2-4 Discussion

From the results of geological, geochemical and drilling surveys performed in Tundulu sector through the first and second phases, the following facts have been clarified.

Carbonatites are developed showing superposed double ring structure centering Nathace Hill. The outer ring constitutes Tundulu Hill. Generally speaking, among the carbonatites showing the double ring structure, those of early intrusion constitutes the outer ring and are composed of sovitic one.

As carbonatites on Tundulu Hill are developed in the outer side than those on Nathace Hill and are composed of sovitic one, it is inferred that the former intrude comparatively in the earlier stage of the igneous activity.

Carbonatites on the Nathace Hill are sovitic, ankeritic and sideritic ones and apatite rock. Most of them are developed on the eastern slope on the Hill, showing a half ring structure. The following two lithostratigraphic units have been discriminated for the carbonatites; namely, the upper unit is mainly sideritic and the lower one is apatite rock, sovitic and ankeritic carbonatites.

Carbonatites changes the distribution pattern of strike to surround Nathace Hill and tend to dip 70° to 90° towards the top of the hill (Fig. 13).

REE- and phosphorus- mineralized zones are recognized in both units on Nathace Hill described above at JMT-7, 14 and 19.

Concentrated apatite rock is found in the lower unit as rather irregularly-shaped body, the dimension of which is 150m in length and 20 to 30m in width.

Carbon and oxygen isotopic ratios are analyzed for carbonatite and apatite rock from Nathace Hill in order to elucidate the petrogenesis of these rocks.

Analyzed results for apatite rocks (8Y153 and 8Y154), composed of apatite, quartz and calcite and for sideritic carbonatite (JMT-22), composed of ankerite and siderite, are δ^{13} C=-7.4% to -5.4% and δ^{18} O=+5.4% to +8.7%, which suggest that these rocks are igneous in origin. The results for carbonatites (JMT-7 and -26), composed of kutnahorite and calcite, are δ^{13} C=-5.0% to -2.3% and δ^{18} O=+20.7% to

+22.0%. Thus the rocks are inferred to have undergone alteration through contaminated by meteoric water (See 4-2).

Based upon the results of drilling as well as upon of the second phase survey, a preliminary estimation of ore reserve has been made for the mineralized zones.

The estimation of ore reserves for REE-mineralized zone is made following the same method as in the case of Songwe sector. The estimation discriminates three ore bodies on the Nathace Hill. In table 10, are shown ore reserves and contents of REO, Sm, Eu and Tb for each body (Fig. 14).

As in the case of Songwe sector, it is impossible to compare the ore reserves of 0.6 million tons with those of other mines.

REO content is nearly the same as that of Bayan Obo Mine.

Ore (t) Grade (ppm) (m^2) (m) Block JMT Average Тb REO Hight Reserves Area No. 53.8 16.9 272.5 14, 22, 26, 27 434,020 22,414 5,480 26.4 R1 29.9 134,110 11,912 256.4 25.4 25 1,760 30,187 49.0 5.2 58,090 336.5 R3 17 1,880 10.3 626,220 20.886 275.0 60.8 18.6 Total

Tab.10 Calculation of ore reserves (REO), Tundulu,

A preliminary estimation of ore reserve has been made for the phosphorus-mineralized zones assuming the following:

cutoff grade; P more than 2.2% (5% in P205 equivalent)

thickness; arithmetic mean of zones which are assumed to extend

20,000

567

67

17

more than 10m

Bayan Obo (China)

area; area of apatite rock and apatite-bearing carbonatite cropped out on the surface

density of ore; 3.0 (REO; 3.0, apatite; 3.1)

The estimation discriminates a body in the present sector. The area with high potential for phosphorus deposit is generally identical with that for REE deposits shown above.

In table 11, are shown ore reserves and grade of P, P_2O_5 and REO for each body (Fig. 15).

As in the case of REO contents, it is impossible to compare the ore reserves of phosphorus with those of other mines.

The grade of phosphorus represented as P_2O_5 is 17.0%, higher than the value of Araxa Mine (P_2O_5 15.01%), suggests that the body has high potential for phosphorus deposits possible to be exploited.

Tab.11 Calculation of ore reserves (P), Tundulu

Block		(m ²)	(m)	(t)		Grade (%)	
No.	JMT	Area	Average Hight	Ore Reserves	P	P ₂₀₅	REO
P1	7, 25, 26, 27	5,560	28.6	477,050	7.4	17.0	1.1

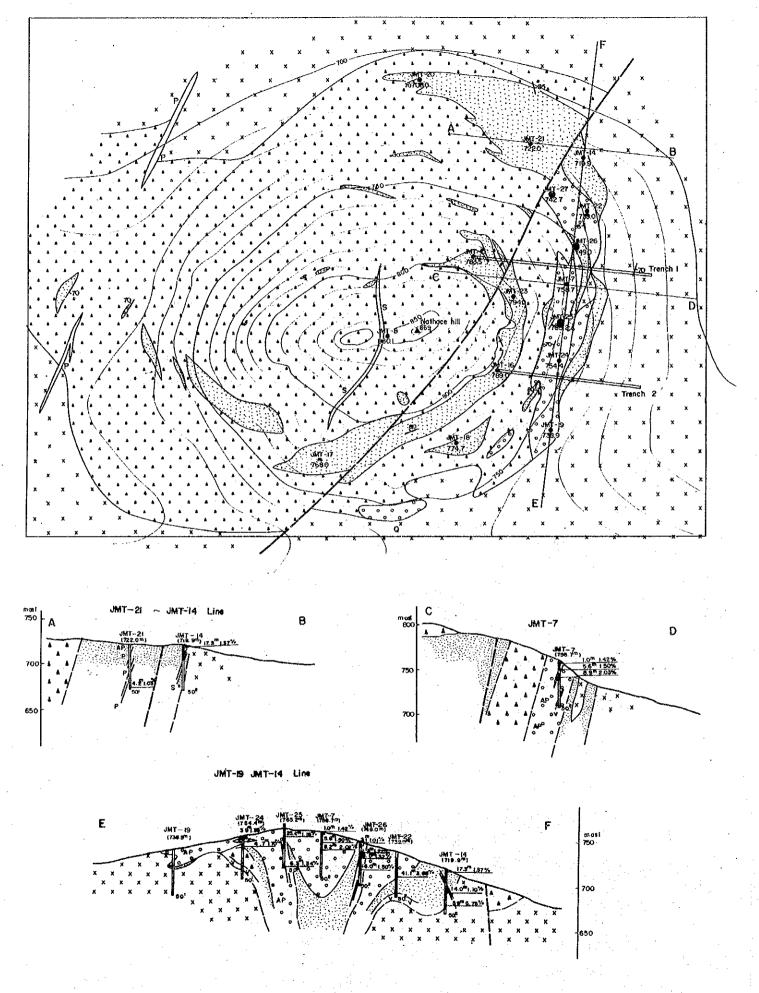
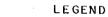
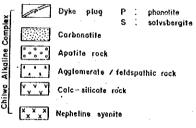




Fig. 13 Detailed geological map and profiles of Tundulu sector

- Foult
- Drilling site (1987)
- Thickness^m REO%

 (La₂Ce,Nd,Sm,Eu₃
 (Depli^m)

 Trench

Location map of survey area

Survey area

Survey area

Tupdaju Hill

Makkanga
Hill

Nothace Hill

Hombazu

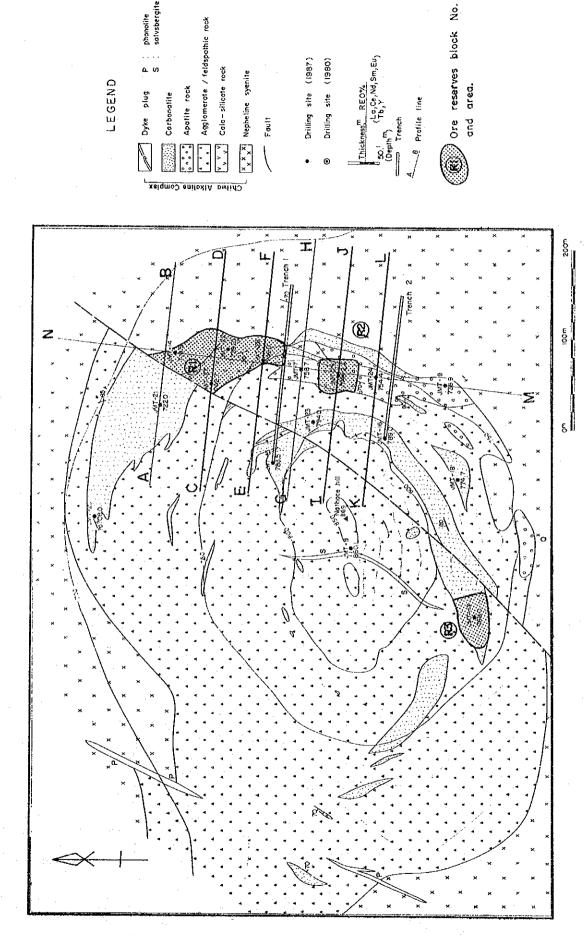
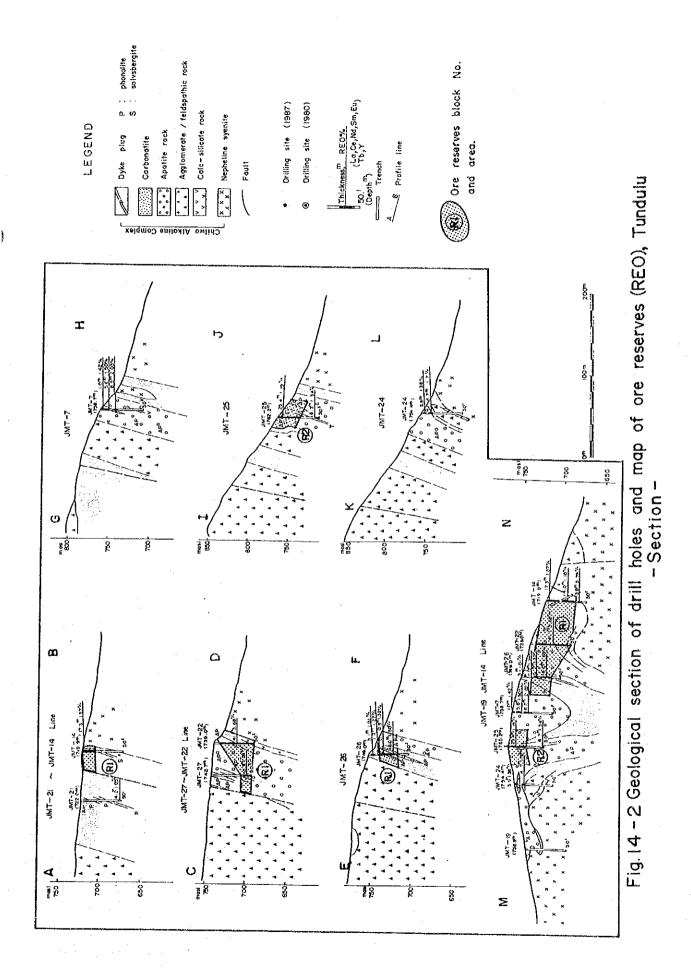



Fig.14 - I Geological section of drill holes and map of ore reserves (REO), Songwe — Plain -

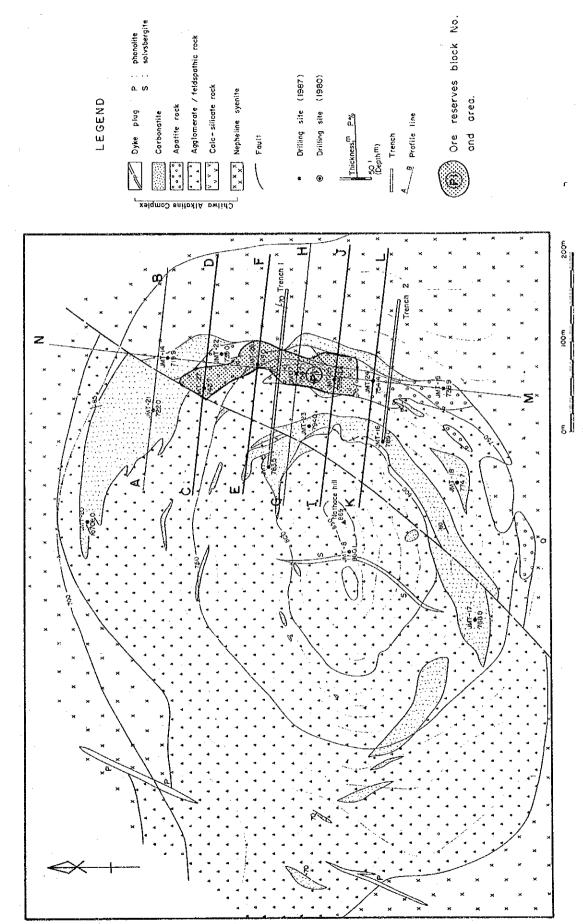


Fig. 15 - I Geological section of drill holes and map of ore reserves (P), Tundulu - Plain -

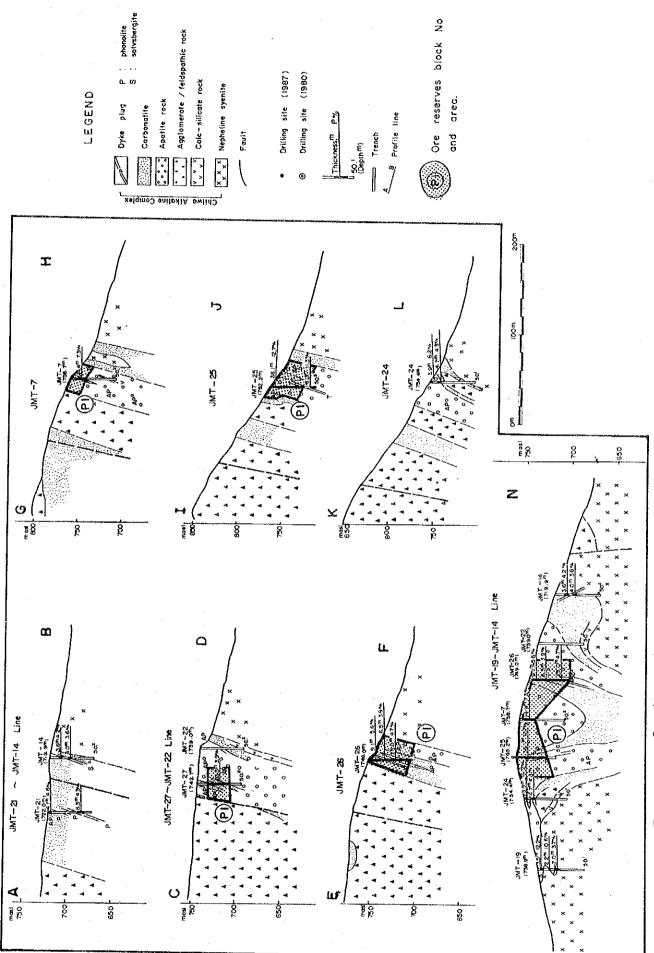


Fig. 15 -2 Geological section of drill holes and map of ore reserves (P), Tundulu -Section -

Chapter 3 Chilwa Island sector

3-1 Method of the survey

During the third phase, geological, geochemical and drilling surveys have been conducted.

The published topographic maps of 1/50,000 in scale were enlarged to make topographic maps of 1/5,000 in scale.

Route survey was carried out by using the enlarged maps. The outcrops of mineralized zones were determined by using a tape and a pocket-compass. The results were put on the route maps of 1/2,000 in scale. Trench survey was done under the scale of 1/200. Results were drafted on the geological map of 1/5,000 in scale.

Geochemical and geological surveys were performed at the same time. As a principle, samples were collected from carbonatites. Collected samples were chemically analyzed and the results were processed and analyzed statistically by computer to estimate the geochemical anomaly.

Drilling survey was performed using small drilling rigs to collect cores from the depth less than 50m. The results of core-observation were put on the geological log of 1/200 in scale. Samples of carbonatites were collected for chemical analysis to determine REE and phosphorus contents.

Contents of the survey are shown in Tab. 12.

Tab.12 Contents of survey, Chilwa Island

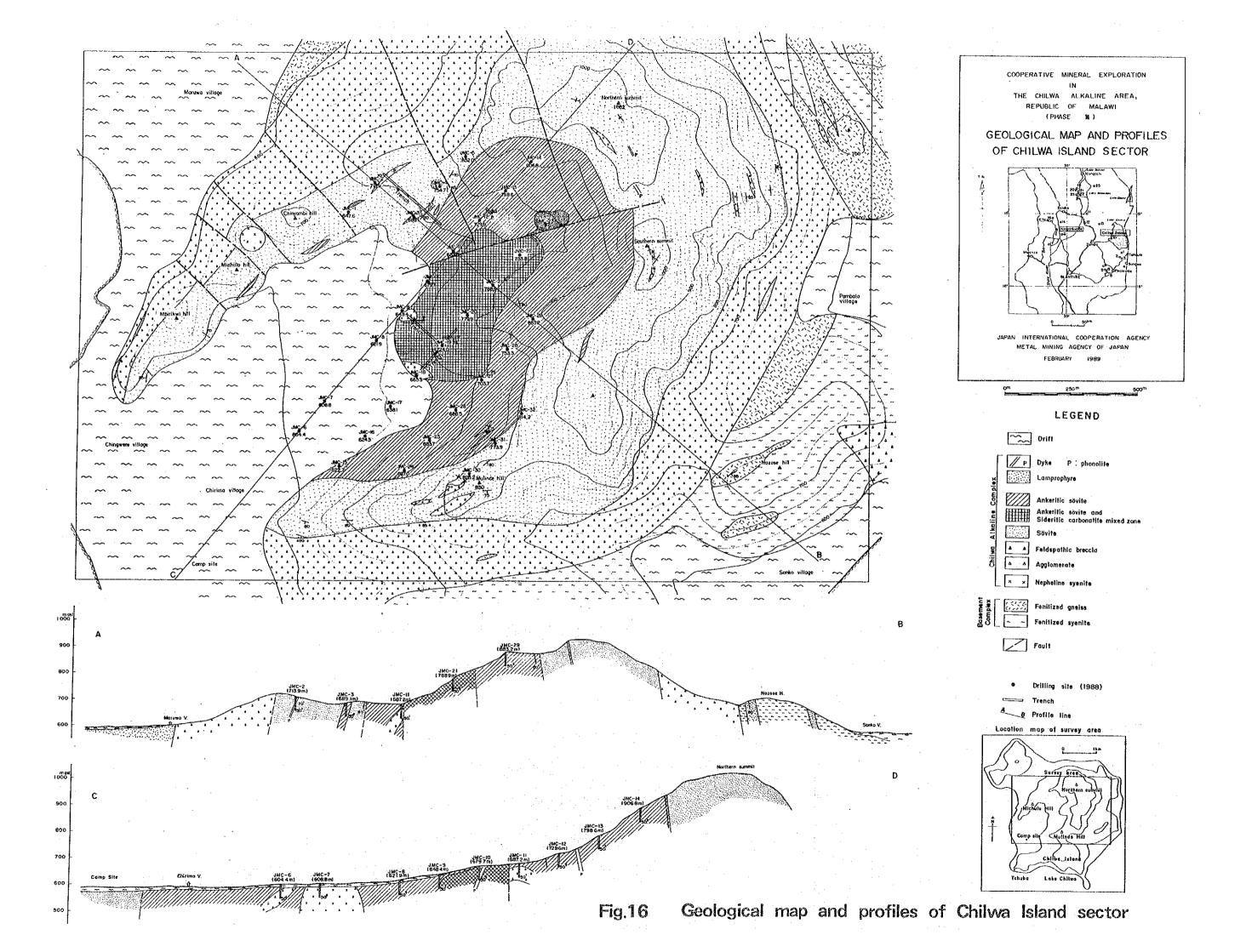
Geological and geochemical	l survey	Drilling serve	У
Area	6 km ²	No. of holes	32
Route survey	20 km	Total length	1,606.4 m
Trench survey	600 m	Inclination	-90°
Assay of geochemical samples	s 151 pcs	Assay of ore samples	322. pcs
Microscopic observation (Polished thin section)	32 pcs	Assay element:	
X-ray diffractive analysis	15 pes	La, Ce, Nd, Sm, Eu, Tb,	Nb, Sr,
EPMA	5 pcs	Y, P (10 elements)	
Whole rock analysis	20 pcs		
Isotope analysis	6 рся		

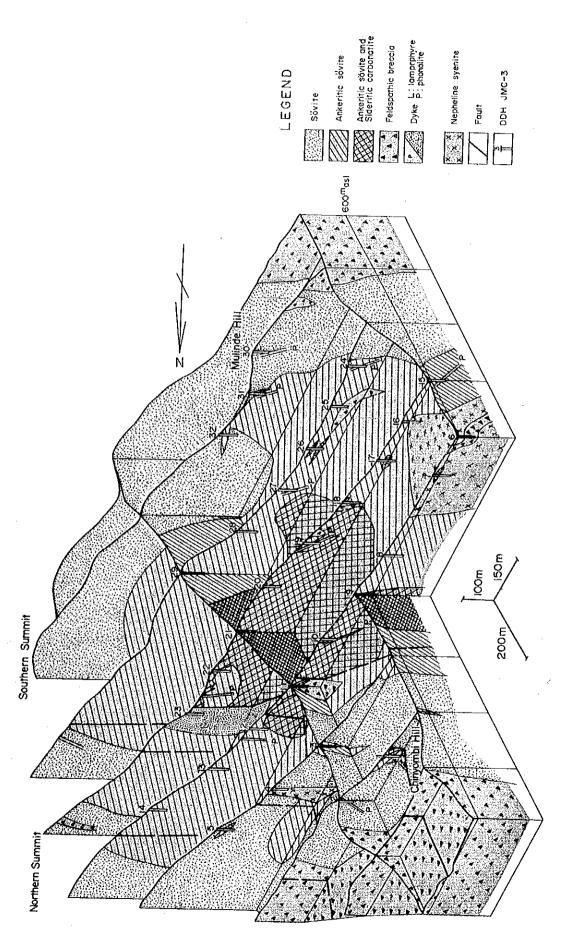
3-2 Geology (Fig. 16, 17)

Constituent rocks of this sector are as follows.

