| Те   | rtiary Area  | Séc  | ondary Area  | Pr   | izary Area   | Province |
|------|--------------|------|--------------|------|--------------|----------|
| Code | Trunk Center | Code | Trunk Center | Code | Trunk Center |          |
| 4    | UJUNG        | 40   | KENDARI      | 401  | KENDARI      | Sulawesi |

Table IV-2 Homing Arrangement in Indonesian Telephone Network (4/9)

•

| 4 | UJUHG<br>PANDANG | 40 | KENDARI     | 401<br>2<br>3<br>4<br>5<br>6<br>7           | KENDARI<br>Baubau<br>Raha<br>Papalia<br>Kolaka<br>Malamala<br>Wawotobi                                             | Sulawèsi<br>Tenggara  |
|---|------------------|----|-------------|---------------------------------------------|--------------------------------------------------------------------------------------------------------------------|-----------------------|
| 5 | BANJARPASIN      | 51 | BANJARHASIN | 511<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9 | BANJARPASIN<br>Pleihari<br>KualaKapuas<br>Palangharaya<br>Buntok<br>Tanjung<br>Kandangan<br>Kotabaru<br>Muarateweh | Kalimantan<br>Selatan |
|   |                  | 53 | Sampit      | 531<br>2<br>3<br>4<br>5<br>6<br>7<br>8      | SAMPIT<br>Panghalanbun<br>Nangatayap<br>Ketapang<br>Sukadana<br>Senamang<br>Kualakurun<br>Purukcau                 |                       |
|   |                  | 54 | SAYARINDA   | 541<br>2<br>3<br>4<br>5<br>6<br>7           | SAMARINDA<br>Balikparan<br>Tanahgrogot<br>Xuarasiram<br>Longberang<br>Tabang<br>Sangkulirang                       | Kalimantan<br>Timur   |
|   |                  | 55 | TARAKAN     | 551<br>2<br>3<br>4<br>5                     | TARAKAN<br>Tanjungselor<br>Binuang<br>Tanjungredeb<br>Longnawan                                                    |                       |

| Te   | ertiary Area | Secondary Area |                                       | Primáry Area |                           | Province         |
|------|--------------|----------------|---------------------------------------|--------------|---------------------------|------------------|
| Còde | Trunk Center | Code           | Trunk Center                          | Çode         | Trunk Center              | riovinee         |
| 5    | BANJARMASIN  | 56             | PONTIANAK                             | 561          | PONTIANAK                 | Kalimantan Bara  |
|      |              |                |                                       | 2            | Singkawang                | Butu             |
|      |              |                |                                       | 3            | Ngabang                   |                  |
|      |              |                |                                       | 4            | Sanggau                   |                  |
|      |              |                |                                       | 5            | Sintang                   |                  |
|      |              |                |                                       | 6            | Seaitau                   |                  |
|      |              |                |                                       | 7            | Putusibau                 |                  |
|      |              |                |                                       | 8            | Nangapinoh                |                  |
|      | ·            |                | · · · · · · · · · · · · · · · · · · · | 9            | P. Kárimatá               |                  |
| 6    | MEDAN        | 64             | LANGSA                                | 641          | LANGSA                    | <b>Д.1.</b> АСВН |
|      |              |                |                                       | 2            | Blangkejeren              |                  |
|      |              |                |                                       | 3            | Tekeungon                 |                  |
|      |              |                |                                       | 4            | Biroun                    |                  |
|      |              |                |                                       | 5            | Llokseunawe               |                  |
|      |              |                |                                       | 6            | Idi                       |                  |
|      |              | 65             | BANDA ACEH                            | 651          | BANDA ACBH                |                  |
|      |              |                |                                       | 2            | Sabang                    |                  |
|      |              |                |                                       | . 3          | Sigli                     |                  |
|      |              |                |                                       | 4            | Calang                    |                  |
|      |              |                |                                       | 5            | Meulaboh                  |                  |
|      |              |                |                                       | 6            | Tapàktuan                 |                  |
|      |              |                |                                       | 7            | Bakongan                  |                  |
|      |              |                |                                       | . 8          | Singkil                   |                  |
|      |              |                |                                       | 9            | Kep. Banyak               |                  |
|      |              |                |                                       | 0            | Sinabang                  |                  |
|      |              | 61             | MEDAN                                 | 61           | MBDAN                     | Sumatera Utala   |
|      |              | 62             |                                       | 621          | Tebingtinggi              |                  |
| :    |              |                |                                       | 2            | Pematangsian-             |                  |
|      |              |                |                                       |              | tàr                       |                  |
|      |              |                |                                       | 3            | Tanjungbalai              |                  |
|      |              |                |                                       | 4            | Rantauprapat              |                  |
|      |              |                |                                       | 5            | Bangansiapi-              |                  |
|      |              |                |                                       |              | api                       |                  |
|      |              |                |                                       | 6<br>8       | Pangururan                |                  |
|      |              |                |                                       | 8<br>9       | Kabanjahe                 |                  |
|      |              |                |                                       | 9            | Kutacane<br>Pallgkalanber | l                |
|      |              |                |                                       | Ý            | Paligkalanber<br>andan    | -                |
|      |              |                |                                       |              | 404911                    |                  |

Table IV-2 Homing Arrangement in Indonesian Telephone Network (5/9)

• • -

.

| Te   | rtiary Area        | Sec    | condary Area | Pr            | Imary Area                 | Province       |
|------|--------------------|--------|--------------|---------------|----------------------------|----------------|
| Code | Trunk Center       | Code   | Trunk Center | Code          | Trunk Center               | FLOATIGE       |
| 7    | MEDAN              | 63     | SIBOLGA      | 631           | SIBOLGA                    |                |
|      |                    |        |              | 2             | Balige                     |                |
|      |                    |        |              | 3             | Tarutung                   |                |
|      |                    |        |              | 4             | Padangsidem-               |                |
|      |                    |        |              |               | puàn                       |                |
|      |                    |        |              | 5             | Gunungtua                  |                |
|      |                    |        |              | 6             | Kotanopan                  |                |
|      |                    |        |              | 7             | Natal -                    |                |
|      |                    |        |              | 8             | Pulautelo                  |                |
|      |                    |        |              | 9             | Gunungsitoli               |                |
| 7    | PALEHBANG          | <br>1r |              | ·             |                            |                |
| ,    | a franca 1993 (RJ) | 75     | PADANG       | 751           | PADANG                     | Sumatera Barat |
|      |                    |        |              | 2             | Bukittinggi                |                |
|      |                    |        |              | 3             | Lubuksikaping              |                |
|      |                    |        |              | 4             | Sijunjung                  |                |
|      |                    |        |              | 5             | Solok                      |                |
|      |                    |        |              | 6<br>7        | Painan<br>Manaa            |                |
|      |                    |        |              | 8             | Tapan<br>Matobe            |                |
|      |                    |        |              | 9             | Muàrasiberut               |                |
|      |                    | 76     | PAKANBARJ    | 761           | PAKANBARU                  | Rian           |
|      |                    |        |              | 2             | Bangkinang                 |                |
|      |                    |        |              | 3             | Pasirpanjara-              |                |
|      |                    |        |              |               | yan                        |                |
|      |                    |        |              | 4             | Siaksriindra-              |                |
|      |                    |        |              |               | pura                       |                |
|      |                    |        |              | 5             | Dunai                      |                |
|      |                    |        |              | 6<br>7        | Bengkalis<br>Solatoorium   |                |
|      |                    |        |              | 8             | Selatpanjang<br>Teabilahan |                |
|      |                    |        |              | 9             | Rengat                     |                |
|      |                    |        |              | Ó             | Telukkuantan               |                |
|      |                    | 77     | TANJUNG-     | 771           | TANJUNGPINANG              |                |
|      |                    |        | PINANG       | 2             | Terespa                    |                |
|      |                    |        |              | 3             | Genting                    |                |
|      |                    |        |              | <b>4</b><br>5 | Natuna Selata<br>Tambelan  | p.             |
|      |                    |        |              | 5             | Dabo                       |                |
|      |                    |        |              | 0<br>7        | Tanjungbalai.              |                |
|      |                    | .      |              |               | Karinun                    |                |
|      |                    |        |              | 8             | Tanjumuban                 |                |

# Table IV-2 Homing Arrangement in Indonesian Telephone Network (6/9)

| Table IV-2 | Homing Arrangement in Indonesian Telephone Network (7/9) |  |
|------------|----------------------------------------------------------|--|
|            |                                                          |  |

- •

| Te    | ertiary Area | Séc  | ondary Area  | Pc         | imary Area    |                 |
|-------|--------------|------|--------------|------------|---------------|-----------------|
| Code  | Trunk Center | Code | Trunk Center | Code       | r             | Province        |
| 7     | PALEMBANG    | 74   | JAMBI        | 741        | JAMBI         | Janbi           |
|       |              |      |              | 2          | Kualatungkal  | AUROI           |
|       |              |      |              | 3          | Huaratembesi  |                 |
|       |              |      |              | 4          | Muaratebo     |                 |
|       |              |      |              | 5          | Sarolangun    |                 |
|       |              | :    | · .          | 6          | Bangko        |                 |
|       |              |      |              | 7          | Huarabungo    |                 |
|       | :            |      |              | 8          | Sungàipenuh   |                 |
|       |              |      |              |            | ·             |                 |
| -     |              | · 71 | PALEMBANG    | <b>711</b> | PALEMBANG     | Sumatera Seláta |
|       | · · · · ·    |      |              | 2          | Kayuagung     |                 |
|       |              | 1    |              | 3          | Payakabung    |                 |
|       |              |      |              | 4          | Sekayu        |                 |
| •     |              |      |              | 5          | Muntok        |                 |
| 1     |              |      |              | 6          | Pangkalpinang |                 |
|       |              |      |              | 7          | Koba          |                 |
|       |              |      |              | 8          | Tanjungpandan |                 |
|       |              | 73   | LAHAT        | 731        | LAHAT         |                 |
|       |              |      |              | 3          | Lubuklinggau  |                 |
|       |              |      |              | 4          | Muaraenim     |                 |
|       |              |      |              | 5          | Baturaja      |                 |
|       |              |      |              | 7          | Nuaraanan     |                 |
|       |              |      |              | - 8        | Surulangun    |                 |
|       |              |      |              | 9          | Mukonuko      |                 |
|       | -<br>-       |      |              | Ó          | Barhau        |                 |
|       |              |      |              | 732        | Curup         | Bengkulu        |
|       |              |      |              | 6          | Manna         |                 |
|       |              | 72   | TANJUNG-     | 721        | TANJUNGKA-    | Lampung         |
|       |              |      | KARANG       |            | RANG          | • · •           |
|       |              |      |              | 2          | Kotaagung     |                 |
|       |              |      |              | 3          | Krui          |                 |
|       |              |      |              | 4          | Kotabumi      |                 |
|       | ľ            |      |              | 5          | Nétro         |                 |
| · · · |              |      |              | 6          | Menggala      |                 |

.

| Tertiary Area |              | Secondary Area |                                           | Primary Area |                  | Province   |
|---------------|--------------|----------------|-------------------------------------------|--------------|------------------|------------|
| Code          | Trunk Center | Cođe           | Trunk Center                              | Code         | Trunk Center     |            |
| 9             | AHBON        | 91             | AMBON                                     | 911          | AMBÔN            | Maluku     |
|               |              |                |                                           | 2            | Piru             |            |
|               |              |                |                                           | 3            | Namlea           |            |
|               |              |                |                                           | - 4          | Masohi           |            |
|               | -            |                |                                           | 5            | Bula             |            |
|               |              |                |                                           | 6            | Tual             |            |
|               |              |                | ан ал | 7            | Dobo             |            |
|               |              |                |                                           | 8            | Sauslaki         |            |
|               |              |                |                                           | 9            | Тера             |            |
|               |              |                |                                           | . 0          | Bandanaera       |            |
|               |              | 92             | TERNATE                                   | 921          | TERNATE          |            |
|               |              |                |                                           | 2            | Jailolo          | 1          |
|               |              |                |                                           | 3            | Dáruba           |            |
|               |              |                |                                           | 4            | Tobélo           |            |
|               |              |                |                                           | 5<br>6       | Weda             |            |
|               |              |                |                                           | 7            | Vmėla<br>Labuha  |            |
|               |              |                |                                           | 8            | Laivui           |            |
|               |              |                |                                           | 9            | Sanàna           |            |
|               |              | 95             | SORONG                                    | <b>951</b>   | ćorówa           |            |
|               |              | ,,             | 001.0.10                                  | 2            | SORÓNG<br>Samate | Írian Jaya |
|               |              |                |                                           | 2            | Atkri            |            |
|               |              |                |                                           | 4            | Inanwatan        |            |
|               |              |                |                                           | 5            | Babo             |            |
|               |              |                |                                           | 6            | Pakfak           |            |
|               |              |                |                                           | 7            | Kaimana          |            |
|               |              |                |                                           | 8            | Mimika           |            |
|               |              | 96             | JAYAPURA                                  | 961          | Biak             |            |
|               |              |                |                                           | 2            | Hanokwari        | 1          |
|               |              |                |                                           | 3            | Serui            |            |
|               |              |                |                                           | · 4          | Nabire           |            |
|               |              |                |                                           | 5            | Waren            |            |
|               |              |                |                                           | 6            | Samei            |            |
|               |              | ŀ              |                                           | 7            | JAYAPURA         |            |
|               |              |                |                                           | 8            | Beoga            |            |
|               |              |                |                                           | 9            | Wazena           |            |
|               |              |                |                                           | 0            | Kive             |            |

