REPUBLIC OF INDONESIA

FEASIBILITY STUDY FOR THE PADANG AIRPORT DEVELOPMENT

FINAL REPORT

APPENDIX

JANUARY 1982

JAPAN INTERNATIONAL GOOPERATION AGENCY

JGA LIBRARY 1072488[8]

18755

REPUBLIC OF INDONESIA

FEASIBILITY STUDY FOR THE PADANG AIRPORT DEVELOPMENT

FINAL REPORT

APPENDIX

JANUARY 1982

JAPAN INTERNATIONAL COOPERATION AGENCY

国際協力事業団

LIST OF APPENDICES

APPENDIX TO CHAPTER 1

APPENDIX 1.4.1. LIST OF INDONESIAN COUNTERPART TEAM
LIST OF JAPANESE STUDY TEAM

APPENDIX TO CHAPTER 2

APPENDIX 2.3.1. ORGA	NIZATION CHART	OF	TABING	AIRPORT
----------------------	----------------	----	--------	---------

APPENDIX 2.3.2. PASSENGER TERMINAL BUILDING LAYOUT

APPENDIX 2.3.3. THE RESULTS OF THE PAST SOIL INVESTIGATIONS

APPENDIX 2.3.4. TABING AIRPORT CONSTRUCTION HISTORY

APPENDIX TO CHAPTER 3

* * 3

APPENDIX	2 1 2	λTD	שטאביבדר	DEMAND	FORCAST
APPENDIX	3.4.4.	ALK	IRATIL	LEIGHTAN	LOMADI

APPENDIX 3.5.1. PRESENT AIR ROUTE NETWORK (GARUDA)

APPENDIX 3.5.2. PRESENT AIR ROUTE NETWORK (MERPATI)

APPENDIX 3.5.3. PRESENT AIR ROUTE NETWORK (MANDALA)

APPENDIX 3.5.4. ANNUAL PASSENGER DISTRIBUTION BY ROUTE

APPENDIX 3.5.5. MONIHLY VARIATIONS IN NUMBER OF AIR PASSENGERS BETWEEN 1970 AND 1980

APPENDIX 3.5.6. PEAK MONTH CHARACTERISTICS FOR THE YEARS 1970 TO 1980

APPENDIX 3.5.7. MONIHLY VARIATIONS IN NUMBER OF PASSENGERS FOR 1980 AND 1981

APPENDIX 3.5.8. DAILY VARIATIONS IN NUMBER OF SCHEDULED AND NON SCHEDULED PASSENGERS FOR PEAK MONTH

APPENDIX 3.5.9. AIRCRAFT IN SERVICE AT TABING AIRPORT AS OF 1981

APPENDIX 3.5.10. INCREASE IN FLEET SIZE FOR EACH TYPE OF AIRCRAFT

APPENDIX 3.5.11. FLIGHT SCHEDULE AT PADANG AIRPORT

APPENDIX 3.5.12. MONTHLY LOAD FACTOR

APPENDIX TO CHAPTER 4

APPENDIX 4.3.1. RUNWAY REQUIREMENTS (DC-9)

APPENDIX 4.3.2. RUNWAY REQUIREMENTS (A-300-B4)

APPENDIX 4.3.3. RUNWAY REQUIREMENTS (DC-10)

APPENDIX 4.3.4. RUNWAY REQUIREMENTS (B-747)

APPENDIX 4.3.5. AIRCRAFT DATA

APPENDIX 4.3.6. REQUIRED NUMBER OF AIRCRAFT STANDS

APPENDIX 4.4.1. UNIT FLOOR AREA OF PASSENGER TERMINAL

Sec. 15.

APPENDIX TO CHAPTER 5

APPENDIX 5.1.1 THE CAPACITY OF THE EXISTING HIGHWAY

APPENDIX 5.3.1. PAYLOAD REDUCTION OF A-300-B4

APPENDIX TO CHAPTER 8

APPENDIX 8.2.1. LOCATION OF SOIL INVESTIGATION AT TABING

APPENDIX 8.2.2. SOIL INVESTIGATION SUMMARY AT TABLING

APPENDIX 8 2.3. SOIL PROFILE AT TABING

APPENDIX 8.2.4. RESULTS OF CBR TESTS

APPENDIX 8.3.1. LOCATION OF SOIL INVESTIGATION AT KETAPING

APPENDIX 8.3.2. SOIL INVESTIGATION SUMMARY AT KETAPING

APPENDIX 8.3.3. SOIL PROFILE AT KETAPING

APPENDIX 8.3.4. RESULTS OF CBR TESTS

APPENDIX TO CHAPTER 11

APPENDIX 11 ECONOMIC ANALYSIS OF PROJECT

APPENDIX TO CHAPTER 16

APPENDIX 16.3.1. FUNCTION OF DGAC ORGANIZATION

Say of the

APPENDIX TO CHAPTER 1

: 3 ±

•

APPENDIX 1.4.1 LIST OF INDONESIAN COUNTERPART TEAM

Mr.	F.X. Margono	Head of Sub-Directorate of Airport Classification, Directrate of Airport Engineering	Chairman
Mr.	Muchtar	Staff of Planning Branch	Secretary
Mr.	Baroto	Staff of National Development Planning Agency	Member
Mr.	Soekardi	Staff of Directorate General of Budgeting Department of Finance	Member
Mr.	Suwardi	Staff of Planning Branch	Member
Mr.	Martono	Head of Airport Terminal Planning Section, Directorate of Airport Engineering	Member
Mr.	Bambang Tjahjono	Staff of Directorate of Airport Engineering	Member
Mr.	A.T.E. Liando	Head of Sub-Directorate of Airways Operations	Member
Mr.	Madijono	Head of Sub-Directorate of Flying Operations. Directorate of Aviation Safety	Member
Mr.	Hadi Rachim	Head of Telecommunications, Navigation & Electrical Workshop Section	Member
Mr.	Muchtar Usman	Head of Sub-Directorate of Domestic Air Transport.	Member
Mr.	Djoko Suhadi	Head of Programming Division Aviation Research & Development Centre	Member
Mr	. Bachtiar Motan	Staff of Planning Branch, Department of Communications	Member
Mr	. Basuki	Staff Member of Indonesian Air Force	Member

APPENDIX 1.4.1 LIST OF JAPANESE STUDY TEAM

Mr. Tetsuya Shiraishi

Project Manager

Mr. Shota Morita

Deputy Project Manager/Airport Planning

Mr. Tadamitsu Itoh

Aircraft Operations and Navaids

Planning

Mr. Hideki Murata

Airport Construction Planning

Mr. Takashi Miyawaki

Traffic Forecast and Economic/

Financial Analysis

Mr. Keiichi Takeda

Airport Planning (Utilities)

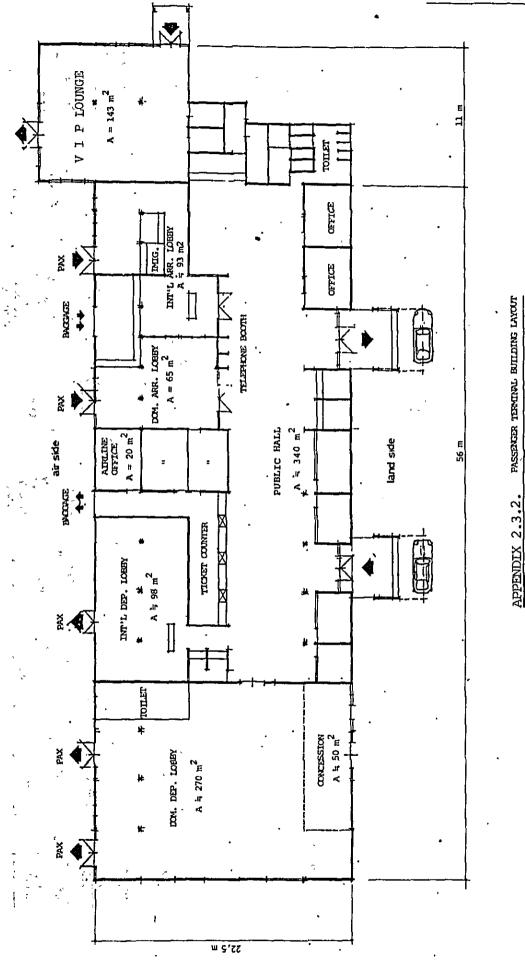
Mr. Kimihiro Maeta

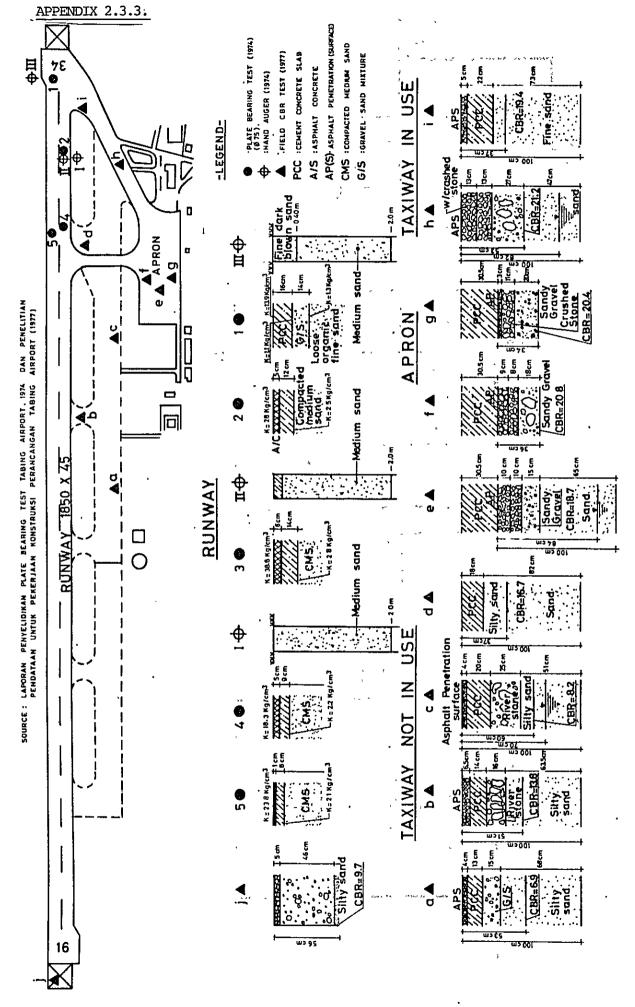
Airport Planning (Civil)

.

4

ార్లు కార్యాలు కార్య కార్యాలు


- <u>-</u> .


•

APPENDIX TO CHAPTER 2

- ;

APPENDIX 2.3.1. ORGANIZATION CHART OF TABING AIRPORT

APPENDIX 2.3.3 THE RESULTS OF THE PAST SOIL INVESTIGATIONS

APPENDIX 2,3.4. TABING AIRPORT - CONSTRUCTION HISTORY

number of t	.) "	69/1970	;	a.	Temporary Apron Construction; 1975 M (Area A), Sand & Crushed Stone/Gravel.	Hiar
	2. 19	70/1971	• ,	a.	Temporary Apron Construction (Area B), Sand & Crushed Stone/Gravel.	
~ - ~;		971/1972 3	~ :	a.	Apron Expansion; 4300 M ² (Area C & D), 100 + 150 cm Compacted Sand 34 Cm. Compacted Local Material.	
,				b.	Runway Construction; 200 M x 45 M. Constr:30 Cm. Compacted Sand 34 Cm. Compacted Local Material 30,5 Cm. PC Concrete	
	4. 19	972/197 <u>3</u>	:	a.	Apron Expansion; 60 M x 66,5 M (Area E), 100+150 Cm. Compacted Sand 34 Cm. Compacted Local Material.	
* • • -				b.	Runway Construction; 100 M x 45 M. Constr.: 30 Cm. Compacted Sand 34 Cm. Compacted Local Material 30,5 Cm. PC Concrete	
13		•	* * * *	C.	Runway Construction: 405 M x 45 M. Constr.: 30 Cm. Compacted Sand 34 Cm. Compacted Local Material 30.5 Cm. PC Concrete	
	- •	÷		d.	Taxiway Rehabilitation (be used for Temporary Runway); 1450 M x 30 M. plus Over run, 2 x (100 M x 30 M).	
	5. <u>19</u>	973/1974	:	a.	Runway Construction; 795 M x 45 M Constr.; See 4 c)	
a			*	Ď.	Leveling of Runway Edge; 2x(1200 M x 7,5 M)) [2] [3] [3]
e on the spect of	1 AC	Sign gro	-	Ć.	Overrun Construction; 2x(60 M x 45 M)	\geq
) 74° madern Warana manang	*** ^*.	roft to a		ď.	Shoulder Work: 2x ((60 M + 160 M) x 52,5M)	
	6. <u>19</u>	974/1975	:	a.	Runway Construction: (300 M x 45 M) Constr.; See 4 c)	·
				b.	Extension Runway Construction; 50 M x 45 M Constr.; See 4c)	
		,		с.	Turning Point Construction; 2 x 900 M ² Constr.; See 4c)	
				d.	Leveling of Runway Edge; 2x(300 M x 7,5 M)	

			•
		(Shoulder Work; 50 M x 52;5 M
7.	1975/1976	: 6	Constr.: 70 Cm Compacted Soil 10 Cm Compacted Sand 20 Cm Paklaag (Large Size Crushed Stones)
			20 Cm Aggregate Base 6 Cm Asph.Penetration
		ì	• Overlayed Taxiway; 800 M x 20 M, t= 3 in with Asphalt Penetration.
		C	Taxiway Rehabilitation & Reconstruction: 1000 M Constr.: 50 Cm Compacted Soil 10 Cm Compacted Sand 20 Cm Paklaag 20 Cm Aggregate Base 2 Cm Seal Coating
		đ	• Leveling of Fillets; 4600 M ² with Asphalt Penetration, t= 7,5 Cm
		e	Subgrade Work, filling & compacting; 2497 M ² prepared for Apron Expansion. Constr.; 150 Cm Compacted Soil 30 Cm Aggregate Base 2 Cm Seal Coating
8.	1976/1977	: а	• Apron Surface Construction with PC Concrete Area D & E; 7000 M
		b	Preparing Apron Expansion; 3114 M ² Constr.; See 7 e)
9•	1977/1978	: a	• Taxiway Reconstruction; 6500 M ² Constr.; See 7 a)
		Ъ	Preparing Apron Expansion; 4500 M ² Constr.; See 7 e)
		С	Apron Surface Construction with PC Concrete Area F & G; 5600 M
		đ	. Apron Edge, Filling & Compacting; 5000 M ²
10.	1978/1979	: a	Apron Surface Construction with PC Concrete Area H; 3775 M ²
11.	<u>1979/1980</u>	:	2 th

-

APPENDIX TO CHAPTER 3

APPENDIX 3.4.2 AIR TRAFFIC DEMAND FORECAST

Air traffic demand projections at Padang were derived from the projected air traffic volume at the national level by utilizing the elasticity of an economic variable at West Sumatra (or Padang) with respect to the corresponding national variable.

If X_{WS} is a socio-economic variable of West Sumatra (or at Padang if it is available) and $X_{\overline{INE}}$ is the corresponding national socio-economic variable then. Elasticity e_X of X_{WS} with respect to $X_{\overline{INE}}$ is defined as

$$e_{X} = \left(\frac{d X_{WS}}{X_{WS}}\right) / \left(\frac{d X_{INE}}{X_{INE}}\right)$$

For various economic variables, this number based on the statistics in the past decade was estimated: resulting in a distribution mostly between 1.0 and 1.6. The conceptual distribution based on a subjective judgement is shown in Figure A3.4.1. This reflects the fast growth tendency in West Sumatra. Thile this tendency may somewhat decelerate in the coming decades, it is expected to still continue at a relatively high level. Hence for the projection of air traffic at Padang, the distribution of exist assumed to be as shown in Figure A3.4.1. Based on this, the medium projections for air traffic at Padang were made based on the growth rates which are 1.2 times (or 20 percent higher than) the projected national traffic growth rates; the low projections 1.0 times the national growth rates; and the high projections 1.4 times (or 40 percent higher than) the national growth rates.

