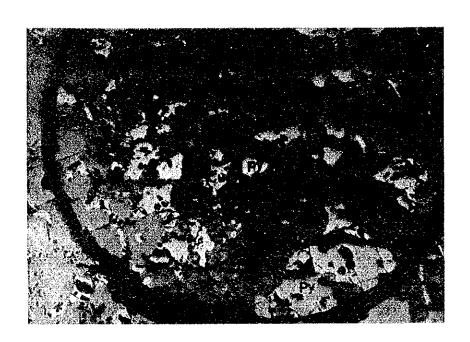
Microphotograph of Polished Section

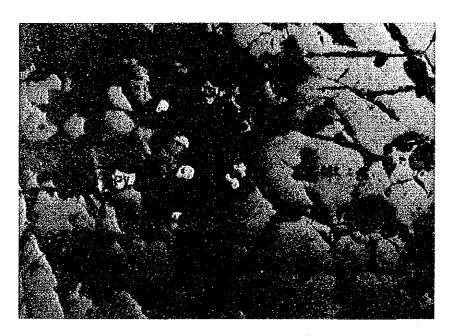
Abbreviations

Арх.7

Py: Pyrite, Cu: Cubanite,

Mt: Magnetite He: Hematite,

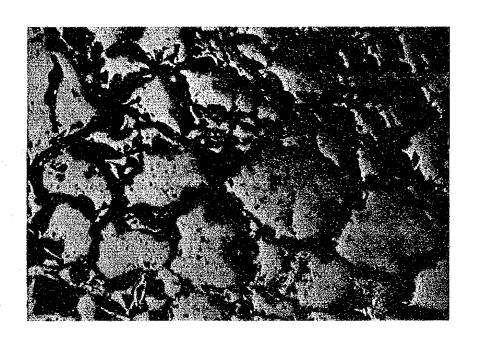

Ge: Geothite


Sample No.: H10307

Locality: San Felipe

Rock Name: Skarn

PPL


Scale 1mm +

Sample No.: M10103

Locality: San Felipe

Rock Name: Magnetite Skarn

PPL


Sample No.: K12808

Locality: Jehuamarca

Rock Name: Silicified rock

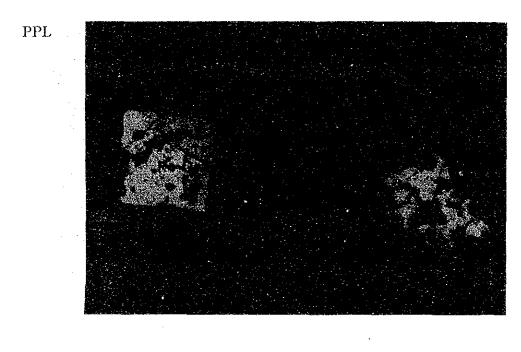
PPL

Scale 1mm

Sample No.: M11801

Locality: Jehuamarca

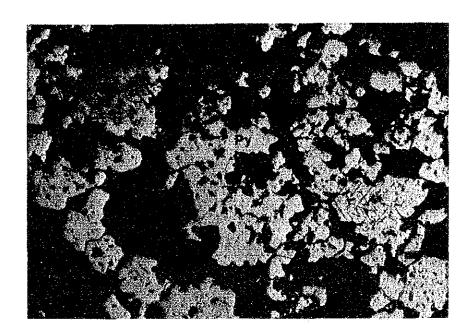
Rock Name: Silicified rock


PPL

Sample No.: M20703

Locality: Palma

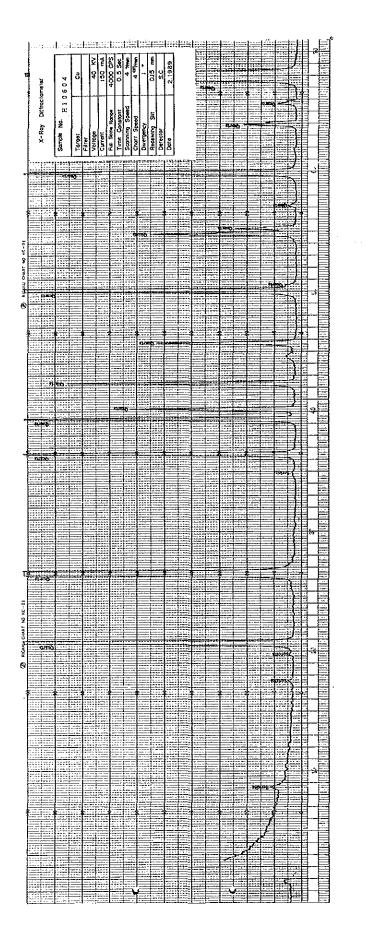
Rock Name: Epidote Skarn

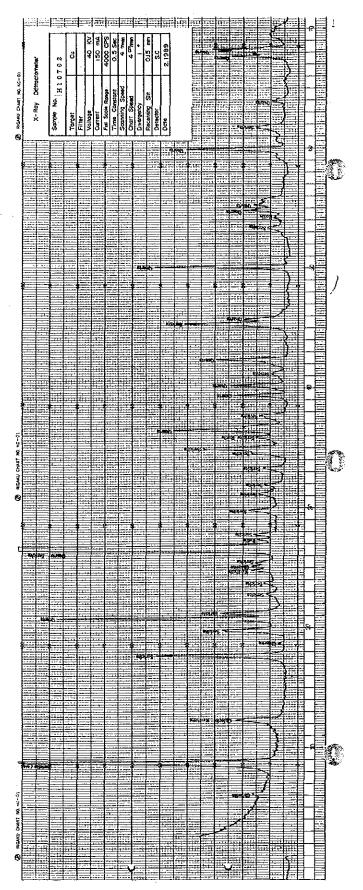


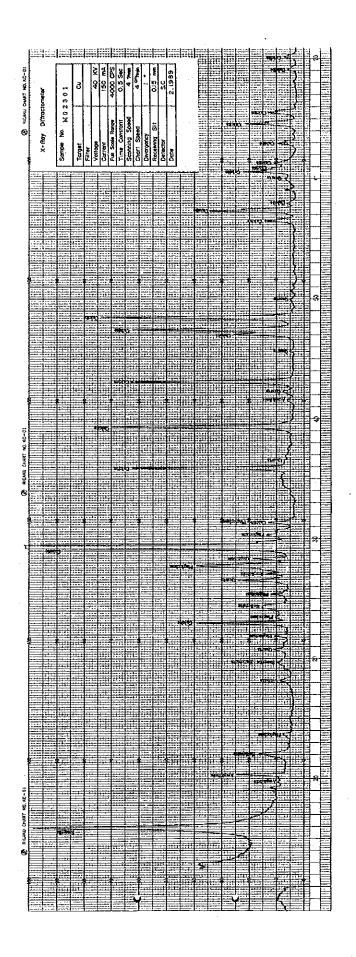
Sample No.: V20802

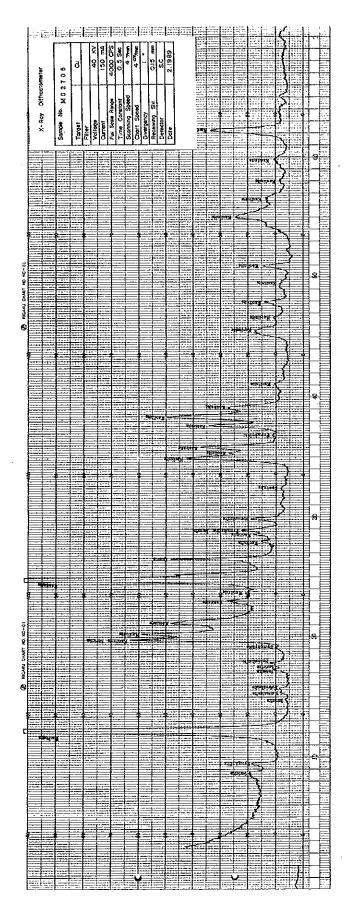
Locality: Palma

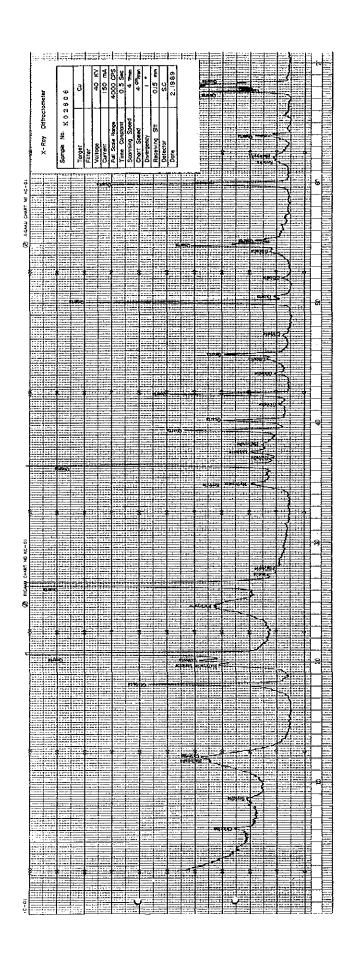
Rock Name: Andesite

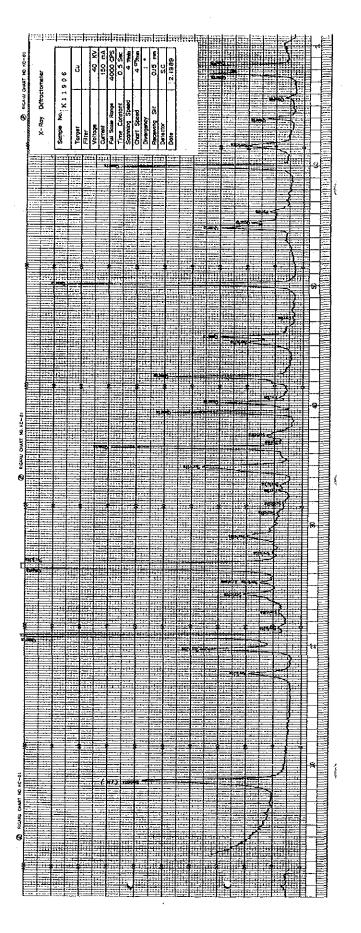

PPL

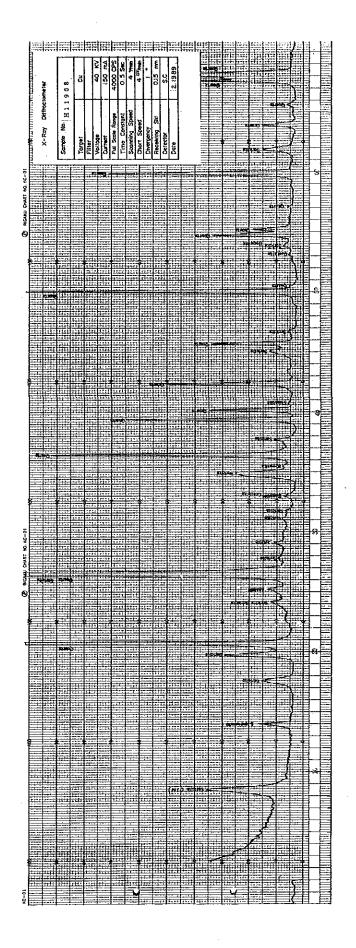


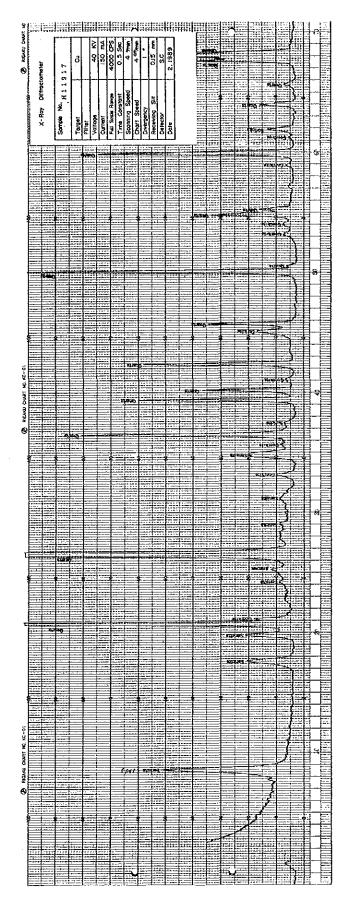

Apx.8 Result of Chemical Analysis of Ore Samples

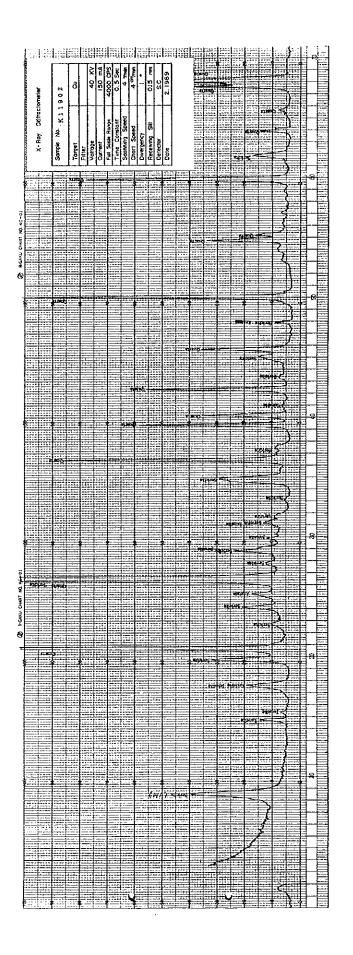

									4.00
serial No.	sample No.	rock type	location	Au g/t	Ag g/t	Pb ppm	Zn ppm	Cu ppm	Mo ppm
1	H 10307	skarn, py-ccp imp	San Felipe	0.50	2	Nil	330	1640	Nil
2	K 10602	sil monz w/ grn-Cu	San Felipe	0.60	Nil	Nil	320	3070	Nil
3	H 12508	qtz v 10cm	Chontali	10.30	20 \		290	120	Nil
4	H 12511	qtz v 2m	Chontali	0.40	3	Nil	140	Nil	Nil
5	H 12512	qtz v 1.5m	Chontali	0.45	6	100	340	10	Nil
6	H 12513	drusy, qtz v 2m	Chontali	0.20	2	200	140	90	Nil
7	II 12516	qtz v 10cm	Chontali	0.10	ī	1200	420	50	10
8	II 12517	sil zone w/ qtz net	Chontali	0.85	29	1000	460	200	Nil
9	H 12518	qtz v 30cm	Chontali	0.30	2	100	150	60	Nil
10	H 12801	qtz v 10cm	Chontali	0.80	3	100	120	40	10
11	H 12802	qtz v 4m	Chontali	2.35	22	200	180	30	Nil
12	H 12803	qtz v 1.5m	Chontali	Nil	2	900	120	30	10
13	II 12805	sil zone 2m	Chontali	0.05	1	300	120	40	10
14	II 12806	qtz v 3-5cm	Chontali	6.35	20	200	110	90	Nil
15.	H 12807	qtz v 1-3cm	Chontali	0.15	Nil	200	140	50	Nil
16	H 12813	qtz v 20cm	Chontali	0.50	2	700	150	100	Nil
17	H 12815	qtz v 10cm	Chontali	0.20	1	300	140	50	Nil
18	H 12816	qtz v lm+	Chontali	0.25	8	400	130	30	Nil
19	K 12808	sil v.w/ py	Chontali	Nil	3	100	280	120	Nil
20	H 12304	and, w/ py	Chontali	0.25	21	Nil	250	40	. 10
21	V 12419	and, py imp	Chontali	0.15	4	Nil	170	80	Nil
22	J 20302	sil dio, py imp	Palma	Nil	5	Nil	290	30	Nil
23	M 20703	epi sk, py imp,	Palma	Tr	2	Nil	290	170	10
24	V 20804	sil dio, py imp	Palma	0.75	3	700	290	120	. 10
25	H 11701	arg-chi, Pb-Zn-py imp	Jehuamarca	0.60	. 14	8100	13500	800	Nil
26	M 11801	sil rock	Jehuamarca	1.00	975	300	320	90	Nil
" avan	ige ore gra	do "							
avera	ike ole kia	ue -	number of	Λu	Λg	Pb	Zn	Cu	Mo
	0.5	• • • •	sample	g/t	g/t		ppm	ppm	ppm
	aı	ea	Sampre	8/1	g/ t	ppm	ppu	ppn	րիա
	San Fel	ipe (others)	2	0.55	1	0	325	2355	- 0
	Chontal	i (vein)	17	1.37	4 7	359	202	6.5	2
	Chontal	i (others)	2	0.20	13	. 0	210	60	5
	Palma	(others)	3	0.25	3	233	290	107	7
	Jehuama	rca (others)	2	0.80	495	4200	6910	445	0

