=	<2.00	by. Datu		4 -			
(5)) 2.00(=				3-			
			2	-				
			2	2	3			
			2		31			
			-33-		31			
			23	13				
				11				
		1	-3	31				
				43	-			
				-433	-			
				443-				
				-4433		Sç	J. Klang	
			1	-34				
			21					
			22	2223		`		
			-1	333-			1-	
			3221	244-			1	
			332	2251				
			13	23				
			3	44			-	
			1	34				
			-1					
			-33-					
			-43-					
			2454	- 2-1				
			-454	-343				
			64	-443				
			4 -	-344		3		
			- 3		4444443	33211		
				34-25566	64543-34			
				-43-4-554	444			
				4-5444- 4-6191				
				4444				
				-14654				
				1541-				
				44				
				43				
				33		000		1
						200-year i	.ecurn peri	
Fig.	F-12	· · · ·	PREDICTED	INUNDATI	on area	AND DEP	FH (1)	
TH	E STUDY	ON T	HE FLOOD MI	TIGATION	N OF THI	EKLANG	RIVER BA	SIN

響烈

F - 38

. •

F - 39

	Bart	-h (m)	_	Sg. G	Jombak	
Mark	Dept	-11 (III)	Sg. Batu		9	
(1)		<0.25			5- 2-	
(2) (3)	0.25(=	<0.50 <1.00	1		2	
(4) (5)	1.00 < = 2.00 < =	<2.00	-2			
(6)	3.00(=		1	2-		
			<u>1</u>	· 3-		
			-22-			
			<u>د د</u> 11	-3-		
			-2	2 -		
				33		
				42-		
				-422		
			÷	432-		
				-3422	Sg. Kla	ing
			1-	- 10	-	
				-1		_
			22	$111\bar{2}$		
1				221-	1	
			2111	-44-	1	1
			222	41	1	~ ~
			11			
			-2			
			-3	00 22		_
					-	
			-23-			
			-33-		-	
			-32-			
			2453	- 1		
			-4445-	-222		
			-243	3-233		-
			63	-442	·····	
			4	-233	· · · · · · · · · · · · · · · · · · ·	
			- 1	-33 - 122 - 44443	34-121	
				34-1456664542	-2	
				-43-4-554444		
				4-5444	-	
				4-6413		
				3344		
				4654		
				-431- 22		
						i
	<u> </u>				30-year retur	n period
Fig.]	F-12		PREDIC'	TED INUNDATIO	n area and depti	H (9)
THE S	STUDY	ON TH	HE FLOOD	MITIGATION C)F THE KLANG RIV	VER BASIN
			· · · · · · · · · ·	F - 42		

.

JICA

				· · ·
		· · · · · ·		
Mark Depth	n (m)			·
(-) 0	×0.25		Sg. Gombak	
(2) 0.25<=	(0.25) Sg. Ba	atu	0	
(4) 1.00<=	<2.00		2-	
(5) 2.00<= (6) 3.00<=	<3.00 1		1	
	-2			
	 1	•	2-	•
	-11-		1-	
	12	<u>-</u> -	-1	
		- 2	;	
		 . 1		
	- T	21	[
		4]		
		421		,
		23	-	Sa Klana
		3		ος, πταπή
		33 -		-
		<u>1</u>		,
	••• •••	11		
	211-	-33-		11
	221	3-		1
	11	3		
	-2-			
	· –	-1		
		1		
	-22			
	-31			
•	134	3 1		
	-33	45111		
	-	-62-331		~
		4233 -	11000	
			11232 4444334	
		23-14566	64442-1	
	,	-32 - 3 - 554	444	-
		3-5444-		-
		-23		
		4543		
				10-year return period
Fig. F-12	PREDICTED	INUNDATION	AREA AND	DEPTH (11)
THE STUDY	ON THE FLOOD	MITIGATION	OF THE K	LANG RIVER BASIN

-

TABLE OF CONTENTS

				<u>PAGE</u>
1.	INTRO	DUCTION	•••••••••••••••••••••••••••••••••••••••	G-1
2.	PAST I	RECORD C	OF FLOOD CONDITION	G−2
	2.1	General		G-2
	2.2	January	/ 1971 Floods	G-4
	2.3	Flash F	floods	G-5
3.	PREVI	OUS FLOO	DD DAMAGE	G - 11
	3.1	Flood I	Damage Estimation for January 1971 Floods	G-11
	3.2	Estimat	ion of Potential Direct Annual Average Damage	G-12
4.	FLOOD	DAMAGE	ESTIMATE	G-12
	4.1	General		G-12
	4.2	Flood D	Damage Survey and Building Survey	G-12
		4.2.1	Flood Damage Survey	G-12
		4.2.2	Building Survey	G-13
	4.3	Procedu Cost of	re and Conditions for Estimating the Potential Damage	G-15
		4.3.1	Scheme for Flood Damage Estimate	G-15
		4.3.2	The Grid Method	G-16
		4.3.3	Types of Properties in Flood Prone Area	G-17
		4.3.4	The Conditions and Parameters for Flood Damage Estimate	G-18
	4.4	Probabl	le and Annual Average Flood Damage	G-22
		4.4.1	Results of Flood Damage Estimate	G-22
		4.4.2	Annual Average Flood Damage	G-24

•

LIST OF TABLES

TABLE NO.	LIST	PAGE
G-1	Interview Sheet for Flood Condition Survey	G-27~28
G-2(1)	Interview Sheet for Flood Damage Survey for Household	G-29~34
G-2(2)	Interview Sheet for Flood Damage Survey for Shop, Factory and Establishment	G-35~36
G-3	Inundated Areas and Average Inundated Depth in 1971 Floods for Each River Stretch	G-37
G-4	Flash Flood Areas in Federal Territory	G-38
G-5	Flooded Area in Selangor State between 1984 to 1986	G-39
G-6	Potential Direct Annual Average Damage	G-40
G-7	Yield per Hectare of Main Crops	G-41
G-8	Derivation of Farm Gate Price for Rubber	G-42
G-9	Derivation of Farm Gate Price for Palm Oil, Palm Kernel and Fresh Fruit Bunch	G-43
G-10	Average Price and Production Cost of Vegetable, Fruits	G-44
G-11	Summary of Agro-Economic Data	G-44
G-12	Data Related to Livestock	G-45
G-13	Building Density per Hectare by Type of Building and Land Use	G-46
G-14	Present Unit Cost per Each Type of Building	G-47
G-15	Present Unit Value of Indoor Movables (1988)	G-48
G-16	Damage Rate	G-49
G-17	Flood Damage in 1988 by Return Period	G-50
G-18	Flood Damage in 2005 by Return Period	G-51
G-19	Flood Damage by River Stretch (100-Year Return Period)	G-52

G - ii

.

LIST OF FIGURES

FIGURE NO.	LIST	PAGE
G-1	Flood Area in January 4 & 5, 1971 Floods	G-53
G-2	Inundated Depth Map in January 4 & 5, 1971 Floods (1/4)-(4/4)	G-54~57
G-3	Location of Flash Flood Areas in Federal Territory	G-58
G~4	Average Inundation Depth, Duration and Frequency of Flash Floods in Federal Territory	G-59
G-5	Location of Flooded Areas in Selangor State between 1984 to 1986	G-60
G-6	Location Map of Building Survey Areas	G-61
G-7	Flow Chart for Flood Damage Estimate	G-62
G-8	Relation Between the Flood Frequency and Flood Damage Potential	G-63
G-9	Flood Damage Potential per Hectare (100-year Return Period)	G-64

1. INTRODUCTION

For the purpose of estimating the flood conditions and flood damage, past records of floods and property damage were investigated in the flood prone areas. Information on these floods was obtained by interviewing residents at the sites. In addition to this field investigation, records and data related to flood and flood damage were obtained from the agencies concerned such as Drainage and Irrigation Department (DID) Head Quarters, DID Federal Territory, DID Selangor, City Hall and etc.

Three kinds of field investigations, viz. flood conditions, flood damage and building surveys were carried out during the field survey period. Among these surveys, the building survey was executed especially in the flood prone areas along the Klang, Gombak and Batu Rivers, and Sg. Kerayong in Kuala Lumpur.

To obtain the past records of flood conditions, the following information was collected through interviewing;

- Inundation depth
- Inundation duration
- Causes of floods
- Type of house/building
- Flood flow direction
- Flood frequency
- Thickness of sediment after flood has subsided

A sample of interview questionnaire is shown in Table G-1.

With regard to the flood damage survey, the following information was collected;

- Type and area of house/building
- Construction material and cost of house/building
- Repair or replacement cost
- Assets value and damage loss
- Stock value to be sold and damage loss
- Sales loss owing to flood/inundation
- Income loss due to flood

Interview questionnaire is shown in Table G-2.

The building survey is a kind of quantity survey for property conducted by collecting basic information to estimate number of buildings in the flood prone area. Following information were collected;

- Number of buildings in the survey areas
 - Type of main use of building
 - Lot size and building area

These survey results were adopted as basic data for evaluation of flood damage potential and in calculating expected average annual flood damage.

2. PAST RECORD OF FLOOD CONDITION

2.1 General

In the Klang River Basin, floods occur usually between August and January, mostly in November, but flash floods occur throughout the year. One of the most severe floods ever recorded occurred in January 1971 and inundated approximately 122 km² or 9.5% of the Klang River catchment area $(1,288.4 \text{ km}^2)$. Nearly 180,000 people were affected by this flood.

Numerous streams often overflow during or after a downpour even in off-flood seasons. The unimproved drainage system in the city and towns tends to exacerbate the worst flood conditions. This kind of flash flood damages household properties in the low lying areas, hampers economic activities, and causes traffic jam.