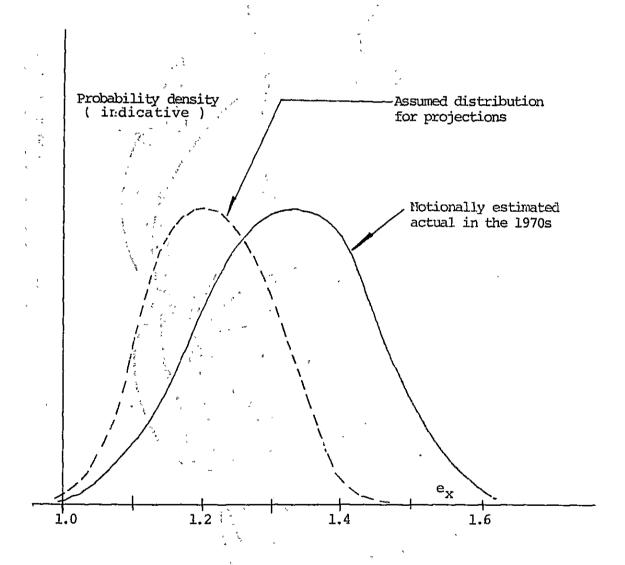
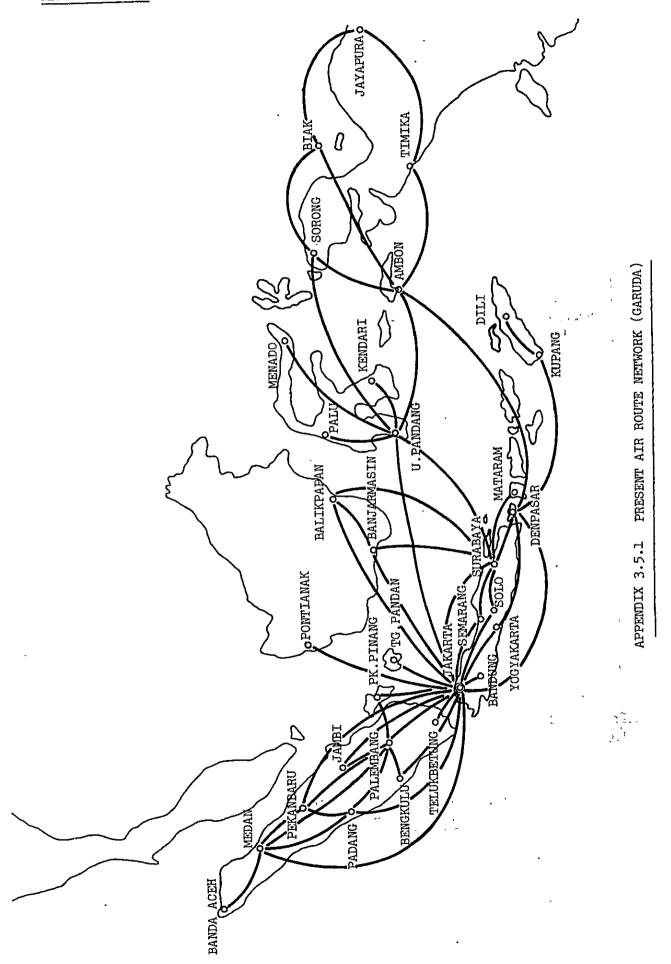
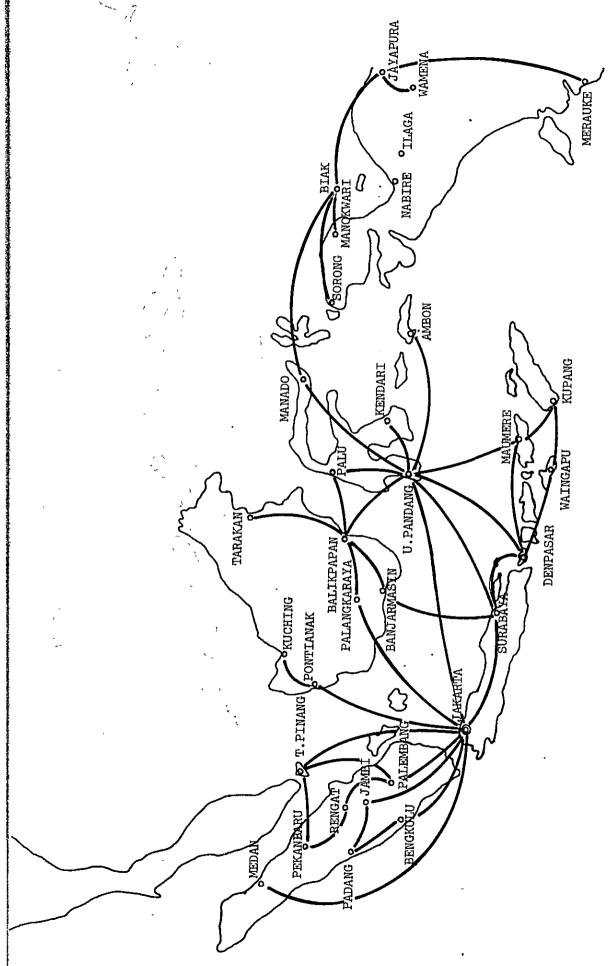
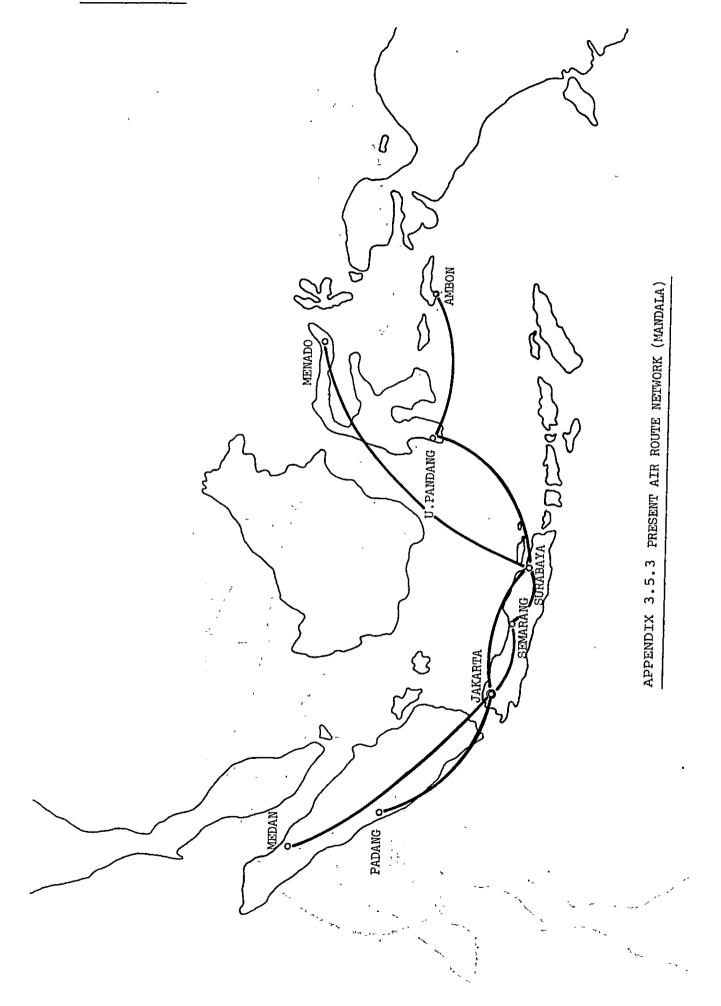
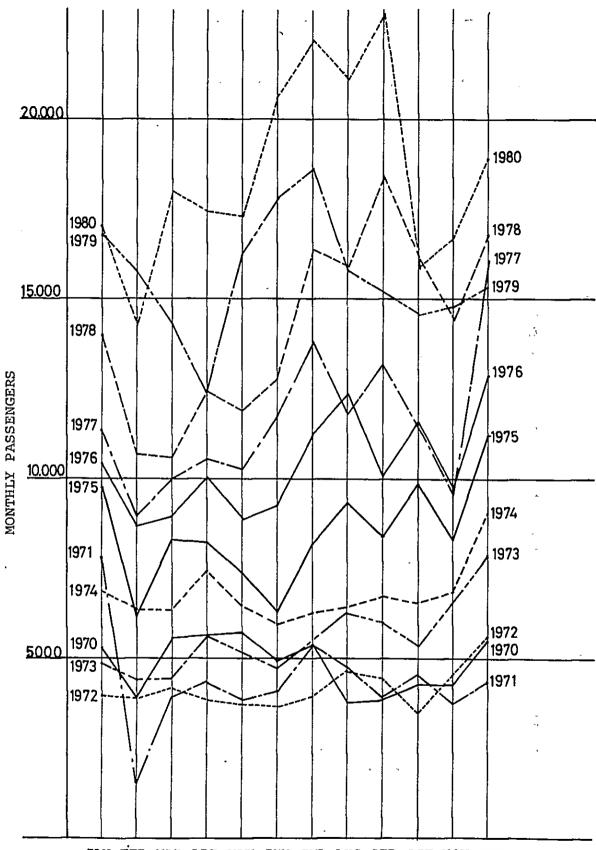





Figure A3.4.1 DISTRIBUTION OF ELASTICITY OF VARIOUS ECONOMIC VARIABLES FOR WEST SUMATRA WITH RESPECT TO ALL OF INDONESIA

APPENDIX 3.5.2 PRESENT AIR ROUTE NETWORK (MERPATI)

APPENDIX 3.5.4 : ANNUAL PASSENGER DISTRIBUTION BY ROUTE

Ţ.(;


Ave	67.0%	16.4%	6.5%	8 . 6	1.5%	100%
1980	158792	34774	14473	12906	1377	222322
1979	N.A.	N.A N.A	N.A N.A	N.A N.A	N.A N.A	N.A 100%
1978	84401 N.A	14502 N.A	6568 N.A	N.A N.A	N.A N.A	N.A 100%
1977	102404	22546	10870	5412	29 0%	141261
1976.	84631	19262	11347	9742	0 %	124982
1975	67.1%	16707	9310	7139	0 %	100840
1974	51974	15248	6748	6806	0 %	80776
1973	36726 N.A	11734 N.A	5894 N.A	N.A N.A	25 N.A	N.A 100%
1972	28592	6853	1127	3375	0,0	39947
1971	23482.	6370	1463	5212	1649	38176
1970	18908	4660	1436	4460	2277	31741
Year Route	PDG - JKT	- MES	- PKU	- PLM	OIHERS	TOTAL

SOURCE : AIR TRANSPORT STATISTICS ; BIRO PUSAT STATISTIK

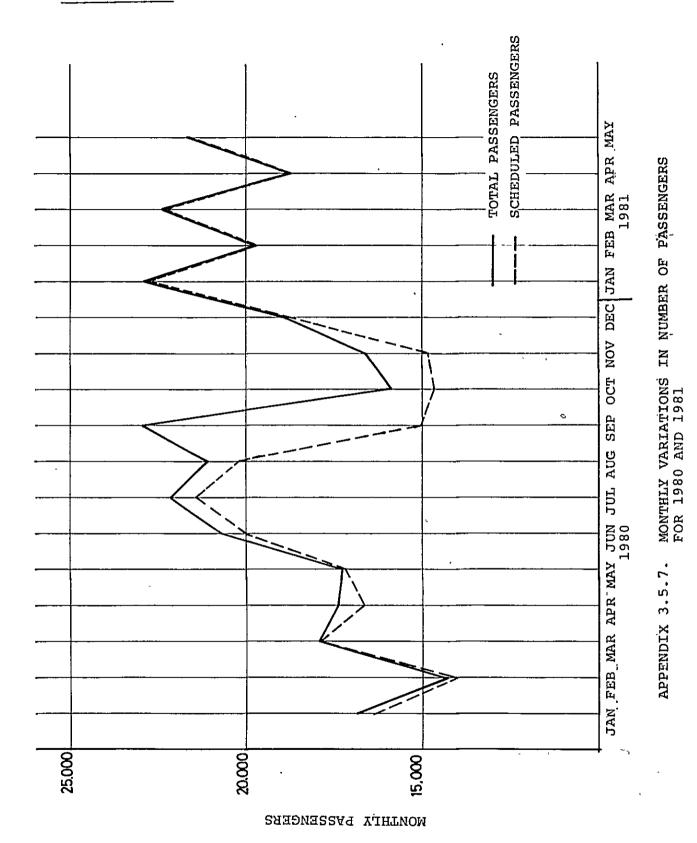
As for total annual passengers, refer to APPENDIX 3.5.6. (Total annual passengers in this Table do not meet APPENDIX 3.5.6. NOTE

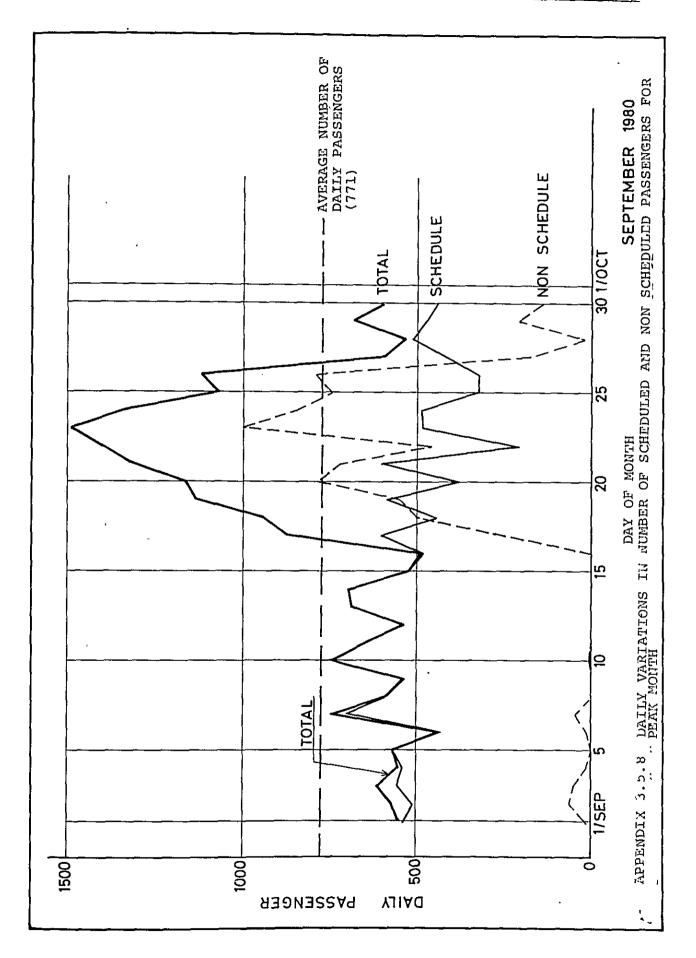
The figures in the upper and the lower triangles indicate annual passengers of route and share to total annual passengers respectively. 2

3. N.A: Not Available.

JAN.FEB.MAR.APR MAY JUN JUL AUG SEP OCT NOV DEC

APPENDIX 3.5.5 MONTHLY VARIATIONS IN NUMBER OF AIR PASSENGERS BETWEEN 1970 AND 1980


APPENDIX 3.5.6 PEAK MONTH CHARACTERISTIC


FOR THE YEARS 1970 TO 1980

ITEM YEAR	ANNUAL PAX	GROWIH RATE (%)	PEAK MONTH PAX	PEAK MONTH RATIO	PEAK MONTH	HADJ DAY	REMARKS
1970	58,08 7	. -	5,717	1/10.16	MAY	18/FEB	
1971	50,318	13.4	7,894	1/.6.37	JAN	7/FEB	
1972	50,006	0.6	5,652	1/8.85	DEC	27/JAN	
1973	66,786	33.6	7,917	1/ 8.44	DEC	16/JAN	
1974	84,259	26.2	9, 058	1/ 9.30	DEC	5/JAN 25/DEC	
1975	104,322	23.8	11,278	1/ 9.25	DEC	1.4/DEC	
1976	124,432	19.3	13,077	1/ 9.51	DEC	3/DEC	
1977	138,941	11.7	16,206	1/8.57	DEC	22/NOV	
· 1978 ²	170,188	22.5	18,479	1/ 9.21	SEP	11/NOV	
1979	185,261	8.9	18,589	1/ 9.96	JUL	30/OCT	
1980	~-222;115-	19,9	22,947	1/ 9.68	SEP	8/0CF	
Ave		15,2		1/ 9.4 *			

SOURCE : DATA LALU LINTAS ANGKUTAN UDARA ; PELABUHAN UDARA TABING PADANG.

