

CHAPTER 14

HIGHWAY DEVELOPMENT PLAN

The policy and strategy for transport development, including the highway sub-sector, in the country have been firmly established and are being pursued.

Undoubtedly, the proposed rural road network development project should be implemented in full compliance with the policy and strategy established in the national development plan.

This chapter involves a discussion of rural road development plan; therefore, it describes a brief outline of the development framework for highway development formulated in the following papers:

- Medium-Term Philippine Development Plan, 1987-1992, 1986
- 1988 DPWH Infrastructure Program, November 1987
- Updated 1988-1992 DPWH Infrastructure Program, July 1988

14.1 Medium-Term Philippine Development Plan 1987-1992

14.1.1 National Development Strategies and Policies

1) Objectives

The Medium-Term Philippine Development Plan, covering 1987 to 1992, addresses the fundamental problems of the people: persistence of poverty and income inequity, high unemployment and underemployment and urban/rural and regional disparties.

The national development efforts in 1987-92, therefore, will be principally directed towards the following goals: (a) alleviation of poverty, (b) generation of more productive employment, (c) promotion of equity and social justice and (d) the attainment of sustainable economic growth.

2) Policies and Strategies

To address the foregoing problems and challenges and to attain the development objectives, the following strategies and policies are emphasized in the Plan:

The strategy for the short term will be to stimulate recovery by inducing demand through increased incomes, especially in the rural areas. To achieve this objective, the government has launched a Community Employment and Development Program (CEDP) which will provide more employment opportunities in the rural areas through the construction of small-scale, labor-intensive infrastructure projects such as feeder roads, communal irrigation systems, school buildings and rural water supply.

In the medium-term, an employment-oriented, rural-based development strategy will be implemented. This approach will directly address the goals of poverty alleviation and equitable distribution of benefits. A rural-based strategy is necessary because two-thirds of the population live in the rural areas and are largely dependent on agriculture for their livelihood.

The implementation of essential and consistent policy will enable the economy to recover and sustain respectable growth during the period 1987-92 while maintaining internal and external stability.

3) Target

Table 14.1-1 presents the national targets in terms of the real Gross National Product (GNP) and per capita GNP during the Plan period. GNP or the sum of goods and services produced by the country is targeted to increase by 6.8% on the average.

TABLE 14.1-1 GROSS NATIONAL PROJECT AND PER CAPITA GNP,

			17					
	Estimate 1986	1987	1988	Targets 1989	1990	1661	1992	Annual Average 1987–92
Gross National Product(in billion pesos, at constant 1972 prices Growth Rate (%)) 89.4	95.3	101.9	108.6	116.2	124.3	132.7	113.2
Gross National Product(in billion pesos, at current prices)	619.6	697.3	811.8	927.3	927.3 1,057.7 1,253.2	1,253.2	1,438.0	1,033.9
Inflation Rate (%)	2.0	5.2	8.7	7.0		8.3 8.9	7.4	7.6
Per Capita GNP (in pesos, at constant 1972 prices)	1,597	1,661	1,734	1,808	1,891	1,977	2,064	1,856
Growth Rate (%)	-1.3	4.0	4.4	4.3	4.6	4.5	4	4
Per Capita GNP (in pesos at current prices)	11,063	12,157	13,825	1	15,430 17,497 19,934	19,934	22,378	15,870

Note: 1) Estimates and targets as of 5 November 1986. Sources: NEDA and NCSO Medium Term Philippine Development Plan, 1987-1992.

14.1.2 Infrastructure Development Plan

1) Objectives

The government aims to enlarge and reinforce the physical foundation of the economy to support the overall development thrust of sustained economic growth and social justice. Specifically, the Government will install and improve the essential transport, water resources, energy, communications and social overhead facilities, particularly in the rural areas.

2) Policies and Strategies

To effectively attain the above objectives, rural-based, small- and medium-sized, short-gestating and labor-based projects will be given emphasis. These will include farm-to-market roads, secondary roads, and feeder ports, communal irrigation, drainage and rural electrification – all designed to promote increased agricultural production and marketing, encourage small and medium industries, support land reform and increase rural incomes on a wide scale.

Priority will be given to the maintenance of existing and soon-to-be completed infrastructures to prolong their useful lives, reduce costs to the users and postpone huge investments for their major rehabilitation or replacement. Rehabilitation and restoration, as well as improvement and upgrading of existing facilities, will take precedence over replacement and new construction as low-cost measures to provide acceptable levels of infrastructure services.

Special attention will be given to the completion of on-going projects that are consistent with development thrusts in order to realize the benefits from their early operation and to avert investment losses. New infrastructure projects will therefore be selectively undertaken, mainly when they are needed to eliminate the critial bottlenecks that hinder the programmed expansion of production and the provision of basic human needs. For this purpose, small and medium high-impact projects will be emphasized. Priority will be given to projects which manifest high indices of socio-economic benefits in relation to their costs.

The institutional set-up for the infrastructure sectors will be streamlined to promote cost-effectiveness, decentralization, efficiency of frontline services, accountability and private initiative. Overlaps and duplication of functions among agencies in the provision of infrastructure will also be eliminated.

Broader participation will be promoted and self-reliance among community beneficiaries, local governments and the private sector will be encouraged in the planning, financing, construction, installation, operation and maintenance of infrastructure facilities. The implementation of the infrastructure plan will be made to conform with the different regional development investment programs.

3) Targets

Table 14.1-2 summarizes the investment requirement by sector under the Government Infrastructure Program. The program during the Plan period will entail a total public investment of \$\mathbb{P}\$257.6 billion or an annual average of \$\mathbb{P}\$42.9 billion.

GOVERNMENT INFRASTRUCTURE PROGRAM SECTOR INVESTMENT REQUIREMENT BY 1986-92 TABLE 14.1-2

(Unit: in million pesos at current price)

			***************************************	4	211011221011	2		Ť	35
Sector	Program 1986	1987	1988	1989	1990	1991	1992	Total	Percent to Total
ENERGY	6 578	7.472	7,368	10.01	15,036	17,594	13,502	70.983	27.6
Power Rural Electrification	5,700	5,354 533	4,489	7,956	13,070		Ξ	57.893	
Energy Resource Development Downstream Activities	371 207	871 714	1,389	1,039	154	870 185	609 188	2,531	
TRANSPORT	5,813	7.241	8,667	9.818	11.655	12,586	13.321	63,288	24.6
Highways	4,544	5,356	6,008	6.587	8,418	9,058	9,301	44,728	
Urban Transport	186	253	200	4.42	4. 4. 6.00 1.00 1.00	1,039	1,298	, 00 00 00 00 00 00 00 00 00 00 00 00 00	
Airports and Airnays	70	158	356	00 O	622 822	277	117	2,392	The first
WATER RESOURCES	4.715	7.626	8,465	9.686	10,500	9 996	9.309	55,590	21.6
Water Supply, Sewerage	2,115	3,811	4,472	5,486	5,835	4,997	4,470	29,071	
Irrigation	1,931	2,474	2,927	3,166	3,437	3,657	3,347	19,008	
riood Control, Drainage and Shore Protection	699	1.341	1,066	1,034	1,236	1,342	1,492	7,511	
SOCIAL INFRASTRUCTURE	1,523	2, 491	2,840	3,312	3,610	3.846	4.342	20.441	7.9
School Buildings Health Facilities	701	1,051	1,267	1,420	1,646	1,826	2,167	9,377	
Urban Community Infrastructure National Buildings	69 11 11 11 11	100 100	871 69	892	675	488	333	4,449	
COMMUNICATIONS	266	973	3.222	4.711	4.472	3,381	1.637	18,396	11
Telecommunications Postal Communications	227	323	2,920	4,643	4,390	3,100	1,430	17,133	
orhers ²)	•	1.830	1.865	1.585	2,225	5.830	15,589	28.924	11.2
TOTAL	18,895	27,633	32,427	39,123	47,506	53,233	57,700	57,700 257,622	100.0
Percent Share to GNP	3.1	4.0	0 7	4.2	4.4	4.2	4.0		

Note: 1) Includes proposed projects which are still subject to evaluation.

2) Covers RDIP projects and projects that will be identified later on from a Shopping List of Projects including contingency allowance for physical and financial variations.

Sources: Infrastructure ministries, major public infrastructure corporations, other agencies and NEDA.

(as of 25 November 1986) Medium-Torm Philippine Development plan 1987-1992.

14.1.3 Highway Development Plan

Objectives

The transport sector will support nationwide efforts to stimulate agricultural production and increase rural income by orienting transport infrastructure toward rural areas. It aims to reduce interregional socio-economic gaps to strengthen interregional linkages by providing for the more efficient movement of products from excess production areas to deficit/market areas.

The Medium-Term Philippine Development Plan revealed the following main deficiencies of the highway network:

- a) Less than 50% of the total network may be considered as all-weather roads.

 Only about 44% of the national road network is paved with concrete or asphalt.
- b) The condition of many roads, especially barangay (feeder) and provincial (secondary) roads and even some national road sections, is poor because of initial low design standards relative to traffic volume, substandard construction, inadequate maintenance and damage from overloaded vehicles.
- c) Missing or weak bridges diminish the usefulness of many existing roads.
- d) In some remote areas, access roads are scarce.

2) Policies and Strategies

Based on these findings, the highway development policies and strategies in the Plan are the following:

In line with the stress on the development of the rural-agricultural sector, increased emphasis will be given to the rehabilitation, improvement and expansion of the feeder and secondary network, which consists mainly of farm-to-market roads. The program seeks to convert these roads into all-weather transport facilities. These roads will be underscored particularly in economically depressed areas with low road densities to spur production. Feeder and secondary roads will also be improved in corridors of main highways which have just been or are programmed to be improved; this will provide for a more efficient network to collect and distribute traffic from and to the hinterlands.

Rehabilitation and improvement of major roads will be selectively carried out particularly in sections that can no longer economically service the present and immediate future traffic volume and where transport costs are excessively high so as to restrain production and marketing, especially in Mindanao and the Visayas. Temporary or weak bridges will be replaced with permanent structures. Measures will be introduced to stabilize road slopes and embankments, and to strengthen pavements so as to minimize road disasters and closures. This will be completed by schemes, both

structural and non-structural, to reduce the rate of accidents and improve road traffic safety. Road maintenance activities will be reinforced in order to defer the huge investments in roads, lengthen their useful lives, reduce transport operating costs and minimize public inconvenience. For this purpose, the inspection, monitoring, and accounting system for maintenance will be strengthened.

े । तार अनुसार प्रकार अक्टरीय प्राप्त के प्राप्त के प्रतिस्था । अस्ति । अस्ति स्थापनी स्थापनी स्थापनी स्थापनी स्थापनी

3) Target

As shown in Table 14.1.3, the highway development program will improve the road density by 1992 to 0.57 km per square kilometer of land area and maintain the ratio of 3.02 km per 1,000 population, increase the percentage of all-weather roads to about 60% and raise the percentage of paved national roads to about 55%.

and the property of the control of the feet of the first the control of the contr

o provincia de la companio de la co La companio de la co

TABLE 14.1-3 HIGHWAYS DEVELOPMENT PROGRAM 1)
PHYSICAL TARGETS 1986-92

	Program			Ţar	Targets			1987 - 92	- 92
	1986	1987	1988	1989	1990	1991	1992		%
Roads (in km)	6,475	9,319	10,100	10,536	11,708	12,704	11,708 12,704 13,711 68,078	68,078	100.0
Feeder Roads (including						:			
barangay roads)	4,072	6,876	7,458	7,610	8,551	9,255	9,963	9,963 49,713	73.0
Secondary roads (including	28								
national roads)	1,263	1,403	1,545	1,712	1,856	2,052	2,270	10,838	15.9
Major Roads	510	1,040	1,097	1,214	1,301	1,397	1,478	7,527	11.1
Bridges (in meters)	4,899	5,059	5,624	6,219	6,870	7,683	8,465	39,920	

Note: 1) Restoration, rehabilitation, improvement and construction Sources: MPWH, MLG, Medium-Term Philippine Development Plan

14.2 1988 DPWH INFRASTRUCTURE PROGRAM

1) 1988 DPWH Infrastructure Program

In line with the national development policy, the program of the DPWH for 1988 has been formulated to support the development thrusts of the new Government towards the twin mission of economic recovery in the short run and sustainable growth and equity in the long term.

The proposed 1988 DPWH infrastructure calls for a total funding of P8,596,470,000 in order to achieve the physical targets as well as to meet funding requirements (See Table 14.2-1). The projects embodied in the proposed 1988 DPWH infrastructure Program have been selected in accordance with the concerned Municipal/City Provincial/Regional Development Councils to ensure their conformity with regional/local development.

TABLE 14.2-1 PHYSICAL TARGETS AND FUNDING REQUIREMENT BY PROJECT CATEGORY,
1988 DPWH INFRASTRUCTURE PROGRAM

Category	Physical Target	 Funding thousand Pesos)	Share (%)
Highway	8,945 km	5,577,559	64.9
Ports	487	 413,830	4.8
Flood Control & Seawalls	1,049	933,913	10.9
Water Supply		 506,516	5.9
School Buildings		916,000	10.6
National Buildings		16,000	0.2
Urban Community Infrastructure		232,652	2.7
Total		8,596,470	100.0

2) 1988 DPWH Highway Program

The Philippines has a road network of about 162,325 km, of which the majority are surfaced with gravel or earth (see Table 14.2-2).

There is a need, therefore, to rectify the poor or substandard condition of substantial portions of the existing network, particularly about half of the barangay (feeder) roads and 40% of the provincial (secondary) roads. Because of this situation, rural production has been restricted in many places as farmers and enterpreneurs find transport costs excessive and do not have easy access to farm inputs and to markets for their produce.

The 1988 highway program addresses these needs in order to bring down transport costs and stimulate widespread production. Thus, the program seeks to rehabilitate/improve or construct about 6,517 km of feeder (barangay) roads, and 1,304 km of secondary (national/provincial) roads, together with 1,124 km of arterial (national) roads and rehabilitation/reconstruction of 10,023 m of bridges with a total outlay of P5,557,559,000 (see Table 14.2-2).

TABLE 14.2-2 EXISTING ROAD CONDITION AND PROPOSED IMPROVEMENT INVESTMENT 1988 DPWH HIGHWAY PROGRAM

\$ C	100 pp	17 - 17 - 17 - 17 - 17 - 17 - 17 - 17 -	1988 DPWH Highway Program Fund	ogram Fund
Road Classification 1)	Length (km)	Existing condition Gravel/Earth	Physical Target (In thousand (km)	n thousand pesos)
National (major) Roads			1,1242)	3,486,795
National (minor) Boads	56,230	ດນ %	20%	497, 404
Provincial (secondary) Roads	28,334	%%	801	521,214
City & Municipal (urban) Roads	16,882			
Darangay (tertrary of reeger) Roads	90,879	100%	6,507	1,072,146
Total	162,235		8,945	5,577,559
			いいとう 没一番 でいかいしんかい	

Note: 1) Administrative road classification does not necessarily tally with the functional classification adopted in the Study.

2) The proposed improvement of 10.023 LM bridges is excluded

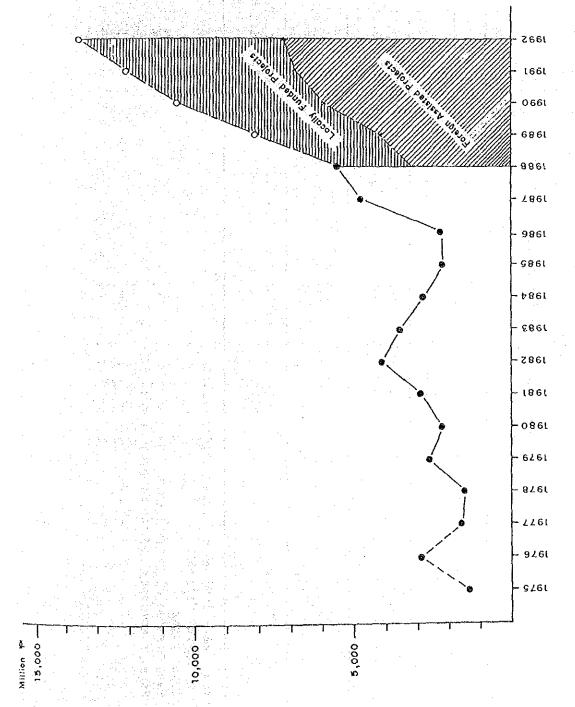
14.3 UPDATED 1988-1992 DPWH INFRASTRUCTURE PROGRAM

1) Updated 1988-1992 DPWH Infrastructure Program

The updated medium term public investment program for 1988-1992 was approved in July 1988. Accordingly, 1988-1992 infrastructure program of the DPWH has been updated as shown in Table 14.3-1. Figure 14.3-1 show the past and future highway investment from 1975 to 1992.

The investment requirement for highways for 1991, for example, was raised to P12,156.4 million or 34% from P9,058 million appropriated in the previous Medium-Term Development Plan. The amount of P8,087.5 million or 66.5% of the investment requirement of P12,156.4 million will be financed by local funds and the remaining P4,068.9 million (\$191,027) or 33.5% from foreign sources (see Table 14.3-2).

2) Rural Road Development Program in Updated DPWH


The program covers the list of on-going agency projects and new/proposed projects. Therefore, the investment for rural related road projects and other projects such as primary major national roads and transportion projects in urban areas were classified as shown in Table 14.3-3 and Figure 14.3-2. Table 14.3-4 and Figure 14.3-3 show the investment in 1988 under the similar classification with that in 1991 for comparison.

According to this table, locally funded projects in 1991 will account for P5,331M or 43.9% and the total of foreign assisted projects will amount to P6,825M or 56.1%, of which rural road types will be P3,147M or 25.9% and others P3,678M or 30.2%.