The discharge capacity in an unimproved river stretch of the Batu, Gombak and Klang Rivers is small compared with that in the improved river stretch in Kuala Lumpur. In addition to this, the river discharge capacity at some bridge sites is so small that the flood flow is dammed up causing the river to overflow at the upstream reaches of those bridge sites.

In this basin, especially in the surrounding areas of Kuala Lumpur, urban development such as large-scale housing schemes has encroached on to the abandoned tin mining sites and slopes of mountains. The change of land uses from reserved land to housing schemes and other uses gives rise to the following problems;

- Reduction of retention capacity of water and the increase of flood peak run-off from a downpour.
- Increase of erosion, and decrease of flow capacity of river and drain due to sedimentation.

Under the present conditions, the intensity and probability of floods are increasing year by year.

For the purpose of estimating the flood conditions, past records of floods were collected from agencies concerned such as DID Headquarters, DID Federal Territory, DID Selangor, City Hall, etc., and from field surveys.

2.2 January 1971 Floods

On January 4th and 5th, 1971, severe flooding occurred and the basin was severely damaged especially along the Klang, Gombak and Batu Rivers between Kuala Lumpur and Klang Town. The damage was much more extensive and severe than the floods of 1926 and 1931. The communication systems such as telephone, roads, and radio were cut off for a short duration, and the Federal Capital was isolated from the rest of the country. Damage to property was severe as the flood peak occurred at night when many people were unaware of the extent of the damage. Although the flood lasted approximately one day in the center of Kuala Lumpur, the cleaning operation in restoring and rehabilitating the public and private services, flood victims, etc. lasted for weeks.

Continuous rain began on January 1st, 1971 when a severe tropical depression which originated in the South China Sea moved westwards and crossed the southern half of Peninsular Malaysia. The Upper Klang River Basin experienced heavy and continuous rainfall. A total rainfall of 320.3 mm was recorded for this storm period between January 1st to 5th, 1971 at DID Ampang. Rainfall on January 4th was especially heavy when 171.5 mm rainfall was recorded at the same station. This precipitation was directly translated into a peak discharge, as the catchment was already saturated with rainfall occurred previously.

Flooding in the town center of Kuala Lumpur was for a short duration of approximately one day. However, low lying areas such as Tiong Nam, Datuk Keramat, Kampung (Kg.) Kasipillay, Kg. Haji Abdullah Hukom, Kg. Baru, Puchong and etc. were inundated for up to 5 days. As shown in Fig. G-1, the total area inundated by this flood was estimated to be approximately 122 km² which corresponds to about 9.5% of the Klang River catchment area (1,288.4 km²). In addition to this, inundated depths at each area was estimated from the interview survey results and available topo-map. As shown in Fig. G-2, some low lying areas in the central part of the Kuala Lumpur, approximately 5 hectares, were inundated more than 3 m. Inundated area corresponding to varions range of inundation depths are summarized below, and more detail relationships are shown in Table G-3 for each river stretch.

Inundated Depth (m)	Inundated Area (km ²)
0 ~ 1	73.58
1 ~ 2	46.10
2 ~ 3	2.23
Over 3	0.05
Total	121.96

INUNDATED AREA AND DEPTH

The main causes of flooding other than heavy rainfall were:

- Insufficient flow sections and obstruction by piers etc. at bridges,
- Rubbish from houses in flood plains accumulated at bridges and river crossings,
- Overflow of banks along unimproved sections,
- Backwater from main river, and
- Insufficient flow capacity at Puchong Drop.

2.3 Flash Floods

In addition to the January 1971 flood, which is caused by depression-type monsoon storm, many areas are often flooded as a result of a flash rainfall throughout the year in the Klang River Basin. This kind of flash flood also damages household properties and causes heavy traffic jam.

Outline of major flash floods are as follows;

(1) December 10, 1985 Floods

On December 10, 1985, several districts in Kuala Lumpur were under water because of flooding of the Klang River and its tributaries. More than 6,000 people were affected by this flood. This floods is one of the worst floods since the 1971 floods and caused heavy traffic jam, and damage to bridges, houses, roads and etc.

On December 9, there was a heavy rainfall in Kuala Lumpur. The DID Ampang raingauge station recorded a rainfall of 80 mm between 2:00 pm to 3:00 pm.

On December 10, heavy rainfall occurred again in the eastern area of the Upper Klang River Basin between 3:00 am to 7:00 am. Total rainfall recorded at the DID Ampang raingauge station reached 165 mm between 2:00 pm December 9 to 8:00 am December 10.

At Sulaiman Bridge across the Klang River, a water level of 26.82 m was recorded at 10:00 am. This was only 0.2 m lower than danger water level of 27.0 m.

At the Pekeliling station, in the Gombak River, water level reached its danger level of 31.50 m at 11:00 am and highest level of 31.67 m was recorded at 11:30 am.

About 7:30 am, several districts in Kuala Lumpur were inundated. The areas affected were Kg. Baru, Kg. Cendana, Brickfields, Kg. Selamat, Kg. Limau, Kg. Bakti, Kg. Pasir Dalam, Kg. Pantai Dalam, Kg. Pasir, Kg. Petaling Bahagia and Kg. Sentosa. These areas are located mainly along the Klang River and were inundated by the overflow from its river banks or bunds.

About 8:00 am, the Klang River was choked by rubbish brought down by the flood water at the Tun Razak Bridge and caused inundation of the upstream low lying areas such as Datuk Keramat. The flood water also overflowed Jln. Tun Razak (Pekeliling) and it reached Yap Kwan Seng area and inundated it. The peak discharge at this point of the Klang River was about 105 m^3/s .

Low lying areas along the Sg. Kerayong, a tributary of the Klang River, was also inundated, which included the following areas; Jln. Cheras 3-1/2 miles, Jln. Sungai Besi 3-1/2 miles, Jln. Klang Lama 4-1/2 miles and Kuala Lumpur - Seremban Highway (TUDM). These areas were inundated due to the overflow of the Sg. Kerayong except last area which was due to insufficient drainage system.
About 8:00 am, Jln. Tun Razak (Pekeliling) near Balai Datuk Harun was inundated due to the overflow from the Sg. Bunus. The flood water then flowed back into the downstream of old Sg. Bunus. The new trash screen at the entrance of the by-pass channel was completely clogged with rubbish.

About 8:00 am, the Klang River breached its protection dyke near Jln. Raja Ali footbridge in Kampung Baru area. Flood water then gushed into Kampung Baru in large amount and inundated it to a depth of 2 m. This flood water and the overflowed water from the Sg. Bunus merged downstream at Jln. Raja Muda Bridge and resulted in a more severe floods in that area. The people affected by this floods were evacuated to flood relief centers.

Other inundated areas were Bamboo Garden, Segambut Industrial Estate and Kampung Kassipillay along Batu River, and Sentul Pasar along Sg. Untut.

(2) May 8, 1986 Flood

In the early morning of May 8, 1986, a localized torrential rainfall hit Kuala Lumpur for about three hours. All rainfall stations recorded more than 50 mm until 8:00 am.

Three hours later, i.e. at 11:00 am, flood water level of the Klang River reached 27.29 m at Sulaiman Bridge. Low lying areas were already flooded to about 1 m deep. Flood water overflowed from the Klang River and inundated Kg. Sentosa, Kg. Pasir and Kg. Bohol.

At the same time, the Batu River and Sg. Keroh also overflowed its banks. As a result, Segambut Industrial Estate, Kg. Railway Gate, Segambut Dalam and Kg. Kasipillay were inundated to a depth of 0.3 m to 1 m.

Flood water subsided three hours later in both areas. In the central part of Kuala Lumpur, a large number of people ready to go to

offices or schools were delayed by about three hours because of traffic congestion.

(3) October 25, 1986 Flood

A heavy rainfall hit the eastern upstream areas of the Klang River from 3:00 pm to 5:00 pm. Rainfall amount of 71 mm and 75 mm were recorded at DID Ampang rainfall station and Empangan Genting Klang respectively.

Flood water level at the Sulaiman Bridge rose rapidly from 24.81 m to 27.75 m between 3:00 pm to 5:00 pm and reached 28.31 m at 7:00 pm. On the other hand, flood water level at Sentul on the Batu River rose from 29.94 m to 31.39 m, which was the peak water level recorded between 3:00 pm to 5:00 pm.

As a result of this floods, the following areas were inundated for approximately 7 hours to a depth of 1 m: Kg. Baru, Kg. Periok, Jln. Tun Razak (Pekeliling), Kg. Pasir, Kg. Bakti, Kg. Pantai Dalam, Kg. Selamat, Kg. Sentosa and Jln. Klang Lama 4-1/2 miles.

(4) May 13, 1988 Floods

On May 13, 1988, several areas in downstream reaches within Kuala Lumpur were under water because of floods from the Klang River and Sg. Kerayong.

Heavy rainfall hit the central area of Kuala Lumpur from 7:00 am. Rainfall amount recorded were 105 mm and 75 mm at DID Federal Territory and DID Ampang rainfall stations, respectively. However, very little rainfall was recorded in the Gombak River basin. Therefore, it appears that most of the rainfall was concentrated within the Klang River basin and around the city center. This storm pattern caused the flood level to rise very rapidly.