^{*} AVERAGE OF 1976 TO 1980

APPENDIX 3.5.9 AIRCRAFT IN SERVICE AT TABING AIRPORT AS OF 1981

			· · · · · · · · · · · · · · · · · · ·	
AIRCRAFT TYPE	SEATING CAPACITY	OPERATOR	ROUTE	REMARKS
DC-9	102	GIA	JKT-PDG	Į Į
	İ	<u> </u> -	JKT-PDG-MES	
L-188	93	MDL	JKT-PDG	SCHEDULED
F-28	85	GIA	PLM-PDG-PKU-SIN	
VC-8	68	M N·A	JKT-PDG	
		, ,	JKT-JMB-PDG	
F-27	44	MNA	JKT-JMB-PDG	
	İ		JKT-BKL-PDG	
BN-2A	10	IAT	PDGPGI	
1		AIRFAST	<u> </u>	
HS-748	48	AIRFAST		
DC-3	31	AIRFAST		•
CRUMAN ALBATROS	20	AIRFAST		NON SCHEDULED
BELL 206	8	AIRFAST		
PA-23	6	AIRFAST		
		MINANG AEROCLUE		
HERCULES	118	PELITA		
HS-125	8	PELITA		

l , Hings

APPENDIX 3.5.10 INCREASE IN FLEET SIZE FOR EACH TYPE OF AIRCRAFT

NO.	TYPE OF AIRCRAFT PILATUS PORTER PC - 6 DHC-3 OFTER AMPHIBIAN	1969	PEI 70 9 9 1	PELITA 70 71 9 9 9	T 72 9 9 1	73 73 9	9 6	· · · ·	75 76 9 9	11 77 9	8, 6 1	9 6 1	PELITA 80 81	ETA .	82 83	_
w 4. m.	DORNIER D-28-B-1 GRUMMAN G-21 A DHC-6 TWIN OTTER/300		м І м	0 1 0	Q 1 4	8 I 12	ν I ῶ	2 - 16	7 1 2	2 20	2 1	2 1 2				
6.	CASSA C-212 DC-3/C-47 , HS-748	37	31 J	з 39 г	3 29 1	. 29 .5	ا لا م	20 5	20 8	1 20 9	1 20 17	1 20 16				
9. 10. 11.	CONVAIR CV - 340 CONVAIR 600 - 240 LOCCHEED ELECTRA 1-188 C YS - 11	1 2 1	11 8 2 1	는 i	1 6 6 6	1 m 1 o	l'w lru	I M I W	I W I 4	ιм ι н	1 W 1 1	1 m 1 1			-	
13. 14. 15. 16.	VICKERS VISCOUNT 806/826 CONVAIR 990 A VICKERS VANGUARD 951/953 FOKKER F - 27 FOKKER F - 28	10100;	8 2 1 11 1	. в I I I в	10 10 6	. E 1 2 6 1) E E E E	3 4 1 17 17 17	2 9 4 1 4 5	1 K 1 4 4 5	ж 1 4 го ⁸	12 4 4 30				
18. 19. 20.	DC - 9 - 32 DC - 8 - 55 / 53 DC - 10 - 30	0 1 1	8 1 1	m 1 1	וו טי	9 1 1	Q, W, 1	33	18 3	18	18	25 2 6				

20 <u>6</u> 8 GA 253 PLM 16 <u>بر</u> F 28 | GA 945/253 | BIN-PKU | ___ 15 GA 208 ਨ GA 209 JKT DC 9 MES * MON. WED. 8 7 MZ 685 DJB O/ 'റ്റ DC GA 209 MES 40 CA 208 JKT t QE 095 JKT MZ 645 2 MZ 644 DJB 1020 50 VC 8 GA 115 JKT MZ 650 BKS, \PZ-T L 188 30 DC 9 20 RE 094 L 188 JKT 55 L 188 GA 252/ 944 MZ 6841 PKU-SI GA 114 JKT 9 MZ 682 MZ 683 JKT VC 8 7JKT 30 10 F 28 55 *SUN GA 111 GA 252 PLM 2 ø GA 110 9 JKI-PDG-MES PDS-DJB-JKT PDG-BKS-JKT HOUR ROUR PLM-PDG-PDG-JKT PKU-SIN ROUTE

APPENDIX 3.5.11 FLIGHT SCHEDULE AT PADANG AIRPORT (APR. 1981)

APPENDIX 3.5.11.

APPENDIX 3.5.12 MONTHLY LOAD FACTOR

	SCHEDULED (%)	NONSCHEDULED (%)	AVERAGE (%)
80/NOV	72.2	6.1	55.7
/DEC	59.4	20.6	58.8
81/JAN	66.4	15.0	65.6
/FEB	43.2	18.7	43.0
/MAR	66.9	15.0	65.8
/APR	65.6	19.0	64.9
/MAY	70.8	20.7	70.6
AVE	63.5	16.4	60.6

• • • · - 3

APPENDIX TO CHAPTER 4

APPENDIX 4.3.1. A RUNWAY REQUIREMENTS (DC-9 TAKE-OFF)

ASSUMPTIONS

OAT : 33° C (ISA + 18° C)

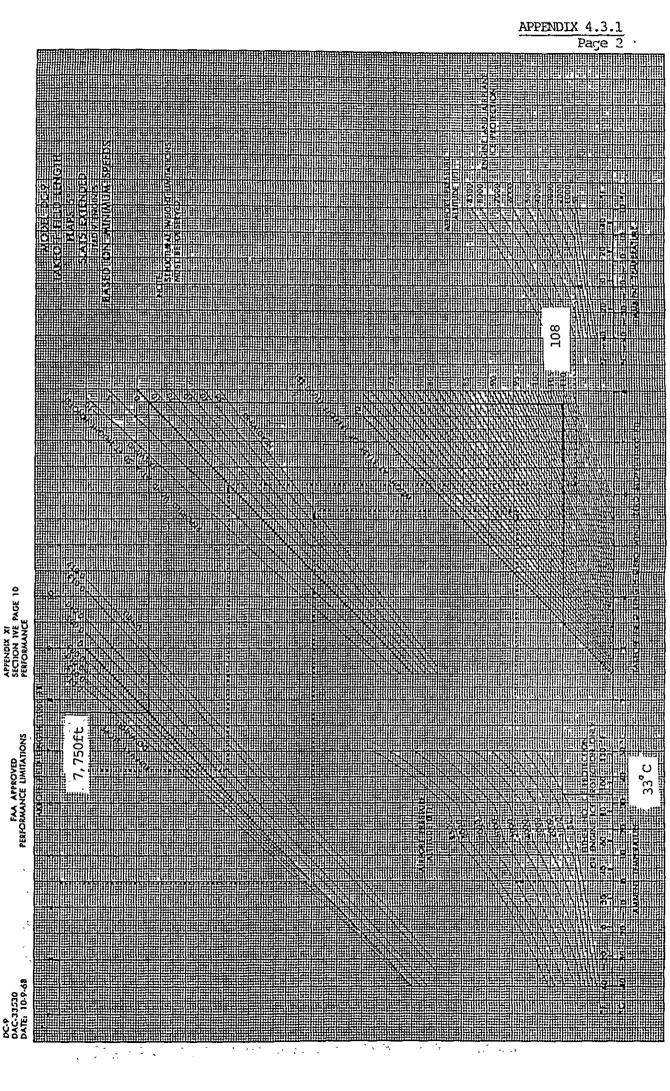
Elevation : 0 feet
Slope : 0 percent
Procedure : Take-off

Route : PDG_____JTK_____SUB

Distance : 553 NM 382 NM FL/Wind : -15Kt/FL 290 -20Kt/FL 290

Alternate : Surabaya

TAKE-OFF WEIGHT : 49,000 Kg 108,000 LBS


D.O.W : 28,000 Kg LBS Fuel Carried. : 9,535 Kg LBS Max. Payload : 11,465 Kg LBS

MONOGRAPH APPLIED : ~

RWY FIELD LENGTH : 2,370 m

REQUIRED

(Flaps 5 °) (Slats Extended)

APPENDIX 4.3.2. A RUNWAY REQUIREMENTS (A-300 TAKE-OFF)

ASSUMPTIONS

OAT : 33° C (ISA + 18° C)

Elevation : 0 feet
Slope : 0 percent
Procedure : Take-off

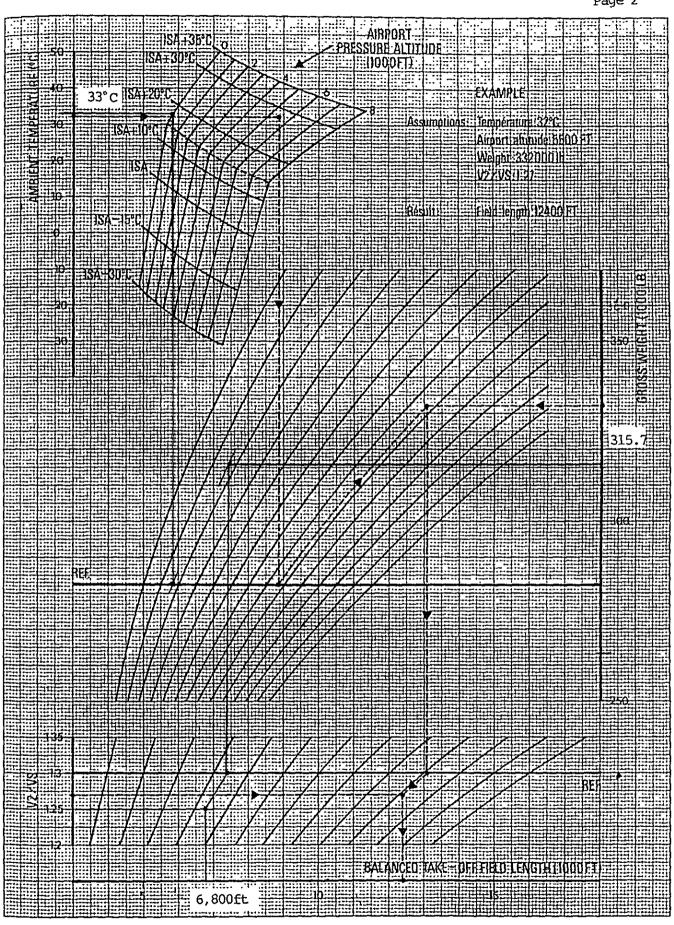
Route : PDG------SUB

Distance : 553 NM 382 NM FL/Wind : -15Kt/FL 290 -20Kt/FL 290

Alternate : Surabaya

TAKE-OFF WEIGHT 143,000 315,700 Kg LBS D.O.W 90,000 Kg LBS Fuel Carried : 22,800 Kg LBS Max. Payload : 30,500 Kg LBS

MONOGRAPH APPLIED :


RWY FIELD LENGIH : 2,080 m

REQUIRED

(Flaps 8 °) (Slats 16 °)

REMARKS : V2 / VS = 1.25

^{*} If A-300-B4 would take off from Padang with the maximum takeoff weight (324,000 IBS), the landing weight at Jakarta would exceed the maximum structural landing weight (295,000 IBS). Thus, the take off weight at Padang is restricted to 315,700 IBS.

A 300 B2 _ 220 A 300 B4 _ 120/220 (P&W JT9D _ 59A1) BALANCED TAKE-OFF FIELD LENGTH
MAXIMUM RUNWAY LIMITING WEIGHT
SLATS 16° FLAPS 8°

SHEET 1.2.2

FEB. 1978

APPENDIX 4.3.2. B RUNWAY REQUIREMENTS (A-300 LANDING)

ASSUMPTIONS

OAT : 33° C (ISA + 18° C)

Elevation : 0 feet

Slope : 0 percent

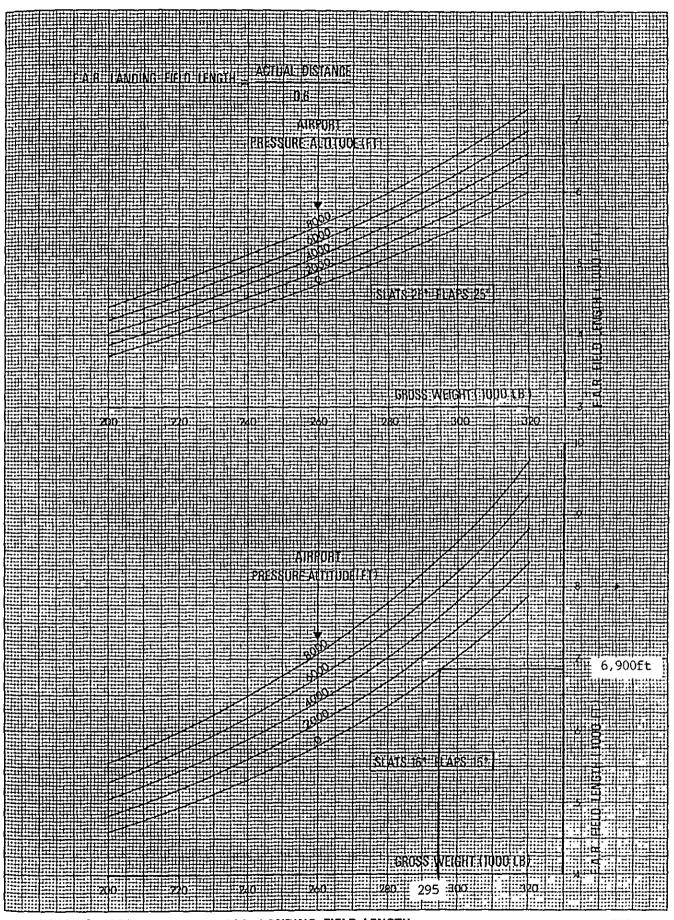
Procedure : Landing

Route : JKT ---- PDG ---- MES

FL. /Wind : FL310 / + 5 Kt FL310 / + 5 Kt

Distance: 530 NM 301 NM

Alternate : Medan


295,000 LANDING WEIGHT ___ 134,000 _ Kg LBS 90,000 D.O.W : Kg LBS Fuel left : 9,800 Κq LBS Max.Payload: 34,200 Kg LBS

MONOGRAPH APPLIED :