TABLE 14.3-1 1988-1992 INFRASTRUCTURE PROGRAM SUMMARY OF INVESTMENTS,
BY CATEGORY

-								
	Category	1988	1989	1990	1991	1992	1988-92	1993-Up
	1. Highways	5,577,559	8,105,033	10,553,437	12,156,400	13,575,900	49,968,329	49,968,329 20,829,682
٠ د	· Ports	413,830	712,550	454,000	663,000	777,100	3,020,480	1,581,341
ės.	3. Flood Control & Drainage	933,913	1,390,705	1,518,295	1,646,000	1,782,000	7,270,913	13,572,023
4	. Rural Water Supply/Sewerage	506,516	800,000	1,900,000	2,100,000	2,380.000	7,685,516	637,599
in.	. School Buildings	916,000	1,300,000	1,501,000	1,864,000	1,974,000	7,555,000	
6	6. National Buildings	16,000	36,000	228,000	268,000	309,000	857,000	
	7. Urban Infrastructure	232,652	376,000	350,110	391,000	309,000	1,744,762	503,986
-								
٠	Total	8,596,470	,470 12,720,288	16,504,842	19,088,400	21,193,000	78,103,000 37,124,631	37,124,631

As of July 5, 1988 Source: Updated 1988 - 1992 DPWH Infrastructure Program

Note : Capital outlays for 1976 covers 18 months from July 1975 to December 1976 Source: Planning Service , DPWH

FIGURE 14.3-1 CAPITAL OUTLAYS FOR HIGHWAYS

TABLE 14.3-2 HIGHWAY INVESTMENT

(Unit:in thousand pesos constant 1988 prices)

Ē	£	Č			Investment Requirements	equirements		
Project litle	iotai Project Cost	Cumm.EXP (as of 1987)	1988	686	1990	1991	1992	Later Years
Total	TP 76,496,576 P 51,824,219 s 1,160,458	5,698,565 3,747,610 94,708	5,577,559 4,485,832 51,987	8,105,033 6,339,738 81,163	10,553,437 7,356,946 150,070	12,156,400 8,087,525 191,027	13,375,900 9,141,751 208,176	20,829,682 12,664,817 383,327
On-going	TP 14,935,527 P 9,589,194 \$ 253,515	5,698,865 3,747,610 94,708	2,736,446 1,712,696 48,750	3,108,049 1,783,039 60,920	2,075,426 1,413,507 31,075	936,237 551,538 18,061	195,090 195,090 0	185,714 185,714
New/Proposed	TP 61,561,049 F 42,235,025 \$ 906,943		2,841,113 2,773,136 3,237	4,996,984 4,556,699 20,243	8,478,011 5,943,439 118,994	11,220,163 7,535,987 172,966	13,380,810 8,946,661 208,176	20,643,968 12,479,103 383,327

Source: Updated 1988 - 1992 DPWH Infrastructure Program
List of Agency Projects

Note: TP: Total pesos

P: Peso portion of project cost

\$: Foreign currency portion of project cost (\$1= F21)

TABLE 14.3-3 1991 HIGHWAY PROGRAM

(Unit: Thousand Pesos)

		and the second s	
	Foreign Assisted	Locally Funded	Total
Rural Related Roads	3,147,403	5,331,070	8,478,473
Other Roads	3,677,929		3,677,929
Total	6,825,332	5,331,070	12,156,402

Source: Updated 1988 - 1992 DPWH Infrastructure Program

TABLE 14.3-4 1988 HIGHWAY PROGRAM

(Unit: Thousand Pesos)

	Foreign Assisted	Locally Funded	Total
National Roads			
Major Roads	2,436,251	1,050,544	3,486,795
Minor Roads	575,431	65,333	640,764
Provincial Roads	1	450,000	450,000
Barangay Roads		1,000,000	1,000,000
Total	3,011,682	2,565,877	5,577,559

Source: Highlights of 1988 DPWH Infrastructure Program

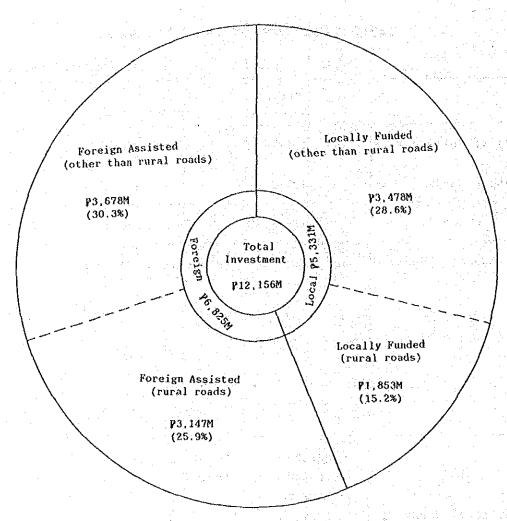


FIGURE 14.3-2 1991 HIGHWAY INVESTMENT

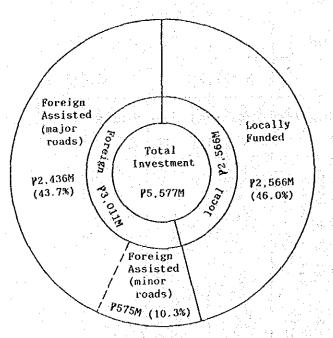


FIGURE 14.3-3 1988 HIGHWAY INVESTMENT

CHAPTER 15

IMPLEMENTATION STRATEGY AND PLAN OF THE PROJECT

The implementation strategies to be adopted for the rural road network development projects are discussed in this Section, including the following:

- · Investment Size to Rural Road Development
- · Balanced Investment to Regions/Provinces
- Sector Loan System
- · Labor-based Construction System
- Community Participation System

Also discussed is the implementation plan which was proposed based on the following assumptions:

- Annual investment in 1991 for the project is assumed to be P5,000M.
- Commencement of the project implementation is expected in 1991, simultaneously in all 73 provinces.

15.1 IMPLEMENTATION STRATEGY

The following strategies will be adopted for implementation of the project:

1) Investment Size to Rural Road Development

It is assumed that this rural road development project will be commenced in 1991 after the required process of financial negotiations with international lending institutions. Therefore, the program will start after 1991 in compliance with the updated DPWH program.

As discussed in Chapter 14.3, of the total highway budget of P12,156M in 1991, foreign assisted projects will account for about P6,825 million or 56%, of which P3,147 million or 64% will be allotted for rural road type projects. Rural road type projects consist of road rehabilitation/improvement projects, except for those related to primary national highways and those in urban areas.

In addition to these foreign assisted projects, locally funded projects are also expected to contribute to rehabilitation/improvement of rural road type projects.

It is, therefore, assumed that an annual budget of more than \$\mathbb{P}\$5000 million will be appropriated for the rehabilitation/improvement of rural road type projects (see Figure 14.3-1 and 2).

15

2) Balanced Investment to Regions/Provinces

The Medium-Term Philippine Development Plan 1987-1992 revealed urban/rural and regional disparities as one of the problems in the country and emphasized the promotion of balanced growth among regions. The regional development objective, therefore, is to accelerate the growth of less developed regions/areas and achieve a more balanced spatial development.

For this purpose, the National Economic and Development Authority (NEDA), the Department of Budget and Management (DBM) and the Department of Public Works and Highways (DPWH) have developed jointly the Fund Allocation Formula for Infrastructure.

The factors considered in the Formula are:

- Road condition (paved/unpaved)
- Barangay (number, average size)
- Arable land area
- Gross value added in agriculture
- Population
- Poor families falling under the poverty line
- Implementation difficulty (accessibility, terrain)

This Study intends to follow the policy of the balance investments to regions/provinces. As an example, the fund allocation to regions and provinces are shown in Table 15.1-1 in the case of the following assumptions:

Total Fund for Rural Road

Development Project P5,000M per year

Rehabilitation/Improvement

National Roads P2,000M (40%)
Provincial Roads P1,000M (20%)
Barangay Roads P1,300M (26%)

New Construction

Barangay Roads P 700M (14%)

The share of each road was divided in accordance with "Estimates on the Indicator of Needs" developed by the DPWH.

3) Sector Loan System

Rural road development projects are intended to cover a considerable number of roads with a short length, e.g., an average of 20 roads with an average road length of 6 km in one province. Therefore, the application of the usual loan system - project type loan - may not be practical for the projects.

Instead, a sector load system is recommended which is applicable to any project consisting of a considerable number of subprojects with the same purpose.

A detailed discussion of the sector load system is presented in Chapter 18.

4) Labor-based Construction System

The Medium-Term Plan stressed the adoption of an employment-oriented, rural-based strategy.

Consistent with national policies, the Study is favorably inclined to adopt a labor-based construction system to the fullest extent possible.

Chapter 21 presents the methodology for practical application of the method.

5) Community Participation System

The Medium-Term Plan emphasizes that participation will be encouraged from traditional structures like private business and non-government organizations as well as from genuine community organizations at the grass-roots level.

Greater involvement of the people will be promoted not only in service delivery and implementation but also in program/project identification and in the decision-making process. In this regard, community organizations as a strategy for people mobilization will be emphasized.

In line with the policy, community participation was studied along each process of project implementation from project identification to road maintenance stages.

TABLE 15.1-1 ESTIMATED FUND ALLOCATION TO PROVINCES IN 1991

			1.0	(unit : #111100	peros)	
Province	National Rd. Rehab./Impr.	Provincial Rd.	Barancay Rd. Now Const.	Barangay Rd. Rehab./Impr.	Total	
enton 1	150.2	79.9	28.6	111.5	310.5	
Abra Benguet Hocos Norte Hocos Sur La Union Mountain Province Pannasinan	12.4	9.9	2.5	12.1	37.1	per trade to the
Benguet	20.8	7.6 10.5	2.6 3.9	18.5	52.3	
llocos Sur	20.6	9.4	3.2	17.1	50.2	
La Union Rountain Province	11.8	5.0	2.1	2.9	21.8	
Pangasinan	48.8	28,3	8.4	40.3	175.0	
Pancasinan cion II Batanes Cagayan Ifuqao Isabela Kalinga-Apayao Nugwa Vizcaya Quirino	128.6	59.3	31.2	80.6	300.2	
Satanes	2.2	1.0	1.6	23.8	5.7	
Cagayan	35.2 10.2	3.6	2.1	4,9	20.8	
Isabela	37.4	21.5	9.0	28.7 7.8	96.7 35.7	
Kalinga-Apayao Nuova Vizcaya	15.0	8.3	2.8	11.8	37.9	And the second
Quirino	10.4	2.8	4.3		20.3	
gion III	153.0	83.2	46.0	111.3	393.5	
Bataan	14.4	7.1	4.7	7.9	34.1	
Bulacan Duaya Rolia	29.2 40.0	21.6	18.6	28.0	108.1	•
Pampanga	30.6	15.1	5.5	22.2 19.4	73.4 61.8	•
Bataan Bulacan Nueva Ecija Pampanga Tarlac Zambales	22.2 16.5	7.6	7.6	10.6	42.5	
tion IV	297.4	144.0	108.7	168.7	718.8	
,		3.6	21 1	8.0	53.3	
Aurora Batangas	37.4	18.6	8.1	27.7	91.8	
Cavite	22.4	12.5	4.8 6-5	13.9 16.3	53.6 63.6	
Marinduque	12.0	5.4	6.3	4.7	30.5	
Occidental Mindoro	21.4 25.4	9.8 18.7	12.8	13.0	69.9	
Palavan	40.4	18.3	11.4	22.7	92.8	÷
Quezon Rizal	57.8 19.8	8.9	6.1	13.1	47.9	•
Pambales yion IV Aurora Batangas Cavite Laguna Harinduque Occidental Mindoro Oriental Hindoro Oriental Hindoro Risal Romblon	15,6	7.3	5.2	9.1	37.2	
iton A	163.4	80.3	74.0	93.1	410.8	
Albay	31.0	15.1	10.3	17.7	74.1	
Albay Camarines Norte Camarines Sur	16.0	7.8	13.7 10.9	9.Z 29.9	109.2	
Catanduanes	14.0	6.4	7.1	5.5	33.1	. F
Nasbate Sormogon	34.0 14.2	14.4 12.4	19.3 12.4	17.7 9.2 29.9 5.5	62.0	
Sorgogon gion VI Akian Antique Capir Iloilo Hegros Occidental	213.8	94.9	103.9	134.2	546.8	
HOR VI				10.6	40.7	
Aklan Antiqua	14.8 24.0	8.7	8.4	12.6	53.7	
Capix	25 8 64 8	13.0 29.7	9.6	16.1 38.3	151.1	
Regros Occidental	84.4	34.1	61.7	56.4	236.6	•
lon VII	142.0	71.2	38.2	91.2	342.6	
Bohol Cebu Negros Oriental Siquijor	42.0	25.0	5.5	30.5	103.0	
Cebu	60.8	27.0	10.1	37.3	135.2	
Negros Oriental Siguijos	4.2	3.4	3.5	1.7	12.8	
ion VIII	139.6	60.8	66.4	78.5	345.3	
						•
Leyts	61.4 16.6	8.2	6.2	9.5 13.1	40.5	
Eastern Samar	20.2	9.9	7.2 16.1	13.1	50.4	
Leyts Southern Leyte Eastern Samar Northern Samar Samar	19.6	9.4	17.9	16.6	57.6	
				91.6		
Parities.	10.4	7 7	8.9	7-5	34.5	
pasiian Sulu	16.4	9.3	9.3	10.5	34.5 45.5	
Tavi-Tavi	8.6	3.6 22 5	8.6 8.5	4.7 25.6	25.5 90.5	•
Basilan Sulu Tavi-Tavi Zamboanga del Norte Zamboanga del Sur	58.6	29.8	14.6	43.3	146.3	
ion X	161.0	82.2	43.8	111.1	398.0	
ion X Agusan del Horte Agusan del Sur Bukidnon Cemlguin Hisamis Occidental Murigao del Norte	14 4	6.3	6.3	9.3	36.7	
Agusan del Sur Agusan del Sur	24.6	13.4	9.5	15.0	61.4	
Bukidnen Camloula	47.0	25.2 2.0	5.0	33.7	111.0 8.5	
Misamis Occidental	18.4	11.7	7.5	15.6	53.2	The second
nisamis Oriental Surigao del Norte	31.4 21.6	10.3	6.9	11.6	50.3	
don XI	146 8	98.6	37.9	128.1	450.4	
ion XI Davao del Norte Davao del Sur Davao Griental South Cotabato Surigao del Sur	103.0	,	24.2			*.*
Davao del Norte Davao del Sur	38.0 46.2	24.3 16.4	5.6 7.3	76.6 33.6	95.6 103.5	
Davao Ociental	29.6	17.6	10.0	15.1	72.3	
South Cotabato Surigeo del Sur	46.2 25.8	25.0 12.3	7.0 6.9	38.1 14.7	119.3 59.7	
			71.6	99,8	380.9	*
ion XII	137.4	16.2	12.3	77,0	200.7	
Lanao del Morte	23.6	9.3	15.3	16.5 26.9	64.7 66.8	
Wearingson	25.4	13,1	31.7	17.5	87.7	
Redattidation			10.3	. 21.0	92.5	4.00
North Cotabato	41.6	17.A	9.5	17.9	59.2	
Lanao del Morte Lenao del Sur Haguindanao North Cotabato Sultan Kudarat Tot al	41.6 24.0	17.8	9.5	17.9	69.2	

15.2 IMPLEMENTATION PLAN

1) Proposed Improvement Types, Road Length and Cost

For the Feasibility Study, the following improvement works were proposed, as shown in Table 15.2-1:

TABLE 15.2-1 PROPOSED TYPES OF IMPROVEMENT

	Type	Existing Pavement Type	Existing Surface Condition	Proposed Type of Improvement
1.	Rehabilitation	Standard or Superior	Bad or Very Bad	Improvement of Surface Condition
2.	Improvement-1	Substandard	Bad or Very Bad	Improvement of Surface Condition to Standard Type
3.	Improvement-2	Substandard	Good or Fair	Upgrading of Pavement Type to Standard Type
4.	New Construction	Abandoned/	Non-Existing	Construction of New Road
5.	Widening	Carriageway i the Standard	s Less than	Widening of Existing Road

Identified bridges were classified either as "rehabilitation" when only improvement of a bridge is needed (bridge project only) or corresponding type of improvement of a road section when improvement of a bridge is a part of it.

For the major roads, all types of improvement works were proposed, while for the minor roads Improvement-2 and Widening Works were not considered.

The Study on road improvement in the selected four (4) pilot provinces identified a road improvement length of 1,323.0 km with a capital investment requirement of P1,560.1 million (see Table 15.2-2).

TABLE 15.2-2 IMPROVEMENT LENGTH AND COST BY CATEGORY

- 1	ted	0 4	8,	0.5	5.	50 6	526.4	
	Estimated Cost	951.0	1,560.4	23,618.0	45,729.5	232.5	524	
Total 2)	Proposed Length (km)	701.2 (9.8%) 521.8 (7.3%)	1,223.0 (17.1%)	20.524.2 (15.2x) 18,977.4 (14.0x)	39,501.6 (29.2%)	281.2 (15.2x) 280.0 (14.0x)	541.1 (29.2%)	
	Existing Length (km)	7,161.8	7,161.8	135,107.2	135,107.2	1,850.8	1,850.8	
	Estimated Cost (MP)	188.0	389.2	8,889.6	7,616.4	121.8 119.5	241.3	
. }	Es	(5.1%) (4.9%)	(%)		0%) 1.	5X) 4X)	(%0	
Barangay Road	Proposed Length (Km)	231.3 (5.1%) 219.0 (4.9%)	450.3 (10.0%)	9,481.8 (10.5%) 9,383.3 (10.4%)	18,865.2 (21.0%) 17,616.4	129.9 (10.5%) 128.5 (10.4%)	258.4 (21.0%)	
	Existing Length (km)	4,488.1	4,488.1	89,978.8	89,978.8	1,232.6	1,232.6	
	Estimated Cost (MP)	553.7 200.8	754.5	8,807.2	13,106.5	120.6	179.5	
Provincial Road	Proposed Length (km)	344.2 (20.6%) 182.3 (10.9%)	526.5 (31.5%)	7,428.6 (26.1%) 3.866.6 (13.6%)	11,295.2 (39.7%)	101.8 (26.1%) 52.9 (13.6%)	154.7 (39.7%)	
Pro	Existing Length (km)	1,668.5	1,668.5	28,424.6 7	28,424.5 11	389.4	389.4	
	Estimated 3) Cost (MP)	209.5	415.7	5,921.1	5,066.6	81.1 124.5	205.6	Togical Control of the Control of th
National Road 10	Proposed 3) Est Length (km)	125.7 (17.5%) 120.5 (17.0%)	246.2 (34.5x)	3,613.7 (21.6x) 5,921.1 5,727.5 (34.3x) 9,085.4	9,341.2 (55.9%) 15,066.6	49.5 (2).6x) 78.5 (34.3x)	128.0 (55,9x)	1) Excluding Primary national roads 2) Excluding Franklinal, city and Municipal roads 3) including UNDP Project in Mashate
	Existing Length (Km)	1005.2	1005.2	1,5703.8	1,6703.8	228.8	228.8	ary nation ary nation Project i
		1RR 215% 7.5% (1RR <15%	Total	1RR 215x 7.5x <1RR <15x	Total	1RR 215% 7.5% (1RR <15%	Total	1) Excluding primary national roads 2) Excluding Primary national, city 3) Including UNDP Project in Masbate
		4-Pilot Provinces	•	73- Provinces		Average Province		Mote: 1)
-	-	15-	6				ř .	