The flood water level at Sulaiman gauging station responded almost immediately after rain began falling with practically no time

lag. The flood water rose at a rate of 2.6 m/hr between 8:00 am to 8:30 am. The water level reached the danger level of 27.0 m at about 8:15 am and a peak of 28.74 m was recorded at 9:30 am. At the confluence of the Klang and Gombak Rivers, the peak flood water level reached 28.85 m at about 10:30 am and slightly above the flood protection wall of Masjid Jamek. The upstream soffit of the Jln. Tun Perak Bridge was submerged and a very high flood discharge velocity was observed under the bridge.

As a result, several areas were flooded. Location, inundation depth and duration and causes of the floods are summarized as below:

Location	Inundated Depth (m)	Inundated Duration (hrs)	Causes
Kg. Baru	1.5	5	Inner water and intrusion from Klang River
Brickfields	1.5	3	Overflow from Klang River
Kg. Pasir Baru	2.0	8	Inner water and intrusion from Klang River
Kg. Pasir Lama	1.0	3	Overflow from Klang River
Kg. Sentosa	2.0	8	Backwater from Klang River
Kg. Bakti	1.0	3	Overflow from Klang River
RSGC	0.5 (max. 2.0)	5	Insufficient culvert and drainage capacity
Kg, Pantai Dalam	1.5	3	Backwater from Klang River
Kg. Limau	1.5	3	Backwater from Klang River
TUDM	1.0	3	Insufficient culvert capacity
Jln. Cheras 3-1/2 miles	1.0	3	Overflow from Sg. Kerayong
Jln. Sg. Besi 3-1/2 miles	1.0	3	Overflow from Sg. Kerayong

MAY 13, 1988 FLOOD INFORMATION

Source: Flood Information Report by DID Federal Territory

In addition to the major flash floods described above, many streams often overflow as a result of a downpour throughout the year in the Klang River Basin. In the Federal Territory, fifty (50) flash flood prone areas are identified. Most of these areas are located along the banks or in the vicinity of the Klang, Gombak and Batu Rivers, and Sg. Kerayong as shown in Fig. G-3.

Past flood records at each area in the Federal Territory are obtained from the "Flood Information Report" which were prepared by DID Federal Territory. This report records flood period, location, duration, causes, hydrological information such as rainfall and water level, inundation depth and others. Based on this report and field survey results, inundation duration, depth, frequency and causes are summarized in Table G-4 and illustrated in Fig. G-4 for each flash flood prone area. From these results, it is found out that flash flood was occurred with high frequency at the flood prone area along the Sg. Kerayong. Inundated period at upstream flood prone areas are approximately 2 to 4 hours and other areas are 5 to 8 hours.

Outside the Federal Territory, in the Klang River Basin, which lies in the Selangor State is also affected by flash floods. According to the Selangor State Annual Flood Report (Laporan Banjir/Kemarau Tahunan Negeri Selangor), 47 flooded areas were recorded between 1984 to 1986 as shown in Fig. G-5. Based on these reports and field survey results, phenomena of flash flood are summarized in Table G-5 for each flooded area. Among these areas, lower reaches of the Klang River are flooded basically due to the effect of high tide.

The main causes of these flash floods are as follows:

- Insufficient depth or width of river or canal due to sedimentation and heavy vegetation growth on its banks.
- Rapid housing development which causes heavy silting and increase in peak discharge.
- Drainage channels, culverts, bridges etc. clogged or choked with rubbish and other waste materials.

- Overflowing of mining pools.
- Breaching of river banks/dykes.
- Absence of retaining wall to prevent floods.
- The settlements are situated in low lying areas with insufficient or without any drainage systems.
- Occurrence of tide which impedes the discharge of drains into the downstream reaches of the river as well as the smooth discharge of the river into the sea.

3. PREVIOUS FLOOD DAMAGE

3.1 Flood Damage Estimation for January 1971 Floods

Unlike the physical flood conditions, past records of flood damage in monetary terms are not available except for the case of the January 1971 floods. This estimation was carried out as a part of the Study of Kuala Lumpur Flood Mitigation Project. A field survey of flood damage for the January 1971 floods was performed by the United States Bureau of Reclamation and the Malaysian Drainage and Irrigation Department, the government of Malaysia in June 1976. The summary of the results is shown below.

Estimated flood damage

- м\$3,710,900
- M\$10,001,200(*)
- M\$3,063,000(*)
- M\$17,492,100

Total (1977 price level) M\$34,267,200

Note: (*) 10% of direct damage is added as sales loss.

3.2 Estimation of Potential Direct Annual Average Damage

In view of the lack of historic information, a survey was carried out by Dingle Smith (Australian National University) in 1985 and a part of the results were reported recently.

The data were gathered in Kuala Lumpur and analyzed to estimate the "Potential Direct Annual Average Damage" to the commercial and residential sectors.

Table G-6 presents the estimates for the eight (8) areas into which the flood-prone area was divided. This table shows the interim study results.

4. FLOOD DAMAGE ESTIMATE

4.1 General

The benefit of a flood mitigation project is defined as the monetary value of the difference in damage with and without project implementation. The estimation of flood damage presented here is made assuming no project implementation. In other words, the flood damage estimate is based on a "do nothing" scenario.

The many parameters needed for the estimation of flood damage were obtained through the results of field surveys and from the agencies concerned. For a clarification of the relationships among the subtasks in this study, the reader is referred to Figure G-7.

4.2 Flood Damage Survey and Building Survey

4.2.1 Flood Damage Survey

The Study Team carried out a field survey and collected information on actual damage with regard to various types of properties.

a) Surveyed Areas

The survey covered the flood prone areas in the Klang River Basin from Gombak district to Klang district including Federal Territory and Petaling.

b) Items Surveyed

The survey forms used are presented in Table G-2. Two types of interview questionnaires have been designed; one is for use with households and the other for shops, factories and institutions.

c) Sample Size

The sample size was 582 for residential houses, 146 for shops, factories and 22 for institutions.

d) Method

A home interview method was adopted in this survey.

4.2.2 Building Survey

(1) Objectives

A building survey was also carried out in addition to the abovementioned flood damage survey. The aim of this survey was not to examine flood damage, but to collect the basic data necessary to identify estimation parameters for the number of housing units, shops, factories, and buildings for public use in flood prone areas.

Typical areas were selected by referring to the present land use map and all the buildings in those areas were surveyed on the items mentioned below.

(2) Surveyed Items

All the buildings in the selected areas were identified by referring to the maps of 1:1,584 scale and the following items were surveyed.

- Number of stories
- Types of usage of ground floor (residential, commercial, industrial, public facility) and number of units included in the ground floor corresponding to the type of usage
- Type of primary usage of upper floors
- Lot size and building area
- Number of buildings located in the area

(3) Selection of Building Survey Areas

Typical survey areas were selected so as to represent each land use category prevalent in the flood prone areas. The location map covering the survey areas is given in Figure G-6 and explained below:-

a) Residential Area

The residential districts in flood prone areas are considered to be classified into the following four (4) types, and survey areas were selected for each type.

- The high density residential area located within the central urban area bounded by Jln. Pekeliling (from which, 3 survey areas were selected as marked with K, L, M in Figure G-6).
- The housing estates located in the environs of the central urban area (N, O).
- The low density residential areas scattered in the suburbs (P).
- The riverside areas occupied by squatter settlement (Q).

b) Commercial and Service Area

The commercial and business areas in Kuala Lumpur spread along predominantly North-South direction from the confluence of the Klang and Gombak Rivers and along the main roads outside the central business district.

One survey area (G) was selected within the central area with a high density of various commercial facilities and another two (H, I) were from areas comprising a mix of commercialresidential development.

Additional survey area (J) was for the area where commercial facilities are located along the main road.

c) Industrial Area

As medium or large scale industries are considered to be located in Taman Segambut and Sungai Besi, 6 survey areas (A~F) were selected from these areas.

4.3 Procedure and Conditions for Estimating the Potential Cost of Damage

4.3.1 Scheme for Flood Damage Estimate

The total scheme for flood damage estimation is shown in Figure G-7 and explained briefly below:

- Present and future land use are categorized on a fine grid map based on the land use study.
- ii) Building density (Number of buildings/ha) by land use category is obtained through the analysis of Building Survey.

- iii) Quantities of properties (Number of houses, commercial buildings, industrial buildings and indoor movables in these buildings) are calculated by applying the building density to each grid area.
- iv) Unit values of various kinds of property are estimated from the results of the Flood Damage Survey and from the information provided by the agencies concerned.
- v) The unit values of each type of property times the quantity of that type of property summed over all types of property is equal to the total damageable properties in each cell of the grid.
- vi) A hydrological analysis is carried out to establish the relationship between the amount of rainfall and the level of river flooding. Results of this analysis are attached to each cell of the grid.
- vii) The relationship between inundation depth and flood damage is obtained through the analysis of the Flood Damage Survey and is applied to the various kinds of properties according to the information of probable inundation depth.
- viii) Probable flood damages for different magnitude of floods are calculated by aggregating the damage of each cell of the grid.
- ix) Average annual damage is obtained by applying the probabilities of occurrence of different magnitude of floods.

4.3.2 The Grid Method

The width of one cell of the grid is 500 m for the flood prone area located in downstream area from the Sulaiman Bridge and 250 m for upperstream area. The reasons of this treatment are as follows:

- The upperstream area contains the central business district and its environs in which there is dense commercial, residential and public development. Therefore, a 250 meter grid is selected to capture the dense detail of the variegated land uses.
- The fine grid is also required for upperstream area for the calculation of average ground elevation. As the ground elevation at upperstream tend to be more variable in short distance from riverside than downstream, 250 m cell width is adapted instead of 500 m width.

The layout of the grid is based on the Rectified Skew Orthomorphic (R.S.O.) Grid.