Age	Rocks					
Late Jurassic to early Cretaceous	"Chilwa-Alkaline Province" Carbonatites (sovitic, ankeritic, and sideritic) Breccias (agglomerate, felspathic breccia) Nepheline syenite Dykes (phonolite, trachyte, nephelinite, lamprophyre etc.)					
Late Precambrian to early Cambrian	Gneisses and syenites					

Late Precambrian to early Cambrian basement rocks of gneisses and syenites are distributed in the outermost part of the sector and have undergone intense fenitization.


Gneisses are gray to grayish green in color, composed mainly of K-feldspar, plagioclase, quartz, clinopyroxene, common hornblende and biotite. Accessory minerals are apatite, ilmenite and magnetite.


Syenites have coarse-grained grayish K-feldspar and fine-to medium-grained clinopyroxene, plagioclase and quartz. Accessory minerals are apatite, pyrite and magnetite.

Igneous rocks of "Chilwa Alkaline Province" are developed throughout the island showing a ring structure, where the lithofacies are changed, from the outermost side inward, breccias, sovitic carbonatites, ankeritic and sideritic carbonatites. The diameter of the ring is approximately 2 km.

Nepheline syenite occurs around Michulu and Chinyombi Hills, situated in the northwestern part of the sector. It is leucocratic to pale pink in color, showing medium-grained equigranular texture.

Breccias occur as a small body in the carbonatite and as a layer of

rig. 17 Panel diagram of the Chilwa Island carbonatite complex

100m to 700m width along boundary between carbonatite and basement rocks. Breccias are classified into feldspathic breccia and agglomerate and the former is predominant in the sector.

Those rocks found in and adjoining to carbonatite tend to undergo carbonitized alteration. They are reddish brown to dark brown in tint and often intruded by small veins of dark manganese minerals. Breccias with interstitial carbonate always have diameter ranging from several centimeters to several meters.

Carbonatites in this sector are classified into sovitic, ankeritic and sideritic. Sovitic carbonatite is developed on and around the top of the Island from Mbirikwi, Michulu and Chinyobi Hills through Northern and Southern summits to Mulinde Hill.

Sovitic carbonatite is mainly composed of medium- to coarse-grained whitish to grayish calcite. Around Chinyombi Hill it is rich in pyroxenes and is gray to dark gray in color. Apatite, fluorite and pyrite are found as accessory minerals in places. X-ray powder diffraction analysis, has shown pyrochlore, synchysite, strontianite and apatite. This carbonatite shows a ring structure, dipping steeply outward.

Ankeritic and sideritic carbonatites are developed in the inner side of sovitic carbonatite, showing a ring structure with 1km diameter centered in the central part of Chilwa Island. The outer part of the ring is constituted by ankeritic and the inner part by mixed zone of sideritic and ankeritic ones. Ankeritic carbonatite is medium—to fine—grained and dark gray to dark brown or yellowish brown in color. Fine—grained pyrite and fluorite are visible. Main constituent minerals are ankerite and calcite and X—ray powder diffraction examination has detected bastnaesite, calkinsite, strontianite, synchysite, pyrochlore, betafite and apatite.

Dyke rocks are phonolite and lamprophyre. The former is several meters in width and the latter is found in the scale of 50m X 100m around JMC-23.

The geological structure of rocks of "Chilwa-Alkaline Province" is characterized by a ring structure.

Based upon the analyses of distribution pattern of stress, Garson et al. (1958) has assumed that the igneous activity occurred at three places of around 1,700m, 1,000 and 300m below the ground surface, each of them are arranged vertically.

3-3 Results of geochemical survey

Geochemical samples collected were mostly carbonatites. 151 samples were collected and were assayed for 10 elements. The elements assayed and their detectable limit of each element are shown in below.

Detectable limits

(ppm)

Element	La	Се	Nd	Sm	Eu	ТЪ	Nb	Sr	Y	P
Limit	1	2	5	0.1	0.1	0.1	10	1	10	10

When histograms of the analyzed values of this sector are examined, most of the elements show the lognormal distributions rather than the normal distribution. Therefore, the values are changed into logarithm to be statistically analyzed and processed by computer.

3-3-1 Statistical value

Statistical values of each element and REO of this sector as well as the crustal abundance are shown in Tab. 13.

Averaged contents of nearly all elements analyzed in carbonatite here have over ten times higher than the crustal abundance.

It suggests that these 10 elements can be used effectively as pathfinder element of carbonatites in Chilwa Island sector.

Tab.13 Statistical values of geochemical survey, Chilwa Island (ppm)

					·	<u>,</u>	·
Element	Rock Type	No. of Samples	Max.	Min.	Geometrical Mean (M)	M+1S	Abundance (Earth Crust)
La	Carbonatite	117	29505	63	1309	4033	25
	Others	34	6163	51	512	1871	25 25
Ce	Carbonatite	117	33400	95	2544	7543	81
Ce	Others	34	14979	79	968	3942	81
	Carbonatite	117	8031	16	845	2482	20
Иd	Others	34	5426	14	313	1531	20
Sm	Carbonatite	117	1233	0.05	87.9	680	4
эш	Others	34	971.5	0.05	46.4	394	4
	Carbonatite	117	292.5	1	31.0	80	0.8
Eu	Others	34	170.1	0.05	10.9	81	8.0
Tb	Carbonatite	117	87.2	0.05	2.7	35	0.5
ΤD	Others	34	59.5	0.05	1.3	20	0.5
ΝЬ	Carbonatite	117	9155	0.5	121	1207	20
NO	Others	34	2539	6	214	857	20
Sr	Carbonatite	117	15088	116	3181	7823	300
2.0	Others	34	11782	64	1529	5223	300
Y	Carbonatite	117	947	24	173	360	38
1 .	Others	34	818	20	110	294	38
	Carbonatite	117	61493	34	2046	8723	900
P	Others	34	164631	206	2672	9467	900
	Carbonatite	117	83009	249	6186	17863	
REO	Others	34	31762	251	2457	9531	1

3-3-2 Correlation of the elements

Correlation coefficient of each element in this sector is shown in Tab.

Pairs of elements of extremely strong correlation having correlation coefficient over than 0.8 are (La, Ce), (La, Nd), (La, Eu), (Ce, Nd), (Ce, Eu), (Nd, Eu), (Nd, Y) and (Eu, Y). All of them are combination of REE.

As such REE minerals as bastnaesite, calkinsite and synchysite are recognized from this sector. It is considered that Sm, Eu and Nd replace parts of La and Ce in the above-shown minerals.

Tab.14 Correlation coefficients of elements, Chilwa Island

*************	* * * * * * * * * * * * * * * * * * *	::::::::::::::::::::::::::::::::::::::	교실 왕의 다음 다	보기원정기보고	******	******	u de sa sa de sa	2000年2000年20日	以内部公司	윤경 전체 등 목 17 2
Correlations:	logLa	1ogCe	logNd	logSm	logEu	logTb	logNb	logSr	logY	logF
logia	1.00									
logCe	.99	1.00	٠.							
logNd	.95	.97	1.00						•	
logSm	.71	.75	.77	1.00						
LogEu	.81	.84	.89	.73	1.00					
logTb	.49	.51	.54	.41	.55	1.00				
10gNb	~.35	36	36	32	-,25	26	1.00			
logSr	.36	.37	.42	.21	.40	.25	.12	1.00	•	
logY	. 77	80	.83	.73	.81	,54	.26	.38	1.00	
logP	.12	.13	.15	.08	. 17	.20	. 2	60	.27	1.00

3-3-3 Distribution of anomalies

The following methods are used to select geochemical anomalous values in Chilwa Island sector.

The thresholds and anomalous are defined as:

the thresholds = M + 1S

the anomalous values \geq M + 1S

where M: mean value of elements

S: standard deviation

The thresholds and anomalous values are shown in Tab. 13 and their distribution is mapped in Fig. 18.

It is inferred that ankeritic carbonatite and mixed zone of ankeritic and sideritic ones indicate anomalous values of REE and Sr. While Nb-anomaly is found in sovitic carbonatite and P-anomaly in sovitic and ankeritic carbonatites.

Therefore, it is concluded that the central part occupied by ankeritic carbonatite and its mixed zone with sideritic carbonatite have higher potential for REE, while the outer part occupied by sovitic carbonatite for Nb and P.

3-4 Drilling survey

As a result of the first phase survey, Chilwa Island sector has been selected as a sector with high potential for of carbonatite deposits.

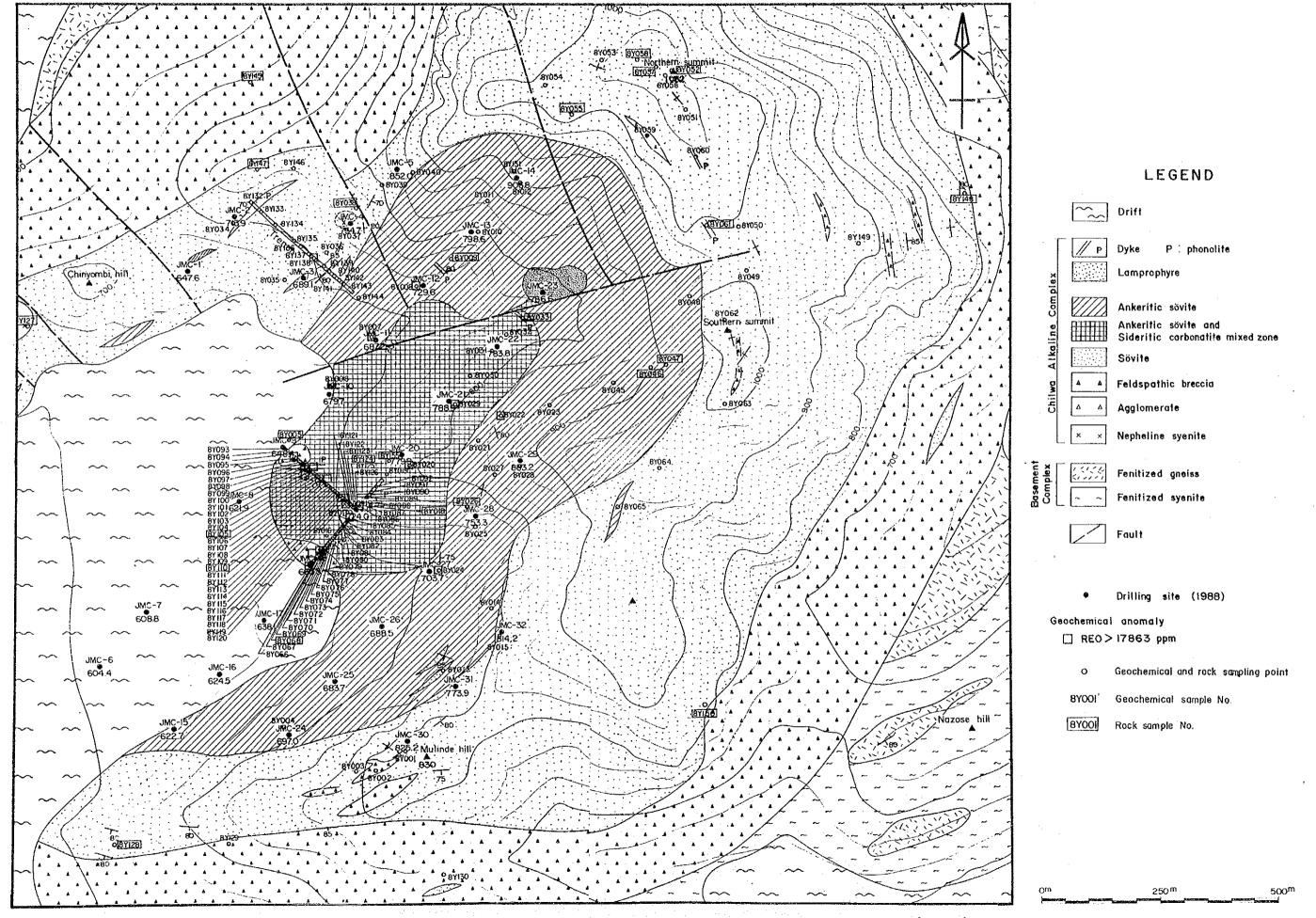


Fig. 18 – 1 Distribution of geochemical anomalies, Chilwa Island (REO)

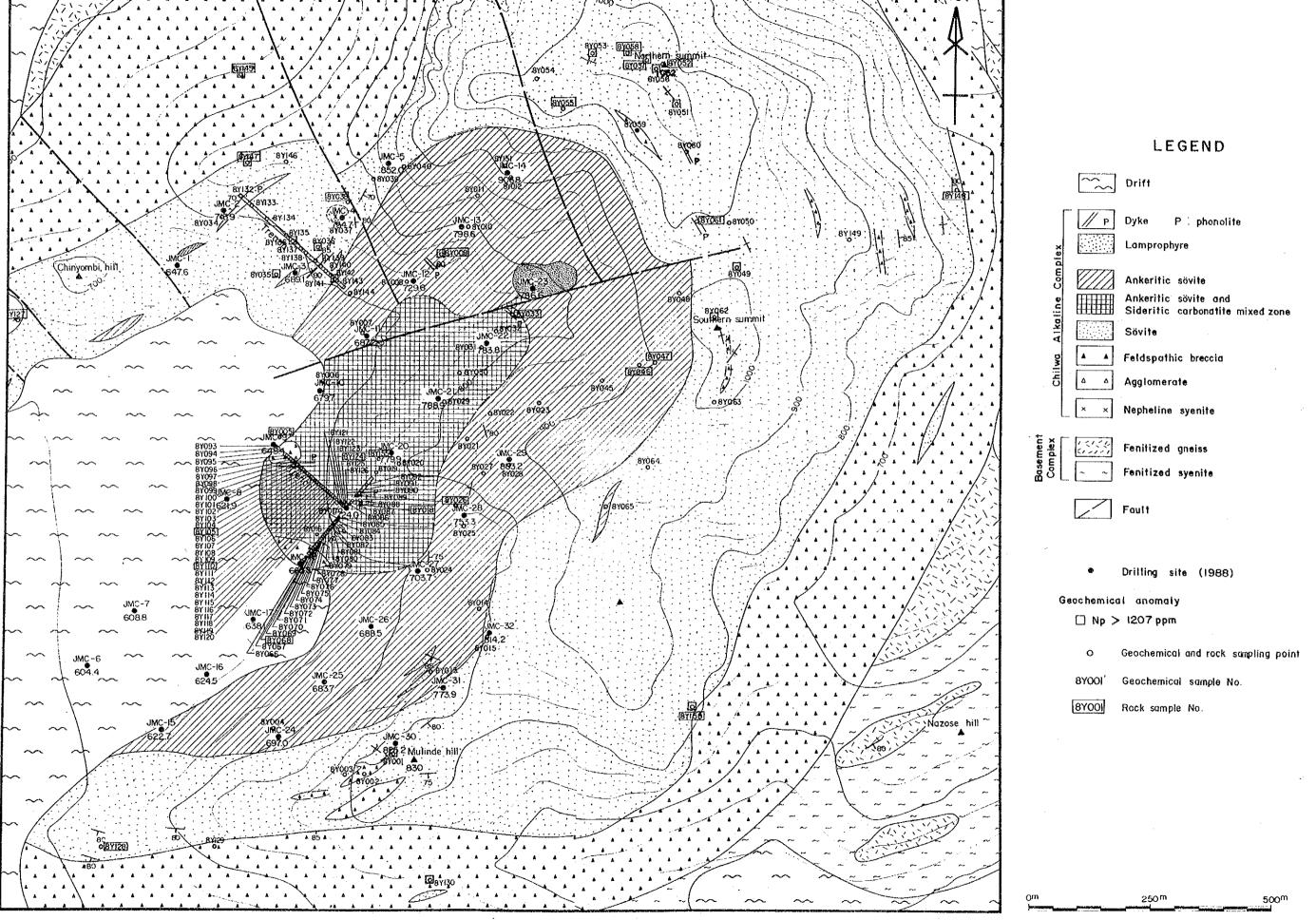


Fig. 18-2 Distribution of geochemical anomalies, Chilwa Island (Nb)