In proportion to these figures, the road length and construction cost for the 73 provinces was roughly estimated arriving at the length of 39,501.6 km and the cost of P45,729.5 million (see Table 15.2-3). The estimated length and cost for the 73 provinces are summarized in Appendix 15-1.

The average length and cost per province are 541.1 km and P626.4 million (see Table 15.2-2).

These road lengths are classified into two (2) types in terms of the internal rate of return (IRR), one where IRR is equal to or more than 15%, the other where IRR is between 7.5% and 15%. With regard to the 73 provinces, the road length and cost are as follows:

TABLE 15.2-3 ROAD LENGTH AND COST FOR 73 PROVINCES

Identified	Road Length Identified	Cost
IRR ≥ 15%	20,524.2 km	Y23,618.07M
7.5% <u><</u> 1RR < 15%	18,977.4 km	P22,111.5 M
Total	39,501.6 km	P45,729.57M

Multipurpose Pavement

可以特别的 医电影

The Government is now pursuing the implementation of a multipurpose pavement project which aims to pave a low traffic road section with PCC within the central barangay zone, thus providing barangay people with a community plaza. A road section paved with PCC can be utilized not only for traffic purposes but also for community gathering, playing basketball and other sports, drying palay, etc.

The project can be implemeted by a labor-based construction method, therefore, it will create a lot of job opportunities for barangay people even in remote barangays, thus stimulating barangay economy. After the completion of the project, the road section will be utilized for various social purposes, thus social activities in a barangay will be more active and ties among barangay people will be strengthened.

In view of above, the multipurpose pavement project should be further promoted for the benefits of barangay people.

2) Implementation Phasing

As discussed in the previous chapter, the fund available for rural road improvement was roughly estimated to be P5,000 million per year. With the fund, the implementation period required for the 73 provinces was predicted as shown in Table 15.2-4

Control to the control of the property of the property of the control of the cont

TABLE 15.2-4 NO. OF YEARS REQUIRED FOR PROJECT ASSUMPTION ANNUAL BUDGET \$5,000M

Economic	Road Length	Cost	Required
Indicator	Identified		Years
IRR > 15%	20,524.2 km	P23,618.0M	4.7 (Phase I)
7.5% ≤ IRR < 15%	18,977.4 km	22,111.5M	4.4 (Phase II)
Total	39,501.6 km	P45,729.57M	9.1

Within the first 5 years (Phase I), improvement of the roads which were at present evaluated IRR more than 15% will be implemented. The second 5 years (Phase II) will cover the roads with IRR of 7.5% to 15%.

It is, however, noted that roads proposed for the project will be classified into Phase I or II based not only on IRR values but also on socio-economic impact and related development program as well as fund allocated to provinces.

3) Implementation Plan

A considerable number of highway development projects will be implemented simultaneously in the provinces, e.g., locally funded or foreign assisted, and major roads or minor roads. An example of the funds allocated for those projects in an average and typical province is shown in Table 15.2-5.

TABLE 15.2-5 EXAMPLE OF PROJECT FUND IN AVERAGE PROVINCE

	National Total (73 provinces)	Average Province
Rural Roads		
Locally Funded	1,853.0	25.4
Foreign Assisted	3,147.0	43.1
	P5,000.0M	P68.5M
Other than Rural Roads (73 Provinces & Met	ro Manila)
Locally Funded	3,478.0	33.9
Foreign Assisted	3,678.0	36.7
	¥7,156.0M	P70.6M
Tőtál	P12,156.0M	P139.1M

Foreign assisted rural road projects will be implemented by the Project Management Office created for the Project (see Chapter 16), while other projects, including locally funded rural roads, will be implemented following present DPWH procedures and methods.

The implementation schedule for rural road development projects is shown in Figure 15.2-1.

Projects will be projected to commence in 1991, simultaneously for all 73 provinces.

FIGURE 15.2-1 IMPLEMENTATION SCHEDULE FOR RURAL ROAD DEVELOPMENT PROJECT (73 PROVINCES)

and the state of t	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000
Foreign Assisted Rural Roads	₩3,147M		se I		>			Phas	se II	
Locally Funded Rural Roads	P1,853M	(annua))							
Total Budget for Rural Roads	P5,000M	(annua)	func	d P 5,(000M	estim	ated)			
Total Budget for Highways	P12,156	P13,57	75M (i	not p	l anne	1)				

15.3 IMPLEMENTATION PROCEDURE

The project work will take place in several distinct stages. These stages are commonly referred to as the "project cycle" to make the point that they are closely linked to each other and follow a logical progression. It is advisable to discuss the implementation procedures of the project according to the project cycle.

The implementation cycle for the rural road network development is described in Table 15.3-2 and illustrated in Figure 15.3-1. In each stage of the cycle, the responsible agencies, executing and coordinating, which will be clearly assigned, should be responsible for producing objective outputs within a designated period, which should be prepared in compliance with guidelines, criteria formats, etc. adopted for the project.

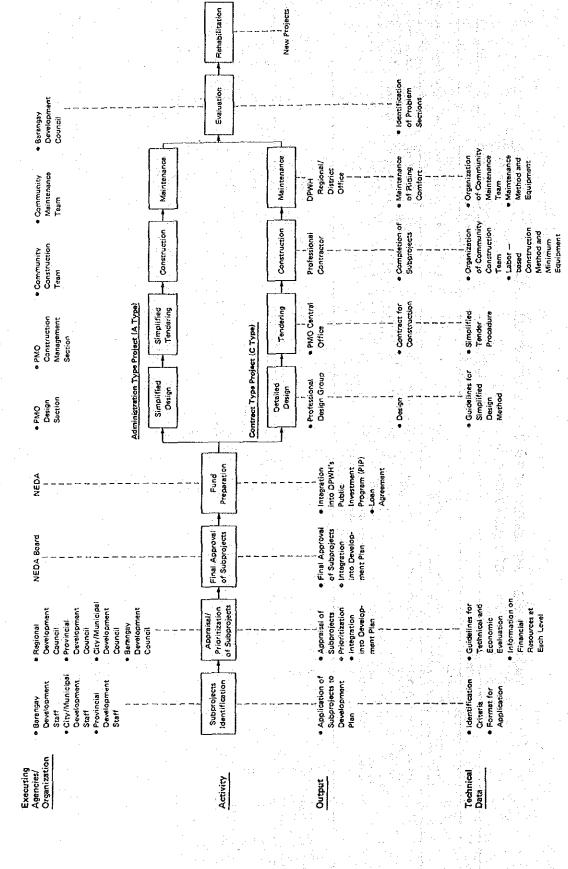
Table 15.3-1 summarizes the executing and coordinating agencies for stages from subproject identification up to construction.

It is particularly recommended in the Study that a project management office created for the project be responsible for design, tendering and construction of "Contract Type Subprojects", while the existing regional offices do so for "Administration Type Subprojects". The definition of project type is discussed in the following section.

TABLE 15.3-1 PROJECT CYCLES AND AGENCIES

	Project Cycle	Executing Agency	Coordinating Agency

1.	Subproject Identification	. Barangay Development Council	. Project Management Office
2.	Appraisal/ Prioritization of Subprojects	. City/Municipal Development Council . Provincial Development Council . Regional Development Council	. Project Management
3.	Final Approval of Subprojects	. NEDA Board	. DPWH Central Office . Project Management Office
4.	Fund Preparation	. NEDA	. DPWH Central Office . Project Management Office
5.	Design		
-	Contract Type Subprojects	. Project Management Office	(. Professional Consultant)
	Administrative Type Subprojects	. Regional Office	. District Office . City/Municipal Office
6.	Tendering		
٠	Contract Type Subprojects	. project Management Office	
	Administration Type Subprojects	. Regional Office	
7.	Construction		
	Contract Type Subproject	. (Professional Contractor)	. project Management Office
	Administrative Type Subprojects	. Community Construction Team	. District Office


TABLE 15.3-2 IMPLEMENTATION CYCLE OF RURAL ROAD DEVELOPMENT PROJECT

		National/Program Level	evel				Project Level			
Project Cycle	Sub-Project Identification	Appraisal/ Prioritization of Sub-Projects	Final Approval	Fund	Design	Tendering	Construction	Maintenance	Evaluation	Evaluation Rehabilitation
Hain Works	Data collection .Site investingation .Preparation of Application Format	.Technical and Economic Evaluation .Prioritization in Comparison with Fund	Final Decision	of DPMH's of DPMH's Public Investment Program (PIP) Laan Nego-	Preparation of Design .Cost Estimate	Specification .Contract .Documents .Qualification of contractors	Construction Schodule and Operation Quailty Guailty	Stendard and Schedules Kaintenance Operation and Equipments	Periodic Monitoring Evaluation Record	Problem Definition Potential Program Solutions
NEDA Board Regional Development Council Provincial Development Council City/Nunicipal Development council Barangay Development Council	1 511 50uncil	# # ⊕	•	•					₩	
DPWH Central Office Regional Office District Office City/Municipal Office Project Management Office	fice O	0000	0 0	0 0	O(A Type) (A Type) (A Type) (A Type) (A Type)	æ(A Type) æ(G Type)	O(A Type) O(A Type) O(G Type)	G(C Type) G(C Type) G(C Type)		
Professional Contractor Community Construction Team Community Maintenance Team							●(C Type) ●(A Type)	æ (A Type)		
Technical Dala	.identification Criteria .Format for Application	Guidelines for Technical and Economic Evaluation Information on Financial Resources at Each Level			Guidelines for Simplified Design Wethod	.Simplified Tender Procedure	organization of Community Construction Team Labor-Intensive Construction Minimum Equipment	Organization of Community Maintenance Team Maintenance Maintenance Method and Equipment		-

NOTE: © Excuting Agency
O Coordinating Agency

C Type : Contract Type Project A Type : Administrative Type Project

FIGURE 15.3-1 IMPLEMENTATION CYCLE OF RURAL ROAD DEVELOPMENT PROJECT

15.4 PROJECT TYPES

As the Medium-Term Plan emphasizes, greater involvement of the people at the grass-roots level in project implementation will be promoted. In line with this policy, the Study recommends the system that small-size subprojects be constructed by community construction teams particularly organized for the specified subprojects which are called "Administration Type Subprojects".

The administration type subprojects are defined as follows:

- Detailed topographic survey and geotechnical investigation may not be required for detailed design.
- 2) Detailed engineering can be done without expert engineering knowledge.
- 3) Construction work is relatively easy and requires only ordinary construction equipment.
- 4) project size in term of construction cost is relatively small.

However, administration type subprojects should be selected taking into consideration the capacity of the executing agencies, the regional and district offices, which are responsible for detailed engineering, tendering and construction supervision of the projects. The capability of community construction teams who are responsible for actual construction work should be also considered.

projects other than administration type subprojects are called "Contract Type Subprojects" which are proposed to be implemented under jurisdiction of the project management office.

PROJECT INSTITUTION

CHAPTER 16

16.1 PRESENT ORGANIZATION OF THE DPWH

The Department of Public Works and Highways (DPWH) will be the implementing agency of the project.

Under Executive Order No. 710, dated 27 July 1981, the Ministry of Public Works and Highways (MPWH) was created. However, under Executive Order No. 124, dated 30 January 1987, MPWH was reorganized in accordance with the provisions of this Executive Order. With the adoption of a new Constitution which provides for a presidential form of government, the MPWH is now called the Department of Public Works and Highways (DPWH).

1) Central Office

The DPWH is headed by a Secretary who is assisted by five Undersecretaries and six Assistant Secretaries. In the Department proper, there are six Service Offices -- Planning, Comptrollership & Financial Management, Administration & Manpower Management, Legal, Monitoring & Information, and Internal Audit; and five Bureaus - Design, Construction, Maintenance, Equipment, and Research & Standards (see Appendix 16-1, Figure 1).

The five bureaus have the following major functions:

Bureau of Design

To ascertain that all government infrastructure project implementation plans and designs are consistent with current standards and guidelines.

- Bureau of Construction

To provide technical services on construction works for infrastructure projects and facilities.

Bureau of Maintenance

To provide technical services on the maintenance and repair of infrastructure projects and facilities.

16

Bureau of Equipment

To provide technical services on the management of construction and maintenance equipment and ancillary facilities.

Bureau of research and Standard

To develop and set effective standards and reasonable guidelines to ensure the safety of all infrastructure facilities in the country and to assure efficiency and proper quality in the construction of government public works. In pursuit of this task, the Bureau will engage in research and development on all major areas pertinent to infrastructure development.

2) Regional Offices

Fourteen (14) regional offices are responsible for highways, flood control and water resource development systems and other public works within the region. Each regional office is headed by a regional director who is responsible for efficiently and effectively carrying out the duties and responsibilities of the regional office. Toward this end, and in line with the policy of decentralization, within his defined powers, he exercises functional and administrative supervision over district offices within the region, including the authority to commit their resources and personnel to integrated province or city-wide development thrusts (see Appendix 16-1, Figure 2).

The duties and responsibility of the regional offices are as follows:

- a) Undertake and evaluate the planning, design, construction and works supervision functions of the Department for the abovementioned infrastructure within the region;
- Undertake the maintenance of the abovementioned infrastructure within the region and supervise the maintenance of such local roads and other infrastructure receiving national government financial assistance as the Secretary may determine;
- Ensure the implementation of laws, policies, programs, rules and regulations regarding the abovementioned infrastructure as well as all public and private physical structures;
- Provide technical assistance related to their functions to other agencies within the region especially the local government units;

e) Coordinate with other departments, agencies, institutions and organizations, especially local government units within the region in the planning and implementation of infrastructure projects;

- f) Conduct continuing consultations with the local communities, take appropriate measures to make the services of the Department responsive to the needs of the general public, compile and submit such information to the central office, and recommend such appropriate actions as may be necessary.
- g) Perform such other related duties and responsibilities as may be assigned or delegated by the Secretary or as may be required by law.

The Department will retain and have such project management offices as may be required which will be under the supervision and control of the appropriate regional director, unless otherwise determined by the Secretary for reasons of supra-regional scope, magnitude and multi-functional coverage.

The regional equipment services, including regional depots and area shops are hereby reorganized to undertake the management, repair, maintenance and rehabilitation of construction and maintenance equipment. Each depot or shop will be operated, to the extent practicable, as a profit center. The regional equipment services are under the administrative supervision of the regional director and the technical supervision of the Bureau of Equipment.

In general, a regional office consists of the following seven (7) divisions:

- Planning and Design Division
- Construction Division
- Maintenance Division
- Material and Quality Division
- Financial Division

ones de la companya d

· 文章 医乳头类 化二氯甲二甲甲二甲

dere bija

- Administrative Division
- Comptrollership Division

3) District Offices

There is a district office in each of the provinces and cities throughout the country headed by a district engineer appointed by the Secretary. A province or city may, however, be divided into two (2) or more engineering districts, upon determination and issuance of an administrative order by the Secretary. The district office is responsible for all highways, flood control and water resource development systems, and other public works within the district. The district engineer of or within a province or city is accountable for the efficient and effective conduct of the duties and responsibilities of the district office of which he is the head. Within his defined powers, he exercises functional and administrative supervision over district operations, including the authority to recommend that field resources and personnel be committed to integrated district-wide development thrusts (see Appendix 16-1, Figure 3 and 4).

The duties and responsibilities of the district offices are as follows:

 Undertake and evaluate the planning, design, construction and works supervision functions of the Department for the abovementioned infrastructure in the district.

喜欢 乳头 抗毒 化氯邻磺胺酚 化氯化铵矿

- b) Undertake the maintenance of the abovementioned infrastructure within the district and supervise the maintenance of such local roads and other intrastructure receiving national government financial assistance as the Secretary may determine;
- Coordinate with other departments, agencies, institutions and organizations, especially local government units within the district in the planning and implementation of infrastructure projects;

a da grago por espara e di karginario di kali

- d) Provide technical assistance to other agencies at the local level on public works planning, design, construction, maintenance and other engineering matters including securing assistance from the regional office or, through the same office, assistance from the Department proper or Bureaus;
- Conduct continuing consultations with the local communities, take appropriate measures to make the services of the Department responsive to the needs of the general public, compile and submit such information to the regional office and recommend such appropriate actions as may be necessary;
- f) Perform such other related duties and responsibilities as may be assigned or delegated by the Secretary or as may be required by law.

The district office, in general, consists of the following eight (8) sections:

- Planning and Design Section
- Construction Section
- Materials Quality Control Section
- Building code Section
- Administrative Section of the sect
- Finance and Management Section
- Comptrollership Section of the sec

The standard works and the average number of personnel of these sections are presented in Appendix 16-2.