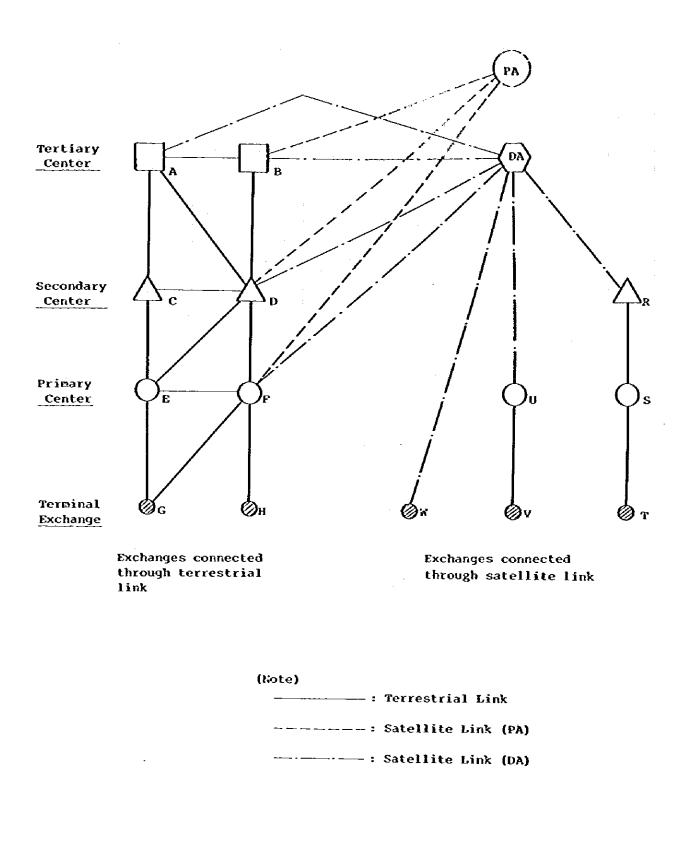
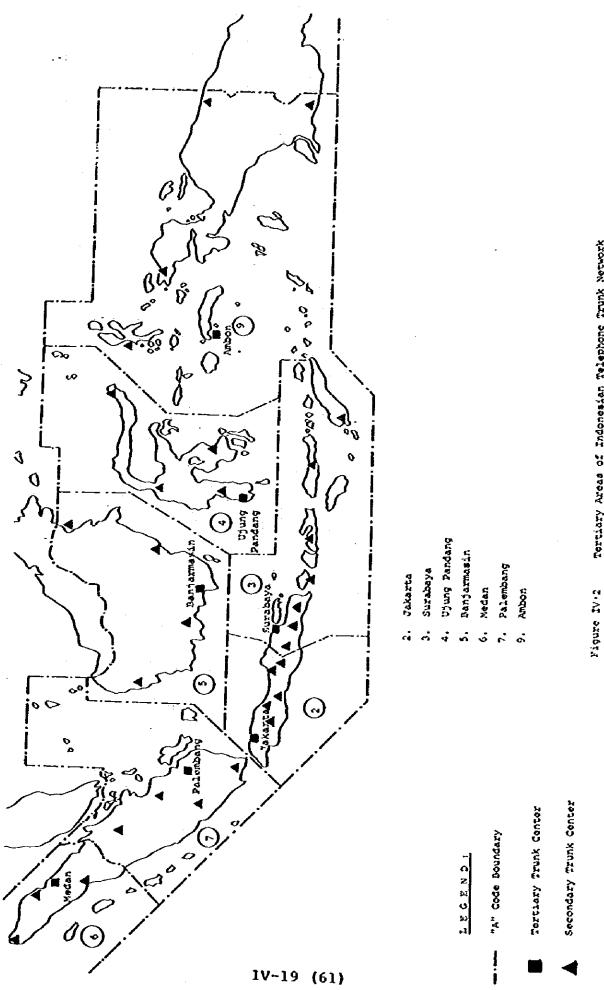
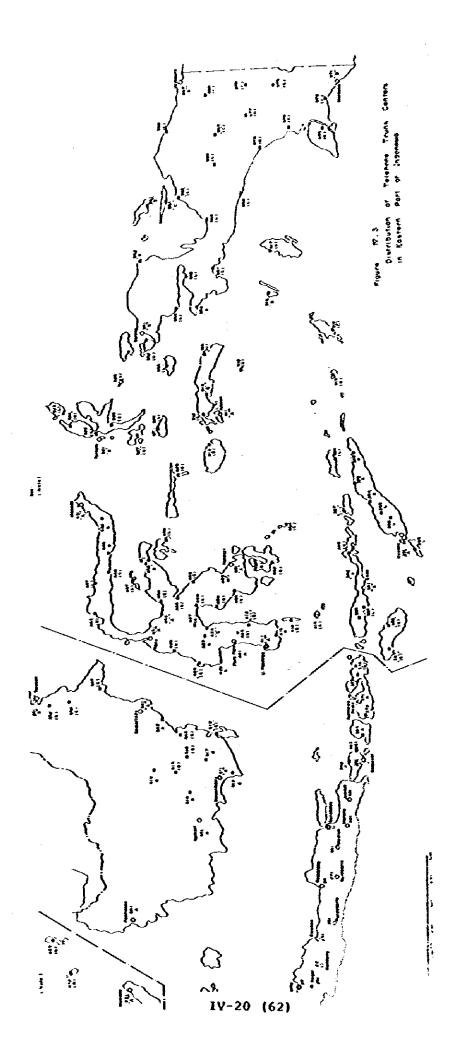
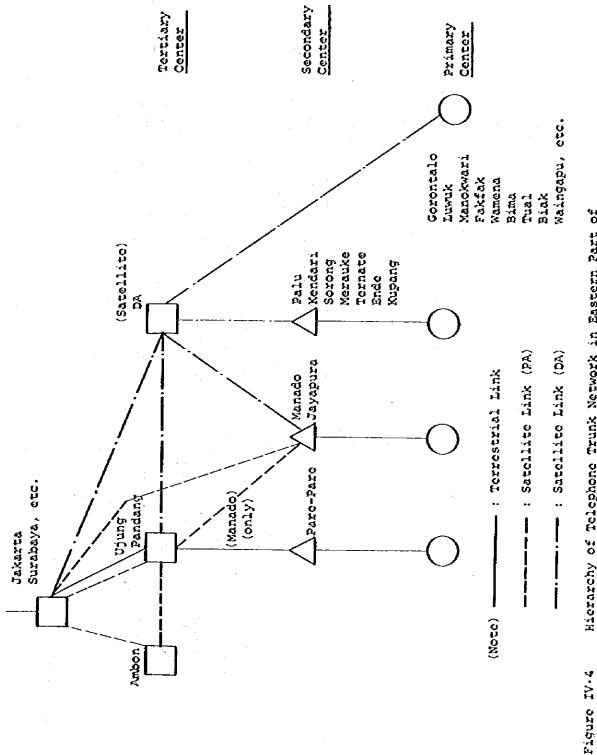
Table IV-2 Homing Arrangement in Indonesian Telephone Network (8/9)

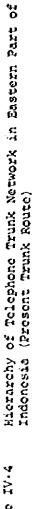
Table IV-2 Homing Arrangement in Indonesian Telephone Network (9/9)

- • · ·

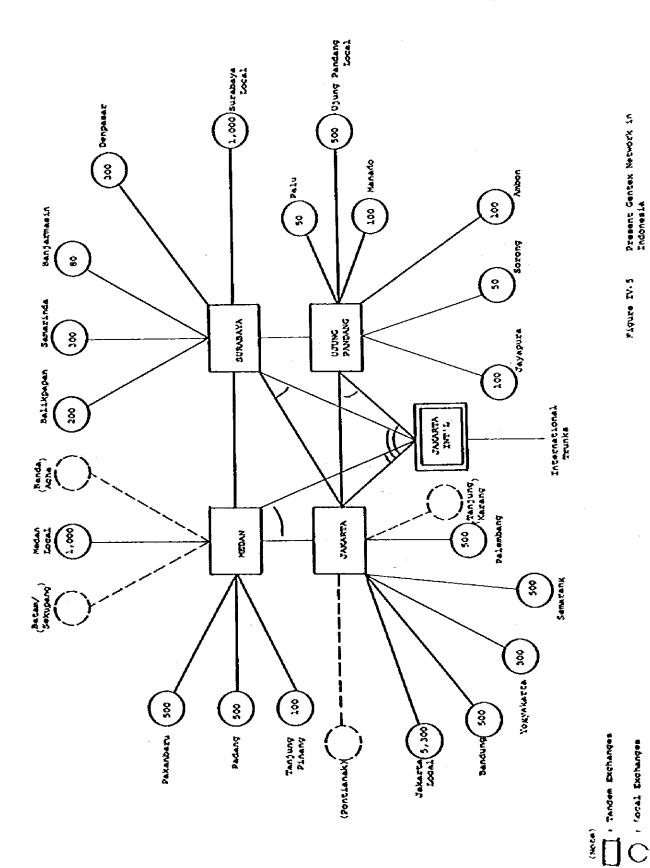
| Te   | rtiary Area  | Seć  | ondary Area  | Pr                                     | imary Area                                                                       | Province |
|------|--------------|------|--------------|----------------------------------------|----------------------------------------------------------------------------------|----------|
| Cođe | Trunk Center | Code | Trunk Centér | Code                                   | Trunk Čentér                                                                     | 101166   |
| 9    | AMBÓN        | 97   | KERAUKE      | 971<br>2<br>3<br>4<br>5<br>6<br>7<br>8 | MERAUKE<br>Okaba<br>Kiman<br>Koba<br>Tanah Merah<br>Agats<br>Cumbuyua<br>Waropko |          |

IV-17 (59)



Figure IV-1 Hierarchy of Indonesian Telephone Trunk Network (Fundamental Routing Plan)




Tertiary Areas of Indonesian Telephone Trunk Network







IV-21 (63)



1V-22 (64)

**.** •

- 3. PBRUMTBL's Telecommunications Development Plan
- 3.1 Development Plan in Repelita III

Attainment objectives of telecommunications development five-year plan in Repelita III were already described in Chapter II. According to the attainment objectives, the telephone exchange installation plan and the telegraph exchange installation plan have been prepared as shown in Appendix IV-1 and Appendix IV-2, respectively.

3.2 Long-term Development Plan

To realize telecommunications services compatible with the future phases of social and economic structures of Indonesia, PERUMTEL has already prepared its "Long-term Plan by the Year 2000." Attainment objectives for all kinds of services, envisaged in the "Long-term Plan", are as follows:

3.2.1 Telephone Service

Increased telephone installation objectives in the coming servies of five-year plans are shown below.

| Final Year of Bach<br>Five-Year Plan | Increased Installation objective |
|--------------------------------------|----------------------------------|
| 1989 (Repelita IV)                   | 1,181,500 line units             |
| 1994 (Repelita V)                    | 1,889,100 line units             |
| 1999 (Repelita VI)                   | 3,017 300 line units             |
| 2000                                 | 3,295,200 line units             |

The number of telephones installed at the end of each five-year plan, as contemplated by the above installation plan, is estimated as follows:

| Final Year of Bach<br>Pive-Year Plan | Number of Telephones Installed |
|--------------------------------------|--------------------------------|
| 1989 (Repelita IV)                   | 1,000,000                      |
| 1994 (Repelita V)                    | 1,600,000                      |
| 1999 (Repelita VI)                   | 2,560,000                      |
| 2000                                 | 2,800,000                      |

Telephone exchange to be newly established in and after Repelita IV will be equipped with the digital switching system.

New line unit installation objectives according to Primary Center zones in the final year of each five-year plan up to the year 2000 are shown in Appendix IV-3.

## 3.2.2 Telegraph Service

The new equipment installation plan to improve telegraph service is based on the long-term demand forecast up to the year 2000. The nationwide demand forecast and the new line unit installation objective as of the final year of each five-year plan follow:

| Pinal Year of Bach<br>Five-Year Plan | Demand Porecast | Installation<br>Objecitve<br>(line unit) |
|--------------------------------------|-----------------|------------------------------------------|
| 1989 (Repelita IV)                   | 20,760          | 28,100                                   |
| 1994 (Repelita V)                    | 31,175          | 41,300                                   |
| 1999/2000<br>(Repelita VI)           | 46,780          | 62,900                                   |

Demand and line units to be installed as of the final year of each five-year plan up to the year 2000 and in Witel I - XII breakdown appear in Appendix IV-4.

3.2.3 New Service

•

ياليا البادية محاجا متحاجج وحاجو

- - .

Démand for data communication service is roughly estimated below.

| Final Year of Bach<br>Pive-Year Plan | Demand Forecast |
|--------------------------------------|-----------------|
| 1989 (Repelita IV)                   | 2,400           |
| 1994 (Repelita V)                    | 3,550           |
| 1999/2000<br>(Repelita VI)           | 4,000           |

-

# 4. Demand Forecast for Telecommunications Services

# 4.1 Historical Trend of Service Demand in Indonesia

4.1.1 Nationwide Demand Trend

Trends of demand for telephone, telex and telegram services and for leased circuits during the period from 1971 through 1980 are presented in Tables IV-3, IV-4, and IV-5. Itemized summary comments follows:

(1) Telephone

The number of telephones and line units recorded an approximately 9% growth annually so that the number of both items in 1980 increased to more than twice the number in 1971. The number of telephones per 100 persons increased from 0.18 in 1971 to 0.36 in 1980.

