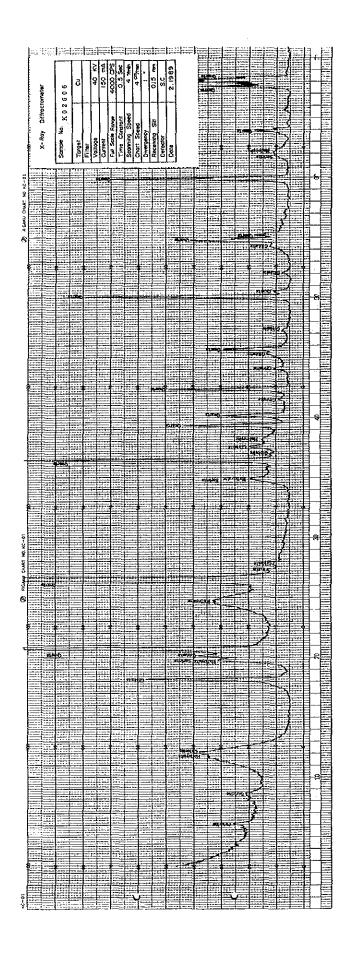
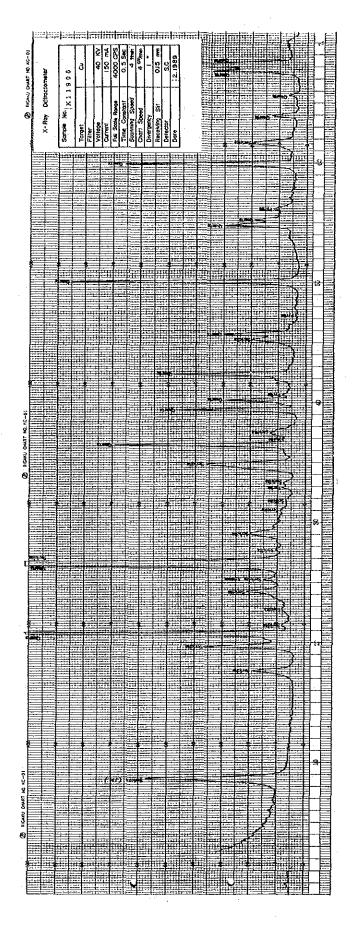
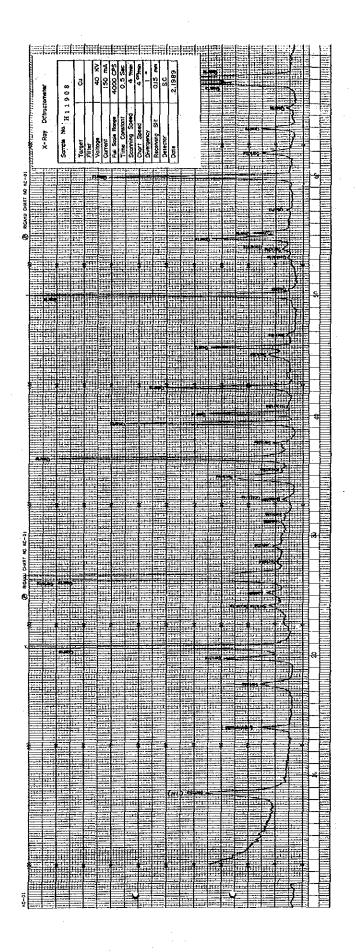
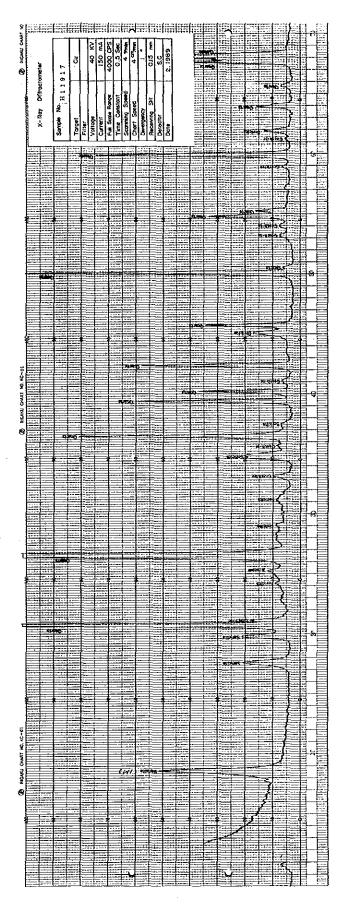
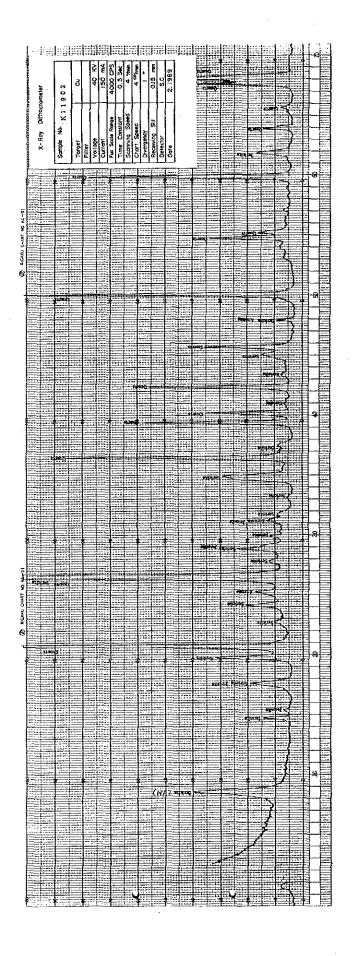

serial	sample			Au	Ag	Pb	Zn	Cu	Мо
No.	No.	rock type	location	g/t	g/t	ppm	ppm	ppm	ppm
. 1	H 10307	skarn, py-ccp imp	San Felipe	0. 50	2	Nil	330	1640	Nil
2	K 10602	sil monz w/ grn-Cu	San Felipe	0.60	Nil	Nil	320	3070	Nil
3	N 10002 N 12508	qtz v 10cm	Chontali	10.30	20		290	120	Nil
4	H 12511	qtz v 10cm	Chontali	0.40	3	Nil	140	Nil	Nil
. 5	H 12512	qtz v 1.5m	Chontali	0.45	6	100	340	10	Nil
6	H 12513	drusy, qtz v 2m	Chontali	0. 20	2		140	90	Nil
7	H 12516	qtz v 10cm	Chontali	0.10	i	1200	420	50	10
8	H 12517	sil zone w/ qtz net	Chontali	0.85	29	1000	460	200	Nil
9	H 12518	qtz v 30cm	Chontali	0.30	2	100	150	60	Nil
10	H 12801	qtz v 10cm	Chontali	0.80	3	100	120	40	10
11	H 12802	qtz v 4m	Chontali	2.35	22	200	180	30	Nil
12	H 12803	qtz v 1.5m	Chontali	Nil	2	900	120	30	10
13	H 12805	sil zone 2m	Chontali	0.05	1	300	120	40	10
14	H 12806	qtz v 3-5cm	Chontali	6.35	20	200	110	90	Nil
15	H 12807	qtz v 1-3cm	Chontali	0.15	Nil	200	140	50	Nil
16	H 12813	qtz v 1 scm	Chontali	0.50	2	700	150	100	Nil
17	H 12815	qtz v 10cm	Chontali	0.20	í	300	140	50	Nil
18	H 12816	qtz v 1m+	Chontali	0. 25	8	400	130	30	Nil
19	K 12808	sil v.w/py	Chontali	NII	3	100	280	120	Nil
20	H 12304	and, w/ py	Chontali	0. 25	21	Nil	250	40	10
21	V 12419	and, by imp	Chontali	0. 15	4	Nil	170	80	Nil
22	J 20302	sil dio, py imp	Palma	NÎI	5	Nil	290	30	Nil
23	M 20703	epi sk, py imp,	Palma	Ťr	2	Nil	290	170	10
24	V 20804	sil dio, py imp	Palma	0.75	3	700	290	120	10
25	H 11701	arg-chl, Pb-Zn-py imp	Jehuamarca	0.60	14	8100	13500	800	Nil
26	M 11801	sil rock	Jehuamarca	1.00	975	300	320	90	Nil
20	m 11001	SII TOCK	Jenuamarca	1.00	310	. 000	020	00	
" avera	age ore grad	łe "			1				
2.010		-u _.	number of	Λu	Ag	Pb	Zn	Cu	Mo
	316	ea	sample	g/t	g/t	ppm	ppm	ppm	ppm
•				G; -	Qr ·				
	San Feli	ipe (others)	2	0.55	1	0	325	2355	0
	Chontali		17	1.37	7	359	202	6.5	2
	Chontal		2	0.20	13	0	210	60	. 5
	Palma	(others)	3	0.25	3	233	290	107	7
	Jehuamaı		2	0.80	495	4200	6910	445	0