Harrist that the transfer of the contract of the gradual of the con-

16.2 COMMON PROBLEMS FACING PROJECT INSTITUTIONS

The outcome of development projects is dependent on the quality of the institutions responsible for projects. Among the problems that arise in executing projects, institutional or managerial difficulties (the terms are used interchageably) are frequently cited as the most important causes. Developing strong institutions, then, is a primary means of ensuring efficient implementation of projects.

Institutional problems do not, of course, always occur in the same form; they tend to change over time and to different sectors. They are sometimes identified in superficial terms, which may misdirect the search for solutions. Technical and managerial competence must be improved gradually to bring about 1) effective policy planning, 2) work programming, 3) financial management, 4) personnel management and 5) all the other essential functions of modern organizations.

In this chapter, common problems facing project implementation are reviewed as cited in the report entitled "Investing in Development" published in 1985 by the World Bank.

1) Policy Environment

High-level government interest has often declined sharply once project funds have been disbursed or even once they are committed, and project managers find themselves starved for operating resources. Shifting political forces - or even a change of individuals at the ministerial level - can also drastically affect the fortunes of a project and the capacity and morale of its staff. Sometimes, government intervention or controls may interfere with the ability of managers to carry out their responsibility, especially when intervention or controls may be inconsistently applied, often by several different agencies. Therefore, the project implementation should be supported with the sustained effort of high-level government official.

2) Complex Objectives

The means of reaching the objective in social or people-oriented projects are usually complex and uncertain. In some cases, the objectives facing institutional managers may be specific enough, but there may be too many objectives. A common feature of these projects is that large numbers of components, often well beyond the coordinating or executing capacities of the agencies concerned, are tacked onto projects in an attempt to address all these objectives simultaneously.

The project is planned to be implemented with the community participation system adopting the labor-intensive construction method. However, it should be clearly recognized that the objective of the project is the successful completion of road development or improvement.

3) Overemphasis on Short-Term Implementation and Neglect of Postinvestment

The implementation program of the project should be established in compliance with the institutional capability of the agencies. The overabundant expectation that the project can be completed in a short term should not be made.

in the second of the Additional Conference of the Second o

of the declaration of the we

There is often greater concentration on the investment phase than on the subsequent phase of maintenance. A consequence of neglecting the postinvestment phase of a project is that too little attention is paid, in institutional design, to the costs and benefits of road maintenance.

In this project, specific stretches of road are planned to be subcontracted to private sector maintenance companies, with specified standards and rates of payment. Another approach is that road maintenance of some stretches still remains the responsibility of a public agency but is allocated to foremen and crews from "Training Production Units" who are responsible.

4) Management and Staff Development

As a general rule, creating new organizations in the field where old ones are already in place should be done sparingly. Instead, maximum emphasis needs to be placed on improving the capacity of existing line agencies, with independent project units being used exclusively to develop new types of activity, to coordinate activities or to serve as a training ground for agency staff.

The management and staff development is important to the effective functioning of project institutions. A shortage of managers and skilled staff are an almost universal characteristic of underdevelopment. The primary issue is incentives - for all staff, but particularly for managers and technicians whose performance has the most decisive impact on institutional efficiency. Managers and staff respond to work incentives as well as material incentives, to being given responsibility, to being judged fairly on their performance and to working in a good institution.

Management and staff need training and skill development. The need for skilled people remains urgent, and so the search for training strategies relevant to institutional needs must continue.

Recently, "Action-Learning" or "Action-Research" approaches to training as well as onthe-job training have been experimented with.

ment palata distributa basas akti da daa ara mara sasil s

For complex projects, specialized skills from outside the public sector, or from outside the country, may be needed. Consultants who are familiar with the country and can provide the mix of reputation, technical skills and international experience that is needed, should be selected. When expatriate consultants are used, two additional but important tasks should be assigned to them: helping to build up a local consultancy and training local officials as counterparts to the foreign advisor.

5) Improving Management Controls

Properly organized financial management can form the basis of a streamlined management information system. Careful design of such a management information system with a well-established accounting function at its core, clear definition of the scope of management's decision making authority, and set procedures and criteria for those decisions that lie outside management's control are essential ingredients for efficient management of projects.

Especially, strict programming of field work, careful record keeping and debriefing and close managerial control within an administrative structure of clearly defined responsibilities can greatly contribute to improvement of discipline and morale of personnel engaged in projects.

6) Implementation Schemes

Carki yatırıkla ingirili

In some projects, it may be preferable to embark on a series of pilot projects, to be expanded according to a set timetable if specified results are achieved, rather than on a large project with its heavier institutional demands.

An atternative to such pilot projects is to subcontract small sub-projects to community groups, with the government providing funds and technical assistance without major bureaucratic commitment.

Another variant is to include in a project an experimental component in which new approaches can be tested.

16.3 PROPOSED PROJECT INSTITUTION

1) Principles in Organizing

The review of current institutional problems in the foregoing section suggests the fundamental ideas on establishing institutional organization for project implementation. Based on these ideas, the following principles were employed in proposing the project institution:

- To minimize creation of new organizations in order to avoid confrict with existing agencies/offices.
- To establish only one project management office as the coordination agency.
- To strengthen or improve a part of the existing organization of line agencies, particularly that of regional offices and district offices, to cope with implementation of this special project.
- To adopt the "Experimental Component Implementation Scheme" in which new approaches in terms of both implementation method and technical aspects can be tested.
- To create "Community Construction Units" to inspire participation of community people in the project and to generate job opportunities.

To employ the "Action-Learning System" to foster skilled staff.

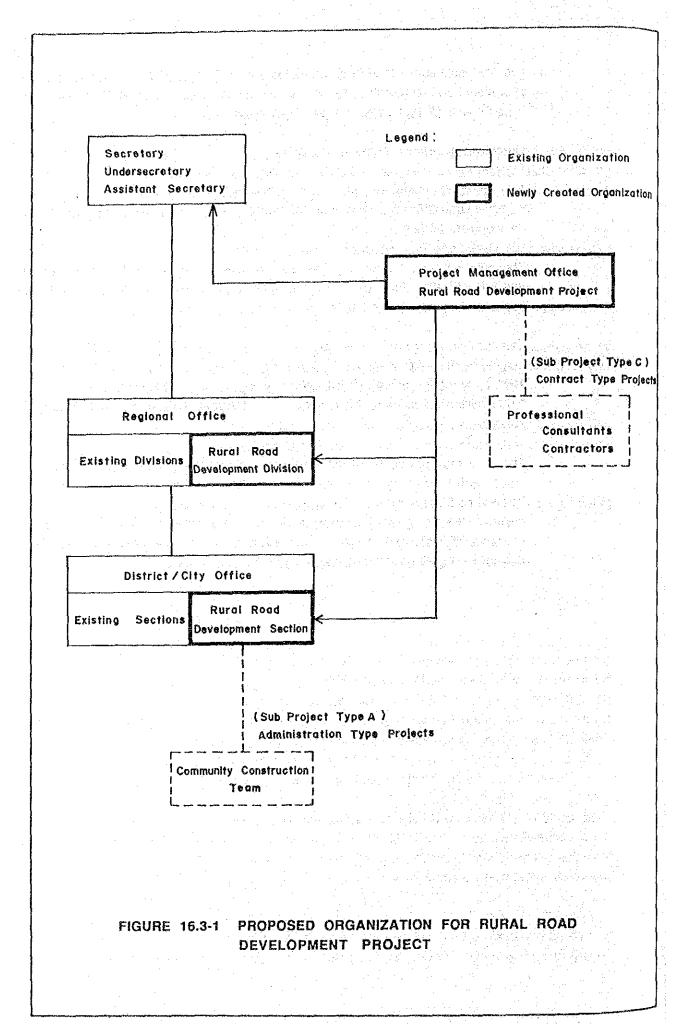
2) Proposed Organization

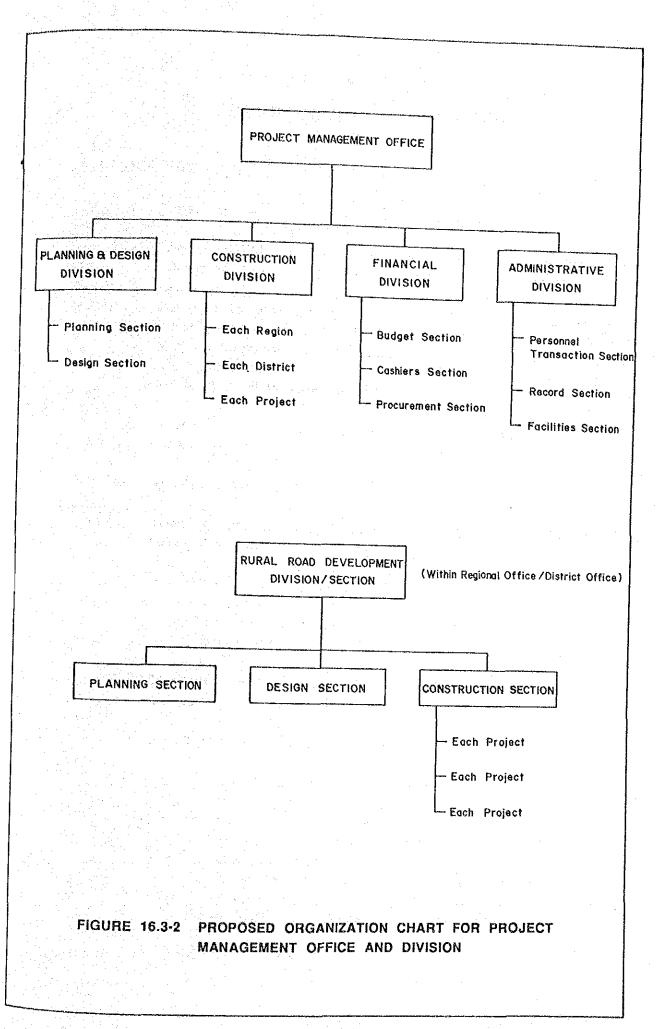
A project management office for the rural road development project is proposed to be newly created in the central office of the DPWH. The new office will be under the supervision and control of the Secretary of the DPWH, in the same way that the existing project management offices presently work. This office should act as the coordination and core agency of implementation of the whole project and at the same time be directly responsible for detailed engineering, tendering and construction supervision of "Contract Type Projects (C-Type Projects)" (see Figure 16.3-1).

The organization of existing regional offices, consisting of seven (7) divisions, need not be changed except to add one division - Rural Road Development Division - which will exclusively work for the project. Similarly, one section - Rural Road Development Section - will be newly set up within the existing district offices which presently consist of eight (8) sections.

These newly created rural road development divisions and sections will be directly responsible for conducting topographic survey and soil investigation, preparing

detailed engineering, tendering, arranging and maintaining construction equipment operational and technical guidance and construction supervision of "Administration Type Projects (A-Type Projects)" (see Figure 16.3-1).


3) Organization of Project Management Office


An organization similar to the existing project office such as the Philippine-Japan Highway Loan Office is proposed for the Project Management Office for the rural road development project.

The office will consist of four (4) divisions: Planning & Design, Construction, Financial and Administrative. Each division will have two (2) or three (3) sections assigned for special tasks (see Figure 16.3-2).

The number of staff and personnel should be decided taking into consideration the magnitude of assigned works which is estimated to be about 3,147 million pesos in 1991 (only foreign assisted rural road projects) including C-type (assumed 80% or 2,500 million pesos) and A-type contracts (assumed 20% or 650 million pesos) projects.

The rural road development divisions and sections newly created in the regional offices and district offices respectively, could have three (3) sections: Planning, Design and Construction, as illustrated in Figure 16.3-2. On average, the division in a regional office may handle about P50 million in 1991 which covers only A-type projects (assuming 20% of foreign assisted rural road projects), while a section in a district office may manage 9 million pesos in the same year.

CHAPTER 17

SUBPROJECT IDENTIFICATION

17.1 PRESENT CRITERIA FOR SUBPROJECT IDENTIFICATION

1) Process

In line with DPWH operational policy to encourage greater participation of the people in infrastructure development, the so-called bottom-up project selection process as shown in Figure 17.1-1 is applied to initial identification and listing of projects for inclusion in the DPWH infrastructure program. Accordingly, subprojects are initially identified by barangay/community, then assessed/reviewed successively by the Municipal Development Council, the Provincial Development Council and the Regional Development Council and finally integrated/consolidated in the regional proposal for inclusion in the DPWH infrastructure program.

Sometimes in foreign assisted projects, the subproject identification is conducted jointly by consultants and local government unit/DPWH/DLG staff.

2) Identification Criteria

Department Order No. 17 as amended, Series of 1982, prescribes the following criteria for project acceptability:

- The project must be economically feasible.
- The project must be technically sound.
- The project must be included as a priority project in the Regional Development Investment Program.

Specifically for barangay roads, the guidelines and criteria for selection are prescribed in Department Order No. 4, Series of 1987, as follows:

a) Improvement of Existing Barangay Roads

- The barangay road project proposed must be included in the municipal development plan and be recommended by the Municipal Development Council.
- The road must be a classified barangay road and included in the official list of barangay roads of the Ministry.
- The road must be in a poor state that requires improvement.
- The road should connect a populated cluster of at least three barangays to another road of equal or higher standard and in better condition.

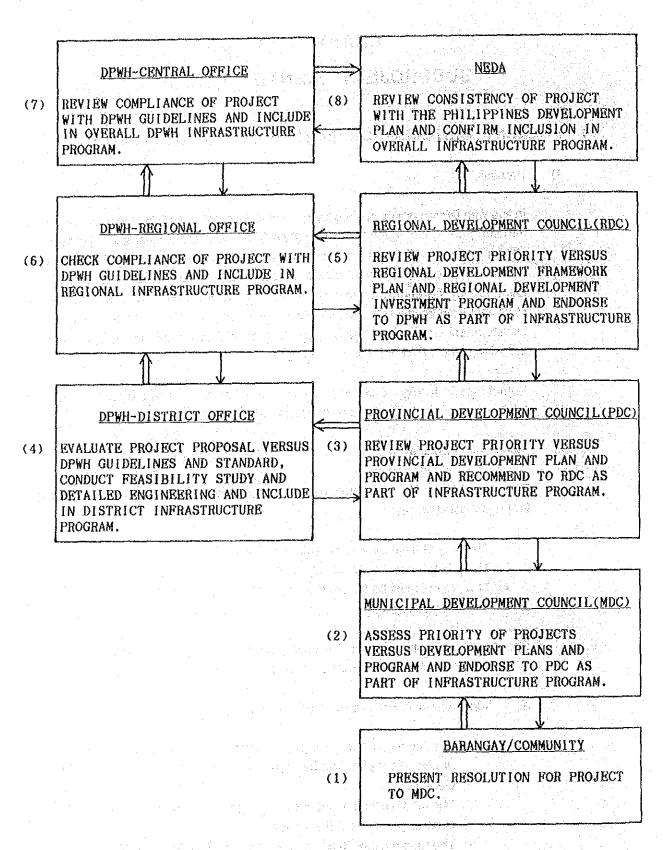


FIGURE 17.1-1 BOTTOM-UP PROJECT SELECTION PROCESS

- The road must provide road connection between production and processing areas, population concentrations and consumption centers/take-off points for surpluses.
- The road must not be less than 3.0 km long and not less than 5.0 km distant, along its entire length, from any adjacent road, except where there exists a wide body of water, a mountain or any other physical barrier in between.
- The road should promote continuity in the existing road network.

b) Construction of New Barangay Roads

- The barangay road project proposed must be included in the municipal development plan and be recommended by the Municipal Development Council.
- The road should connect a populated cluster of at least three barangays to another road of equal or higher standard and in better condition.
- The road must provide road connection between production and processing areas, population concentrations and consumption centers/take-off points for surpluses.
- The road must not be less than 3.0 km long and not less than 5.0 km distant, along its entire length, from any adjacent road, except where there exists a wide body of water, a mountain or any other physical barrier in between.
- The road should promote continuity in the existing road network.

In the IBRD-assisted Rural Roads Development Program, the following project identification criteria were adopted:

- The road must be functionally classified as either a secondary road (defined as a road linking municipalities with each other or to the provincial capital or to the primary network) or as tertiary road (defined as a road linking barangays to the municipal towns and to the primary or secondary road network).
- Committed projects are excluded.
- Roads which need no improvement other than ordinary routine and periodic maintenance, particularly regravelling, are excluded.
- The road must primarily serve the smallholder farming sector.
- The road must exceed 3 km in length.

最高級的報告 蒙古人姓氏霍斯里住所名

The road must not be located within 5 km of an existing parallel road.

17.2 PROPOSED CRITERIA FOR SUBPROJECT IDENTIFICATION

Based on the findings from the study in the pilot provinces as well as a review of the present system, the following identification criteria are proposed:

1) Procedure

- a) Subprojects should be initially identified at barangay/municipal level in conformity with DPWH policy.
- b) At the provincial level, the following activities should be conducted:
 - Formulation of major road network in the province
 - Review of proposed projects versus the identification criteria
 - Proposal of additional projects if necessary from the aspect of overall provincial road network development, e.g., construction/improvement of missing/substandard link necessary to complete the major road network
 - Consolidation/adjustment of projects and preparation of the list of candidate projects for appraisal/rating

2) Formulation of Major Road Network

To attain a systematic development of a road network, it is necessary to draw up the major road network (basic road network) in the province based on functional road classification. A major road network is basically composed of major interprovincial roads and major intraprovincial roads linking municipal towns with each other, from which minor roads branch off. The criteria for formulation of the major road network is discussed in Section 7.3.2 and exemplified in Chapters 10 to 13 for the pilot provinces.

Application Format

Table 17.2-1 shows the proposed format for application. These data are used not only for subproject identification but also for succeeding subproject appraisal/prioritization.

4) Identification Criteria

Table 17.2-2 shows the proposed criteria for subproject identification.

Each subproject should have independent effects and be homogeneous in terms of characteristics and function. If necessary, proposed project(s) should be integrated or subdivided.