RWY FIELD LENGTH : 2,420 m Wet 2,110 m Dry REQUIRED

(Flaps 15 °) (Slats 16 °)

est made

APPENDIX 4.3.3: A RUNWAY REQUIREMENTS (DC-10 TAKE-OFF)

ASSUMPTIONS

OAT : 33° C (ISA + 18° C)

Elevation : 0 feet

Slope : 0 percent

Procedure : Take-off

Distance : 553 NM 382 NM FL/Wind : -15Kt/FL 290 -20Kt/FL 290

Alternate : Surabaya

TAKE-OFF WEIGHT : 192,700 Kg 425,500 LBS

D.O.W : 124,000 Kg LBS
Fuel Carried : 25,700 Kg LBS
Max. Payload : 43,000 Kg LBS

MONOGRAPH APPLIED :

RWY FIELD LENGIH : 2,120 m

REQUIRED

(Flaps 12 °)

le I

TAKE-OFF PERFORMANCE TAKE-OFF RUNWAY LENGTH (m) Take-off Runway Length 1 2 6 12 7 2 ٤ (D) 140 TAKE-OFF RUNWAY LENGTH (m) IN ZERO WIND AND ZERO COHRECTIONS:

- Engine Ann.-lce.
SUBTRACT 1000 kg
- Engine bleed to Pack
SUBTRACT 2400 kg

MARIUAL OFEMATIONS RIMCRAFT

No Engine Bleed

APPENDIX 4.3.3. B RUNWAY REQUIREMENTS (DC-10 LANDING)

ASSUMPTIONS

OAT : 33° C (ISA + 18° C)

Elevation : 0 feet

Slope : 0 percent Procedure : Landing

Route : JKT ----- PDG ----- MES

FL. /Wind : FL310 / + 5 Kt FL310/ + 5 Kt

Distance: 530 NM 301 NM

Alternate : Medan

LANDING WEIGHT 178,400 393,000 __ Kg LBS D.O.W Kg 124,000 LBS Fuel left 11,400 Кg LBS Max.Payload: Κg 43,000 LBS

MONOGRAPH APPLIED :

RWY FIELD LENGTH : 2,200 m Wet 1,910 m Dry REQUIRED

(Flaps 35 °)

training within				}			_								٠
The state of the s	nosite const	ومفتال مدالت المراد	-	ا مرمریه ا	(, ,	ا جرمدایم جرم	215 ************************************	epa t		andı.	1/41/10	12.00	ay 14 etypt		. POLA
Y												RU	۱ ۱	-L 31	,, ~
, , , , ,	Chart or Ma	1	1		t.	unti ere	opei	rati	en.						
, L															
•		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	دودد			i HA		1114	42424	ezere.	24242, '1 : : Y	eeffe	14121	4444	7//
	44	الله المراجعة المراجعة المراجعة المراجعة المراجعة المراجعة المراجعة المراجعة المراجعة المراجعة المراجعة المراج المراجعة المراجعة ال	4), ₁ 5 (21) 2	4 64, 03 j arga ‡⊋d	įΨ irγi	: 29'*+ -	: تاجد،	cel z	4x4x	zecen	reele	فيهمينهم	יו איניינייניינייניינייניינייניינייניינייני		ا مريزيو
ne Max. Landing Weight Fo	or	=======================================			: [:	:::	-: : :	7:7	71	77	ブリ	. ;	7:		::-
ISPATCH is the lower of:		180							7.7	:/-;}	7.7	1.7	Z ; } -: : : : :	<i>:</i> Z[:	
i) Max. Structural LW ii) Landing RW length	178					: '1	7/1,	/ /	'. /.·}	1.7	/ :}/	::/1:	/ز.:`	.: ;	/:
limited weight*)		3	: :		:		11	•/	17	7.7	:71	7:11	7.]:	: /:	
) (ii) is determined fo	 r:	170-1:	:: <u>}</u> ,	.11.11	.::]	::: ;	///	/- 1	1:7	<u> </u>	7:3	::::}		7 4	
. longest runway	. GX	150	::):				/ <u>;</u>	//;		/-/		:	1	:: :::	
with zero wind	10CT	₹.	i			ijij.	5	0	17	7.7		7: [7.1		
. most suitable runway with	×	160-1-					-/\	0.	S	4	57	:-:-		-: ;	::::
forecast wind	표	<u> </u>	::	::::	:/[,	///L	/:/\	11	05/	ڇن رو	$ \hat{y} ::$	1/.			
- using WET scale for	ĬĮ.	#:			17	7:7	7 1	1	7.,	\ \$ /					
DESTINATION (or DRY scale if				<i>i_/</i>	-/-X	$\mathcal{L}_{\mathcal{L}}$		1.4	<u> </u>	<i>\$</i> }!	:0°;				
forecast indicates	Д 23	150 7			//i	Z_{λ}	7;/[14) Q	<i>)</i>		::.:	.::	: .	.::
dry, SCD) - using DRY scale for	3	<u>}</u> :		1:11	11	77	/ /	1	Q.	1					·::
ALTERNATE		160-	; ; ; }	<u>ETX</u>	1.1			4. E		×					
		3:		// Y	7:5	// /	4/	. <i>У</i> .	17	: .:		::::		: '-:	:::
P. •		₹.	77	171	1	<u>, , , , , , , , , , , , , , , , , , , </u>	7	- ا کر ا د ا							
1		<u>/خ</u> 130ء	ŹŹ	$A:V_{\mathbb{R}}$	<u>/:/</u>	; / ;/	:/	- 5	1.:					-	;
	-			: 1	- ; ;			: <i>:</i>	1	::		أنجرا	بر بر. بر بر	أنبرتم	<i>)</i> /
	25-				: :			· :	1	.:::	1.		75		ز: .
		1::	1:,						: <u> </u> :	- 72	17:3		, , , , , , , , , , , , , , , , , , , 	4	
	-	12:11					.:			1.1	ار الر	عر ا	<i>y</i> :	/	آر:
			,	-:::		,		7.13	17	77	1		1	,	7
	•		:: :	- : : 1				8	12	1	, , , ,	(y)		//::	2
	Ê.],;; [: : : i			>	Y)	1:/	ترز کر	1/	بمنهرا	-/		ز.:
	8	25		: 1								1			7.
	×				* * *	0		1/1	J-73	,	<i>]Z</i> :_	! <i>X:</i> -	7		1
	7					, ,	,6,		/ Q.	أسرزا	مبر	1.7	أنمزر	المبرز.	1
	LENGTH [x 100 m)		wet.	2,2	OOm	و محردا	7	12	ر : ا	11.7	7	1./	7	7.	[:
•			n-c			<u> </u>	//	/	<u>\$</u> /:	JZ			,,,,,,	<u> </u>	<u> </u>
	RUNWAY	1::::			/:/		//	1		مر	أتخمر	135		} .	:
	Ş		7,	1	وعرو	77	 : /	ر: ''	75	2		1.1.		: :	
	5	20	100	12	$\leq p$		700	1	<u> </u>	, Z	<u>, 2 </u>	 	1:		:-
	LANDONG	-{:.::}	<i>". ;</i>		//	1	1	1/		1;		:::			::
	3		/	177	:::;	1;	1:7	1.,	1	7	1:::	1::::	1:::	1::::]::
			نزير	<i>[2</i>]	<i>id</i> :	<u> </u>	<u> </u>	12.	<u>:[ri:</u>	: † · · · ·				<u> </u>	1
	200];::: <u> </u>			, , , , ,	مر مراجع مراجع).X.	122		.					1:
	15	1			/.	T.		1:-		7			 	 ::::	1::
				$\{e_i^{i,j}\}$		12		٠.	<u>;!::;</u>	<u>:j</u>	1:1:		1	} :::::	1::-

APPENDIX 4.3.4. Page 1

APPENDIX 4.3.4. A RUNWAY REQUIREMENTS (B 747 TAKE-OFF)

ASSUMPTIONS

OAT : 33° C (ISA + 18° C)

Elevation : 0 feet

Slope : 0 percent Procedure : Take-off

Distance : 553 NM 382 NM

FL/Wind : _15Kt/FL 290 _20Kt/FL 290

Alternate : Surabaya

TAKE-OFF WEIGHT : <u>273,000 Kg</u> 602,000 LBS

D.O.W : 173,000 Kg LBS
Fuel Carried : 34,000 Kg LBS
Max. Payload : 66,000 Kg LBS

MONOGRAPH APPLIED :

RWY FIELD LENGIH : 1,990 m

REQUIRED

(Flaps 10°)

7/27/77

TABLE 54. AIRCRAFT PERFORMANCE, TAKEOFF (BOEING 747 SERIES)
JT9D-7A ENGINE, 10° FLAPS

MATTMM	ALLOWARIE	サイトロハロロ	LIPICHT	/1000 BC

TEMP		AIRPOR	T ELEVA	TION (H	ETERS)	
*C	0	500	1000	1500	2000	2500
10	356.0	255 0	313.5			
	356.0	356.0	343.5	327.4	310,8	294.6
12	356.0	356.0	343.5	327.4	310.8	294.6
14	356.0	356.0	343.5	327.4	310.8	294.6
16	356.0	356.0	343.5	327.4	310.8	291.9
18	356.0	356.0	343.5	327.4	309.2	289.0
20	356.0	356.0	343.5	327.4	306.2	286.3
22	356.0	356.0	343.5	323.8	303.0	283.4
24	356.0	356.0	342.0	320.2	299.6	280.2
26	356.0	356.0	338.0	316.4	296.1	277.0
28	356.0	356.0	333.9	312.5	292.4	273.6
30	356.0	352.0	329.7	308.6	288.7	270.1
, 32	356.0	347.5	325.5	304.6	284.9	266.6
34	356.0	343.0	321.3	300.6	281.2	263.1
36	356.0	338.6	317.1	296.7	277.5	259.7
38	356.0	334.2	313.0	292.8	273.9	256.3
40	351.8	329.9	309.0	289.1	270.5	253.1
42	347.4	325.7	305.1	285.6	267.2	250.1
44	343.1	321.7	301.4	282.2	264.2	247.2

REFERENCE FACTOR "R"

		TEMP		AIRPORT	ELEVA	M) KOITA	ETERS)	
		*c	0	500	1000	1500	2000	2500
		10	68.3	75.1	83.0	92.4	103.5	116.9
		12	68.9	75.6	83.6	93.1	104.4	117.8
		14	69.3	76.1	84.1	93.7	105.1	118.5
	k	16	69.8	76.5	84.6	94.2	105.7	120.0
	-	18	70.2	77.0	85.1	94.8	106.4	122,6
		20	70.6	77.5	85.6	95.3	108.4	125.1
	-	22	70.9	78.0	86.0	96.5	110.4	127.7
		24	71.3	78.4	86.7	98.4	112.6	130.4
		26	71.8	78.9	38.4	100.3	115.9	133.2
		28	72.2 -	79.9	90.1	102.4	117,4	136.0
		30	72.7	81.4	91.9	104.5	119.9	138.9
R=	74.3	32	73.6	83.0	93.8	106.7	122.5	141.8
		34	75.0	84.5	95.7	109.0	125.2	144.9
		736	76.4	86.1	97.6	111.4	128.0	148.1
		38	77.9	87.8	99.6	113.8	130.9	151.4
-4,0		40	79.4	89.5	101.7	116.3	133.9	
		42	81.1	91,2	103.7	118.9		
		44	82.9	93.1	105.9	121.5		

RUNWAY LENGTH (METERS)

น	EIGHT				REFEI	RENCE PA	ACTOR "I	3**			
10	00 KG	60	70	80	90	100	110	1.20	130	140	150
	250	1355	1575	1790	1995	2195	2395	2590	2785	2975	3170
	260	1455	1700	1935	2165	2390	2610	2830	3050	3265	3485
•	270	1565	1830	2090	2345	2595	2840	3085	3330	3575	3820
	280	1685	1970	2255	2535	2815	3085	3360	3630	3905	4180
1	290	1810	· 2125	2435	2745	3050	3350	3655	3955	4260	4565
	300	1945	2290	2625	2965	3300	3635	3970	4305	4640	4975
	310	2090	2460	2830	3200	3570	3940	4310	4680	5050	
	320	2245	2645 •	3050	3455	3860	4270	4680	5090		
	330	2405 .	2840	3280	3725	4175	4625	5075			
	340	2575	3050	3530	4015	4510	5005				
	350	27.50	3265	3790	4325	4865					
	360	2930	3495	4070	4655						

. 273 1872 2140

R = 74.3 RWY = 1990m

APPENDIX 4.3.4.B RUNWAY REQUIREMENTS (в 747

3 3 10232

ASSUMPTIONS

 33° C (ISA + 18° C) OAT

Elevation 0 feet

Slope 0 percent

Procedure Landing

Route

FL. /Wind FL310 / + 5 Kt FL310/ + 5 Kt

Distance 530 NM 301 NM

Alternate Medan .

562,000 255,000 LANDING WEIGHT Kg LBS D.O.W Kg 173,000 LBS Fuel left : 16,000 Kg LBS

Max.Payload: 66,000 Kg LBS

MONOGRAPH APPLIED :

2,480 2,160 RWY FIELD LENGIH m Dry

REQUIRED

(Flaps

AC 150/5325-4 CHG 12 Appendix 6

7/27/77

TABLE 52. AIRCRAFT PERFORMANCE, LANDING (BOEING 747 SERIES) JT9D-7A ENGINE, 25° FLAPS

MAXIMUM ALLOWABLE LANDING WEIGHT (1000 KG)

, ,	TEMP	•	AIRPOR	T ELEVA	TION (M	ETERS)	, -	
* 5	°C	· 0	500	1000	1500	1500	2000	2500
								
	10	285.7	285.7	285.7	285.7	285.7	285.7	285.7
	12	285.7	285.7	285.7	285.7	285.7	285.7	285.4
* * *	- 14	285.7	285.7	285.7	285.7	285.7	285.7	282.3
	, 1 6	285.7	285.7	285.7	285.7	285.7	285.7	279.2
r (= '.	18	285.7	285.7	285.7	285.7	285.7	285.7	276.3
	20	285.7	285.7	285.7	285.7	285.7	285.7	273.3
3.	22	285.7	285.7	285.7	285.7	285.7	285.7	270.3
	24	285.7	285.7	285.7	285.7	285.7	284.4	267.4
*	26	285.7	285.7	285.7	285.7	285.7	281.3	264.4
-	` 28	285.7	285.7	285.7	285.7	285.7	278.1	261.5
	30	285.7	285.7	285.7	285.7	285.7	274.9	258.4
v	32	285.7	285.7	285.7	285.7	285.7	271.6	255.4
	_34	285.7	285.7	285.7	282.5	285.2	268.2	252.3
	. 36	285.7	285.7	285.7	278.7	281.5	264.8	249.1
	38	285.7	285.7	285.7	274.9	277.8	261.3	245.8
	¹ 40	285.7	285.7	285.7	271.1	273.9	257.7	242.4
	42	285.7	285.7	284.5	267.3	269.9	254.0	238.9
Fr. San	44	275.1	282.5	280.4	263.6	265.8	250.2	235.2
		-						

RUNWAY LENGTH (METERS)

W	EIGHT	-	AIRPORT	ELEVAT	ION (ME	TERS)	
, 10	00 KG	. 0	· 500	1000	1500	2000	2500
	<u>.</u>						
7.5.	205	2030	2110	2195	2285	2375	2480
	210	2075	2155	2245	2335	2425	2535
3) . 3	215	212u	2205	2290	2385	2485	2590
Ŧ .	220	2165	2250	2340	2435	2540	2645
	225	2210	2295	2390	2485	2595	2705
•	230	2255	2345	2440	2540	2650	2760
	235	2300	2390	2485	2590	2705	2820
	240	2345	2435	2535	2645	2760	2880
	245	2390	2480	2585	2695	2815	2935
_	250	<u>2435</u>	2530	2635	2750	2870	2995
]	255	2475	2580	2685	2800	2925	3055
	260	2525	2630	2740	2855	2980	3115
	265	2575	2680	2790	2910	3035	31,70
	270	2630	2735	2845	2960	3090	3230
	275	2680	2785	2895	3015	3145	3290
	280	2725	2835	2950	3070	3200	3345
	285	2770	2885	3000	31.25	3255	3405
	290	2810	2930	3050	3175	3315	3460

APPENDIX 4.3.5 AIRCRAFT DATA

Aircraft	Wing Span (m)	Length ^(m)	Height ^(m)	Turn ^(m) Radius	Max T/o ^(t) Weight
(Jet)				,	
B-747-203B	59.64	68.63	19.58		371.9
DC-10-30	50.40	55.35	17.85		251.7
A-300 B4	44.8	53.6	16.5	,-	150
В – 767	47.2	48.5	15.9	1	127
DC-9-80	32.85	45.02	9.04		63.5
DC-9-32	28.45	36.35	8.35		49.0
F-28-4000	25.07	29.60	8.47		32.2
(Prop)	į.			į	
VC - 9			,	- ` - ,	64.4
L - 188	29.91	31.88	10.26		51.4
VC - 8	28.57	25.83	8.15		33.0
F - 27	29.52	23.52	8.38		19.8
DC - 3	28.96	19.66	7.16	,	11.5
DHC - 6	19.8	15.5	5.65	4	5.67
			t.		