4.3.3 Types of Properties in Flood Prone Area

Since flood damage in monetary terms is dependent on property value, the property survey was a crucial part of the investigation. In this flood damage study, the types of properties are classified as follows.

- a) General Properties
 - Various kinds of crops on agricultural land
 - Livestock
 - Various types of buildings for household, retail and wholesale, private services, manufacturing industry
 - Indoor movables in buildings specified above

b) Public Properties

 Infrastructure such as roads, bridges, railway, electricity, and telecommunication facilities and other public facilities (including public buildings). 4.3.4 The Conditions and Parameters for Flood Damage Estimate

(1) Land Use in Flood Prone Area

Present and future land use in flood prone area are the most basic information for a flood damage study. The characteristics of land use in the whole Klang River Basin and in the flood prone area with 500 m width grid are explained in the part of Socioeconomic and Land Use Study. However, the cells of 500 m width in the upperstream from the Sulaiman Bridge are subdivided into 250 m width cells for the purpose of detailed flood damage estimation.

The flood prone areas in the Upper Klang River had been estimated on the basis of areas inundated by the worst flood on record which occurred in 1971.

A present land use map of the flood prone areas was prepared in 250 m x 250 m grid cells on the basis of the topographic maps of a scale of 1:10,000 and aerial photographs taken in 1987, as well as using data collected during site inspection. The land use is classified into the following categories: Residential; Commercial; Industrial; Institutional and Public Facilities; Park and Cemetery; Pond; Agricultural and Vacant Land. Furthermore, to incorporate additional details into the residential areas they were sub-divided into the following three categories:

- Existing housing areas: existing housing areas having high and middle densities located inside urban area as well as new housing estates.
- Squatter areas: high density immigrant settlements erected illegally. These areas are normally deficient in basic amenity and infrastructure.
- iii) Village areas: low density farm land and housing outside the urban area.

Based on the above landuse classification, the present land use pattern in the flood prone areas is tabulated below.

	No. of Meshes	Ha	<u>ج</u>
Housing	153	956	44.8
Squatter	16	100	4.7
Village	47	294	13.8
Commercial	42	263	12.3
Industrial	17	106	5.0
Public Facilities	27	169	7.9
Pond	4	25	1.2
Park/Cemetery	2	13	. 0.6
Vacant Land/Agriculture	33	206	9.7
Total	341	2,132	100.0

PRESENT LAND USE COMPOSITION IN THE FLOOD PRONE AREAS

Of the total area of 2,132 ha in the flood prone areas of the Upper Klang River Basin, 1,000 ha or 88.6% of the total area is occupied by urban facilities which consist of residential, commercial, industrial and public installations. The residential occupancies can be further broken down as follows: existing housing areas with 956 ha or 44.8%, squatter areas with 100 ha or 4.7% and village areas with 294 ha or 13.8%.

As for the distribution of these residential areas, most of the village areas in the flood prone area are located along the upper stretch of the Gombak River and squatter areas are concentrated on the river reservations of the Gombak and Klang Rivers.

The commercial area and public facilities in the flood prone areas are concentrated in the central area with 263 ha and 169 ha respectively. The industrial area, with 106 ha or 5.0% of the total flood prone areas, is located within Taman Segambut along the Batu River and Ulu Klang along the Klang River.

Other non-urban usages, such as pond, park and cemetery, agricultural and vacant land, account for some 244 ha or 11.4% of the total flood prone areas. These areas are mostly distributed along the upper stretch of the Gombak River, while some 25 ha of ex-mining land are mostly located along the Batu River.

The future land use information is prepared for the year 2005.

- (2) Agro-Economic Indicator
 - a) Unit Yield of Main Crops

Yield per hectare of main crops are shown in Table G-7. These figures are the average in Selangor state and are considered to be applicable.

b) Economic Prices of Crops

Economic prices of main crops are available from various sources according to the kind of crops. The detailed information is shown in Table G-8 to Table G-10. A summary of these information is given in Table G-11.

c) Unit Value of Livestock

The value of livestock per hectare is shown in Table G-12 as the average of each district.

The future unit values of each crop and livestock per hectare are assumed to remain the same as those at present.

(3) Number of Buildings

Number of buildings for household, commercial and manufacturing industry are estimated applying the building density per hectare obtained from the result of the Building Survey conducted by the Study Team.

Building density by type of building and by land use category is shown in Table G-13.

(4) Unit Value of Building

Present unit value for each type of building is estimated based on building cost per m^2 (excluding land value), standard size of building, and its salvage value. The detailed data on unit cost of building are shown in Table G-14.

Future unit values of each type of building for the year 2005 are obtained by applying the rate of increase of per capita GDP from 1988 to 2005 (1.21).

(5) Value of Indoor Movables per Building

The types of indoor movables surveyed are as follows:

Residential house - Household articles such as clothes, furniture, kitchen commodities, bicycle, car, etc.

Commercial sector - Indoor assets such as machines, lamps, display equipment, etc. and stock of goods to be sold.

Industrial sector - Indoor assets, raw material and stock to be sold.

The present unit values of above mentioned indoor movables were calculated using the data collected through the Flood Damage Survey conducted by the Study Team and shown in Table G-15. As household articles were valued at present price level, they were re-estimated to reflect the actual values in consideration of salvage value.

Future unit value of indoor movables were estimated by applying the rate of increase in per capita GDP from 1988 to 2005 (1.21).

(6) Damage Rate

The flood damage rates for buildings, household articles, commercial and industrial sectors' assets were obtained by the Flood Damage Survey conducted by the Study Team.

The Japanese experience, on the other hand, was applied to the damage rate for stock to be sold because the reliable data were not obtained with regard to the amount of stock damages.

The damage rates applied in this Study are shown in Table G-16.

4.4 Probable and Annual Average Flood Damage

4.4.1 Results of Flood Damage Estimate

The estimated probable flood damage is classified into following three types.

- General property damage
- Public property damage
- Indirect flood damage

Among these, general property damage was estimated through the procedure mentioned above. Rest of two types of flood damage were estimated with the method explained below:

a) Public Property Damage

This category includes the damages for public facilities and utilities such as roads, railway, electricity and telecommunication (including public buildings).

According to the previous study conducted by JICA (National Water Resources Study, Malaysia), flood damages of public sector were estimated as 30% of private sector. The same rate was applied in this Study.

b) Indirect Flood Damage

Damage under this category involves wage loss, commercial trade loss, industrial production loss. The indirect damage can be usually estimated by multiplying a factor to direct damage. The United States Bureau of Reclamation and Drainage and Irrigation Department (DID), Malaysia applied the rate of 10% to commercial direct damage for estimating indirect damage as business loss in the 1971 flood. This rate was applied in this study to commercial and industrial sector as well.

In this study, six (6) cases of return period of flood, i.e. 10year, 30-year, 50-year, 80-year, 100-year and 200-year return period of flood damage were estimated on the basis of the present (the year 1988) and future (the year 2005) land use conditions as shown in Table G-17 and G-18 respectively. Flood damage of 100-year return period by each river stretch is shown in Table G-19. Figures G-8 and G-9 illustrate flood damage potential. 4.4.2 Annual Average Flood Damage

The Annual Average Damage (A.A.D.) is calculated by using the following equation:

 $D = \sum [(N_{m-1} - N_m) \times (L_{m-1} + L_m)/2]$

- where D : Annual average damage
 - N_m : Excess probability for discharge level (m)
 - ${\tt L}_{\tt m}$: Amounts of probable damage at applicable discharge level (m)
 - m : Ordinal number for discharge level corresponding to return period

The results of the estimation are shown below:

$$D_{1988} = (1/5*-1/10) \times (0 + 415.0)/2 + (1/10 - 1/30) \times (415.0 + 593.1)/2 + (1/30 - 1/50) \times (593.1 + 821.8)/2 + (1/50 - 1/80) \times (821.8 + 944.0)/2 + (1/80 - 1/100) \times (944.0 + 995.0)/2 + (1/100 - 1/200) \times (995.0 + 1069.6)/2 = 77.9 (million M$)$$

$$D_{2005} = (1/5*-1/10) \times (0 + 956.7)/2 + (1/10 - 1/30) \times (956.7 + 1342.5)/2 + (1/30 - 1/50) \times (1342.5 + 1929.0)/2 + (1/50 - 1/80) \times (1929.0 + 2190.1)/2 + (1/80 - 1/100) \times (2190.1 + 2286.5)/2 + (1/100 - 1/200) \times (2286.5 + 2502.7)/2 = 179.1 (million M$)$$

Note (*): The maximum frequency of existing flood mitigation facilities is assumed to be 5-year return period.