(2) Telegram

The number of domestic telegrams increased by 11.7% annually, this growth rate being greater than that of telephones. As a result, the number of telegrams handled in 1980 was 2.7 times the number in 1971. On the other hand, the number of international telegrams continues to decrease since 1975 by about 13% annually. The number in 1980 fell to about 60% of the number in 1971.

(3) Telex and Leased Circuits

Telex and leased circuits present almost the same growth trend. The annual growth rate since 1971 is about 24%. For both items, the 1980 record is nearly seven times the 1971 record.

# 4.1.2 Demand Distribution by Areas

The distribution of demand for telecommunications services by areas is shown in the Table IV-6. Itemized summary comments follow:

(1) Télephone

Up to 55% of demand for telephones is concentrated in Jakarta area. The remaining 45% is distributed in all other parts of the country according to regional population ratios.

# (2) Telegram

The rate of telegram service utilization is high in the eastern part of the country, including Sulawesi, Maluku and Irian Jaya.

(3) Telex

الورا الهيديا ولفات فيتم تتدايد معامهم متحد

Demand for telex service is concentrated in Jakarta area, especially the municipality of Jakarta. The concentration ratio is as high as 66%. The remaining 34% is distributed in all other parts of the country according to regional population ratios.

Excepting that the demand for telephone and telex services is concentrated especially in the municipality of Jakarta, the demand distribution is proportional to the regional population ratios. This can be considered to reflect the fact that the economy in each area of Indonesia is basically agriculture oriented, and this fact, in turn, is evident in that GDP per capita shows no much difference from area to area. The high rate of telegram utilization in the eastern region of Indonesia is due, after all, to the lag of telephone and telex diffusion in the region.

4.1.3 Demand Distribution in Objective Area of Investigation

The distribution of demand for telecommunications services in the objective area of this investigation is compiled in Table IV-7. Following are the itemized summary comments:

(1) Telephone and Telex

Démand for téléphone and télex services is distributéd at the same rate as province by province population ratios.

(2) Telegram

Except the municipality of Ujung Pandang and its environs, the telegram utilization rate in the objective area of this investigation is remarkably higher than the national average.

## 4.2 Macroscopic Demand Forecast

4.2.1 Means of Forecast

(1) Base Years of Forecast

The years 1989, 1994, 1999 and 2005 included in the master plan period (1985 - 2005) are used as the base years of demand forecast.

- (2) Methodology of Forecast
  - (a) For the macroscopic demand forecast for telephone service, the strong correlation between GDP per capita and telephone density per 100 persons is utilized.
  - (b) The macroscopic demand forecast for non-telephone services is based on the analysis of all kinds of demand factors. Those demand factors are:
    - o Growth outlook of Indonesian economy
    - o PBRUMTEL's long-term telecommunications network expansion plan
    - o Demand growth phases for all kinds of telecommunications services
    - o Demand trends for all kinds of telécommunications services in developed and developing countries
    - o Trends of demand concurrences among all kinds of telecommunications services

4.2.2 Macroscopic Demand Forecast for Telephone Service

(1) Telephone Density

200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200

The regression line formula that indicates the relationship between telephone density (number of subscriber telephones per 100 persons) and GDP per capita (at constant 1973 market prices) can be obtained as follows:  $Y = 0.000331 X^{1.3352}$ 

where

Y : Télephone density (number of telephones per 100 persons)

X : GDP per capita (in U.S. dollars at constant 1973 market pricés)

This is the regression line formula with correlation data for telephone density and GDP per capita in 92 countries graphically plotted. For such correlation data, see Appendix IV-5.

(2) Population Forecast

Based on the population forecast up to the year 2001 as per Table II-4 of Chapter II, forecast is made for population in each base year of forecast. Porecast results appear in Table IV-8.

(3) Growth Outlook of GDP per Capita

As seen in Table II-2 and Table II-8 of Chapter II, GDP per capita during the period from 1973 to 1979 recorded an about 5% per year growth. In Repelita III, the annual growth rate of GDP is calculated to be 6.5%. The rate of population increase during Repelita III period is estimated at 2.0% annually. Thus the calculated growth rate of GDP per capita during the period stands at 4.5% annually. Granting that during and after Repelita IV also the comfortable GDP growth as at present will continue, the annual growth of GDP per capita in the range of 4-6%, mostly 5%, cap be expected. Table IV-9 presents GDP per capita estimates for the base years of forecast, on the assumption that the growth will be at the rate of 4%, 5% or 6% annually.

# (4) Main Téléphonés Ratio

In Indonesia, during the 10-year period from 1971 to 1980, the main telephones ratio to the total number of telephones reached 70% or thereabouts. The main telephones ratio in other countries also is in the neighborhood of this percentage. Therefore, in this forecast also, the main telephones ratio of 70% is used.

# (5) Calculation of Forecasted Values

The total number of telephones and the number of main telephones in each base year of forecast are calculated as follows:

Total number of telephones = Telephone density x 1/100 x Forecasted population

Number of main telephones = Total number of telephones x 70/100 (main telephones ratio)

Démand forecasts for telephone service by GDP per capità growth estimates at annual growth rates of 4%, 5% and 6%, respectively, are given in Table IV-10. Although, for the forecast in each base year of forecast, GDP per capita growth estimates at growth rates of 4-6% annually are used, the mean growth rate of 5% is used for the macroscopic demand forecast.

- 4.2.3 Macroscopic Demand Porecast for Non-Telephone Services
  - (1) Analysis of Demand Factors
    - (a) Growth Outlook of Indonesian Economy
      This forecast is based on the past records and, at the same time, presupposes that the Indonesian economy will continue to grow at almost the same rate as the Government's annual GDP growth objective in Repelita III, i.e., 6.5%. (Refer to Paragraph 4.2.2 (3).)
    - (b) Trend of Past Demand Growth

During 10 years from 1971 to 1980, the demand for telephone, telegram and telex services in Indonesia continued the rapid growth at annual rates of 9%, 12% and 24%, respectively. (Refer to Paragraph 4.1.)

(c) PERUMTEL's Long-term Telecommunications Development Plan (up to 2000)

> To attain the telegraph and telephone service objectives in the year 2000, the telephone and telex facilities have to be expanded at high tempo of more than 7% and more than 15%, respectively, in the annual averages. (Refer to Paragraphs 3.2.1 and 3.2.2.)

> > IV-32 (74)

(d) Demand Trends in Developed and Developing Countries

As detailed in Appendix IV-6, historical demand trends worth special attention are as follows:

> In the developing countries, the demand for domestic telegram service continues to increase,

> > In the developed countries, in spite of the rapid growth of new services, such as data communication and facsimile services, the demand for telex service remains on the uptrend.

(e)

. -

14 - A

Trend of Demand Concurrence among Services

As detailed in Appendix IV-7, demand concurrence is taking place among all kinds of services. Generally, the demand is shifting from the conventional telegram service to telex service and further to such new services as data communication and facsimile services.

Prom the result of analysis of demand factors, it can be forecasted that, for non-telephone services as a whole, PERUMTEL's long-term objective will be attained as scheduled, and, for this outlook, the continued steady growth of domestic economy and the strong demand potentials among business organizations and governmental offices can be pointed out.

IV-33 (75)

For individual non-telephone services, the conventional domestic telegram and telex services will continue to enjoy the demand increase. With regard to new services, such as data communication and facsimile services scheduled to come into practice in the near future, the demand will show the rapid growth trend approximate to the uptrend among the developed countries. Furthermore, due to demand concurrence among services, the demand for domestic telegram service will reach the saturation point earlier than the demand for telex service.

# (2) Demand Prospect for Non-Telephone Services

(a) Doméstic Télégrams

Prom the short-range viewpoint, it can be assumed that the demand for domestic telegram service will continue to increase at the same growth rate as up to the present, i.e., nearly 12% annually. However, from the long-term viewpoint, the demand growth rate will gradually slow down. For, the diffusion of telex system among business organizations and governmental offices is bound to shift the demand to telex service from domestic telegram service.

As for the saturation point of demand, one indication can be found in the fact that in Malaysia the demand hit the peak in 1974 and is on the downtrend since that time. The reality in Malaysia as of 1973, i.e., GDP per capita of US\$520 and telephone density of 2.1, will come true in Indonesia between the years 2000 and 2005, provided that the real annual growth rate of GDP per capita is 5%. At this level of economy, the possibility of telephone diffusion among general households is considered to be slim. Therefore, even at that time, the demand for telegram service will not immediately decrease but will remain in the state of saturation for a certain period.

# (b) International Telegrams

In and after 1974, the demand for international telegram service continues to decrease by 13% annually. For the time being, this downtrend will still continue and, ultimately, the demand is anticipated to come down to the minimum level of 100,000 telegrams/year or thereabouts.

(c) Téléx

The short-term prospect is that the demand will continue to grow at the average annual growth rate of 24% thus far attained.

From the long-term viewpoint, the demand for telex service will indisputably be replaced with the demand for such new services as data communication and facsimile services. And this trend is already taking shape in the developed countries. However, at the initial stage of diffusion of such new services, the demand for telex service will still continue to make steady growth. In this forecast, the judgement is that during the period up to the year 2005 the growth rate of demand for telex service will slow down as part of the demand transfers to new services; however, the demand itself will not yet reach the saturation point.

 (d) New Services, such as Data Communication and Pacsimile

Judging from the situation in the developed countries, the initial growth of demand for new services will be by 20% or more annually. Main users of data communication and facsimile services are business organizations and governmental offices so that the size of demand depends upon the type of information that the users deal with and also upon the user distribution by business category. Although the demand forecast at the present stage is difficult, it is assumed that the combined demand for telex, data communication and facsimile services mainly used by business organizations and governmental offices will continue to make a 10% growth annually.

# (3) Calculation of Porecast Values

The results of calculation of the demand forecast values based on the foregoing demand prospects for non-telephone services appear in Tables IV-11 and IV-12 and Figures IV-6 and IV-7.

## (à) Dômestic Telegrams

The assumption is that up to 1999 the annual growth rate of 12% thus far attained will be. maintained, and after 1999 the demand will reach the saturation point. As the result, the diffusion rate as of 2005 is forecasted to be 10.9 per 100 persons.

#### (b) Telex

For the long-term demand prospect after 1989, the forecast value is the mean point value (Pattern II) between the optimistic forecast (Pattern I) and the pessimistic forecast (Pattern III). (Refer to Figure IV-7). As the result, the diffusion rate as of 2005 is forecasted to be 0.25 per 1,000 persons.

### (c) New Services

The demand for data communication and facsimile services, including the demand for leased circuits and public service circuits, is forecasted to grow by 20%. The forecast value of demand for telex and new services combined is graphically presented in Figure IV-8. In this case, the growth rate of demand up to 2005 averages 10% annually.

# (d) Leased Circuits

Judging from the user category and utilization purpose, the demand forecast is based on the same growth rate as in the case of telex service.

#### 4.3 Microscopic Demand Porecast

#### 4.3.1 Means of Porecast

- (1) Forecast Area
  - (a) Demand for Telephone Service

The telephone network configuration from the long-range viewpoint will be the star network configuration centering upon the existing seven Tertiary Center areas. Therefore, the demand forecast is made for each existing Tertiary Center area.

(b) Demand for Non-Telephone Services

The demand for telex and data communication services as of 2005 is forecasted to be about 20% of the existing telephone demand and about 2% of the telephone demand as of 2005. Considering this demand size, judgement is made that the existing telegraph network centering upon four tandem exchanges, as against the telephone network centering upon seven tandem exchanges, is of proper scale for the prototype network for non-telephone services of the future. Therefore, the demand forecast for non-telephone services is made for each tandem exchange area of the existing telegraph network.

(2) Forecast Blocs in Objective Area of Investigation The demand forecast blocs necessary for the transmission route plan in the objective area of this investigation are established as follows: (a) Demand for Telephone Service

The forecast is made for each Primary Center area.

(b) Demand for Non-Telephone Services

Judging form the regional distribution of business organizations and governmental offices as main users of non-telephone services, decision has been made that, in the non-telephone service network, the local exchange area or the line concentrator area is almost the same as the Secondary Center area in the telephone network.

4.3.2 Demand Prospect by Areas

÷-

(1) Telephone and Telex

No especially big change can be expected in the future population distribution and GDP attainment. Hence the judgement is made that the demand distribution by area for telephone and telex services will not broadly depart from the existing demand distribution.

(2) New Services

Considering the user category and utilization purpose, the demand distribution by areas for new services will be almost the same as that for telex service.

## (3) Telegrams

In Maluku and Irian Jaya areas, the telegram utilization rate per 100 persons is already five times or so larger than the rate in any other area. By the diffusion of telephone and telex services in the future, the demand for telegram service in the said two areas will be rapidly replaced with the demand for the latter service. Thus the growth rate of demand for telegram service in the two areas, as compared with other areas, will slow down. The demand distribution in other areas will not change drastically from the existing status.