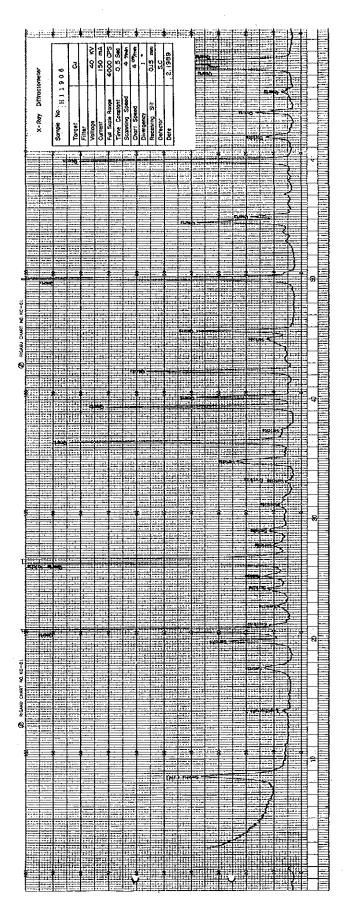

Apx.9 X-ray Diffraction Chart

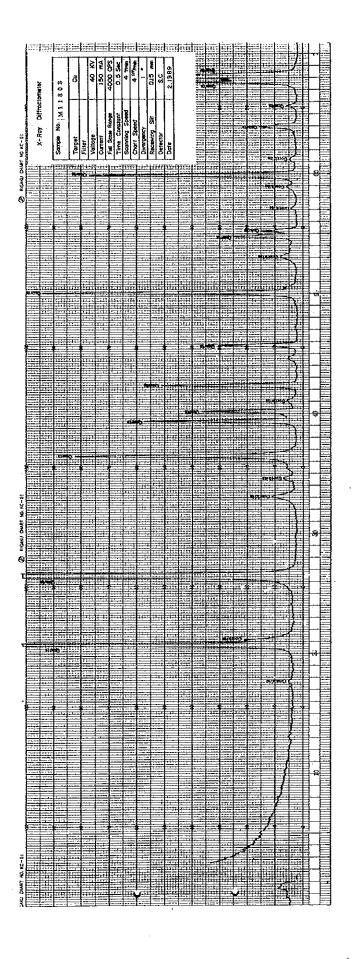


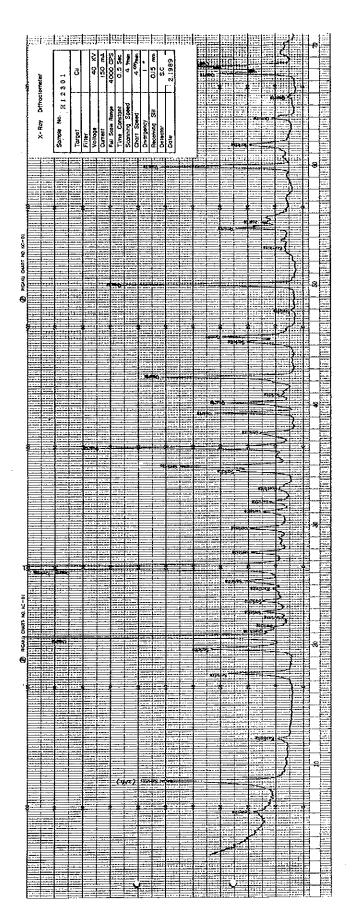


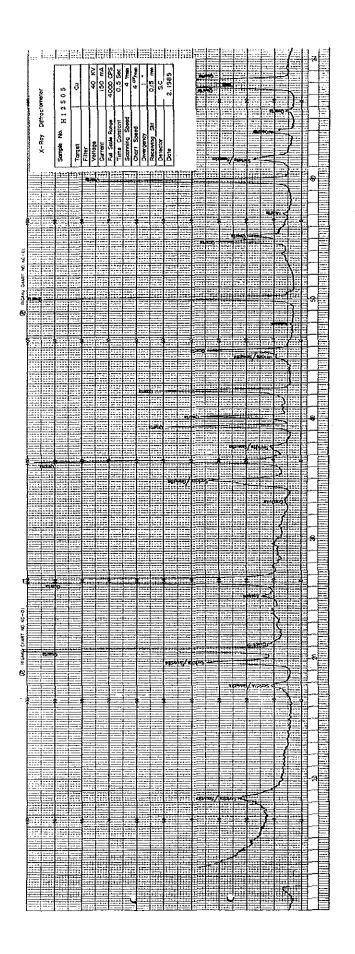


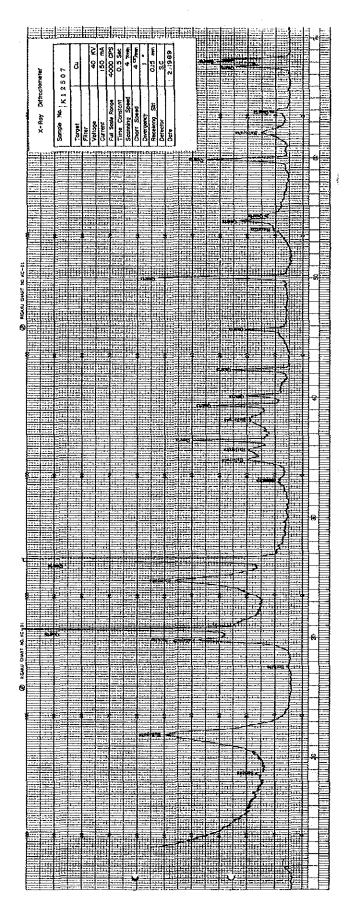


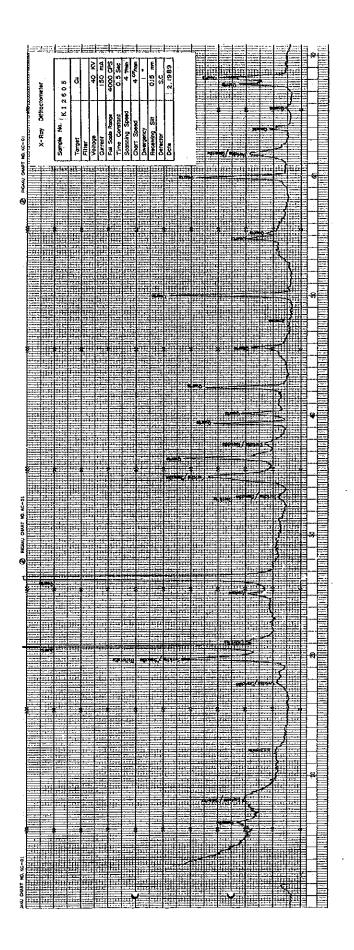


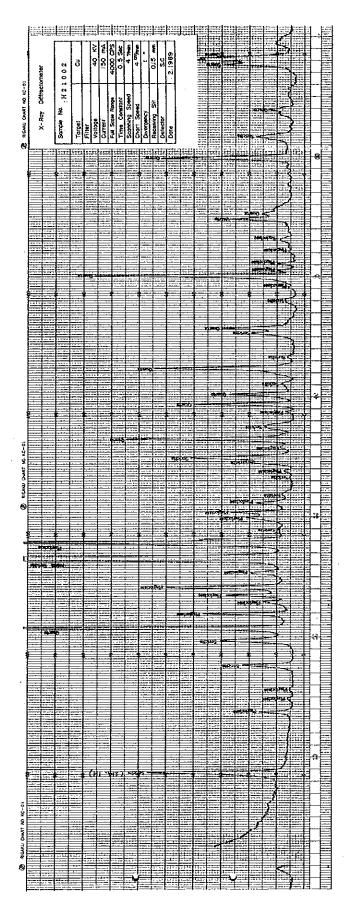


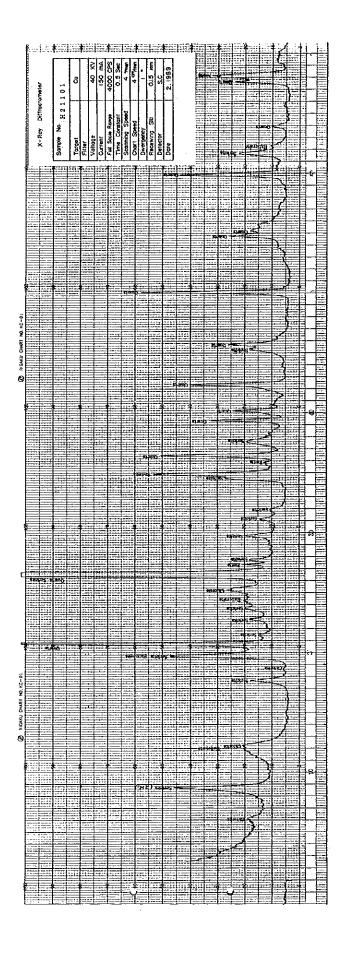


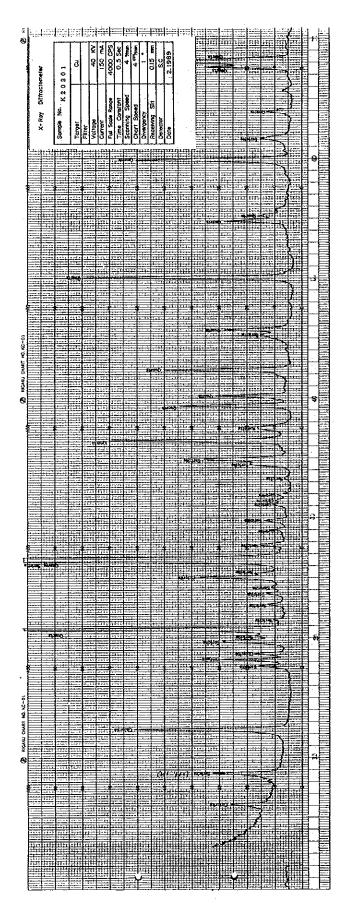


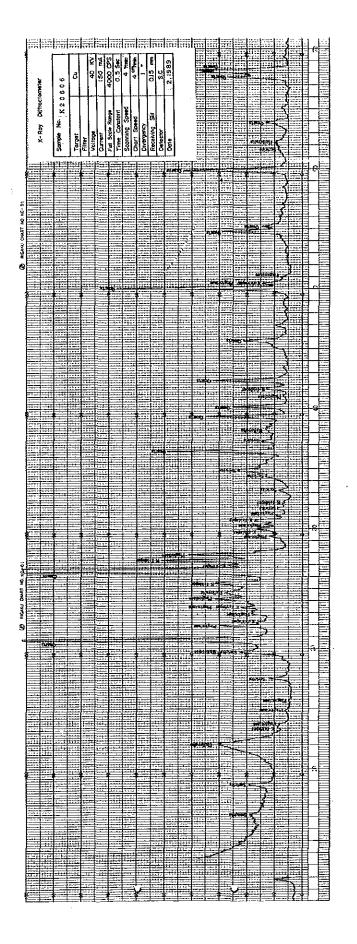


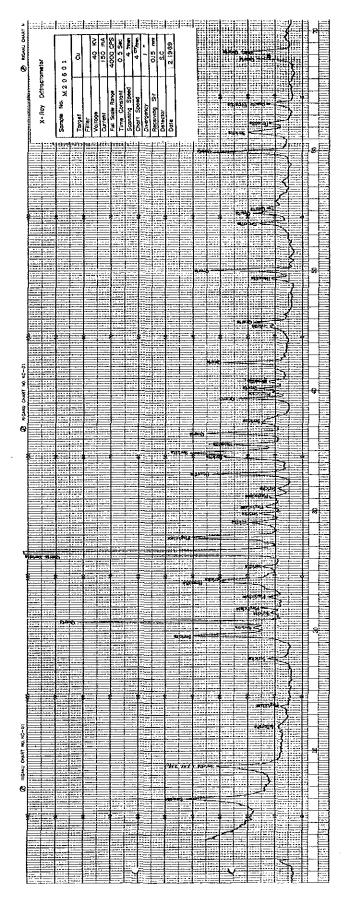












ABBREVIATIONS

ත භ ග	• •	agglomerate	alt	; altered
and	••	andesite	arg	; argillized
bre	• •	breccia	decomb	: decombosed
cgj	• ^	conglomerate	chl	; chloritized
dio	• •	diorite	limo	; limonitized
gr	• •	granite	Sil	; silicified
gns	••	gneiss	oxq	; oxidized
ls	••	limestone	weath	; weathered
nonz	• •	monzonite	frac	; fractured
phyll	••	phyllite	fng	; fine grained
por	• •	porphyry	mdg	; medium graine
ďď	••	quartz porphyry	CSB	
sch	••	schist	brn	: brown
SS	••	sandstone	blk	; black
sh	••	shale	grn	: green
sk	••	skarn	Jc	; leucocratic
tî	••	tuff	gry	gray
tf-br	••	tuff breccia	purp	; purple
lp-tf	••	lapilli tuff	wte	; white
vol	• •	volcanics	imp	; impregnation
cal	••	calcite	/M	; with
kaol	• •	kaolinite	net	; network
ငင္သာ	• •	chalcopyrite	st	; strong
田宮	••	magnetite	wk	; weak
mnsco	• •	muscovite	Λ	; vein
py	••	pyrite	xeno	; xenolith
qtz	• •	quartz		
epi	••	epidote		