TABLE 17.2-1 PROPOSED FORMAT FOR APPLICATION

Locatio	f Road on : Pro	ViI	nce				CIT	W/Manin	ipality		
Total l	Length	()	1822111	carron c	ar kiale	ct Road _					
Road D	Ata									•	
(A. 1)		7	Cross-	Section				Flood	Section		
Station	Length of Sub-	lr.			1	Suriace	Possibility of			Length of Steep	
	section (km)	[r]	Carri-	Shoul-	Туре	Condi-	Rehabilita- ting by	Length	Water Depth	Gradient	Remarks
		i	(m)	(m)		tion -	AC Overlay	(km)	(12)	Section (m)	
		Ë						 			·
		H						-			
								ļ			
	L	با			L	l	·		l	l	
Bridge l	Date:										
Di Inos	,u.,			· .							
		-				Prop	posed				~
Station	}	Į	Length	Wiath	Structu	ral Brid Lena	ige		Remai	rks	.*
	Туре		(a)	(m)	Conditi	on	n)				
1 5	V 1 47 -						<u>"</u>				· · · · · · · · · · · · · · · · · · ·
<i>=</i>											
		2 :-	-2 25								
<u> 1</u>	لــــا					<u> </u>					
	Preset Traff	i c	غ سا		Total						
Car/Yan		<u>.</u>				, n:	ate of Survey				•
	<u> </u>					Na Na	ame of Road fr	on which			
1eepney		_				- di					
leepney Bus	e Navige		1	1		1	version is ex				-
							iversion is ex				
Bus Truck							iversion is ex				· · · · · · · · · · · · · · · · · · ·
Bus							iversion is ex				
Bus Truck Total)a (lor majo	road, e	version is ex except average	(pected)			
Bus Truck Total)a (To	tal for	except average	(pected)			
Bus Truck Total Socio-ec	conomic i		le (omi:		To	<u></u>	except average	(pected)			
Bus Truck Total Socio-ec			le (omi:		To	tal for	except average	(pected)			
Bus Truck Total Socio-ec	conomic i	ed Wi	e (omi:	ssible	To	tal for	except average	(pected)			
Bus Truck Total Socio-ec Populati Cultivat Influenc	conomic i	ed Wi	thin He	oad ha)	To	tal for	except average	(pected)			
Bus Truck Total Socio-ec Populati Cultivat	conomic i	ed Wi	thin He	oad ha)	To	tal for	except average	(pected)			
Bus Truck Total Socio-ec Populati Cultivat Influenc Average per Mont	conomic i ion Serve ted Area de Area Householth	ed Wi	thin He	oad ha)	To	tal for	except average	(pected)			
Bus Truck Total Socio-ec Populati Cultivat Influenc Average per Mont	conomic i	ed Wi	thin He	oad ha)	To	tal for	except average	(pected)			

(Continued) TABLE 17.2-1

Instruction for subproject Proposal Form

3. Administrative Classification of Project Road : National, Provincial, City, Municipal, Barangay

Project roads shall be divided into subsections, each of which is homogeneous in terrain, cross-section, surface type and condition.

Terrain

Any combination of grades and horizontal and vertical alignment permitting heavy vehicles to Fial

maintain approximately the same speed as passenger cars.

combination of grades and horizontal and vertical alignment causing heavy vehicles to reduce Rolling their speed substantially below that of passenger cars, but not causing heavy vehicles to operate at crawl speed for any significant length of time.

Any combination of grades and horizontal and vertical alignment causing heavy vehicles to operate Mountainous:

at crawl speed for significant distances or at frequent intervals.

Surface Type

Portland Cement Concrete Pavement PCC

Asphalt Concrete Pavement BST Bituminous Surface Treatment

Gravel Surface

Earth Road v

Surface Condition

: No potholes or rutting or corrugation. Less than 5 potholes per 1000 meters. Cracking which does Good

not affect driving condition may be ignored.

: More than 5 but less than 20 potholes per 1000 meters and/or slight cracking and/or rutting and/or corrugated (less than 50% of the section length). Passenger car speed will exceed 30 km per hour. Fair

More than 20 potholes per 1000 meters and/or slightly rutted and/or corrugated (more than 50% of the section length) and/or corrugated over approximately the entire length. Pavements, if any, starting to break up. Maximum comfortable travel speed (car) is 30 km/hr.

: Pavement breaking up and gravel surface deteriorated into numerous potholes. Just passable for cars. Maximum comfortable travel speed (car) is about 20 km/hr. Very Bad

Impassable: Impassable to motorized vehicles at all times, or in the wet season, or non-existing.

Possibility of Rehabilitating by AC Overlay

Subgrade, subbase and drainage are in sound condition and pavement distress is primarily caused by

traffic and by surface course material.

: Other than above No

Length of Steep Gradient Sections

Steep gradient section is defined as a portion of a road where motorized vehicles cannot condition.

6. Bridge Data

Bridge Type

Steel Bridge Concrete Bridge Bailey Bridge Timber Bridge Concrete Spiliway Ford

Structural Condition

Bridges that have been carrying normal traffic for a longer length of time, no sign of distress/deterioration and their load carrying capacity is considered adequate; no work or Good

improvement to be done.

Bridges that show signs of deterioration on the superstructure and substructure such as spalling on concrete deck, light cracks on concrete surfaces, rusty steel trusses, scouring on piers, damaged Fair

slope protection.

Bridges that show signs of heavy deterioration on the structure such as showing heavy longitudinal cracks/random cracks, splitting of concrete at tension reinforcement level, heavy spalling of concrete surfaces, exposed rusty reinforcing bars at girders and bridges that are extensively damaged and structurally unsafe for vehicular traffic. Bad

Bridges incapable of carrying future traffic, structurally and hydraulically deficient, and liable Very Bad

to collapse.

TABLE 17.2-2 PROPOSED CRITERIA FOR SUBPROJECT IDENTIFICATION

A. One or more of the following conditions should be met:

		Major Road	Minor Road
(1)	Existing Link - Carriageway Width - Pavement Type	Below 6.0 meters Inferior to recommended type (Table 18.1-2)	Inferior to gravel
	- Surface Condition	Bad or worse	Bad or worse
(2)	New Link	Impassab Non-exis	
(3)	Bridges	Ford Spillway Timber bridge Bailey bridge	Ford Spillway in structural- unsound condition Timber bridge Bailey bridge serving AADT more than 300

- B. (1) In case of major road presently in good/fair condition, AADT in the opening year should be more than 150.
 - (2) In case of major road presently in bad or worse condition, AADT in the opening year should be more than 100.
 - (3) In case of minor road, population served per km of road should be more than 300.

CHAPTER 18

SUBPROJECT APPRAISAL/PRIORITIZATION

18.1 TECHNICAL EVALUATION

Subprojects should be technically sound in preliminary design and cost estimate. This Section discusses the procedure for appropriate design and cost estimate.

1) Design Concept

The principal objective of the rural road network development project is to provide allweather transport facilities to depressed areas. In line with this objective, the basic design concept was formulated as follows:

- Improvement of surface condition is the principal concern of design.
- Improvement of horizontal and vertical alignment is limited to the required minimum.
- In the case where all-weather access is not attained only by improvement of surface condition, special consideration is given, e.g., PCC paving for steep gradient sections to enable vehicles to climb up even in the wet season and grade raising in flood sections.
- Adequate cross and side drainage is provided.
- Permanent structures are provided in accordance with the improvement criteria for bridges.

2) Type of Improvement

The road improvement works are categorized into five types as shown in Table 18.1-1.

TABLE 18.1-1 TYPE OF IMPROVEMENT

Type	Existing Pavement Type	Existing Surface Condition	Proposed Improvement Work
Rehabilitation	Standard or Superior	Bad/ Very Bad	Improvement of Surface Condition
Improvement-1	Substandard	Bad/ Very Bad	Upgrading of Surface Type
Improvement-2	Substandard	Good/Fair	Upgrading of Surface Type
Widening	Standard (carriageway is na than standard)	Good/Fair rrower	Widening of Existing Road
New Construction	Impassable Non-ex	and the contract of the contract of	Construction of New Road

3) Pavement Type

The pavement types commonly used in the Philippines are as follows:

- Crushed gravel surfacing (Gravel)
- Double bituminous surface treatment (DBST)
- Bituminous macadam pavement (BMP)
- Asphalt concrete pavement (AC)
- Portland cement concrete pavement (PCC)

Based on the discussion described in Section 7.4.2 6), the recommendation for the selection of pavement type was made as shown in Table 18.1-2. It should be noted that, since pavement performance depends greatly on various factors such as traffic loading, roadbed soil, construction materials, drainage, shoulder design, etc., Table 18.1-2 shows the standard type applicable under normal conditions in the Philippines.

TABLE 18.1-2 RECOMMENDED TYPE OF PAVEMENT

AADT in Opening Year	Recommended Type of Pavement		
Over 1,000	PCC		
400 - 1,000	AC		
200 - 400	BMP/DBST ¹⁾		
Under 200	BMP/DBST ¹⁾ for Primary Major Roads with AADT > 100 Gravel for Other Roads		

Note: 1) DBST is applicable under the following conditions: - m (layer drainage coefficient)²⁾ = 0.9, CBR^{2} 10 - m (do) = 1.0, CBR^{2} 8 Otherwise, BMP is recommended.

2) Recommended m value is given as follows:

Comparison of the second

Quality of			Structure is E aching Saturati	
Drainage	Less than			eater than
<u> </u>	1%	1-5%	5-25%	25%
Excellent	1.40 - 1.35	1.35 - 1.30	1.30 - 1.20	1.20
Good	1.35 - 1.25	1.25 - 1.15	1.15 - 1.00	1.00
Fair	1.25 - 1.15	1.15 - 1.05	1.00 - 0.80	0.80
Poor	1.15 - 1.05	1.05 - 0.80	0.80 - 0.60	0.60
Very Poor	1.05 - 0.95	0.95 - 0.75	0.75 - 0.40	0.40

4) Construction/Replacement of Bridges

The recommended improvement criteria are shown in Table 18.1-3.

TABLE 18.1-3 IMPROVEMENT CRITERIA FOR BRIDGES

Existing	Proposed Improvement					
Bridge Type	Major Road	Minor Road				
Ford Crossing	2-lane Permanent Bridge	Carriageway width in abutting road section 4.0 m: 1-lane Spillway ¹⁾ Carriageway width in abutting road section 6.0 m: 2-lane Spillway ¹⁾				
Spillway	2-lane Permanent Bridge	No Improvement ²)				
Timber Bridge	2-lane Permanent Bridge	AADT less than 200 : 1-lane Permanent Bridge AADT more than 200 : 2-lane Permanent Bridge				
Bailey Bridge	2-lane Permanent Bridge	AADT less than 300 : No Improvement AADT more than 300 : 2-lane Permanent Bridge				

- Note: 1) Where the site condition is not favorable for a spillway, a permanent bridge should be planned in accordance with the criteria for timber bridges.
 - 2) When the existing spillway is structurally sound and traffic disturbance is estimated less, the existing spillway can be utilized. Under other conditions, a permanent bridge should be planned in accordance with the criteria for timber bridges.

5) Special Treatment

Special considerations should be given to steep gradient sections and flood sections, where otherwise all-weather access is not ensured for motor vehicles.

For steep gradient sections with gravel surfacing where motor vehicles have difficulty in climbing up due to slippery road surfaces during the wet season, partial paving with PCC is recommended (refer to Figure 9.4-6 (6)).

In flood sections, grade raising is required. Embankments with slope protection by grouted riprap against scouring are recommended (refer to Figure 9.4-6 (6)).

6) Construction Cost Estimate

李智·2000美元·2012年3月20日 10日 11日 11日 11日

Construction costs vary depending on various factors such as type of improvement, existing and proposed pavement types, terrain, etc. In order to give the guideline for cost estimates necessary for project evaluation and budgetary purposes, the results of the studies made in the pilot provinces were analyzed and summarized in the form of a table. Table 18.5-7 shows the approximate road construction cost per kilometer by improvement type, carriageway width and terrain, while Table 18.5-8 shows the average additional cost necessary for grade raising in flood sections. Table 18.5-9 shows the approximate bridge construction cost by structure.

7) Procedure for preliminary design and cost estimate

A simplified method for preliminary design and cost estimate was developed based on the above discussion. It is incorporated in the proposed procedure of subproject evaluation/rating presented in Section 18.5.

18.2 ECONOMIC EVALUATION

18.2.1 Analysis of Evaluation Results in the Pilot Provinces

Subprojects are in general short in length and numerous in number. It will be quite costly and time consuming to conduct a detailed feasibility study for each subproject. To facilitate the economic evaluation, the evaluation results in the pilot provinces were statistically analysed with the objective of developing a series of estimation models to be used for estimating the economic indicators based on easily obtainable data. The analysis was made on the following five subjects:

	Variable to be estimated	Given variables	Analysis method

(1) _,	Traffic benefit	A set of road data	Quantification theory, class 1
(2)	Development benefit	A set of road/ economic data	Quantification theory, class 1
(3)	AADT in minor road	Province type, population and cultivated area	Regression analysis
(4)	Maintenance cost savings	Traffic benefit	Regression analysis
(5)	Economic internal rate of return	Benefit cost ratio	Regression analysis

1) Estimation of Traffic Benefit

Quantification theory, class 1 is a statistical method to formulate an estimation model to be used for estimating a variable (criterion variable) based on given variables (predictor variables). Each predictor variable is classified into categories. Category weights and a constant term are obtained by the least squares method. The value of a criterion variable is estimated as the total of category weights of predictor variables and constant term:

$$V = \sum_{i} W_{ik} + C$$

where, V : Estimated value of criterion variable

Wik : Category weight of category k of predictor variable i

C : Constant term

The general procedure of the quantification theory, class 1 is as follows:

- i) Expression of criterion variable
- ii) Selection of predictor variables
- iii) Categorization of selected predictor variables
- iv) Selection of samples
- v) Formulation of estimation model (calculation of category weights and constant term)
- vi) Interpretation of category weights
- vii) Tabulation of values of criterion variable

Expression of criterion variable

The criterion variable was determined as follows:

Criterion variable =
$$\frac{TB}{L \times AADT}$$

where, TB: Total discounted traffic benefit for 25 years (1992 - 2016) expressed by 1990 value in thousand pesos

$$TB = \sum_{y=1992}^{2016} ATB / (1 + r/100)^{y-1990}$$

ATB: Annual traffic benefit in thousand pesos

r : Discount rate in % (r = 15)

y: Year

L: Improvement length of road in km AADT: AADT in the opening year (1992)

Selection of predictor variables

The following considerations were given in selection of predictor variables:

- Explanatory of traffic benefit
- Not very correlative with other predictor variables
- Easily obtainable
- Reliable in accurary

In view of those considerations, the following predictor variables were selected:

- Province type
- Existing pavement type
- Existing surface condition
- Proposed pavement type
- Road type

Other related variables were excluded from the analysis for the following reasons:

- Terrain: In the preliminary analysis, significant differences in traffic benefit depending on terrain were not found.
- Modal distributions before and after road improvement:

These factors were found to be closely correlated with the selected predictor variables, especially with province type, existing surface condition and road type. In addition, these data are difficult to prepare.

Categorization of Selected Predictor Variables

The selected predicator variables were categorized as follows:

- a. Province Type: In accordance with the classification of provinces discussed in Section 5.3:
 - (Cavite type, i.e., province with average road density and economically well developed)
 - 2. BL (Masbate type, i.e., province with low road density and economically less developed)
 - 3. GL. (Bohol type, i.e., province with high road density and economically less developed)
 - AL (Agusan del Norte type, i.e., province with average road density and economically less developed)
- b. Existing Pavement Type
 - 1. Paved
 - 2. Gravel
 - 3. Earth
- c. Existing Surface Condition
 - 1. Good or Fair
 - 2. Bad
 - 3. Very Bad
 - 4. Impassable
- d. Proposed Pavement Type
 - 1. PCC or AC
 - 2. BMP or DBST
 - 3. Gravel

e. Road Type

- Minor Road: 1-direction access (minor road connected to higher standard road at one end)
- 2. Minor Road: 2-direction access (minor road connected to higher standard roads at both ends)
- 3. Major road: (component of major road network in the province serving predominantly through traffic)

Selection of Samples

All road projects subjected to feasibility study were used as samples except the following:

- Projects serving predominantly diverted traffic
- Projects containing only bridge construction/replacement
- Projects characterized by two or more different conditions, where predominant category cannot be specified

As a result, 308 samples out of 329 road projects were selected for the analysis.

Formulation of Estimation Model

di banaratan kalendara yan baratan kalendara kalendara kalendara kalendara kalendara kalendara kalendara kalendar

the of the court of the above and a country of the

The result of the analysis is given in Table 18.2-1.

TABLE 18.2-1 RESULT OF ANALYSIS

Predictor Variable	Category Wei		rtial rrelation	
- COLITION C	1 2	3 4	Weight Co	efficient
Province Type	AD BL -8.718 5.371	GL AL 11.885 -0.35	9 20.603	0.479
Existing Pave- ment Type	Paved Gravel -6.991 -4.667	Earth 5.176 -	12.167	0.282
Existing Sur- face Condition	Good/Fair Bad -10.321 -4.120	Very bad Impass 0.109 able 14.24	24.567	0.382
Proposed Pave- ment Type	PCC/AC BMP/DBST 8.318 6.912	Gravel -1.492 -	9.810	0.209
Road Type	Minor: Minor: 1-dir. 2-dir. 3.156 -4.550	Major -1.722 -	7.706	0.241
Constant Term		18.229		

Number of Samples n=308Multiple Correlation Coefficient R=0.702Coefficient of Determination $R^2=0.493$

Existing surface condition is the most contributive factor followed by province type. "Impassable" of existing condition is given the highest category weight and "Good/Fair" of existing condition is given the highest negative category weight.

Interpretation of Category Weights

Category weights are interpreted as follows:

a. Province Type

In a Cavite type province (AD), which is economically developed, future economic growth is anticipated to be relatively low and consequently traffic growth is also low; therefore, this type of province is given the lowest category weight.

On the other hand, a Masbate type province (BL) and a Bohol type province (GL) are economically less developed. In such provinces, road improvement is expected to have a relatively high impact on economic development resulting in

a high rate of traffic growth. This is the interpretation of high category weights to be assigned. Between these two categories, a Bohol type province, which has a higher development potential, is given a higher category weight.