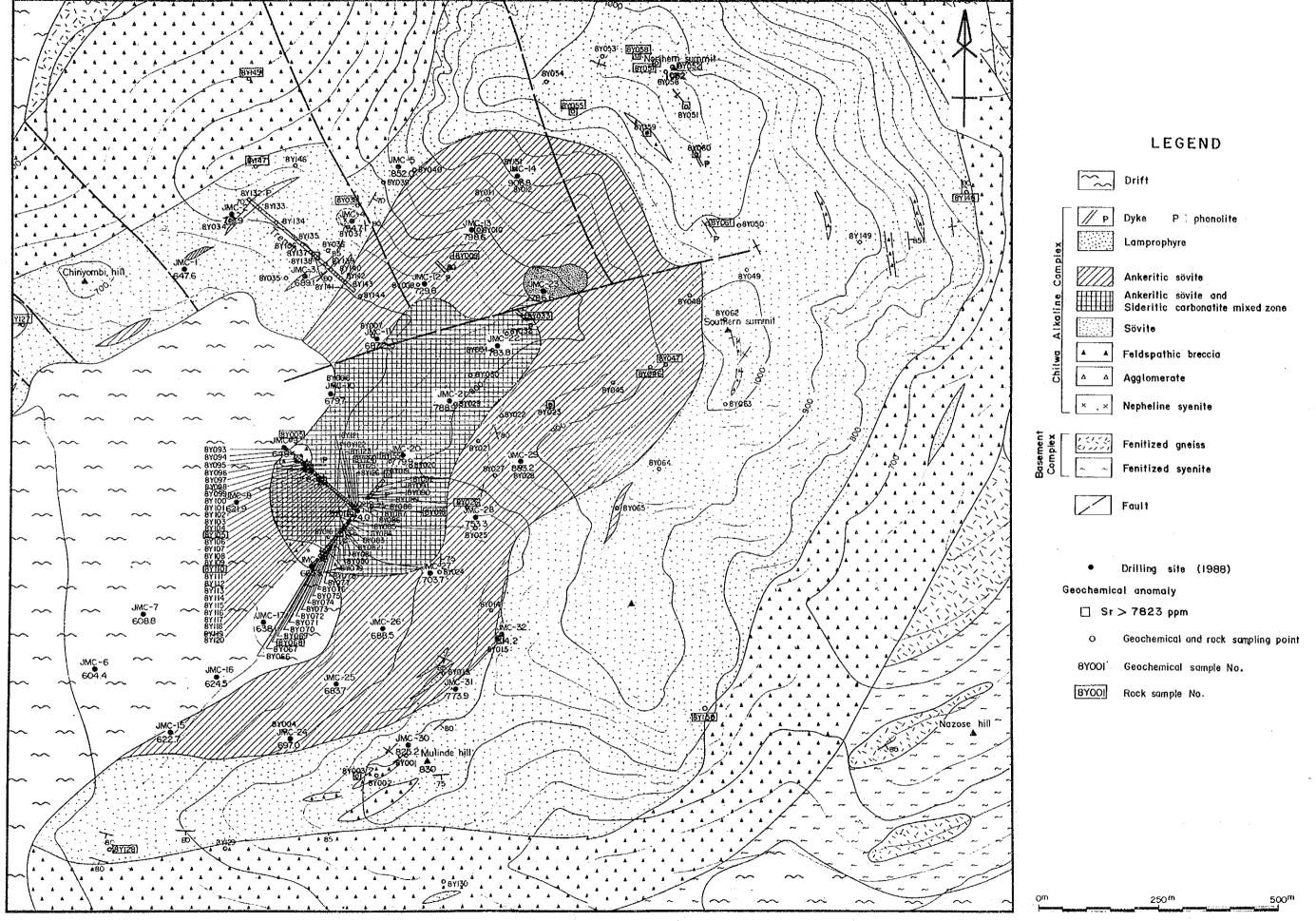


Fig 18-3Distribution of geochemical anomalies, Chilwa Island (Sr)

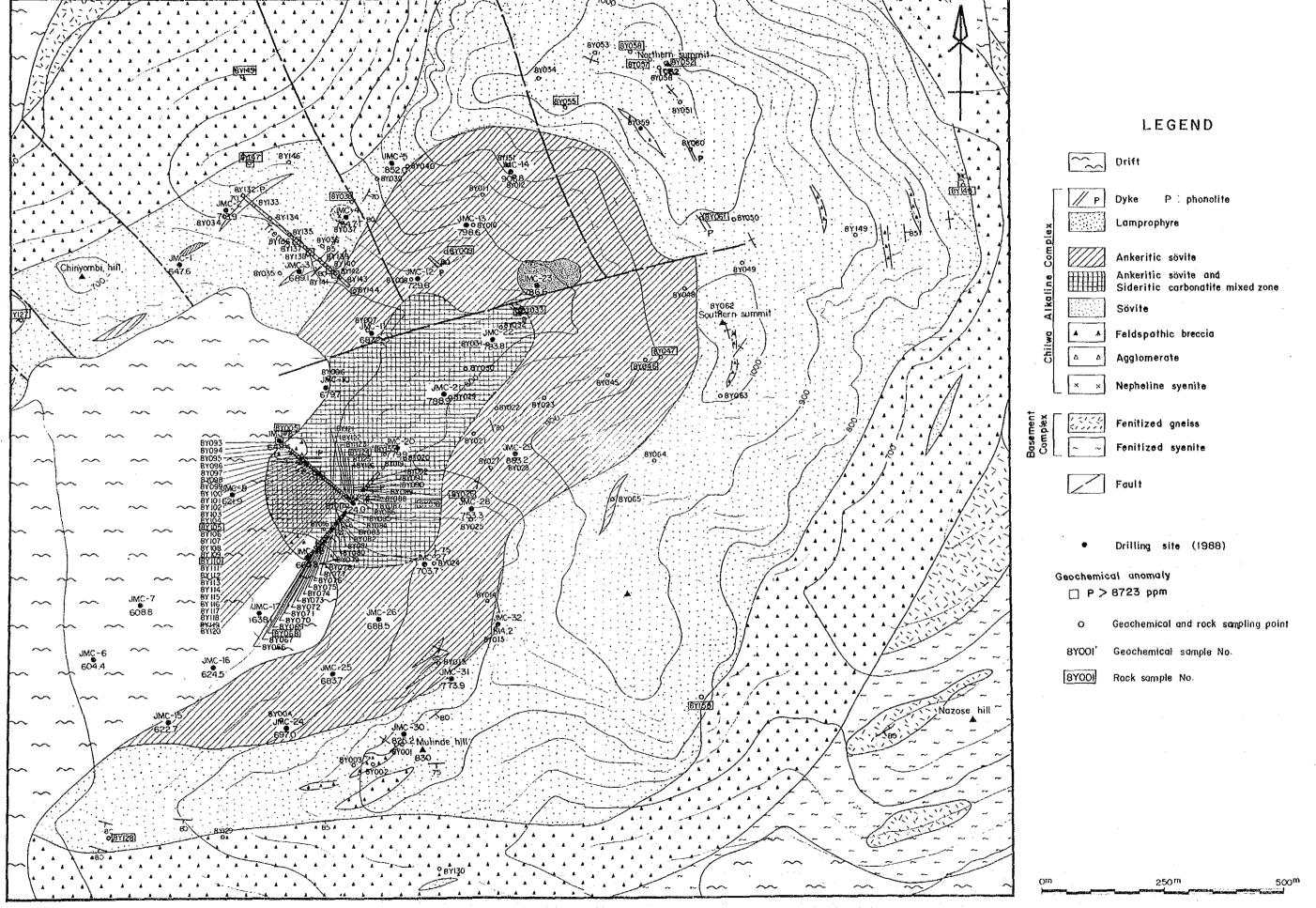


Fig. 18-4 Distribution of geochemical anomalies, Chilwa Island (P)

Drilling was performed to clarify how mineralized zone occur in carbonatites in this sector.

3-4-1 Outline of drilling

Whole set of drilling rigs are transported to the survey area from Tundulu sector. Operations were performed in the same way as in Songwe and Tundulu sectors.

Contents of the drilling are as follows:

No. of drill holes	Hole length	Core length	Core Recovery except soils	No. of analyzed samples
32	1606.4m	1,391.85m	93.0%	322

Drilling covers 81 days, from August 6 to October 25.

3-4-2 Drilling procedure

Drilling rigs were transported from Nathace in Tundulu sector to Kachulu harbor on the Lake Chilwa, using trucks of 4 and 11 tons burden. From Kachulu harbor to Tchuka harbor on Chilwa Island, they were transported using midget craft, and then to the camp by human power.

Setting up of rigs was firstly made at JMC-26. Drilling in Chilwa Island sector was performed in the following order of site number, JMC-6, 15, 7, 16, 17, 25, 18, 24, 26, 30, 27, 31, 19, 32, 20, 28, 21, 29, 23, 22, 13, 12, 14, 4, 5, 2, 3, 1, 11, 10, 9 and 8. Location of drilling sites is shown in Fig. 19.

Transport routes of one meter wide were constructed from site to site, total length reached 7,000m. Construction of the routes and land readjustment around each site was performed by human power as in the cases of Songwe and Tundulu sectors.

Drilling through surface soil was performed using Metal shoe (73mm in diameter), and after reaching hard rock, diamond shoe (73mm in diameter) was used to set BW casing pipe. A diameter of diamond bit was 56mm at the bottom.

The progress of the operation at each drill hole is summarized in performance of the drilling.

3-4-3 Geology and mineralization of drill holes

Drilling was performed, from outcrop at the surface to about 50m depth, mainly aiming at clarifying mode of occurrence of useful minerals rich in REE to evaluate the potential as carbonatite ore deposits.

Geology of each drill hole is shown in Fig. 20. Chemical compositions and REO of core samples are shown in Appendix 2.

REE-mineralized zones defined as having over 1.0% REE oxides content are listed in Tab. 15. In Tab. 16, shown are phosphorus-mineralized zones where phosphorus content is over 2.2% (approximately 5% in P_2O_5 equivalent) and the length is over 2.0m.

In Chilwa Island sector, REE-mineralized zones are recognized at JMC-3, 10, 11, 12, 19, 20, 21, 26 and 29, where the thickness of zones are over ten meters. Description of each zone is given in Tab. 17.

Tab.17 Relationship between REO mineralized zone and geology

JMC	Depth	Thick	REO	Geology
	а а	125	, x	
3	12.1 ~ 47.2	35.1	1,64	Phonolite dyke bearing ankeritic sovite with siderite
10	7.2 ~ 22,2	10.0	2.15	ditto
11	1.1 ~ 11.7	10.6	1.54	Feldapathic breccia and aukeritic sövite
1,2	2.2 ∿ 50.2	48.0	1.48	Ankeritic gövite
19	1.0 ~ 18.3	17,3	1.46	Ankerite bearing sideritic carbonatite
20	0.4 ~ 21.4	21.0	2.05	Sideritic carbonatite and ankeritic sovite
21	21.6 ~ 46.5	24.9	1,33	ditto
26	15.0 ∿ 47.9	32.9	1,26	Sideritic carbonatite, aukelitic sövite and feldspathic breccia
29	0.4 ∿ 10.4	10.0	1.28	Ankeritic sövite

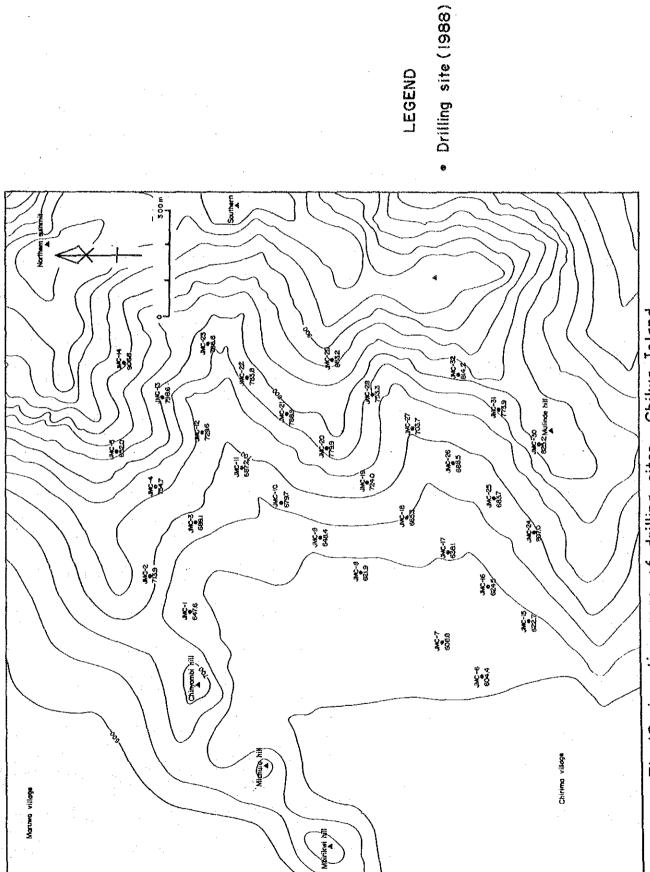


Fig. 19 Location map of drilling sites, Chilwa Island

Performance of the drilling, Chilwa Island (1)

Hole	Drilled length	Core length	Core recovery	Working period		Bit size Ø 73 mm		Bit size of 56 mm
	(m)		except soil(%)	M.D. ~M.D	Depth(m)	Perfor manee of the drilling	Depth(m)	Performance of the drilling
JMC- 1	50.20	39.70	91.7	10.13~10.14	06'9	0-6.9 m drilling with metal shoe,	43.30	Drilling with diamond bit.
						Using TK - 60,		Using TK-60
1 120	c c					Installation of BW Casing pipe		33.1 m Escape of whole water
7	o roc	4 6.20	0.00	10.8~10.10	1.60	1.6 m drilling with metal shoe,	48.50	Drilling with diamond bit.
						Trefellstion of BU/ Cosing pine		Using 11K-60,
JMC- 3	5030	4 6.2 0	93.9	10.11~10.12	1.70	Orll a drilling with metal shoe	7007	Data Discape of Whole Water
					·	1.1m-1.7m drilling with diamond	200	
						bit. Using TK-60, Installation		420 Harane of whole weter
J.MC- 4	5 0.2 0	39.70	85.0	10.3~10.5	3.50	or have casing pipe 3.5m drilling with metal shoe,	46.70	Drilling with diamond bit.
						Using TK-60.		Using TK-60,
						Installation of BW Casing pipe		26.6m Escape of whole water
2 L 2 K C L	50.30	360	82.1	10.6~10.8	2.80	2.8m drilling with metal shoe,	47.50	Drillng with diamond bit, Using TK-60,
								2.8 m~13.3 m Reaming and installation of
				,		Installation of BW casing pipe		EW easing pipe, 39.0m Escape of whole water
ه ا ا	0 170 c	0.1.0	8 2.6	xo xo ≥ xo	10.50	10.5m drilling with metal shoe.	39.60	Drilling with diamond bit,
				-	-	Trace Months of DW seeds and	_	USING IN- BU.
JMC- 7	50.20	34.10	84.2	11.8	4	of drilling mith motel the	. 0	11.3m Escape of whole water
			•		·	Haing TK-60	0 n	Driffing with diamond bit,
						Installation of BW cosing nine		Diff Mark Loom Presenting and installation of
JMC-8	50.30	34.70	8.4.8	10.22-10.25	0.40	GAM Grilling with mass above Heine	000	Design with a control of which
					•	TK-60 Installation of BW casing pine	2	Tains France Dist
						i		325m Escape of whole weter
JMCIS	50.10	38.10	85.8	10.20~10.22	5.70	5.7 m drilling with metal shoe, Hsing	0440	Dailing and the discussion has
						TK-60, Installation of BW casing	·	United Pixanto
-						Dine		April Reserve of mitole metal
JMC-10	50.30	4240	188	10.18~10.20	0.50	25m dwilling grith metal shoe.	.082	Daily and the bear of the bear
					·	Using TK-60 Installation of BW	0	Using With diamond 517.
						casing		16.2m Escape of whole water
JMC-11	50.10	4 5.7 0	8.58	10.15~10.17	1.50	1.5m drilling with metal shoe,	4860	Drilling with diamond bit.
						Using TK-60,		Using TK 60,
						Installation of BW casing		21.1m Escape of whole water
JMC- 12	5 0.20	4 6.1 0	0.96	9.29~ 9.30	2.60	2.6 m drilling with metal shoe,	47.60	Drilling with diamond bit,
	-					Using TK-60, Installation of BW		Using TK 50, 4.5m Escape of
						cauthe		whole water
JMC-13	50.30	48.40	8:66	9.27 - 9.28	1.80	1.8m drilling with metal shoe,	48.50	Drilling with diamond bit,
						Using TK-60,		
								whole water,
JMC-14	5 0.2 0	47.60	95.6	10, 1~10, 3	1.60	1.6m drilling with diamond shoe,	48.60	
						Using TK-60,		Using TK-60, 5.3m Escape of
						f BW casing		
2112112	5 0.2 0	44.80	94.1	8, 9~ 8.11	2.6 0	2.6m drilling with metal shoe	47.60	Drilling with diamond bit,
					•	USING TRADO		•
1 7 7 1		7 7 4	9	7.0		Installation of 8W casing	9	Design Except of whole water
	23.5	r r	o o		7		0.7:0	Using With elemone bit.
						Installation of BW casing	-	15.3 Escape of whole water

Performance of the drilling, Chilwa Island (2)

						ç									•••	_																		•																_	-
Bit size ø 56 mm	Performance of the drilling	Drilling with diamond bit.	2.3 m-9.6 m Reaming and installation	of BW, 13.4m Escape of whole water	Drilling with diamond bit, 3.5 m-12.5 m	Reaming and installation of BW, Using TK-60	0	Drilling with diamond bit.	The state of the contract of	other was the co., the process of	Date of the American	Tring Avec of Description	100		Uritting with dismond bit,	Low-Zin reaming and installation	of BW, Using TK-60, 2.4m Escape of whole water	Drilling with diamond bit,	Using TK-60, 25m Escape of	whole water.	Drilling with diamond bit,	Using TK 60, 160m Escape of	whole water	Drilling with diamond bit,	Using TK-60, 18.4% Escape of	whole water	Drilling with diamond bit.	29x-64x reguing and installation	of BW. Using TK+60 258 Presses of whole meets	Drilling with dismond hit	Using TK-60, 30.5m Escape of whole	water	Drilling with diamond bit,	Using TK-60, 8.5m Escape of	whole water	Drilling with diamond bit,	Using TK-60, 4.2m Bacape of	whole water	Drilling with diamond bit,	Using TK-60, 3.4m Escape of	whole water	Drilling with diamond bit.	Using TK-60, 19.1m Escape of	whole water	Drilling with dismond bit,	Using TK-60, 39.0m Escape of	whole water	Drilling with diamond bit,	Using TK-50, 15.6m Escape of	whole water	
	Depth(m)	48.20			46.60			48.70			0.0	5		0	000	•••		48.10			40.50			47.30			43,90	-		48.20			48.20			4840			48.70			47.70			43.20			47.10			
Bit size \$73mm	Performance of the drilling	2.3 m drilling with metal shoe,	Using TK-60,		0~3.5m drilling with metal shoe,	Using TK-60.	Installation of BW casing	withd		Installation of BW casing	1.8m drilling with diamond aboe.	Using TK-60	Installation of BW casing	4	Tring TV-co	Trackelliant and the ways	And the state of t	This my - co	The state of the s	testation of BW casing pipe	Nom drilling with motal shoe,	Using T.K. 60, Installation	of BW casing pipe	3.0 m drilling with metal shoe,	Using TK-60, Installation of	BW casing pipe	0-2.9m drilling with metal shoe,	Using TK-60, Installation of	BW casing pipe	2.0 m drilling with metal shoa.	Using TK-60, Installation of	BW casing pipe	2.0m drilling with metal shoe,	Using TK-60, Installation of	BW casing pipe	1.8 m drilling with metal shoe,	Using TK-60, Installation of		1.5m drilling with metal shoe,	Using TK-60, Installation of	BW casing pipe	2.5 m drilling with metal shoe,	Using TK-60, Installation of	BW casing pipe	7.0 m drilling with metal shoe,	Using TK-60, Installation of	BW casing pipe	3.0m drilling with metal shoe,	Using TK-60, Installation of	Ew casing hipe	
-	/worder	2.00		1	350			1.50			1.80			1.50			0.0	·			0			0.0%			2.90			2.00			2.00			1.80	•		1.60			2.50	•		7.0 0			3.0 0			
Working period		8.16 -8.17			8.20 8.22			9. 4. 49. 60 0. 4. 49. 60			9. 9 ~ 9.1 1			9.14 ~ 9.16			400 - 606			000	4			67.5 - 27.0			8.18 -8.20			8.26 ~8.28			1 .y			3.1.5 ₹ 9.1.4		4	9.18 ~ 9.19			8.28 ~ 8.30		,				n n l			
Core recovery		80 50 50		e a			0	7.00			8.8			93.9			9.6			980	-		t- 80			6	0.00			9.8.0		-	5		00	2		6	0.72		0	206			2.70		21.0	2			
Core length		0 0 0 0 0		4 5.8 0			0.8.8.4	2		000	27.7			0 20 0			49.00			39.70			44.30			0007))			6.23		4870	5		4840			4840	> 10		70.00	25		2000	2		46.40				
 Drilled length (m)		50.20		50.10			50.20		-	6	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			30.30			50.20		-	50.10			50.30			0.0			000	0 4 50		5020	!		50.20			0.80			£000	1			3		5010		-		
Hole	I M C	1)		JMC-18			JMC- 19			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			140				JMC - 22			JMC-23			JMC-24			JMC- 25			JMC- 26	2		JMC- 27			JMC-28			JMC- 29	· ·		JMC- 30			JWC - 31			JMC- 32			7	
															_									_	_		-		_		_								_			-				-				~	