Goyllarisq; Goyllarisquizga

```
용법
location
       Oyotun vol
Intrusive
Intrusive
Intrusive
Oyotun vol
                                                                      Salas
Salas
Intrusive
Intrusive
Intrusive
Oyotun vol
Oyotun vol
Oyotun vol
Intrusive
Oyotun vol
Oyotun vol
Intrusive
Oyotun vol
Intrusive
                                                                  ntrusive
  Pormation
       ខ
       grn
                                                 net v
  rock type
       st frac tf w/monz
                      811
1813
            gr-po
tonalite
epi,chl.and
limo arg sil
limo kaol sil
                                                        gr
micro-gr
sil tf
barite v
sample
No.
serial
No.
```

```
1000
           location
                                 Intrusive intrus
           cormation
                                 chl.py imp, tonalite
and-por
tonalite
                                                                                                                                                                                                                                                                                                                                                                           sil lp-tf
wk sil tf
sil rock arg
arg weath vol-por
sil and por rock
arg, sil limo sch
sil rock gns
mdg gr-dlo
                                                                                                                                      micro dio
micro dio
micro dio
ss
and
snd
monz-por
limo volcanics
alt and
          rock type
                                                                             chl.dio
tonalite, weath
                                                                                                    dio
arg sil tf
                                                                                                                                                                                                                                                                    mdg dio
weath dio
weath rock
weath and
weath and
and dyke
sample
No.
```

```
Мо
Ррп
        location
        Oyotun voluntrusive
Intrusive
Intrusive
Oyotun vol
Intrusive
                                                                                                                 Chulec?
Oyotun vol
Oyotun vol
Chulec?
  ormation
                                                               ខ្ល
                                        monz-por
chl-sch or phyll
phyll w/ qtz v
sil rock
sil rock
sil rock
sil rock w/ gree
wte arg sil and
wte arg sil and
gossan (skarn?)
  rock type
        and
                                                                                                                        rock
        dio
dio
dio
dio
sil and
weath gr
sample
No.
serial
No.
```

```
location
                   Chulec?
Chulec
       formation
                                                                                                                                                                                                                                                                                                                        gry weath and, py imp
                                                                                                                                                                                                                                                             skarn,ccp bearing
quartzite
and,py imp
      rock type
                                                                 ss, py bearing
                                                                                                                                                                                                                                                                                                          limo and
sil rock
grn gry w
                                         wht clay
                                                                                                                                                                    dio
```

```
San Fellosan Fellosan
 location
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        Chontal
Chontal
                                                                                                                                                                                                                                                                                                                                                                                                                                                                  Chontal
                                                                                                                                                                                                                                                                                                                                                                                                                                                                              hontal
                     Oyotun vol
Intrusive
Intrusive
Intrusive
Oyotun vol
Intrusive
Intru
 Cormation
                                                                                                                                                                                                                                                                                            net
                                  dio dio dio and and and and tf-bre chi py imp and chi py imp and chi weath bik and weath bik and weath arg limo net and chi we will arg w/sil arg and, arg w/sil arg and, arg w/sil arg and, arg w/sil arg sil arg sil arg sil arg and, arg chi dio w/ xenolith chl gr-por sil arg weath dio weath dio weath dio
rock type
                      quartzite
```

```
\begin{smallmatrix} 1442845688611\\ 0696968686986\\ 069696869696\\ 069696969696\\ 069696969696\\ 069696969696\\ 069696969696\\ 069696969696\\ 069696969696\\ 069696969696\\ 069696969696\\ 069696969696\\ 069696969696\\ 069696969696\\ 069696969696\\ 06969696969\\ 06969696969\\ 06969696969\\ 06969696969\\ 06969696969\\ 06969696969\\ 06969696969\\ 069696969\\ 069696969\\ 069696969\\ 069696969\\ 069696969\\ 069696969\\ 069696969\\ 069696969\\ 069696969\\ 069696969\\ 069696969\\ 069696969\\ 069696969\\ 069696969\\ 069696969\\ 069696969\\ 069696969\\ 069696969\\ 069696969\\ 069696969\\ 069696969\\ 069696969\\ 069696969\\ 069696969\\ 069696969\\ 069696969\\ 069696969\\ 069696969\\ 069696969\\ 069696969\\ 0696969\\ 069696969\\ 069696969\\ 069696969\\ 069696969\\ 069696969\\ 0696969\\ 0696969\\ 0696969\\ 0696969\\ 0696969\\ 0696969\\ 0696969\\ 0696969\\ 0696969\\ 0696969\\ 0696969\\ 0696969\\ 0696969\\ 0696969\\ 0696969\\ 0696969\\ 0696969\\ 0696969\\ 0696969\\ 0696969\\ 0696969\\ 0696969\\ 0696969\\ 0696969\\ 0696969\\ 0696969\\ 0696969\\ 0696969\\ 0696969\\ 0696969\\ 0696969\\ 0696969\\ 0696969\\ 0696969\\ 0696969\\ 0696969\\ 0696969\\ 0696969\\ 0696969\\ 0696969\\ 0696969\\ 0696969\\ 0696969\\ 0696969\\ 0696969\\ 0696969\\ 0696969\\ 0696969\\ 0696969\\ 0696969\\ 0696969\\ 0696969\\ 0696969\\ 0696969\\ 0696969\\ 0696969\\ 0696969\\ 0696969\\ 0696969\\ 0696969\\ 0696969\\ 0696969\\ 0696969\\ 0696969\\ 0696969\\ 0696969\\ 0696969\\ 0696969\\ 0696969\\ 0696969\\ 0696969\\ 0696969\\ 0696969\\ 0696969\\ 0696969\\ 0696969\\ 0696969\\ 0696969\\ 0696969\\ 0696969\\ 0696969\\ 0696969\\ 0696969\\ 0696969\\ 0696969\\ 0696969\\ 0696969\\ 0696969\\ 0696969\\ 0696969\\ 0696969\\ 0696969\\ 0696969\\ 0696969\\ 0696969\\ 0696969\\ 0696969\\ 0696969\\ 0696969\\ 0696969\\ 0696969\\ 0696969\\ 0696969\\ 0696969\\ 0696969\\ 0696969\\ 0696969\\ 0696969\\ 0696969\\ 0696969\\ 0696969\\ 0696969\\ 0696969\\ 0696969\\ 0696969\\ 0696969\\ 0696969\\ 0696969\\ 0696969\\ 0696969\\ 0696969\\ 0696969\\ 0696969\\ 0696969\\ 0696969\\ 0696969\\ 0696969\\ 0696969\\ 0696969\\ 0696969\\ 0696969\\ 0696969\\ 0696969\\ 0696969\\ 0696969\\ 0696969\\ 0696969\\ 0696969\\ 0696969\\ 0696969\\ 0696969\\ 0696969\\ 0696969\\ 0696969\\ 0696969\\ 0696969\\ 0696969\\ 0696969\\ 0696969\\ 0696
                                         1811112

1811112

1811112

1811112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

181112

18
                                         location
                                       Intrusive Intrusive Intrusive Intrusive Intrusive Intrusive Intrusive Oyotun vol Oyotun vol
            Cormation
                                                                                                                         and, wk arg weath and, weath and, weath we sil qtz net weath wath weath and, weath arg wk sil (and) wk arg sil (fiw/ limo net and, wk arg sil tfiw/ limo net and, sil arg limo and sil arg limo and sil arg limo and wte qtz v 40cm
            rock type
                                         gr-por
fresh csg gr
monz
micro-dio
dio
                                                                                                            monz dyke
sample
No.
```

```
location
                                                 Oyotun vol
Oyotun vol
Oyotun vol
Oyotun vol
Intrusive
Oyotun vol
Salas
Salas
Salas
Salas
Intrusive
Salas
Salas
Salas
Intrusive
Intrusive
Intrusive
Intrusive
Intrusive
Intrusive
Salas
Oyotun vol
               formation
               rock type
                                                 and.sil arg
and.fresh arn
and.fresh grn
and.por
dio.mdg
dio
and.arg
phyll.
gr,decomp
gr,decomp
gr,csg decomp
gr,csg decomp
gr,csg decomp
gr,csg decomp
gr,csg decomp
gr,dio,mdg
gr,dio,mdg
gr,dio,decomp
gr,sg aecomp
gr,ssg decomp
gr,ssg decomp
gr,gsg decom
sample
No.
```

```
\circ \hspace{3cm} \circ \hspace{3cm} \circ \hspace{3cm} \circ \hspace{3cm} \circ
                        Chontall Cho
       ocation
                       Oyotun vol
Oyotun vol
Oyotun vol
Oyotun vol
Oyotun vol
Oyotun vol
Intrusive
Vein Intrusive
Vein Intrusive
Coyllarisq
Oyotun vol
        ormation
                       and qtz v 25cm and, weath por-and, weath por-and, vol-bre and, fresh qtz v, 3cm and, fresh gr-dio, wk arg ploop qtz v 5cm gr-dio, wk arg quartzite quartzite and, chl and and and and and chl and, arg and, arg
        rock type
```

```
A.g.
ppm
location
                   Goyllarisq
Intrusive
Intrusive
Oyotun vol
Oyotun vol
Oyotun vol
Oyotun vol
Goyllarisq
Go
      formation
                   quartzite
and
and, sil
and, sil
and, sil
and, sil
quartzite
      rock type
sample
No.
```

```
MO
PPH
PPH
                                                            DEG
B
                                                          Ag
ppm
                                                                                                                              egin{pmatrix} oldsymbol{0} & oldsymbol{0}
                                                       COUNTROL OU COUNTR
   Au
ppb
                                                         Chontall
Cho
                     location
                                                          formation
                                                          Oyotun
Oy
                                                     and, st frac
and and, py imp
and, py imp
and por
and por
and por
and weath
and weath
and weath
and eath
and and
and por
and por
and and
and and ang
and ang and ang and and and ang and ang and trebre, arg
and and arg
and ang and arg
and ang and arg
and ang and arg
and and arg
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         hale
uartzite
hale,taffaceous
                 rock type
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            shale
vol cgl
shale
shale
shale
shale
sample
No.
```

```
        HOMEON AND TO THE TOTAL AND THE TOTAL AND T
                                                                                                      \frac{000}{100}
   Au
ppb
                                           OBOMBROBORDER BURNES BERNES BE
              location
                                         Oyotum vol
Oyotum vol
Oyotum vol
Inca~ chulec
Inca~ chulec
Inca~ chulec
Oyotum vol
               ormation
              rock type
                                                                                                                                                                                                                                                                                                                                                dio,weath
vol cgl
tf-bre,weath
                                                                                 shale
ss.shale
shale
shale, arg l
ss.wk sil
quartzite
                                                                                                                                                                                                                                                                                                                                                                                                        quartzite
and,weath
and
                                          ss,shale
shale,ss
                                                                                                                                                                                                                  por-and
and, limo
and arg
and, limo
                                                                                                                                                                                                                                                                                                      qp,limo