- 1. RIVER WORKS MASTER PLAN 1980, VOL. 1 TO 4 by Drainage and Irrigation Department, RTB
- 2. KUALA LUMPUR FLOOD MITIGATION PROJECT, FLOOD CONTROL APPENDIX, September, 1980 by United States Bureau of Reclamation
- 3. LAPORAN BANJIR TAHUNAN 1984 by Drainage and Irrigation Department, Federal Territory
- 4. LAPORAN BANJIR TAHUNAN 1985 by Drainage and Irrigation Department, Federal Territory
- 5. LAPORAN BANJIR WILAYAH PERSEKUTUAN 1986 by Drainage and Irrigation Department, Federal Territory
- 6. LAPORAN BANJIR WILAYAH PERSEKUTUAN 1987 by Drainage and Irrigation Department, Federal Territory
- 7. FLOOD INFORMATION REPORT, 1979 TO 1988 by Drainage and Irrigation Department, Federal Territory
- 8. LAPORAN BANJIR/KEMARAU TAHUNAN NEGERI SELANGOR 1984 by Drainage and Irrigation Department, Selangor State
- 9. LAPORAN BANJIR/KEMARAU TAHUNAN NEGERI SELANGOR 1985 by Drainage and Irrigation Department, Selangor State
- 10. LAPORAN BANJIR/KEMARAU TAHUNAN NEGERI SELANGOR 1986 by Drainage and Irrigation Department, Selangor State
- 11. PALAN BANJIR 1971 by Selangor State
- 12. FIELD SHEET 1971 FLOOD LEVEL SURVEY by Sr. John Ambulance Association
- 13. NATIONAL WATER RESOURCES STUDY, MALAYSIA SECTORAL REPORT VOL. 5 RIVER CONDITION, October 1982 by Japan International Cooperation Agency
- 14. KUALA LUMPUR JANUARY 5TH, 1971 FLOOD MAP obtained from Drainage and Irrigation Department, Head Quarter
- 15. PRELIMINARY STUDY REPORT ON FLOOD MITIGATION OF KLANG RIVER BASIN IN MALAYSIA, January 1987 by Ministry of Construction, International Engineering Consultants Association
- 16. KUALA LUMPUR FLOOD MITIGATION PROJECT MALAYSIA EXECUTIVE SUMMARY, February 1981 by Water and Power Resources Service, United States Department of the Interior
- 17. 1970/1971 FLOODING DETAILS OF AREAS AFFECTED by Drainage and Irrigation Department, Selangor State
- 18. FLOODING OF THE ROYAL SELANGOR GOLF CLUB, July 1988 by Drainage and Irrigation Department, Federal Territory

- 19. PROPERTY MARKET REPORT 1986 by Ministry of Finance Malaysia
- 20. PADDY STATISTICS MALAYSIA 1985 by Ministry of Agriculture
- 21. STATISTICAL HANDBOOK, AGRICULTURE MALAYSIA 1984 by Ministry of Agriculture, August, 1986
- 22. OIL PALM, COCOA, COCONUT AND TEA STATISTICS HANDBOOK by Department of Statistics, May, 1987
- 23. TUMBOH BLOCK REGIONAL INTEGRATED DEVELOPMENT PROJECT SUPPORTING TECHNICAL AND FINANCIAL DATA (ANNEX 14) by Ministry of Agriculture January, 1986
- 24. PRODUCTION COST ESTIMATION AND RETURN OF MULTI-CROPS FOR SELANGOR AND NEGERI SEMBILAN, PENINSULAR MALAYSIA by Department of Agriculture, June, 1987
- 25. LIVESTOCK STATISTICS, MALAYSIA 1985 by Ministry of Agriculture, November 1986
- 26. KOS PURATA SEMETER PERSEGI BAGI KERJA-KERJA PEMBINAAN BANGUNAN. BAGI TEMPOH: JAN. HINGGA, June 1986 by Jabatan Kerja Raya

1

THE STUDY ON FLOOD MITIGATION OF THE KLANG RIVER BASIN

No.H-16-02

Subject; Flood/inundation survey in Klang River Basin Executive agency; JICA Study Team in cooperation with DID

Survey date;	Oct Nov. 16, 1987
Interviewer's name;	Abc. D. Efat
Interviewer's ID No.;	123456
Address; 9, Jl. Raja	Ali, Kg. Barn, K.L.
(Name of building)	

Location;

Yes) No Has your house/building ever flooded? If Yes. times per year (houses/buildings on flood plain). or **3** times in **20** years (houses/buildings away from flood plain),

(1) Elected			
(1) Flooded;	Uase Worst C) Overflow of ba	
	2nd	Backwater from	river or canal
	3rd	Others;	
	Flash flood Average	Much rubb	ish at pier
(2) Year and mont	h of above case;	19	71 Jan
(3) Type of house	/building	· · · · · · · · · · · · · · · · · · ·	
\square	2	3	4
× Thirthin the			
(4) Height of flo	or from the ground	(A)	<i>0</i> ,2 m
(5) Height of the	elevated ground;	(B)	m
(6) Inundation de	oth;	(X)	
(calculati	on)	(X-A)	2, 8 m
(7) Inundation du (i) On the flo From begin From peak Total;	ration por ning to peak; to end;		3 Hours Day O Hours Day Hours Day
(ii) On the gr	ound		
From begi	ning to peak;		B lours Day
From peak	to end;	1:	2 Hours Day
Total;	•	/	Hours Day
(8) Rainfall dura	tion at that flood	;	24 Hours
Period betwee	n begining of inun begining of rain	dation and	6 llours
(9)Thickness of s	ediment on floor/g	round after flood Averag	nad subsided;
(10) Can you more	mbon the fleed fl		
If Yes, Plea	se show the flood	N direction?	Map of Page 1.
(11) Is there the	FLOOD MARK on wal	l or something?	(Yes) No
(12) Others;			

Table G-	2(1) INTERVIEW SHEET FOR FLOOD	DAMAGE SU	JRVEY FOR HOUSEHOL	D
	THE STUDY ON FLOOD MIT OF	IGATION	Sample No	D.
	THE KLANG RIVER BA	SIN		
Subject:	Flood/inundation damage survey in Klang River basin.	Date	Oct. Nov.	,1987
Executive agency	JICA STUDY TEAM in cooperation with DID	Intervi	lewer's Id No.	
Interv	iewees' Address	Area co	ode	

ZA. When did flood/inundation water come to the maximum depth?

 Worst	Case	year	

- A. Water Depth
- A-1 Was your house submerged in the year of the worst case? What about the average case?

Worst	case	Average	Case
Yes	No	Yes	No

(To be continued)

۸-2	Chec	k the items below:	·····	·						
			Wor	st C	ase	Αν	erage	e Ca	se	
			ļ			Occurs	once	in	average	l year
	(н)	Type of house/building→ (see below) ●	1 2	3	4	1	2	3	4	
	(A)	Height of the floor from the ground					·			
			(A)		м	(7)			М	
	(в)	Height of the elevated ground	(в)		м	(B)			M	
	(x)	Inundation depth>	(x)	- <u>-</u>	М	(x)	<u></u>		M	
		$(Calculation) \longrightarrow$	(X-A)		М	(X	A)		M	
	(D)	Duration day	(0)		days	(D)			days	

Type of house/building

(To be continued)

B. House area & building value

	Questi	ons	Answers			
B-1	How large is your housing area?	Total lot (including garden)	() M x ()M = ()sq.M		
		Housing/ground floor (excluding garden)	() M x () M = () sq.M		
B-2	How many stories doe	s your house have?		stories		
8-3	By what material is constructed?	your house's wall	1. Bamboo/stra 2. Wood 3. Tin 4. Brick 5. Cement	w		
8-4-1	How many years ago w constructed?	as your house		years ago		
B-4-2	How much does your h you at construction (Original cost)	ouse cost time?		M\$		
B-4-3	If you reconstruct the how much does it cos	his house now, t7		M\$		

C. Damage

C-1 Did the items below submerged?

	The Worst Case	Average Case
House	Yes No	Yes No
Household articles	Yes No	Yes No

(To be continued)

C-2. Damaged items and their value

•			Replacing/r	epairing cost
			Worst Case	Average Case
C-2-1A	House	Was your house repaired or newly constructed?	. Repair . New	. Repair . New
			Const.	Const.
C-2-1B		How much did it cost?	M\$	M\$.
C-2-2∧	Household articles	Were any household articles damaged by flood/inundation?	Yes No	Yes No
С-2-2В		Which items below were damag How much did they cost in re	ed? pair/replacement	?
		Carpet	MS	N\$
		Desk, chair, wardrobe, buffe	t M\$	M\$
		Clothes, dresses	M\$	M\$.
		Kitchen commodities	M\$	M\$
		Electric equipments	M\$	M\$
		Others	. M\$	MS
C-2-3	Others	How much did you expend in re	Ms	M\$
∞ ka ka∕		below?	sharr rudt rebrych	IN THE TREMS
		Vehicle/bicysle	M\$	M\$
		Livestock (chicken, duck, cow sheep, etc.)	м\$.	MS
	Ll	1		

(To be continued)

•

M\$/month Average How much was your income reduced owing to flood/inundation? Income loss due to flood/inundation How many days couldn't you work due to flood or inundation? M\$/month Worst case days/month Average Total days which you couldn't work due to flood/inundation How many days do you work per month? days/month Worst case 9-0 How much is their income per month or per day? How many members of your family are getting incomes? Total working days per month days/month <u>7</u>-2 74 Average income Average income ÷Σ Σ How many families are living in this house? . per day ₽₽ per month е Ч Persons m 4 'n н 2 7 1-0-13 Wage Lost No. of family members TOTAL ЧЦ Å.

(To be continued)

Item	Sub-item			Number	Price (M
Household	Floor mat				
Articles	Carpet				
	Curtain				
	Clothes	Overcoat			
		Jacket			
		Suit			ļ
		Trousers			
		Shirts (long, sh	ort)		
		Longies			ļ
		Sari			
		Blouse			
		Skirt			ļ
		Sagha			
		Shoes		<u> </u>	<u> </u>
	Furniture	Chairs cofa	· · · · · · · · · · · · · · · · · · ·		
	Furniture	Indirs, sola			
		lable, uesk	bookshalf plate shalf		
		Nord TONE, DUTTER	, booksnett, place snett	Į	· · · · · · · · · · · · · · · · · · ·
		Battroce		· · · · · · · · · · · · · · · · · · ·	
		Blacket		<u></u>	
	Vichoo	Plate cue houl	(China)		
	KICHEN	riate, cop, nowi	(Steel aluminium)		·/
	1		(Plactic)		
		Pot	(Ching)		-
		ruc	(Steel aluminium)		
			(Plactic)		
	Į	Gas anuipment	(11/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1		1
	1	Refrigerator	<u> </u>		
		Radio		<u> · · · · · · · · · · · · · · · · · · ·</u>	1
		Tane recorder		· [1
		TV set			
		Lamp (Table lamp)			
		(on the wall/ciel)			
		Bicycle			
		Car			
	Other luxuries				
		ł			Į
		i i]	

Check the number of the items below which interviewee have now.