An Agusan del Norte type province, (AL) which lies midway in economic development, is given a middle category weight.

b. Existing Pavement Type

The higher category weight is assigned to the project with the higher traffic cost in the "w/o" case. Earth, Gravel and Paved are in the decending order of category weight.

c. Existing Surface Type

Likewise, category weight is reasonably assigned according to traffic cost in "w/o" case, i.e., in the order of Impassable, Very Bad, Bad and Good/Fair.

d. Proposed Pavement Type

A higher category weight is given to a project with the lower traffic cost in the "with" case. PCC/AC, BMP/DBST and Gravel are in the descending order of category weight.

e. Road Function

The travel distance in Minor Road: 1-direction access is generally longer than that in Minor Road: 2-direction access. Therefore, the category weight of the former is higher.

On the other hand, travel distance in Major Road is the longest as the full length of the project road is usually considered in the benefit calculation. Nevertheless, the category weight of Major Road is lower than that of Minor Road: 1-direction access, because the change in model distribution due to road improvement is less.

Tabulation of Values of Criterion Variable

Based on the category weights shown in Table 18.2-1, values of the criterion variable, i.e., total discounted traffic benefit per km per vehicle, were calculated for all cases of predictor variables. With minor adjustments to avoid unrealistic values, these values were tabulated as shown in Table 18.5-10.

2) Estimation of Development Benefit

The development benefit estimation model was formulated also by the quantification theory, class 1.

Expression of Criterion Variable

The criterion variable was determined as follows:

Criterion Variable =
$$\frac{DB}{L}$$

where, DB: Total discounted development benefit for 25 years (1992 - 2016)

expressed by 1990 value in thousand pesos:

$$DB = \sum_{y=1992}^{2016} ADB / (1 + r/100)^{y-1990}$$

ADB: Annual development benefit in thousand pesos

r: Discount rate in % (r = 15)

y : year

L: Improvement length of road in km

Selection of Predictor Variables

The factors directly related to development benefit are agricultural production volume, production cost and farmgate price by crop and by "w/o" and "with" cases. Instead of those data which are difficult to obtain, the following data were selected as predictor variables considering the correlation with development benefit:

- Province type
- Existing surface condition
- Terrain
- Cultivated area within road influence area

Since a significant difference in development benefit depending on population was not found by the preliminary analysis, population was not included in the analysis.

Categorization of Selected Predictor Variables

The selected variables were categorized as follows:

- a. Province Type: Same categorization as used in traffic benefit estimation model
 - 1. AD
 - 2. BL
 - 3. GL
 - 4. AL

- b. Existing Surface Condition
 - 1. Bad
 - 2. Very Bad
 - 3. Impassable
- c. Terrain
 - 1. Flat
 - 2. Rolling
 - 3. Mountainous
- d. Cultivated Area within Road Influence Area per Km of Road
 - 1. Below 50 ha/km
 - 2. 50 100 ha/km
 - 3. 100 150 ha/km
 - 4. 150 200 ha/km
 - 5. Above 200 ha/km

Selection of Samples

All development projects subjected to feasibility study were selected as samples except such projects that serve the area with non-agricultural development plans like mining projects. As a result, 241 samples were selected for the analysis.

Formulation of Estimation Model

The result of the analysis is summarized in Table 18.2-3.

TABLE 18.2-3 RESULT OF ANALYSIS

Predictor		Category Weight				Range of Partial Category Correlation	
Variable	1	2	3	4	5	Weight C	
Province Type	AD -9.831	BL 10.273	GL 11.645	AL -4.855		21.476	0.160
Existing Sur- face Condition	Bad -26.374	Very Bad 7.859	Impassable 47.059	<u>-</u> .		73.434	0.423
Terrain	Flat -15.671	Rolling 13.650	Mountainous -13.243			29.321	0.237
Cultivated Area	Below 50 -34.724	50-100 -12.551	100-150 -1.697	150-200 16.692	Above 200 36.688	0 71.412	0.335
Constant Term			119.788				
Number of Sampl	P.G		n = 241				

Number of Samples n=241Multiple Correlation Coefficient R=0.586Coefficient of Determination $R^2=0.344$

Existing surface condition is the most contributive factor followed by cultivated area. "Impassable" of existing condition is given the highest category weight, while "below 50 ha/km" of cultivated area is given the highest negative category weight.

Imterpretation of Category Weights

a. Province Type

The distribution of category weights shows the same pattern as that in the traffic benefit estimation model. This is due to the correlation between development potentiality and traffic growth.

b. Existing Surface Condition

A higher category weight is assigned to a project with a worse surface condition. This is due to the fact that, in an area presently with poor access, a greater development impact is expected by removing such constraints.

c. Terrain

The highest category weight is given to Rolling, with lower weights to Flat and Mountainous. This is interpreted as follows:

- Flat areas generally have less development potential due to the presence of fewer constraints on development, resulting in a low category weight.
- Mountainous areas generally have less development potential due to the limited available land for cultivation, also resulting in a low category weight.
- As a consequence, Rolling is given the highest category weight.

d. Cultivated Area

Category weight is reasonably assigned according to cultivated area, which is directly correlated with the possibility of increasing agricultural production.

Tabulation of Values of Criterion Variable

The values of the criterion variable, i.e., total discounted development benefit per km of road, were calculated for all cases of predictor variables and tabulated as shown in Table 18.5-11.

3) Estimation of AADT in Minor Roads

The following considerations were given in selection of predictor variables:

- Passenger traffic and non-agricultural traffic are, generally, related to the population residing within the road influence area.
- Agricultural traffic is related to both agricultural production and population,
 because the generative source of this traffic is surplus and deficit production.
- Traffic generation factor and model distribution vary depending on development level of the area.

In view of the above, the analysis was made by the regression analysis using AADT in the opening year as the criterion variable and population and cultivated area as the predictor variables. For the development level of the area to be taken into account, the estimation model was formulated individually for each province type. The results are as follows:

Province Type	Number of Samples	Multiple Correlation Coefficient	Estimation Model
AD	99	0.900	AADT=0.031P+0.015A-2.4
BL	42	0.723	AADT=0.003P+0.002A+2.4
GL	63	0.986	AADT=0.014P+0.007A-8.1
AL	46	0.922	AADT=0.011P+0.008A+1.8

where, AADT : AADT in the opening year (1992)

P : Population within the road influence area

A : Cultivated area within the road influence area in ha

4) Estimation of Maintenance Cost Savings

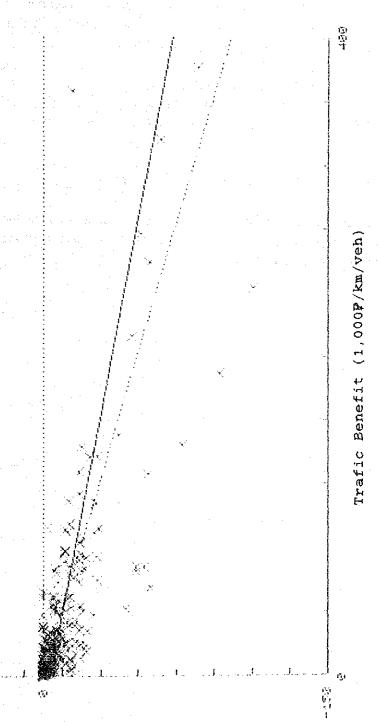
In the feasibility study for the pilot provinces, periodic maintenance costs in the "with" case were treated as project costs, while the difference between routine maintenance costs in the "with" case and total maintenance costs in the "w/o" case was considered as project benefit.

To simplify the evaluation process, the definition of maintenance cost savings was, however, changed to be the difference of total maintenance costs between the "w/o" and "with" cases. In most cases, the "with" maintenance costs were higher than the "w/o" maintenance costs. In this case, the difference was considered as negative benefit. Total discounted maintenance cost savings per km per vehicle according to new definition were selected as the criterion variable.

Total discounted traffic benefit per km per vehicle was selected as the predictor variable, due to its correlation with maintenance cost savings.

The relation between the two variables is shown in Figure 18.2-1. The estimation formula was obtained by regression analysis as follows:

$$\left(\frac{MS}{L \times AADT}\right) = -3.87 - 0.162 \left(\frac{TB}{L \times AADT}\right)$$
 (correlation coefficient y=-0.81)


where, MS : Total discounted maintenance cost savings for 25 years (1992 -

2016) in thousand pesos

TB: Total discounted traffic benefit for 25 years (1992 - 2016) in

thousand pesos

L: Improvement length of road in km
AADT: AADT in the opening year (1992)

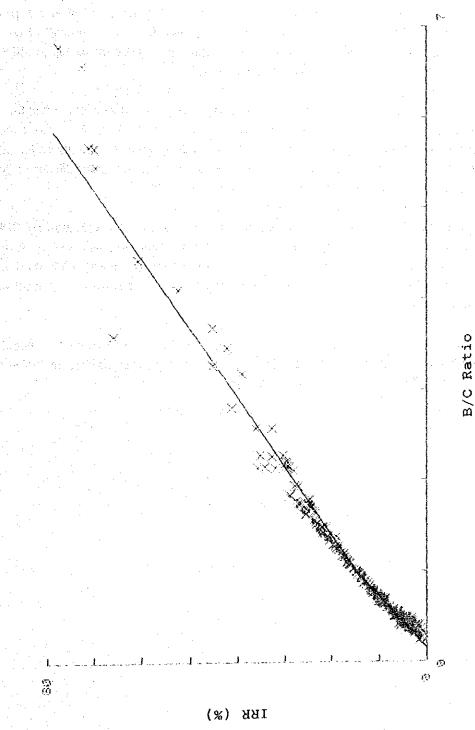
Maintenance Cost Savings (1,000P/km/veh)

5) Estimation of Economic Internal Rate of Return

The economic internal rate of return is estimated from the benefit cost ratio. Figure 18.2-2 shows the relation between the two variables. The estimation formula was introduced by regression analysis as follows:

B/C ≥1 : IRR = 1.676 + 13.324 × B/C

(Correlation coefficient r =0.981)


B/C < 1 : IRR = -3.018 + 18.018 × B/C

(correlation coefficient r =0.985)

18.2.2 Procedure of Simplified Economic Evaluation

A simplified economic evaluation method was developed based on the findings described in the previous section. It is incorporated in the proposed procedure for subproject evaluation/rating presented in Section 18.5.

18.3 SOCIO-ECONOMIC CONSIDERATIONS

The national development goals formulated in the Medium-Term Philippine Development Plan, 1987-1992 are (a) alleviation of poverty, (b) generation of more productive employment, (c) promotion of equity and social justice and (d) attainment of sustainable economic growth. The rural road network development project aims to support these goals by providing all-weather access to depressed areas.

Poor areas should be given priority in rural road development in view of the first three goals: alleviation of poverty, generation of employment and social justice, while the effect of the project on the fourth goal: attainment of economic growth, is directly reflected in the economic evaluation. Thus, an important factor to be considered in addition to economic evaluation is the degree of poverty of the area.

As shown in Chapter 19, the fund allocation formulae for roads prepared by DPWH are expressed by road adequacy, gross value added, population and incidence of poverty. The first three factors are considered to be related to economic viability, while the last one is independent thereof. Thus, incidence of poverty is taken into account in the allocation of fund to provinces.

In the guidelines and formulas for ranking projects established by DPWH, household income level and social benefit are included in addition to the economic viability. Inclusion of these factors complies with the national development goals.

18.4 RATING

1) DPWH Criteria

The Planning Service of the DPWH established the criteria in ranking projects as follows:

a) National Road/Bridge Projects

where: PR = Project rating

FYB/C = Merit points of first year benefit cost ratio

HI = Merit points of household income

SB = Merit points of social nenefits

i) First Year Benefit Cost Merit Points (MP)
Ratio (FYB/C)

Equal to 10% 50

Between 10% and 30% $50 + \frac{(FYB/C-10) \times 50}{20}$

Equal to or more than 30% 100

Note: Required minimum FYB/C = 10%

ii) Household Income per Month (HI) Merit Points (MP)

P5,000 and above 25

Between P2,000 and P5,000 150 - 150 - 150

Below P2,000 100

iii) Social Benefits (SB)

Merit Points (MP)

High 10

Medium 65

Low 30

 High - The road project will contribute considerably to the promotion of health, education, communication, safety, security and preservation of environment in the influence area of the project.

 Medium - The road project will contribute moderately to the promotion of the above services in the influence area of the project.

Low - The road project will contribute in a minor degree to the promotion of the above services in the influence area of the project.

b) National Road/Bridge Projects (Alternative II)

PR = 70% PC/TV + 20% HI + 10% SB

PC = Project Cost

TV = Annual average daily traffic (AADT)

HI = Household income

SB = Social benefits

i) Project Cost per Unit AADT (PC/TV)

Gravel (P200,000 - P500,000/km)	DBST: (P800,000 -: P1,200,000/km)		AC (P1,500,000 - P2,200,000/km)	•	PC (P2,000,000 - P3,000,000/km)	:	Merit Points
1000/over	: 2000/over	:	5000/over	•	60007-		
900	: 1800	•	4500	٠	6000/over	:	10
800	1600	•	4000	•	5400	:	20
700	: 1400				4800	:	30
600	1200	•	3500		4200	:	40
500	: 1000	•	3000	•	3600	:	50
400	Association of the control of the co	٠, :	2500	:	3000	:	60
the state of the state of the state of	: 800		2000		2400		70
300	: 600	:	1500	:	1800	:	80
200	: 400	•	1000		1200	•	90
100	: 200	:	500	:	600		100

ii) Household income (HI) = as in a) above

c) Barangay Road/Bridge Projects (Rehabilitation and Improvement)

where: PR = Project rating

PCC = Merit points of project cost per capita, i.e., the ratio of the project cost in thousand pesos to the population served within the influence area

PCA = Merit points of project cost per arable area, i.e., the ratio of the project cost in thousand pesos to the arable land in hectares within the influence area

ERC = Merit points of existing road condition

ij Project Cost Per Capita (PCC)	Ment Points (MP)
10 and below	100
Between 10 to 55	120 - 2 PCC
55 and above	10

iii) Social Benefits (SB) = as in a) above

ii) Project Cost Per Arable Area (PCA) Merit Points (MP)

 10 and below
 100

 Between 10 to 55
 120 - 2 PCA

 55 and above
 10

iii) Existing Road Condition (ERC) Merit Points (MP)

Good		30
Fair		65
Bad		100

d) Barangay Road/Bridge Projects (New Construction)

PR = 40% PCC + 40% PCA + 20% SB

- i) Project cost per capita (PCC) = as in c) above
- ii) Project cost per arable area (PCA) = as in c) above
- iii) Social benefits (SB) Merit Points (MP)

High		(Nov. A	100
Medium		 	65
Lowing	el liberal	10 14	30

2) Proposed Alternative Ranking Criteria

The formula in the DPWH criteria are summarized as follows:

a) National Road/Bridge Projects

The three factors employed for ranking projects are:

- Economic viability expressed by first year benefit cost ratio (70% weight)
- Average household income level (20% weight)
- Social benefits evaluated by degree of contribution of the project to improvement of social welfare (10% weight)
- b) National Road/Bridge Projects (Alternative II)

As in a) above, except that economic viability is expressed by PC/TV (project cost divided by AADT). This is based on the fact that project benefit is closely correlated to traffic volume.

c) Barangay Road/Bridge Projects (Rehabilitation and Improvement)

The three factors used for ranking projects are:

- Project cost per capita (40% weight)
- Project cost per arable area (40% weight)
- Existing road condition (20% weight)

The first two factors are considered to represent the economic viability, while the last factor is related to both economic viability and social benefits.

d) Barangay Road/Bridge Projects (New Construction)

As in c) above, except that existing road condition is replaced with social benefits.

For proposing the alternative ranking method, the following considerations were given:

- Internal rate of return (IRR) can be easily estimated in accordance with the procedure described in Section 18.5. IRR is considered a more reliable economic indicator commonly available to every class of road.
- In line with the national development goals, the DPWH criteria take into account average household income level and social benefits. Since this is the Government policy, these factors and respective weight should be respected.
- Uniform expression for every class of road is preferable for direct comparison and ranking.

Based on the above considerations, the alternative ranking criteria are proposed as follows:

PR = 70% MP(IRR) + 20% MP(HI) + 10% MP(SB)

Project rating where: PR

MP(IRR) = Merit points of economic internal rate of return (IRR)

Merit points of average household income per MP(HI)

month (HI)

MP(SB) = Merit points of social benefits (SB)

MP(IRR)

20 + 21RR Less than 40% 100

Equal to or more than 40%

) ji ji **Hi** sa sama na mbakata kisabasa **MR**(t

P5,000 and above

Between P2,000 and P5,000 150 - HI/40

Below P2,000 100

iii) SB MP(SB)

High 100
Medium 65
Low 30

High - The road project will contribute considerably to the promotion of health, education, communication, safety, security and preservation of environment in the influence area of the project.

Medium - The road project will contribute moderately to the promotion of the above services in the influence area of the project.

Low - The road project will contribute in a minor degree to the promotion of the above services in the influence area of the project.

18.5 PROPOSED PROCEDURE OF SUBPROJECT EVALUATION/RATING

This section presents the worksheets for subproject evaluation/rating and step-by-step instructions for their use and interpretation.

18.5.1 Major Road Subproject

The computation for evaluating/rating major road subproject is conducted and/or summarized on the worksheet shown in Table 18.5-1, using the Subproject Proposal Form (Table 17.2-1, hereinafter referred to simply as the Proposal) as basic input data.

1) Name of Road and 2) Province

These are taken directly from the Proposal.

3) AADT in Opening Year

AADT in the opening year is calculated assuming 3% annual traffic growth rate based on present traffic shown in the Proposal.