### 4.3.3 Demand Forecast by Areas

- (1) Telephone Service
  - (a) Telephone demand forecast by Tertiary Center areas is given in Table IV-13.
  - (b) Microscopic demand forecast by Primary Center areas in the objective area of this investigation appears in Table IV-14. This demand forecast is based on PERUMTEL's long-term plan but contains corrections by field survey findings. Given below is the comparison between the forecast values allocated to Sulawesi and Maluku/Irian Jaya areas out of Table IV-13 macroscopic and the corresponding microscopic forecast values.

(Unit: 10<sup>3</sup> lines)

|      | Sular<br>(Ujung | vesi<br>Pandang) |       | rian Jaya<br>bòn) |
|------|-----------------|------------------|-------|-------------------|
|      | Macro           | Micro            | Macro | Micro             |
| 1984 | 31              | 31               | 16    | 13                |
| 1989 | 48              | 50               | 24    | 24                |
| 1994 | 75              | 79               | 37    | 39                |
| 1999 | 115             | 127              | 57    | 60                |
| 2005 | 189             | 191              | 94    | 92                |

Judgement can be made from the above table that the difference between macroscopic and microscopic forecast values is not so large as to impede the formulation of transmission route plan. Hence, for telephone demand by which to forecast inter-trunk center traffic, the microscopic forecast values in Table IV-14 are used.

(2) Non-Telephone Services

- (a) The nationwide area by area demand forecast for non-telephone services consists of the allocation of macroscopic forecast values to each tandem exchange area in the future network, based on the demand outlook. The result of this allocation is given in Table IV-15 (1/3) - (3/3).
- (b) The demand forecast for non-telephone services in the objective area of this investigation consists of the allocation of Table IV-15 data to each local exchange area, based on field survey findings. The result of this allocation is in Table IV-16.

Number of Telephones, Number of Direct Exchange Lines (D.E.L.) and Telephone Exchange Capacity in Whole Indonesia (1971 - 1980) Table IV-3

|                         | Year                     |         |             |             | Stat        | Statistics  |         |          |         |         |          | Annual                |
|-------------------------|--------------------------|---------|-------------|-------------|-------------|-------------|---------|----------|---------|---------|----------|-----------------------|
| н<br>Сея                |                          | 1971    | 1972        | 1973        | 1974        | 1975        | 1976    | 1977     | 1978    | 1979    | 1980     | Growth<br>Rate<br>(%) |
| Populatí.               | Population (Million)     | 120-15  | -<br>122.30 | *<br>124.49 | *<br>126.72 | *<br>128-99 | 131.30  | 133.94   | 136.63  | 139.38  | 142.18   |                       |
| Number of<br>Telephones | Main                     | 152,146 | 168,205     | 183,365     | 197,571     | 207,478     | 219,428 | 241,019  | 275,125 | 317,932 | 369,843  |                       |
|                         | Extension                | 69,633  | 72,623      | 83,072      | 91,403      | 97,710      | 59°491  | 108,079  | 117,438 | 124,169 | 143,037  |                       |
|                         | Total                    | 221,779 | 240,828     | 266,437     | 288,974     | 30.5, 188   | 319,919 | 349,098  | 392,563 | 442,101 | 512,880  | 8.7                   |
|                         | Density<br>/100 inhabit  | 0.18    | 0.20        | 0-21        | 0.23        | 0.24        | 0.24    | 0.26     | 0.29    | 0.32    | 0.36     |                       |
| Number of               | Auto                     | 77,437  | 95,414      | 105,762     | 115,298     | 130,752     | 138,722 | 156,358  | 192,857 | 253,696 | 319,303  |                       |
| Exchange                | Manual                   | 74,709  | 72,791      | 77,603      | 82,273      | 76,726      | 50,706  | 54,66L   | 82,268  | 63,419  | 50, 540  |                       |
| (D.S.L.)                | Total                    | 152,146 | 168,205     | 183,365     | 197,571     | 207,478     | 219,428 | 241,019  | 275,125 | 317,115 | 369,843  | 9.3                   |
|                         | bensity<br>/100 inhabit  | 0.13    | 0.14        | ST-0        | 0.16        | 0-16        | 0.17    | 0-18     | 0.20    | 0_23    | 0-26     |                       |
| Exchange                | γυτο                     | 90,660  | 110,860     | 121,460     | 125,000     | 144,100     | 161,100 | 218,320  | 367,200 | 460,100 | 524,860  | 19.2                  |
| Capacitey               | Manual                   | 102,292 | 105,509     | 103,663     | 106,974     | 99,858      | 103,992 | 107,292  | 108,253 | 87,772  | 73,762   | -3.3                  |
|                         | rotal                    | 192,952 | 216,429     | 225,123     | 232,964     | 243,958     | 265,092 | 325, 612 | 475,453 | 547,872 | 598, 622 | 12.0                  |
| D.E.L./Tele             | D.S.L./Telephone Station | •••     | 0.69 0.     | 20 0        | .69 0.      | 0.68 0.     | .68 0.1 | 0.69 0.  | 0-69 0- | 0.70 0. | 0-72 0-  | 0.72                  |
| D.S.L. /Exch            | D.S.L./Exchange Capacity | 64-0    | -0 6-       | 78 0        | .81 0.      | 0.85 0.0    | 0.85 0. | 0-83 0-  | 0-74 0- | 0.58 0. | 0.58 0.  | 0.62                  |
|                         |                          |         |             |             |             |             |         |          |         |         |          |                       |

(Source) Traffic Dalam Angka 1979 - 1980

IV-42 (84)

Number of Telex Lines, Telex and Telegram Traffice and Gentex Exchange Capacities in Whole Indonesia (1971 - 1980) Table IV-4

. •

| /                              | /                                   | -     | ·     |                  |        | Stati  | Statistics |        |        |        |        | Annual                  |
|--------------------------------|-------------------------------------|-------|-------|------------------|--------|--------|------------|--------|--------|--------|--------|-------------------------|
| H COM                          | Year                                | 1791  | 1972  | 1973 -           | 1974   | 1975   | 1976       | 1977   | 1978   | 1979   | 1980   | Stowen<br>Rate<br>(%)   |
| Telex                          | No. of Lines                        | 746   | 897   | 979              | 1,194  | 1,571  | 2,397      | 2,397  | 3,200  | 4,009  | 5,259  | 24.2                    |
|                                | No. of Pulses (*)<br>(Domestic)     | 7,124 | 8,839 | 11,558           | 15,400 | 23,428 | 33,779     | 89,103 | 52,812 | 63,115 | 87,733 | 32.2                    |
|                                | <pre>Paid Minutes (") (Int'l)</pre> | 648   | 921   | 1,430            | 1,863  | 2,595  | 2,928      | 3,885  | 4, 511 | 5,508  | 6,946  | 30.2                    |
| Telegram                       | No. of Messages (*)<br>(Domestic)   | 2,390 | 2,696 | 3, 590           | 3,776  | 3,574  | 4,070      | 4,404  | 4,905  | 5, 503 | 6,455  | 7-11                    |
|                                | No. of Messages (*)<br>(Int'l)      | 379   | 114   | 4<br>8<br>8<br>8 | 494    | 470    | 400        | 351    | 308    | 268    | 232    | -13.4<br>(1974 -<br>80) |
| Gentex B)                      | Gentex Exchange Capacity            | 1,100 | 1,210 | 1,210            | 1,810  | 2,330  | 3,130      | 5,890  | 9,230  | 9,230  | 11,530 | 29_8                    |
| No. of Telex L<br>Ex. Capacity | No. of Telex Lines/<br>Ex. Capacity | 0.68  | 0.74  | 0.81             | 0.66   | 0.67   | 0.77       | 0.41   | 0.35   | 0.43   | 0.46   | •                       |

Traffic Dalam Angka 1979 - 1980 (Source)

(\*) : X 1000

Table IV-5 Number of Telegraph Leased Circuits in Whole Indonesia (1971 - 1980)

|                    |   |     |      |      | Statistics                                   | stics |      |          |      |      | Amuta                 |
|--------------------|---|-----|------|------|----------------------------------------------|-------|------|----------|------|------|-----------------------|
| I tem 19           | 7 | 972 | 1973 | 1974 | 1971 1972 1973 1974 1975 1976 1977 1978 1979 | 1976  | 1977 | \$46T    | 1979 | 0861 | Storth<br>Rate<br>(#) |
| No. of Circuits 44 |   | 51  | 63   | 76   | 105                                          | 124   | 150  | 50 172 2 | 202  | 797  | 23.5                  |

(Source) Traffic Dalam Angka 1979 - 1980

| Item                                                  | % of Te   | lecomm Dém | and   | 8<br>Population | 1 GDP<br>- 1978 | *<br>GDP pér     |
|-------------------------------------------------------|-----------|------------|-------|-----------------|-----------------|------------------|
| Area                                                  | Telephone | Telegram   | Téléx |                 |                 | capita<br>- 1978 |
| North Sumatera<br>(Medan)                             | 8         | 12         | ė     | 8               | 9               | US\$<br>240      |
| South Sumatera<br>(Palembang)                         | 8         | 5          | 5     | 9               | 9               | 217              |
| West and Central<br>Jawa<br>(Jakarta)                 | 55        | 34         | 66    | 43              | 46              | 218              |
| Bast Jawa, Bali<br>and Nusa<br>Tenggara<br>(Surabaya) | 19        | 21         | 12    | 26              | 21              | 175              |
| Kalimantan<br>(Banjarmasin)                           | 3         | 6          | 3     | 5               | 6               | 290              |
| Sulawesi<br>(Ujung Pandang)                           | 5         | 13         | 3     | 7               | 7               | 216              |
| Kaluku +<br>Irian Jaya<br>(Ambon and<br>Jayapura)     | 2         | 9          | 2     | 2               | 2               | 241              |
| Totàl                                                 | 100       | 100        | 100   | 100             | 100             | US\$<br>215      |

Table IV-6 Percentage of Demand Distribution in Whole Indonesia (1980)

.

(Source) Traffic Dalam Angka 1979 - 1980

Note: Parenthesized are representative municipalities in each region.

\*: at constant 1975 market prices

| Item                                | 8 of Te   | lecomm. De | mand  | <b>%</b><br>Population | % GDP<br>- 1978 | *<br>GDP per     |
|-------------------------------------|-----------|------------|-------|------------------------|-----------------|------------------|
| Arėa                                | Telephone | Telegram   | Telex | ·                      |                 | capita<br>- 1978 |
| Sulàwesi Selatan<br>(Ujung Pandàng) | 2.9       | 4.9        | 1.5   | 4.3                    | 4.0             | US <b>S</b>      |
| Sulawesi Tengah<br>(Palu)           | 0.4       | 3.4        | 0.3   | 0.9                    | 0.6             | 216              |
| Sulawesi Tenggara<br>(Kendari)      | 0.2       | 1,1        |       | 0,6                    | ò.4             | -<br>-           |
| Sulawési Utarà<br>(Manàdo)          | 1.5       | 3.4        | 1.1   | 1,5                    | 2.2             |                  |
| Maluku<br>(Asbon)                   | 0.7       | 5.1        | 0.9   | 1.0                    | 1.0             | 228              |
| Irian Jaya<br>(Sorong, Jayapura)    | 1.0       | 3.8        | 0.8   | 0.8                    | 0.9             | 250              |
| Nusa Tenggara<br>(Kupang)           | 0.7       | 5.0        | -     | 2.2                    | 1.1             | 143              |
| % of Total Indonesia                | 7.4       | 26.7       | 4.6   | 11.3                   | 10.2            | US\$<br>215      |

# Table IV-7 Percentage of Demand Distribution in Bastern Part of Indonesia (1980)

.

(Source) Traffic Dalam Angka 1979 - 1980

\*: at constant 1975 market prices

| Table | 1V-8 | Population | Forcast | -Indonesia |
|-------|------|------------|---------|------------|
|       |      |            |         |            |

(thousands)

-

| 1973 | *124,490  |
|------|-----------|
| 1974 |           |
| 1975 | *128,990  |
| 1976 | 131,304   |
| 1977 | 133,940   |
| 1978 | 136,631   |
| 1979 | 139,376   |
| 1980 | 142,179   |
| 1981 | 145,039   |
| 1982 | 147.940   |
| 1983 | 150,901   |
| 1984 | 153,924   |
| 1985 | 157,010   |
| 1986 | 160,159   |
| 1987 |           |
| 1988 |           |
| 1989 | *169,713  |
| 1990 |           |
| 1991 | 176,401   |
| 1992 |           |
| 1993 |           |
| 1994 | *186,319  |
| 1995 | · · · · · |
| 1996 | 193,240   |
| 1997 |           |
| 1998 |           |
| 1999 | *203,264  |
| 2000 |           |
| 2001 | 210,234   |
| 2002 |           |
| 2003 |           |
| 2004 |           |
| 2005 | *224,015  |
|      | ÷         |

.