APPENDIX 4.3.6 REQUIRED NUMBER OF AIRCRAFT STANDS

YEA	R		AIRCRA	FT CATEGOR	Υ	
		А	В	С	D	TOTAL
	Design Day A/C movement		2	20	6	28
	Peak hour A/C movement		0.4	4.0	1.2	5.6
;	Heavy direction A/C movement		0.24	2.40	0.72	
' 1985	Stay time		70	55	50	
* .	Calculated number of A/C stand		0.28	2.2	0.6	3.08
`,	Required number of A/C stand		1		3	4
	Design Day A/C movement		12	24	4	40
*	Peak hour A/C movement	,	2.2	4.4	0.7	7.3
1990	Heavy direction NC movement		1.32	2.64	0,42	
1,330	Stay time		70	55	50	
.e v	Calculated number of A/C stand		1.54	2.42	0.35	4.31
	Required number of A/C stand		2+1=3		3	6
- 1 "	Design Day A/C movement		22	18	6	46
- 9.1	Peak hour A/C movement		3.9	3.2	1.1	8.2
~ 1995 ·	Heavy direction A/C movement		2.34	1.92	0.66	
- 5 C3	Stay time		70	55	50	
	Calculated number of A/C stand		2.73	1.76	0.55	5.0
	Required number of A/C stand		3+1=4	2	1	7
· .	Design Day A/C movement	. 8	14	18	8	- 48
12.0	Peak hour A/C movement	1.4	2.5	3.2 •	1.4	-8.5
2000	Heavy direction A/C movement	0.84	1.50	1.92	0.84	
2000	Stay time	70	70	55	50	
	Calculated number of A/C stand	0.98	1.75	1.76	0.70	5.19
	Required number of A/C stand	1+1=2	2	2	1	7
	Design Day A/C movement	12	16	26	12	66
	Pk. hr. A/C mov.	2:0	· *2.7	4.4	2.0	11.1
2005	Heavy direction A/C movement	1.2	1.62	2.64	1.2	
	Stay time	70	70	55	50	
	Calculated number of A/C stand	1.4	1.89	2.42	1.0	6.7
	Required number of A/C stand	2+1=3	2	2	1	

c -0

5.

APPENDIX 4.4.1. UNIT FLOOR AREA OF PASSENGER TERMINAL

1) Passenger terminal buildings in Japan

Although JCAB suggests 15 sq.m/peak hour passenger as a standard unit floor area for the passenger terminal building which is the actual average of average airport terminals in Japan, Japanese Airlines' Companies suggest 9 sq.m/peak hour passenger from the economical view point. It is considered that this 9 sq.m/peak hour passenger was derived from the guidelines of IATA. The values of 9 and 15 can be understood as the minimum and the maximum cases respectively under normal conditions.

2) Indonesian condition

The Indonesian terminal must accommodate a large number of visitors as compared with Japanese terminal. In Indonesia, 4 visitors for one passenger are considered for a terminal design while about 0.5 visitors for one passenger is the average greeter ratio of domestic air terminals in Japan.

This difference influences the size of the public lobby. The area of the public lobby is generally 30 percent of the total floor area of the terminal building.

Therefore, it is considered reasonable to assume from the following calculations that the unit floor area for the Indonesian terminal will be 65 percent larger than the Japanese standard.

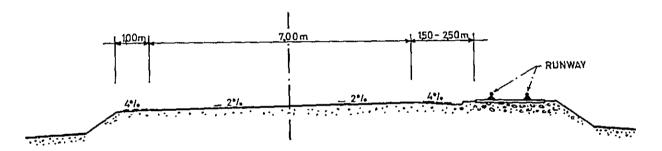
The minimum case:

The maximum case:

 $15 \times 0.7 + 15 \times 0.3 \times 3.3$

= 25 sq.m/peak hour passenger

However, 25 sq.m/peak hour passengers is considered too generous in any case as compared with other terminal buildings in other countries which also indicates the characteristics similar to Indonesia. Hence, in this Interim Report, a unit space requirement for the terminal building is estimated to be between 15 to 20 sq.m/peak hour passengers.


APPENDIX TO CHAPTER 5

APPENDIX 5.1.1. THE CAPACITY OF THE EXISTING HIGHWAY

1. Capacity of the existing coastal highway

The cross section is composed of 2 lanes (3.5m each) for 2 ways with 1m to 2.5m wide shoulder on each side as indicated in the sketch below.

TYPICAL CROSS SECTION OF THE EXISTING HIGHWAY

The capacity of the existing highway is calculated to be 1420 VPH based on Japanese geometric design standards of road as follows:

Capacity = $A \times a \times b \times c \times d \times e$

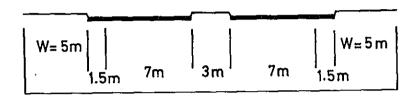
Where: A: 2500 VPH for both ways

a thru e : reduction coefficient of capacity

a : 1.0 for roadway of 3.5 m

b : 0.96 for average lateral clearance of 1.5 m

c : 0.74 for 35 % of trucks


d: 0.8 for road side condition (within town)

Capacity = 1420 VPH

2. Capacity of Padang bypass toll road

The cross section is composed of 2 lanes of 3.5m each with shoulder of 1.5m on each way.

TYPICAL CROSS SECTION OF PADANG BYPASS TOLL ROAD

The capacity is calculated to be 1615 VPH per lane as follows:

Capacity = A x a x b x c x d x e

Where:

A : Basis capacity of 2500 VPH per lane

a : 1.0

b : 0.97 for average lateral

clearance of 1.0m

(1.5 + 0.5) - 2

c : 0.74 for 35% of trucks

d: 0.9 for road side condition (toll road)

Capacity = 1615 VPh / lane

3. Traffic Volume of the existing highway

The result of the traffic survey carried out by DG of Bina Marga in 1979 is as follows:

Padang - Lubuk Buaya

Passengers Cars	<u>Bus</u>	Trucks	<u>Tot</u>	<u>al</u>
1150 VPD	516 VPD	812 VPD	2478	VPD
115 VPD	52 VPD	81 VPD	248	VPD
(Min is sotima	ed of bot	10% of MPD)		

(VPh is setimated to be 10% of VPD)

The future hourly traffic volumes for this road anticipating airport access traffic are estimated by assuming an average annual growth rate to be 10 percent which was forecast for the future traffic volume of Padang toll road by DGBM.

The airport access traffic access volumes were estimated and are shown in Table 4.7.1. The sum of the both hourly traffic volumes is tabulated as follows.

Year	1990	1995	2000	2005
Airport access	450	765	1170	1620
Other traffic	710	1140	1830	2950
	1160	1905	3000	4570
		1335*	2085*	3095*

^{*:} These figures are calculated based on the assumption that half of the other traffic will utilize the bypass road.

4. Traffic volume of Padang toll road

The future traffic volumes of this road were forecast by DCBM and the results are tabulated in the following Table.

Future Traffic Volume of Padang Toll Road

Year	1990	1995	2000	2005
VPD	7284	12599	21266	32576
VPh	728	1260	2130	3258

Note 1 : The proportion of truck and bus is about 35 percent of the total.

2 : The average annual growth rate is about 10 percent.

From the above traffic volume, which is larger than the future traffic volume for the existing highway, it is suggested that this forecast was based on the assumption that most of the inter-regional traffic will utilize the new bypass road instead of the existing highway.

5. Assessment

The traffic volume of the existing highway anticipated in 1995 is 1335 VPH. This volume is less than the capacity of 1420 VPH. Therefore, the existing highway will be sufficient in terms of capacity up to 1955 if Padang bypass road will be completed before 1992. After 1995, the widening of the road will be necessary.

, T . T .

APPENDIX 5.3.1 PAYLOAD REDUCTION OF A-300-B4

This Appendix explains the weight restriction for A-300 aircraft, when it will be introduced to the 2,150m runway after the completion of 300m runway extension now under construction.

LANDING: Although there will be no weight restriction in the non-economical operations of slats 25° and flaps 25°, a weight reduction of 23,000 Lbs (10442 kg) from the payload will be needed in GARUDA's standard operations of slats 16° and flaps 15°. In this case, the weight reduction is 31 percent from the maximum payload. However, 250 passengers could be carried without any cargo payload.

Landing (Slats 16°, Flaps 15° — Standard Operation)

RWY 2,500m: Landing Weight = 295,000 Lbs

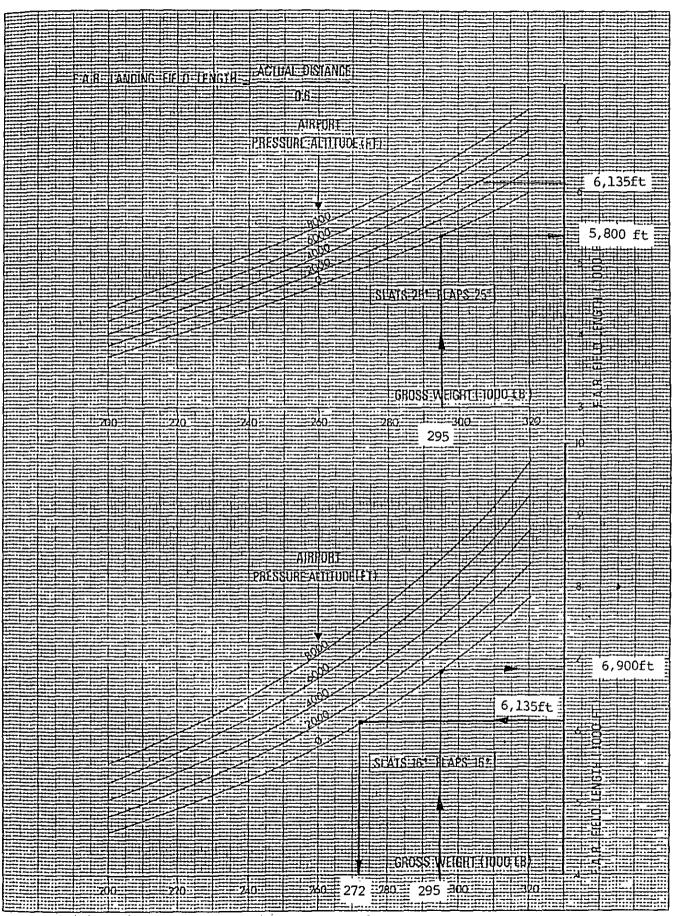
RWY 2,150m : Restricted

(1,870m Dry Landing Weight = 272,000 Lbs

Condition)

Payload Reduction = 23,000Lbs

(10,442 kg)


Payload Reduction; 10,442/34,200 kg = 0,305 (31%)

No. of seats allowed ; 34,200 kg - 10,442 kg = 250 seats (No cargo) 95 kg (52 seats re-

duction)

Landing (Slats 25°, Flaps 25°)

RWY 2,500m : Landing Weight = 295,000 Lbs RWY 2,150m : Landing Weight = more than (1,870m Dry) 295,000 Lbs

A 300 B2 _ 220 A 300 B4 _ 120/220 EAR LANDING FIELD LENGTH ALL AMBIENT TEMPERATURES Take - Off: No weight reduction will be needed for RWY 34 take-off.

This is because the landing weight at Jakarta exceeds the maximum structural landing weight if A-300- B4 takes-off

Padang with the maximum take-off weight. Thus, the maximum take-off weight At Padang is restricted to 315,700

LBS. On the other hand, the take-off weight allowed by the 2,150m RWY is 317,000 LBS. Thus no restriction is necessary. As for RWY 16 take-off, 7,540 LBS (3,423 kg) of payload reduction will be necessary due to the ob-struction (Sarit and Pangilun hills).

Take-off RWY 34 (Slats 16°, Flaps 8°)

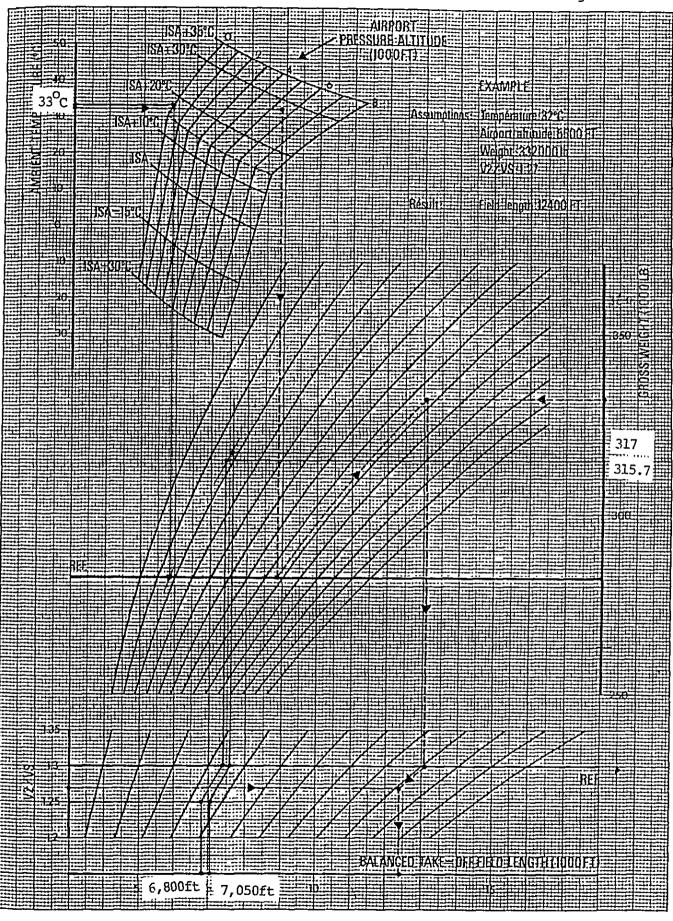
RWY 2,500m : * Take off weight at Padang = 315,700 LBS RWY 2,150m : Take off weight by the runway length = 317,000 LBS

No Restriction

Take-off RWY 16 (Slats 16°, Flaps 8°)

RWY 2,500m : Take off weight at Padang = 315,700 LBS RWY 2,150m : Take off weight by the runway length = 317,000 LBS Obstruction: Restricted Take off weight by hills = 308,160 LBS

Payload Reduction = 7,540 LBS (3,423 Kg)


Payload REduction: 3423kg/ 30500kg = 0.112

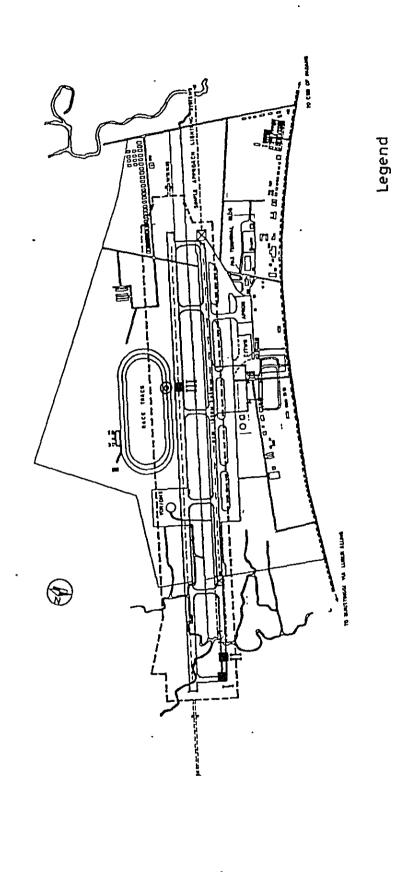
No. of seat allowed: 30,500 kg - 3,423 kg = 285 seats

(No cargo) 95 kg

(17 seats reduction)

^{*} Structural take-off weight (324,000 LBS) at Padang is restricted to 315,700 LBS because the landing weight at Jakarta exceeds the maximum landing weight (295,000 LBS).