gr,csg
                                                                                                                                                                                                                                                                                                                                                                                                                                                   tf-bre
 sample
No.
serial
No.
```

```
        напа
        нача
        <t
                                 Ag
ppm
          ocation
                                Oyotun vol
         formation
                                                                                                                                                                                                                                                                          2
B
                                                                tf-bre, skarnized
tf-bre, skarnized
sk, banded
tf, limo net, sil
sil rock
sil rock
sil rock, brecciated(tf)
sil rock, brecciated(tf)
sil banded rock
sil rock, brecciated(tf)
sil rock, limo net
tf, arg wk sil
and or dacite, sil
tf, arg wk sil
rock wy py grn-Cu 2)
vol; wk arg sil
tf, weath, brn, wk arg
and, gry
sh, sil; sry
sh, sry
         rock type
                               tf-bre,sil
tf-bre,wk sil
tf-bre,sil
```

```
location
        Oyotun vol
Oyotun vol
Oyotun vol
Oyotun vol
Intrusive
Oyotun vol
Intrusive
Oyotun vol
  formation
                              monz-por, wk sil
lp-tf, st sil
ss.mdg
ss.mdg
quzrtzite, weath
ss. weath
quartzite, weath
weath, purp, agg
and, blk-gry, weath
             por-and, mdg
quartzite
and, weath
lp-tf, sil, py imp
monz, weath
                                                             monz-por
and vol.weath
and.cal sil
monz-por
gr.csg weath
sk.py.limo
and.sil.limo
sil rock.py imp
monz-por
        and-tf, brn, weath
  rock type
sample
No.
```

```
        о
        о
        о
        о
        о
        о
        о
        о
        о
        о
        о
        о
        о
        о
        о
        о
        о
        о
        о
        о
        о
        о
        о
        о
        о
        о
        о
        о
        о
        о
        о
        о
        о
        о
        о
        о
        о
        о
        о
        о
        о
        о
        о
        о
        о
        о
        о
        о
        о
        о
        о
        о
        о
        о
        о
        о
        о
        о
        о
        о
        о
        о
        о
        о
        о
        о
        о
        о
        о
        о
        о
        о
        о
        о
        о
        о
        о
        о
        о
        о
        о
        о
        о
        о
        о
        о
        о
        о
        о
        о
        о
        о
        о
        о
        о
        о
        о
        о
        о
        о
        о
        о
        о
        о
        о
        о
        о

                44 1444 8 4
0040244464444 8 4
     ocation
                Intrusive
Intrusive
Oyotum vol
     formation
                                                                                           Oyotun
                                     ţ
               micro-gr-dio, cal

qtz micro gr-dio

and por

lp-tf, weath

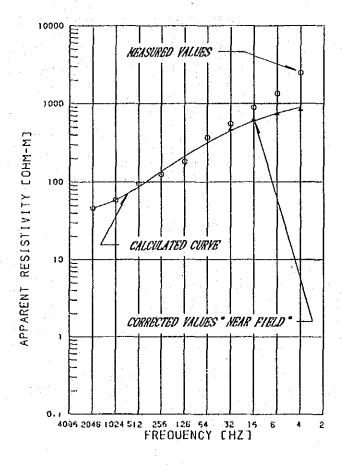
limo, cal, epi, sil t
                                               magnetite sk(tf)
    rock type
                                                     lp-tf
tf, drusy, sil
cal hb dyke
                                                                                                                       sh
tf,weath
tf-bre
and-bre,agg
agg,and-bre
agg,and-bre
por-and
                                                                                                                                                                                        and-por
and, vol cgl
and-bre, cgl
vol-cgl
vol-cgl
vol-cgl
vol-cgl
                                                                                                                                                                        quartzite
quartzite
sample
No.
               ᲓᲓᲡᲓᲡᲡᲡᲡᲡᲓᲡᲓᲡᲓᲡᲓᲡᲓᲡᲓᲡᲓᲡᲓᲡᲓᲡᲓᲡᲓᲡᲓᲓᲓ
ᲘᲒᲥᲧᲓᲐᲓᲐᲓᲐᲓᲐᲓᲐᲡᲡᲥᲥᲥᲥᲥᲥᲥᲥᲥᲥᲥᲥᲡᲓᲡᲓᲡᲓᲓᲡᲓᲓᲓ
ᲡᲓᲐᲔപെൻᲐᲥᲡᲓᲡᲓᲢᲔപെൻᲡᲥᲓᲓᲡᲓᲔᲔപൻᲡᲥᲓᲓᲡ
```

```
location
                  Oyotun vol
    formation
      rock type
                                                                                                                                                                                                                                                                                  cgl bre
sample
No.
```

```
Au
ppb
                       Palma
Jehuanarca
                                                                                                                                                                                                                                                                                                                                                        ehuamarca
        location
                       Intrusive
Intrusive
Oyotum vol
Oy
       Pormation
                                                                                                                                                                                                                  Jentic sh tr
bre sil rock limo cryst
sil rock
                                                                                                                                                                                                                                                                                                                                    arg, sil, bre
limo arg sil bre
sil dr tin
                                                                                                                                                                                                                                               ayke, rhyoritic
tf, wk arg chl
tf
                     rock type
                                                                                                                                                                                                                                                                            bre, sil rock
tf, grn
tf, grn
tf, grn
arg, sil rock
                                                                                                                                                                                  f,llmo
f,arg,sil
p-tf
sample
No.
                       88000
80000
00000
00000
```

```
OCOOS COSSOS DE TO THE PROPERTY OF THE PROPERT
                                Jehuamarca
                                                                                                                                                                                             Jehuamarca
Jehuamarca
Jehuamarca
Jehuamarca
                                                                                                                                                                                                                                         dehuamarca
Jehuamarca
Jehuamarca
Jehuamarca
Jehuamarca
Jehuamarca
Jehuamarca
Jehuamarca
Jehuamarca
                                                                                                                                                                                                                                                                                                                                                                                                                                                       Jehuamarca
Jehuamarca
Jehuamarca
Jehuamarca
                                                                                                                                                                                                                                                                                                                                                                                    ehuamarca
                                                                                                                                                                                                                                                                                                                                                                                               ehuamarca
                                                                                                                                                                                                                                                                                                                                                                                                         ehuamarca
                                                                                                                                                                                                                                                                                                                                                                                                                                             ehuamarca
           ocation
                                  Porcullia a porcul
           Pormation
                                                                                                                                                                                                                                                                                                                                                                                                                                                       Porculla
Porculla
Porculla
                                                                                                                                                                                                                                                                                                                                                                                                                                           Porculla
                              sil w/orig tx of tf
limo net sil wk arg
arg sil w/orig tx
dr qtz v, sil wk arg
arg sil limo
lp-tf, wk sil arg
lp-tf, wk sil arg, limo
dike, sil
lp-tf, sil
                                                                                                                                                                                                                                                                                                                                                                                                     rock, limo(tf)
rock,
rock, drusey
                                                                                                                                                                                                                                                                                                                                                                                                                                                       rock, drusey rock, (silt)
           rock type
                                                                                                                                                                                                           arg
                                                                                                                                                                                                                                  arg
                                                                                                                                                                                                                                                                                                                                                                                                                                                                             8 7 8
8 7 8
sample
No.
```

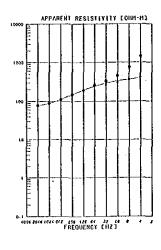
```
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0

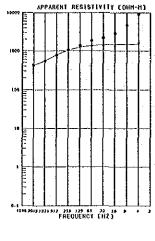

04 00 00000 0000

00 00000 0000

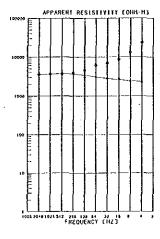
00 00000 0000

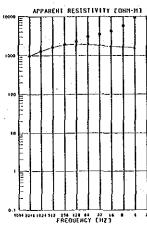
00 00000 0000
                                            Jehuamarca
                                           Porculla vol
Oyotun vol
                                                                                                                                                   limo Pb?
                                          sil rock, drusey
arg, weath (tf)
siltstone (sil)
tf.grn arg
tf.grn arg
sil rock, drusey
lp-tf.ndg arg
tf.grn arg
lp-tf.grn, arg
lp-tf.grn, arg
lp-tf.grn, arg
sil rock
st sil rock
st sil rock
st sil rock
arg sil rock
st sil sil tf
arg monz por
st sil monz por
st sil monz por
st sil monz por
st sil monz por
              rock type
```


LEGEND


STATION	NUMBER	· 118
ERFOUENCY	NUMBER APPARENT MEASURED (OHM-M) 46.40 58.89 95.20 125.00 181.00 369.00 472.93	
16 8 4	625.63 742.11 840.56	601.12 752.09 891.29