•

| * : es  | timated by JICA                                     |
|---------|-----------------------------------------------------|
| Source; | Proyeksi Penduduk<br>Indonesia<br>Seri K NO. 2 BPS/ |

IV-47 (89)

| Remark     | 2005 | 225.29         | יד דס                          |                                   |                                         |                                |                           |                                 | 781.6 by 68<br>growth           | 610-9 by 58<br>9rowth | 476.3 by 48 |
|------------|------|----------------|--------------------------------|-----------------------------------|-----------------------------------------|--------------------------------|---------------------------|---------------------------------|---------------------------------|-----------------------|-------------|
|            | 666T | 203.62 2       | 1.80 1                         |                                   |                                         |                                |                           | ·                               | 551.0 7                         | 455.9 6               | 376.4 4     |
| Forecast   | 766T | 186.25         | 1-90                           |                                   |                                         |                                |                           |                                 | 411.7                           | 357.2                 | 309.4       |
|            | 1989 | 169.52         | 1-95                           |                                   |                                         |                                |                           |                                 | 307.7                           | 279.8                 | 254.3       |
|            | 1984 | 153.92         | 2-00                           |                                   |                                         |                                |                           |                                 | 229.9                           | 219.3                 | 209.0       |
|            | 646T | 139-38         | 2.00                           | 30,660-7                          | 9,936.2                                 | 5-84                           | 219,979                   | 71,289                          | 171.8                           | <b>₽</b>              | 8           |
| stics      | 1977 | 133.94         | 2.00                           | 19,046.7                          | 8,870.9                                 | 7.82                           | 142,203                   | 66,230                          | 159.6                           |                       |             |
| Statistics | 5791 | 128-99         | 2.00                           | 12,642.5                          | 7, 630.8                                | 6.30                           | 110,86                    | 59,158                          | 142.5                           |                       |             |
|            | 1973 | 124.49         | 1                              | 6,753.4                           | 6,753.4                                 | 8                              | 54,249                    | 54,249                          | 130.7                           |                       |             |
| Year       |      | unit , million | Ave. Annual<br>Growth Rate (%) | At Current Price<br>(Billion Rp.) | At 1973 Constant<br>Price (Billion Rp.) | Ave. Annual<br>Growth Rate (%) | At Current<br>Frice (Rp.) | At 1973 Constant<br>Price (Rp.) | At 1973 Constant<br>Price (USS) |                       |             |
|            | Item | Population     | •                              | G.D.P.                            | L                                       | <b></b>                        | G.D.P. per<br>Capita      | L                               |                                 |                       |             |

Table IV-9 Population, Gross Domestic Products and Gross Domestic Products per Capita in Indonesia

l US\$ = Rp. 415 (in 1973)

IV-48 (90)

**.** • .

Table IV-10 Demand Forecast for Telephone Service - Whole Indonesia

|                          | Year                                             | Statistics | <u> </u> |              | Porecas | st              |       |
|--------------------------|--------------------------------------------------|------------|----------|--------------|---------|-----------------|-------|
| Item                     |                                                  | 1979       | 1984     | 1989         | 1994    | 1999            | 2005  |
| Pattern I<br>68 growth   | GDP per capita<br>(US\$)                         | 171.8      | 229.9    | 307.7        | 411.7   | \$ <b>51</b> ,0 | 781.6 |
| óf<br>GDP per<br>capita  | Telephone<br>Dénsity<br>(/100 inhabit)           | 0.32       | 0.62     | <b>Ó.</b> 93 | 1.39    | 2.07            | 3.37  |
|                          | No. of Telephone<br>Stations (x10 <sup>3</sup> ) | 442        | 954      | 1,577        | 2,589   | 4,215           | 7,592 |
|                          | No. of DBL<br>(x10 <sup>3</sup> )                | 317        | 668      | 1,104        | 1,812   | 2,951           | 5,081 |
| Pattern II<br>58 growth  | GDP pèr càpita<br>(US\$)                         | 171.8      | 219.3    | 279.8        | 357.2   | 455.9           | 610.9 |
| of<br>GDP per<br>capita  | Telephone<br>Density<br>(/100 inhabit)           | 0.32       | 0,58     | 0.81         | 1, 14   | 1.60            | 2.39  |
|                          | No. of Telephone<br>Stations (x10 <sup>3</sup> ) | 442        | 893      | 1,373        | 2,123   | 3,258           | 5,384 |
|                          | NO. OF DEL<br>(x10 <sup>3</sup> )                | 317        | 625      | 961          | 1,486   | 2,281           | 3,769 |
| Pattern III<br>48 growth | GDP per capita<br>(US\$)                         | 171.8      | 209.0    | 254.3        | 309.4   | 376.4           | 476.3 |
| of<br>GDP per<br>capita  | Télephòne<br>Density<br>(/100 inhabit)           | 0.32       | 0.54     | 0.71         | 0.93    | 1.22            | 1.70  |
|                          | No. of Telephone<br>Stations (x10 <sup>3</sup> ) | 442        | 831      | 1,204        | 1,732   | 2,484           | 3,830 |
| ·                        | No. of DBL<br>(x10 <sup>3</sup> )                | 317        | 582      | 843          | 1,212   | 1,739           | 2,68  |

# Table IV-11 Cemand Borgcast for Telegraph Services - Whole Indonesia

(Domestic Telegram)

| Year                                | Statistics |        |        | Poréca | st     |        |
|-------------------------------------|------------|--------|--------|--------|--------|--------|
| Item                                | 1330       | 1984   | 1989   | 1994   | 1999   | 2005   |
| No. of Kessages (x10 <sup>3</sup> ) | 8,455      | 10,157 | 15,628 | 20,917 | 24,245 | 24,245 |
| Growth Rate (%)                     | 11.7       | 12.0   | 9.0    | 6.0    | 3.0    | 0      |

(Oversea Telegram)

|                                     |       |       | -   |     |     |     |
|-------------------------------------|-------|-------|-----|-----|-----|-----|
| No. of Messages (x10 <sup>3</sup> ) | 232   | 150   | 100 | 100 | 100 | 100 |
| Growth Rate (%)                     | -13.4 | -12.0 | -   | -   | -   | -   |

(Telex Lines)

| Pattern I   | No. of<br>Lines    | 5,309 | 12,800 | 22,600 | 39,900 | 61,300 | 87,000 |
|-------------|--------------------|-------|--------|--------|--------|--------|--------|
|             | Growth<br>Rate (%) | 24.2  | 25.0   | 12.0   | 12.0   | 9.0    | 6.0    |
| Pattern II  | No. of<br>Lines    | 5,307 | 12,800 | 22,600 | 34,800 | 46,600 | 55,600 |
|             | Growth<br>Rate (%) | 24.2  | 25.0   | 12.0   | 9.0    | 6.0    | 3.0    |
| Pattern III | No. of<br>Lines    | 5,307 | 12,800 | 22,600 | 30,300 | 35,100 | 35,100 |
|             | Growth<br>Rate (%) | 24.2  | 25.0   | 12.0   | 6.0    | 3.0    | 0      |

(Telegraph Leased Circuit)

| No. of Circuits | 294  | 720  | 1,270 | 1,950 | 2,610 | 3,500 |
|-----------------|------|------|-------|-------|-------|-------|
| Growth Rate (%) | 23.5 | 25.0 | 12.0  | 9.0   | 6.0   | 6.0   |

.

| Year                                 | Bstimated | Dat        | a and Pa   | csimile      | Terminal       | s, étc.         |
|--------------------------------------|-----------|------------|------------|--------------|----------------|-----------------|
| Item                                 | 1980      | 1984       | 1989       | 1994         | 1999           | 2005            |
| No. of Lines                         | 200       | 420        | 1,000      | 2,600        | 6,400          | 19,000          |
| - Public Nétwork<br>- Leased Circuit | 60<br>140 | 120<br>300 | 500<br>500 | 1,800<br>800 | 5,200<br>1,200 | 17,000<br>2,000 |
| Growth Rate (%)                      |           | 20.0       | 20.0       | 20.0         | 20.0           | 20.0            |

Table IV-12 Demand Porecast for New Telecomm. Services - Whole Indonesia

- - -

.

| Year              |      | Main<br>(No. di | Teléphor<br>E D.B.L; | nes<br>x10 <sup>3</sup> ) | ·     |
|-------------------|------|-----------------|----------------------|---------------------------|-------|
| Area              | 1984 | 1989            | 1994                 | 1999                      | 2005  |
| Kédan             | 53   | 82              | 126                  | 194                       | 320   |
| Palembang         | 47   | 72              | 111                  | 171                       | 283   |
| Jakarta           | 346  | 533             | 825                  | 1,265                     | 2,092 |
| Surabaya          | 113  | 173             | 267                  | 411                       | 678   |
| Banjarmasin       | 19   | 29              | 45                   | 68                        | 113   |
| Ujung Pandang     | 31   | 48              | 75                   | 115                       | 189   |
| Ambon             | 16   | 24              | 37                   | 57                        | 94    |
| Fotal - Indonésia | 625  | 961             | 1,486                | 2,281                     | 3,769 |

## Table IV-13 Hicroscopic Telephone Demand Forecast by Tertiary Center Areas

# Table IV-14 Microscopic Telephone Demand Porecast in Bastern Part of Indonesia (by Primary Areas) (1/8)

#### (Nusa Tenggara Timur)

| ·=           | Primary Area               |          |          | Line Capa | city      |          |
|--------------|----------------------------|----------|----------|-----------|-----------|----------|
| Area<br>Code | Area Name                  | 1984     | 1989     | 1994      | 1999      | 2005     |
| 381          | ENDE                       | 1,050    | 1,700    | 2,800     | 4,500     | 6,800    |
| 382          | Mauzere                    | 550      | 800      | 1,000     | 1,600     | 2,400    |
| 383          | Larantuka                  | 100      | 200      | 400       | 600       | 900      |
| 384          | Bajawa                     | 200      | 400      | 600       | 800       | 1,200    |
| 385          | Ruteng                     | 580      | 900      | 1,500     | 2,400     | 3,600    |
| 386          | Waingapu                   | 0        | 200      | 400       | 600       | 900      |
| 387          | Walkabubak                 | 100      | 200      | 400       | 600       | 900      |
|              | (Total - BNDB)             | ( 2,580) | ( 4,400) | { 7,100}  | (11,100)  | (16,700) |
| 391          | KUPANG                     | 3,040    | 4,000    | 6,000     | 10,000    | 15,000   |
| 392          | Soe                        | 150      | 200      | 400       | 600       | 900      |
| 393          | Kefamenanu                 | 120      | 200      | 400       | 600       | 900      |
| 394          | Atambua                    | 400      | 600      | 1,000     | 1,600     | 2,400    |
| 395          | Bàa                        | 50       | 100      | 200       | 300       | 500      |
| 396          | Seba                       | 0        | 100      | 100       | 200       | 300      |
| 397          | Kalabahi                   | 200      | 400      | 600       | 800       | 1,200    |
| 398          | Ilwaki                     | 0        | 100      | 100       | 200       | 300      |
| 399          | Baukau                     | 200      | 400      | 600       | 1,000     | 1,500    |
| 390          | DIII                       | 900      | 1,500    | 2,500     | 4,000     | 6,000    |
|              | (total-XUPANG)             | ( 5,060) | { 7,600} | (11,900)  | (19, 300) | (29,000) |
|              | Line Capacity -<br>enggara | 7,640    | 12,000   | 19,000    | 30,400    | 45,700   |
|              | isted Lines -<br>Yenggara  | 6,500    | 10,200   | 16,200    | 25,800    | 38,800   |

IV-53 (95)

# Table IV-14 Microscopic Téléphoné Demand Forecast in Bastern Part of Indonesia (by Primáry Aréas) (2/8)

#### (Sulavesi)

|              | Primary Area  |          |          | Line Capac | lty      |          |
|--------------|---------------|----------|----------|------------|----------|----------|
| Area<br>Code | Area Nage     | 1984     | 1989     | 1994       | 1999     | 2005     |
| 411          | UJUNG PANDANG | 14,650   | 23,000   | 37,500     | 60,000   | 90,000   |
| 412          | Watampone     | 450      | 600      | 800        | 1,000    | 1,500    |
| 413          | Bantaeng      | 950      | 1,500    | 2,400      | 3,600    | 5,400    |
| 414          | Benteng       | 400      | 600      | 1,000      | 1,600    | 2,400    |
| 415          | Tanajampea    | 0        | 100      | 100        | 200      | 300      |
|              | (Total-UP)    | (16,450) | (25,800) | (41,800)   | (66,400) | (99,600) |
| 421          | PARE - PARE   | 3,200    | 5,000    | 8,000      | 13,000   | 19,500   |
| 422          | Majene        | 300      | 409      | 700        | 1,100    | 1,700    |
| 423          | Rantepao      | 200      | 300      | 500        | 800      | 1,200    |
| 424          | Palopo        | 300      | 500      | 500        | 600      | 900      |
| 425          | Sengkang      | 400      | 400      | 600        | 800      | 1,200    |
| 426          | Mamuju        | 200      | 300      | 500        | 800      | 1,200    |
| 427          | Masaaba       | 0        | 100      | 200        | 300      | 500      |
| 428          | Malili        | 0        | 100      | 200        | - 300    | 500      |
| 429          | Karosa        | 0        | 100      | 200        | 300      | 500      |
|              | (Total-PARB2) | ( 4,600) | ( 7,200) | (11,400)   | (18,000) | (27,200) |
| 431          | HANADO        | 6,800    | 11,000   | 17,000     | 28,000   | 42,000   |
| 432          | Tahuna        | 200      | 400      | 600        | 800      | 1,200    |
| 433          | Вео           | 0        | 100      | 100        | 200      | 300      |
| 434          | Kotazobagu    | 400      | 600      | 800        | 1,100    | 1,700    |
| 435          | Gorontalo     | 2,040    | 3,000    | 5,000      | 8,000    | 12,000   |

.