01 09	26. 20.	2	3		cto the thyre- phyre- gnesse rai
71 381	- 859	2			EGEND Soli, Driff Carbonatile Calc - silicate rock Agglomerate, Breccia Syenite Nepheline syenite Nepheline syenite Dykes T : trachyte P : phonolite N : nephelinite Lp : damprophyre Others Mn : manganese mineral Hm : hematite Cal: calcite Ap : apatite
21 - 286	624.5	\$\frac{1}{5}\frac{1}{4}\$ \frac{1}{4}\frac{1}{4}\$ \frac{1}{4}\f			
1. F. F.	2 239	4 5 4 6 5 5 6 6 7 8 7 8 7 8 6 6 7 8 6 8 6 8 9 8 9 1 2 2 3 4 5 6 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 <	7		
1860 - 1A	898		JMC-32	814.2	\$ 7
JMC-13	738 6	8.1	JMC-31	773.9	5 4 6 6 7
JMC-12	729.6	25 25 25 25 25 25 25 25 25 25 25 25 25 2	JMC-30	88.2 2.2	
JMC - 11	687.2	9 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	JMC-29	883.2	8 8.00.3
JMC - 10	679.7	20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	JMC-28	753.3	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
JMC - 9	648.4	\$ \$ \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	JMC-27	7.83.7	0- 00 00 00 00 00 00 00 00 00 00 00 00 0
JMC - 8	621.9	↑ ₩ • 4.e	JMC-26	688.5	20 20 20 4444 455 50 50 50 50 50 50 50 50 50 50 50 50 5
JMC - 7	608.8	\$ \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	JMC-25	683.7	\$ 4 4 4 4 4 0 0 0 0 0 0 0 0 0<
JMC - 6	604.4	0	JMC 24	697.0	0 8 4 8 2 2 1 7 1 2 8 8 8 8 1 1 1 1 2 1 1 1 1 1 1 1 1 1
JMC - S	852 0	2.8	JMC-23	998.	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$
JMC -4	754.7	\$\frac{4}{4}\$ \times \text{X} \times \times \times \times \text{Y} \times	JMC-22	783.8	ို့ 903
JMC - 3	-689		JMC -21	788.9	
	713.9	80.7 11.2 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0	3¥C-28	0.62	00 F NNN 00
¥	9,740	6 7 × </th <th>2MC - 19</th> <th>724.0</th> <th>9.0 27.4 40.5</th>	2MC - 19	724.0	9.0 27.4 40.5
No.	08:1 m	Geology	Nome	OS KIR	Свогоду

Fig.20 Compiled geologic log, Chilwa Island

Tab.15 Summary of the mineralized zone (REO>1.0%), Chilwa Island

(ppa)

	r									••			
Drill No.	Depth	Thick	La	Ce	Nd	Sm	Eu	Tb	Nb	Sr	Y	P	REO
JMC-3	1.1 - 4.4	3.3	4466	6007	1409	213.20	44.30	8.50	262.0	3938	227	3846.0	14854.8
	12.1 - 47.2	35.1	4763	6569	1647	303.61	68.06	15.51	528.2	5842	311	6438.6	16418.3
JNC-7	13.5 - 17.3	3.8	6176	8116	1911	318.60	58.70	20.40	90.0	3525	377	7230.0	20378.9
JMC-10	7.2 - 22.2	15.0	5627	9688	2054	267.87	43.91	13.26	310.4	6439	214	7579.7	21541.9
	33.8 - 42.6	8.8	3339	6602	1607	248.85	41.56	10.56	291.2	3578	172	3335.8	14464.2
JMC-11	1.1 - 11.7	10.6	3692	6804	1718	270.01	50.20	4.58	205.4	4566	262	6192.4	15399.2
	30.5 - 38.5	8.0	3114	4895	1240	200.71	33.81	7.32	321.5	4997	170	4494.6	11606.3
JMC-12	2.2 - 50.2	48.0	3760	6351	1715	229.74	37.41	11.12	254.8	5148	183	4817.9	14764.3
JMC-14	5.2 - 9.0	3.8	2831	4336	1233	207.20	47.50	12.90	141.0	3665	91	4608.0	10508.8
	31.4 - 36.2	4.8	2327	4222	1580	266.60	64.70	17.70	263.0	2076	133	1867.0	10329.9
JMC19	1.0 - 18.3	17.3	2700	6344	2349	312.91	58.55	18.75	113.3	3361	351	3918.9	14594.2
JMC-20	0.4 - 21.4	21.0	5141	9006	2288	299.85	53.38	11.97	171.1	4957	283	3293.1	20541.3
	45.0 - 50.2	5.2	4430	8791	2435	291.50	51.10	15.80	239.6	6253	239	5205.0	19550.0
JMC-21	10.2 - 15.2	5.0	2652	6034	1892	250.60	49.30	21.70	302.0	6998	278	6763.0	13452.4
	21.6 - 46.5	24.9	2886	5950	1666	208.47	38.95	12.87	277.9	7395	259	6576.6	13264.8
JMC-22	1.0 - 6.8	5.8	3871	5711	1237	168.90	35.00	7.70	629.0	7733	264	5787.0	13576.7
	19.3 - 24.6	5.3	3951	6913	1758	227.10	40.00	14.50	450.0	10988	270	7409.0	15842.9
	43.9 - 47.7	3.8	3322	4808	914	117.20	18.40	14.50	331.0	2214	108	952.0	11177.8
JHC-25	11.8 - 15.1	3.3	3381	5139	1430	235.40	53.50	9.70	392.0	6389	268	5118.0	12630,5
JMC-26	15.0 - 47.9	32.9	2035	4961	2596	403.71	86.92	21.30	331.6	5477	383	4286.9	,
JMC-28	26.7 - 31.7	5.0	2224	5091	2431	386.50	89.30	32.60	298.0	6330	274	10134.0	12632.3
JMC-29	0.4 - 10.4	10.0	3352	5252	1546	225.20	52.30	19,35	121.0	4349	211	3948.5	12794.8
	30.4 - 35.4	5.0	2410	4406	1678	323.80	75.80	14.70	91.0	3588	180	1736.0	10903.0
	45.4 - 50.3	4.9	1962	4111	1765	332.90	82.30	24.50	294.0	5797	255	6898.0	10241.2
В	ayan Obo (Chi	na)	2171	7166	5061	567	67	17	-	-	134		20000

Tab.16 Summary of the mineralized zone (P>2.2%, Thick>2.0m), Chilwa Island (ppm)

Drill No.	Depth	Thick	La	Ce	Nd	Sm	Eu	Tb	Nb .	Sr	Y	P	REO
JMC-2	1.7 - 7.2	6.5	736	1349	348	51.80	21.30	10.00	1336.0	5369	189	32492.0	3262.0
JMC-13	22.5 - 37.9	15.4	861	1840	784	126.39	34.85	9.35	612.2	5948	252	29433.8	4700.9
JMC-15	14.3 - 24.0	9.7	778	1451	446	71.65	20.28	1.73	824.1	3318	127	21408.8	3484.4
JMC-17	30.4 - 36.3	5.9	495	1007	376	66.60	17.90	0.05	1171.0	395	86	21892.0	2462.9
	41.0 - 46.2	5.2	754	1473	472	77.70	20.70	19.30	537.0	2763	110	22540.0	3519.7
JMC-28	46.7 - 50.2	3.5	1422	2718	1096	175.90	55.80	29.50	486.0	8471	629	52071.0	7385.1
JMC-32	20.1 - 26.5	6.4	1329	2272	.645	122.20	35.50	5.90	5920.0	6058	190	20038.0	5532.0

These mineralized zones are not usually found in sovitic carbonatite but in ankeritic and sideritic carbonatites (Fig. 21).

Main constituent minerals in the zones are bastnaesite, synchysite and kalkinsite. Such rare metal minerals as strontianite and pyrochlore are also often associated. As compared with the grade of ores from Bayan Obo Mine, REO content is rather lower, but the contents of such medium REE as Eu and Tb are 1.3 and 1.9 times higher, respectively.

Phosphorus-mineralized zone is recognized at JMC-13. The core samples with continuous mineral indication are from a 15.4m long zone between 22.5m and 37.9m. Its phosphorus content is 2.94%. At other drill holes, the zones are smaller-scaled than that at JMC-13.

3-5 Discussion

Geology and characteristics of carbonatites in Chilwa Island have been summarized as follows (Garson et al., 1958; JICA and MMAJ, 1988):

- 1. The area of 3.5km X 2.6km of Chilwa Island is occupied by Alkaline rocks and carbonatites.
- Basement rocks near carbonatites have undergone intense fenitization.
- Carbonatites body shows a ring structure, which consists of breccias, sovitic, ankeritic and sideritic carbonatites from outer side inward.
- 4. In the ring, the stage of igneous activity of carbonatites becomes younger inward.
- 5. The igneous activity occurred at three places of around 1,700m, 1,000 and 300m below the ground surface, each of them is arranged vertically.

During the third phase, geological, geochemical and drilling surveys were carried out together with laboratory experiments. The purpose of this phase survey was to elucidate the geological conditions and petrogenesis of the carbonatite body in Chilwa Island.

Through the field works, carbonatites are preliminarily classified into sovitic, ankeritic and sideritic. The comparison among the results of

field observation, microscopic analysis and X-ray diffraction examination for these three types are shown in Tab. 18.

It has been clarified that sovitic and ankeritic carbonatites contain dolomite and that magnetite and goethite are abundant in sideritic one. Siderite is considered to be partly altered to goethite (C1901, C2606, C2609 and C2907).

As the results of previous works, central part and its adjoining part of the carbonatite body have been considered to be sideritic and ankeritic, respectively. Through the survey of this phase, however, ankeritic carbonatite is recognized in sideritic one (JMC-19, 20 and 21), thus ankeritic carbonatite where sideritic carbonatite is often associated is discriminated as mixed part of both carbonatites.

As shown before, the geological structure of Chilwa Island sector is characterized by a ring structure. Although constituent rocks in the inner part of the ring dip in rather random direction, in the outer part they tend to dip steeply outward (Fig. 22).

Minerals such as apatite (C1306) and pyrochlore (C3211 and 8Y058) were analysed by EPMA to estimate the contents of REE and other elements. As a result of the analysis, it has been clarified that apatite contains La (7.12%), Ce (13.7%) and Th (1.21%) and pyrochlore has Nb (33.1-47.4%), and Ce (1.33-2.76%).

Carbon and oxygen isotopic ratios are analyzed for carbonatites in order to elucidate the petrogenesis of these rocks.

Analyzed results for sovitic (8Y038 and 8Y058) and ankeritic ones (8Y009 and 8Y026), composed of calcite, ankerite and dolomite, are δ^{13} C=-4.5% to -2.4% and δ^{18} 0=+8.2% to +12.1%. The values are rather higher than those of apatite rocks and carbonatites in Nathace Hill, but suggest that these rocks are igneous in origin.

The result for sideritic carbonatite (8Y068 and 8Y124), though it shows no sign of containing carbonate through X-ray diffraction examination, has δ^{13} C=-6.6% to -6.7% and δ^{18} O=+18.3% to +20.3%. Thus the rocks are inferred to have undergone alteration through contamination by meteoric water (see 4-2). It might be stated that during the alteration carbonate minerals and goethite replace siderite. The carbonate may be amorphous one.

As a result of geological, geochemical and drilling surveys of the third phase, it is inferred that ankeritic carbonatite and its mixed zone

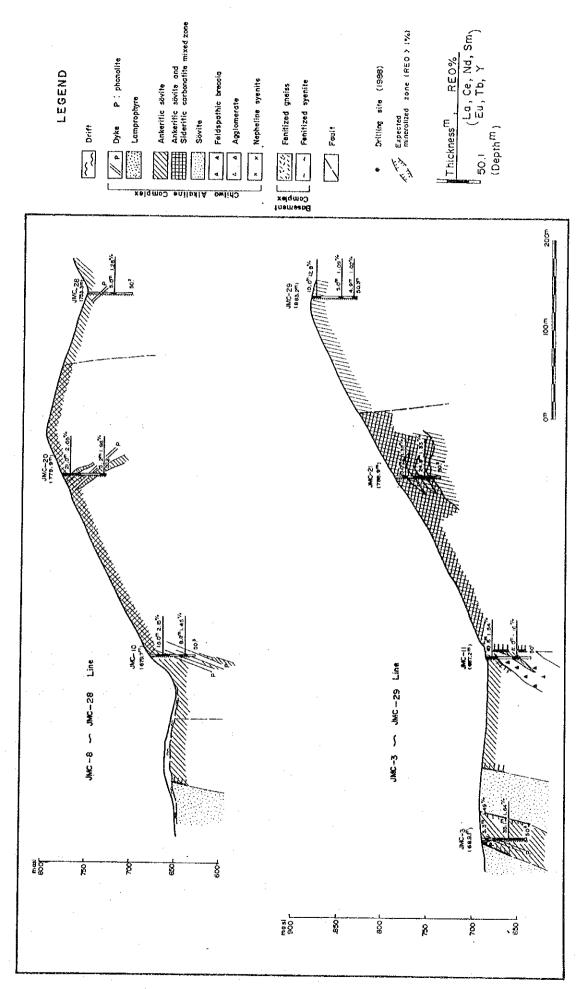


Fig.21 - 1 Geological section of drill holes, Chilwa Island

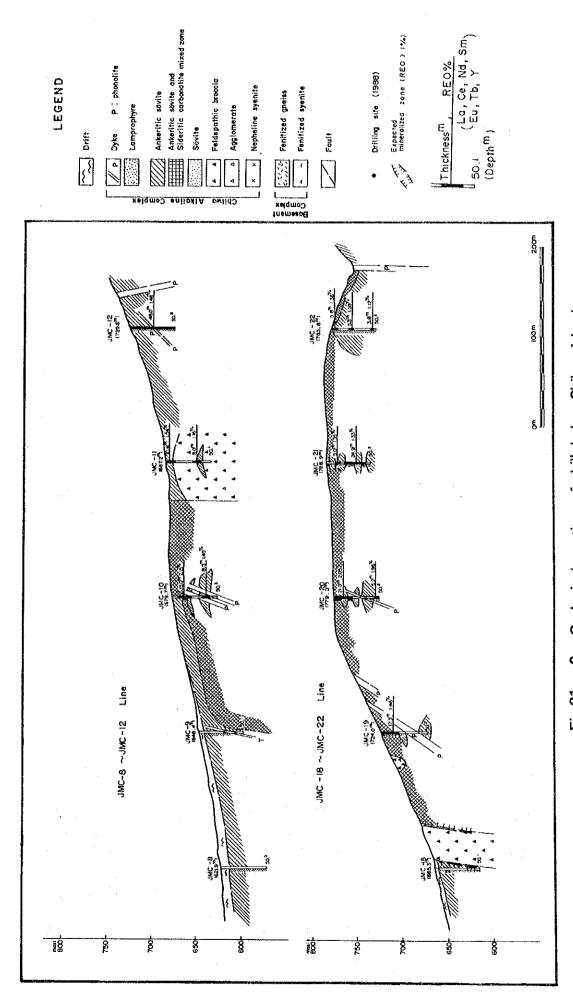


Fig.21 - 2 Geological section of drill holes, Chilwa Island

Tab.18 Obeservation of the Chilwa Island carbonatites

Sample		Field		Thin section	X-ray diffractometer
No.	Мате	Description	Name	Description	Mineral
c3003	sövite	medium-grained white to brown calcite	sövite	calcite (0.05-0.7mm) with amount of barite, quartz and pyrite, mosaic texture	calcite >>dolomite = quartz = = barite
C1304	ankeritic sövite	fine-grained reddish brown carbonate	ankeritic sövite	carbonate (-0.15mm), porphy- ritic texture	ankerite >dolomite
C2208	ankeritic sövite	fine-grained white and reddish brown carbonate	ankeritic sövite	carbonate (0.2-1.0mm), porphyritic texture	ankerite * siderite>> quartz * pyrite
C2810	ankeritic sövite	pyrite bearing fine-grained white carbonate	ankeritic sövite	carbonate (0.1-1.25mm) with K-feldsper, quartz, pyrite, fluorite and barite, mosaic texture	ankerite» K-feldspar > quartz > barite
C2904	ankeritic aövite	fine-grained gray carbonate	ankeritic sövite	carbonate (0.1-0.7mm) with quartz pyrite, magnetite, and goethite	ankerite >> strontianite > quartz
c2106	sideritic carbo- natite	black to dark brown coase— grained carbonate	altered carbo- natite	euhedral to subhedral magnetite and goethite (1.5 - 7mm) with quartz, carbonate and K-feldspar	calcite = goethite >calkinsite = Synchysite = K-feldspar
C2408	ankeritic 8övite	fluorite bearing medium- grained carbonate	sideritic carbo- natite	eunedral to subhedral siderite (0.2-1.75mm) with quartz, barite and fluorite	siderite > fluorite > quartz >kutnahorite = barite

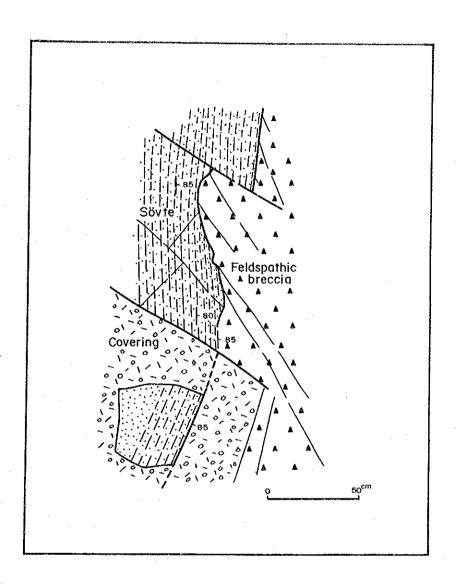


Fig.22 Sketch showing contact between banded sovite and feldspathic breccia, southern slop of Mulinde Hill

with sideritic one in the central part of Chilwa Island sector have the highest potential in this sector for REE mineralized zone. As for Nb resources, sovitic carbonatite around Northern Summit and JMC-3 is considered to have the highest potential.