A 300 B2 _ 220 A 300 B4 _ 120/220 (P&W JT9D_59A1) BALANCED TAKE-OFF FIELD LENGTH
MAXIMUM RUNWAY LIMITING WEIGHT
SLATS 16° FLAPS 8°


SHEET 1.2.2

FEB. 1978

APPENDIX TO CHAPTER 8

ì

APPENDIX 8.2.1 LOCATION OF SOIL INVESTIGATION AT TABING

Mechanical Boring

Test Pit

DINAS PEKERJAAN UMUM PROP. DAERAH TK. I SUMATERA BARAT LABORATORIUM. PENYELIDIKAN TANAH DAN JALAN SOIL INVESTIGATION SUMMARY

LOCATION	:	Toping
PROVINCE	:	West Sumarka
DATE	:	
TESTED BY		

				S	O1	<u>ட</u>	11	VI	2 <u>5</u>	110	JA.	11(<u> </u>		SU	M	VI/	AR'	Y								TES	STED I	ву			
		A1	terber	g Lim	its	•		IN S					ii.				j	*	ոքեի		E	mp.					у.	E .	ility	uo	١	8
BORING NO.	DEPT 11 (m).	LL	br	PI				ASTM			HAN ———		Unit Weight	Water	Specific Gravity	Void Ratio	Porosity	Degree of saturation %	Shear Stre Ng/cm2	Coheston Kg/m2	Angle of int. Frictio	Unconf. co strength Kg/m2	C!a	S o i		Relative Density %	Coef of Permeability	Compression	Coef of Compressib	Coef of Consolidation	Sensitiviti	DESCRIPTION
) A		%	%	%		10	20	40	80	100	200		٧	w	Gs	E	n	SR	Su	С	Q	Qu	Usc	Нгь	Gı	Dr	К	Cc	Av	Cv		
Test Pit	0.50	N.P	N.P	_			15.7	•		ı.c	0.7			10.3																		
П	1.00 1.50 0.50 1.00 1.50	76.6 68.4 62.6	N.P N.P 41 G 45.7 36.5 N.P	22.7 25.7		49 59. 9 99.8 99.92	99,5 99.88	11.0 33.6 98.6 99.78	98.2 96.8 97.9	2.6 97.9 96.5 96.8	91.9 86 c8		ı	6.8 57.5 67.2 53.2	2. 63 2. 6 7							-	# 3 # 4 7 # 2 7 7 2 7 2 7 2 7 2 7 2 7 2 7 2 7 2									
	0.00 1.00 1.50	N.P N.P	N.P	-		99.9 99.88 99.81	98. 3 7	52.3	18.96	11.5	5.73			36.7 3.8.1 44.4									, and									
Mechanical Boring I/1 I/3 I/6 I/9 I/10 I/12	13.55 ~ 14.00	58.9 65.2 0	NP NP 41.6 46.5	18. F.		98.5 99.5 99.5	98.9 97.1 99.0 99.0	98.4 99.6 98.6	97.6 94.1 97.2 95.3	97.0 93.5 97.0 97.0	72.0 57.6 95.8 93.8	-		66.5 56.2 36.6	2.67 2.68 2.69 2.78	,							できます。									
		يرة من المنظمة عند والمنظمة المنظمة ال					•									•									-							•
	, .			•			·-																									•

AUAR MUHTAR DED! ANKSAN SOIL PROFILE 2 ż 7.4 ur . ş. 92 20 A ROTARY DAILLIMG . ů ű E⊠ő This elife ፖለክዣ. ଓ ጠናነ. AIM FORE ארחדת. טונדץ דיואד BORGHOLE NO TYPE OF MACHINE TEST METHOD 113

APPENDIX 8.2.3 SOIL PROFILE AT TABING

And the second of the second o *

		Ī	<u></u>	<u></u>	٠	<u></u>		<u></u>													_			··	 A	PP	EN	DIX	R Pa	<u>.2.</u>	1	-					
The Media	SAMPLE 110. 17 /2 / 1.00 M		֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓	. 1	HOUNS // 6.102 000	1-		5. 1	Secretary of the second of the				W/9/W	4612	2000	2239	1.1.09	28.76		CONRECTED LOAD	2.5 mm 5 5 mm	•	1250		STANDARD LOAD (2,5 mm; 1370 kg	AVENAGE CBR KZ, S x	STANDARD LOAD (5.0 mm 2030 kg		ſ		AVERAGE OF	LELLE MATER		200	14/3 K04/16.	106.00	22,76]
- ipvit	THRING			+ WET SOIL [4]		12,00	95.01	(a) 75.79	34	AVERAGE M'		020		WEIGHT OF SAMPLE (9)	VOLUME OF SANFLE	WET DENSITY 71'	DRY DENSITY TO	WATER CONTENT W (1)			revelnation	//	# MOLD NO. 675	Mare No.	ğ.	2.5 mm 5.0 mm	//	WOLD NO. 02.25 109.7.0		אטרט אט.		WEIGHT OF TAREHNET SOIL	N	17	ໍວົວົ		NATEP CONTENT
E.ATIO	SAMPLING LOCATION			TARE	Λ.Υ.		[k	Z WEIGHT OF DAY SOI	_ [9312	0000	2033	1.89																				and the formation of the name of the figure of the property of the first terms of the fir	The second secon			04 11 12 13
CALIFORNIA TEARING EA	Alk Poze		"	Manual Constitution	\$	95.	1 202/	8/1/	7.30	4317	20 60	2,0,33	7																								7 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
	PROJECT NOTES		WOLD NO.	SAUPLE CONDITION	NUMBER OF LAYERS	NUMBER OF BLOWS PER LAYER	MAXIMUM PARTICLE SIZE (mm)	WEIGHT OF SAMPLE + MOLD (p)	NEIGHT OF MOLD	WEIGHT OF BAMPLE	:		DRY DENSITY	2007		10 2 3 10 10 10 10 10 10 10 10 10 10 10 10 10	25.25		200					$\overline{}$		N. N.											, 6 . 1 2

		NDIX 8.2.4. Page 2
4	09:1/, 6/ 4.	SOAKED WOLD SHELLED TIME NO. LE Imm! 3 - IN! 95 HOURS 27 9/2 0/5 35/2 35/2 35/2 36/2 50 mm 2.5 mm 5.0 mm 2.5 mm 5.0 mm 2.5 mm 5.0 mm 2.5 mm 5.0 mm 2.5 mm 5.0 mm 2.5 mm 5.0 mm 2.5 mm 5.0 mm 3.5 mm 2.5
L. o	gwad	FEUETRATION CER IN TAKE NOTE TO THE TOTALE
SAUFLING LOCATION		VEIGHT OF TARE + WET WEIGHT OF TARE + WET WEIGHT OF TARE + ON YEIGHT OF TARE + ON YEIGHT OF TARE (a) WEIGHT OF DAY SOIL WATER CONTENT (x)
CAUFORNIZ LEKFING KATIO	والمرفونيس بالمرفوة ويوامه أندام فيطون أندام المرفونية والمرفونية والمرفونية والمرفونية والمرفونية والمرفونية	18 (37 2)
CA HIGUECT HICK ACRES		SAMILE COLIDINON WINDER OF LLYKERS WEIGHT OF SAMILE FOR LLYKER WEIGHT OF SAMILE FOR LOW IN THE SAMILE FOR LLYKER WEIGHT OF MOLD WEIGHT OF SAMILE FOR LOW IN THE SAMILE FOR LAYER WEIGHT OF MOLD WEIGHT OF SAMILE FOR LOW IN THE SAMILE FOR LAYER WEIGHT OF MOLD WEIGHT OF SAMILE FOR LOW IN THE SAMILE FOR LAYER WEIGHT OF SAMILE FO

	 i	Page 3
TESTED BY KLEWIKLDS	SAMPLE NO. [11 - 2 / 000 - 100	SOAKED WOLD SWELLED TIME NO. L. Immi d. (x) 95 HOURS 77 0.076 0.06 1. 92 1. 92 1. 92 1. 93 1
UAIE	TOBIN TOBIN	SOIL (9) SOIL (9) SOIL (9) SOIL (9) AVERAGE W - 24.3.X AVERAG
	SAMPLING LOCATION	MOLD NO. TANE NO. TANE NO. TANE NO. WEIGHT OF TARE + WATER CONTENT WATER CONTENT TANE 1 TANE NO.
CALIFORNIA BEARING RATIO		25 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
S	PROJECT Like front	SAMPLE CONDITION WINDER OF LAYERS WUNNER OF ELONG PER LAYER WEIGHT OF SAMPLE + MOLD 13 WEIGHT OF SAMPLE + MOLD 14 WEIGHT OF SAMPLE + MOLD 14 WEIGHT OF SAMPLE + MOLD 14 WEIGHT OF SAMPLE + MOLD 15 WEIGHT OF SAMPLE + MOLD 16 WEIGHT OF SAMPLE + MOLD 19 WEIGHT OF SAMPLE + MOLD

8.3.1 LOCATION OF SOIL INVESTIGATION AT KETAPING APPENDIX

Mechanical Boring

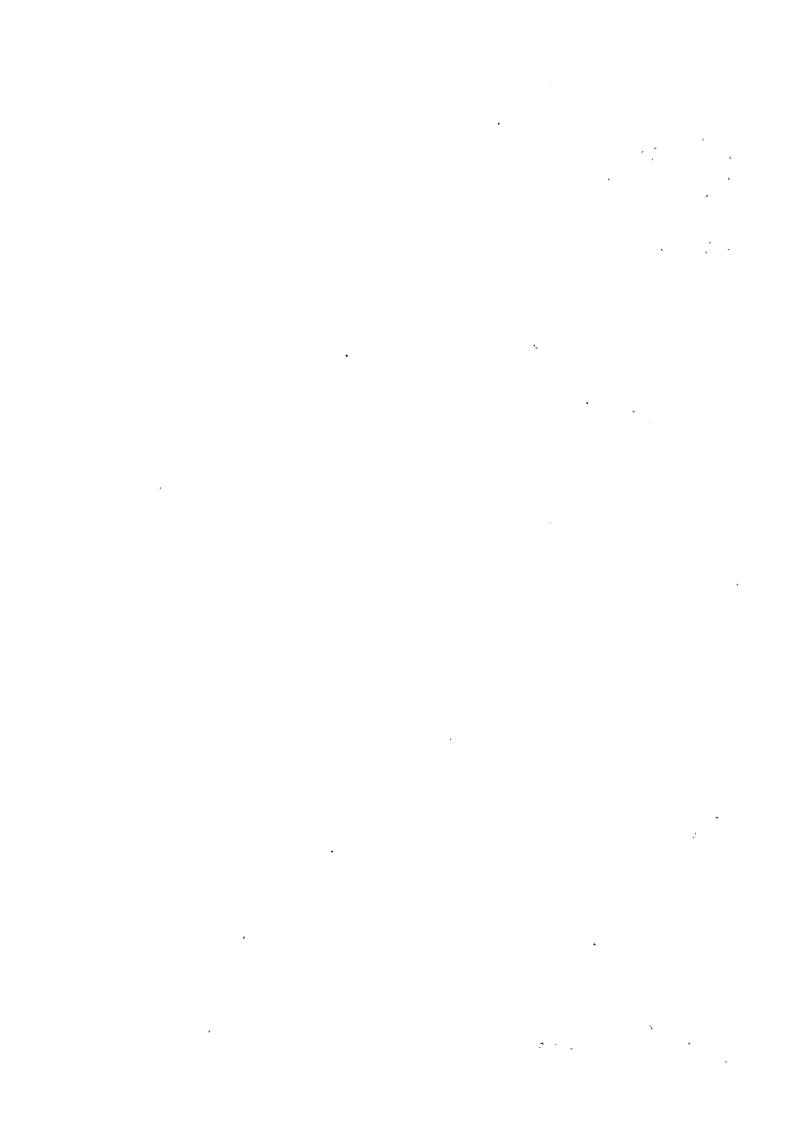
Test Pit

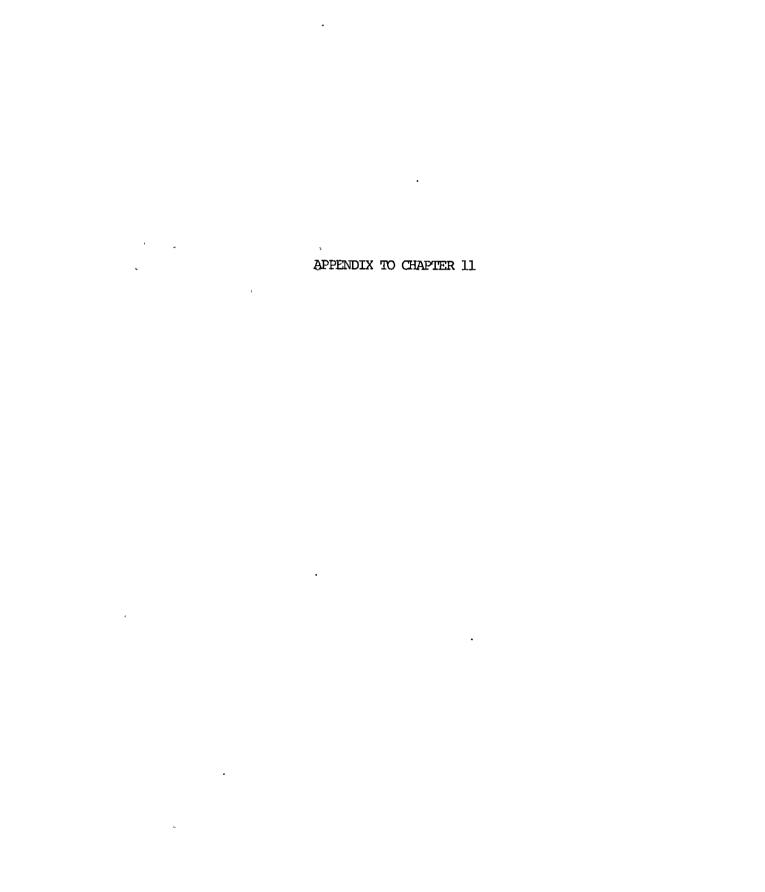
Legend

DINAS PEKERJAAN UMUM PROP. DAERAH TK. I SUMATERA BARAT LABORATORIUM PENYELIDIKAN TANAH DAN JALAN SOIL INVESTIGATION SUMMARY