(To be continued)

Asset	How much is the value of this shop	- M\$/
	factory's assets? (assets includes	,
	machine, lamp, display equipment, etc.	· · · · · ·
	but excluding land & building)	
	Can you estimate the value of	M\$/
	this building in 1987?	<i>.</i>
		ما الله من عنو إنها الله في الله من الله عنه الله الله عنه الله الله الله الله الله الله الله ال
	How seriously damaged your asset by flood/	M\$/
	inundation in average case?	
	· · · · · · · · · · · · · · · · · · ·	
	· · · · ·	
Stock	How much was the total value of your	
	shop/factory's stock in 1987?	
	How approvely demand your stock by	me7
	flood/inundation in average case?	1147
C - 1		
20165 2006 (4)	now many days did you close your store/	days/yea
1039 (1)	average case?	1
Auge		······································
Average	How much is the sales value per day or	m\$/day
-452	ber WOUCU1 (TIT T201)	or
		₩ 5 .
		M\$/month
	What was percent loss of sales?	
Calco		
Sales	How many days did you close your store/	days
1085 (6)	ractory/owing to ribod/inundation/	
The year	How seriously did your sales value decrease	%
of the	in the worst year in comparison with the	

.

.

IN 1971 FLOODS FOR EACH RIVER STRETCH INUNDATED AREAS AND AVERAGE INUNDATED DEPTH Table G-3

Inundated Average Depth 0.92 .08 Е. . 07 0.19 0.54 ..07 0.89 0.86 . 89 5 (H 1.410 0.210 1.648 0.865 0.788 0.868 1.302 1.257 I.309 2.154 0.565 7.872 .2.970 121.960 Total 0.793 0.141 3.350 7.600 0.501 6.100 [km2) 0.048 0.022 0.006 0.015 0.005 Over 3m Depth (Jam2) Inundated Area 2.230 Depth 0.040 2 - 3m 0.201 0.005 0.340 0.198 0.010 0.140 0.189 0.497 0.428 0.182 (Jkm2) Depth - 2m 0.255 0.677 0.740 0.459 6.580 24.700 0.386 0.006 0.143 0.452 4.141 2.690 46.103 (km2) 0.072 0.303 0.267 0.321 0.711 3.200 3.549 0.459 0.818 0.788 0.415 0.409 6.390 - 0 0.210 0.538 ..414 0.135 0.123 0.094 0.114 0.537 0.665 38.650 4.870 73.579 Depth (Jan2) 0.501 2.900 3rd Miles Railway bridge - Sg. Kerayong confluence Total Sg. Kerayong confluence - Jln. Klang bridge Jln. Kg. Bandar Dalam - Batu R. confluence Jln. Klang bridge - Sg. Puncala confluence Jln. Duta Segambut - Gombak R. confluence Batu R. confluence - Klang R. confluence Jln. Kinabal - 3rd Miles Railway bridge Puchong Drop - Sg. Damansara confluence U/S Sg. Damansara - Klang R. confluence U/S Sg. Kerayong - Klang R. confluence Sg. Ampang confluence - Jln. Tun Razak Sg. Pencala confluence - Puchong Drop U/S Gombak R. - Jln. Kg. Bandar Dalam Jln. Tun Razak - Gombak R. confluence - Klang Town U/S Sg. Ampang - Klang R. confluence Klang R. - Sg. Ampang confluence Sombak R. confluence - Jln. Kinabal J/S Sg. Keroh - Jln. Duta Segambut J/S Batu R. - Jln. Duta Segambut River Stretch Damansara confluence U/S Damansara Kerayong Ampang Gombak Klang Gombak Klang Klang Gombak Klang Klang Klang Klang Klang Keroh Klang Klang River Klanq Batu Batu No. 15 Ŋ ņ 14 16 8

Note: U/S means upstream

			Tabl	e G-4		FLASE	FLOOD AREAS IN FEDERAL TERRITORY
No. Location	Ave Dura	r ion	Inunda: Ave. De	tion bth	Freque	ncv <1	Causes and Other Information
	hrs [hrs		[m]			Times	
1 Datuk Keramat	ഗ	[5]	0.8	[0-8]	с,	[77.4]	Klang River overflow. Insufficient drainage Capacity. Intrusion through drain from Klang River. Rubbish cloqged drain. Increase sediment from unstream housing area.
2 Jln. Yap Kwan Seng 3 Kg. Baru	ഗന	[4] [5]	0.7 0.8	[8-0] [0-9]	1 25 [[JY/01]	Klang River overflow. Intrusion through culverts from Klang River. Insufficient drainage capacity. Klang River
4 Kq. Cendana	ų	[6]	1.0	(0'T)	14	[3/Xr]	oreached its protection dike on becenber 10, 1985. Instrusion through culbert from Kiang River. Klang River overflow.
5 Pulapol	J	20) •	[0.5]	•	[2/Yr]	Burus River overflow. Rubblish clogged drain.
6 Jln. Pekeliling 7 Kg. Periok/Kg. Doraisamy	ഗന	[4]	0.5 1.1	[0.8]	80 1-	[JX/TT [JX/TT	Bunus River overflow. Intrusion through drain from Bunus River. Rubbish accumulate at trash screen. Bunus River overflow. Instrusion through drain from Bunus River. Rubbish clogged drain.
1							Insufficient drainage capacity because of sedimentation.
8 Taman Ibu Kota	7	[2]	0.5	[0-4]	-	15/2r]	Belongkong River overflow. Insufficient flow capacity at bridge. Insifficient river capacity because of sedimentation. Flood frequency increase recently.
9 Taman Setapak	2	[4]	0.5	[0.4]	r-1	[2/17]	Belongkong River overflow. Rubbish clogged drain. Flood frequency increase recently.
10 Kg. Bandar Dalam	مت د	<u>ଲ</u> (۰. م. م	[0.4]	, −1 -	[4/17]	Sombak River overflow. Intrusion through drain from Gombak River.
li Ko. Cempedak 12 Ko. Cempedak	n ₽[<u> </u>	2.0	[0.8]	-1	10/Yr]	sonnar rive overlieve. Intrusion hitoudin arain iron sonnar river. Johnsk River overlieve. Intrusion through drain from Gombak River.
13 Kg. Cubadak Tambuhan	01	[4]	6-0	[0.3]	N	[6/Yr]	Sombak River overflow. Intrusion through drain from Gombak River.
14 Kg. Puah Seberang	7	[3]	J.6	[0.7]	m	[2/Yr]	Sombak River overflow. Intrusion through drain from Gombak River.
15 Sentul Pasar 16 Ko. Tanah Lapang		- - - - - - - - - - - - - - - - - - -		[0-8]		[9/ XL]	
17 Batu View		6		[0-2]		[3/Yr]	
18 Taman Kok Lian 10 meren vert berd	8	[4]	0.6	[0-6]	-	[6/Yr]	Satu River overflow. Insufficient drainage capacity.
19 Bamboo Garden 20 Bamboo Garden	r	5	đ	[0-0]	1	[17.76]	utivutitutadu argaderuy. 1. Biuer averfiaw . Tarinision thronich drain from Batu River.
21 Secambut Industrial Estate	~ 60	50		[0.6]	28	[77,01]	datu River overfilow. Incruision through drain from Batu River.
22 Kg. Benteng	•	[4]	1	[1.2]		[1/2]	Kerch River overflow.
23 Segambut Dalam	ý		0-6		4		Iributary of Kerch River overflow.
24 Kg. Railway Gate	7 00	5	م. م	[0-6]	M C	any/Yr] [6/vr]	keroh River overtiow. Intrusion through drain from Keroh River. Jatu River overflow. Intrusion through drain from Baru River.
20 Dy: Massipiitay 26 Dyirkfialds	~ 4	56	- α 2 C		ζ.α		view tweet overflow. Intruston through drain from Kland River. Rhibish clouded drain.
27 Kg. Haji Abdullah Hukom	י עז	25		[0.8]		[77.79]	tions River overflow. Intrusion through drain from than River. Insufficient drainage capacity.
28 Kg. Selamat	ŝ	<u>ا</u>	1.0	[6.0]	01	[7,7,2]	Lang River overflow. Intrusion through drain from Klang River.
29 Kg. Limau 26 Vz Providenci	ύ	[9]	0,0	[]. [].	2. 2.	[8/Yr]	(lang Kiver overflow. Ternision through drain. Dan Biussensflow. Ternision through drain from Kland Diver
31 Kg. Bakti	1 v	59	0	[0.6]	 	[17, 12]	tiang River overflow. Kerayong River overflow.
32 Kg. Pasir Dalam	6	5	1.0	[1-0]	r-1	[J.L.]	klang River overflow.
33 Kg. Pantal Dalam	9	2	6-0	[0.8]	o i	[エス/し]	Linag River overflow. Intrusion through drain from Klang River
34 Jin. Klang Lama 4 1/2 miles	9 4	Ē	۵. 0	[0-6]		[9/Yr] 15/22]	tiang tiver overriow. Thermood at versiow. The discoversion through device from Viscoversion.
36 Kg. Pasir Lama	n ve	22		[0.9]	, œ	5/Yr]	then gives overflow. Intrusion through drain from Alan River.
37 Kg. Sentosa	9	6	,	[0.8]		[1,19]	tlang River overflow. Intrusion through drain from Klang River. Rubbish clogged drain.
38 Kg. Petaling Bahagia		[3]		[0.8]		[8/Yr]	tlang River overflow. Intrusion through drain from Klang River. Rubbish clogged drain.
39 Kg. Bohol	9	<u>5</u>	1.2	[2-2]	4	[5/Yr]	-intrion through Kuyoh River from Klang River. Overflow from mining pond. Kuyoh River overflow.
40 Fluct Uld Al Jin Cherse 3 1/2 miles			۲ د	[6-0]	יי בי ע	12/21	risulitement attinge especiely.
42 Chan Sow Lin	r [[- 9				10/71	sterioris store for the state of the state o
43 Jln. Sg. Besi 3 1/2 miles	4	£	8.0	[1-1]	12	20/11	kerayong River overflow. Insufficient drainage capacity.
44 TUDM	m	<u> </u>	1-1	[0-6]	N	20/Yr]	insufficient culvert capacity under Highway.
40 Kg. Sungal Penchala 46 Km Cubadak Hilim		25				[3/1F]	vayu Aitari tuveilova. 11. stroke voerilova
47 Jln. Kepong 4 miles		32		[0-2]		[9/Yr]	tubish cologged drain.
48 Kg. Delima		Ē		[0.5]		[1/4r]	Jinjang River overflow.
49 Bukit Bintang Plaza		23		[0-3]		10/Yr]	insufficient drainage capacity. Overribed water run into underground car parking area.
20 KOVAL SELANGOT LOLI LILU		-0		10-01		12270	tunititer aratume reverter.