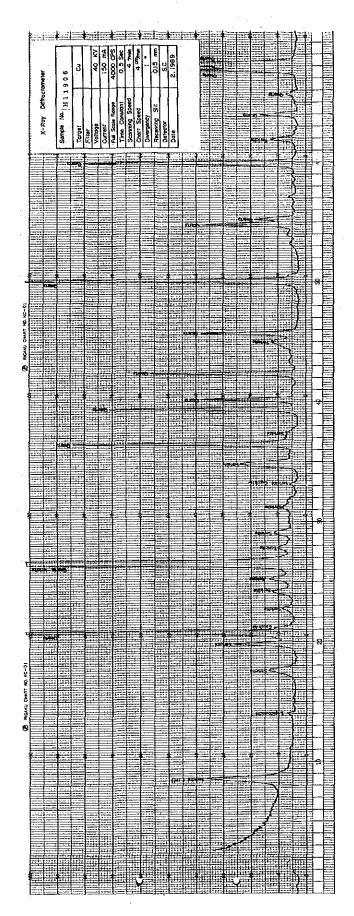

x.9 X-ray Diffraction Chart

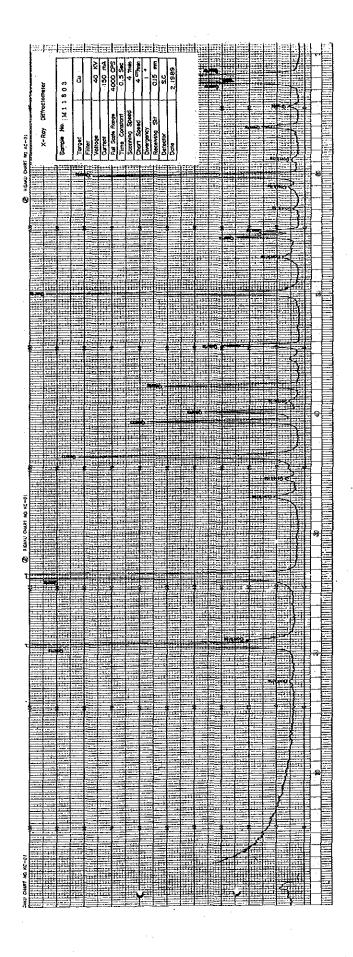


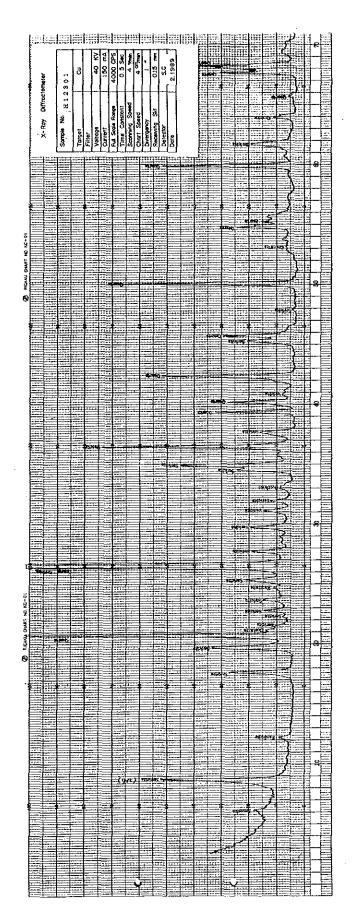


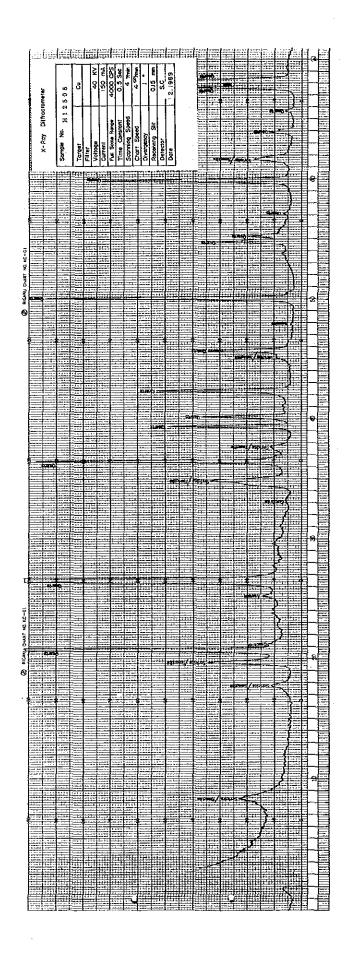


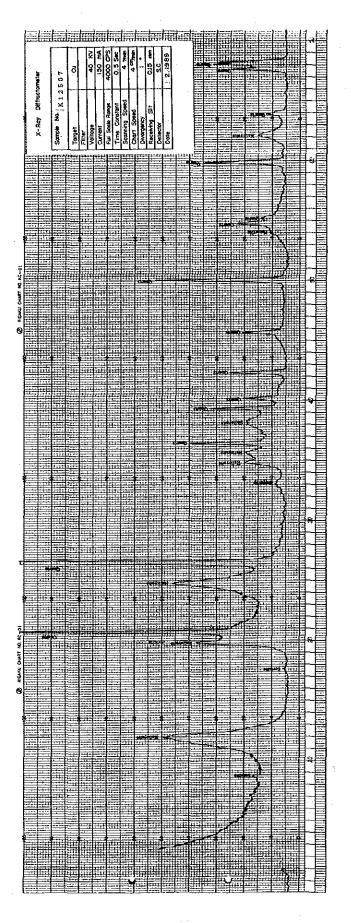


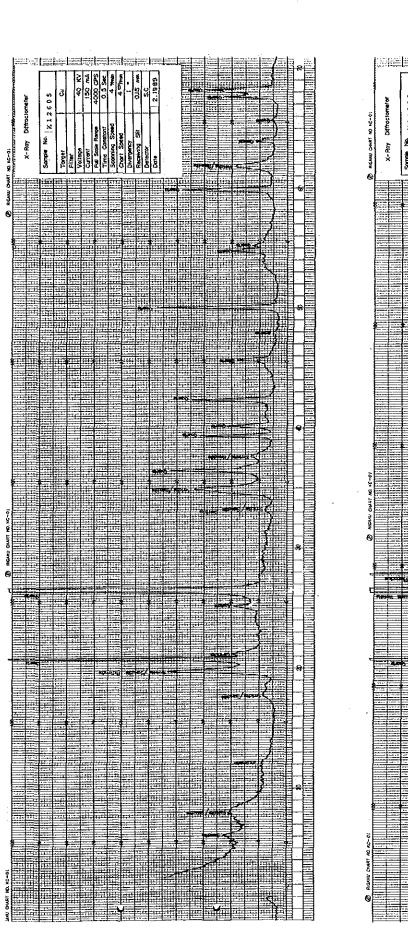


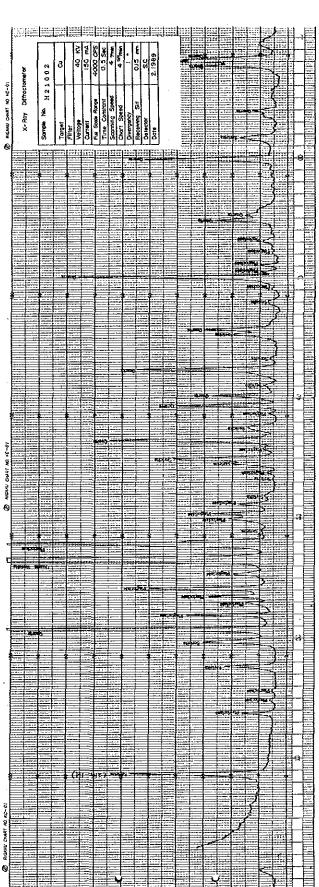


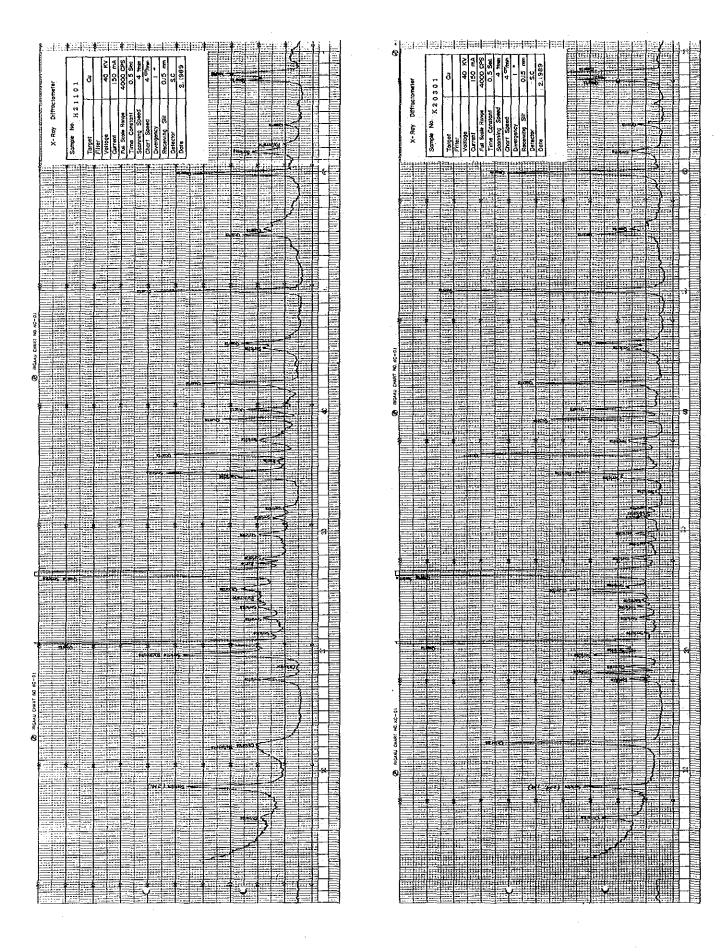


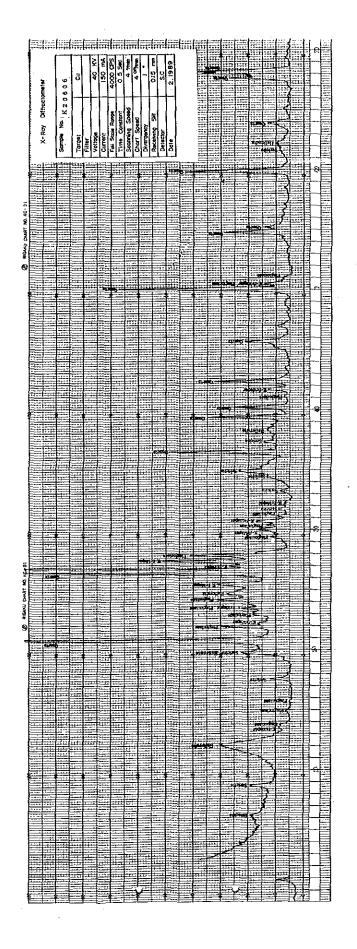


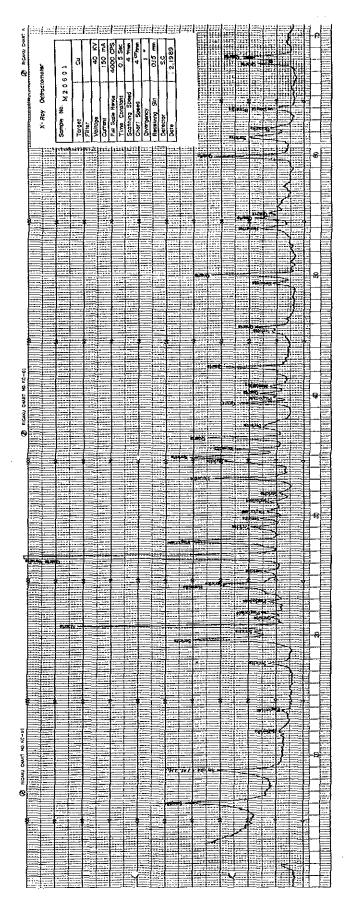












ABBREVIATIONS

ass and cgl dio dio sr sn sch sch ss sk tf tf-br lp-tf vol cal	agglomerate andesite breccia conglomerate diorite granite granite gneiss limestone monzonite phyllite porphyry quartz porphyry schist sandstone shale skarn tuff tuff tuff tuff tuff tuff tuff volcanics calcite kaolinite	alt arg decomp chl limo sil oxd weath frac fns css horn blk grn lc gry purp wte imp	altered argillized decomposed chloritized limonitized silicified oxidized weathered fractured fractured fine grained brown brown black green leucocratic green leucocratic gray purple white impregnation with retwork
mg musco py qtz	magnetite muscovite pyrite quartz	wk. v xeno	<pre>; weak ; vein ; xenolith</pre>
ep1	epidote		

```
Ag
ppm
 location
                 Oyotun vol
Intrusive
Intrusive
Intrusive
Intrusive
Oyotun vol
Oyot
                                                                                                                         Oyotun vol
Oyotun vol
Intrusive
Intrusive
                                                                                                                                                                                    Intrusive
Oyotun vol
                                                                                                                                                            Intrusive
Intrusive
Salas
Salas
                                                                                                                                                                                               Intrusive
Intrusive
Intrusive
      ormation
                 ວ
                 grn
     rock type
                 tf w/
                st frac tf w monz
gr-po
tonalite
epi,chl,and
                                                                                                                                      gr
micro-gr
sil tf
barite
sil ch
                                                                                                                                                                   gr imp, g
py imp, g
py imp, g
mdg gr-g
meta and
tonalite
sil monz
chi wk, a
sil rock
sil arg
sil arg
                                                    limo
limo
sample
No.
serial
No.
```

```
Au
ppb
        location
                        Intrusive intrus
                                                                                                                                                                                                                                                             Oyotun vol
Oyotun vol
Oyotun vol
Oyotun vol
Salas
Salas
Intrusive
Intrusive
Intrusive
                                                                                                                                                                                              Intrusive
Oyotun vol
Oyotun vol
        formation
                      chl.py imp.tonalite
and-por
tonalite
                                                                                             micro dio
micro dio
micro dio
ss
and
snd
monz-por
limo volcanics
limo volcanics
alt and
mdg dio
weath dio
weath rock
weath and
                                                chl, dio
chalite, weath
dio
arg sil tf
       rock type
sample
No.
```

```
Mo
Edd
                                                                                                                     Pb
ppm
                                                                           location
                                 Oyotun vol
Intrusive
Intrusive
Oyotun vol
Intrusive
Oyotun vol
                                                                                                                                                                                                                                                                                                                                                             Oyotun vol
Intrusive
Intrusive
Intrusive
Oyotun vol
           formation
                                                                                                                                                                                                                                          S
           rock type
                                 dio dio dio dio dio dio sil and weath gr sil fock sil rock sil roc
                                  and
                                                                                                                                                                                                                                                                                                                                                                                                                                                    rock
sample
No.
                                 serial
No.
```

```
жичие на наимения и наимения по обосоростивно обосорости обосорос
location
                         Chulec?
Oyotun vol
Chulec?
Chulec?
Chulec?
                                                                                         Oyotun vol
Intrusive
Intrusive
Intrusive
Intrusive
Intrusive
Oyotun vol
         formation
                                                                                        Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
                                                                                                                                                                                                                                                                                                                     skarn,ccp bearing
quartzite
and,py imp
          rock type
```

```
San Fellos 
                             Intrustive
Intrustive
Intrustive
Intrustive
Intrustive
Oyotun vol
                                                                                                                                                                                                                                                                                                                                                       Intrusive
Oyotun vol
Intrusive
Intrusive
Intrusive
Intrusive
Intrusive
          Cormation
                                                                                                                                                                                 qtz net and
                                                                                                                                                                                                                                                                               Зсп х
        rock type
                                                                                                                                                                                                                                                                                                                                  gr-por
gr-por
dio
sil rock
weath dio
                                                    dio
dio
aulo
audrtzite
and
tf-bre
tf-bre
tf-bre
                                                                                                                                                                              wk sil di
weath bl
                                                                                                                                                                                                    weerh
and ch
and,ch
and,ch
and,ling
sil ang
and,sil
                                                                                                                                                                                                                                                                                                               lp-tf
dio w,
sample
No.
```

```
ᲒᲗᲒᲗᲮᲒᲒᲒᲥᲑᲡᲗᲥᲒᲒᲒᲑᲗᲗᲗᲗᲒᲒᲑᲡᲑᲔᲑᲚᲚᲥᲥᲒᲒᲥᲚᲚᲥ
      location
                    Chontall
                                                                                                                                          Chontali
                                                                                                                                                                                                                                                  Chontali
Chontali
Chontali
                                                                                                             Chontal
Chontal
Chontal
                                                                                                                                                                                                                                                                                      Chonta
                                                                                                                                                                                                                                                        Intrusive
Salas
Salas
Intrusive
Oyotun vol
                                                                           Oyotun vol
Oyotun vol
Oyotun vol
Oyotun vol
Oyotun vol
Oyotun vol
Oyotun vol
Oyotun vol
Oyotun vol
Oyotun vol
Oyotun vol
Oyotun vol
Oyotun vol
Oyotun vol
Oyotun vol
Oyotun vol
Oyotun vol
Oyotun vol
Oyotun vol
Oyotun vol
Oyotun vol
Oyotun vol
Oyotun vol
Oyotun vol
Oyotun vol
Oyotun vol
Oyotun vol
Oyotun vol
Oyotun vol
Oyotun vol
Oyotun vol
Oyotun vol
Oyotun vol
       formation
                                                                                  sil qtz net
rg
                                               dio
monz dyke
and, wk arg weath
and, ilmo net
and, ilmo net
and, weath
and, weath
and, weath
arg wk sil (and)
arg wk sil (and)
weath wk sil (and)
weath wk sil (and)
weath wk sil (and)
we arg frac (and)
we sil (and)
and, we arg
and, ilmo arg
and, wk arg
and, wk arg
and, wk arg
and, wk sil tf, w/ limo
monz
and, wk arg v net
and, wk arg v net
                                                                                                                                                                                                                                                                            mdg gr,weath
and, sil arg limo
and
wte qtz v 40cm
       rock type
                                   monz
micro-dio
sample
No.
serial
No.
```

```
Ag
ppm
                                                     Au
ppb
                                      location
                                      Chontalli
Chonta
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              Chontal
Chontal
                                                                                                                                                                                                           Intrusive
Intrusive
Intrusive
Intrusive
Intrusive
Intrusive
Intrusive
Intrusive
Intrusive
Salas
Salas
Salas
Salas
Salas
Oyotun vol
                                      Oyotun vol
Oyotun vol
Oyotun vol
Oyotun vol
Intrusive
Intrusive
Oyotun vol
Salas
Salas
Salas
              Cormation
                                                                                                                                                                                     ntrusive
                                    and, sil arg and, fresh grn dio, mdg dio, mdg dio, mdg dio, mdg dio, mdg dio, mylll, purp phyll, purp phyll, purp gr, csg decomp gr, and musco sch musc
            rock type
 sample
No.
serial
No.
```

```
D E

      4
      4

      84144
      4

      40000
      4

      40000
      4

      40000
      4

      40000
      4

      40000
      4

      40000
      4

      40000
      4

      40000
      4

      40000
      4

      40000
      4

      40000
      4

      40000
      4

      40000
      4

      40000
      4

      40000
      4

      40000
      4

      40000
      4

      40000
      4

      40000
      4

      40000
      4

      40000
      4

      40000
      4

      40000
      4

      40000
      4

      40000
      4

      40000
      4

      40000
      4

      40000
      4

      40000
      4

      40000
      4

      40000
      4

      40000
      4

      40000
      4

      40000
      4</
                              Chontall
Cho
           location
                                                                                                      Vein
Oyotun vol
Intrusive
Intrusive
Intrusive
Vein
Intrusive
Goyllarisq
Oyotun vol
                                 407
          formation
                               Oyotun
Vein
Oyotun
Oyotun
Oyotun
Oyotun
                               rock type
sample
No.
```

```
location
       Chontall
       Goyllarisq
Goyllarisq
Goyllarisq
Goyllarisq
Goyllarisq
Goyllarisq
Goyllarisq
Goyllarisq
Goyllarisq
Intrusive
Intrusive
Inca~chulec
Goyllarisq
Intrusive
Inca chulec
Oyllarisq
Intrusive
Inca chulec
  formation
       quartzite
and, ond;
ss,py imp
quartzite
and, arg
tonalite
quartzite
quartzite
quartzite
  rock type
                                                                                               and, arg
cal, sh
and, massive
and, por
and, limo arg
sample
No.
```

```
Ag
ppm