# Table IV-14 Microscopic Telephone Demand Porecast in Bastern Part of Indonésia (by Primary Aréas) (3/8)

(Sulawesi)

. - .

.

|              | Primary Area   |          |          | Line Capac | city     |          |
|--------------|----------------|----------|----------|------------|----------|----------|
| Area<br>Code | Area Name      | 1984     | 1989     | 1994       | 1999     | 2005     |
| 436          | Tilanuta       | Ò        | 100      | 200        | 300      | 500      |
| 437          | Pale leh       | 0        | 100      | 200        | 300      | 500      |
|              | (Total-MANADÓ) | ( 9,440) | (15,300) | (23,900)   | (38,700) | (58,200) |
| 451          | PALU           | 2,400    | 3,800    | 6,000      | 9,800    | 14,700   |
| 452          | POSO           | 900      | 1,400    | 2,300      | 3,600    | 5,400    |
| 453          | Toli-toli      | 640      | 1,000    | 1,600      | 2,500    | 3,800    |
| 454          | Тојо           | Ó        | 100      | 100        | 200      | 300      |
| 455          | Kolonedale     | 0        | 100      | 100        | 200      | 300      |
| 456          | Bungku         | 0        | 100      | 100        | 200      | 300      |
| 457          | Katugo         | 0        | 100      | 100        | 200      | 300      |
| 458          | Luwak          | 1,000    | 1,500    | 2,100      | 3,100    | 4,700    |
| 459          | Banggai        | 0        | 100      | 100        | 200      | 300      |
|              | (Totàl-PALU)   | ( 4,940) | ( 8,200) | (12,500)   | (20,000) | (30,100) |
| 401          | KENDARI        | 1,000    | 1,600    | 2,500      | 4,000    | 6,000    |
| 402          | Baubau         | 100      | 200      | 400        | 600      | 900      |
| 403          | Raha           | 0        | 100      | 100        | 200      | 300      |
| 404          | Papalia        | 0        | 100      | 100        | 200      | 300      |
| 405          | Kolaka         | 200      | 200      | 400        | 600      | 900      |
| 406          | Malamala       | 0        | 100      | 100        | 200      | 300      |

-

# Table IV-14 Microscopic Telephone Demand Porecast in Bastern Part of Indonesia (by Primary Areas) (4/8)

(Sulawesi)

|                  | Primary Area           | Line Capacity |          |          |          |          |  |  |  |
|------------------|------------------------|---------------|----------|----------|----------|----------|--|--|--|
| Area<br>Code     | Aréa Namé              | 1984          | 1989     | 1994     | 1999     | 2005     |  |  |  |
| 407              | Wawotobi               | 0             | 100      | 100      | 200      | 300      |  |  |  |
|                  | (Total-KENDARI)        | ( 1,300)      | ( 2,400) | ( 3,700) | ( 6,000) | ( 9,000) |  |  |  |
| Total<br>Sulawe  | Lines Capacity -<br>si | 36,730        | 58,900   | 93,300   | 149,100  | 224,100  |  |  |  |
| Poreca<br>Sulawe | sted Lines -<br>si     | 31,200        | 50,000   | 79,300   | 126,700  | 190,500  |  |  |  |

# Table IV-14 Microscopic Telephone Demand Porecast in Bastern Part of Indonesia (by Primary Areas) (5/8)

(Muluku)

. • .

-

|              | Primary Area  |          |          | Linė Capa | city     | <u> </u> |
|--------------|---------------|----------|----------|-----------|----------|----------|
| Arèa<br>Codé | Area Name     | 1984     | 1989     | 1994      | 1999     | 2005     |
| 911          | AMBON         | 3,600    | 6,000    | 9,000     | 14,000   | 21,000   |
| 912          | Piru          | 0        | 100      | 200       | 300      | 500      |
| 913          | Namlea        | 100      | 200      | 300       | 500      | 800      |
| 914          | Hasohi        | 120      | 200      | 300       | 500      | 800      |
| 915          | Bulà          | 0        | 100      | 200       | 300      | 500      |
| 916          | Tual          | 600      | 1,000    | 1,600     | 2,500    | 3,800    |
| 917          | Debo          | 220      | 300      | 500       | 800      | 1,200    |
| 918          | Sàuæláki      | 0        | 100      | 200       | 300      | 500      |
| 919          | Тера          | 0        | 100      | 200       | 300      | 500      |
| 910          | Bandanaera    | Û.       | 100 -    | 200       | 300      | 500      |
|              | (Total-AMBON) | ( 4,640) | ( 8,200) | (12,700)  | (19,800) | (30,100) |
| 921          | TERNATE       | 1,100    | 1,800    | 3,000     | 5,000    | 7,500    |
| 922          | Jailolo       | 0        | 100      | 200       | 300      | 500      |
| 923          | Daruba        | 0        | 100      | 200       | 300      | 500      |
| 924          | Tobėlo        | 200      | 300      | 500       | 800      | 1,200    |
| 925          | Keda          | 0        | 100      | 200       | 300      | 500      |
| 926          | <b>U</b> mela | 0        | 100      | 200       | 300      | 500      |
| 927          | Labuha        | 0        | 100      | 200       | 300      | 500      |
| 928          | Laivui        | 0        | 100      | 200       | 300      | 500      |

.

# Table IV-14 Microscopic Telephone Demand Porecast in Bastern Part of Indonesia (by Primary Areas) (6/8)

(Huluku)

.

|                  | Primary Area     | Line Capacity |                     |          |          |          |  |  |  |  |  |  |  |  |
|------------------|------------------|---------------|---------------------|----------|----------|----------|--|--|--|--|--|--|--|--|
| Area<br>Code     | Area Name        | 1984          | 1984 1989 1994 1999 |          |          |          |  |  |  |  |  |  |  |  |
| 929              | Sananà           | 0             | 100                 | 200      | 300      | 500      |  |  |  |  |  |  |  |  |
|                  | (Total~TERNATE)  | ( 1,300)      | ( 2,800)            | ( 4,900) | ( 7,900) | (12,200) |  |  |  |  |  |  |  |  |
| Total<br>Maluku  | Linės Capacity – | 5,940         | 11,000              | 17,600   | 27,700   | 42,300   |  |  |  |  |  |  |  |  |
| Poreca<br>Maluku | isted Lines -    | 5,000         | 9,300               | 15,000   | 23,500   | 36,000   |  |  |  |  |  |  |  |  |

-

-

# Table IV-14 Nicroscopic Telephone Demand Porecast in Bastern Part of Indonesia (by Primary Areas) (7/8)

(Irian Jayà)

. - .

|              | Primary Area     |          |          | Line Capac | ity      |          |
|--------------|------------------|----------|----------|------------|----------|----------|
| Area<br>Code | Area Name        | 1984     | 1989     | 1994       | 1999     | 2005     |
| 951          | SÓRÓNG           | 1,450    | 2,300    | 3,600      | 5,800    | 8,700    |
| 952          | Samate           | 0        | 100      | 200        | 300      | ŚÓÓ      |
| 953          | Atkri            | Ó        | 100      | 200        | 300      | 500      |
| 954          | Inanwatan        | 0        | 100      | 200        | 300      | 500      |
| 955          | Babo             | 0        | 100      | 200        | 300      | 500      |
| 956          | Pakfak           | 800      | 1,300    | 2,100      | 3,300    | 5,000    |
| 957          | Kaimana          | 100      | 200      | 300        | 500      | 800      |
| 958          | Mimika           | Ö        | 100      | 200        | 300      | 500      |
|              | (Total-SORONG)   | ( 2,350) | ( 4,300) | ( 7,000)   | (11,100) | (17,000) |
| 961          | Biak             | 1,000    | 1,600    | 2,500      | 4,000    | 6,000    |
| 962          | Manokwari        | 1,000    | 1,600    | 2,500      | 4,000    | 6,000    |
| 963          | Śėtui            | 400      | 600      | 1,000      | 1,600    | 2,400    |
| 964          | Nabire           | 200      | 300      | 500        | 800      | 1,200    |
| 965          | Waren            | Ó        | 100      | 200        | 300      | 500      |
| 966          | Sarmi            | 0        | 100      | 200        | 300      | 500      |
| 967          | JAYAPURA         | 3,000    | 5,000    | 8,000      | 12,000   | 18,000   |
| 968          | Beoga            | 0        | 100      | 200        | 300      | 500      |
| 969          | Wazena           | 200      | 300      | 500        | 800      | 1,200    |
| 960          | Kive             | 0        | 100      | 200        | 300      | 500      |
|              | (Total-JAYAPURA) | ( 5,800) | ( 9,800) | (15,800)   | (24,400) | (36,800) |

# Table IV-14 Microscopic Telephone Demand Forecast in Bastern Part of Indonesia (by Primary Areas) (8/8)

#### (Irian Jaya)

|                | Primary Area             |          |          | Line Capaç | lty      |          |
|----------------|--------------------------|----------|----------|------------|----------|----------|
| Area<br>Codé   | Area Name                | 1984     | 1989     | 1994       | 1999     | 2005     |
| 971            | MERAUKE                  | 1,200    | 2,000    | 3,400      | 5,500    | 8,300    |
| 972            | Okaba                    | 0        | 100      | 200        | 300      | 500      |
| 973            | Kiman                    | 0        | 100      | 200        | 300      | 500      |
| 974            | Koba                     | 0        | 100      | 200        | 300      | 500      |
| 975            | Tànah Merah              | 0        | 100      | 200        | 300      | 500      |
| 976            | Agats                    | 0        | 100      | 200        | 300      | 500      |
| 977            | Cumbuyum                 | 0        | 100      | 200        | 300      | 500      |
| 978            | Waropko                  | 100      | 200      | 300        | 500      | 800      |
|                | (Total-IERAUXE)          | ( 1,300) | ( 2,800) | ( 4,900)   | { 7,800} | (12,100) |
| Total<br>Irian | Linės Capacity –<br>Jaya | 9,450    | 16,900   | 27,700     | 43,300   | 65,900   |
| Poreca<br>Jaya | sted Lines - Irian       | 8,000    | 14,300   | 23,500     | 36,800   | 56,000   |

# Table IV-15 (1/3) Microscopic Demand Forecast for Non-Telephone Service by Tandém Aréas (Télegram)

, **-**

•

| Year                             |        | Telegra | m Messa | gės (xl | 0 <sup>3</sup> ) |
|----------------------------------|--------|---------|---------|---------|------------------|
| Area                             | 1984   | 1989    | 1994    | 1999    | 2005             |
| Medan Tandem Area                | 1,308  | 2,076   | 2,817   | 3,266   | 3,266            |
| Jakarta Tandem Area              | 3,924  | 6,228   | 8,453   | 9,799   | 9,799            |
| Surabaya Tandem Area             | 2,943  | 4,672   | 6,339   | 7,349   | 7,349            |
| - Jawa Timur                     | 1,413  | 2,243   | 3,043   | 3,528   | 3,528            |
| - Bali and Nusa<br>Nusa Tenggara | 706    | 1,121   | 1,521   | 1,764   | 1,764            |
| - Kalimantan                     | 824    | 1,308   | 1,775   | 2,057   | 2,057            |
| Ujung<br>Pandàng Tanđém Area     | 1,982  | 2,652   | 3,305   | 3,831   | 3,831            |
| - Suláwesi                       | 1,169  | 1,564   | 1,983   | 2,298   | 2,298            |
| - Maluku                         | 466    | 624     | 760     | 881     | 881              |
| - Irian Jaya                     | 347    | 464     | 562     | 652     | 652              |
| Total - Indonesia                | 10,157 | 15,628  | 20,914  | 24,245  | 24,245           |

| Year                         |        | No     | . of Lin | ės     |        |
|------------------------------|--------|--------|----------|--------|--------|
| Aréa                         | 1984   | 1989   | 1994     | 1999   | 2005   |
| Medan Tandem Area            | 1,250  | 2,190  | 3,300    | 4,950  | 5,850  |
| Jakarta Tandém Aréa          | 8,220  | 14,510 | 21,800   | 32,675 | 38,850 |
| Surabaya Tandem Aréa         | 1,780  | 3,040  | 4,520    | 6,805  | 8,100  |
| - Jawa Timur                 | 1,190  | 2,100  | 3,150    | 4,725  | 5,620  |
| - Bali and Nusa<br>Tenggara  | 190    | 340    | 520      | 780    | 930    |
| - Kalimantan                 | 400    | 600    | 850      | 1,300  | 1,550  |
| Ujung<br>Pandang Tandem Area | 593    | 1,020  | 1,555    | 2,350  | 2,800  |
| - Sulawesi                   | 393    | 670    | 1,030    | 1,555  | 1,840  |
| - Maluku                     | 80     | 150    | 225      | 350    | 420    |
| - Irian Jaya                 | 120    | 200    | 300      | 450    | 540    |
| Total - Indonesia            | 11,843 | 20,760 | 31,175   | 46,780 | 55,600 |

# Table IV-15 (2/3) Microscopic Demand Forecast for Non-Téléphone Service by Tandém Areas (Telex)

# Table IV-15 (3/3) Microscopic Demand Forecast for Non-Telephone Services by Tandem Areas (New Telecom. Services)

. .