Chapter 4 General discussion

4-1 Depth of formation of carbonatite bodies

Generally speaking, the variation in mode of field occurrence of the carbonatite is considered to depend on the depth of consolidation of magma (GSJ and DNPM, 1987). Thus it may be possible to estimate the depth of consolidation based upon the mode of occurrence (Garson, 1965 and 1966).

During the third phase survey, schematic cross sections for carbonatites bodies in Tundulu, Songwe, Kangankunde and Chilwa Island sectors were drafted in order to compare the depth of formation of the bodies in each sector.

The common characteristics of geology of carbonatites bodies in "Chilwa Alkaline Province" are as follows:

- 1) constituent rocks have concentric arrangement
- 2) the shape of the bodies on a plane figure is elliptical, showing ring structure
- 3) adjoining basement rocks have undergone intense fenitization
- 4) the bodies tend to consist of sovitic, ankeritic and sideritic carbonatite from rim inward
- 5) breccias are often associated
- 6) constituent rocks tend to dip steeply outward or inward

Judged from the characteristics shown above, it is inferred that the depth of formation of the bodies are effusive and shallow level or intermediate plutonic level, which are the first and the second shallowest among the 3-fold division by GSJ and DNPM (1987).

As the carbonatite body in Kangankunde sector contains carbonatized breccias and shows ovoidal ring structure, it is inferred to be formed in rather deeper level than those of other sectors (Fig. 23).

4-2 Isotopic ratios of Carbon and oxygen

Carbon and oxygen isotopic ratios are analyzed for carbonatites and apatite rocks in "Chilwa-Alkaline Province" in order to elucidate their petrogenesis.

 ${\rm CO}_2$ generated through the decomposition reaction of carbonates with phosphates were analyzed with a mass spectrometer.

The procedure is as follows:

- 1) weigh 30 to 40 mg of previously ground samples (minus 200 mesh)
- 2) phosphoric acid (100%) is added to decompose samples in vacuum and at 25°C for 1 to 7 days
- 3) collect ${\rm CO}_2$ generated and remove mixed ${\rm H}_2{\rm O}$ by the aid of ethyl alcohol as a freezing mixture
- 4) contents of δ^{13} C and δ^{18} O in CO $_2$ are analyzed with mass spectrometer (Finnigan Mat Delta-E) at the Central laboratory of Mitubishi Metal Corporation.

The working standard, used is fossil coral CK-13 (aragonite of δ^{13} C_{PDB}=+0.54% and δ^{18} 0_{PDB}=-1.75%). The contents of δ^{18} 0 are further corrected for the kinetic fractionation in the phosphoric acid reaction with different minerals.

The relationship between $\delta^{18} \mathrm{O}_{PDB}$ and $\delta^{18} \mathrm{O}_{SMOW}$ is as follows:

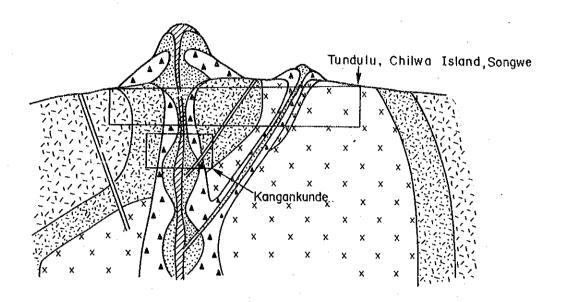
$$\delta^{18}0_{\text{SMOW}} = 1.03086 \ \delta^{18}0_{\text{PDB}} + 30.86\%$$

Tab. 19 shows isotopic ratios of carbonates in Chilwa Island and Tundulu sectors.

Tab.19 Isotopic composition of the carbonatites

No	Sample No	Sector	Rock name	Mineral	δ13 _C (PDB)	ô18 ₀ (PDB)	∂18 ₀ (ЅМОН)
1	81009	Chilwa Is	ankeritic sövite	ankerite	-4.5	-22.0	+ 8.2
2	8¥026	н	**	dolomite > calcite	-2.4	-20.1	+10.1
3	82038	ы	sövite	calcite > dolomite	-3.8	-19.7	+10.6
4	8Y058	w	**	calcite > ankerite	-3.2	-18,2	+12.1
5	84068	19	sideritic carbonatite	fluorite > Fe	-6.6	-10.2	+20.3
6	8Y124	14		fluorite > Fe	-6.7	-12.2	+18.3
7	8¥153	Tundulu	apatite rock	apatite > quartz > calcite	-6.2	-24.7	+ 5.4
8	8Y154	11	. : i	4	-7.4	-21.5	+ 8.7
9	JMT-7	"	sideritic carbonatite	kutnahorite)calcite	-2.3	- 9.9	+20.7
10	JMT-22	ři.	ankeritic sövite	ankerite > siderite	-5.4	-23.3	+ 6.8
11	JMT-26		sideritic carbonatite	kutnahorite>calcite	-5.0	- 8.6	+22.0

Analyzed results are plotted on the figure in comparison with those of various rock types (Fig. 24).


 δ^{13} C in carbonatites from "Chilwa Alkaline Province" are distirubted in the range of -7.4% to -2.3% and δ^{18} 0 are in two ranges of +5.4% to 12.1% and +18.3% to 22.0%. The values of δ^{13} C are similar to those from common carbonatites and diamond. While the values of δ^{18} 0 are plotted in the area of such igneous rocks as basalt and granite. Analyzed samples with higher δ^{18} 0 ranging from 18.3% to 22.0% are plotted in the are of sedimentary rocks, but it is inferred that these samples have undergone low-temperature hydrothermal alteration.

The relationship between δ^{13} C and δ^{18} O is shown in Fig. 25. The square labeled as Oka Box in the figure represents the isotopic ratios of carbonatites from Oka, Canada (Deines, 1970). The ratios of Mbeya carbonatites of Tanzania are also plotted after Suwa et al. (1969).

As shown in the figure, among the samples of apatite rock, sovitic and ankeritic carbonatites of "Chilwa Alkaline Province", two are plotted in the Oka Box and five out of it but around the Box. These seven samples are inferred to be of magmatic origin, because it has generally been assumed that the values of $\delta^{13}\mathrm{C}$ and $\delta^{18}\mathrm{O}$ of igneous rocks are low. The rest four of samples show higher $\delta^{18}\mathrm{O}$ and low $\delta^{13}\mathrm{C}$. Bulk chemical analysis for these rocks show that Fe-oxides content ranges from 13.55% and 47.38%. There is a large possibility that, in rocks showing high $\delta^{18}\mathrm{O}$ and low $\delta^{13}\mathrm{C}$, metal oxides hold a high concentration of $\delta^{18}\mathrm{O}$. The enrichment in $\delta^{18}\mathrm{O}$ is inferred to be related to the interaction of magmatic oxygen with that of the atmosphere and meteoric water.

4-3 Bulk chemical composition of carbonatites

In order to elucidate the chemical characteristics of carbonatites whose classification have been made based upon field observation, ten of sovitic one, six of ankeritic one, seven of sideritic one and two of apatite rock were analyzed (Tab. 20).

LEGEND

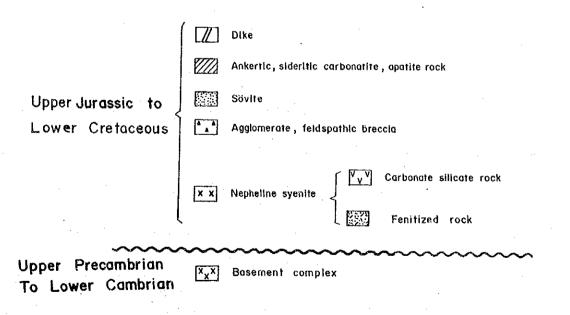


Fig.23 Schematic diagram of the carbonatite complex in the Chilwa Alkaline area

Fig. 26 is a triangular diagram of molar MgO, CaO and, FeO and MgO, CaO, SiO₂. Among the analyzed carbonatites, all of sovitic one and one of ankeritic (8Y005) are plotted in sovitic field. Two (JMT-7 and JMT-26) out of seven sideritic ones are plotted in ankeritic field. Samples of 8Y030 and 8Y110 are inferred to be sideritic ones mixed with ankeritic and sovitic, respectively.

4-4 REE contents in carbonatites

It has been found out that La and Ce are enriched in carbonatites. High contents of these elements are solely due to the occurrence of bastnaesite, synchysite and parisite in carbonatites.

Besides these elements, Nb, Sm, Eu and Tb have been analyzed for carbonatites in the survey area to summarize their abundance and distribution.

To research for a major host phase in the carbonatites, rare elements in such minerals as pyrochlore, bastnaesite, rutile and apatite were analyzed. Fig. 27 shows REE pattern for the representative rocks from each sector. It is seen from the figure that samples from Songwe sector are more enriched in medium REE than those from Tundulu, Kangankunde and Chilwa Island sectors as well as from Mountain Pass Mine. Eu and Tb contents of Songwe samples are higher as compared with those of Bayan Obo Mine.

Analyzed results using EPMA show that Th content in bastnaesite from Songwe and Tundulu sectors is 0.01 to 0.19 weight % and that in apatite from Chilwa Island it is 1.21 weight % (Tab. 21).

In Tab. 22 are presented a comparison of ore reserves and grade of carbonatites ore deposits from Songwe and Tundulu sectors with those in the world.

As the estimation of ore reserves is based on the assumption that mineralized zone extends 50m below the surface, it is impossible to compare the ore reserves of REO and P_2O_5 with those of other mines.

REO contents in Songwe and Tundulu sectors, the values of which are 1.7% and 2.1% respectively, are rather lower as compared with the value of 2.0% of Bayan Obo Mine, but the content of medium REE in Songwe sector is 1.5 to 2 times higher than that of Bayan Obo Mine.

Recently, the total amount of consumption of REE has steadily decreased after the peak of 1983, but that of REE with high purity tends to

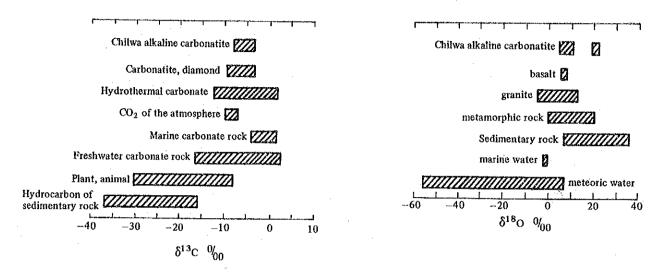


Fig.24 The carbon and oxygen isotopic ratios of the materials

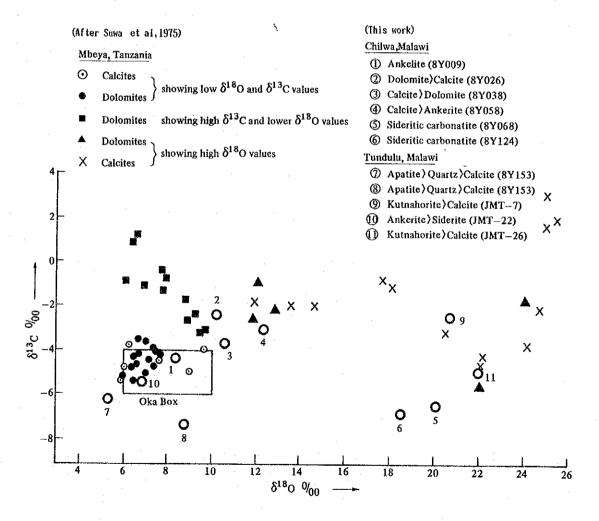


Fig.25 The oxygen and carbon isotopic ratios of carbonates in Chilwa Alkaline area carbonatite, southern Malawi and Mbeya carbonatite, southern Tanzania

.

	1	į	· 1	1 1	1							ı			
	<u>س</u>	TUTOR	22.00.00.00.00.00.00.00.00.00.00.00.00.0	101.38	~1 ∝	000	- O 14	143 6-1	25 H	00	0.00 1.50 0.00	×	27,82 65,26 6,93	26.00 60.98 13.02	
	7	187.22	22.23.9.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.	100.22	27 W	000	2.53	19.19	3, 92	0.01 0.08	38.00 38.00 38.00	ر 4	28.16 46.22 25.63	28.88 47.41 23.72	He
	~	Œ	25.75.00.00.00.00.00.00.00.00.00.00.00.00.00								39.01 39.01		32, 56 54, 78 2, 67	28.88 1.888 5.888	eld na
	7	5	287/154 330.13 300.13 28.00.00 28.00.00 28.14 20.00 20	임발	214	10 H a) +=-l +	100	40	C) NO	14. 20.00 20	기	0.05 50.53 49.42	2.27	्रम् स
	4		28 29 29 29 29 29 29 29 29 29 29 29 29 29	.;[<u>`</u>	22	220	610	49	0.45 0.2	\$ 0 5 2 5 2	15.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00	70	7.98	0.08 0.08 0.08 0.08	Roc
	1		0.000-00000000000000000000000000000000	200	92	1011	35	228	2 20	25	0.32 0.05 45.67	7	0.50 2.20 6 7.30 3	97,53 1,838 9,53	
	r-1	87148	25.00.00.00.00.00.00.00.00.00.00.00.00.00		5.39		8 9	62	23	44	3,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00	3	4.82 65.06 9 30.12	ი გ გ. გ. გ. გ. გ. გ. გ. გ.	
		81147	1	25 2							26.61 0.05		0.44 74.13 25.44	0.51 86.02 13.47	
	~ *	81128	20000000000000000000000000000000000000	<u> </u>	2 2	اخاذ	66	0.0	66	တ် တ	00.83 00.83 00.83	3	0.52 94.60 4.87	96.94 2.53	
	m,	8 1 1 2 4	400.00000000000000000000000000000000000		-lo						0.00 4.00 8.00 8.00 8.00 8.00	-1	1.77 96.85 1.38	1.09 59.67	
	7	3 8Y110		2	30.6	040	200	27.6	0.0	0.0	20.01	1	1.29 46.83 51.88	2,03 73,62 24,35	
	ě	8 Y	00000000000000000000000000000000000000	2 ×	2	0.0.6	20	극닭	ဝ ဝ	၀၀	33.00	3	3, 13 89, 24 7, 63	33.08 33.08 31.08	
	ო	8 7.0	202702000420001500	,	28.0	9.25	8.0	1.0	1.6.1	~ o	0.0.4.0 204.0		38.43 61.32	2.06 33.29 64.65	
		5 8 40	400040000000000000000000000000000000000	8 8 8	2 4 5	400	1 0.1	4.0.4	20.0	0 0 i	ບ 2 ຕ ຄ. ຕຸດ, ຄ. ບຸດ ຄ.		90.18	9 0.83 8 94.52 4 4.65	
		8 Y C	1012 10 10 10 10 10 10 10 10 10 10 10 10 10	0 8 8	25	000 449	50.00	48 	0 0 0	0 0 0 0	2000		8 2.70 4 92.60 8 4.70	6,5; 811.	
	1	370	000000000000000000000000000000000000000	2 35. 7 8 YO		00-	00	40 .F.	4 (- 0 0	တ်တ် ကတေ	188 20.84 10.86	;	6 0 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	2 0.48 6 95.61 1 3.91	
		9 8 Y C		0 8 8	i o	ကတ တေတ်ထ	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3 47.	60		2003	4	4 2 6 9 5 0 4 8 5 0 5 0 5 0 5 0 5 0 5 0 5 0 5 0 5 0 5	2 80 80 80 80 80 80 80	
		41 870	24 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	4 33.	2 2	998	94	23.33 23.33	ം പ	- - -	87 44 0.00 24 44 0.00		5 43 5 46 5 8 8	9 47.6 0 6.3	
		38 870	20000000000000000000000000000000000000	8 40	-:	000	00	ဝင္ပင္ပဲ	00	00	36 42.	3	08 0.2 86 95.9 06 3.7	08 0.2 50 97.3 42 2.4	
		840	8 20 20 20 20 20 20 20 20 20 20 20 20 20	30 8YO	23 1.	00-	00	2 48.0	0 4	999 999	2004 2008 2008 2008	5	35.8 3.0 3.0	99 37 95.5 55 3.4	
		8	00000000000000000000000000000000000000	28	1 26	012002	010	c. r.o.	E~ ~#	- CO -	30 0 30 0 31 0 0		38 22. 72 74.	77 16. 14 57. 09 25.	
	1	18 87	11011010400400004040	0 00	0 97	1112	901	98 2 98 2 2	91	200	0000 0000 0004 0004		44 49 91 48 55 1.	7881 73 45 73 45	
			8 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	50	73 0	770	2 5	 	∽ 4	221	22.5	,	26 2. 68 36. 06 0.	98 43 59 42.	
		05 8 4	20000000000000000000000000000000000000	V 8 8				22.42	w o	es us s	000 000 000 000 000 000 000 000 000 00		7 24.	88 6 147.	
		84	20110000000000000000000000000000000000	, % , %	9.03	ട് പ്ഗ	ငတ	ဝုလို	ဝ်ဝ	00	% O F	, t	ဝဗ္ဗမ	ratio 0.5 89.8	
-		밁	SECTION OF THE CONTROL OF THE CONTRO	Mol	Si02	T102 A120 Fe20	Feo	Ngo Cao	Sr0 Ba0	N20 N20	Nb205 Nb205 C02	ر ا ا	Sio2	TOESE BOOO BOOO	