                 Chontali
                 Chontali
Chontali
Chontali
Chontali
Chontali
Chontali
Chontali
Chontali
Chontali
Chontali
Chontali
Chontali
Chontali
     location
                                                                                                                              hontal
                                                                                                                                    hontal
                                                                                                                                          hontal
                 formation
                 Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
                                                              Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oy
                                                                                                                                                                                                                                                                quartzite
Shale,taffaceous
    rock type
                                                                                                                                                                                         phyll
metamorfic metamorfic mand
                                                       , massive
                                                                                                        and
and-por
and-por
and-por
and-por
and-por
tf-bre, arg
                 and, st frac
and
and
and, py imp
and, py imp
                                                                                              weath
                                                       and, mas
and-por
and-por
sample
No.
```

```
\frac{000}{100}
                Chontali
Chonttali
Palma
     location
               Oyotun vol
Oyotun vol
Oyotun vol
Oyotun vol
Inca~ chulec
Inca~ chulec
Oyotun vol
     Pormation
     rock type
                                                                                                                                     vol cgl
tf-bre,weath
                                                                                                     and
and
qp,limo
gr,csg
qp
dio,weath
                                                                                                                                                     quartzite
and,weath
and
                                                                                                                                                                    tf-bre
quartzite
tf-bre
tf-bre
tf-bre
                           ss
shale
ss,shale
shale
```

```
Ag
ppm
                                                                                                                                    ᲡᲥᲥᲥᲥᲥᲥᲥᲥᲥᲥᲥᲥᲥᲥᲥᲥᲥᲥᲥᲥᲥᲥᲥᲥᲥᲥ
Au
                    ocation
                                                              Palles
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       Parting and the control of the contr
                                                                                                                                                                                                                                                                                                                                                                                                                                                alma
alma
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 alma
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      alma
                                                              Oyotun vol
                      formation
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                2<u>m</u>
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                py grn-Cu
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         D-tf.weath,brn,wk arg
                                                                                                                          tf-bre, skarnized
tf-bre, skarnized
and, skarnized
sk, banded
tf, limo net, sil
sil rock
and, wk sil
tf, sil wk arg
                                                                                                                                                                                                                                                                                                                                                                                                                                                                  dacite, sil
                    rock type
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      st sil rock w/
vol.wk arg sil
tywath
tp-tf ~ tf-bre
                                                              tf-bre,sil
tf-bre,wk sil
tf-bre,sil
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 sh, sil, gry
sh, sil, gry
sh, gry
lp-tf, wk si
lp-tf, sil l
sh, gry
and, wk sil,
and, gry, by
sample
No.
```

```
Mo
Edd
                                                                                  Ag
ppm
                                                                                     \overset{\mathsf{O}}{\overset{\mathsf{O}}{\overset{\mathsf{O}}{\overset{\mathsf{O}}{\overset{\mathsf{O}}{\overset{\mathsf{O}}{\overset{\mathsf{O}}{\overset{\mathsf{O}}{\overset{\mathsf{O}}{\overset{\mathsf{O}}{\overset{\mathsf{O}}{\overset{\mathsf{O}}{\overset{\mathsf{O}}{\overset{\mathsf{O}}{\overset{\mathsf{O}}{\overset{\mathsf{O}}{\overset{\mathsf{O}}{\overset{\mathsf{O}}{\overset{\mathsf{O}}{\overset{\mathsf{O}}{\overset{\mathsf{O}}{\overset{\mathsf{O}}{\overset{\mathsf{O}}{\overset{\mathsf{O}}{\overset{\mathsf{O}}{\overset{\mathsf{O}}{\overset{\mathsf{O}}{\overset{\mathsf{O}}{\overset{\mathsf{O}}{\overset{\mathsf{O}}{\overset{\mathsf{O}}{\overset{\mathsf{O}}{\overset{\mathsf{O}}{\overset{\mathsf{O}}{\overset{\mathsf{O}}{\overset{\mathsf{O}}{\overset{\mathsf{O}}{\overset{\mathsf{O}}{\overset{\mathsf{O}}{\overset{\mathsf{O}}{\overset{\mathsf{O}}{\overset{\mathsf{O}}{\overset{\mathsf{O}}{\overset{\mathsf{O}}{\overset{\mathsf{O}}{\overset{\mathsf{O}}{\overset{\mathsf{O}}{\overset{\mathsf{O}}{\overset{\mathsf{O}}{\overset{\mathsf{O}}{\overset{\mathsf{O}}{\overset{\mathsf{O}}{\overset{\mathsf{O}}{\overset{\mathsf{O}}{\overset{\mathsf{O}}{\overset{\mathsf{O}}{\overset{\mathsf{O}}{\overset{\mathsf{O}}{\overset{\mathsf{O}}{\overset{\mathsf{O}}{\overset{\mathsf{O}}{\overset{\mathsf{O}}{\overset{\mathsf{O}}{\overset{\mathsf{O}}{\overset{\mathsf{O}}{\overset{\mathsf{O}}{\overset{\mathsf{O}}{\overset{\mathsf{O}}{\overset{\mathsf{O}}{\overset{\mathsf{O}}{\overset{\mathsf{O}}{\overset{\mathsf{O}}{\overset{\mathsf{O}}{\overset{\mathsf{O}}{\overset{\mathsf{O}}{\overset{\mathsf{O}}{\overset{\mathsf{O}}{\overset{\mathsf{O}}{\overset{\mathsf{O}}{\overset{\mathsf{O}}{\overset{\mathsf{O}}{\overset{\mathsf{O}}{\overset{\mathsf{O}}{\overset{\mathsf{O}}{\overset{\mathsf{O}}{\overset{\mathsf{O}}{\overset{\mathsf{O}}{\overset{\mathsf{O}}{\overset{\mathsf{O}}{\overset{\mathsf{O}}{\overset{\mathsf{O}}{\overset{\mathsf{O}}{\overset{\mathsf{O}}{\overset{\mathsf{O}}{\overset{\mathsf{O}}{\overset{\mathsf{O}}{\overset{\mathsf{O}}{\overset{\mathsf{O}}{\overset{\mathsf{O}}{\overset{\mathsf{O}}{\overset{\mathsf{O}}{\overset{\mathsf{O}}{\overset{\mathsf{O}}{\overset{\mathsf{O}}{\overset{\mathsf{O}}{\overset{\mathsf{O}}{\overset{\mathsf{O}}{\overset{\mathsf{O}}}{\overset{\mathsf{O}}{\overset{\mathsf{O}}}{\overset{\mathsf{O}}{\overset{\mathsf{O}}{\overset{\mathsf{O}}}{\overset{\mathsf{O}}{\overset{\mathsf{O}}}{\overset{\mathsf{O}}{\overset{\mathsf{O}}}{\overset{\mathsf{O}}{\overset{\mathsf{O}}{\overset{\mathsf{O}}}{\overset{\mathsf{O}}{\overset{\mathsf{O}}}{\overset{\mathsf{O}}}{\overset{\mathsf{O}}}{\overset{\mathsf{O}}}{\overset{\mathsf{O}}}{\overset{\mathsf{O}}}{\overset{\mathsf{O}}}{\overset{\mathsf{O}}}{\overset{\mathsf{O}}}{\overset{\mathsf{O}}}{\overset{\mathsf{O}}}{\overset{\mathsf{O}}}{\overset{\mathsf{O}}}{\overset{\mathsf{O}}}{\overset{\mathsf{O}}}}{\overset{\mathsf{O}}}}{\overset{\mathsf{O}}}}{\overset{\mathsf{O}}}}{\overset{\mathsf{O}}}}{\overset{\mathsf{O}}}}{\overset{\mathsf{O}}}}{\overset{\mathsf{O}}}{\overset{\mathsf{O}}}}{\overset{\mathsf{O}}}}}{\overset{\mathsf{O}}}}{\overset{\mathsf{O}}}}{\overset{\mathsf{O}}}}{\overset{\mathsf{O}}}}{\overset{\mathsf{O}}}}{\overset{\mathsf{O}}}}{\overset{\mathsf{O}}}}{\overset{\mathsf{O}}}}{\overset{\mathsf{O}}}}{\overset{\mathsf{O}}}}{\overset{\mathsf{O}}}}{\overset{\mathsf{O}}}}{\overset{\mathsf{O}}}}{\overset{\mathsf{O}}}}{\overset{\mathsf{O}}}}{\overset{\mathsf{O}}}}{\overset{\mathsf{O}}}}{\overset{\mathsf{O}}}}{\overset{\mathsf{O}}}}{\overset{\mathsf{O}}}}{\overset{\mathsf{O}}}}{\overset{\mathsf{O}}}}{\overset{\mathsf{O}}}}{\overset{\mathsf{O}}}}{\overset{\mathsf{O}}}}{\overset{\mathsf{O}}}}{\overset{\mathsf{O}}}}{\overset{\mathsf{O}}}}{\overset{\mathsf{O}}}}{\overset{\mathsf{O}}}}{\overset{\mathsf{O}}}}{\overset{\mathsf{O}}}}{\overset{\mathsf{O}}}}{\overset{\mathsf{O}}}}{\overset{\mathsf{O}}}}{\overset{\mathsf{O}}}}{\overset{\mathsf{O}}}}{\overset{\mathsf{O}}}}{\overset{\mathsf{O}}}}{\overset{\mathsf{O}}}}{\overset{\mathsf{O}}}}{\overset{\mathsf{O}}}}{\overset{\mathsf{O}}}}{\overset{\mathsf{O}}}}{\overset{\mathsf{O}}}}{\overset{\mathsf{O}}}}{\overset{\mathsf{O}}}}{\overset{\mathsf{O}}}}{\overset{\mathsf{O}}}}{\overset{\mathsf{O}}}}{\overset{\mathsf{O}}}}{\overset{\mathsf{O}}}}{\overset{\mathsf{O}}}}{\overset{\mathsf{O}}}}{\overset{\mathsf{O}}}}{\overset{\mathsf{O}}}}{\overset{\mathsf{O}}}}{\overset{\mathsf{O}}}}{\overset{\mathsf{O}}}{\overset{\mathsf{O}}}}{\overset{\mathsf{O}}}}{\overset{\mathsf{O}}}}{\overset{\mathsf{O}}}}{\overset{\mathsf{O}}}}{\overset{\mathsf{O}}}}{\overset{\mathsf{O}}}}{\overset{\mathsf{O}}}}{\overset{\mathsf{O}}}{\overset{\mathsf{O}}}}{\overset{\mathsf{O}}}}{\overset{\mathsf{O}}}}{\overset{\mathsf{O}}}{\overset{\mathsf{O}}}}{\overset{\mathsf{O}}}}{\overset{\mathsf{O}}}}{\overset{\mathsf{O}}}{\overset{\mathsf{O}}}}{\overset{\mathsf{O}}}}{\overset{\mathsf{O}}}}{\overset{\mathsf{O}}}}{\overset{\mathsf{O}}}{\overset{\mathsf{O}}}{\overset{\mathsf{O}}}}{\overset{\mathsf{O}}}}{\overset{\mathsf{O}}}}{
     Au
ppb
                         location
                                                                                Pallas
Pa
                                                                                Oyotun vol

Intrusive

Oyotun vol

Oyotun vol

Oyotun vol

Intrusive

Oyotun vol

Intrusive

Oyotun vol

Oyotun vol
                            formation
                                                                                                                                                                                                                                                                                                              monz-por.wk sil
lp-tf.st sil
ss.mdg
quzrtzite,weath
ss.weath
ss.weath
quartzite,weath
weath,purp.agg
and.blk-gry.weath
and-por
                                                                                                                                                                                               and, weath
lp-tf, sil, py imp
monz, weath
sk
                                                                                and-tf,brn,weath
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               and vol.weath and.cal sil monz-por gr.csg weath sk, py, limo and.sil, limo sil rock, py im monz-por weath agg is gr.csg por dyke cal and weath vol, and and, weath lp-tf
                         rock type
                                                                                                                                      por-and,mdg
quartzite
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            nonz-por
sample
No.
serial
No.
```

```
Au
       ocation
                       Intrusive fortun vol oyotun vol
      ormation
                                                                                                                                                                                                             Oyotun
                                                        τ£
                      micro-gr-dlo,cal
qtz micro gr-dlo
and por
lp-tf, weath
limo,cal,epi,sil t
                                                                      magnetite sk(tf)
lp-tf
tf,drusy,sil
cal hb dyke
     rock type
                                                                                                                ss

tf, wk sil

tf, cal.wk sil

tf, sil.arg

and vol

and

sh

tf bre

and bre, agg

agg, and bre

por-and
                                                                                                                                                                                                                                                                                     and por and and bre, cgl
                                                                                                                                                                                                                                                            quartzite
quartzite
ss
                                                                                                                                                                                                                                                                                                                     VOL-CONT
VOL
                                                                                                                                                                                                                                                      S)
sample
No.
```