AADT in Opening Year = present AADT x 1.03 n where, n : Number of years to the opening year

4) Construction Cost

Road

- Length of subsection, terrain, and existing pavement type and condition are taken directly from the Proposal.
- Proposed pavement type and width are obtained from Table 18.5-4.
- Type of improvement is obtained from Table 18.5-5.
- Construction cost per km is found by looking up Table 18.5-7.
 Construction cost per subsection is obtained by multiplying the construction cost per km by length of subsection.
- For subsection including flood sections, additional cost necessary for grade raising is calculated as average additional cost per km times flood section length shown in the Proposal. The average additional cost per km is obtained from Table 18.5-8.
- Total cost of the subsection is computed as the sum of construction cost and additional cost for flood sections.
- Length and total cost of the subsection to be improved are summed up and entered in respective columns. Total length does not include the length of noimprovement subsections.

Bridge

- Existing bridge type is obtained from the Proposal.
- Proposed bridge type and number of lanes is obtained from Table 18.5-6.
- Length of bridge is obtained from the Proposal.
- Number of spans should be decided based on site conditions. The standard number of spans is given by dividing bridge length in meters by 20 and rounding, unless site conditions indicate that another value is appropriate. In the case of a spillway, the number of spans is one (1).
- Unit costs of superstructure, abutment and pier are obtained from Table 18.5-9. In the case of a spillway, unit costs of abutment and pier are both 0.
- Total costs are computed as follows:

Superstructure: Unit cost per m times length

Abutment : Unit cost times 2

Pier : Unit cost times (number of spans - 1)

Total : Sum of above three items

Total Construction Cost

This is computed as the sum of total road cost and total bridge cost.

5) Economic Evaluation

Benefit

- Province type is found from Table 18.5-3.
- Existing pavement type and condition are represented by these predominating in the whole subproject road.
- Proposed pavement type is as decided above.
- Traffic benefit per km per vehicle is obtained by looking up Table 18.5-10. It is multiplied by total improvement length and by AADT to get traffic benefit.
- Maintenance cost savings per km per vehicle is computed as:

$$MS' = -3.87 - 0.162 \times TB'$$

where, MS': Maintenance cost savings in thousand peso per km per veh

TB': Traffic benefit in thousand peso per km per veh

It is multiplied by total improvement length and by AADT to get total savings. Maintenance cost savings are always a negative value.

- Total benefit is computed as the sum of traffic benefit and maintenance cost savings.
- Economic cost is computed as total construction cost times 0.831, under the following assumptions:

Year Item	Economic Cost	Discounted Economic Cost
1st year Detailed Engineering	0.04C	0.04C
2nd year Construction Construction Supervision	0.85C 0.06C	0.85+0.06C=0.791C 1.15
Total		0.8310

Note: C = Total construction cost

B/C ratio is computed by dividing total benefit by economic cost.

IRR is computed as:

 $B/C \ge 1$: IRR = 1.676 + 13.224 × B/C B/C < 1 : IRR = -3.018 + 18.018 × B/C

6) Rating

Project rating is computed as follows:

PR = 70% MP(IRR) + 20% MP(HI) + 10% MP(SB)

where, PR : Project rating

MP(IRR) : Merit points of economic internal rate of return (IRR)

MP(HI) : Merit points of household income per month (HI)

MP(SB) : Merit points of social benefits (SB)

Economic internal rate of return (IRR): IRR is as decided above. Merit points are computed as follows:

23.			
	IRR	MP (IRR)	70% MP (IRR)
	IRR < 40 IRR ≥ 40	20 + 2 × IRR 100	14 + 1.4 x IRR 70
	11111 7 10	the state of the s	

Household income per month (HI):

HI is taken from the Proposal. Merit points are computed as follows:

HI	мр (Ні)	20% MP (HI)
P 5,000 or above	25	5
P 2,000 - 5,000	150-HI/40	30-HI/200
below P 2,000	100	20

Social benefit (SB)

Social benefit is evaluated as either High, Medium or Low, according to the degree of contribution of the subproject to the promotion of health, education communication, safety, security and preservation of environment in the influence area of the subproject. Merit points are obtained as follows:

	SB	MP(SB)	10% MP(SB)	
	High	100		10	A I
*	Medium	65		6.5	
	Low	30	a digita di Salah Masalah di Ark	3	

18.5.2 Minor Road Sub-project

The worksheet for evaluating/rating minor road subprojects is presented in Table 18.5-2. The Subproject Proposal Form (Table 17.2-1, hereinafter referred simply as the Proposal) is used as basic input data.

1) Name of Road and 2) Province

These are taken directly from the Proposal. Province type is decided from Table 18.5-3.

2) AADT in Opening Year

Population served (P) and cultivated area within road influence area (A) are taken from the Proposal. AADT in the opening year is estimated as follows, depending on province type:

Province Type	Equation
AD	AADT = 0.031P + 0.015A - 2.4
BL	AADT = 0.003P + 0.002A + 2.4
GL	AADT = 0.014P + 0.007A - 8.1
AL	AADT = 0.011P + 0.008A - 1.8

3) Construction Cost

Construction cost is computed in the same manner as used for major road subproject.

4) Economic Evaluation

Category

- Province type is as decided above.
- Road type is selected between the following two:
 - 1-direction access: connected to a higher standard road at one end
 - 2-direction access: connected to a higher standard roads at both ends
 - The location map attached to the Proposal is referred to in the selection.
- Existing pavement type and condition are represented by these predominating in the whole subproject road.
- Proposed pavement type is as decided above.
- Terrain is that predominating in the whole subproject road.
- Cultivated area within road influence area used for estimating AADT is again entered and divided by the total improvement length.

Benefit

- Traffic benefit per km per vehicle is obtained by looking up Table 18.5-10. It is multiplied by total improvement length and by AADT to get traffic benefit.
- Development benefit per km is obtained by looking up Table 18.5-11. It is multiplied by total improvement length to get development benefit.
- Maintenance cost savings is computed in the same manner as used for major road subprojects.
- Total benefit is computed as the sum of traffic benefit, development benefit and maintenance cost savings.
- Economic cost, B/C ratio and IRR are computed in the same manner as used for major road subprojects.

Rating

Project rating is conducted in the same manner as used for major road subprojects.

TABLE 18.5-1 WORKSHEET FOR EVALUATING/RATING MAJOR ROAD SUBPROJECT

Name of Road Province AADT in Ope Construction Road Subsection	ning Year			× 1.03	1-0	·····							
AADT in Ope Construction Road Subsection	ning Year		ADT	x 1,03	0-0							11.2	1.
Construction Road Subsection	Cost	Present A	ADI	X 1,03			n: Number	of years to t	ha opening v	esr= 1			
Road Subsection					· - <u>U</u>								
Subsection	2						1.1.1		2.5				
	②							Conttille	tion Cost	Additiona	l Cost for Flo	od Section	1
			Existing	Pavement	Proposed	Pavement	Type of	(1,00	() / ((1,000 P)	,	-
1 1	Length of Subsection (km)	Terrain	Түре	Condition		Width (m) 18.5-4)	improve- ment (Table 18.5-5)	(3) Cost per km (Table 18,5-7)	Cost (②×③)	Flood Section Length (km)	Add. Cost per km (Yable 18.5-8)	Add. Cost	Total Co (1,000 / (① * ①
1													
2						ļ							 -
3				L	 	ļ	ļ						
4		om fotal imp	rovement Len		L	<u> </u>	L	I	اا		<u> </u>	Tote	(3)
[3	<u> </u>	(axeluding	na-improven	nent subsection	m)			·* .			What is a second		
Bridge									·		1 14 14 14 14 14 14 14 14 14 14 14 14 14	· · · · · · · · · · · · · · · · · · ·	
Dr. 10de			Propose			+	it Cost (1,000		- 10		Cost [1,000 /		
No.	Existing Bridge Type	Туре	No. of Lanas	Langth (m)	No. of Spans 1 10 /20 &	Superetruct. per m	Abutment	Pier	Superstruct		nent	① Pier -1) x ① } (Yotal
		{Tab!a	18.5-61		round)		Table 16.5						
,							7 1 1 1 1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				
2						 		ļ	100	+			
3						<u>}</u>						;	
4					<u> </u>			L	L			Total	()
Total Constructions Economic Evaluation		9 + 3	<u>()</u>		_x 1,000 F						Savings (1,000	1 (4)	
	··-		Existing	, ,	toposed	Tra 20	llic Benefit (1	n)	- Maring	3	(23)		23 Total
Province Typ	e Paverr	isting ant Type	Surface Conditio		ment Type	Benefit pr		Benefit	1 . Per	g L par km Veh	Benafil	- 1	Benefit (1,000 F)
(Table 18,9-3	B) (Pred	eminanti	(Predomina	ant)	3 to 3	(Teble 18		20 × (D)	7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		12₹ x ® ×	①)	(D)+ (L)
						<u> </u>							

TABLE 18.5-1 WORKSHEET FOR EVALUATING/RATING MINOR ROAD SUBPROJECT

Province	10000	31											
				<u> </u>		Pro	vince Type	Table 18.5-3	3)				
AADT in O	pening yea tion Served			100	200								
	ted Area wi			-			AADT	≠.0.031P +	0.015A 2.	4 (Province	Type MR)		
1 1 1 1	niluence Ar		ale en					≈ 0.003P + i					
	in Opening					1.3		≈ 0.014P + (≈ 0.011P + (
				- 11			74401	- 0.0111 + 0	.vuca ~ ()	R (L.coniuce	Type MP)		
Constructio	n Cost			* * * * *	•		:						
Road		1	·					,					
	②	:	Existing	Pavement	Proposed	Pavement	Yuns at	Construc (1,00	tion Cost (0 F)	Additiona	Cost for Fig (1,000 P)	od Section	
Subsection No.	Length of	Terrain			Туре	Width (m)	Type of Improve-	3	①	©	(6)	ĩ	Total Cos
	Subsection (km)	2 7 7	Туре	Condition		18.5-4)	(Table 18,5-5)	Cost per km (Teble	Cost	Flood Section	Add. Cost	Add. Cost	(1,000 F
	1				ļ	<u> </u>	10.3.37	18.5-7)	(② x (3))	Length (km)	(Table 18.5-8)	('3 × 6)	1:2:0
		\$ x 1 x	100										
2											1	<u> </u>	
3			1 (7.5)									1	
	<u> </u>	- Total Imp	rovement Le	nath	<u> </u>	<u> </u>	Ĺi						
Ľ	8			ment subsection	n)			~				Fotal	ŝ.
egbin	15 54.												100
11095			Propose	d Bridge		Uni	t Cost (1,000	P)			Cost {1,600 P		
	Existing			Û	Ð	42	ß	ĵţ.	ß	1 16	1	ĪŽ	
No.	Bridge Type	Тура	No. of	Leagth	No. of Spans	Superstruct.	Abutment	Pier	Superstruct.	-	[Pier	T
		(Table 1	Lanes B.5-61	(m)	(30 /20 & round)		 Fabia	i	(Ø x (£)	12 x 1	_ 1	1) × [j] ([j	Total + [6 + 17
-		1			100.11)								
								i		2			
	50												
2													
2													· · · · · · · · · · · · · · · · · · ·
3 4	ction Cost	• 9 + 13	= <u>(§</u>		× 1,000 ₽							Total Î	
2 3 4 otal Construi	News to the	• 19 + 16	= (8		× 1,000 ₽								
3	luation	· ① + ①	Pav	Existing	Exis Surface C	ning Condition	Proposes	d year	Terrain			Ares within RI	A
2 3 4 bital Construi conomic Eva tegory	luation		Pav	Existing	Exis Surface C	sting Condition ninent)	Propose Pavament T	d (i	Terraio Predominant)		Cultivated s		A er km
2 3 4 bital Construi conomic Eva tegory	luation		Pav	Existing	Exis Surface C	condition	Propose Pevement I	d dype (i)	Ferrain Predominanti		Ð	Area within RI	A er km
2 3 4 4 onomic Eva tegory Province Ty	luation		Pav	Existing	Exis Surface C	condition	Propose Pavament T	d type	Terrain Predominaed		Ð	Area within RI	A er km
2 3 4 4 2 2 2 3 3 4 2 2 3 3 3 4 2 3 3 3 3	luation pe	Road Type	Pav	Existing ement Type edominant)	Exis Surface ([Predor	Condition minant)	Pavement T	ype (I	Predominant		D cres (ha)	Area within RI	A er km
2 3 4 4 construit Construi	luation	Road Type	Pav (Pr	Existing ement Type edominant) Deve	Exis Surface ([Predor	condition minant)	Pavement T	ype (I	Terrain Predominant	vings (1,000	D cres (ha)	Ares within RI Ares p (Ø /	A er km g }
2 3 4 4 botal Construi	pe stic Benefit	Road Type	Pav (Pr	Existing ement Type edominant)	Exis Surface ((Predoc	Condition minant)	Pavement T	ype (I	Predominant		(ha)	Ares within RI Ares p (2) /	Aer km
2 3 4 4 Dotal Construi	pe stic Benefit	Road Type [1,000 ₱]	Pav (Pr	Existing oment Type edominant	Exis Surface ((Predoc (Predoc	efit (1,000 F)	Pavement I	ype (I	Predominant) nance Cost Se	vines (1,000 -	(t	Area within RI Area p (20 /	A sr km E)
2 3 4 4 botal Construi	pe stic Benefit	Road Type (1.000 F) Repetition	Pav (Pr	Existing ement Type edominant	Exis Surface ((Predoc (Predoc	efit (1,000 F)	Pavement I	Mainter	Predominant) nance Cost Se	vings (1,000 & Benefi	(t	Area within Al Area p (20 / Total Bes (1,000	A sr km E)
2 3 4 4 botal Construi	pe stic Benefit	Road Type (1.000 F) Repetition	Pav (Pr	Existing ement Type edominant	Exis Surface ((Predoc (Predoc	efit (1,000 F)	Pavement I	Mainter	Predominant) nance Cost Se	vings (1,000 & Benefi	(t	Area within Al Area p (20 / Total Bes (1,000	A sr km E)
2 3 4 4 botal Construit conomic Eva tegory Province Ty refit Tr trefit per km (Table 18.5	pe stific Benefit per veh 10)	Road Type (1,000 F) 20 Benefit (12) x(∰) 31 = 18	Pav (Pr	Existing ement Type edominant	Surface C (Predor Proposent Sent) (Predor Proposent Sent)	efit (1,000 F)	Pavement I	Mainter	Predominant) nance Cost Se	vings (1,000 & Benefi	(t	Area within Al Area p (20 / Total Bes (1,000	A sr km E)
2 3 4 4 construited Construite	pe stific Benefit per veh 10)	Road Type (1,000 F) 20 Benefit (12) x(∰) 31 = 18	Pay [Pr	Existing ement Type edominant) Devs Benefit po (Table 18.	Surface C (Predor Proposent Sent) (Predor Proposent Sent)	efit (1,000 F)	Pavement I	Mainter	Predominant) nance Cost Se	vings (1,000 & Benefi	(t	Area within Al Area p (20 / Total Bes (1,000	A sr km E)
2 3 4 4 botal Construit conomic Eva tegory Province Ty Province Ty Ineffit per km (Table 18.5 momic Cost Ratio = ② = 1.676	pe veh 10) = ① × 0.8	(1,000 F) Benefit (1) x(1) 31 = 3	Pav (Pr	Existing ement Type edominant) Devs Benefit pe (Table 18.	Surface C (Predor Proposent Sent) (Predor Proposent Sent)	efit (1,000 F)	Pavement I	Mainter	Predominant) nance Cost Se	vings (1,000 & Benefi	(t	Area within Al Area p (20 / Total Bes (1,000	A sr km E)
2 3 4 4 botal Construit conomic Eva tegory Province Ty Inelit per km (Table 18.5	pe veh 10) = ① × 0.8	(1,000 F) Benefit (1) x(1) 31 = 3	Pav (Pr	Existing ement Type edominant) Devs Benefit pe (Table 18.	Surface C (Predor Proposent Sent) (Predor Proposent Sent)	efit (1,000 F)	Pavement I	Mainter	Predominant) nance Cost Se	vings (1,000 & Benefi	(t	Area within Al Area p (20 / Total Bes (1,000	A sr km E)
2 3 4 4 A potal Construit Conomic Evantegory Province Ty Province Ty Province Ty Reflit per km (Table 18.5 Ratio = ① 1 = 1.678 - = -3.018	pe veh 10) = ① × 0.8	(1,000 F) Benefit (1) x(1) 31 = 3	Pav (Pr	Existing ement Type edominant) Devs Benefit pe (Table 18.	Surface C (Predor Proposent Sent) (Predor Proposent Sent)	efit (1,000 F)	Pavement I	Mainter	Predominant) nance Cost Se	vings (1,000 & Benefi	(t	Area within Al Area p (20 / Total Bes (1,000	A sr km E)
2 3 4 4 botal Construit conomic Eva tegory Province Ty Province Ty Ineffit per km (Table 18.5 momic Cost Ratio = ② = 1.676	pe veh 10) = ① × 0.8	(1,000 F) Benefit (1) x(1) 31 = 3	Pav (Pr	Existing ement Type edominant) Devs Benefit pe (Table 18.	Exis Surface C (Predor	efit (1,000 F) Benefit (2 x ()	Pavement I	Maintei Banelit per km (-3.87 - 0.16	nance Cost Sp per veh	vines (1,000	(t	Area within Al Area p (20 / Total Bes (1,000	A sr km E)
2 3 4 4 A potal Construit Conomic Evantegory Province Ty Province Ty Province Ty Reflit per km (Table 18.5 Ratio = ① 1 = 1.678 - = -3.018	saffic Benefit per veh -10}	Road Type	Pay (Pr	Existing ement Type edominant! Deve 3 8 Benefit po (Table 18.	Exis Surface C (Predor	efit (1,000 F)	Pavement I	Maintei Banelit per km (-3.87 - 0.16	Predominant) nance Cost Se	vines (1,000	(t) (x (1))	Area within Al Area p (20 / Total Bes (1,000	A sr km E)
2 3 4 4 A potal Construit Conomic Evantegory Province Ty Province Ty Province Ty Reflit per km (Table 18.5 Ratio = ① 1 = 1.678 - = -3.018	pe veh 10) = ① × 0.8	Road Type	Pav (Pr	Existing ement Type edominant) Devs Benefit pe (Table 18.	Exister Control of the Control of th	efit (1,000 F) Renefit (2) x ()	Pavement I	Mainten	nence Cost Sa per veh 2 x (2) }	vines (1,000	(t) (x (1))	Area within RI Area p (20 / Total Ber (1,000) (12 + 21 +	A sr km E)
2 3 4 4 botal Construit conomic Eva tegory Province Ty thefit per km (Table 18.5 momic Cost Ratio = ① 1.676 = -3.018		Road Type	Pav (Pr	Existing ement Type edominant) Devs 33 Benefit po (Table 18. x 1,000	Exis Surface C (Predor r km 5-11) Househol H1 ≥ 5,0	efit (1,000 F) Benefit (2 x ()	Pavement I	Mainten Mainten Sanelit per km (-3.87 - 0.16	nance Cost Sp per veh 2 x {T}}	vines (1,000	(t) (t) (x (j))	Area within RI Areap (20 / Total Ber (2,000 (22 + 21 +	A sr km E)
2 3 4 4 A potal Construit Conomic Evantegory Province Ty Province Ty Province Ty Reflit per km (Table 18.5 Ratio = ① 1 = 1.678 - = -3.018		Road Type	Pav (Pr	Existing ement Type edominant) Devs 33 Benefit po (Table 18. x 1,000	Existence (Predoc	efit (1,000 F) Renefit (2) x ()	Pavement I	Mainten	mance Cost Sn per veh 2 x (1)	vines (1,000	(t) (t) (x (j))	Area within RI Area p (20 / Total Ber (1,000) (12 + 21 +	A sr km E)