Strite
Ankeritic strite
Sideritic carbonatite
Apatite rock

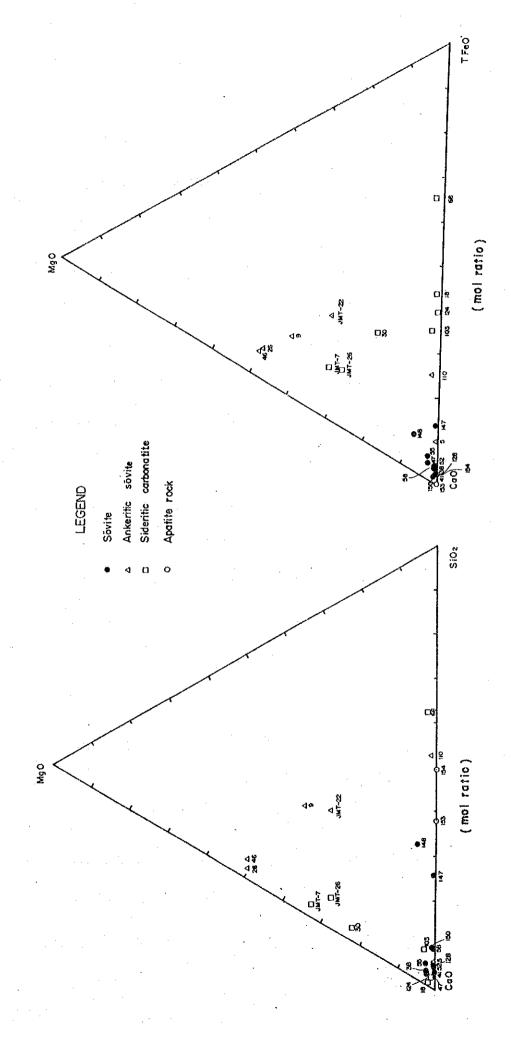


Fig.26 Ternary diagrams of the carbonatites

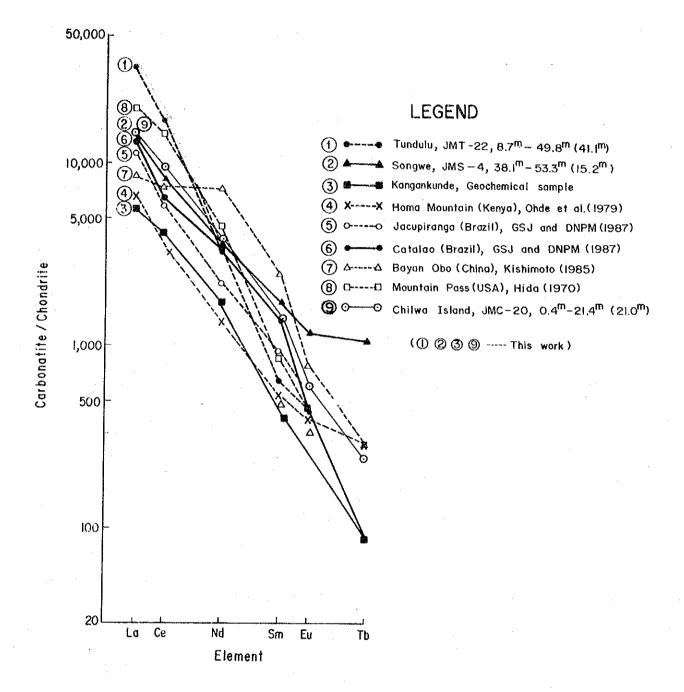
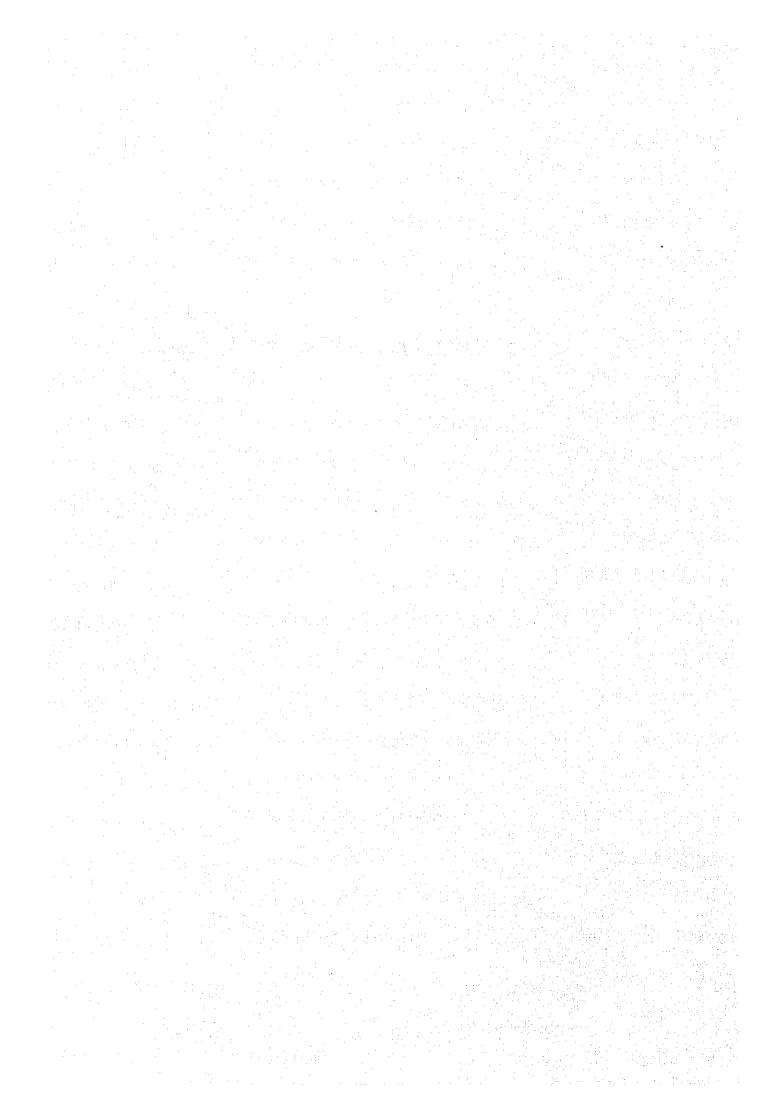


Fig. 27 Chondrite normalized rare earth concentration

Tab.21 Result of quantative EPMA analysis

- 1	Zz	2	8			6	(militar property as	3	-	92	- 6	
	23	0.29	1.21 1.58	4 13	0	2.19	0	1.44		3.26	3.70	
	티		1.2	0	0.01	0	0	0	0.19	0	0	
	뒦	1,19 69.6	0	1.70 0	0	1.21 0	0	0.90	0	1.680	1,28 0	
	ရွ	1.19		2.50 1.06 14.0	9.01	6.32		6.22	5.90	11.0	12.8	
જ	Na	0.14	0.12	1.06	0.21		0.19	0.61	. 0	1.03	1.06	
) E	ы	1	44	2.50		1.28	0	28.	0	1.82 1.03 11.0	3.01	
Element (wt %)	N.	4.43 0		47.4	0.16 0	1.62 18.7 1.28 4.07	1.21	0.32 19.1 0.82 0.61		37.8	33.1 3.01 1.06 12.8	
ı	Å	٥				1.62		32				
	छ		0.29 0	_ <u></u>	3.58		3.69		7.20).84 (
	SH				5.39	2.76	2.58	. 59 (. 67	3.90		
	9	9.68	7.12 13.7 0	2.76 0	£.63	0.53 2.76 0	9.62 14.1 2.58 0.69 0	0.16 0.59 0	17.1 4.67 0.20 0	1.33 3.90 0 0	1.69 0 0.84 0	
	ra E	.0	7.12		38.5	0	9.62	•	15.0		0	
Mineral		Rut11	Apatite	Pyrochlore	Bastmaesite (?) 38.5 29.3 5.39 0.58 0	Pyrochlore	Bastnaesite	Pyrochlore	Bastnaesite	Pyrochlore	Pyrochlore	
Rock name		Apatite sövite		Sövite	ron oxide ore	Apatite rock		MJT-26 28.9m Apatite rock	r	Sövite	r	
Locality		30.2m		-32 47.4m	JMS- 4 14.0m	JMT-15 3.2m		28.9m		-		
Loca		JMC-13	•	-32	JMS- 4	JMT-15	•	MJT-26		Surface	.	
Sector		Chilwa Island JMC-13 30.2m		•	Songwe	Tundulu				Chilwa Island Surface	ŧ	
Sample No.		01306	C1306	C3211	S1604	T2501	12501	T2607	T2607	8X058	8X058	
No.		н	7	m	4	'n	\$	^	ဆ	σı	유 유	

increase. Light REE are in overstock while medium to heavy REE are in deficiency of supply.


The grade of phosphorus (P_2O_5) in Tundulu sector is estimated to be as high as 17.0%. This ore grade is higher than Araxa $(P_2O_5 15\%)$ or Sukulu $(P_2O_5 13\%)$. This phosphorus deposit is possible to be exploited for the phosphatic fertilizer. It is inferred that one way of using the phosphorus resources could be for the production of fused magnesium phosphate $(50,000 \text{ tons/year, approximately } 10,000 \text{ tons in } P_2O_5 \text{ equivalent)}$ by the aid of domestic resources of ultrabasic rocks or dolomitic rocks as well as electric power.

Tab.22 REO & P2 O5 resources related carbonatite/alkaline complex

Name of	Type of		REQ			P205	
complex	carbonatite	(Mil.t) Reserves	Ore grade	(Th.t) Metal		(%) Ore grade	(Th.t) P ₂ O ₅
Songwe, (Malawi) (This work)	sovite, ankeritic	1.4	1.7	23.8			
Tundulu, (Malawi) (This work)	ankeritic, side- ritic, apatite	0.6	2.1	12.6	0.5	17.0	85.0
Araxa, (Brazil)	beforsite, sövite				460	15.01	69,046
Tapira (Brazil)	sövite				921	8.32	76,627
Catalao (Brazil)	beforsite,	2	12,20	244	306	7.96	24,358
Jacupiranga (Brazil)	sövite, beforsite	·			89	6.15	5,474
Ipanema (Brazil)	Sövite				117	6.73	7,874
Oka (Canada)	aövite	122	0.2	244			
Sukulu (Uganda)	carbonatite				200	13.0	26,000
Siilinjarvi (Finland)	sövite				465	4.0	18,600
Mountain Pass(USA)	carbonstite	100	5-10				
Rayan Obo (China)	carbonstite	(REO) 35	1.9-13.5				

(after GSJ and DNPM, 1987)

Part III Conclusion and recommendation

Chapter 1 Conclusion

During the third phase, drilling survey have been done in Songwe and Tundulu sectors, geological, geochemical and drilling surveys in Chilwa Island sector.

The following are the results of the surveys.

(1) Songwe sector

- 1. Carbonatites in this sector are classified into sovitic, ankeritic and breccias.
- Useful minerals enriched in REE, Nb, Sr and P are bastnaesite, synchysite, parisite, strontianite, monazite, pyrochlore and apatite.
- 3. Carbonatites are developed showing an elliptical structure centering Songwe Hill, lining up in two files of N-S trend. Dip is as steep as 70° to vertical.
- 4. A REE-mineralized zone rich in medium REE is recognized on the northern slope of Songwe Hill (lower than 850m asl).
- 5. Based upon the results of drilling, six REE-mineralized zones, which are more than 10m thick in core showing the grade of REO more than 1.0%, are discriminated. The ore reserve estimation has been made based upon the assumption that mineralized zone extends 50m beneath the surface. The results are that the ore reserves are about 1.4 million tons and the grade of REO is 1.7%.
- 6. REE content of the mineralized zones indicate that the averaged values of such medium REE as Eu and Tb are 1.4 to 2 times higher than those of ores from Bayan Obo Mine (China).

From the results of the surveys, it is inferred that mineralized zones with comparatively high contents of medium REE are recognized on the northern slope of Songwe Hill.

As the underground extent of ore deposits has not yet been defined, it is impossible to compare the ore reserves with those of other mines.

As compared with the grade of ores from Bayan Obo Mine, REO content is rather lower, but the content of medium REE is higher.

It is inferred that, of course depending on the market condition of REE, this sector is possible to be exploited.

(2) Tundulu sector

- 1. Carbonatites in this sector are classified into sovitic, ankeritic, sideritic, apatite rock and breccias.
- 2. Useful minerals enriched in REE, Nb, Sr and P are bastnaesite, synchysite, strontianite, pyrochlore and apatite.
- 3. Carbonatites are developed showing superposed double ring structure centering Nathace Hill. The outer ring is composed of sovitic, and the inner one of ankeritic, sideritic and apatite rock.
- 4. REE- or phosphorus-mineralized zones in carbonatite or apatite rock are recognized in the inner ring at Nathace Hill.
- 5. Based upon the results of drilling, three REE-mineralized zones, which are more than 10m thick in core showing the grade of REO more than 1.0%, are discriminated. One phosphorus-mineralized zone is recognized, which is more than 10m thick in core showing more than 2.2% P content.
- 6. The ore reserve estimation has been made based upon the assumption that mineralized zone extends 50m beneath the surface. The results are that REE-ore reserve is about 0.6 million tons and the grade of REO is 1.7%. Phosphorus-ore reserve is about half million tons and the grade of phosphorus (P_2O_5) is estimated to be 17.0%.

From the results of the surveys, it is inferred that mineralized zones of carbonatites with comparatively high contents in REE and phosphorus are recognized on the eastern and southern slope of Nathace Hill. Carbonatites associating apatite rock is highly enriched in phosphorus.

Because REE minerals are closely associated with phosphorus minerals and the grades of REO as well as medium REE are not so high as compared with those of other mines, it is not advantageous to make exploitation now.

The grade of phosphorus (P₂O₅) is estimated to be as high as 17.0%. It is inferred that the phosphorus resources can be useful for the production of fused magnesium phosphate by the aid of domestic resources of ultrabasic rocks or dolomitic rocks as well as electric power.

(3) Chilwa Island sector

Geological survey

Carbonatites are developed on and around the top of the Island from Mbirikwi, Michulu and Chinyobi Hills through Northern and Southern summits to Mulinde Hill.

The carbonatite body occurs in a ring structure of 2km diameter, showing distinct zonal arrangement, i.e., from outside to inside, are arranged sovitic carbonatite, ankeritic carbonatite and its mixed rocks with sideritic carbonatite.

Useful minerals enriched in REE, Nb, Sr and P are pyrochlore, synchysite, strontianite, apatite and fluorite.

Geochemical survey

It is concluded that the central part occupied by ankeritic carbonatite and its mixed zone with sideritic carbonatite have higher anomaly for REE and Sr, while outer part occupied by sovitic and ankeritic carbonatites have higher anomaly for Nb and P, respectively.

Drilling survey

In Chilwa Island sector, REE-mineralized zones having more than 1.0% of REO are recognized at JMC-3, 7, 10, 11, 12, 14, 19, 20, 21, 22, 25, 26, 28 and 29. Among them, at JMC-3, 10, 11, 12, 19, 20, 21, 26 and 29, the thickness of mineralized zones are over ten meters.

These mineralized zones are usually found in ankeritic and its mixed zone with sideritic carbonatites.

The largest-scaled mineralized zone is recognized in ankeritic carbonatite at JMC-12, which is 48.0m thick in core having the REO grade of 1.48%.

From the results of the surveys, it is inferred that the central and the adjoining ankeritic carbonatite or its mixed zone with sideritic

carbonatite have the highest potential for REE resources especially for medium REE. While, the outer part occupied by sovitic carbonatite have the highest potential for P- and Sr- resources.

Chapter 2 Recommendation for the future

Integrated interpretation of the results of the third phase survey and the previous works recommends the follows to evaluate potential of REE and phosphorous resources to estimate ore reserve and grade as well as expected profits in Songwe, Tundulu and Chilwa Island sectors.

(1) Songwe Sector

A REE-mineralized zone rich in medium REE has been recognized as deep as 50m beneath the surface.

Up to now, it is rather disadvantageous to exploit the sector as REE resources, but taking the higher content of medium REE into consideration detailed survey shall be carried out to define extent, reserve and grade of ore deposits in hitherto detected mineralized zones aiming at increasing the reserves for the future.

Based upon the results, the effect of exploitation shall be discussed on the view point of economy.

(2) Tundulu sector

REE- or phosphorus-mineralized zones in carbonatite or apatite rock are recognized at Nathace Hill.

The estimated grade of Phosphorus (17% in P_2O_5 equivalent) is high enough to be exploited for the production of fused magnesium phosphate.

Further detailed drilling survey shall be carried out to define extent, reserve and grade of ore deposits in hitherto detected mineralized zones with geochemical anomaly aiming at increasing the reserves.

Based upon the results, the effect of exploitation shall be discussed on the view point of economy.

(3) Chilwa Island sector

Through the third phase survey, it is recognized that ankeritic carbonatite or its mixed zone with sideritic carbonatite have the highest potential for medium REE-economic resources.

Detailed geological and drilling surveys in the same way as Songwe sector shall be carried out to define extent and grade of ore deposits in the detected mineralized zones for the future.

REFERENCES

- A special Contributor (1985): Malawi. Mining Annual Review 1985, p433-435.
- Bloomfield, K. (1956): Infracrustal Ring-Complexes of Southern Malawi. Geol. Surv. Malawi, Memoir. no.4.
- Bloomfield, K. (1958): The Geology of the Port Herald Area. Geol. Surv. Malawi, Bull, no.9.
- Bloomfield, K. (1961): The Geochemistry of Zircons from Malawi alkaline rocks. Records of the Geol. Surv. Malawi, Vol.3, p.21-34.
- Bloomfield, K. (1965): The Geology of the Zomba Area. Geol. Surv. Malawi, Bull. no.16.
- Bloomfield, K. and Garson, M.S. (1965): The Geology of the Kirk Range-Lisungwe Valley Area. Geol. Surv. Malawi, Bull. no.17.
- Bureau of Mines (1984): Malawi. Mineral Yearbook 1984, vol. 3, p.952.
- Cannon, R.T. (1970): Geological Atlas of Malawi, Sheet II, Zomba.
- Cooper, W.G.G. and bloomfield, K. (1961): The Geology of the Tambani-Salambidwe Area. Geol. Surv. Malawi, Bull. no.13.
- Deines, P. (1970): The carbon and oxgen isotopic composition of carbonates from the Oka carbonatite complex, Quebec, Canada, Geochim. Cosmochim. Acta 34.
- Dixey, F., Smith, W.C. and Bisset, C.B. (1955): The Chilwa Series of Southern Nyasaland. Geol. Surv. Malawi, Bull. no.5 (Revised).
- Evans, R.K. (1965): The Geology of the Shire Highlands. Geol. Surv. Malawi, Bull. no.18.
- Furon, R. (1963): The Rhodesias and Nyasaland. Geology of AFRICA.
 Oliver & Boyd Edinburgh and London, p.329-335.
- Garson, M.S. Smith, W.C. (1958): Chilwa Island. Geol. Surv. Malawi, Memoir no.1.
- Garson, M.S. (1960): The Geology of the Lake Chilwa Area. Geol. Surv. Malawi, Bull. no.12.
- Garson, M.S. (1961): The Geology of the Chimbiri Hills area, Mlanje
 District. Records of the Geol. Surv. Malawi, vol.3, p.21-34.
- Garson, M.S. (1961): The Geology of the Area West of Lake Malombe, Fort Johnston District. Records of the Geol. Surv. Malawi. vol.3, p.35-48.
- Garson, M.S. (1962): The Tundulu Carbonatite Ring-Complex in Southern Nyasaland. Geol. Surv. Malawi, Memoir no.2.

- Komura, K. (1981): Niobium and Tantalium Resources in Africa. Newer Metal Industry, no.302, p.1-8. (in Japanese)
- Le Bas, M.J. (1977): Carbonatite-Nephelinite Volcanism. John Wiley&Sons, London, 347p.
- Metal Mining Agency of Japan (1981): 1980 Report of Development and Research in Mineral Resource Exploration - Remote Sencing p.1-36. (in Japanese)
- Metal Mining Agency of Japan (1982): 1981 Report of Development and Research in Mineral Resource Exploration - Remote Sencing p.1-56. (in Japanese)
- Metal Mining Agency of Japan, Mining Information Center (1971):

 Metallogenic Province in Africa. Research Analysis Commitee,
 no.6, p.1-56. (in Japanese)
- Metal Mining Agency of Japan, Mining Information Center (1972):
 Structure in Africa, Metallogenic Province and its Units.
 Research Analysis Committee, no.12, pl-26.
 (in Japanese)
- Metal Mining Agency of Japan, Mining Information Center (1973): Mining Circumstance in Malawi. Overseas Information. no.42, p.1-22. (in Japanese)
- Metal Mining Agency of Japan, Mining Information Center (1975): Summary of Mining Act in the World, Malawi. Overseas Information. no.70, p.75-79. (in Japanese)
- Metal Mining Agency of Japan, Mining Information Center (1982): 1982
 Report of Geological Analysis Committee, Niobium Tantalium.
 p.70-85. (in Japanese)
- Metal Mining Agency of Japan, Mining Information Center (1982): 1982
 Report of Development and Environment Analysis Commitee. Mineral Resources and their Development and Environment in Central and South Africa, p.110-121. (in Japanese)
- Morel, S.W. (1958): The Geology of the Middle Shire Area. Geol. Surv. Malawi, Bull. no.10. 4th Prelim. Rept. Afr. Studies, Nagoya Univ., p.175-179.
- Ohde, S., Suwa, K. and Kitano, Y. (1979): Trace Element Geochemistry of Carbonatites from Homa Mountain, Kenya. 4th Prelim. Rept. Afr. Studies, Nagoya Univ., P.169-174.
- Okano, T. (1981): On the Niobium and Tantalium Mineral Resources. Mining Geology, vol.31, no.5, p.407-414. (in Japanese)
- Pennant, T. (1985): Malawi. Africa Review 1985 Ninth Edition of Africa Guide, World of Information England, p.189-192.
- Peters, E.R. (1975): Geochemical Soil Sampling of the Tundulu, Chilwa Island and Kangankunde carbonatite Complexes. Records of the Geol. Surv. Malawi, vol.8, p.1-16.