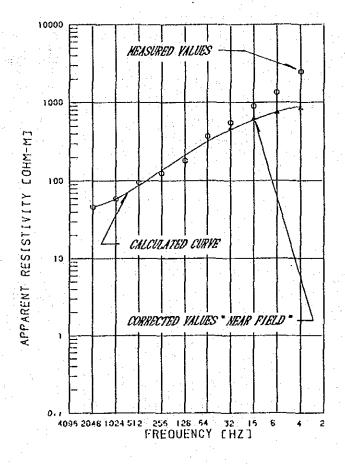
```
\begin{matrix} \mathsf{H} \\ \mathsf{H} 
                  location
                                                              Oyotun vol
                      Pormation
                rock type
```

```
1790
2110
370
900
900
      000448249
0000448249
00000000
     Palma
                                                                Jehuamarca
Jehuamarca
Jehuamarca
Jehuamarca
Jehuamarca
Jehuamarca
                                                                                   ehuamarca
                                                            ehuamarca
                                                              ehuamarca
                                                                               ehuamarca
                                                                                 ehuamarca
                                                                                     ehuamarca
                                                                                       enuamarca
  location
     Oyotun vol
Intrusive
Intrusive
Oyotun vol
Oyotun vol
Oyotun vol
                             Porculla
Porculla
Porculla
Porculla
Porculla
Porculla
Porculla
Porculla
  formation
                    Oyotun vo
Intrusive
                        Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
Oyotun
                                               )yotun
                                                                          Porcull
                                         Oyotun
                                           Oyotun
                                                     sh tr
| rock limo cryst
                                                                                     bre
     and
dio, sil, py imp
dio
and
and
and
vol and
dio
  rock type
                                                                                    Sil
                                                                                  rg, sil, bre
imo arg sil
il dr tin
                                               arg, sil
                                                                    e,sil
sample
No.
     serial
No.
```

```
ĕ
₽
E
                                                                    Ag
ppm
                          Jehuamarca
                                                                                                                                                                                                                                                                                                                                                             Febuamarca
Febuamarca
Febuamarca
                                                                                                                                                                                                                                                                                                                                                    ehuamarca
         ocation
                           formation
                                                                                 arg
arg,limo
                                   arg
                                                                                                                                                                                                                                                                                                                     rock,limo(tf)
rock,drusey
         type
                                                                                                                                                                9
10
99
                                                                                                                                                                                   218
         rock
                           w/ori
                         sillo

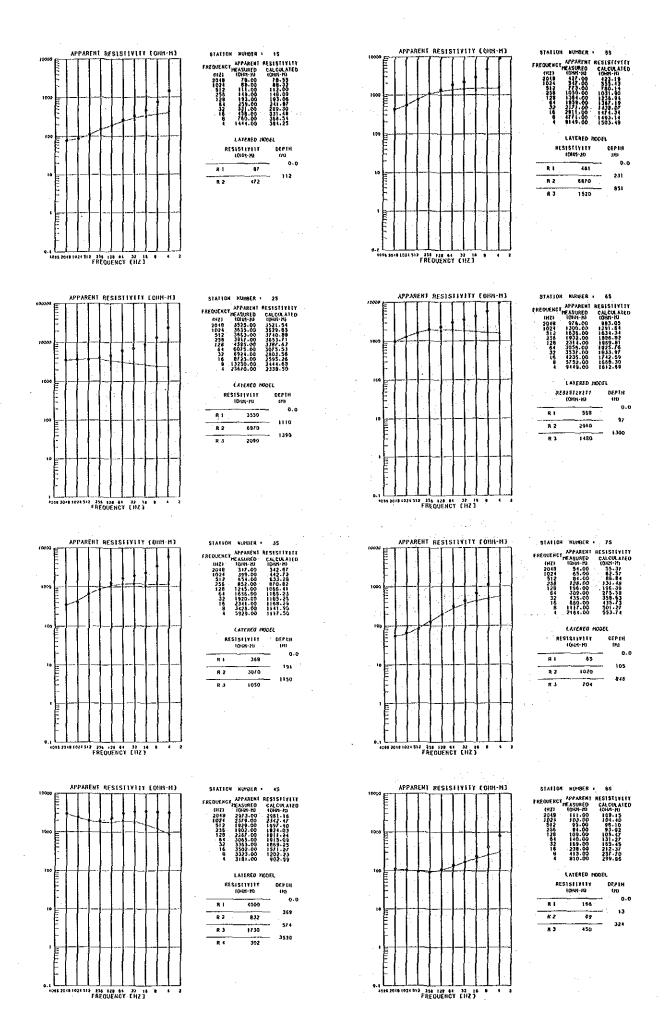
barres

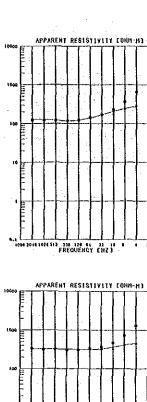
barres
                                                                                                                                                                                          shipson

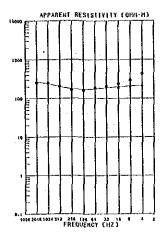

shipson

thorna

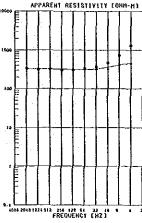
thor
sample
No.
                         別別房房 図図図図 ススススススススススススススススススススススススススロロロロロロ
```


```
Jehuamarca
         location
                           Porculla vol
Oyotun vol
          formation
                                                                                                 limo
                                     arg, weath (tf)
arg, weath (tf)
tf, grn arg
tf, grn arg
sil rock, drusey
lp-tf, ch, arg
sil rock, drusey
lp-tf, dag arg
tf, grn arg
sil rock
sil rock
st sil rock
weath and
arg, wk sil vol
st sil monz por
         rock type
sample
No.
```


LEGEND


STATION	NUMBER	118
(HZ) 2048 1024 512 256 128	MEASURED (GHM-M) 46.40 56.60 95.20 125.00 181.00 369.00	(OHM-M) 46.77 59.22 87.13 136.36 212.60 318.81 451.81 601.12
	LAYERED	MODEL
DE	Y T F W 1 T 2 1 S	OFPTH

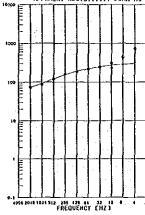
	RES	YTTYTTS18	OEPTH (M)
			0.0
	R 1 R 2	222	57
<u>.</u>	R 3	1390	166



\$1A110H	HUNGER I	98
FREGUENCY, (H2) 2049 1024 256 128 94 97 16	AFFARENT EASURED (044-20 123.00 123.00 114.00 124.00 148.00 175.00 230.00 860.00	RESISTAVICE CALCULATED 128-09 128-26 132-22 132-22 131-50 131-50 131-50 131-50 131-57 201-48 201-48
RES	LAYERED H	OTEL
	10191-10	litu
	124	6.0

STATLO#	дуниц	135
REQUENCY, 4HZ1 2018 1024 312 256 128 64 37	APPARENT E ASURED (0847-10) 218-00 248-00 167-00 162-00 169-00 209-00 201-00 301-00	RES(STIVITY CALCULATED 10901-10 263-87 240-35 201-61 178-93 171-30 171-70 137-43 198-50 208-28
•	LAYERFO	HOOEL