.

Table G-6

		Commercial		Residential		
	Area	No. of Properties	AAD Contents	No. of Properties	AAD Contents	AAD (1) Structure
1.	Brickfields	405	1.37,283	988	61,804	7,475
2.	Hukum	25	15,165	360	47,701	16,490
3.	Keramat	. 95	12,071	983	16,628	661
4.	Kasipillay	- 56	5,483	923	17,471	2,294
5.	Bahru	135	241,651	960	135,972	11,918
6.	Bunus	26	34,680	221	25,251	3,731
7.	Central	941	513,774	186	13,080	1,592
8.	Sentul	230	206,249	341	51,122	2,204
	Total	1,913	1,166,356	4,962	369,029	46,365

Source : Urban River Flooding in Kuala Lumpur, Dingle Smith March 1985 All values in M\$ at 1985 prices.

AAD : Average Annual Damage.

(1) Structural damage only included for wooden buildings.
YIELD PER HECTARE OF MAIN CROPS Table G-7

·	Sel	angor & W. Pers	sekutuan	Ф Д	ninsular Malaysi	щ
Crops	Flanted Area (hectares)	Production (tonnes)	Yield per hectare (ton/ha)	Planted Area (hectares)	Production (tonnes)	Yield per hectare (ton/ha)
Paddy *	35, 620	127,337	3.57	465,510	1,680,789	3.61
Rubber 2*	104,985 (46,239)	102,122 (48,679)	0. <i>97</i> (1.05)	1,684,600 (443,569)	1,487,411 (509,687)	0.88 (1.15)
Oil Falm 3* [Fresh Fruit Bunches]	121,947 (89,332)	1,878,315 (1,764,444)	15.40 (19.75)	1,215,592 (691,874)	16,472,682 (10,827,952)	13.55 (15.65)
Cocoa 3*	- (6,380)	(3,419)	- (0.54)	106,932 (33,533)	19,161 (17,819)	0.18 (0.53)
	lw Statistics Ma	avsia 1985				

. source

: * Paddy Statistics Malaysia 1985 2* Statistical Handbook, Agriculture, Malaysia 1984 3* Oil Palm, Cocoa, Coconut and Tea Statistics Handbook Malaysia 1985

Note : Figures in parenthesises indicate the case of estates

Table G-8

·····	198	6
Items	Financial	Economic
US\$/mt 1.RSS1, spot, New York	100	0
2. Less Ocean freight, insurance and handling, Klang to New York	-15	0
3. F.O.B. Port Klang M\$/mt (US\$1 = M\$2.40)	85	0
4. F.O.B. Port Klang	2040	2040
5. Port handling(\$2) & transport(\$8)(a)	-13	-10
6. Export duty (b)	-198	-
7. Ex-factory price	1829	2030
8. Processing cost (c)	-160	-142
9. Farm gate price for RSS1	1669	1888
10. Quality discount Less 15% of RSS1 price for grade differential	-250	-283
11. Farm gate price	1419	1605

Source: IBRD, Commodity Price Forecasts, in constant 1983 dollars (introduced in "Tumboh Block Regional Integrated Development Project (Annex 14)". Ministry of Agriculture, Malaysia, 1986. A few adjustments were added in above table by JICA Study team)

- Note: (a) A CF of 0.68 applied for port handling + CF of 0.79 for transport of approx. 50km at M\$0.20 ton/km
 - (b) The research and replanting cess was assessed at M\$138/ton; export duty on rubber is assessed as follows: On the gazetted value listed below, a duty is calculated in cents per kilogramme to the nearest 1/8 of a sen according to the rates shown -On the first 180 sen per kg.....ad valorem Nil plus on the next 11 sen per kg.....ad valorem 20% plus on the next 11 sen per kg.....ad valorem 30% plus on the next 11 sen per kg.....ad valorem 30% plus on the next 11 sen per kg.....ad valorem 35% plus on the next 11 sen per kg.....ad valorem 40% plus on the next 11 sen per kg.....ad valorem 40% plus on the next 11 sen per kg.....ad valorem 40% plus on the next 11 sen per kg.....ad valorem 40% plus on the next 11 sen per kg......ad valorem 50%

(c) A CF of 0.89 applied for processing cost

Financial	Economic
	555
	-63
1180 -340 -13 827	492 -9 1171
	365 -60 305
732 -37 -40 655	732 - -28 704
192 -24 -34 134 -4	262 -22 -23 218 -3
	$ \begin{array}{r} 1180 \\ -340 \\ -13 \\ 827 \\ \hline 732 \\ -37 \\ -40 \\ 655 \\ \hline 192 \\ -24 \\ -34 \\ 134 \\ -4 \\ 130 \\ \hline \end{array} $

Table G-9 DERIVATION OF FARM GATE PRICE FOR PALM OIL, PALM KERNEL AND FRESH FRUIT BUNCH

- Source : IBRD Commodity Price Forecasts, in constant 1983 dollars (Introduced in "Tumboh Block Regional Integrated Development Project (Annex 14)". Ministry of Agriculture, Malaysia, 1986. A few adjustments were added in above table by JICA Study team.
- Note : (a)-The export duty on palm oil is based on the following: On the gazetted value listed below, a duty is calculated in ringgit per tonne to the nearest cent, according to the rates shown -On the first \$500 per tonne..... ad valorem Nil plus on the next \$49.21 per tonne..... ad valorem 30% plus on the next \$49.21 per tonne..... ad valorem 35% plus on the next \$49.21 per tonne..... ad valorem 40% plus on the next \$49.21 per tonne..... ad valorem 45% ad valorem 50% plus on the balance..... (b)-A CF of 0.72 applied for port handling + CF of 0.66 for transport of 50 km at M\$0.20 ton/km (c)-Actual prices vary with the year of harvest of FFB (d)-A CF of 0.90 applied for processing cost (e)-15% of output cost; a CF of 0.68 for trade applied

Table G-10AVERAGE PRICE AND PRODUCTION COSTOF VEGETABLE, FRUITS

Item	Vegetables	Fruits
Yield (ton/ha)	15.1	14.8
Price (M\$/ton)	680.1	633,3
Production cost (M\$/ton)	261.6	116.7

Source : Originally depends on "Tumboh Block Regional Integrated Development Project (Annex 14)", Ministry of Agriculture, Malaysia 1986.

Note : Figures concerning vegetables are the simple average of 12 types vegetables, and six kinds of fruit are averaged.

Item	Yield (tonne/ha)	Price (M\$/tonne)
Paddy	3.57	*504
Rubber	0.97	1,605 (1,619)
Oil Palm (FFB)	15.40	214 (217)
Cocoa/Coconut		*M\$2,819/ha
Vegetable	15.10	680 (685)
Fruit	14.80	633 (638)

Table G-11 SUMMARY OF AGRO-ECONOMIC DATA

- Source : * "Production Cost Estimation and Return of Multi-Crops for Selangor and Negeri Sembilan". Peninsular Malaysia Agriculture Department, Jun. 1987. Others are from previous tables.
- Note : Prices and costs at 1985 or 1986 level are adjusted by the change or price index in order to indicate the current 1988 price level, which are shown in parenthesises.

Table G-12 DATA RELATED TO LIVESTOCK

.

District			*Quantity	(Head 1981)			2* Pasture &	4* Value
	Buffaloes	Cattle	Goats	Sheep	Swine	Total	Grassland (ha)	(M\$/ha)
GOMBAK	345	1,867	642	i	12,867	15, 721	1,798.9	2,675
SNLANG	29	3,914	2,050	47	8,896	14,936	2,142.3	3, 325
PETALING	398	4,483	2,299	Ι	8,241	15,421	3,662.0	2,243
ULU LANGAT	1	3,488	2,831	514	10,292	17,125	4,138.9	1,823
(3*) Price (M\$/kg)	\$11.0/kg	şıı.0/kg	\$14.0/kg	\$7.0/kg	\$3.0/kg		· .	
Source : * Livestoc 2* Departme 3* "Warta B	k Statistics nt of Agricu sarangan" (Li	s, Malaysia, 11ture 1981 isted Commod	. 1981 lities), Jan	nuary to De	cember 198	Ω		

Note : 4* \sum (Price x Head x Weight Per Head)/Pasture & Grassland Area

In this calculation, weights of buffaloes and cattle are assumed to be 100 kg/Head and rest of livestock 50 kg/Head.