- Garson, M.S. (1965): Carbonatite and Agglomeratic Vents in the Western Shire Valley. Geol. Surv. Malawi, Memoir no.3.
- Garson, M.S. (1965): Carbonatites in Southern Malawi. Geol. Surv. Malawi, Bull. no.15.
- Garson, M.S. (1966): Carbonatites in Malawi. in "Carbonatites" ed.
 Tuttle and Gittins, P33-71.
- Garson, M.S. and Morgam, D.L. (1977): Secondary Strontianite at Kangankunde Carbonatite Complex, Malawi. I.M.M. Trans., vol.87, B70-73.
- Garson, M.S. and Walshaw, R.D. (1969): The Geology of the Mlanje Area. Geol. Surv. Malawi, Bull. no.21.
- Geological Survey Department of Malawi (1985): Airborne Geophysical Survey maps.
- Geological Survey of Japan and Departamento Nacional da Producao Mineral (1987): Research on Mineral Deposits Associated with Carbonatite in Brazil. ITIT Projects No. 8316
- Habgood, F., Holt, D.N. and Walshaw, R.D. (1973): The Geology of the Thyolo Area. Geol. Surv. Malawi, Bull. no.22.
- Hida, N. (1970) : Rare Earth. Newer Metal Industry, March, P.7-14. (in Japanese)
- Holt, D.N. (1965): The Kangankunde HIII Rare Earth Prospect. Geol. Surv. Malawi, Bull. no.20.
- Hutcheson, A.M. (1971): Atlas for Malawi. Collins&Longman Atlases 1971.
- Japan International Cooperation Agency (1981): Life in Africa, Malawi.
 International Cooperation Service Center. (in Japanese)
- Japan International Cooperation Agency and Metal Mining Agency of Japan (1987): Report on the Cooperative Mineral Exploration in the Chilwa Alkaline Area, Republic of Malawi (Phase I)
- Japan International Cooperation Angency and Metal Mining Agency of Japan (1988): Report on the Cooperative Mineral Exploration in the Chilwa Alkaline Area, Republic of Malawi (Phase II)
- Kamiya, M. (1982): Rare Metal(1). Bonanza, Metal Mining Agency of Japan, no.81, p8-22. (in Japanese)
- Kamiya, M. (1982): Rare Metal(2). Bonanza, Metal Mining Agency of Japan, no.82, p.12-28. (in Japanese)
- Kishimoto, F. (1985): On the Bayan Obo Rare-Earth-Niobium-Iron Ore Deposits of China. Journal of Geography, vol.94, no.4 P.30-47. (in Japanese)

- Rose, A.W., Hawkes, H.E. and Webb, J.S. (1979): Geochemistry in Mineral Exploration. Academic Press, London, 657p.
- Suwa, K., Osaki, S., Oana, S., Shiida, I. and Miyakawa, K. (1969): Isotope Geochemistry and Petrology of the Mbeya Carbonatite, south-western Tanzania, East Africa. J. Earth Sci, Nagoya Univ. 17, P125-168
- Suwa, K., Oana, S., Wada, H. and Osaki, S. (1975): Isotope Geochemistry and Petrology of African Carbonatites. Phys. Chem. Earth, 9, Pergamon Press, P735-746
- Suwa, K. (1981): Petrology of Carbonatite. Mining Geology, vol.31, no.6, p.457-465. (in Japanese)
- Takenouchi, S. (1973): Carbonatite Ore Deposits(I) Mining Geology, vol.23, no.5, p.367-382. (in Japanese)
- Takenouchi, S. (1973): Carbonatite Ore Deposits(II) Mining Geology, vol.23, no.6, p.437-451. (in Japanese)
- Takenouchi, S. (1981): Carbonatite Deposits. Mining Geology, vol.31, nc.5, p.415-420. (in Japanese)
- Takenouchi, S., Kanehira, K., Komura, K. and Mariko, T. (1986):
 Lithium, Beryllium, Niobium, Tantalium, Rare Earth Elements, and
 Zirconium, Hafnium Ore Deposits-Resources of Rare Metal 2Mining Geology, vol.36, no.4, p.291-312. (in Japanese)
- Tanaka, T. (1981): Rare-Earch Behavior in Magmatism and Genesis of Carbonatite. Mining Geology, vol.31, no.6, p.467-478. (in Japanese)
- Tatsumi, T. (1965): Mineral Deposits Associated with Carbonatite and Alkaline Complexes. Journal of Geography, vol.74, no.1, p.13-33. (in Japanese)
- Tuttle, O.F. and Gittns, J.(ed.)(1966): Carbonatites. John Wiley&Sons, London, 591p.
- Vail, J.R. and Mallick, D.I.J. (1961): The Mongolowe Hills nephelinesyenite ring-complex, southern Malawi. Records of the Geol. Surv. Malawi, vol.3, p.49-60.
- Walshaw, R.D. (1961): The Geology of the Balaka-Pirilongwe area. Records of the Geol. Surv. Malawi, vol.3, p.5-20.
- Walshaw, R.D. (1965): The Geology of the Ncheu-Balaka Area. Geol. Surv. Malawi, Bull. no.19.

Appendices

en komune er en er en er en en en en ekkelen kan en en en en en en en en ekkelen et ekkelen en en ekkelen. En En en
으로 보이 되었다. 그런 사람들은 이번 사람들이 되었다면 보고 있는데 그런데 되었다. 그런데 바라 그런데 하는데 되었다. 그런데 보다 하는데 말했다.
그는 그는 사람들은 사람들은 학교에 가는 사람들이 얼마나 있는 나라를 걸려고 있는 것이다.
는 사람들은 사람들이 되었다. 이 전에 하는 사람들은 사람들은 사람들은 사람들이 되었다. 그는 사람들은 사람들은 사람들은 사람들은 사람들은 사람들은 사람들은 사람들은
그는 그 이 그리는 일을 가는 이 이번 것 같은데 이번 장시 나는 모든 말을 수 있었다. 중국
그는 그는 그는 어느 이번 사람들은 사람들이 가는 사람들이 가는 사람들이 가득하는 것이 되었다.
보다 보다 보다 되었다. 그는 사람들은 사람들은 사람들은 사람들은 사람들은 사람들은 사람들은 사람들은
en e

Appendix 1

Assay results (Geochemical samples)

Abbrevation

occ

C: Chilwa Isiand

1 : massive 2 : sheet

3 : dyke 4 : agglomerate

5 : breccia

REO

Rock

10 : carbonatite

20 : others (Alkaline rock)

30 : others

 $La_2O_3 + CeO_2 + Nd_2O_3 + Sm_2O_3$

 $+Eu_2O_3+Tb_2O_3+Y_2O_3$

Units

ppn

REO	1410844	676.1 466.7
11 11 11 11 11 11 11 11 11 11 11 11 11	0404000000000000000000000000000000000	692 1 551
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	187
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	447 06
	14488 246 8 404 20 40 60000048 40449 146 600000048 146014014004016 146014006 8 64 601400401684016404444 16401400000000000000000000000	34.
	Lat 11	2.70
	1 1 1 1 1 1 1 1 1 1	5.7
H I I I I I I I I I I I I I I I I I I I	8421 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	9.6 1.60
11 11 11 7 11 11		၂ လ
" o ! Co !!	0111	တ္တဂၢ
11 -1	44+014 414 42000000000000000000000000000000	\circ
000k	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
mple		Y0 Y Y0 S

	8 4																																												, ((ŗ
1	2582 4582	9) t	4 ()	- 0) -) [4,5	t a 1 a	0 0	10) tı ,	, ,	· α	0.	2 (C 1 t-	Š	14	·α	500	900) C	9 60	257	572	50	942	ιυ (Ω	9	707	ት 0 ዕ ተ) () () ()	100 100 100 100 100 100 100 100 100 100	8	8	7,	s S	778	∞ (~1 (90	და, და,	0 C	10 10) <u> </u>	18	2	7
ו העו	0.0	0			? <		> <	, c	•	c	c	c	· C	0	c	•			. <	, 0	· c	0	0	Ö	0	0	0	o.	၁	, <	, c	0.0	0	0	0	٥.	0	0	0	0.0	٥, ٥	> <) C	0	· c	>
 	922	က (4.0	2 C	Š	1 (1) (\	9 C) \) \ † \ 0	50) (-) (-	t C	90	ဒိုင်	, C) Q	0	4	6	ς 1α	o G	Ė	4	12	26	8	4,	4,	4,	ر. در	けつけいいい	10	46	ŝ	95	8	8	æι	67	, C	16	7 C	r o	4	٦,	5
ا ا ا ا	57	818	χOΥ	OΥ	7 C	ነ . ን ኮ	1 T	0 0 0	200	ÖÖ) C	J (٠,	- L	> <	フマ	13	24	11	つぐ) A	$^{\circ}$ \propto	00	4	0	Ø	5	တ 1	2 2 4 4 6	10	-σ) (X		∞	ţ~	တ	Ø	4,	\circ	∞	o c	, , , , ,	4 K	ے بار	년 년 6 년 6 년 6	3
SI	14517	41	<u>``</u> ,	니 선 네 도) + -	10) ~ 1 ~	ን ተ - I C	3.5	7 5	۲¢.	۱ د د د) (2 4	۲,	i a	3 6) σ > σ	2 5	4 1 0 0	- \	, 4 , α	90	2,4	39	9	78	17	4.	⊣ 0 ⊣ 0	° €	1 R 1 A	ຸດ	27	\circ	36	94	40	ic) ic)	4.0 ف	ς Ω (NC	ο α ο σ	oα	oα	
QN -		642.	166		- 10 - 0		, 7 C 7 C	† 4 7 0 † 0	0 0 0 U	10		ι τ	- L	5 4	((٠		Ισ	α	Ծե) IC	37	4	80	15	65.	66.	476.0	90 100	10	- ແ	75	69	ფ	00	81.	3	44	(2)	ი ი	200	ວັບ	7 7 0	! (1	0
Tp	7. V	.01	۰	۰,	t a) C	> <		† <) }	ے 7	٠,			10) (r	iα	2 K) U	•	10 10	0	O	0	4	4		დ (ე (ი ი ი	o co		0		დ ო	ĸ	တ	ഗ	တ	so e	٠,		- C		0
nE :	5.90 5.90	0) (1 <i>I</i> /	Մա	, <	የ) C) C	90) C	1 4	۲o) e.		יי יי	. ∀	io ro) (C	ος 3 (2)	50	10	86.6	27.2	ເນ	(C)	ري دن	4.7	ი	4.0	* t • t	- ป เ	 	4. ئ	2	9.0	⊗	8.2	4.0	æ. ∞.) I	. · ·	۵ د د د	ρα	0 r-	٠,
Sm	19.40	, rv	o i) -) (- C		1 ¢	- o	0 C	o	200	יע זכ) (4) (4) (4) (.) (.	1 t	- a - z) + (4	יונ וני	10	- F	200		7	27.4	16.1	03.9	17.0	86.0		000 000 000	4.C) (46.3	66.2	7	96.7	49.8	53.5	36.2	14.8	73.6	N C	 	⊣ ถ า เ	4 C	
Nd	318	0	ဘင	ე - -	10	11	- a	00	20	30	14) α	U	30	1,0	10) α Ο α) C	5 2	4 π 4 α	40	c c	9 4	62	S	9	62	გ	4.	<u>ተ</u> ረ	ŠĖ	- (°	34	23	S	12	80	တ	დ ც	4	0.5	ഗ	4.e	4 0	o c	
Ce	1102	٠) (کار 44 ر	4 L うく	9	٥٥	10	- ¢	Ų L	ے د	٠c) (10	- t	- ř	→ 7 D ←	10	אור אור	n 5 Z	† 0	3 C) [- - -	4	. . .	88	200	27	ij	တ္စား	ე ლ	~ ¢) Q	2 C	20	ر ا ال	12	(n)	86	32	Ω 53	4,0	φ (n c	<u>ې</u> د	OC	
La	638 345	· LO	0	V -	11	- C	٦ŀ	- ۶	٥ŀ	- ¢	ıα	35	10	16) <u>_</u>	10	96	10			2 0) α 2 Δ	6	18	8,4	4	. 4	45	4	ά Ω	4	# 0 -1 C	מיני מיני	4	4	3,4	7.5	20	8	64	8	ψ,	က်	χo -	٦t	
000		0	00	> <	> <) C	> C	> <	>-	-1 e-	1 ~	-1 r-	40) +-	4 -	⊣ +	۱,-	4 +	-1 e-	4 -	-1 r	4 - -	 1	d	·	1 		· -	<u>-</u> -1		-1-	٦,	-i +-	ł (-	l	ر. د	-			,j	_ا ری	'nЦ	η·	⊣ ¢	×
ROCK	172			7.5					V C		10	ተ ተ		4	40		† *		10			† -							14		71 (# T							4		C)	¢	710	27 (er.
2	8Y051 8Y052	X05	လူင	ე (ე () C) () С	9 C	٥ ر ک د	2 G	ე (ქ) (9 Q 2 C	0 U	0 4 3 C	0 4 3 5	9 6	96	- t	7 C	- t	- t	90	- <u>}</u> -		20	0	80	80	80	ဆ ၁	0 0 3 0	0α 3 C	žχ	$\frac{\alpha}{\alpha}$	3 0	80	9	8	60	60	60	90	ກ ວິ	200	ç

ESU ESU ESU ESU ESU ESU ESU ESU ESU ESU	α ω d α ω ω d α d α d α d	69
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2372.
ii Di	000000000000000000000000000000000000000	0
11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 8000 HE HEH HEE EN RO 4614 HE HELDONE OF EN HE	2664.
> > 	044 00044 44400000000000000000000	99
リ H の H の		4498
ii 4	000000000000000000000000000000000000000	0
II II W	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	159
To	05-14 m 5 m 4 0 0 0 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0	0.5
11 15 11	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
ii ii ⊒ ii ∃	$\begin{smallmatrix} 1 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 &$	09
:ii	C	15
Sm	000000000000000000000000000000000000	50
R 11 14 11 11 11	446 46144	45.
NG I	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	342
H H H	11	968
41 1 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	544
		i
10 1		
Rock	। नेतेले नेनेतेनेनेनेननेनेनेनेनेनेनेनेनेने ने - न नेनेनेने	13
II Cult	00000000011444444444444444444444444444	51
୩ ପ ୮		8Y1

Appendix 2

Assay results (Drilling core samples)

Abbrevation

NO.