	ŧ.A	TERED HODE	EL
	RE31\$	DEPTH (H)	
R	ī	243	٥.
R	5	25	238
R	3	239	281

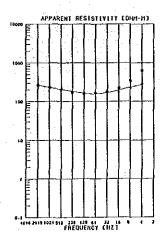

		AP	PAR	EHT	Rε	\$1S	114	111	€O	IM-	43
10000	- 1										
180	111111		Ĭ						1		
184	111111111111111111111111111111111111111							'a			
1.	111111111111111111111111111111111111111										
,											
0.1 1004 2018 1024 512 258 128 41 32 16 0 4 2 FREQUENCY (HZ)											

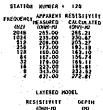
KOTTATE	NABER	145
FREDUENCY, (HZ) 2048 1024 512 258 128 128 32 16	APPASENT ©ASUMED 10HH-19 478.00 410.00 480.00 481.00 481.00 541.00 541.00 1139.00	RESISTIVITY CALCULATED (OHM-79) 353-22 394-55 427-65 479-45 479-45 478-58 484-32 485-14 553-11
ĭ	2120.00	653.27
•		

mrei										-
APPARENT RESISTIVITY COMM-H3										
	AP.	PAR	EX.	RE	SIS	TIV	111	LU	11.5	HЗ

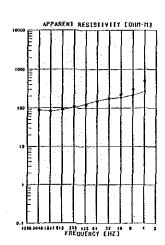
DEL	LATERED HO	
(1430 (H)	111 VITE 18	
- (324	RI
- 1150	604	A 2
- 240	705	RЗ

-			ATERED HO	DEL
			4114115 CK-WHO	GÉPEH (H)
		RI	242	- 0.
		R 2	529	- 47
		R 3	134	1990 1990
<u>ا</u> _		8 4	1310	1980

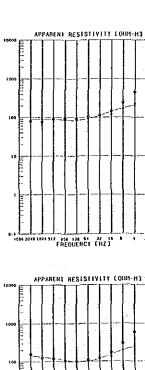



STATION	HUMBER +	115
LYSODEVC!		RESISTIVITA CALGULATEC 10HT-NI 72.77 91.92 120.21 153.77 188.35 270.40 270.01 287.85 210.01
	LAYERED &	100EL
		heary

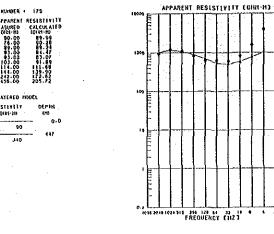
		AP.	PAR	ENT	RE	212	114	111	E O	HH-	43
16000	-										
1900	111111111				L						
	511111					-					
10	1011111										
	m11111										
10	16 30	. 192	14 517	FRI	00	HC.	([1	12 1		٠	- 2


STATION	NUMBER	158
REGUENCY.	APPARENT	RESISTIVIT
ucontuc.	€ ASURED	CALCULATED
CHZF	UI-HUI-HU	(CHM-K)
201B	449.00	441,36
ĨŎŹĂ	392.00	343.63
512	463.00	466.37
256	448.00	433.41
128	4/8.00	475.70
. 24	518.00	516.49
Ĵż	821.03	337.35
iš	794.00	520.00
ă	1180.00	600.22
ī	1694.00	615.89

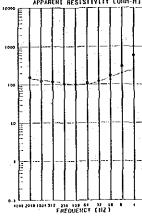
8	794.00 1180-00 1684.00	579.09 600.22 615.89
	LATERED H	ODE:
RES	151171111 (010x-20	DEP ()
RI	818	— c
R 2	79	- 130
8.3	656	162

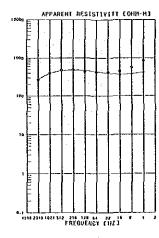


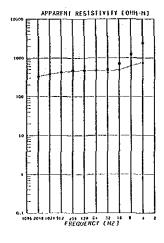
0£PH (H)	H1111 (H-111	
- (351	11
- 8	145	R 2
- 75	140	a J


KOLTATE	HUMBER	165
FREQUENCY (1/Z) 2048 1024 512 256 128 64 32 16	### ASCRED (DAY-A) 88.00 84.00 109.00 121.00 121.00 122.00 307.00 222.00 307.00 223.00 307.00 223.00 307.00 304.00	96535114114 CALCA ATED (024-70 885-40 895-93 101-39 128-85 171-94 187-72 214-63 256-83
•	*41.00	290.83

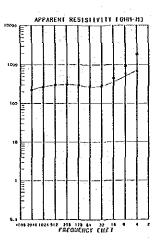
RES	ISTERED NO LATERED NO	CEPTH (M)
R I	92	- "0
R 2	248	- 179
яз	311	- 2460
R 4	1140	- 2550


STATION	KUHBER	17\$
REGUENCY	EARURED	RESISTIVITY CALCULATED CORN-NO
1024 1024	10114-H1 80.00 76.00	89.58 89.58
256 128	93.00 93.00	89.24 86.47 87.07
32 16	14.00	91.89 111.68 139.90
1	242.00 455.00	139.90 172.62 205.72
	LAYERED I	130E1

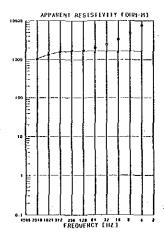




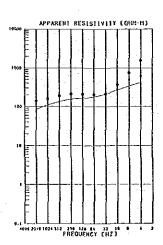
STATION	RUMBER	185
FREQUENCY	APPARENT	RESISTIVIT
	HEASURED	CALCULATED
(HZ)	(0)35.5(0)	10/45-10
2048	157.00	145.94
1024	123.00	130.61
512	117.00	120.51
256	105.00	108-55
159	101.00	100.38
32	124.00	118.95
ĭŝ	171.00	152.38
Ĭ	302.00	156.75
ì	592.00	245.65
	LAYEREO -	HODEL
. RF	515117111	DEPIN
		645


SIATEDM	HUMBER	223
FREQUENCY 41421 2048 1024 512 255 128 64 32 16	APPARENT #ASURED 10HH-7D 255.00 189.00 479.00 481.00 411.00 415.00 450.00 565.00 852.00	RESISTIVITY CALCULATED (OMI-TO) 272-67 385-83 482-33 482-35 434-42 374-05 374-92 383-14 426-97
	LAYERED I	HOOÉL .
RE	13114114 313114114	DEP114

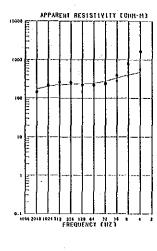
	•	LAYERED HO	DÉL
		(OH)-17) 12113113	DEP1H (H)
-	R 1	105	~ 0.0
_	R Z	2120	- 42
_	R J	313	- J48 - 2550
	Ĥ 4	843	- 2330


(15111111 (LCULATED (M) (M) (31.11 (79.61 (19.59
)491-141 331-13 379-81
731 - 11 79 - 61
379-81
151.79
175-47
69.66
138-90 199-39
(3.1)
95.12

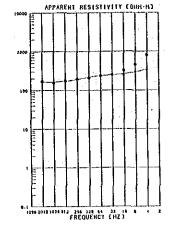
	2-32-00	793.12
	LAYERED IN	00EL
RI	5151171 1 7 (0):5151171	H1434 ·
RI	56	0.0 9.1
R 2	498	- n
H 2	539	211D
R 4	2500	


ROTINIS	NUMBER	235
FREOVENCY.	APPARENT	RESISTIVITY
euroneur)	EASURED	CALCULATED
utzi	43-01-PU	101101-101
2018	223.00	221-87
1024	264-00	255.49
512	295-00	234.14
255	305-00	306-21
128	291-00	290-91
32	286-00	255.31
16	447.00	
8	823-00	354.90
i i	1869-00	719-05
		1.

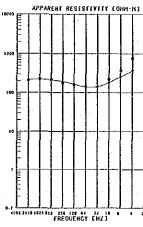
	ATEREC HO	EL .
	ions-40 Estratit	DEPTH LHG
Rì	139	- 0
R 2	590	- 52
83	5,45	- 221
A 4	3030	- 1393


MOFTATE	NUMBER	205	
FREDKÆNCT	APPARENT	RESISTIVIT	¥
Lucrocuri	TEASURED	CALCULATE	D
OHZE	(D(H)-H)	(O:Q1-H)	٦
2018	1634.00	1044.49	
1024	1337.00	1344-17	
512	1569.00	1551-69	
255	1703.00	1650.51	
128	1728.00	16/8.70	
54	1997-00	1675.74	
32	2448-00	1653-38	
16	3313-00	1650-49	
8	4808-00	1639-81	
•	7551.00	1531.60	

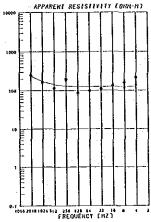
	0154-111 0154-111	111 430
RI	520	- 0.0
R 2	4000	~ 94
R J	1610	534


KOLIATS	NAMES :	215
EGENIE VOT	APPARENT PEASURED 10841-10 139.00 189.00 189.00 201.00 201.00 201.00 201.00 201.00 201.00 201.00	213 RESISTIVITY CALCUMATED 1004-21 134-35 154-11 164-08 178-49 211-70 265-35
. · ·	1557.00.	416.65

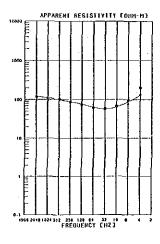
	111112 - (K-N)	CEPIH (H)
		- 0.0
R I	27	
		- 13
R 2	534	- 916
R 3	800	- 110



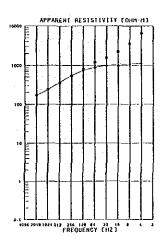
4	1512.00	481.04
	LATERED M	ODEL.
R	11 (VI 12 8)	. DEPIH
R 1 283		_ o.
R 2	800	→ 1000


\$14110#	HURBER	293
FREQUENCY,	AFPARENT	RESISTIVITY
UL OATHER		CALCULATED
(H)	(CHH-H)	COHA-MA
2018	170.00	164.33
1024	135.00	183.32
512	175.00	172.02
236	195.00	139.98
124	201.00	213.34
51	\$34.66	213-01
32	232.00	213.93
15	321.00	134.46
	201.00	444.47
•	804-00	244.15

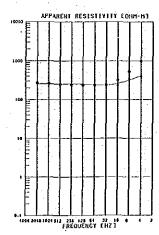
·	LATERED HODEL		
	\$114111 044-10	OEP1H LHD	
k I	170	٥.	
R 2	326	216	
	866	2340	


STATION	RUHBER	265
FREQUENCY (H2) 2048 1034 512 256 128 64 32 16 8	APPARENT SEASURED 10Mm-Nu 209.00 229.00 180.00 180.00 145.00 145.00 222.00 383.00 772.00	RESISTIVII CALCURATE 10HY-10 217.64 210.70 191.09 164.32 139.33 142.23 180.02 254.57 355.83
	LANGUED I	eongs

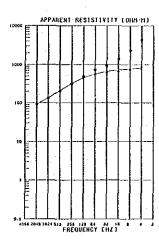
	4	383.00	254.57 365.83
		AYERED M	ODEL
		ISELVETY IONA-NI	(II) (II)
A	t	212	— o.
R	2	121	543
Ą	3	1540	698


\$141 tax	NUMBER	305
(H2) 2018 1021 512 525 128 61 72	APPARENT EASURED 10HH-HD 250-DO 164-00 116-00 195-00 97-00 99-00 112-00	RESISTIVITY CALCULATED HORN-NI 238-77 172-87 142-84 120-29 125-94 124-86 125-25
8	217.00	125.04

		LATERED HO)Et
	ЯE	111111212 (01-1449)	(H)
	A 1	1820	- 0.0
	R 2	45	94
•	RЭ	127	- 133

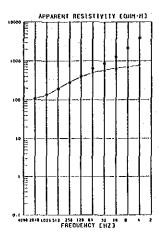

FREQUENCY, (HZ) 2018 1024 312 256 128	APPARENT #ASURFD 10%N-NJ 110.00 108.00 104.00 87.00	RESISTIVITY CALCULATED (OM-NO 118-84 111-25 99-17 87-94 76-87
66 32 16 8	62.00 59.03 68.00 95.00 202.00	63.49 56.85 64.19 87.82 129.45