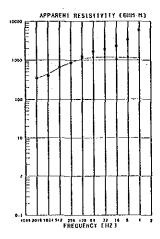
		STIVITY OHM-M)	DEPTH (M)
_	RI	49	. 0.0
-	R 2	222	- 57
	R 3	1390	- 166


LAYERED MODEL



51A110H FREDERICT, 0121 2015 1024 512 258 128		59 RE515114111 CALCULATED 10101-N 423-19 553-43 780-14 1031-90 1239-84
10	2911.00 4771.00 8149.00 LAYERED H	1474.34 1493.14 1503.49
AES	(0491-H)	DEPTH (H)
RI	461	0.0
R 2	6870	531
R 3	1320	B51

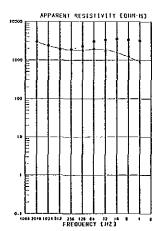
ROTTAL	HUPBER	1 25	
	APPARENT	RESISTRYII	1
REDUENCY	EASURED.	CALCULATE	,
(112)	(0141-10)	10(51-10	
2018	3525.00	3521.51	
1024	3833.00	3629-85	
ŠĪŽ	3663.00	3740.00	
255	3917.00	3553.71	
159	4595.00		
64	6073.00	30/5-53	
32	6924.00	2803.56	
16	8/23.00	2595-28	
8	3250.00	2444.68	
4 .	3610.00	2338.50	
	LATERED	HODEL	


- 1	LATERED HO	DEL
	10184-571 \$2114114	DEP IN
RI	3550	- 0
R 2	5970	- 1110
RЗ	5000	- 1390

STATION	NUMBER	• 65 .	
FREOKERCY, (HZ) 2048 1024 512 253 128 84 32 15 8	APPARENT # ASURED 10HH-N) 976-00 1309-00 1638-00 1932-00 2314-00 3537-00 4235-00 5752-00 9449-00	RESISTIVITY CALCULATED (ORM-N) 983-05 1291-64 1634-34 1695-82 1969-61 1923-76 1923-76 142-59 1612-69	
	LAYERED	HOUEL	
RE	515[[V1]Y (ORH-1D	DEP1H	
	toen-to	- 0.0	,

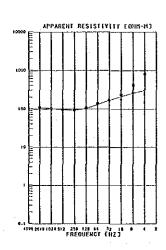
1450

R 3

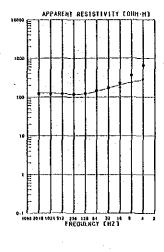

STATION	KUNGER	- 35
FREDUENCE		RESISTIVIT
11.0000	Æ ASUREO	CALCULATED
LHŽI.	(0:41-19	(DHH-H)
20(B	347.00	342.87
1024	399.00	412.72
512	534.00	633.28
256	852.00	870-82
128	1245.00	1055.41
84	1655.00	1165.23
32	1920-00	1165.25
18	5341.00	1168-29
9	J426-00	1141.90
4	5929.00	1117.50

C	ATERED M	SOEF
	SFITLIT DRIGHT	. 664tH
RI	368	- (
8.2	3070	- 191
R 3	1050	1150

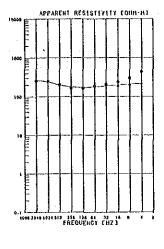
		API	PARI	EHT	RE	SIS	1 I Y	ΙΙΥ	Fûl	HH-I	H1
16000	ur:11 1 1										
toca] (_	
100	IIII I			,~					-		
18	1 1 1 1 1 1		<u> </u>							_	
•	111111111111111111111111111111111111111							-			
40	11 20	e# 10	2 # 31	FR	E QU	EHC	, ,	Hz 5			. 2


STATION	NUMBER	. 75
6471	EASUREO (OGH-H)	10141-89
2048 1024 512 255	51.00 63.00 84.00	131.46
128 64 32 16	195.00 309.00 435.00 650.00	275.59 358.63 435.73
Ê	2164-00	501.27 553.74
	LATERED	HOOEL

0{PIH (H)	511 7 117 DHM-PD	
- 0	85	R I
- 105	1050	R 2
- 846	704	R J


STATEGY	MUMBER .	45
FREQUENCY, (HZ) 2049 1024 512 255 129 64 32 16	APPARENT €A\$URED 10101-10 2973.00 1929.00 1929.00 1902.00 3055.00 3502.00 3353.00 3181.00	RESISTIVITE CALCULATEC (DHII-M) 2951-16 2342-47 1997-40 1824-03 1811-24 1915-29 1869-25 1571-27 1202-23 902-99

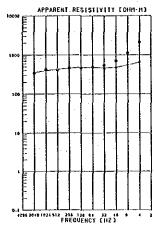
	LATERED MOD	ÆL
	LS1[41]4 10:05-70	DEP EN
RI	1000	- 0.0
Я 2	832	- 389
R J	1730	- 5/4 - 3530
R #	302	- 2330


KOLIKES	NUHBER	• · 8S
	APPARENT EASURED	CALCULATED
0321	COHM-NO	10101-10
2048 1024	111,00	109.15
512	95.00	96.10
255 128	109.00	105.47
64	140.60	131.27
32	238.60	168.45
ij	415.00	257.70
•	310.00	2=0.00
	1 ATEREO	HODEL

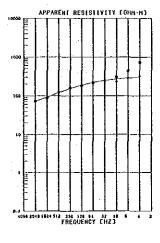
L	ATERED MO	DEL
	111111 101-101	OFPTH (/G
я і	168	- d-0
8.2	99	- 13
R 3	450	- 324

STATION	NUMBER	- 95	
DEA WHAT	APPARENT #ASURED 1091-10 123.00 123.00 123.00 124.00 148.00 148.00 173.00 230.00	RESISTIVIT: CALCULATE: CALCULATE: 128.09 128.32 117.08 128.32 117.09 148.74	
7	SAG.OD	211:57 275:93 HOOEL	

		LAY	EREO HOC	ÆŁ
	RE		4-10 1 1 1	HT\$30 (H)
	Ri		128	- 0.
Ė	R 2		396	- 440


HOLLATS	食品の	135
		RESISTIVITY CALCULATED (DNH-20 203.87 210.33 201.01 176.03
32 16 8	188.00 208.03 341.00 301.00 442.00	214.14 199.50 197.43 199.50

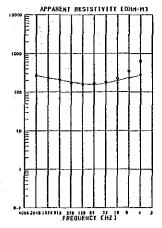
ı.	AYERED HO	X€L
	\$11¥111 (44444)	OEPTH IHG
B 1	243	- 0
R 2	25	~ 238
A 3	232	- 261


ROTTATE	NUMBER	105
FREQUENCY.	APPARENT	RESISTIVII
- KLOUSILOI	*EASUREO	CALCULATE
(RZ)	(066-60	COPPC-10
2049	335.00	324.00
1024	320.D0	323.98
312	318.00	324.55
258	302.00	321.90
129	307.00	313.33
64 .	340.00	311.52
32	371.00	327-41
18	469.00	362.48
8	729.00	411-23
4	1329.00	465.41

	LATERED HO	DEL
. д	1044-H)	H1430 UN
R 1	324	- a.
A 2	604	- 1150
RJ	705	- 2400

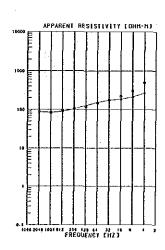
PHENDERLI	SURED	RESISTIVITE CALCULATED
4HZ1 4E	M. W.	CONK-NO
1024 512 256 120 64 32 16	43.00 28.00 10.00 65.00 93.00 43.00 64.00 39.00	355.22 394.55 427.65 455.21 479.45 476.56 464.32 486.14 553.11

L	AYERED MOO	EŁ.
	211111 2004-111	GEPTH (M)
81	2+2	. 0
R 2	529	47
R 3	136	1880
R ł	1310	1930

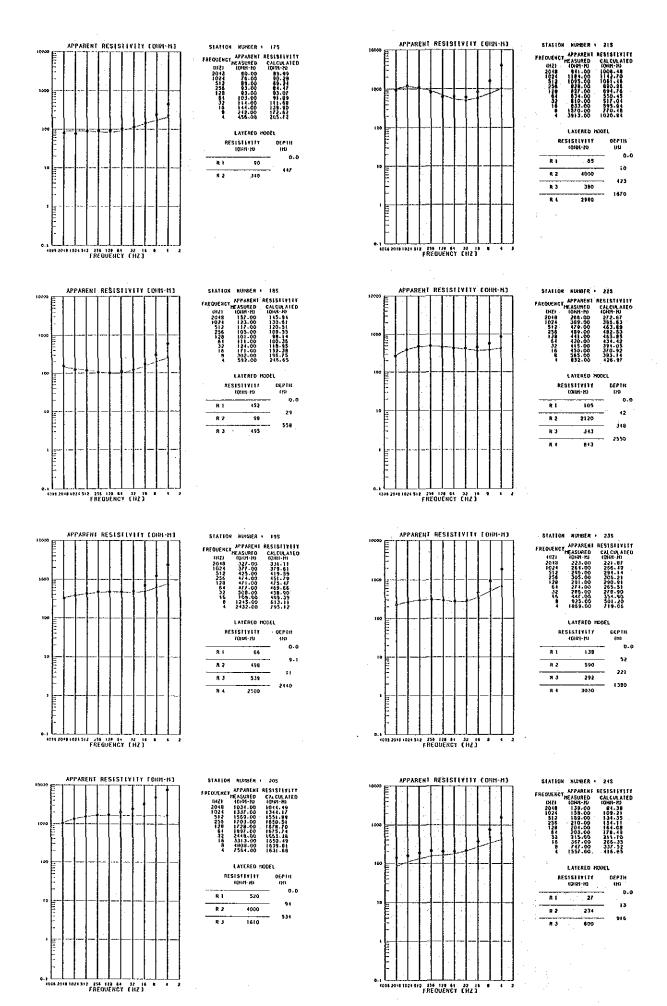

STATION	NUPSER	115
ERENWALA	APPARENT MEASURED 10HM-MI 73.00 88.00 122.00 181.00 184.00 227.00	RESISTIVIT CALCULATE TOHN-IN 72-77 91-92 120-21 153-77 168-35 220-40 247-85
18	307.00 437.00 738.00	270.01 287.17 390.08

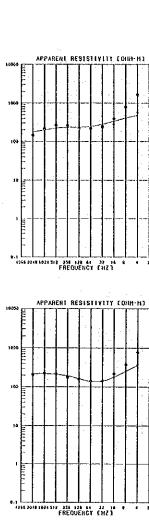
	LAYERED HO	ŒL
RES	13114111 1014-10	DEP IN
RI	73	- 0.0
R Z	1080	- 81
R J	334	- 143

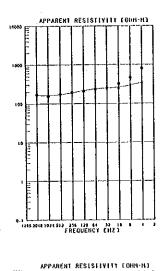
10000		ΑP	PAR	ENT	RE	SIS	T E V	ITY	tο	нн∙	нэ
16000											
1000	211117	Ļ	_	1	L						
104	MILL I							-	-	}	_
10	III 1										
•	1111										
40	6.5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1										


STATEON	HUMBER	155
FREQUENCY, 1M71 2019 1024 512 255 123 54 32 15	AFFARENT EASURED (0981-10) 448.00 148.00 448.00 479.00 548.00 548.00 1894.00 1994.00	RESISTIVETT CALCULATED 10007-101 447-36 393-83 400-37 433-61 475-70 314-48 551-35 579-09 600-22 615-69

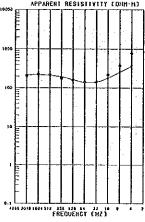
	151 E¥1 E¥	0£71H (M)
RI	919	0
R 2	79	- 130
8.3	656	- 162

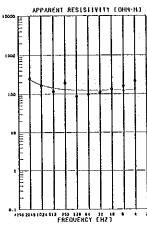

STATION	NUMBER	128	
FREQUENCY.	APPARENT EASURED	RESISTIVI CALCULAT	
ezzi '	(0H2H-10)	CACCOLA:	•
2019	265.00	258 21	
1021	235,00	230.67 205.27 183.18	
256	173.00	183:18	
87	167.00	155.74	
32	174.00 223.00	169.11	
.ģ	343.00	233.52	
. •	631.00	272-01	