REO

\$12~\$19: JMS-12~JMS-19

 $La_2O_3 + CeO_2 + Nd_2O_3 + Sm_2O_3$

T25~T27: JMT-25~JMT-27

 $+Eu_2O_3+Tb_2O_3+Y_2O_3$

CO1~C32 : JMC-1~JMC-32

1	ì									:										:										:											1
023	40	4							٠.						٠.											•														*	*
	G5 ←	10	1 0	· co	6	\circ	4	S	4	F:	eo i	· -	.	Ċ√3 ·	\circ	 -	ŝ	0	φO (0:	တေ	O C	0 (N U	> <<) L-	- ∞	\Diamond	တ	on.	4	ഗ	∞≀	•	O) 1	ကျ		\sim	S. C.	~ ~	44
	∞ 0) (<u>C</u>	. 40	r-	00	5	∞	~	ယ	r~-	÷	∞	0	~	∞	တ	(~~	∞	8	on:	3	C	7 1 (300	4 C	>	1 E	8	4	~	540 ·	4	∞ 0	\circ	(00 1	i ca	-		<u> </u>	×
1										}	_		-	****						;			.,,		•	•															
ام	00																																						> <	<u>ه</u> .د	S.
	တင	> 0	٠ دد		က	- 4	∞	9	9	E	<u></u>	ကျ		C)	<u></u>	LI2	Ç		∞	un:	2	∞ (9		∽ «c	> C	1 [-	•	ΟŞ	∞;	\sim 1	F 1	œ∙	≪# £	·- ‹	√1 (∞ •	9	- c	o c	5
	188	+ 00	\propto	, ~I	• —•	Ġ	t	ţ	63	ro.		r (S.	r,	∞	S	∞		44	<u>~</u>	\circ	\circ	$\supset \iota$	α α	o ⊂	> vc	<i>> 0</i> 0	∞		C		Ce2 1	· .		-a		ဘာဇ		J3 4	G	* 21
1			_					•	Ī				-													4,									⊶ .					•	٦
>-	ကင	> 0		- <-	3	ഗ	ĸ	တ	9	4	യ	<u></u> .	Oð-	∞ '	on On	_	· •••	~	7		- P	0.5	~ <	<u>~</u> ~	9 0	3 60) - (ΙĊ	9	တ	≪ :	2	- 0	<u>ب</u>	is a	က i	~ 0	2	7:	< 0	20
	40	2 0	3 67	200	1 (2)	1	د	27	23	2.0	2	₹	5	⇔	613	4	46	↔	22	es.	က	~ .	7 -	4.2	r 4E	. cc	3	c-3	H	တ	60	ıç,	ו כיצו	٠.	~	-		4	~ c	٠.	4
L.	00	- ~) E-	- O	~;		ر. دي	7	.	د	∞		~	٠. دی	 ⇔	ero.	-31	~>	မ	_	:11	óo t	<u>.</u>	♂	16-	- ~4	: • ∞	~₁	~	7	~~		دی	√ 1	<u>. </u>	و ص	0	20 E	~ <	-> c	20
S	C 0	> C	→ √	, LG	9	°€1	დ.	ဗ	52	ဆ	8	2	2	寸	40	ŝ	es œ	8	2	30	တ			2 C	- 0	, C	, e.s	0	5	2	٠. ا	47	_;	07 ((A) (ر دری این		(C)	S .	20.0	5
		→ ,		\$ s	1 7-1	6/3	62		+4	•		-CJr 1	-		6.3	<u></u>							~ •	-4 *-	-,		3 1. ~	6-4	• •											. •	
Q N	06	_	_					_									٠.			· •:						•										•		-			-1
	c	2	3 3 2 3			_	•0	O	ഹ	40	673	\sim	2	മ	മ	α	-	\sim	₹ 1	∽.	$^{\circ}$		~ (-		ιс.) (v)	\circ	\circ	or:	က		~ − ·		∞	Ο ·	() (.,,		7	_
	8 6		4	1 -		2		$\vec{\Box}$	ರಾ		Ξ	د ا	Ξ	∞	~		-	ω	77	7	-			~ ~	-1	7 ()	2	(-)	•	-				٧.	~	٠.				.,.	
٩	00	> C) C		40	20	0	10	20	82	40	0	00	ص ھ	20	0	30	0	10	မ	20	9)) (∞ ¢) C) (C	9 0	00	20	8	2	0	0	20	ري د د د د	∞	0	00	2 4	36	o X
ľ		, tr		: _			·				ف		<u>.</u>	-		∾.	∞.	φş.	د	ი: თ:	∞.		5 c	χ, α	o c		. 4	_;	₹;	m	w.	4	ej i	, [(٥.		٠,	٠.	-1
	200																																÷ .	4 1							I
Ξ	0 <	* ~		1 [0	∞	***	~	-	00	د ى	[(~	<u>د</u>	φ.	~	∞.	∞.	ro.	_			•	20.0		- 0	, 40	ω,	٠.		۳.		~ .				٠.	•		٠.	٦.
	2 6) (c	9 4	9 2	6.4	7	გ	9	ů	62	7	<u></u>	α 23	∞	;	60	0.9	8	7.5	7	တ	3 00	- 0	~ a	-1 ex	90	, 67	Q5	4	∞;		0	<u></u>	8		SO I	ري ا	9	× 5	ა: ა:დ	?
	00				. ~	_	_	_	_	~			_	_	~>	_	_	_	0	တ		<u>.</u>	.			· -	.0		Ö	- 3	0				0	0	0	٥,	~ (٥,	_
S	0,	3 C	۰ د	3 C-	· 07	<i>5</i> 5	ess	ŝ	2	87	o,	φ,	o.		·	~	٥.	4	<u>. </u>		0	~ .	-; (.3 11	ο α •		, .,	4	4	Ç*3	0	(-5	٠,	· ·	٠,		٠, ١		7.		
	50 Y	2 6	3 -	tu:	00	c	-34	\sim	O	7	G		1	⊸*	0	\circ	- →	4	3	go.	£	\sim	~ 4	on ~	40	ac.	S	O	∞	₹.	€3		-K	C)	<>10	co.	∞	ادث	~ <	\circ	-
	~~) ¢	3 6) e<	! €>3	1	~	~	1	~	<>3	∾.	ຕາ	ഗ	CA3	C.D	ç>³	2	، وبي	.~	£43	., .	,, ,	NO	J (4	,	,,	(-)	_		7	٠.,									` \
PN	40		> ~	* ~	0	ťΩ	\sim	α		-	-	9	~	0	∾	က	∞	0	4	\sim	_	ur) t	α	90	90	> =	* **	0	9	œ.	-	∞	g,	on (<u> </u>	ব	- T		-		~
	4.	· -	4 (· C	5 €⁄3	æ	ĆΔ	2	O	\sim	F	• • • • • • • •	é	യ	L()	S	•—	\sim	rv)	w)	r	ထေး	-	~ t	> c) (~	~ t~		∞	F	•	4	-3.1		ca.	-J.	C) (.,	(1)	_,,	27
ø	හ ය හ ය	· ·	4 ex	4	·	ç	<u>-</u> -	တ	م	۵	7	<u></u>			0	4	~;*	S.	2	0	0	₹,	(2 L) (r) 4C	o 00	0	4.0	9	<u>~</u>		27	ص د	~ .	9	ਦਾ (ਦਾ (00 0	~ <	7 .	_
0	348	2 د) ic	,	i w	ഹ	ŝ	∞	3	0	S.	~	2	20	Š	35	300	33	ဆ	g G	53		٠. در	20	, c.	∀ ₹	# 673 	5	63	8 9	در ا	ري دي	7	න න	62	3.4	22	ω .7	× 5	77.	3.4
													•																												
명	% ₹ ∞ ₹	_ ~				~~	~~	~	-	2		~	~	est.	~	S	α	LO	ഥ	cn.	CO.	1 m	L	ഗ)	o ua	ຸ	∞	-	(4.)	-	ÇD 1	ຕ	⊷ .	, ,	(2)	C33 (~ 1	1.3	9	×Ι
1	103	4 50	4	-		2	•~-i		2	7	2		20	C)		,~,	~~ -~			~	က	~ ~	3		3 5	3 6	1 60	~	٠,	~	~	~	-			-	,			<u> </u>	Ä
)	0.	ı c				0	0	0	∞		0	0	0	0	0	∞	∞	0	₹		7	0	> <	⇔ c	> c	, c	ہ	-	7		0	Ö	0	0	٥,	0	0	, ب	٥,	~	
S CK	<u></u> -		4					٠			'n							<u>.</u>			4		י כז	د		, ,		Ġ	ω.		S	LC)	က်	ις.	ı,	S.	'n.	انم	ı.	ċ	١
h i	1																														:										Ì
д Г	ļ																			:																					
150	ح ج									Λ 1.				-	-		-	_	-	w.	_		-							Ψ.					•		•	•			w
De	d		۰						_	ď	<u></u>	\sim	_	~ 1		ന	CJ	-	٠ د	417	ינא	C.J L	0	2 c	"	Эυ,	, ,		\sim	-		_		·	u,,	~	M /	~		<u>ئ</u>	D E
12										San										E.										S											Sa
152										<u>.</u>	ຕ				-				<u>. </u>	S	ထ									\circ										٠.	
Dell	0		1 45	٠	20		G	~	S	-	Ç.	£ 1			6-3		-4	C-3	4	σ,	0	436	_, ,	7	<i>_</i> u	3 0	, u,	\sim	•••	•	_		_		···				7	'	귀
щ		. ~				<u></u>	on	æ	_		1	o.	m		KO.	ع	<u></u>	œ	ക		1	~ 1 •	,	4.4	> 44	> r-	- 00	တ	0			~	က	-wji	w.	ΚO	.	∞	ന ദ	0	
MPL	200	3 6	2 5	202	0	20	20	20	21		3	30	3	8	30	30	30	30	30		40	9	₩.	40	∀ =	> C * **	4 4	40			20	20	50	50	20	50	2	2	50	2	
-C	20	4 +-	٠,	•		~~1	****	7			5													S															S		.

E0	ur)	-1	3	3 0	m	~	တ	643	∞	ထ	'n	*#	co	43 1	2	ഗ	r.	က	ţ~.	₩.	∾ 1	·~ (~ c	n c	a on	0	∞	t	~	01	·	<u>.</u>	: صن	o t∽	. er	, <u>r</u>	٠.	~	LC:	,	63	ന	۱C
24	£	0	Ġ,	Ω	o.	4	ശ		က	S	œ.	-	·-	-4	_	~:		٠.	٠.:			_•	:		•	• •	•	•	٠	•	•	٠	•:	• 1	•								
	LC)	ø.	٠.	4	٠ دی	w)	·- 1	<u>.</u>	~ K	Ē	m	~	_		_	_			~		•	~ `	_,		,	(1)	~	∞	00	യ	33 F	S	יי. גֿעג	4 ***		1 4	C	~	€3	ပ္	-4.74	**	
İ															3			62	4		~		A. C	<i>⊃</i> ;⊂	, 4	. 4		<u> </u>	 ((\sim	Ç1 €	<u>۰</u> ۰۰	# 	I LO	· cvo	00	•	\sim	43	%	20	6.9
	-					•					:	•									*4		٠	٦: د	1	0	731	-	~	co e	n	m o	ے:د	400) +-	t +t	ı						
			-	_	_	_																		:									i										
Δ,	0	0		⊃.	<u>ੋ</u>	٦,	<u>ج</u>	⊃.	٥.	9	Ο,	٥.	ં.	O)	0	٥.	0	Φ.	۰.	٥.	0.	۰ د	> <	41 ⊂		0	0	0	Ö,	<u>ب</u>	> (o c	>:<	o	0	0	0	0	0	0	0	0	0
]:	₩ (N	0 1	- 6	20	oo,	40	œ.		š	_		:	~.			-						,, u	,	CL.	Ç,	7	co (S .	٠, د	210	~∶€	3 C	a co	ŝ	<u></u>	လ	∞	ဌာ	മ	ന	<>1
	0 6	် လ	⇒ ·	4	7	⊣ (ا در به در	ဂ		က	80	ده	Ξ	9	0	5	6	. ص	õ	2	0	Ö	20	0.0	00	90	5	₩.	<u></u>	∞ •	, ,	>> 0 ⊶ €	o; − o; −	10	200	(~J	8	ĵ	0.2	12	∞	04	9
	0.			,	⊣			•	_						ςς.				~	co)	ırə ı	r) t	., -			42	_	co,	ω,	Z 1	റെ	 	CY	*	ι¢ρ	9	တ	~	1		 1	က	မာ
				_												•								1									:					-	•				
	80.0	io c	7		4.0	5	∞ ε	0	တ	ဗ	20	6	5	~-(;	တား	9	9	3	7	က္	9	0 c	9 ¢	3 C	9 07	S	8 8	ത	2	·- c	7 9	د م	4,60	0	<u></u> -	\dashv	S	∞	9	~	9	S	1
	ls.	44 C	9	၁ ၊		0	7 -	<u>م</u>	÷.	က	¢	Ŋ	ဖ			n	œ,	-	₹.	 .	~ ~	· 7	u	3,46	***	4	က	w.	4	۲,	0	20 -	# -	* 673	n	ç	2	3	7	=	0,		_
н	30	N 6	0 4	· dic	V 6	39 E	~ •	t	ıo.	∞		0	60				ς.	- # 4	_		<u> </u>	~	~	.:_						_			;										
S	(C) (ب <u>.</u> ده	00	9 6	2	de d de d		G (×	3	œ	Ξ	Ξ	-	9	2	ω. :	7	5	<u>ح</u>	ن د	200	7 4	2:0		cts A	8	40	,— (က ကြောင်		20 C	3; €:	9 50	3	1.5	41	12	76	74	<u>~</u>	8	17
	03 -	4	9.6	7	40	90	· 2 c	7	~		~d!	က	≈	ro:	(C)	<u>ج</u>	ç	.~ .	1.7		, .	٠ ٠	c c	3.FC	9	44	O.	დ. (∞ ,	10	- c	30 C	а — Э. Г.	; 	3	φ -1		22	တ	œ	0	-	
_	1					٠,								:	,	. 7								-	• •		~;	c.	40	, C.	C	20 6	J :		~~1								
2	200	- (> <			>	۰ د	٠,	0	0	0	0	0:	0	2 1	0	5	0	0	9	> c	> ~	* =	0	0	C	0	9	-	> <	⇒ . c	2 0	0	0	0	0	0	0	0	0	0	0
	670	X) (4 ¢	ے خ	٥ ر ک ر	3 :	70	, . ,	9		φ (N	6	0	io.	0	 	et c	<u> </u>	9	ب ج	_ <		4 <	r o	<u>.</u>	Ġ	∞.	φ ,	o e	္ပဲ ေ				4	œ,	$\vec{-}$	0	ŗ,	မ်	0	با ت	-	∞ •
		20 0	0 0	o ¢	v -	٠.	-i c	50.4	5	، ــَـــ	oj.	ω.	О	C 3	·	라			7	20 4	.— C		04	2,0	~	c ~	(C)	20	۰ •	1 C	7 2	2 C): t-	2	0.4	9	62	74	_	_	φ 100	es :	7 9
Ω	1.				-						•	•				٠.	1						_	-100					٠,	٠,٠	⊣	***	4:00	·~									
	90																																				0	0	0	0	0	0	0
	i c	N -	* 0	> -		ei c	via	'n,	<u>~</u> .	⋰.	~.`	~:	~ :		٠.	<u>.</u>	ᆣ.	٠.	· •	•	•	•	•		•	•	. •	•	•	•	•								•			ا د ب	4) (
													٠,	· ·	-	4		ਵਾ ਹੈ		<u> </u>	~,		Š	1.00	₹	2	62	3 2	a c	4.4	4.0	نان در در		, (1	7	13	~				····• ;		
고 크		> <	0.0	> c	> c	5 C	~ c	5 0	~ •	<u> </u>	<u> </u>	~	~ .	:	~ .	٠.								.:_									:							•			
-	1.			•							_		·	_;				_ •		~ .					Ų,		cd ()) (9	э и	3 44	0 40	, c	4	လ	∞	Ċ	~ 3	3	₹.		S,	လာ၊
	0.0	90	9 0	÷¢	30	3	•	ე: ↓	-4 i	-10	Ó.	os.	Ö	\circ	0	Ö	4. c	7 0	30 C	7	44	- 6	9 tC		& 0;	¥.	က —	ر د د	⊃ u	3 C	9 6	77	-	-4	<u></u>	တ	7	3.	က	0	- 1	ر د	0
_	ł										•		•		• •									-			*****	•	 •-		٦,	-4 v-	1										
日ク	0 0	را در ک د	, ¢	9 6	۵ مار ک د) C	200	> 0	<u>ې</u> د	2 6	9 0	0	0	က က (က က) ·	2 0	2 0	4.	3 4	٠ د		0.0	9	30	0	0	ŏ	2 9) c	, c	2.4	0	0	9	0	0	0.	0	ا ت	O (9	0
	- 0	 o =	* 0															-	~			: -						:	ન ૦ -			- 4			٥.		7	or .	اف			، ب	<u>د</u>
	900	> 0	o) L	> 0	0	> ~	# C	V	ω,	<u> </u>	**	20.0	\:\:\	0.		-	<u> </u>							: I					~1 C	. a	3 0	. u.	1C)		Ġ.	ഹ	9	— і	ا ب ا د	رص ار ا	، <u>-</u> ج	∞ . ∞ .
	es =					<i>-</i> •			٦,		4.	, co.	٠ د٠.	C .	zo c	٠, د	٦.	•	←		-4 F	4,**	10	3 ~	ćΔ	цэ	ه خت	3	<u>ه</u> د	ο u	o u	D FC	-	ώ	¢Ω	c/s	 1	~		~ `			→ ;
9	250	۰-	4 00	·	4 64	, c	> 0	3 0	η,	۰ م	× 0		₹ (N; 6	N 10	· - •	40	0 µ	o -	-4 t	~ 0	n ~	r co	Sugar	9	ça.	۰,	י כע	0 ^	- -	5 4	رم ب ار	:	~	~		r						_
	00	V 44	0	9 6	10	· •	40	٠.	5 6	<u> </u>		بر درد از درد	~ (· ·	2 6	- 6																											
	63.0	3.0	. c-		3 <u>, -</u>	٠,٠	46	a ¢	7	7	٠,٠	- ;	\$	V.	ō,÷	٠,	_ •			r	_``		-	.~	ç,	ç.	4	7	4.	4 4	+ -	4 (4)	. 6	29	٠ا	7	7	444 643 (יכט	٠ ي	ব ১	, ,	⊃ .
ف د	Δ, r.	> <	· c		- دد) c	>	4	٠ ٠	0	က	5) (<u>ښ</u> د	ازم	o c	3 L	٠ c	n c	> ¢	י כי	۶ م	# C	9 05	တ	တ	c ,	∞.0	N 0	y c	√	· ·	-i (v;		00	က	∞	တ	ς,	·	₹ (ء د	20 6	· ~
_	ro c	2 4	ے		3 14		- 0	5 0	20	o `	-	- 7	÷ .	-:	~ .	~ `	J [- 4	,	~ .		- 0		. 0	6.3	∞ י	. co	٦4	- م	46	30	40	∵∞	r-	က	£	∞	က		9	U C	- L	C) L
	ڪل 7.	. 0		1	~		1 5-		₫, c	O, F	o,	~ *	,,, e	٠,٠	Y) =	* C	7	-	-1 -		40	3 •-	4 7	œ	9	0	9	- 0	O	S	2 6		1,100	Ø	é	'n	က	4	(~ ·	ન`		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
ช	9 -	- +		, ce	۰ د) - <	r oc	٠ د	س د	n c	N 4	-	x) r		. מ	3 14	· -	* *	ο ^	n -	ost a s	· · ·	٠.~		~~								;										
٦	2 0 ←	٠.	. ~	· a	C	•	. _	٠.	# 0	<u>خ</u>	et c	-	Ž ;	N.	00		n n															ء د ر											
	19) C	. .			J.←	4 C		C)	σ,		· •	-12	- ¢	3 46	0 00 0 00	- 00	600	∞	C		ထေး	Ω,		<u>ه</u>	د د	٠, c
, 🚽	_					_		-						:										:					٦٠			•	:										•
	0 -				•			•	•		-				-									C	0					- -								မှာ (> •	>
S	3.55	. c	7	Ç.			1 1477	2	9 4	D H	()	റ .	-	t	- 6	3 0	o n	ם כ	ه د د	31 LC	ي د	ģ	•	'n	נא	K)												<u>ب</u>				က်	?
i e														:										:		•	-1						:										
;													. :																														
٠.	∞ ⊂) LC	×	-	•	· 6	3 6	C	<u>ې</u> د	.			- (a	ેં	> ~	<u>ب</u> د	غ د	3.0) F	- E	- <	د	۰,		G	co o	×0 6	00	0 0	0 0	۰ د	3 ~~		က	တ	F~- 1	 -	ლი	· co	· ·	, ,	7 2 7	~
تر	ທ່ອ	· ,	۵.	o	,_				, o	Ö	o c		-i -	- E	- 0		3 m	: -	•	:-	:-	•	. 0		<u>.</u>	٠.	<i>:</i> -	<u>.</u>	• -	·	•	. 0											
)		. •	ا	•	C	•	3 65		> ¢	3	# -	4		⊃; _	. +	4 6	3 6	3 0		2 -	# =	٠	<u>, </u>		<u> </u>		7	. c	<u>-</u> د	# -	א ול	,	9. 3					200					n j
								 					i	vi.					-				6	Ė								E	Ė										1
ام.د	നന	0	и;	œ	•	0	0	· ~	3 0	> 0		, c	0	ુ: -	> e^	•) LC	. c.	3 C	, ,	- [-	- 0	S		<u>دې</u>	φ.	٥٥	0 0	φœ	o ∝	, α	S S S S	•	0	(D)	. .	r 1	;- c	es e	.	13 e	Y) c	ر جو
تر	o v	o	-	Ġ,	o		· <		ές,		o e		o F	-:-	· .	- a	٠.	3 ce	፡ _	:	:_		<u>'</u> ~	:_:		ᅶ.	<u>.</u>	<u>.</u> _	٠	• _	•	• -	: :	on	_	٠.		· ·			× ^		~
			-	_	3	6	· (~)		3 0	> 4	·	4 -	4 ~	•	•	4	40	3 0	3 64	> c	<u>ب</u>	4	\sim			, j	c	V 6	> ev	> =	7	. 0			-, -			C 3 C	7	3	, , , ,	4	4.
3	<u>! \$\)</u>	i en	-	LC:	40	-	60			>		J.	o .	1_	40	~ د	.	H 2 M	· · ·						~ .												_			٠.	:		
- 1	09	, 4	\sim						, -	٠,	- ا	⊣ +	-4	٠.	o) C) C	· ~	3 (· -	•		11	0	20	9	⊃ c	5 C	> <	2	· C	>	O	0	0	0	ت	9 6	> <	> <	> -		
¢ .	***	•			-	***	9	-	٠,-	4	+ •	- + +		٠,٠	4 ***	٠.	1	٠.		4					∞.	٠.,	~ -		 ←	4 -		4	O)	⇔ •••1.	တ မာ	o> 4	တ (၂)	50.0	ۍ د	<u>ب</u>	33 C	ۍ د ح	در
- (1)	S	. 0	~)	0	0	·	S	٠.			<i>.</i>	ى د	2	. :0) V	2) (/.	·	0	·	S	S	. :	S	S	<i>^</i>	no	20	200	0	v							vi c					
					-					-				•									٠																				