PROVINCE : Jomesh Sumatra

DATE :
TESTED BY


=	<u> </u>			 -	O1					1 2 \	<u> </u>	===		<u> </u>	[41]	VE E	Z 2 8	<u>.</u>						TES	STED	BY	:		
BORING NO.	DEPTH (m).		pL	g Lim	its		PEI		T FIN	ANALY VER TH		Unit Weight	Water	Specific Gravity	Vond 17-10	Porosity	Degree of	Shear Strength Kg/cm2	Coheston Kg/m2	Angle of int. Priction	Unconf. comp. strength Kg/m2	S o i 1 Classification	Relative Density %	Coef of Permeability Cm/Su	Compression index	Coef of Compressibility	Coef of Convoli ation	Sensitiviti	DESCRIPTION
		%	%	%	<u> </u>	10	20	40	80	100	200	l v	w	Gs	c	n	SR	Su	С	Q	Qш	Usc Hrb C	Gt Dr	Ì	Cc	Ī .	!		i iii
I I	0.50 1.50 1.50 0.50 1.00 1.50	N.1	NP NP NP			99.0 98.96 <i>99.8</i> 99.8 99.8 <i>7</i>	87.7 97.9 90.8 90.8 92.8	87.2 69.7 41.76 42.3 47.7 30.10	51.8 16.8 3.99 5.3 3.82 2.42	248 4 2.3 1.87	48.7 3.3 0.87 2.3 1.0	ers ser mein. Er men s sersk in myspejfrågelik kommissioner mer despeljet for er elemente.	6.7 8.9 36.1 30.1 17.4 9.2	2.76 2.57 2.73 2.80															
	1.50 0.50~ 2.00 2.45~ 3.50 6.00~ 6.45 12.06~ 12.45 17.30~ 18.00 21.00~21.70	N.P 49.4 57.0 65.0 54.2		11.8 28 8			79.6 93.7 38.6 99.8 99.8 99.84	53.8 42.4 66.4 32.0 99.7 99.74	5.1 8.3 25.8 99.5 99.44 99.56	4.C 6.8 23.8 29.4 29.42 29.48	7. C 7. C 7. C 7. C 7. C 7. C 7. C 7. C		21.9 542 42.7 53.4 60.8	2.81	!							FL of the Pach							
				ļ			.								,				. - -	· 	1 [1	; ;	} 		:	!	j		


,

i —	i			APPENDIX 8.3.4. Page 1
TESTED BY EMOON.	SAMPLE NO. 2/2 /1 no m	SOAKED MOLD SWELLED TIME NO. Le Imm] J. (%) 95 HOURS JB O,09	\$6 11656 4406 2000 4139 4139 1260 2000	STANDARD LOAD (2, 2, 2) AVERAGE CBR (2, 2, 2) STANDARD LOAD (3, 0, 2, 2, 3) AVERAGE CBR
	70 Bak SAK	102.1 102.1 103.1 26.10 1148 1048 1048 1048 1048	AMPLE (9) AMPLE (9) AMPLE (9) 71 (9/6m ³) FNT W (8/6m ³) 25 mm 25 mm	CBA IN) D NO. WEIGHT OF TAME WET SOIL WEIGHT OF TAME. WEIGHT OF WANER WATER COUTENT
	SAMIPLING LOCATION	MOLD NO. TANE NO. WEIGHT OF TARE + WET SOIL (9) WEIGHT OF TARE (4) Z WEIGHT OF WATER (9) Z WEIGHT OF WATER (9) Z WEIGHT OF SOIL (9) MATER CONTENT (4)	LOADING PATER SWELL	FINAL WATER CONTENT 2 2 2 3
CALIFORNIA BEARING RATIO		008100 008100 008100	20 to 2	
	PROJECT ALLCHONE	* [S] 3	NSITY 74	DAI DAIDAOU LA CALLA CAL

OBY Merindes	- 2 , lov - vav	Page 2 No. 10 (mm) 1 (mm) 6 (20 2 (20 2) (2	STANDARD LOAD (25 mm) 1370 kg AVERAGE CBR
TESTED BY	SAMPLE NO. Z	SOAVED TINE 995 HOURS (4 DAYS)	
	Trongie	L (a)	2.5 mm 2.
DATE	ふ	D S S S S S S S S S S S S S S S S S S S	TO SON LEAN TO SOLUTION TO SOL
	SAMPI, ING LOCATION	MOLD NO TARE NO WEIGHT OF TARE WEIGHT OF TARE WEIGHT OF WATER WATER CONTENT	
RATIO		OISTURBEO OISTURBEO OISTURBEO OISTURBEO OISTURBEO	Δ1 δ 8 , 8 , 9 OON (mm)
CALIFORNIA BEARING		13 Elizari 13 Elizari 15 Elizari	S G T L
S	MROOME	SYE (LAYER 015 TURS 15	TO THE PROPERTY OF THE PROPERT
	риолест	SALAPLE CONDITION NUMBER OF LAYERS HUMBER OF LAYERS MAXIMUM PARTICLE SIZE (Inm) WEIGHT OF SAMPLE + MOLD (9) WEIGHT OF SAMPLE (9) VOLUME OF WOLD (cm ³) WET DERSITY 71 (a/cm ³) ORV DERSITY 74 (a/cm ³)	San Consultation of the Co

たべかのの	000 -100	Fade 3 Swelled Swelled Somm
iested BY	NO. 111 - 2/	ME MOLD L. ME NO. D. ME NO. D. MAYS) Z.C. G. AAYS) AA
	SAMPLE	156 (197) (1
UAIE	Jan 80 &	0 NO. 14 NO. 15
	St. PLING LOCATION	WATER SWELL CONTENT TO TO TAKE WEIGHT OF TAKE WATER SWELL TO TO TAKE WATER SWELL TO TO TAKE WATER SWELL TO TO TAKE TO TO TO TAKE WATER SWELL TO TO TO TAKE TO TO TO TAKE TO T
CALIFORNIA BEARING RATIO	POR F	MOLONO SALAL E CONDITION SILVERED
	4129	7 (2/27/2) NES TE N LAVE (CLE SIZE (mm) (PLE + MOLD (s) 2 ((2/cm ³) 2 ((2/cm ³) 2 ((2/cm ³) 3 ((2/cm ³) 4 ((2/cm ³) 5 ((2/cm ³) 6 ((2/cm ³) 7 ((2
	иколест	MOLONO SAMPLE CONDITION HUMBER OF LAYERS HIMBER OF BLOWS FERL WEIGHT OF SAMPLE - MOU WEIGHT OF SAMPLE - MOU WEIGHT OF SAMPLE VOLUNC OF MOLO WET DENSITY AND DENS

APPENDIX 11 ECONOMIC ANALYSIS OF PROJECT

1. Basic Concept

A project is series of economic activities consisting of investment and other input costs which will produce a variety of outputs (benefit), some are tangible such as goods and services, and some are not tangible such as convenience etc., all of them beneficial to the society. It may also often produce output which may not be beneficial to the society. There are termed disbenefits and consist of such outcome as pollution and destruction of natural landscapes.

The objective of economic analysis is to assess economic contribution of such project to the national economy. To do so, the economic analysis should:

- identify and measure economic cost and benefits arising from the project; and
- 2) compare them to assess the economic profitability of the project.

Shadow Prices: Economic cost and benefit should be valued at economic prices, which may be different from financial or actually prevailing market prices. If there is a high rate of unemployment in the economy, wages to value the unskilled labor cost should be adjusted from the actual market wages to such a price as reflects this fact. Normally the economic wages should be lower than the market wage. Hence a project which hires more unskilled labor will have lower labor cost than other projects and consequently is considered contributing more to the economy as it creates more jobs. Similarly when a country has foreign exhange difficulty, then the exchange rate should be adjusted so that it reflect the scarecity of foreign exchange. In such a case, a project which utilizes more domestic resources, or produces more exportable goods is judged to be contributing more to the economy than the one which utilized more imported goods. These economic prices, different

from the market prices when a free market competition is hampered for some reasons are called shadow prices.

With and without the project: Economic analysis of a project is to measure net contribution of the project to the economy. To do so, it is necessary to compare the situations with the project and without the project. Investment is normally net input to the economy. On the other hand, a part of economic benefit which accrues to the project may be realized without the project. An irrigation project may increase rice production, which is a major part of economic benefits to the irrigation project. But rice could be produced without the irrigation. Hence it is necessary to measure the incremental rice production due to the investment, then to attribute it to the project as its benefits. To do this, both cost and benefits should be measured "with" and "without" the project, then their differences are the incremental cost and benefit attributable to the project.

2. Theoretical Framework

This section sets up the theoretical framework of economic analysis for an airport project. Macroeconomic framework of economic analysis is described. Then the economic activites surrounding an airport and their relation to the macroeconomic variables are defined. Finally, an multisectoral model for an airport project will be discussed.

2.1. Macroeconomic Model

The macroeconomic framework for economic analysis of project is first set up. The next is the well-known material balance equation.

$$(2.1)$$
 $X = Q + C + G + I + J + E - M,$

where X = total gross production,

Q = intermediate input,

C = private consumption expenditures,

G = public consumption expenditures,

I = fixed capital formation,

J = changes in stocks,

E = exports, and

M = imports.

All of these variables can be interpreted as scalar variables which represent aggregates of each activity or vector variables whose dimension represents of the number of sectors. This equation can be interpreted as representing the ex-post equilibrium of two equations, namely,

y the state of the

- (2.2) Supply of goods = X + M, and
- (2.3) Demand for goods = Q + C + G + I + J + E. It is also noted that
- (2.4) GDP = X ~ Q

Economic analysis of a project analyzes changes in variables in equation (2.1) "with" and "without" the project. As defined earlier, a project produces a series of benefits to the society, by utilizing economic resources consisting of capital, labor, and materials inputs.

Pure theoretical approach to the project analysis first defines the welfare function of the society and analyse the cost of resource utilization and compare them with the realized welfare increase.

First define the production function as:

$$(2.5)$$
 $X = F(K, L, Q)$

where K = capital stock,

L = labor, and

Q = intermediate inputs.

Assume that this function F satisfies normal regularity conditions on the production function. Next define the social welfare function.

(2.6)
$$W = W (Y_1, ..., Y_m),$$

20

where W = the social welfare, and

 Y_1 , ..., Y_m = all relevant economic variables

With these equations defined, project analysis is more formally defined.

<u>Definition 1</u>: A project is an economic activity which utilizes investment (i), labor input (1), and raw materials (q) to produce goods and services. i,l, and g are called inputs to the project and are increments to K, L, and Q in (2.5).

Through the relation (2.5), a project will change Y_1 , . . . , Y_m , hence W. The project analysis may be now redefined.

<u>Definition 2</u>: Net increment of an economic variable due to a project whose input are i, 1, and q is defined as difference between the value of the variable with i, 1, and q and that with i, 1, q = 0. A project analysis compares the economic value of 1, 1, q with $\Delta \cdot W$.

Theoretically and ideally, benefits ought to be measured as in - creases in the social welfare. However, the social welfare function may not be uniquely defined. If the objectives of a country are clearly defined and an agreement among members of the society concerning the objectives and means to accomplish them is reached, the social welfare may be defined uniquely as an ideal means of measuring benefits of a project. It would measure a contribution of the project to enhance the welfare, hence the extent to which project help achieve the national objectives. However, the social welfare may not be easy to define uniquely. Agreements among the members of the society may not be easily reached. There are infinately many ways to transform a vector (Y, ..., Y,) to W.

As an alternative to using social welfare staightforwardly Gross Domestic Product (GDP) or consumption based on a system of national accounts may be used as a proxy of the social welfare. GDP measures goods and services produced in the country, which are used for consumption, invesment (disregarding trades for the moment).

The larger the GDP is, the greater the availibility of goods and ser - vices to the population becomes. However, this may not measure the actual comfort or standard of living enjoyed by the people, as a substantial part of GDP may be used for investment. Although investment in - creases the future availibility of goods and services to the economy, it may reduce the level of comforts currently enjoyed by the people. Even though a country produces lots of goods and services, the prople may not enjoy the higher level of life if they can consume only the small part of those goods and services. An extreme case is the exploitation by foreign countries in the colonial days.

Consumption on the other hand measures the total of goods and services consumed by the people. The more the people can consume goods (not "bads"), the better off their lives become. A higher level of consumption in general brings a more comfortable, healthier and happier life, hence a higher level of the social welfare.

In the following economic benefit to the airport project is primarily measured as increases in private consumption, and then measured as reduction in input costs of other sectors than the one for the project. (in the present case, an airport)

2.2. Economic Relations surrounding an Airport

In order to make a systematic economic analysis on an airport project, it is necessary to clarify the economic relations surrounding the airport. Figure 2.1 summarize these relations.

Major participants to the economic activities surrounding the airport are: the airport authority; consumers, i.e., passengers and cargo dispatchers; airlines; other industries which provide services to the airport; and the surrounding communities.

The airport is an entity which provides consumers and airlines with airport services. Both consumers and airlines buy airport services from the airport which facilitates transactions between consumer and airline.

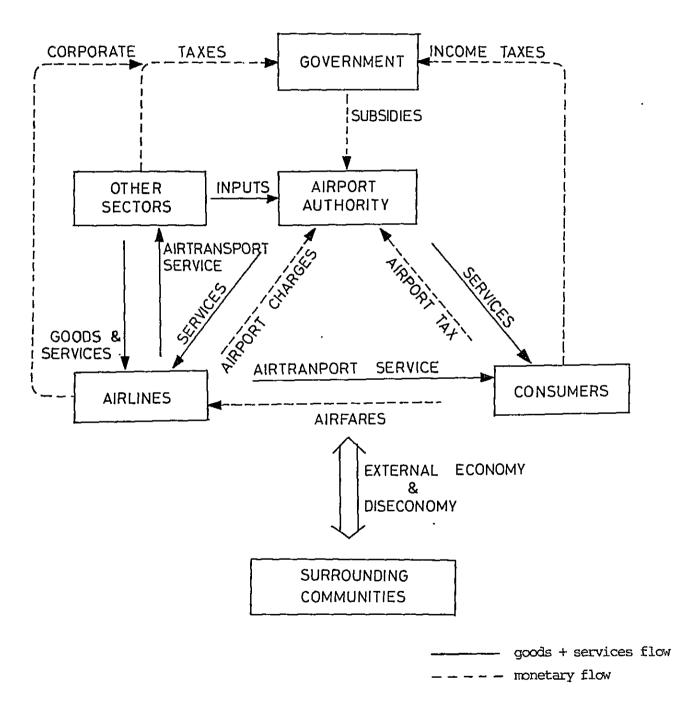


Figure 1: ECONOMIC RELATIONS SURROUNDING AN AIRPORT

An airport is thus a market place for these transactions: for consumer to buy air transport services from airlines; and for airlines to provide air transport services to consumers.

Consumers buy air transport services from airlines as either final consumers (personal trip passengers), or intermediate consumers (business travellers and cargo shippers).

Airlines provide air transport services to consumers. To do so, airlines may have to buy goods and services from other sectors (such as fuel, communication services, etc), and airport services from the airport.

Other sectors of economy provide various goods and services both to the airport and to airlines. They supply utilities, goods and services to the airport; and fuels, foods, and other services to airlines.