.

Table G-13 BUILDING DENSITY PER HECTAR BY TYPE OF BUILDING AND LAND USE

(units/ha)

		·	Туре	of Building		
Landuse	General dential	Resi- House	Squatter	House	Commerce	Industry
Housing Area (Kuala Lumpur and Klang District)	25.	.5				
Housing Area (other Districts)	20.	0				
Village Area	14.	7			-	•
Squatter Area	. 🗕		37.	9	-	-
Commercial & Service Area	18.	. 6	-		13.8	
Industrial Area	5.	6				6.1

Source : The Building Survey by the Study Team

Table G-14 PRESENT UNIT COST PER EACH TYPE OF BUILDING

Item			House		Squatter	Commerce	Industry
		Wooden	P	ermanent	house [5*]		
Unit cost per : (M\$/m2)	s.g.m [*]	M\$ 270		M\$ 290	M\$ 194	м\$ 350	M\$ 270
Average floor a (m2)	area [2*]		220		50	460	1,000
Unit cost per building (M\$)			61,600		9,700	161,000	270,000
Salvage value	[3*]		10% of u	nit cost	per buildin	a	
Average unit co per building (N	ost 1\$) [4*]		33,880		5,300	88,500	148,500
Source : [*] Bu Ma [2*] By co	ailding C alaysia. / intervi ost consu	ost Inform ewing to g ltants, an	uation Cen puantity s nd to a pr	ntre, Ins surveyors sivate co	titution of and constru nstruction c	Surveyors, ction ompany.	
Note : Types [3*] Sa or [4*] Av co	of build alvage va riginal c verage un ost and s	ing shown lue of bui ost. it cost in alvage val	above are lding is dicates t ue.	e categor assumed he mean	ized as medi to be 10% of cost between	um class. original	

[5*] Wooden low cost house information was applied to squatter house.

Table G-15 PRESENT UNIT VALUE OF INDOOR MOVABLES (1988)

Type of building	Indoor property	Stock, Raw material
General house	M\$ 10,700	~
Squatter house (*)	MŞ 2,400	
Commerce (Service)	M\$ 165,000 (M\$ 165,000)	M\$ 28,900 (~)
Industry	M\$ 344,000	M\$ 300,000

Source ; Flood Damage Survey by the Study Team

Note ; (*) It is reported in "Kuala Lumpur Structure Plan (1984)" that the mean monthly income are M\$ 317 per household for squatter family and M\$ 1,447 for whole Kuala Lumpur. The ratio of 0.22 (=317/1,447) was applied to the value of indoor property of general house and obtained the value of M\$ 2,400 for squatter house (0.22 x M\$ 10,700).

(1))				•
I	nundated depth W(m)	Damage rate for buildings	Damage rate for household articles	Damage rate for assets	Damage rate for stock (*)
1.	W<0.5m	0.053	0.057	0.052	0.127
2.	0.5 <w<1.0m< td=""><td>0.132</td><td>0.096</td><td>0.121</td><td>0.276</td></w<1.0m<>	0.132	0.096	0.121	0.276
3.	1.0 <w<2.0m< td=""><td>0.158</td><td>0.135</td><td>0.161</td><td>0.379</td></w<2.0m<>	0.158	0.135	0.161	0.379
4.	2.0 <w<3.0m< td=""><td>0.278</td><td>0.336</td><td>0.208</td><td>0.479</td></w<3.0m<>	0.278	0.336	0.208	0.479
5.	3.0 <w< td=""><td>0.425</td><td>0.687</td><td>0.243</td><td>0.562</td></w<>	0.425	0.687	0.243	0.562

Table G-16 DAMAGE RATE

Source: Flood Damage Survey by the Study Team (*) Japanese experience (Ministry of Construction, Japan.)

(2) (**) Property Depth W (m) Rubber Oil Palm Cocoa Vegetable Fruit /Coconut 0.05 0.18 0.25m≤₩ 0.10 0.18 0.18

~

Depth W(m)	Property Livestock	Source: (**) "National Water Resources Study, Malaysia" Sectoral Report Vol.5 JICA October1982
₩<2.0m 2.0≤₩	0.0	

Table G-17 FLOOD DAMAGE IN 1988 BY RETURN PERIOD

			(U	<u>init : mill</u>	<u>ion M\$ 1988</u>	price)
		Re	eturn period	1		
Items	10-yr.	30-yr.	50-yr,	80-yr.	100-yr.	200-yr,
(1) General property						
1) Houses	86.2	129.0	186.6	217.0	224,5	243.8
2) Commercial Buildings	34,6	50.0	57.8	60.3	62,6	65.3
3) Industrial Buildings	14.6	19,2	25,0	34.1	35.2	39.2
4) Household articles	22.0	36.2	53.2	64.3	67.0	75.0
5) Commercial assets	53,2	76.4	91.6	94.8	101.6	105.9
6) Commercial stocks	10.9	15.6	18.6	19.3	20.8	21.7
7) Industrial assets	26,8	35.0	55,4	66.7	71.5	76.7
8) Stocks & raw materials of industry	54.7	72.5	114.2	136.1	146.6	157,1
9) Agricultural products	0.9	1.2	1.2	1.3	1.3	1.4
10) Livestock	0.3	0.4	0.6	0.6	0.6	0.8
Subtotal	304.2	435.5	604.2	694.5	731.7	786.9
(2) Public property	91.3	130.7	181,3	208.4	219.5	236.1
(3) Indirect damage	19,5	26.9	36,3	41.1	43.8	46.6
Grand total	415.0	593,1	821.8	944.0	995,0	1,069.6

	(Unit : million M\$ 1988 price)							
	Return Period							
Items	10-yr.	30-yr.	50-yr.	80-yr.	100-yr.	200-yr.		
(1) General property			·····	<u></u>		<u></u> ,		
1) Houses	189.0	273.9	392.9	447.1	463.4	508,1		
2) Commercial Buildings	45.1	64,4	74.9	78.0	80,8	84.1		
3) Industrial Buildings	47.2	61,6	88.0	110.0	113,5	131,1		
4) Household articles	48,5	76.5	112.1	131.2	137,9	159.4		
5) Commercial assets	69.9	99,8	119.0	122.9	131.0	136,3		
6) Commercial stocks	14.3	20,4	24.2	25.1	26.8	27.9		
7) Industrial assets	93,3	126.1	197.2	227.1	237,4	259.6		
8) Stocks & raw materials of industry	192.7	260,8	405.0	463.5	484,6	527.9		
9) Agricultural products	0.3	0.4	0.4	0.5	0.5	0.6		
10) Livestock	0.1	0.1	0.3	0.3	0.3	0.4		
Subtotal	700.4	984,0	1,414.0	1,605,7	1,676.2	1,835.4		
(2) Public property	210,1	295.2	424.2	481.7	502,9	550.6		
(3) Indirect damage	46.2	63.3	90.8	102.7	107,4	116.7		
Grand total	956.7	1,342.5	1929.0	2,190.1	2,286.5	2,502.7		

Table G-18 FLOOD DAMAGE IN 2005 BY RETURN PERIOD

	Flood Damage	Potential	Flood Damage	Inundated	
River stretch	1988	2005	1988	2005	Area (Ha)
K-1	0	0	0.0	0.0	
к-2	4,585	8,219	18.2	32.6	252.50
к-3	199,149	319 , 855	104.5	167.9	1,905.00
к-4	100,536	542,603	53.6	289,4	1,875.00
к-5	1,135	17,104	0.4	5.6	3,075.00
K-6	75,837	604 , 692	37.5	298.6	2,025.00
K-7	131,810	166,318	251.1	316.8	525.00
K-8	154,803	187,309	193.5	234.1	800,00
Sub total (1)	667,855	1,846,100	63.9	176.5	10,457.50
к-9	132,733	178,635	518.0	697 1	256 25
K-10	14,546	17,782	116.4	142 3	125 00
K-11	660	800	26.4	32.0	25.00
		,	2011	0210	
Sub total (2)	147,939	197,217	364.2	485.5	406.25
K-Total (1+2)	815,794	2,043,317	75.1	188.1	10,863.75
B-1	24,806	30,013	496.1	600.3	50.00
в-2	61,566	75,099	340.1	414.3	181.25
в-3	497	2,059	19.9	82.4	25.00
B-4	6,137	11,793	89.3	171.5	68.75
B-Total (3)	93,006	118,964	286.2	366.0	325.00
G-1	63,190	76,460	561 7	679 6	112 50
G-2	5,896	8,163	94.3	130 6	62 50
G-3	7,861	17,254	59.9	131.5	131 25
G-4	6,172	13,718	65.8	146.3	93 75
G-5	2,222	6,351	25.4	72 6	87 50
G-6	1,166	2,188	37.3	70.0	31.25
G-Total (4)	86,507	124,134	166.8	239.3	518.75
Sub total (2+3+4)	327,452	440,315	262.0	352.3	1,250.00
Grand total (1+2+3+4)	995,307	2,286,415	85.0	195.3	11,707.50

(Unit : 1000 M\$ 1988 price)

ADIL