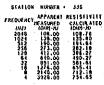
Ł	DEL	
	ብዝ-ዛስ 2114111	DEPTH CHJ
RI	114	- o
R 2	\$5	- 120
R 3	924	- 741

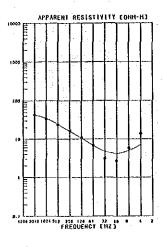


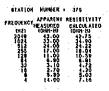
STATION	RUHBER	. 319
EBEUIENCA		RESISTIVITY CALCALATED COMPANY 171-12 237-12 237-12 237-12 237-12 237-12 237-13 1097-13 1097-13
·	LAYERED I	HODEL

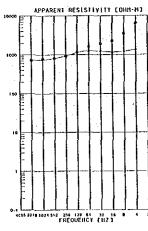
·	AYERED MO	×ι
	51 4 11 (1 21-21)	DEPTH CHO
RI	167	- 0.
R 2	3750	- 137 - 920
я 3	1170	- 920



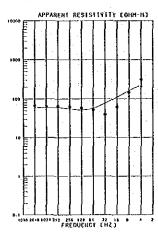

SIATION	* ABBRIK	28\$
FREQUENCY, (Hz) 2048 1024 512 256 128 64 32 16	APPARENT I MEASURED CONTINUO 271.00 263.00 250.00 239.00 239.00 239.00 239.00 239.00 2009.00	RESISTIVIIII CALCULATEI 1044-141 254-20 251-99 251-57 249-87 249-87 249-87 249-87 249-87 322-16 418-24
	LATERED PE	30EL
AES	11111111 (01-1410)	0191H tab
RI	254	0.0
R 2	372	- 1060


STATEON	MUMBER	1 325
FREQUENCY, 18/21 20/18 10/24 51/2 25/6 128 64 32 16 8	AFPARENE # ASUAED (0:0:1-0) 94.00 131.00 205.00 319.00 488.00 725.00 947.00 1402.00 2341.00 2341.00	CALCULATED (DIN1-H) 95.09 133.85 210.18 320.47 445.29 552.84
	LATERED	MOOEL

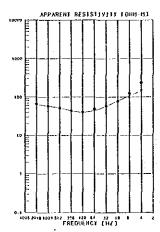

	RESISTIVITY CONFI-MU	
RI	105	- 0.0
R 2	\$000	- 107
R 3	887	- 651



	LATERED HOOS	L.
F	10161111	DEPTH CHJ
8.1	123	٥.
R 2	1490	123
8.3	886	662

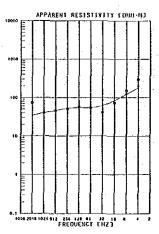


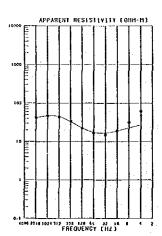
	LAYERED HODEL		
		STIVITY OUT-PR	DEP TH
R	, 	37	. 0.
A	2	2.3	- 70
R	3	60	- 196



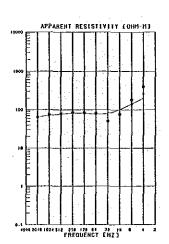
ROTTATE	HUMBER	3,45
FREQUERCT.	APPARENT	RESISTLATA
FREUVENCIA	EASURFO	CALCULATE
CHZ1	COHH HI	10H21-H3
2018	718.00	736.08
1024	7/5.00	742.44
512	801.00	909.12
236	904.00	931.50
128	1189.00	1135.05
84	1615.00	12/2.10
32	1940.00	1231.93
16	2265.00	1178.53
9.	3169.00	1227.01
	8125.00	13/1.03

·	ATERED NO	DEL
	OH-14114	DEPTH (H)
R i	774	- 0
R 2	1800	- 420
R J	119	- 2050
R 4	2500	- 3170

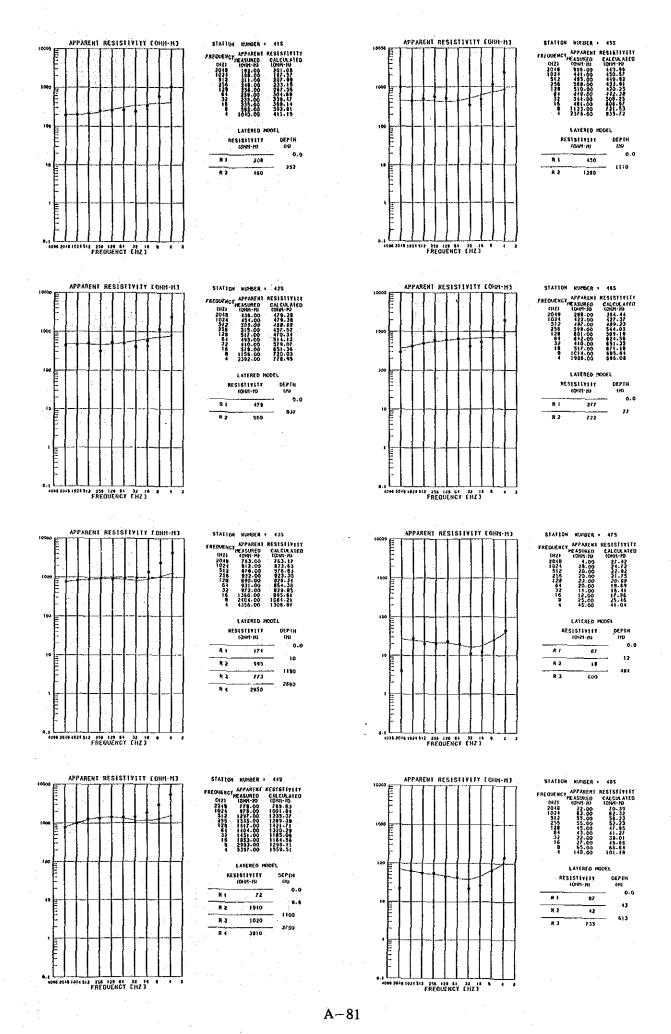


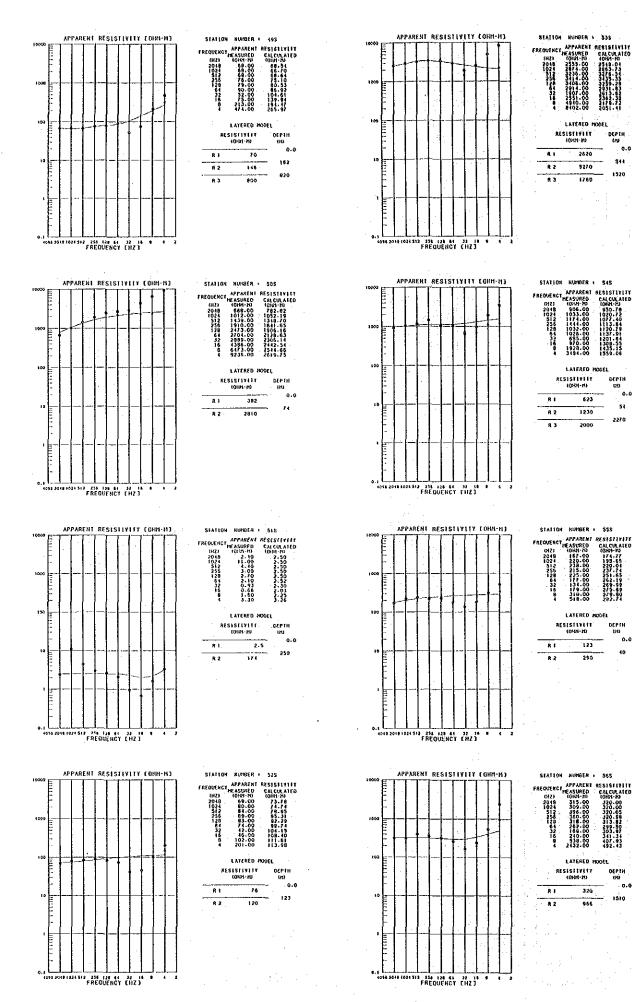

NUMBER	355
APPARENT EASURED 1044-143	RESISTIVITE CALCULATE (DROS-10)
\$9.00 \$1.00 43.00	64.48 57.68 51.47 43.88
19.00 57.00 77.00	39.98 41.12 57.18 78.65
234.00	107.83
	APPARENT # ASURED 10941-10 55-00 58-00 13-00 13-00 18-00 57-00 125-00 231-00

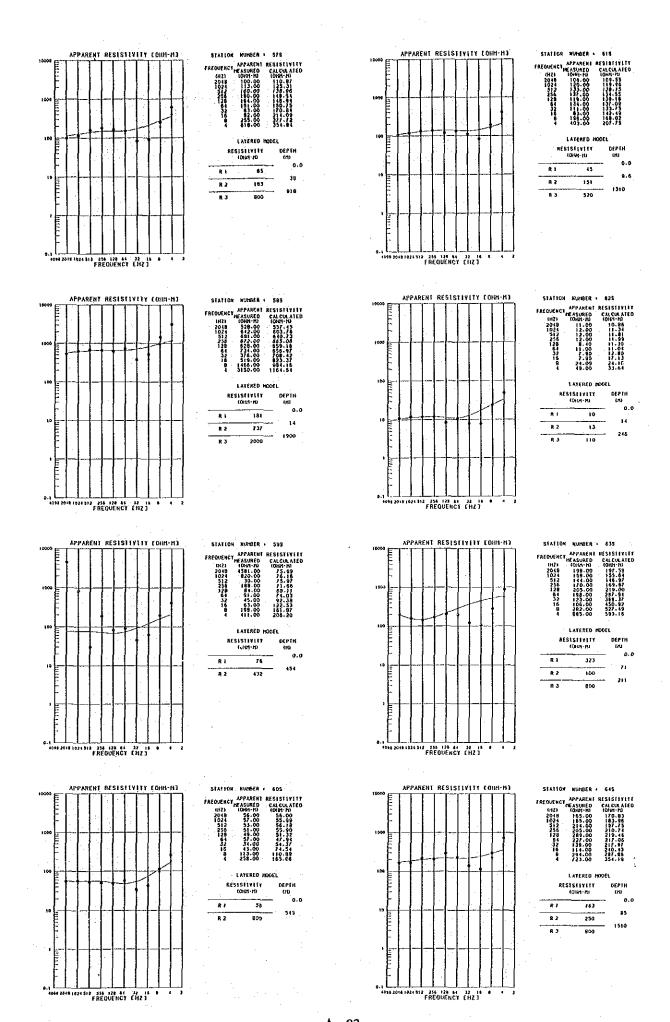

	TERED 1901	
DEPTH	RESISIEVEST (OHF-30)	
- 6	11	Ri:
- 43	73	H 5
- 311	328	R J

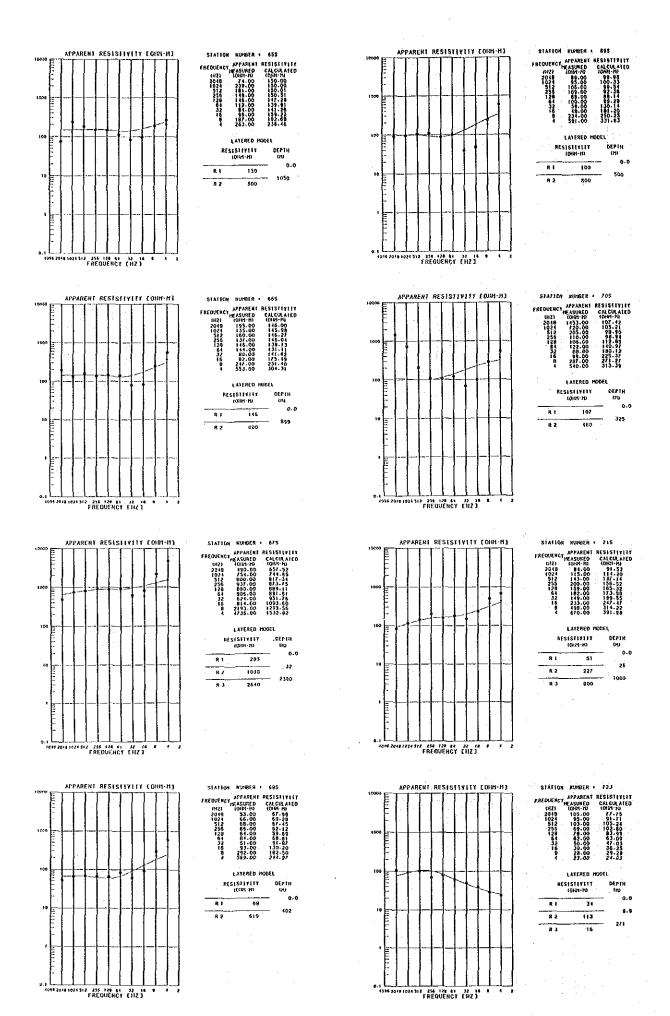

SIATION	NUMBER	395
FREQUENCY, (MZ) 2048 1024 512 256 128 64 32 16	APPARENT #EASURED 1084-10 73-00 46-09 51-09 57-00 55-00 41-00 13-09 151-09 293-00	RESISTIVITY CALCULATED INHT-TO 34-B9 40-D4 45-28 52-36 54-32 62-19 63-89 122-45 179-16