1	TABLE 18.5-3	PROVINCE TYPE	
Province	Province Type	Province	Province Type
Region I Abra Benguet Ilocos Norte Ilocos Sur	GL AD GL GL GL AD	Region VII Bohol Cebu Negros Oriental Siquijor	GL AL BL GL
La Union Mountain Province Pangasinan	AL AL	Region VIII Leyte Southern Leyte	AL AL BL
Region II Batanes Cagayan Ifugao	GL AL AL	Eastern Samar Northern Samar Samar	BL BL
l Isabela Kalinga-Apayao Nueva Vizcaya Quirino	BL BL GL AL	Region IX Basilan Sulu Tawi-Tawi Zamboanga del Norte	BL BL BL AL
Region III Bataan Bulacan Nueva Ecija Pampanga Tarlac Zambales	GL AD AL AD AL AD	Zamboanga del Sur Region X Agusan del Norte Agusan del Sur Bukidnon Camiguin	BL AL BL AL GL GL
Region IV Aurora Batangas	 BL GL	Misamis Occidental Misamis Oriental Surigao del Norte	AL AL
Cavite Laguna Marinduque Occcidental Mindoro Oriental Mindoro Palawan	AD AD AL BL BL BL	Region XI Davao del Norte Davao del Sur Davao Oriental South Cotabato Surigao del Sur	BL BL BL AL BL
l Quezon Rizal Romblon	BL AL GL	Region XII Lanao del Norte Lanao del Sur	GL BL
Region V Albay Camarines Norte Camarines Sur Catanduanes Masbate Sorsogon	AL AL AL AL BL AL	Maguindanao North Cotabato Sultan Kudarat	BL BL BL
Region VI Aklan Antique Capiz Iloilo Negros Occidental	AL AL AL AL AL AL		

TABLE 18.5-4 PROPOSED PAVEMENT TYPE AND WIDTH

Major Road

AADT in	Primary N	lajor ¹⁾	Secondary Maj	or 1)
	Pavement Type ²⁾	Width (m)	Pavement Type ²⁾	Width (m)
Over 2,000	PCC 4)	/* FT	PCC 4)	6.7
1,000 - 2,000		6.7	PCC 7	6.0
400 - 1,000	AC 4)	6.7	AC 4)	6.0
200 - 400	BMP 3) 4)	0.0	BMP 3) 4)	6.0
100 - 200	n DMF	6.0		
Under 100	Gravel	6.0	d Gravel	6.0

Minor Road

AADT in	Collector	Road 1)	Feeder Roa	ıd ¹⁾
Opening Year	Pavement Type ²⁾	Width (m)	Pavement Type ²⁾	Width (m)
Over 400	AC 4)	6.0	AC 4)	6.0
200 - 400	BMP 3) 4)	6.0	BMP 3) 4)	6.0
50 - 200		6.0		
Under 50	d Gravel	4.0	Gravel	4.0

- Note: 1) Classification is made in accordance with Table 7.3-2. For minor road, national/provincial/city roads are, generally classified as collector roads and barangay roads as feeder roads.
- 2) Where existing pavement type is superior to that proposed above, the former should be used.
 - 3) BMP is replaced by DBST as the case may be (Refer to Section 18.1 3)). It is, however, recommended to assume BMP for budgetary and evaluating purposes.
 - 4) AC overlay is applied where existing pavement type is equivalent or superior to that proposed above and existing conditions warrant the use of AC overlay. The possibility of AC overlay is indicated in the Proposal.

TABLE 18.5-5 TYPE OF IMPROVEMENT

	Road Class	 Major	Road	Minor	
Surface Condition	Pavement Type	 Standard	Substandard	Standard	Substandard
	Wc ¹⁾ <6.0 m	Widening	 Improvement-2		
Good/Fair	₩c ≥ 6.0 m	•	Tubto venien t-s		
Bad/Ver	y Bad	Rehabilitation	Improvement-1	 Rehabilitation	Improvement-1
Impas	sable		New Co	nstruction	

Note: 1) Wc = Existing carridgeway width

TABLE 18.5-6 PROPOSED BRIDGE TYPE AND NUMBER OF LANES

Existing	P	roposed Improvement
Bridge Type	Major Road	Minor Road
Ford Crossing	2-lane Permanent Bridge 	Carridgeway Width in Abutting Road Section 4.0 m: 1-lane Spillway Carridgeway Width in Abutting Road Section 6.0 m: 2-lane Spillway
Spillway	2-lane Permanent Bridge	No Improvement 2)
Timber Bridge	2-lane Permanent Bridge	AADT less than 200: 1-lane Permanent Bridge AADT more than 200: 2-lane Permanent Bridge
Bailey Bridge		AADT less than 300 : No Improvement AADT more than 300 : 2-lane Permanent Bridge

- Note: 1) Where the site condition is not favorable for a spillway, a permanent bridge should be planned in accordance with the criteria for timber bridges.
 - 2) When the existing spillway is structurally sound and traffic disturbance is estimated less, the existing can be utilized. Under other conditions, a permanent bridge should be planned in accordance with the criteria for timber bridges.

TABLE 18.5-7 CONSTRUCTION COST BY TYPE OF IMPROVEMENT (Thousand Pesos per km in 1988 Price)

Type of	Road	Xisti	vemen	. 0	e me	. ! -	6 F T 80	c
Improvement	Type.	Type	Condition	Type	Width	F18t	1 40	Mountain
Rehabilitation	1 • π	PCC	4/4	PCC	7	8	88	9
) () ()	1 1 0 1 0 1		0 1	~ ·	ω,	7,
	7 2-	200		Overlay	0			7 -
	1-3	Bitum.	1 OP 1		۲.	43	ū	Š
÷	 	Bitum.		AC	0	124	38	47
	· ·	Ditter.	U	Overlay	٠, ‹	9	23.	CJ i
	- 4 L 1 4 rü	Bitum.	! I	DMP/DRST		1,174	1,155	1,135
	9-1	Gravel	i i	Gravel	Ó	י נטי	(r)	
	1-6	Gravel	1 00	Gravel	0	, T	10	8
Improvement-1	2-1	Bitum.		PCC	٠.	1	6	
	1		- 90 -	PCC	0	۳.	ώ	9
-		Gravel	1 00 T	700 000 000	<u>~</u> (٠,	ò	در د
	,	Crave1		: بر د	, r	<u>-</u> "	ž ř	<u> </u>
-	•	> > 5 63		N N	, o		. 03	200
	1	Ø	1 90 1	BMP/DBST	٥.	. 6	Š	23
	ŧ	. دي. اسا		Ο (Ο (٠. ١	٠.	0,	ය (
	1	٠.		χ. Ο	o t	- 1	ية ا	0 6
	2 - 6 2 - 6	1,007,10 1,007,10	 0	۸ ه د د	 	7,597	2,164	3,006
	- 1	Earth	ı OP I	BMP/DBST	0	9	00	. 51
	- 1	ىر. سۇ		Gravel	0	. 60	: [-	
	1		1 00 -	Gravel	o.	440		10 C1
Improvement-2	1 1	·	Good/Fair	PCC	1.	86	. 92	21
			τ	PCC	٥.	62	63	99
		۲۵ ۲۵		PCC	٠. ۱	88	96,	2.4
	7 C 1 I 2 C	20 20 C	1 1 0 5 1 1) ()	9.0	•	•	*
	- 1	· >	1	A A	. 0	, cl	3 4	10
	1 1	Gravel	- do -	BMP/DBST	0	1,555		2 2
Widening	4-1	PCC	Good/Fair	PCC		42	1 10 1 10 1 ^	
			.0	PCC	0	17.	12.7	w
		Bitum.	ο : Ό :	Ų,	٠. (20	₹.(φ.
	4 4 7 1 2 2 6	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	i i	AC BMD/DRST	6 E 0 C	<u>ئ</u> د	٠ <u>,</u> د	4 4 50 50 50 50 50 50 50 50 50 50 50 50 50
	1 4	Gravel) O	2 ~	20	3 0	4 4	40
	4-4	5 (- do: -	Gravel	0	4	. B	
No.N	เกา เมา	1 (! , ,	252	بن	TO C	3,610	6
Cousti action	1 C	٠.)) (? 1	3.0	,	ט ט
	· P	ı		Y O	. 0	40	7 -	30,00
	я 1 С	ı	1	BMP/DBST	o,	30	46	86
	νν. 4. 4	: 1		167470 167470	0.0 E E	1,079	-	5
	1 . 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!	1 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	:) j) (r (

TABLE 18.5-8 ADDITIONAL COST FOR FLOOD SECTION
(Thousand Pesos per km in 1988 Price)

Road Class	Pavement Width	Additiona Cost
Primary Major Road	6.7 m 6.0 m	2,600 2,400
Secondary Major Road	6.7 m 6.0 m	1,700 1,500
Minor Road	6.0 m 4.0 m	1,300 1,100

TABLE 18.5-9 BRIDGE CONSTURCTION COST (Thousand Pesos In 1988 Price)

Bridge	Туре		Unit	Cost
2-lane	Bridge	Supersturcture	Lin.M	40.2
	_, _	Abutment	Each	288.0
		Pier	Each	258.5
1-lane	Bridge	Supersturcture	Lin.M	30.3
1 Tuno	DI I WD	Abutment	Each	202.4
	•	Pier	Each	181.5
2-lane	Spillway		Lin.M	15.4
	Spillway		Lin.M	11.4

TABLE 18.5-10 STANDARD TRAFFIC BENEFIT (1,000/km/veh)

Minor Road: 1-direction	ion Acess	2		- [) }		(130 (114 (00)))	(cu)			
	Province AD	C	L C	ovince BL		1	Province G	7.		Province A	ږ
Existing	Proposed Pavement	Туре	Proposed	venen t	Type	Propose	d Pavement	Type	Propose	d Pavement	Typ
Pavement Condition	C/AC BMP/DBS	Gravel		/DBS	1 8 1	Y	MP/DB	rave	\ \ \ \ \	MP/DBS	9
Paved (bad)	80	i lo	3.96	22.537	~~	30.477	29.071	0.66	2 2	(6) ()	i L
	23	4.29	8.19	6.78	18.382	70	3.30	24.895	2.46	1:05	Τ.
(a)	9 7	18.431	200	2 0	76.3	200	7.43	6		0. L	17
(Dad)	10.	•	5.28	4.88	6.47	08	39	2 99	0.55	9.1.0	
(Very Bad)	27 15.		0.51	9.11	20.70	03	5.62	7.22	4.78	3.38	
(Impas	35 29.	20.755	65	3.24	4.84	9	9.76	35	8.92	7.51	: !
Earth (Bad)	41 20.		6.13	4.72	6 32	8.4	1.23	2 83	0.40	66.8	CI
(Very Bad)	26.270 24.854	16.460	40.359	80,00 00,00	30.549	00 (4	37.063	252	33.223	O r
() IDBSSBOIL	00.60 00.	2	֝֟֝֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓			5	3	2.7	;	3	,
Minor Road: 2-direction	ion Acess										
	Province	1		ovince			2		4	Province A	ı
Existing	Proposed Pavement	Type		Pavement	Type	Proposed	Pavement	Type	Proposed	ı.E	Type
Pavement Condition	PCC/AC BMP/DBST	Gravel	PCC/AC BI	SMP/DBST	Gravel	PCC/AC	BMP/DBS	Gravel	PCC/AC	BMP/DBST	ß
December (Dec.)	160 46	0 003		1 4	1 4	7.7	2.1.36	9.96	1 S	1.5	1
	90.4	0.00	4	9.08	0	8	S.	17.190		463	71
(Impassab)	535 19.12	10.725	62	3.21	.8	.13	5	1.32	8.83	. 48	1.9
Gravel (Good/Fair)	067 0.04	1 6	رن ش ر	76.0	. ;	20.0	4. n				
(BBB)	492 3.08	, u	0	7.17	8.77	3.5	ŝõ		7.83	4 0	co t
(]mnassan]e)	2.859 21.45	় ক	60	4 m	 	46	Ö	3.65	2.5	0 00	
Earth (Bad)	4.335 12.92	4 52	4.	7.01	8.61	6	n) E)	5.12	2.69	28	
(Very Bad) (Impassable)	18.564 17.158 32.702 31.296	8.754	32.653	31.247	22.843	39.167	37.761	29.357	26.923	25.517	33.7
Caco Market											
:	Province	AD	à	rovince BI		D.	rovince G	٦	Pr	0 4	
EX Stink	, -	Type	Proposed	vement	Type	Proposed	Pavement	Туре	Proposed	Pavement	Type
Pacesent	PCC/AC BMP/DBST	Gravel	PCC/AC B	MP/DBST	Gravel	PCC/AC I	BMP/DBST	Gravel	1	BMP/DBST	Gra
111111111111111111111111111111111111111	!		1 1 1 1		1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1 1			1 4
Paved (Bad) (Very Bad)	3.996 2.590 8.225 6.819 22.363 20.957	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8 C 4	900	8.275 12.504 26.642	24.599 28.828 42.966	23.193 27.422 41.560	14.789	12.355	10.949 15.178 29.316	0 0 0
Grave (Good/Fair)	119 0.09		.20	2.80	.3	. 72	9.3	1	8.47	70.07	•
(Pag)	.320 4.91	0.397	4	9.00	0.59	92	5.5	۲. در د	4 x	4 6	कं ठ
Bad)	0.549 9.14	٠,	63	3.23	4.82	* 6	2 C	ત iti ડે 4	3.04	1.64	5
	16.153 14.757	6.333	25	. 8	20.442	7.	5 36	25.956	3	3.11	7
	000		~		-			•	•	,	×

TABLE 18.5-11 DEVELOPMENT BENEFIT (1,000 P/km)

	Existing	· *	Cu	ltiva	ted /	rea	(ha	./km)	
Terrain	Surface	0-50	 5	0-100	100)-15	0 1	50-200	200-
Flat	Bad Very Bad Impassable	59.6 67.4 106.6		81.7 89.6 128.8		92. 00. 39.	4	111.0 118.8 158.0	131.0 138.8 178.0
Rolling	Bad Very Bad Impassable	88.9 96.7 135.9		111.1 118.9 158.1	1	21. 29. 69.	8	140.3 148.2 187.4	160.3 168.2 207.4
Mountainous	Bad Very Bad Impassable	62.0 69.8 109.0		84.2 92.0 131.2		95. 102. 142.	9	113.4 121.3 160.5	133.4 141.3 180.5

Province Type BL

	Existing		Cultivat	ed Area (h	a./km)	
Terrain	Surface - Condition	0-50	50-100	100-150	150-200	200-
Flat	Bad Very Bad Impassable	79.7 87.3 126.7	101.8 109.7 148.9	and the second of the second o	131.1 138.9 178.1	151.1 158.9 198.1
Rolling	Bad Very Bad Impassable	109.0 116.8 156.0	131.2 139.0 178.2	142.0 149.9 189.1	160.4 168.3 207.5	180.4 188.3 227.5
	Bad Very Bad Impassable	82.1 90.0 129.2	104.3 112.1 151.3	115.1 123.0 162.2	133.5 141.4 180.6	153.5 161.4 200.6

Province Type GL

	Existing		Cultivate		(ha./km)	
Terrain	Surface - Condition	0-50	50-100	100-150	150-200	200-
Flat	Bad Yery Bad Impassable	81.0 88.9 128.1	103.2 111.1 150.3		132.5 140.3 179.5	
Rolling	Bad Very Bad Impassable	110.4 118.2 157.4	132.5 140.4 179.6	143.4 151.2 190.4	169.6	189.6
Mountainous	Bad Very Bad Impassable	83.5 91.3 130.5	105.6 113.5 152.7	124.4		154.9 162.7 201.9

Province Type AL

	Existing		Cultivat	ed Aréa ()	na./km)	
Terrain	Surface	0-50	50-100	100-150	150-200	200-
Flat	Bad Very Bad Impassable	64.5 72.4 111.6	86.7 94.6 133.8	. 71 - 41 5 . 5 5	116.0 123.8 163.0	135.9 143.8 183.0
Rolling	Bad Very Bad Impassable	93.9 101.7 140.9	116.0 123.9 163.1	126.9 134.7 173.9	145.3 153.1 192.3	165.3 173.1 212.3
Mountainous	Bad Very Bad Impassable	67.0 74.8 114.0	89.1 97.0 136.2	100.0 107.9 147.1	118.4 126.2 165.4	138.4 146.2 185.4