The surrounding communities get in touch with the airport in various ways. They derive both benefits and disbenefits. These are called externalities, since there is no direct compensations from the project for the benefits or disbenefits. They may enjoy the convenience close to the airport. Business may flourish as many travellers go through the area. Extra employment may be generated as the airport and airlines buy goods and services from the area. They may also enjoy the convenience of highways which are built primarily to serve the airport (external economies). On the other hand, people in the communities may suffer from noise and air pollutions from the airport (external diseconomies).

2.3. <u>Multi-sectoral Analysis</u>

In order to analyze the project systematically and theoretically, a multi-sectoral model is defined which combines the analysis in the privious two sections. It is systematic, because it can avoid the double counting, and because it can measure all the impacts of a project on the whole economy.

<u>Sectoral definitions</u>: The economy is divided into four economic sectors.

- i) Airlines are those which serve the project airport.
- ii) The airport sector represents economic activities related to the project airport. Other airports should be included in the other government sector.
- iii) Other government consists of all government activities except the project airport.
- iv) Other sectors are all other economic sectors not included above. They are normally agriculture, mining and manufacturing, construction, electricity, gas and water, trans portation and communication excluding those airlines in (ii), trade, banking and financing, ownership of dwellings, and other services.

This sector specification is designed to analyse the present airport project at Padang. There may be other ways: of specifying sectors. The analyst may want to see the impacts of an airport project on other transportation sector. He may even have a specific transportation route. In such a case, these sectors may be singled out in the above sector specification.

On the basis of this sector specification, an input - output model will be next formulated.

Table 2.1. represents the relationship of various economic activities surrounding an airport project and other variable. This is a modified version of an input-output table. It singles out the particular airport currently studied as one sector, and airlines services to the airport as another. It clarifies inputs used to produce airport and air transport services, and how their products (i.e. services) are consumed by other sectors, including the final consumption.

Each component in the table represents inflow of goods and service from the row sectors to the coloumn sectors. Airlines buy airport service from the airport and fuels and other goods and services from other sectors. The airport buys materials and utilities from other sectors.

Table 2.1. INPUT OUTPUT TABLE AND AIRPORT PROJECT

Investment by deschartion	- aircraft - air hangar	- nuney - buildings - air nav. equip.	- construction - equipments	- anstruction - equipments						M	
Gross Output	 	x 2	, ×	*						Gross Errestic Product	
Imports (c.1.f)											
Imports (m.p.)	Foreign carrier used by domestic residents	From foresign aurports	G	Nels, mt is services insufit by national carr from for, auro.						*	
Exports	National currier used by foreign residents	To foreign Carr.	0	Puels, mat, a mervices sold to foreign carries						ы	
Chinges in stock				unventorses		Imported goods				7	
Investment by sources				- canstruction - equipments	o	irported capital				ដ	•
Public Onsurp.			G.		0					v	
Private Consum.	Alf transport - passengers (provate)	(Auport ser- vices)		-food -clothings -bousing utilit. -oth. transport -oth services	0	Imparted consis- ner goods				,s C	
Other Sectors	Air services - passangers (business)			intermediate goodsteervices "	# #	imported tax materials	- evilte tak - subsidies	Salaries à ung.	Petum to capital	* 4	*
Other Government	Postal service			materials utslitues	m H			Salaries 4 wg.	Q	۲3	×
Airport				maters als utilities	F		- subsidies	Personnel cost	o	Y 2	×
Arlines		Aurout services (landing fee, air nav, aid chir- ge, parking fee)		Nels Yood catering Materials Advertising	7	fuels & food catering, oth, mat, & perv, imported	- alsport tax	salaries administrative flight crows others		۲.۱	i x
	Airlines	Airpart	Other Govern- ment	Other Sectors	Total Inter- mediate inputs	(of which imported)	Indurect taxes - subsidies	Nages & Salaries	operating surplus	Value actied	Gross Output

Same for the other government sector.

Note that in this table, passenger charges collected at airport are classified as indirect tax charged to the air transport services. Hence in this table, consumers do not buy airport services for final consumption. They buy air transport services in which airport charges are included as a part of cost.

Based on this table, the impact of an airport project to the national economy can be systematically analyzed. Cost of the project is the monetary value of i,l,q as defined earlier. Net economic benefit consists of net increase in private consumption expenditures, and net reduction in intermediate inputs. Increases in foreign exchange earnings is also considered tradionally as benefits. This is a benefit to the economy since it will increase the import capacity of the economy, hence supply of goods which cannot be produced in a country. Consequently it increases goods available for consumption.

Ideally the whole table should be estimated for the "with the project" case and the "without the project case" and their benefits should be compared. Incremental benefits with the project will then be compared against the cost, to complete the cost-benefit analysis. This is theoretically necessary for the complete project analysis. If there is a new airport, it will reduce the transportation cost to business travellers, hence will increase the corporate and consequently income paid to employees. This will then increase private consumption. These secondary, tertiary, and ultimate efferts of the project can be only estimated by completing the whole table.

Unfortunately completing the whole table is costly and cumbersome. In most cases, lack of data makes such estimation impossible. There - fore in the following, only the immediate impacts of the project on the economy will be counted and measured.

To compare the national economic situations "with" and "without" the project by utilizing the table discussed, it must be remembered that the price sturcture also may differ from each other. "Without" the project, supply of the particular commodity (in the present case, air transport service) will be lower than the "with" case, while the potential demand exists. Hence there is excess demand for the "without case",

and a consequent higher price for the commodity. However, it is assumed in the present analysis that the project is very small in the economy, hence its price impact can be ignored.

2.4. Economic Benefits to an Airport Project

The first immediate impact of an airport project will be an increase in the air transportation services to the region it serves. This will be consumed as a final consumption and intermediate consumption as shown in Table 2.1. Transportation consumed by consumers will increase final consumption, which is a part of benefits. Business travellers and cargo shippers can reduce their transportation cost by utilizing air transport. This is a net reduction in intermediate inputs and adds to the total benefit. The second immediate impact will be a reduction of operating cost at the airport. A new airport may reduce waiting and holding time for landing and take-off of airplanes, and loading or unloading time at the airport.

Indirect benefits comprise increases in output of other sectors and increase in foreign exchange. The increase in consumption or increase in business income due to the airport project will raise effective demand, hence, through multiplier effects, increase production and income in the region.

There are other benefits or disbenefits which are not represented in this table. Most of them are related to external conomy or diseconomy. They are called "external", because no compensating monetary transfer will take place to meet these beneficial or non beneficial economic factors which occur to the society. Business flourishes in the area where the new airport is opened. But the people in the area may suffer from air, and noise pollution. Enhancement of regional or national prestige by having a new airport is another factor which may constitute an important part of national objectives but could not be easily quantified.

3. Estimating Cost and Benefit of the Project

Based on the theoretical framework described in the previous sections, this section describes the actual ertimation procedure of each component of cost and benefit.

3.1. Economic Cost

Economic cost as described earlier consists of (i) investment cost, (ii) labor cost, and (iii) materials and other services inputs cost. These items can be easily identified with the project construction, and operating and maintenance cost.

The important issue concerning the cost estimation is what prices should be used to evaluate it. As noted earlier, different pricing from the actual market prices may be necessary to evaluate the economic cost of project. Such prices are called <u>shadow prices</u> and reflect the <u>real</u> economic cost to the economy.

Items which are normally shadow priced are unskilled labor, foreign exchange, and interest rate.

Shadow prices are also applied to valuing economic benefits. However most of the benefit items do not contain unskilled labor, foreign exchange, and capital goods.

3.4. Economic Benefit

Economic benefits items are identified and explained in Section 2.4. Their actual estimation procedures are presented in the following.

The <u>overflowing traffic</u> is defined as the difference between the forecast traffic and the traffic "without" the project. For this, it is necessary to estimate and determine the capacity of the existing airport "without" the project. This will be used to compare the benefits "with" the project.

3.4.1. Benefits to the accommodated overflowing traffic

Air transport consumption is divided into passenger and cargo transportation. Passengers transportation is divided into final consumption (personal trips) and intermediate consumption (business trips).

i) Passengers traffic

It is assumed that 75 percent of passengers are personal trip passengers and 25 percent business trip passengers. This proportion is assumed to be the same for the overflowing passengers.

a) Personal Trip Passengers

The overflowing passenger may either give up the trip at all or may use other mode of traffic. For personal trip passengers, the benefits to them are measured by additional consumption made possible by the project. For the overflowing passengers who give up trips, the benefit is equal to the consumption spent of the traffic made possible by the project. For those who take other mode of transportation, it equals to the difference between consumption on the air transport and on other modes of transportation.

It is assumed that 80 percent of the personal trip passengers would give up their trips if there should be no project. The remaining 20 percent would take other modes of the transportation. Airfares and other alternative transportation fares are calculated as follows. They are summarized in Table 3.1.

<u>Average Airfare</u>: Average airfare to and from Padang is calculated as an weighted average of airfares of routes through Padang based on the route structure assumed in Chapter 3.

Average Alternative Transportation Fares: For the overalow passengers, an average alternative transportation cost between Padang and other cities are estimated as an weighted average of alternative transportation fares using the same route structure.

Benefit to an average personal trip passenger is estimated to be Rp 42,900.

Table 3.1. AVERAGE AIRFARE AND ALTERATIVE TRANSPORTATION

Route	<u> Ai</u> 1	transpoi		Alternative transportation				
70000	<u>Weight</u>	<u>Fare</u>	Time (hrs)4/ Fare	Time (hrs)			
								
PDG - JKT	0.690	53,600	3	21,000 <u>l</u> /	72			
PDG - MES	0.165	34,000	2	4,000 <u>2</u> /	18			
PDG - PKU	0.065	15,000	2	1,000 <u>2</u> /	8			
PDG - PLM	0,085	34,000	2	6,000 <u>3</u> /	36			
Weighted Average	0,985	46,000		15,500				

Source : Ministry of Transportation

Combination bus and taxi trip

^{1/} Boat trip Class II deck
2/ Bus trip
3/ Combination bus and taxi
4/ Includes waiting time a Includes waiting time at the airport

b) Business Trip Passengers

For business trip passengers, benefit are measured differently from personnal trip passengers. Transportation for business passengers is essential input to produce other goods, and is not the final consumption. It is assumed here that business passengers will not give up the trip even if air transport is not available. They always have to take other modes of transportation. Hence benefit which would arise to the overflow business passenger if air transportation should become available can be measured by reduction in travel cost resulted from taking other modes to air transportation. Travel cost here should in a clude both transportation fares and time values of the passengers.

The benefits to the overflow business passengers are expressed as follows.

$$B = N_B (F + V . T),$$

Where B = benefits to the overflow business passengers

 $N_{\rm p}$ = number of the overflow business passengers,

F = average net reduction (or increase) in transportation fares between air transport and other modes,

V = average time value of a business passenger (Rp/hour),
and

T = average reduction in travel time (in hours).

Among the variables, those which require estimation are explained as follows; The average fare difference is the difference between the average air fare and other transport fare. Average time difference between air transport and other modes of transportation is similarly calculated. They are listed in Table 3.1.

Time value of a business passenger is equal to the average value added of workers in industry and service sectors per hour. It is estimated by dividing the estimated 1981 GDP excluding agriculture by the estimated 1981 labor force in the same sectors; then by dividing it by 300 work days and 6 hours per work day.

Table 3.2. ESTIATED TIME VALUE OF PASSENGERS

	<u>Total</u>	<u>Industry</u> and Services
Rp billion	59,905	42,119
thousand	-	15,771
thousand	150,424	_
Rp	-	2,670,660
Rp	389,240	_
Rp	-	1,483
Rp	₁₈₂ <u>2</u> /	-
	thousand thousand Rp Rp	thousand — thousand 150,424 Rp — Rp 389,240 Rp —

¹ Per capita value added - (300 days x 6 hours)

² / Per capita GDP - (365 days x 6 hours)

Average benefit to a business passenger is estimated to be Rp 48,680.

ii) Cargo Traffic

Air cargo traffic serves to meet the specific purpose: speed. Many air cargoes may not be moved at all if there is no air transportation. They are high valued fresh foods or fresh flowers. They can not be transported on other modes of transportation.

Because they are mostly consumed, and hence consumption will be increased by at least the cost of transportation if air transport becomes available, their benefits may be measured in a similar way to the over-flow personnal trip passenger, namely air cargo fare as a measurement of the benefit.

There are other commodities which are carried by air transport, but could not be carried by other means of transportation in the absence of air transport. They are for example high value machinery and equipment. They are carried by air transport if it is available because it is cheaper.

It is difficult to estimate the cost of transportation of these goods when air transport is not available: a delay in delivering such goods may increase operation costs of a factory; land transportation of sensitive machinery may damage it beyond repair. These costs however cannot be assessed in a general way.

In the present study, it is assumed that all cargoes are high value perishables or high technology consumer goods.

3.4.3. Benefits to Airlines

As a new airport opens, the procedual improvement at the airport may reduce operating cost of airline.

- i) Fuel cost saved may arise become of the impovement in air approach procedure.
- ii) Waiting time at the airport may be reduced, resulting in better usage of aircraft, and cost savings in personnel time.

Table 3.3 AIR CARGO FARE

Route	Cargo Fare				
PDG – JKT	Rp 295 / kg				
PDG - MES	Rp 150 / kg				
PDG - PKU	Rp 135 / kg				
PDG - PIM	Rp 150 / kg				

iii) Load-factor may be improved which will increase the output capital ratio.

3.4.4. Other Benefits to Passengers

Other benefits to passengers may include time saved at the airport. Since the new airport will reduce the crowded conditions at the airport, hence waiting time. This could be considered additional benefits by both personal and business trip passengers. They are evaluated as the time saved value for each passenger who could take air transport in the "without" case. This benefit will not arise to the overflowing passengers as they do not use air transport in the "without" case.

If there is difference in access time between the two cases, they have also to be evaluated for passengers of the "without" case. It may result in either benefits (reduction in access time and cost) or dis - benefits (increases in them).

3.4.5. Benefits to the Regional and National Economy

i) Tangible benefits

Foreign exchange revenues may increase as a result of increase in tourism, including airport taxes. Additional foreign exchange may be earned from foreign airlines as increased airport charges.

ii) Intangible benefits

A new airport may increase the air safety. It may also enhance regional and national prestige.

iii) <u>Intangible disbenefits</u>

Air or noise pollution may be increased or descreased by a new project.

APPENDIX TO CHAPTER 16

Page 1

APPENDIX 16.3.1 FUNCTION OF DGAC ORGANIZATION

This Appendix explains the major function of each section contained in the airport organization.

Section	Function
General Affairs Section	- General Administration of the airport organi- zation
Personnel Section	- Personnel planning, administration and welfares
Accounting Section	- Accounting and property custody
Security Section	- Security control and guard
Business Section	- Operation of terminal buildings
Fire Fighting Section	- Fire fighting and rescue
Dispensary	- Medical care for passengers and employees
Civil and Archi- tectural Section	- Maintenance of airport civil and architec- tural facilities
Electrical Section	 Operation and maintenance of electric power supply system Maintenance of aeronautical ground lights
Mechanical' Section	- Operation and maintenance of mechanical facilities and vehicles

Terminal Mainte- nance Section	- Maintenance of terminal buildings
Flight Operation Section	- Approving flight plans, providing aeronautical information and telecommunication services
Air Traffic Control Section	- Air traffic control
Navaid Section	- Operation and maintenance of radio navigational aids
Communications Section	- Operation and maintenance of aeronautical tele- communications facilities

•


•

A 23.1

•

·