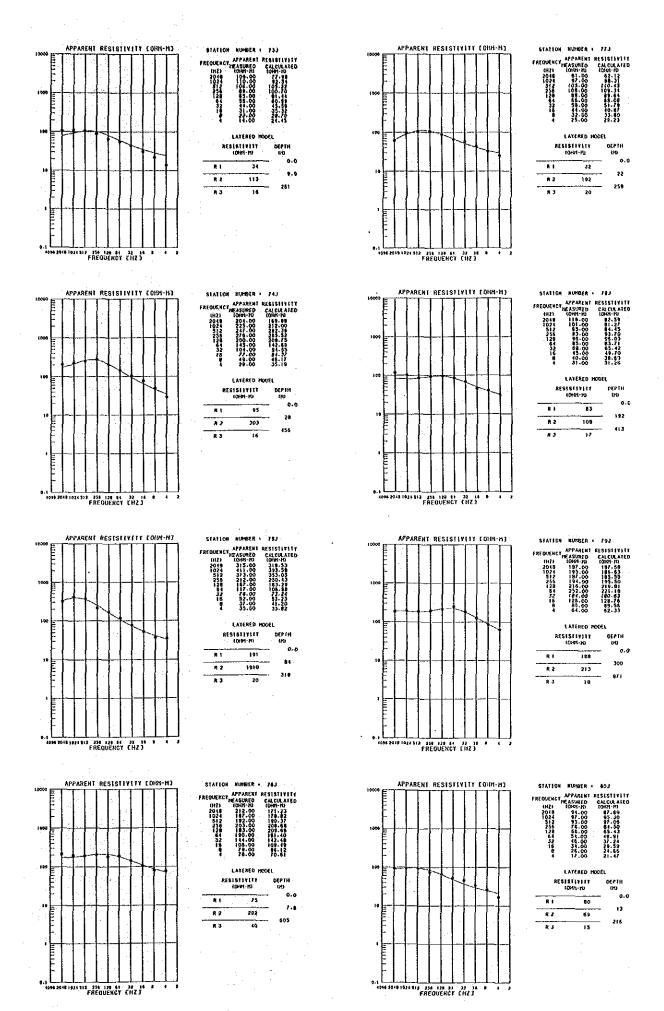
٠. ١	ATERED MO	DEL
	\$1141TT 0445-40	H1430
. 81	33	- 0.
R 2	76	- 42
R 3	800	- 652

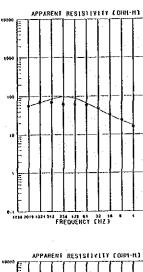



	LATERED MOO	€L.
. '	40:54:14 40:54:14	06PTH 010
. 81	41	0.0
R Z	2.7	140
R.J.	50	172

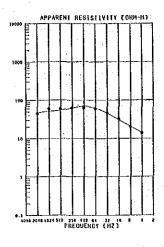

ROTTATE	NUMBER	+ 40S
FREDÆKCT.	APPARENT	
racoare,	EASURED	CALCULATED
182)	(CHEH- PG)	(0881-10
2018	64.00	63.14
1024	71.00	10.01
512	79.00	77.40
256	95 00	82.03
124	94.00	. \$1.63
64 .	20.00	17.05
32	51.00	81-15
16 -	77.00	101.65
8	181-00	141.59
4	394.00	200-47
	8 4 L.C	. '
	LAYERED	HODEL

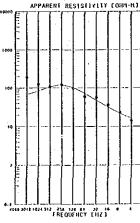

RES	71171121 04-140)	DEP 1H CHD
RI	33	- 0.0
R 2	93	- II - 786
E S	*00	~ ,,,,



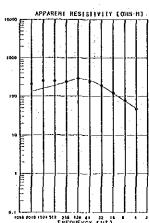


- 1510

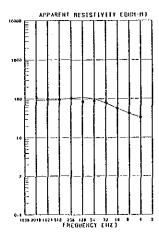



KOTTATE	NUNCER	91J
FREQUENCY.	APPARENT	
	e asured	CALCULATED
CHZ1 .	toyu-sty	
504B	56.00	56.71
1024	\$1.00	67.60
512	69.00	86.05
435	2 70	85 19
117	81.00	44.37
: 33	41.65	44.00
. ĭi	3 . 00	31.76
1.18	24.00	22.88
- Ā -	16.00	17.43

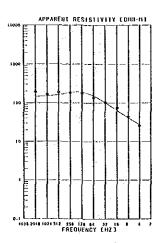
		LAYERED HOD	EL
	RE	SISTIVITY LOUIS HO	DEP1H (N)
-	RI	16	0.6
	8.2	104	- 6.0
-		7 9	- 315


STATION	XIAM EN	• 85J		٠.
tEOVERCY,	APPARENT	RESIG	M A1	
IHE) .	(0151-10	TOTAL	'n.	
1024	45.00	47		1
312 755	4.00	22		ď
()	\$5.00	11	39	
Ĭį	33.00	30 20	85	
4	14.00	14	. 30	
	1.3			
	LAVEREN	MANE		

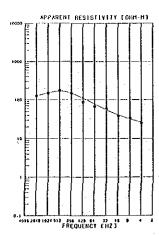
;	1 1	LAT	ERED HO	DEL
7	RE	SLST ION	V 1 T S-10	DEPTH
-	Ri		55	- 0.0
-	RZ		63	- 409
_	8.3		4.0	- 109


KO11A12	RIPPER	· 82J
FREQUENCY.	AFPARENT	
	EASUREO	CALCULATE
CUZI	10/14 - 113	CHIM-HI
2018	190.00	69.27
1024	125.00	83.39
512	108-00	105.58
256	121.00	118.10
īżė	97.00	tot 75
64	59.00	72.01
32	56.00	47.51
16	35.00	11.58
8	52.00	21.94
ě	14-00	18.16
		W10F4

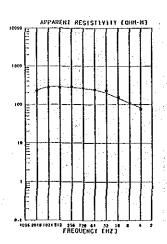
	LAYERED MODEL		
RE	101111212 45-14141	0EP1H 1NU	
- R I	55	· 0.	
8.2	128	- 8,	
R.J	6.4	- 115	


	ROLLVIE	I XUHSER	BBJ
FR	CHCT CHZ) 2048 1024 1024 258 128 128 32 16	APPARENT HEASURED 10HH-HI 207-00 247-00 239-00 239-00 243-00 193-00 77-00	RESISTIVITY CALCULATED 10HH-H1 131-31 184-90 235-37 203-09 261-61 197-40 119-44 74-88 48-45
:	RE	FVAREED S	DEPIN (M)
	A I	, 105	0.0

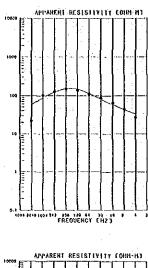
		9884114 9884114	DEPIH (H)
	RI	105	- 0.0
:-	R 2	304	- 52
_	R 3	9-2	- 845


STATION	KUMSER	·. 83J
FREQUENCY	APPARENT	RESISTIVITÀ
PREDUCENCY	MEASURED	CALCULATED
11123	1DHH-10	(OHHH-H)
2018	108-90	91.11
1024	97.00	93.05
512	95.00	95.28
256	101.00	103.24
128	85.00	108-95
64	88.00	98.60 77.27
16	56.00	37.10
"	43-00	42.50
ì	33.00	32.90
	LATERED	HOOEL

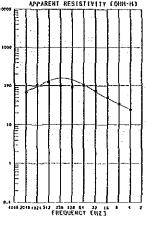
	LATERED MODEL		
	RESISTIVITY 06:1201		. DEP1H (M)
-	RI	. 44	- 0.0
_	R 2	99	- 1./ - 199
_	R 3	13	- 199


* STATION	NURTS F.R.	• 87J
FREQUENCY, (HZ) 2048 1024 512 255 128 64 32 16	APPARENT # ASPERT 191.00 165.00 186.00 175.00 175.00 175.00 175.00 175.00	RESESTITETY CALCULATED (0141-14) 1 45-28 150-92 161-32 165-40 169-51 150-99 51-03 41-15
•	26.00	27-69

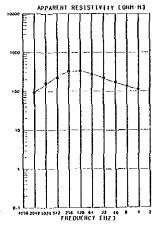
		- U	ATERED MODE	řt.
	7			H1930 UN
-	R	1	107	0.0
	R	2	159	19
•	R	3 ,	6.9	579


STATEON	KURBEA	1 B4J
FREQUENCY.	APPARENT	RESISTIVIT
(87)	MEASUREO (DIDI-H)	CALCULATED
2019	127.00	125.60
1024	14B-00	151.03
255 128	87.00	148.58
6.6	67.00	77.36
32 16	58.00 38.00	54.87 10.73
ę	34.00 25.00	31.95
		:

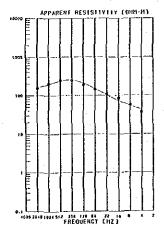
ı	LAYERED MOD		
	STIYETY 044-140	BEPIN (H)	
8 I '	126	- 0.0	
Я 2	315	- 129	
яз	15	288	

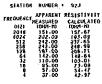

STA	I I CH	RUHDER		181	
FREOUT 20 10: 5: 2:	XC1 _H	FARENTE FASURED 10101-10 226-00 274-00 274-00 265-00 242-00 242-00 156-00 110-00	CS CA	7.7	
1	ĭ	75.00		¥1:73	:
٠.		LAYERED	HOOE	L, -	1
	RES	10101-10 10101-10	ī	DEPIN	1

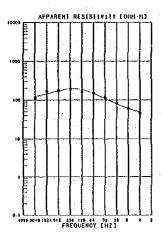
	-	rvice	מעם עשה	RL .
i	RE	1010	7117 1-19	DEPIN
-	RI		26	0.0
	R 2	-	735	- 7.9 - 243
	яз	:	157	- 923
:	Я 4		32	
٠.		٠		
		;		


ROSTATE	KUNBER	t 49J
FREQUENCY, 0121 2018 1024 512 216 128	APPARENT F ASURED IOIHI HI 22.00 103.00 128.00 138.00	REGISTIVITY CALCULATED (0)01-10 98-75 123-23 150-13 145-08
3,2	80.00 81.00 41.00 27.00	114.03 61.61 58.05 12.83 33.30

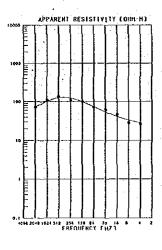
R1 2-3		11111	DEPIS
R 2 328			~ 0.
			- 1,
R3 141			- 169
	RÁ	16	- 448


STATION	NUMBER	, 603 i
FXEQUENCY	APPARENT	RESISTIVITY
LATING MAI	MEASURED	CALCULATED
(342)	(CHM-H)	(08PH-N)
2048	67.00	71.43
1024	105.00	10.86
512	124-00	135.65
256	100.00	158.54
128	91-00	144 25
	100-00	103.39
32 16	73.00 50.00	47.47
'8	34.00	33.24
š	21.00	21 65

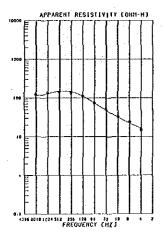

i	AYEREO HO	DE L
	\$1[¥[T¥ (H-):410	DEPIH CKD
R 1	. 11	- 0.
R 2	501	- 5.
8.3	10	- 421


STATION	RUISER	. 317	
FREQUENCY,	APPARENT	CALCULATED	
tHZ1	(CITH-HI	(M-MSD)	
2048	90.00	92+61	
1031	162-00	50.73	
512	212-00	235-44	
255 128	331.00	313.81	
128	255-00	277 92	
32	215.00	216.68	
ĩ.	173.00	167-76	
Ð	133.90	131-40	
4	112.00	1[2.5]	
	LATERED	MUNE	