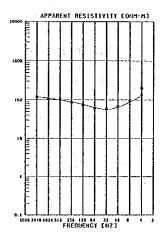

LAYERED MODEL			
	STITETT OHM-MJ	DEFTH (H)	
RI	351	- 0.	
R 2	146	82	
· R 3	440	- 754	


STATION	KURGER	165
FREQUENCY, (HZ) 2048 1524 512 256 128 64 32 16 8		RESISTEVIT CALCULATED (DAM-10 85-40 89-98 104-19 126-55 171-94 187-72 214-63 266-83

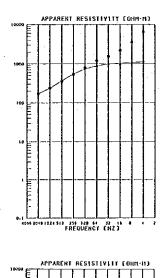
	SELVETT OHH-20	141930 (H)
R I	92	- 0.
R 2	289	- 179
R 3	311	- 2460
Ř 4	1140	- 2550



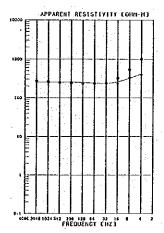



STATION	NUMBER	265
REQUENCY, (H2) 2049 1021 512 255 128 64 32	APPARENT SEASURED (OHM-H) 209-00 228-00 228-00 182-00 183-00 143-00 228-00 228-00 383-00	RESISTIVITE CALCULATE TOHIT-TO 217-54 219-18 210-70 194-09 164-32 139-33 142-23 180-02 251-57
i	772.00	365.93
	LATERED	MODEL

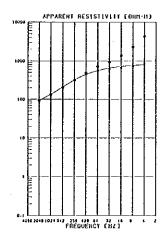
LATERED MODEL			
	#ESISTIVIET (0:41-H)		
R 1	212	- c	
Ŕ 2	124	- 243	
R 3	1513	- 856	


STATION	KUHBER	20t.
REQUERCY	APPARENT	RESISTRYTH
WEODE REI	EASURED	CALCULATED
1912.1	(0H21-H)	(O84-N)
2018	250.00	238.27
1024	164.00	172.87
512	116.00	142.84
25B	195.00	130.39
128	87.00	125.94
64	99.00	124-BÇ
35	112.00.	124.88
16	111.00	125.26
B	161-00	125.68
- i	211.00	125-04

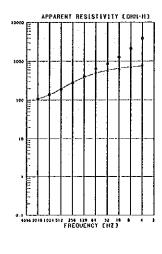
EL	AYERED HOS	•
DEP FH (H)	\$ Y T ()	
- 6	1820	RI
- 84	45	R 2
- 133	127	A 3


STATION	NUMBER .	27S
FREQUENCY.	APPARENT	RESISTLYTTY
· neuvenui,	HEASURED	CALCULATED
(80	((04)15-36)	10194-10
2018	119.00	118.84
1024	109.00	111.25
512	104.00	99.17
258	87.00	87.81
īžš	74.00	76.87
64	62.00	63.48
32	59.00	36.85
16	88.00	64.19
B	06.00	87.82
4	505-00	129-43

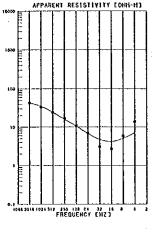
	ATERED HO	OFL.
	11 [1] 2 44-14	08PTH (H)
R I	114	- 0.0
R 2	55	- 120
R 3	824	- /41


STATION	XURBER	315
FREQUENCY	APPARENT	
(HZ)	EASURED (IK-ISKO)	CALCULATED
1023	239.00	171-12 237-12
512 255	355.00 539.00	365.00 543.09
128	1209-00	731.52 895.38
32 15	1559-00	991.92 1057.31
B 4	3519.00 6592.00	1097.17 1122.16

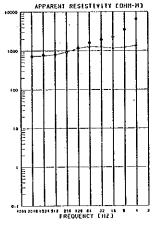
•	AYERED HOC	EŁ
	STITLIT (OHM-H)	683 683
Ŕl	187	٠ ٥.
A 2	3750	- 137
R 3	1170	120


STATION	NUMBER -	388
FREQUENCY	APPARENT	RESISTIVITY
	EASURED	. CALCULATED
(H\$)	10/125-203	(Cifm-H)
2048	271.00	254.00
1024	283.00	253.99
512	250-00	254.22
255	246.00	253.57
128	239.00	249.97
84	239.00	240.12
32	242.00	238.33
18	317.00	250-67
. 8	536.00	322-16
4	1009.00	418-24
	I AVESED A	600.61

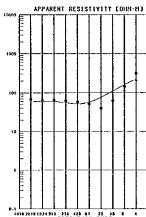
	15114111 10151-10	OEPTH (H)
RI	254	- 0
1 2	312	- 1660
83	1300	- 1920


PARENT SURED HR-MD 94-00	* 325 RESISTIFETE CALCULATED TOWN-HI 95.09 133.85
03502 (M-H)	CALCURATED 10H7HH1 95.09
111-15) 94-00	10H/1-H1
94-00	95.09
	95.09
34.00	133.05
5-60	210.18
19-00	\$20.47
90.88	448.29
25.00	567.84
	655-45
02.00	723.10
	770.97
	ROA ZO
	17.00 2.00 11.00

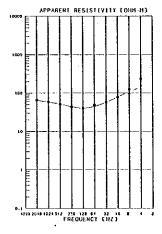
ATERED HO!	Æι
	DEPTH
105	- 0.
4000	- 107
837	- 651
	191112 19-1996 20-1996 20-1996 20-1996



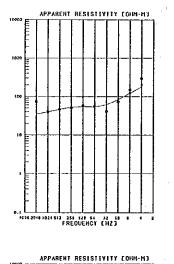
	AYERED HO	DEL .
	\$114117 (2)(4-2)	DEP1H (H)
Яt	152	- 0.0
R 2	1490	- 123
		- 685


BIATION	KUNBER	378
FREDUENCT 1921 2048 1921 312 256	APPARENT EASURED 10H1-H3 43.00 43.00 17.00 11.00	RESISTIVITÉ CALCULATED LOIGH-10 42.75 34.90 24.22 18.04 10.59
16	3.10 3.70 5.60	4.72 4.20 5.03 7.16
	PAYERED	MUNE

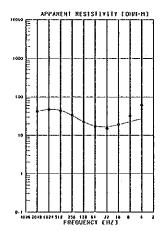
L/	YERED HOO	EL.
	# 14111 ##-10	HT430 US)
A i	37	. 0
¥ 5	2.3	- 70
R J	60	195


STATEON	NUMBER	1 345
FREQUENCY.	APPARENT	RESISTIVIT
LYEOGEWAY	MEASURED.	CALCULATE
4821	IOHN-NI	10454-10
2048	718.00	735.06
1024	7/5.00	742.44
ŠŤŽ	801.00	608.12
255	901-00	931.50
128	1169-00	H135.03
84	1616-00	1272.10
32	1910.00	1231.93
16	2265.00	1179-53
8	3469.00	
4	6425.00	1371-03
4	3469.00 6425.00	1371.03

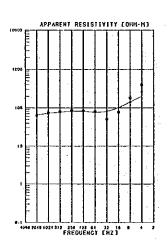
STIVIT	DEPTH
	- "ົຈ
774	
1600	- 420
110	~ 3020
	- 3170


KOTTATE	RUBER	4 JBS	
FREOUGHCY (M41 2048 1024 512 254 126 126 14 16	AFPARENT #ASURED 10-M1-HD 68.00 64.00 63.00 59.00 40.00 63.00 63.00 63.00 63.00 63.00 63.00	RESISTIVETT CALCULATED (DIM: NO 55.99 60.15 60.03 55.69 51.89 37.55 76.64 10.88 150.81 221.42	
	LAYERED :	HOGEL	
RE:	515717117	DEPTH	

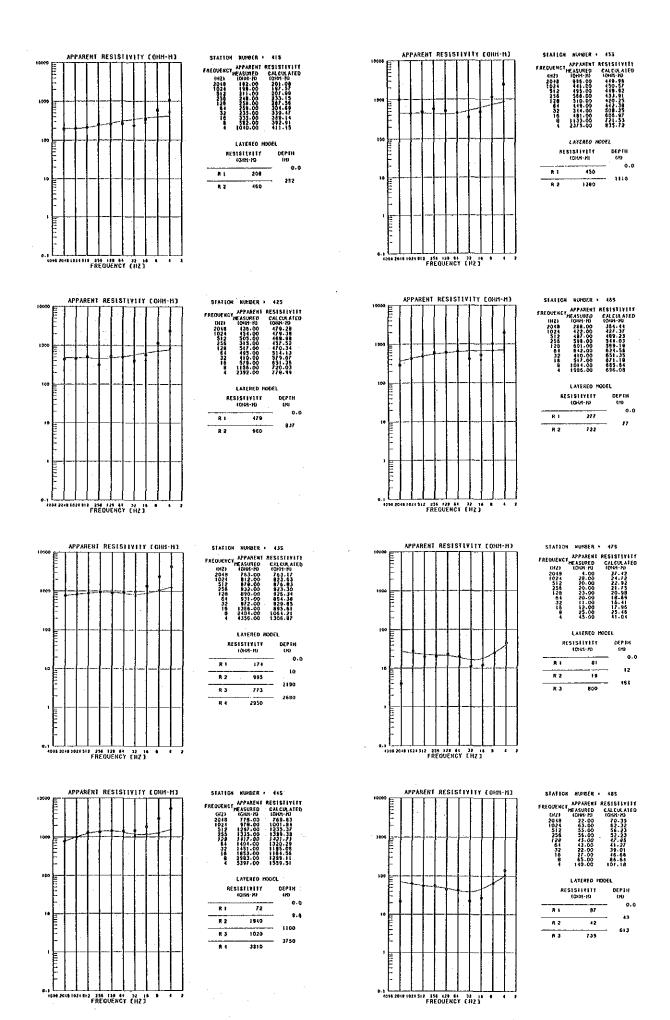
LAYERED HOGEL			
	STITLIT 0HH-HI	OEPTH (H)	
R I	60	0.	
Я 2	580	- 408	

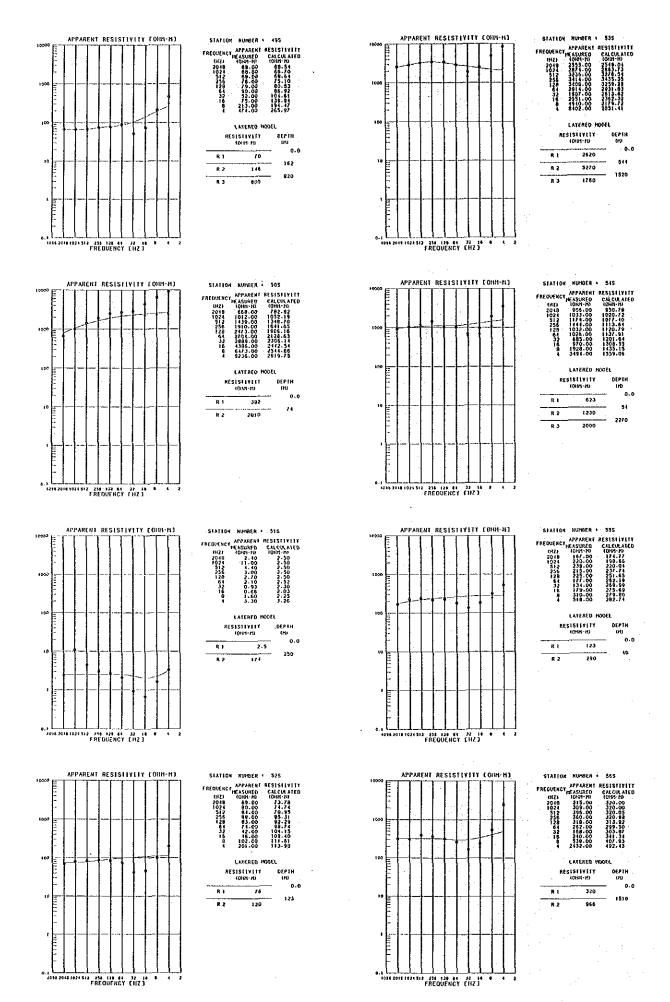

STATION	HUNNER	355
FREQUENCY.	APPARENT	RESISTITUT
TREGUENCI,	EASURED	CALCULATED
(514)	(OHM-H)	torri-ru
204B	65.00	64.48
1024	59.00	57-69
\$12	\$1.00	51 - 47
226	43.00	43-88
176	40-00	39-98
64	48.00	44-12
35	57.00	57-19
16	77.00	70.95
9	123-00	107.83
•	234-00	141-50

t-	ATERED HO	DEL
	7117112 CN-1416	OFF III
R:	77	0.1
R 2	33	- 43
R J	328	311

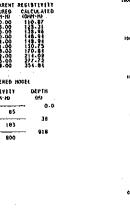

STATION	MUMBER	• 195
FREQUENCY (M2) 2048 1024 5:36 120 64 138 138	APPARENT EASURED 10091-00 73-00 46-00 51-00 51-00 55-07 41-00 151-00 293-00	RESISTIVITY CALCULATED TOHM-MI 34.89 40.04 45.28 52.36 54.54 54.42 52.19 83.89 122.45
	fittern :	HODE

EAYERED HODEL				
DEPTI (M)	117117 HH-165		A	
	33		ı	R
4.	78		2	R
65	800		3	R

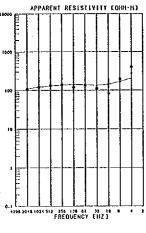

STATION	NUMBER	155
FREGUENC F	APPASENT	RESISTIVITY
REGOENCE	#FASURED	CALCULATED
(87)	ICHES-RO	(864-11)
2048	42.0D	42.38
1024	47.00	47.24
512	44.60	45.12
235	34.CO	33.13
128	22-00	22.52
54 .	17.00	17.41
32	15.00	18.78
31	19.00	86.81
9	32-00	22.86
- 4	61.00	27.47

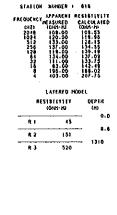

L	YERED HOD	£L.	
	11 [¥] 14	DEPIH ,	•
RI	41	0.0	
R 2	2.7	140	
RJ	50	172	

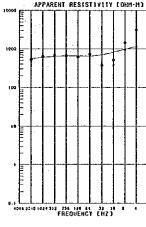
KDITA12	NUMBER	
FREQUENCY	APP ARENT	RESISTIVITY CALCULATED
(KZ)	(OHM-19)	(0491-10
20 (8	64.00	65.14
1024	74.00	71.91
ŚĬŻ	79-00	77-40
258	85-00	
ĭžě	84.00	81.53
8.4	10.00	77.09
32	\$1.00	81.15
16	77.00	IČÌ. ĖŠ
Ť.	181-00	141-59
. 4	394.00	200-47
	LAYERED .	MODEL

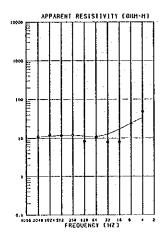


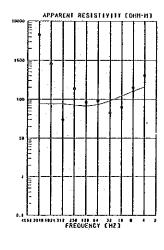
	\$11717T 0:01-10	DEP1H (H)
R I	33	- 0.0
 8 S	93	- 11 - 796
RI	800	

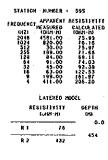


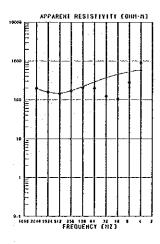








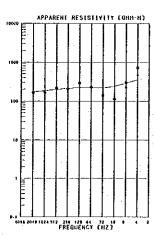



H21 2048 1024 512 256 128 128 14 32 16	MEASURED 1001-10 11-00 12-00 1	CALCULATED 10:89:70 10:56 11:36 11:39 11:30 11:30 12:80 17:13 24:16 33:64
RE	SESTEVETT LONDING	0661R
R I	R 1 10	
R 2	13	14
A J	110	21B

STATION NUMBER : 625

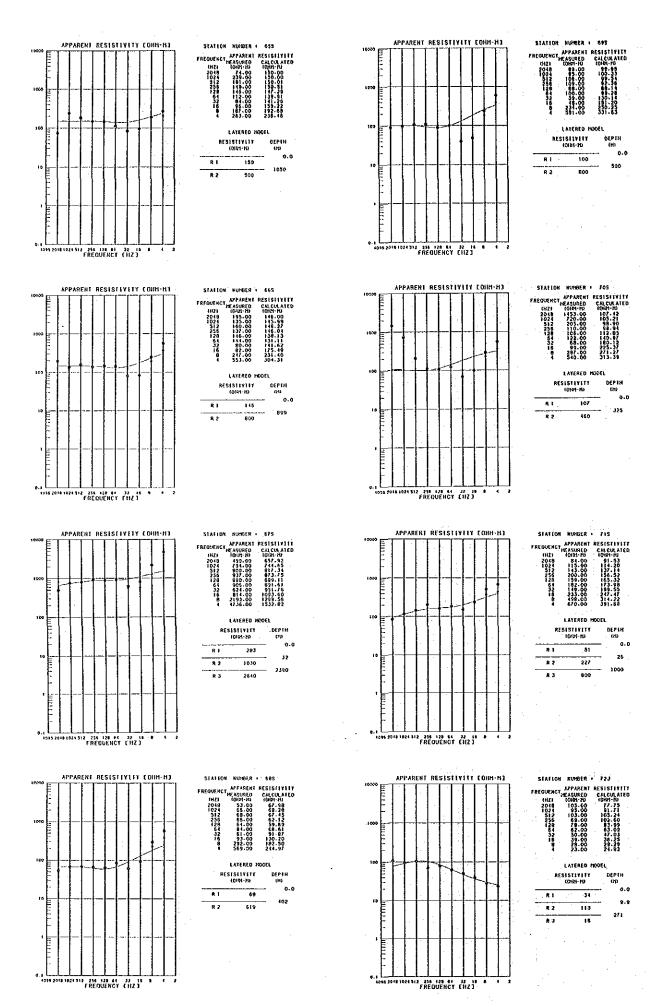
FORGUTUS APPARENT RESISTIVITY

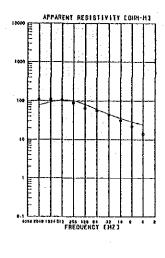


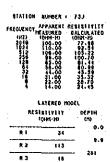

7049 1024 1024 512 256 128 64 37 16	198.00 159.00 144.00 170.00 205.00 123.00 123.00 123.00 123.00 125.00 125.00 125.00	EAL COLARIES 1009-100 197-58 155-64 148-97 159-87 129-00 287-94 2527-29 593-16
RE	LAYERED F SISTIVETY (GEN-N)	DEPTH
81	323	- 0.0
R 2	100	n
R J	800	211

SES . RESURN MOSTATE

FREQUENCY APPARENT RESISTIVITY

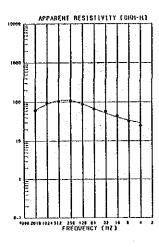


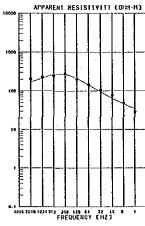




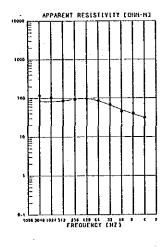
FREQUENCY 1948 1948 1924 512 556 128 64 32 16	APPARENT METSURED (GHT-N) 165.00 165.00 214.00 225.00 227.00 139.00 227.00 139.00 723.00 F23.00	RESISTITITE CALCULATED (OWN-10) 170.83 183.95 127.75 210.74 210.45 217.05 217.05 247.86 354.19
# 1 # 2 # 3	900 183 250 183 183 183 183 183 183 183 183 183 183	DEPEH (19 0.0 05

STATION NUMBER : 645

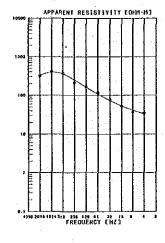




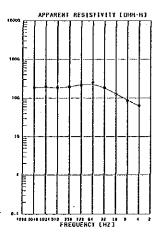
18


83

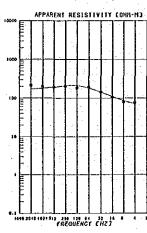
HOTTATE	NUNDER :	77.) E815717117
FREQUENCY	EASURED	CALCULATED
(84)	10441-25	TORM ID
2010	61.00	62.12
1021	97.00	46.37
512	105.00	110.45
338	108.00	104.34
ĬŹŘ	88.00	49.61
64	66-00	69.CB
32	59.00	\$1.70
16	66.00	40.87
	32.00	33.60
4	25.00	\$8.53
	LATERED HO	OEL
pr.	V71V17818	DEPIH
***		60
	(OIM-H)	เกน
	rona-un	— 0.0
* 1		
R 1	35	- 0.0
	32	
* 1 a 2		- 22
	32	- 0.0
	32	- 22
R 2	192 32	- 22
R 2	192 32	- 22

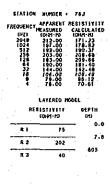

STATEON	KURMER +	743
FREOKENCT, 4HZ) 20(8 1024 512 255 128 128 32 16 8	APPARENT : #ASURED 10941-10 204.00 225.00 247.00 276.00 145.00 101.00 145.00 29.00 29.00	RESISTIVIT CALCULATE (OHIT-10 169.89 212.00 282.39 265.52 208.75 142.68 94.33 46.17 35.19
•	LAYERED H	00£L
RES	TIJV11213 (04-1410)	DEPTH 4Hb
R)	95	— , o.
R 2	303	59
A 3	16	- 456

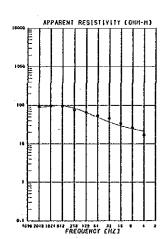
KOTTATE	KUNDER •	783
FREQUENCY, (HZ) 2018 1024 512 256 128 32 15 15 15	APPARENT #ASURED 10141-10 115.00 101.00 101.00 101.00 101.00 101.00 101.00 101.00	RESISTIVETY CALCULATED (Chort-h) 92.59 91.27 84.45 93.70 95.03 95.03 95.03 95.42 49.29 38.60 31.26
	LATERED ?	100EL
RES	111411515 (04-1440)	DEP1H (XD
# 1	83	0.0
Я 2	105	- 192


17

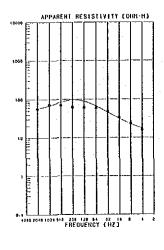
413

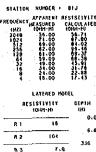


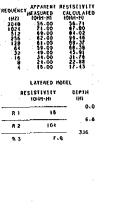

STATION NUMBER + 75J

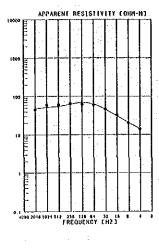


FREQUENCY (HZ) 2048 1024 312 316 128 128 32 15	APPARENT HEASURED 10HH-H1 187-00 193-00 187-00 218-00 252-00 181-00 85-00 64-00	FESTS/17117 CALCULATED 1007/30 187.58 185.55 185.55 195.50 219.81 180.63 180.63 182.75 88.56 62.33
	LATERED A	100EL
RE.	\$1511111 (0641-75)	DEPEN IND
- R 1	188	- 0.0
		300
R 2	513	871
R 3	18	

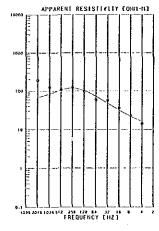

STATEDN NURSER . 79J

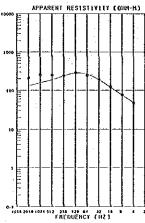






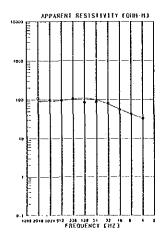
RES	APPARENT I EASURED (OHI-N) 94-00 97-00 95-00 76-00 56-00 14-00 17-	RESISTIVITY CALCULATED (OHC-FS 97.89 95.30 97.89 95.30 84.50 84.50 84.50 49.91 37.24 29.59 24.66
. R I	60	0.0
9.2	89	- 13
R 3	15	216



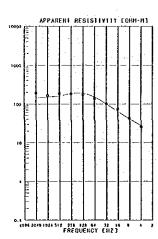


SIMILUM	MOLEDI, 11	. 460
FREQUENCY (1912) 2048 1024 512 256 128 54 13 16 18	APPARENT AS A CONTROL OF THE PROPERTY OF THE P	CALCULATE 10HH-HI 68.27 93.39 105.58 118.10 101.75 72.01
	LAYERED I	NOEL.
RE S	ISLIVITY	DEPIN
-	£DHH-H)	1117

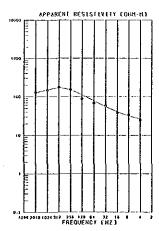
\$14140W NIMSER + 821


	AYERED IN	DEL
	S114111 DHM-H)	DEPIH HIV
RI	55	- 0.0
R 2	129	- 8.7
8.3 6.4		- 118

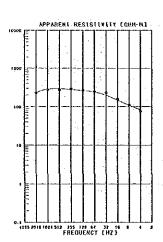
FREQUENCY ##21 2048 1024 512 256 128 54 52 16	APPARENT £ ASUREO (DNX-10) 207.00 252.00 247.00 239.00 239.00 213.00 192.00 193.00 47.00	RESISTIVIT CALCULATED (OMH-ID) 131-31 137-35 185-90 235-37 283-09 251-61 110-44 74-88 48-45
	LAYERED I	
AE:	15117111	DEPTH