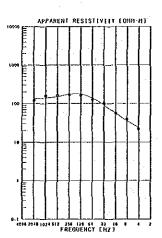
	94.444 H	OÉPUN HD
R 1	9.7	- 0
R 2	723	- 5
R 3	114	- 610
R 4	69	- 674



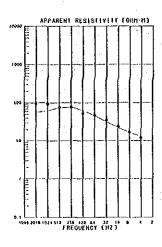
	ATERED MO	OEL .
	533713T MM-NJ	DEP 119 (14)
A 1	50	- · · ·
H 2	276	- 15
83	22	- 452

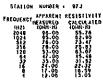


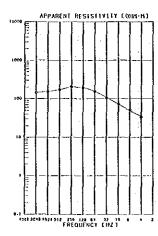
STATION	NUMBER	
FRECUENCY		#ES BI Y T ¢ALCULATED 1044-40 123-55 143-84 172-32 195-80 185-11 168-87 108-55 164-80
RES	AF. OO LATERED M ITSTITUTY ICHOI-HU	ZB, BT DOEL DEPTH CHI
RI	20	- 0.0
K 3	209	- 6.8
RJ	24	495



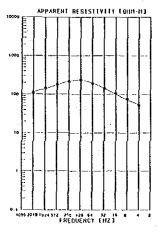
ι	ATEREO MO	Œι
	551715T 0407-HD	H1930 (H)
8.1	18	- 0.0
R 2	209	- 33
83	18	- 276


SFATION	MUMBER	• 95J
FREQUENCY.	APPARERI	RESISTITITY
	EASURED	CALCULATED
OIZ	COHM-HI	
2048	123.00	114.41
1024	133.00	128.66
512	144-00	149.16
255	133.00	145.70
129	112.00	111.64
64	74.00	74.48
32	\$1.00	(8.15
16	33.00	31.02
	21.00	22.28
4	13.00	16.53

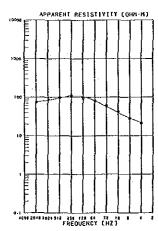

U	YEREO MODI	EL
	51) 1) 1) 1 FU1-10	ርኒዎች ርላያ
RI	18	0.0
R 2	140	4-8
R 3	6.8	75,


KĢ I TATZ	HUMBER	1.86
	AP2AREHT	
	E ASURED	CALCULATED
(HZ)	10441-111	(CH24-N)
2048	120.00	132.58
1024	150.00	139-42
\$12	183.00	151.27
256	169.00	175-08
138	163.00	176-23
64	125.00	35.97
32	100.00	11-02
16	56.00	35-45
9	39.00	35-92
4	22.00	23.94
	LAYERED	MONEL

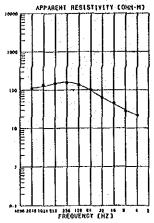
	TENED INDO	•
		H1430 (N)
	32	0.0
7	159	3.1
3	5.7	3+3
	RESIS (OI	RESESTIVITY (OHR-20 1 32 2 159

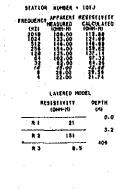


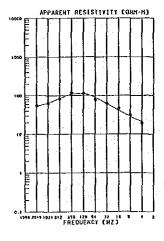
	LAVERED HOD	EL
RES	10654-85 10654-85	HI 43G
RI	20	- 0.
R 2	75	- 5.
8.3	4.6	- 259


STAFFOR	NUMBER	182
	APPARENT MEASURED	RESISTIVIT CALCULATE
(HZ) 2048	144 00	143.77
1024 512 255	153.00 171.00 204.00	154.08 173.17 199.26
120	153.00	154.69
32 16 8	105-60 72-60 52-60	106.83 71.66 49.37
7	34.00	35.02

t	ATERED HOD	EL :
	111112 14-140	9561H (4)
R 1	59	0.0
R 2	190	3.4
8.3	13	559

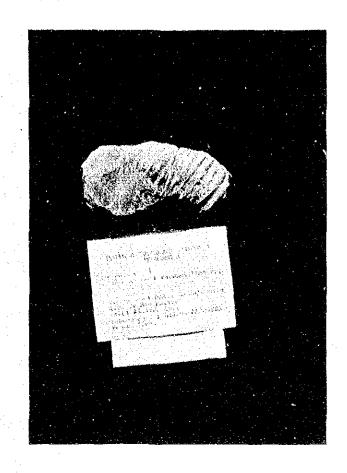

SEATER	果没能 ER	. 68J
FREQUENCY	APPARENT	RESISTITUE
	E ASURED	CALCULATE
(1/2)	(CH-HVS)	10/11/1-1/3
2018	109.00	113.72
1024	145.00	141.31
312	178.00	175.49
235	210.00	217.76
ĭžã	234.00	230.79
64	186.00	194.56
32	140.00	142.09
16	105.00	99.91
9	75.00	71.86
•	52.00	54.24

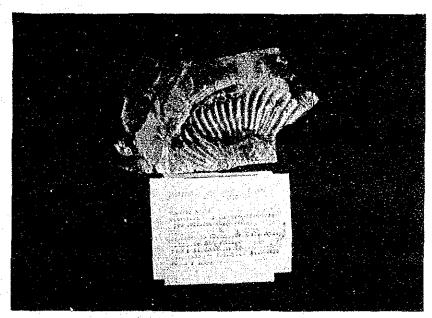

t	ATERED HO	EL .
	\$11411# DilM-M)	DEPTH
RI	16	- 0.0
82	261	- 5.3
ЯJ	23	- 635



STATION	NUMBER	1003
	TESRATOR	RESISTIVITY
FAEQUENCY,	EASURED	CALCULATED
tHZI	(OHPT-N)	1068-10
2049	74.00	76.28
1024	69.00	83.69
512	98.00	95.75
256	111.00	108.70
128	94.60	103.64
64	80.00	€0.88
33	60.00	57.05
15	42.00 28.00	28.66
?	20.00	20.00

. r	ATERED MO	DEL
	STLVITY DHY-HJ	DEPTH CH)
R 1	16	- 0.1
R 2	105	- 3.
* 3	9,6	- 385

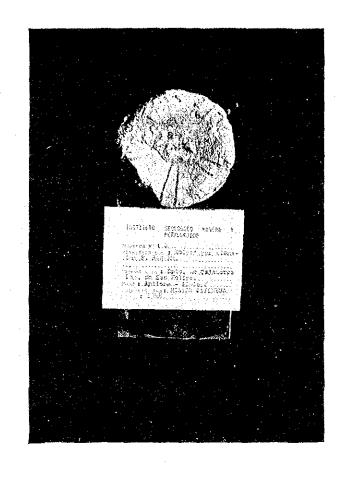

STATION	KURNER	1023
FREQUERCY (#Z) 2068 1024 - 512 238 F2B 64 32 18		RESISTIVITY CALCULATED 10HY-RI 52-65 44-84 84-84 107-50 119-72 81-42 41-43 28-74
,	19.00	25.01


٠	LAYERED HODEL			
		(0104-10 (121(11)1	DEPTH HH	
	RI	43	- 0.0	
	R 2	142	- 36 - 416	
	R 3	7.9	*10.	

NO. 1

FOSSIL Parahoplites sp.

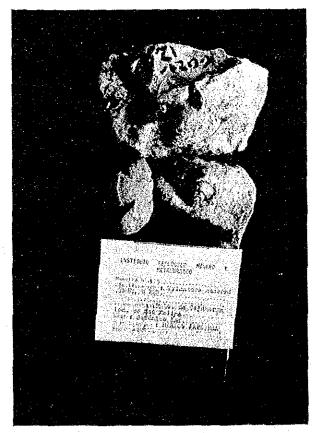
AGE, Albiano inf.

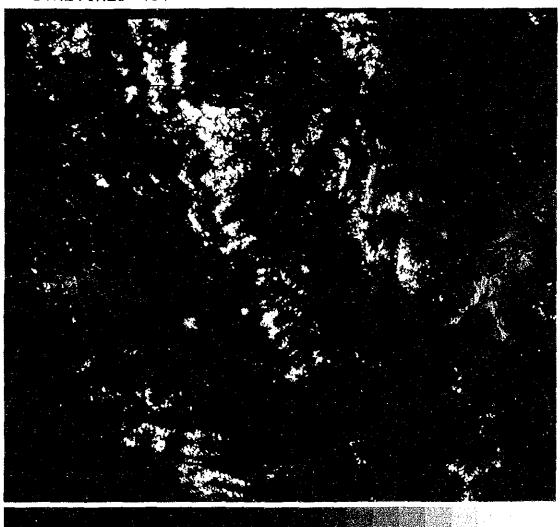

NO. 2

FOSSIL Oxytropidoceras peruvianum (VON BUCH).

AGE. Albiano medio NO. 4

FOSSIL Holectypus planatus F.ROEMER

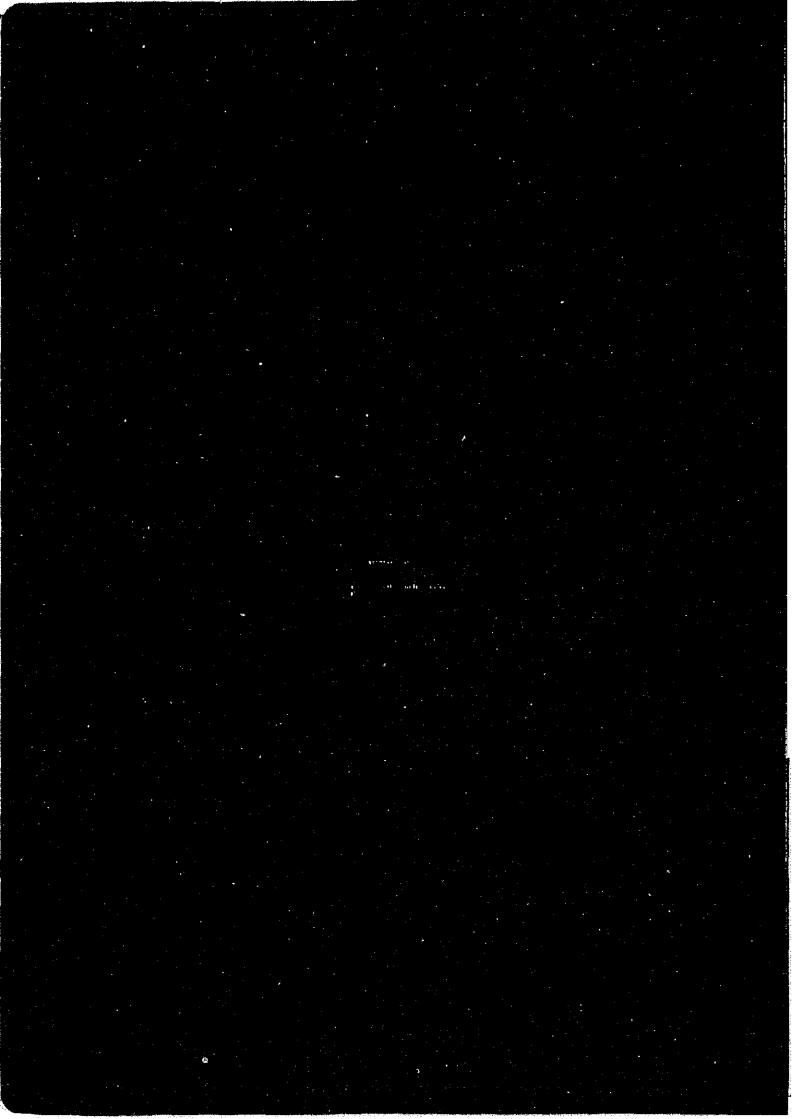

AGE. Aptiano-Albiano


NO. 5

FOSSIL Tylostoma cossoni THOM u PER.

AGE. Senónico inf.

STRETCHED 457


Data Acqisition: 1983/10/26,
Scene: Path 9/Row 64,
Satellite: Landsat-4,
Process: Linear Stretch
Color: Rand-4 Blue Band

1978/05/19 Path 10/Row 64

Landsat-3

Color

: Band-4 Blue, Band-5 Green, Band-7 Red