STATION NUMBER : 56J

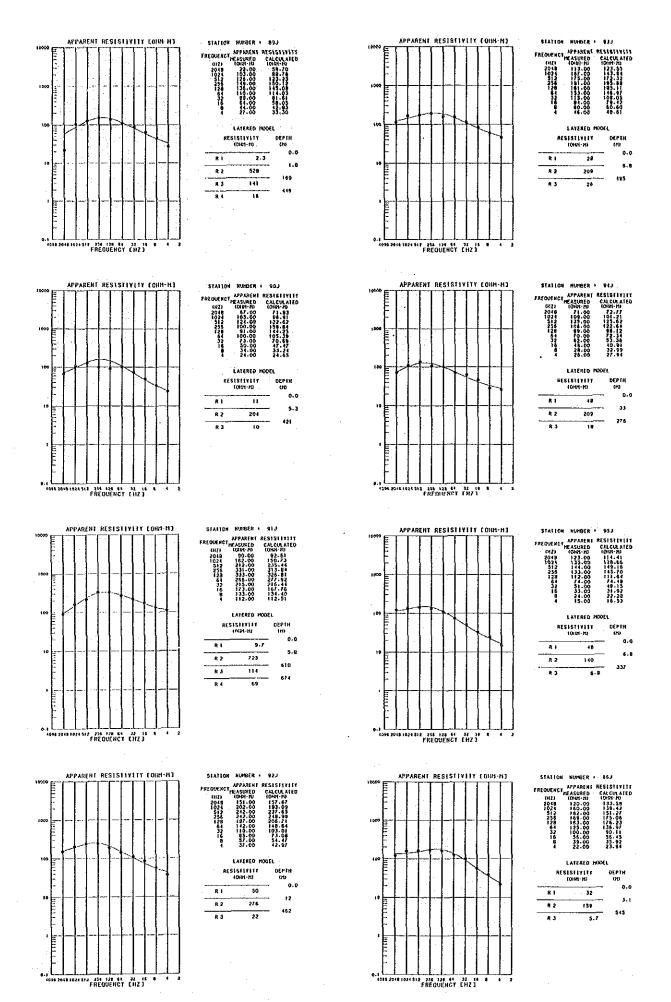
	LAYERED HODEL			
	RESISILYIIY (OHH-N)			DEPTH
	RI		105	- 0.0
_	H 2		304	- 52
	R J		8.2	842

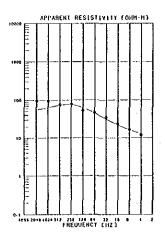

KOTTATE	NUMBER	833
	APPARENT	RESISTIVETY
FRECUENCY,		CALCULATED
	IGHH-H)	KCHH-MI
2018	108.00	91.11
1024	97.00	93.08
	95.00	95-28
255	104.00	103-24
128	85.00	108.95 98.60
32	80.00	77.27
16	56.00	57.10
8	43.00	42.50
- i	33.00	32-90
	L AYERED	MODEL
06	********	- DEPIH

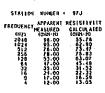
	LAYERED MO	DEL
RE	111111212 (N. 1410)	- DEP LH CHI
RI	44	- 0.0
R 2	93	- 3.7
R J	15	- 499


SIMILON	MUNDER	67.3	
FREQUERCT.	APPARENT	RESISTIVITY	
,	EASURED	CALCULATED	
41153	(OHR- H)	- 10994-H3	
5048	191.00	£45-88	
1024	165.00	150.92	
512	166.00	161.32	
256	180.00	185.40	
128	175.00	189.51	
54	136.00	150 85	
32	102.00	100.99	
16	/4.00	64.03	
ė	43,00	41.15	
. 4	25.00	27.68	

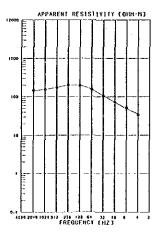
	` L	ATERED MODE	i.
		\$ 1 1 1 1 1 1 1 1 1	H1930
-	RI	F07	٥.
	R 2	169	19
-	.RJ	6.9	579
•			

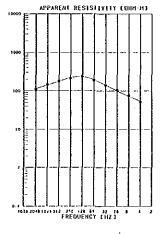

ROITATE	NUMBER :	843
	IN SPARENT O SRUZAS	RESESTIVE CALCULATE
(H)	TOTAL HD	(0114-70
2018 1024 512 256 128	127.00 148.00 174.00 151.00 87.00	123.69 151.93 167.90 148.58 110.48
64 32 16	59.00 39.00 39.00	77.36 34.87 40.73 31.95
ŧ	25-00 LAYERED J	25-47
DE 4		DEPTH


ŧι	ATERED HO	1
DEPTH CHD	5114LT4 0KM-M) .	
- 0	126	A I
- 129	312	8.2
- 288	15	83

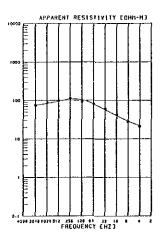


POLIATE	K-IX-REF.	88J
FREQUENCY (HZ)	APPARENT MEASURED (OHM: H)	RESISTIVITE CALCULATED 1000-10
2048 1024 512	274.00 274.00 273.00	232.39 287.22 296.01
256 128 66 32	265.00 265.00 242.00 229.00	277.91 264.29 241.70 197.08
16	156.00 110.00 75.00	147.61 108.45 81.73

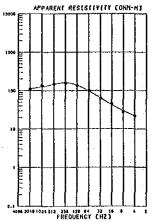

	LATERED MODEL			
	RE	\$1511¥11Y (0)91-10	DEPTII Qu	
	'R 1	28	- i 0.0	
-	`R 2 '	735	- 7.9	
	RЗ	157	- 243	
	9.4	. 32	****	

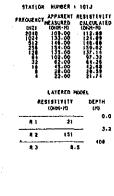


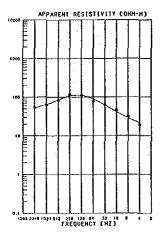
	AYERED HO	3EL
	51 LY L CY 344-24	CEP IN
81	20	- 0.0
A 2	75	- 5.2
		- 259


STATION	REGHUX	4 98.)
	EASURED	CALCULATED
1HZ) 2048 1924	10HH-HJ 141-00 253-00	(0491-H) 143.77 151.89
512 256 128	171.00 204.00 124.00	173.17 199.26 195.45
64 32 16	193.00	154.69 108.93 71.66
B	34.00	49.37 35.82

	;	LAYERED HO	DEL
	RESISTIVITY COVER-201		DEP1H CHI
-	RI	29	- 0.0
-	4 5	190	- 3.9
-	A 3	1.3	- 559

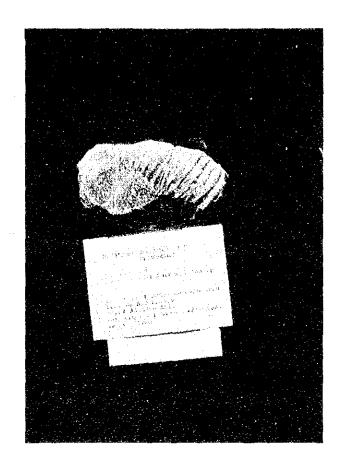

STATION	NUMBER	99.1
FREQUENCY.	APPARENT	RESISTIVITY
- HERATUEL	E ASURED	CALCULATED
(142)	1044-41	10:14-10
501B	109.00	113.72
1024	145.00	141 34
\$12	178.00	175-49
755	510.00	217.76
129	231.00	230.79
64	00-001	194.56
32	140-00	142-09
18	102-00	99.91
8	75-00	71.85
4	52.00	54.24

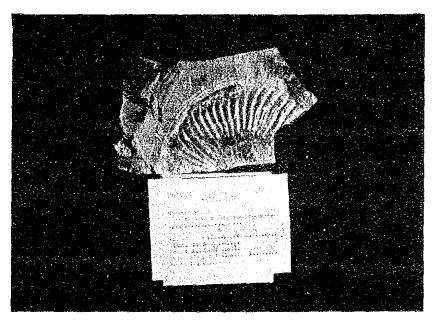

L	NOE E
RESI	OEPIH (M)
R I	o.
R 2	5.
R J	- 635



STATION	XUMBER	1003
FREQUENCY.	APPARENT	RESISTIVICE
* UEAACACA	## ASUMEO	CALCULATED
(HZ)	IONH-H7	10904-13
2049	74.00	76.28
1024	81.00	83.69
512	98.00	95.75
256	111-00	108.70
128	94.00	103.64
64	80.00	60.88
32	60.00	\$7.05
15	42.00	39.75
. 8	29.00	28-66
4	21.60	21.79

ı	AZERED MOC	DEL
	STLVLTY DH74-NJ	DEPTH CM3
RI	16	- 0.
R 2	106	- 3.
R J	9.6	- 395


KOITATE	HUHBER	1027
FREQUERCY, (HZ) 2018 1024 512 256 128 64 32 16	APPARENT #ASURED 1000-10 54.00 82.00 116.00 112.00 12.00 62.00 45.00 13.00 19.00	RESISTIVITY GALCULATED 10MT-N) 52-66 64-66 84-29 107-30 110-72 48-42 41-43 28-74 21-01
	LAYEREO : 15117117 (0851-11)	OGEL . DEPTH CAS
		0.0


Apx, 12 Photograph of Fossils

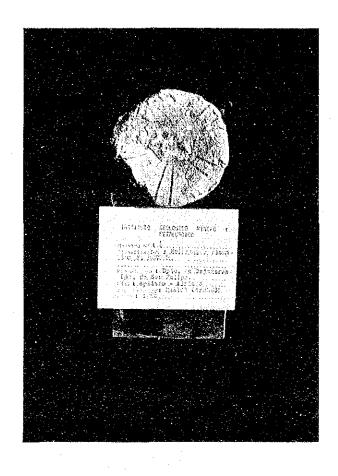
NO. 1

FOSSIL Parahoplites sp.

AGE. Albiano inf.

NO. 2

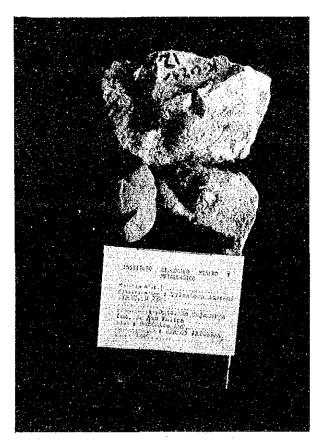
FOSSIL Oxytropidoceras peruvianum


(VON BUCH).

AGE. Albiano medio

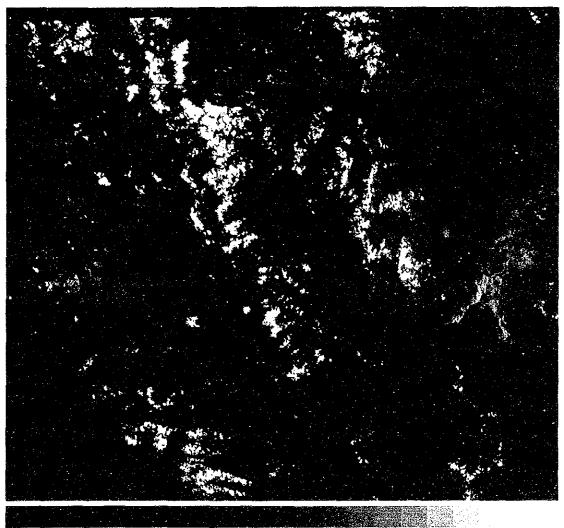
NO. 4

FOSSIL Holectypus planatus F.ROEMER


AGE. Aptiano-Albiano

NO. 5

FOSSIL Tylostoma cossoni THOM u PER.


AGE. Senónico inf.

A-90

STRETCHED 457

Data Acqisition: 1983/10/26, 1978/05/19 Scene : Path 9/Row 64,
Satellite : Landsat-4,
Process : Linear Stretch Path 10/Row 64 Landsat-3

Color : Band-4 Blue, Band-5 Green, Band-7 Red atomic of the second