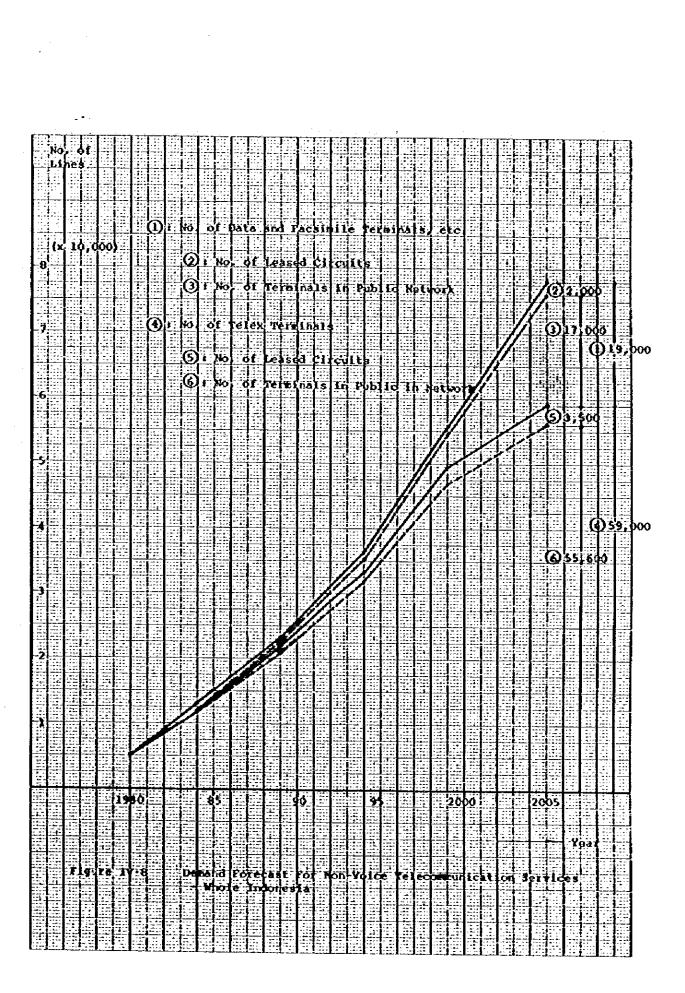
| Year                        | Bstimated | Data and Pacsimile Terminals, etc. |       |       |       |        |  |  |  |  |  |  |  |  |  |
|-----------------------------|-----------|------------------------------------|-------|-------|-------|--------|--|--|--|--|--|--|--|--|--|
| Area                        | 1980      | 1984                               | 1989  | 1994  | 1999  | 2005   |  |  |  |  |  |  |  |  |  |
| Medán Area                  | ( 20)     | 40                                 | 90    | 230   | 580   | 1,700  |  |  |  |  |  |  |  |  |  |
| Jakarta Area                | (140)     | 300                                | 710   | 1,850 | 4,540 | 13,500 |  |  |  |  |  |  |  |  |  |
| Surabaya Area               | ( 30)     | 60                                 | 150   | 390   | 960   | 2,800  |  |  |  |  |  |  |  |  |  |
| - Jawa Timur                |           | 40                                 | 100   | 250   | 620   | 1,800  |  |  |  |  |  |  |  |  |  |
| - Bali and Nusa<br>Tenggara |           | 10                                 | 25    | 70    | 160   | 450    |  |  |  |  |  |  |  |  |  |
| - Kalimantán                |           | 10                                 | 25    | 70    | 180   | 550    |  |  |  |  |  |  |  |  |  |
| Ujung pandang<br>Area       | ( 10)     | 20                                 | 50    | 130   | 320   | 1,000  |  |  |  |  |  |  |  |  |  |
| - Sulawesi                  |           | 20                                 | 30    | 80    | 180   | 580    |  |  |  |  |  |  |  |  |  |
| - Maluku                    |           |                                    | 10    | 20    | 60    | 160    |  |  |  |  |  |  |  |  |  |
| - Irian Jaya                |           |                                    | 10    | 30    | 80    | 260    |  |  |  |  |  |  |  |  |  |
| Total-Indonesia             | (200)     | 420                                | 1,000 | 2,600 | 6,400 | 19,000 |  |  |  |  |  |  |  |  |  |

## Table IV-16 Microscopic Demand Porecast for Non-telephone Service the Year 2005 - Eastern Part of Indonesia

\*

| Service                                | Telegrám                         | Telex            | Telégráph<br>Leáseð   |     | ervicé<br>criber  |           |
|----------------------------------------|----------------------------------|------------------|-----------------------|-----|-------------------|-----------|
| Area                                   | ( 10 <sup>3</sup> *<br>Messages) | (No. of<br>Lines | Circuit<br>No. of cct |     | Leased<br>Circuit | Rémark    |
| Ujung Pandang<br>(Sulawesi- Selatan)   | 1,034                            | 890              | 60                    | 25Ò | 30                |           |
| Kendari<br>(Sulawesi-Tenggara)         | 161                              | 70               | 5                     | 20  | -                 | · · ·     |
| Palu<br>(Sulavesi-Tengah)              | 414                              | <b>33</b> 0      | 20                    | 90  | 10                | <u> :</u> |
| Marado<br>(Sulawesi-Utara)             | 689                              | 550              | 35                    | 160 | 20                |           |
| Ambón<br>(Haluku)                      | 881                              | 420              | 30                    | 140 | 20                |           |
| Jayapura, Meranke<br>(East Irian Jaya) | 430                              | 380              | 25                    | 160 | 20                |           |
| Sorong<br>(West Irian Jaya)            | 222                              | 160              | 10                    | 70  | 10                |           |
| Kupang<br>(Nusa Tenggara<br>Timur)     | 529                              | 140              | 10                    | 45  | 5                 |           |
| Total - Bastern<br>Indonesia           | 4,360                            | 2,940            | 195                   | 935 | 115               |           |

No. of Xessages -1 --77 ..... T T - ---+ --1--------5.11. 17 .... . Ĵ, 1 - -Ë. 1601 11e1H . ----------1 . •·------------. --1 ------11 ----.. ----2 Ē 107 ---------ż. - $\mathbf{X}$ 10 清<u>日</u> 日 副部時 4 -\_ -. 1 - -- - -. 1 ----1 5 F ----(Done stic) 7.17 -22 -Y <u>er is</u> ----÷, - F ..... 1 14 :: ..... •--• .... 1 ------. . . ----···· **1** -··· \_\_\_\_ , 4. . . . . . . 10<sup>6</sup> ---स्तु । महाराज Hin **P**T 1 -1,7 Wier 3e4) 1.7 110 - **|** -1 / -+---------.... . - ) ----Ĩ ΞÌ \_ ..... ~ \_\_\_\_ -1---. - 1 ÷Ē. 10<sup>5</sup> -. . . . . . 190 8 2040 05 Rép 1.... 11 ÷.] P V 1. Y.VI Rep. VII - - -Rep • . 1 -----<u>г</u>.: 11 ÷.i - F. Year -----. i ------Ē 6 Des ind Forecast for Telegram fervice iqure IV -1--. ſ f. - - -----13 -••• ì. - • Ε. 


-

- IV-65 (107)

| Sy. | of  |
|-----|-----|
| Um  | e 9 |
|     |     |

| Ļ | ١ | 1 | ę | ŝ |
|---|---|---|---|---|
|   |   |   |   |   |

|                  |   |   |   | +      |          |     |            |     |     | 44  |     |            | 1.4<br>15<br>115 |              |         |          |             |        |           |          |         |            |                   |     |    |         |   |         |          |            |          |         |          |        |        |            |         |    |                |            |       |            |     |     |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|------------------|---|---|---|--------|----------|-----|------------|-----|-----|-----|-----|------------|------------------|--------------|---------|----------|-------------|--------|-----------|----------|---------|------------|-------------------|-----|----|---------|---|---------|----------|------------|----------|---------|----------|--------|--------|------------|---------|----|----------------|------------|-------|------------|-----|-----|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ł                |   |   |   |        | -        |     | +          |     |     | ••• |     |            |                  |              | 1       |          |             |        | ,         |          |         |            | - (- <del>-</del> |     |    |         | 1 | ŀ       | _        |            |          | 1       |          | i.     |        |            |         |    |                |            | į., 1 |            |     |     |          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                  |   |   |   |        |          |     |            | -   |     |     |     |            |                  | ļ            |         | _        |             |        |           | -        |         |            |                   |     |    |         |   |         |          | ,          |          |         |          | 1      |        |            | n       |    |                |            |       |            |     |     |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                  | - | _ | - |        | Ţ        |     |            |     |     |     |     |            | •                |              |         |          |             |        | Į.,       |          |         | •          |                   |     |    |         |   |         |          |            | 1,       |         |          |        |        |            |         |    | -              |            |       |            |     |     |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                  |   |   |   |        |          |     |            |     |     |     |     | -          |                  |              |         |          |             |        |           | 11111    |         |            |                   |     |    |         |   |         |          |            | ;        |         |          |        |        |            |         |    |                |            |       |            |     |     |          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Į                |   |   |   |        |          | •   |            |     | -   | _   |     |            |                  |              |         |          |             |        | -         |          |         |            |                   |     |    |         |   |         |          |            |          |         |          |        |        |            | r,      |    |                |            |       |            |     |     |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 05               |   |   | - |        |          |     |            |     |     |     | ÷.  |            |                  | -            |         |          | - <b></b> - |        |           | - 1      |         |            |                   |     |    | - i -   |   |         |          |            |          | - 1<br> |          | <br>   | • • •  | •          | -       |    | -              |            |       | - <b>1</b> |     |     | 1;       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                  |   |   |   |        | 4        | -   |            | -   |     |     |     |            |                  |              | •       |          |             |        |           |          | 11.11   |            |                   |     | -  | ,       |   |         | +        |            |          |         |          |        |        | 1.1        |         |    |                |            |       |            |     |     |          | 111111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                  |   |   |   |        |          |     |            |     |     |     |     |            |                  |              | 1       |          | -           |        | _         | ÷        |         |            |                   | 1   |    |         |   |         | -        |            |          |         |          |        | -      |            |         | T. |                |            |       |            |     |     |          | 111111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                  |   |   |   |        |          |     |            | ļ   |     |     |     |            | 27 5             |              |         | -        |             |        |           |          |         |            |                   |     |    |         |   |         |          |            |          |         |          |        |        |            |         |    | - †            |            |       |            |     |     | 1 F      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                  |   |   |   |        |          | - 1 |            |     | Ĥ   |     | -4- | <b>: 1</b> |                  | - <b>1</b> - |         |          | 70          |        |           |          | er      |            |                   | Ì   |    |         |   |         |          |            |          |         |          |        |        | .,         |         |    | 7.             | 7          |       |            |     | 1   | ;        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                  |   |   |   |        |          |     |            |     | -   |     |     |            |                  |              |         |          |             | J 😳    | . L.      |          |         |            |                   |     |    |         |   | ł       |          |            |          |         |          |        |        |            | - 3     |    |                | 11.<br>†7: |       |            |     |     |          | 11-11-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                  |   |   |   |        | 1        |     |            |     |     |     |     |            |                  | T            |         |          |             |        |           |          |         | 1          | ļ                 | /   | 1  |         |   |         | .        |            |          |         |          |        |        |            |         |    |                | . F.       |       |            |     |     |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                  |   |   |   |        |          | •   |            |     |     |     | •   |            | :                |              | -       |          |             | 1.     | :ţ.       |          | 1       |            | 1                 |     | -  |         |   |         | ÷ 1      |            |          |         |          |        | ·••    | ; • •      | :-      |    |                |            | 1     |            |     |     |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 04               | 1 |   | ļ |        |          | 7   |            |     |     |     |     | Ţ          |                  |              |         | 1        |             |        | ļ         | /        |         |            |                   |     |    |         |   |         | i i      |            |          | 13      |          |        |        |            |         | 1  | 2              |            |       |            |     |     | ľ        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                  |   |   |   | in<br> |          |     |            |     |     |     |     |            |                  | -            |         |          | Y           | 彳      |           |          |         |            |                   |     |    |         |   |         |          |            |          |         |          |        |        |            | 1       |    |                |            |       |            |     |     |          | in the second se |
|                  |   |   |   |        |          |     |            |     |     |     |     |            |                  |              | /       |          |             |        |           |          |         |            |                   |     |    |         |   |         |          |            |          |         |          |        | 1.<br> |            |         | ķ  | x              | 1          | ġŧ    |            | ŀ   | ł   |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                  |   |   | - |        |          |     | Ē          | -   |     |     |     |            |                  |              |         |          |             |        | -         |          |         |            | -                 |     |    | •       |   |         |          |            |          |         |          |        |        |            |         |    | - <b>R</b><br> |            | 21    | 1.1-       |     |     |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                  |   |   |   | -      |          |     |            |     |     |     |     | 7          | 1                |              |         |          |             |        |           |          |         |            |                   |     |    |         |   |         |          |            |          |         |          |        |        |            |         | 5  | ir<br>C        |            |       | Ē          |     | ł   |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                  |   |   | - |        | +        |     |            | -   | 1   | X   |     |            | 1                |              |         |          |             |        |           |          |         |            |                   |     |    |         |   |         |          |            |          |         |          |        | -      |            | * * * i |    | -              |            |       |            |     | ÷ . | 1.<br>1. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                  | • |   |   |        | - -<br>  |     |            | A   | (   | -   |     |            |                  |              |         |          |             | -      |           | <b>.</b> | :<br> - |            | ΞĒ.               |     |    | -       |   | -       |          | •          | <b>-</b> |         | -        | ****   |        | 1.         |         |    |                |            |       | ,<br>,     |     |     | 1.1      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0 <sup>3</sup> . | ŀ |   |   |        |          |     | 1-         |     |     |     | 23  |            | • • • •          | ł            | :<br>   |          | - 1         | ·ŀ     | ‡         |          |         |            |                   | 1   |    |         |   |         |          |            |          |         |          | d et i |        |            | •       |    |                |            | 1     |            |     |     |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                  |   |   | 1 |        |          |     |            |     |     |     |     |            |                  |              |         |          |             |        |           |          |         |            |                   |     | •  |         | t |         |          |            |          |         |          |        |        |            |         |    |                |            |       |            |     |     |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                  |   |   |   |        |          |     | -          |     |     | ł   |     |            |                  |              | Ĺ.      |          |             | -      |           | -        | -       |            |                   |     |    | -       |   |         |          |            |          |         | ŀ        |        | -      |            |         |    |                |            |       | 1          |     |     |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                  |   | Ť |   |        |          |     | E.         | - 1 | Ŀ.  | 1:  |     |            | 1                |              |         | -        |             |        |           | = -      |         | 1          |                   |     |    | -       |   |         |          | -          | F        | P       |          | 95     |        | 1.         |         | -  |                | Ξ.         |       |            | . L |     |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 19               | P |   |   |        |          |     | - <b>1</b> | 7   |     | 1   |     |            |                  |              | 8       | Þ.       |             |        |           |          |         | 8 <u>5</u> |                   |     |    |         |   | 90      | <b>)</b> |            | -        |         |          |        |        |            |         |    | 200            | 0          |       |            |     |     | 05       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                  |   |   |   |        |          |     |            |     |     |     |     |            | ļ                |              |         | R        |             |        | L         |          |         | I          | <b>F 5</b>        | 23  | IV |         | L |         | 2        | 60         | Y        |         | Ē        | R      | ••     | <b>P</b> I | ļ       |    |                | 4          | l v   | , r        | -   | F   |          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                  |   | Ŧ | - |        |          |     |            |     |     |     |     |            | .                |              |         |          |             |        | · · · · · | -        |         | -          | -                 |     |    |         | : |         | -        |            |          |         |          |        |        |            | Ì       |    | -              |            |       |            | Ye  | ł   |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                  |   |   |   | 1      | <b>ģ</b> | , t |            | 1   | IV. | 1   |     | •          | •                | Ċ            | ep<br>• | aņ<br>Na | 4<br>61     | h<br>J | I.        | e<br>Sde |         | t<br>es    | F¢<br>I Å         | r j | Ţe | le<br>I | Ŧ | se<br>I | ; K ]    | <u>y i</u> | ţe.      | -       | <b> </b> | -      |        |            |         |    |                |            |       |            |     |     |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |



#### 5. Proposed Network Configuration

#### 5.1 Telephone Network

(1) Network Configuration Philosophy

For the telephone network configuration philosophy, PERUNTEL'S "Fundamental Plan 1981 for the Telephone Network in Indonesia" can apply.

- (2) Network Formation Strategy
  - a) Tertiary Centers will be interconnected by mesh network.
  - b) For the purpose of network cost reduction, high usage link will be established between Secondary Centers in the same Tertiary Center area and, where necessary, extending to Secondary Centers in other Tertiary Center area.
  - c) Between Secondary Center and Primary Center, high usage link will not be established, in principle.

#### 5.2 Non-Telephone Network

- (1) Network Configuration Philosophy
  - a) In Jakarta, Surabaya, Medan and Ujung Pandang, tandem exchanges will be established. In other principal cities, auxiliary tandem exchanges will be established as the case may be.
  - b) At the exchange lower than tandem exchanges in hierarchy, subscriber line multiplexer (to transform original signal into 64 Kbit/s PCM-coded signals) or line concentrator (to convert 64 Kbit/s PCM-coded signals into 2 Mbit/s bit stream) will be installed.

(2) Network Formation Strategy

1.

- a) Tandém exchanges will be interconnected by mesh network.
- b) Outgoing/incoming circuits from/to the exchanges lower in hierarchy than tandem or auxiliary tandem exchanges will be established only in the tandem exchange to which each such exchange belongs.
- 5.3 Traffic Distributión between Satellite and Terrestrial Transmissión Routes

Traffic should be distributed proportionately to satellite and terrestrial transmission routes. In this study, however, traffic distribution was made by the following principles since this study is dedicated to necessary investigations and examinations for introducing a terrestrial transmission network in the whole objective areas as far as topographically and technically possible.

- On both téléphoné and non-telephoné nétworks, trunk traffic will bé via térréstrial transmission route, in principle.
- (2) In the objective area of this investigation, and before the completion of terrestrial transmission route, trunk traffic will be via domestic satellite system. In the areas, regardless of whether the objective area of this investigation or otherwise, where the terrestrial transmission system construction is infeasible due to topographic difficulty, trunk traffic will be via domestic satellite system.

- (3) The final route for traffic by way of domestic satellite will be directed to the Demand Assignment (DA). DA and Tertiary Centers will be interconnected by mesh network.
- 6. Traffic Porecast
- 6.1 District-wise Trunk Telephone Traffic Forecast
- 6.1.1 Traffic Variations
  - (1) Traffic Variation Pactors

Factors to affect trunk telephone traffic are:

- (a) Brisking of economic activities of commercial enterprises as the result of the growth of economy as a whole.
- (b) Upgrading of trunk telephone service, e.g., replacement of manual switching service with subscriber trunk dialling (STD) service.
- (c) Growth of trunk telephone service utility following the expansion of STD network.
- (d) The tariff system modification may either increase or decrease trunk telephone traffic.
- (2) Calling Rate Variation Factors

Besides the foregoing factors, it must be noted that the calling rate generally tends to decrease in accordance with the diffusion of telephone service.

(3) Traffic Variations by Service Quality Improvement

The general estimate is that, in the event of manual delayed call service replaced with automatic service, the number of calls will more than double and the holding time will improve to 0.7 - 0.8 times. In other words, traffic will increase by about 1.5 times.

#### 6.1.2 Trunk Traffic Growth Model

According to CCITT Manual, "Economic Studies at the National Lével in the Field of Telecommunications," the growth rate of long distance trunk traffic is intimately related to the annual growth rate of GDP as indicated in the following formula:

$$C_p = 0.027 + 2.05 X_p$$

where

C<sub>p</sub> : Annual growth rate of long distance toll traffic

X<sub>n</sub> : Growth rate of GDP per annum

For instance, should the growth rate of GDP per annum in Indonésia continué by 6% to 7%, the number of long distance toll calls will grow annually by 12% through 14%.

- 6.1.3 Status Quo of Trunk Traffic
  - (1) Analysis of SLDD Traffic

The result of analysis of SLDD (Subscriber Long Distance Dialling) traffic data of Tertiary Centers, Secondary Centers and Primary Centers in Jawa and Sumatra areas, collected during the field surveys, is given in Table IV-17. This table indicates the following:

- Originating SLDD traffic from Tertiary Center and Secondary Center areas is distributed in the range of 0.004 - 0.006 Brlangs.
- Originating SLDD traffic from Primary Center areas is also distributed in 0.004 - 0.006
   Brlangs range; however, the mean value is at a slightly lower level than in the preceding case.
- (2) Analysis of Manual Switched Traffic

Monthly paid-minutes data of manual trunk exchanges in the objective area of this investigation are converted into Brlangs by the following formula:

$$A = C_1 \cdot C_2 \cdot C_3 \cdot 1/D \cdot T_m$$
 (Brlangs)

where

| A  | : | Mean busy hour traffic (in Brlangs)                          |
|----|---|--------------------------------------------------------------|
| c, | : | Busy hour concentration factor (= $1/6$ )                    |
| c2 | : | Paid-minutes data converted to busy hour<br>traffic (= 1/60) |
| c3 | : | Incremental traffic by ineffective calls (= 1.15)            |

- D : Monthly average working days (= 25)
- T<sub>m</sub> : Monthly paid-minutes

The result of analysis appears in Table IV-18. It indicates that the calling rate from all exchanges in the objective area of this investigation is much lower than the aforementioned calling rate of all exchanges in Jawa and Sumatra areas. Meanwhile, this result of analysis must be distinguished from the earlier mentioned result of SLDD traffic analysis, because the monthly paid-minutes data include both long distance and suburban calls.

## 6.1.4 Calling Rate

Traffic variation factors identified in Paragraph 6.1.1 are mutually related and exert multilateral influences on the calling rate growth, so that long-term traffic forecast is not easy. Nevertheless, for the objective area of this investigation, the following estimates are considered to be legitimate:

- For some time to come, the demand for telephones from high calling rate subscribers, such as commercial institutions and governmental offices, is expected to rise;
- Usefulness of trunk telephone service will be enhanced by the expansion of SLDD network.

Thus, in the objective area of this investigation, the calling rate growth will be fast enough to be approximated to that in Jawa and Sumatra areas while in the latter areas the growth rate remains limited.

Table IV-19 presents the calling rate growth estimates.

- 6.1.5 Calculation of Forecast Values
  - Mean busy-hour long-distance outgoing traffic from a Tertiary Center or a Secondary Center (A<sub>LD</sub>) can be forecasted as follows:

$$A_{LD} = N_i \times CR_i \times 0.9$$
 (Brlangs)

where

- N<sub>i</sub> : Total line capacity of exchanges in Tertiary or Secondary Center Area i.
- CR<sub>i</sub> : Mean value of long-distance calling rate in Tertiary or Secondary Center Area i (Brlang)

A<sub>ID</sub> is given in Table IV-20,

(2) Mean busy-hour long-distance and suburban trunk outgoing traffic from each Primary Center  $(A_T)$  can be obtained by the following formula:

 $A_{T} = N_{i} \times CR_{i} \times 0.9$  (Brlangs)

where

- A<sub>T</sub> : Combined long distance and suburban trunk outgoing traffic
- N<sub>j</sub> : Total line capacity of exchanges in Primary Center Area j.
- CR<sub>j</sub> : Mean value of combined long-distance and suburban trunk calling rate in Primary Center Area A<sub>j</sub>.

Calculated  $A_{T}$  is in Table IV-21.

(3) Parenthesized in Tables IV-20 and IV-21 are the data of traffic via satellite, distinguished from traffic via terrestrial transmission route. 6.2 Forecast of Trunk Télephone Traffic between Trunk Centers

#### 6.2.1 Basic Fórecast Fórmula

The value of trunk telephone traffic between trunk centers is related to the size of traffic and the social/economic distance between the trunk centers. It can be obtained by the following formula:

$$A = K \cdot \frac{S_1 \cdot S_2}{d^{\alpha}} \quad (\text{Erlang})$$

where

| : | · . | Â | L | : | Size of | tráffic | bétween | bóth | trunk |
|---|-----|---|---|---|---------|---------|---------|------|-------|
|   |     |   |   |   | centers |         |         |      |       |

- $s_1, s_2$ : Number of subscribers accommodated in each trunk center
  - d : Linear distance between both trunk centers
  - α : Coefficient by which to convert linear distance between both trunk centers into social/economic distance
  - K : Coefficient for conversion to Erlang

## 6.2.2 Trunk Traffic Distribution

To obtain the social/economic distance between trunk centers, it is necessary to know the inter-trunk center traffic distribution as it presently is. Such trunk traffic distribution in the objective area of this investigation, obtained by the analysis of data collected by the field survey, appears in Table IV-22.

(a) Ujung Pandang

Traffic to/from Ujung Pandang is mostly to/from Jakarta, Surabaya, Manado and Pare Pare in the order mentioned. The traffic distribution to/from these cities accounts for approximately 80% of the total. Relationships in terms of traffic with Sumatra, Kalimantan and Maluku/Irian Jaya are presumed to be limited.

(b) Bast Irian Jaya (including Maluku and Wamena)

Traffic to/from Jayapura, itself located in Bast Irian Jaya, is the greatest in size. Next to this is the traffic to/from Jakarta, Ujung Pandang and Surabaya, respectively, in the order mentioned, and all these are outside Bast Irian Jaya. Analysis of data indicates that the most part of traffic is to/from these cities. Traffic to/from other areas, i.e., Sumatra and Kalimantan, is presumed to be extremely limited.

(c) West Irian Jaya (including Sorong)

The traffic distribution resembles the long distance trunk traffic trend in Bast Irian Jaya. The ratio of originating calls to Jayapura is smaller.

(d) Ambon

As far as the analysis of manual traffic data shows, the traffic distribution is practically the same as the trends in cities in Irian Jaya.

#### (e) Kupang

Judging from the result of analysis of manual traffic data only, the most part of long distance trunk traffic is presumed to be the originating calls to Jakarta, Surabaya, Denpasar and Nusa Tenggara. As seen in the foregoing description, long distance trunk traffic in the objective area of this investigation is distributed mainly on two routes. One is the route that originates in Irian Jaya and, extending by way of Maluku, Sulawesi and Surabaya, terminates in Jakarta. The other is from Nusa Tenggara Timur to Jakarta via Denpasar and Surabaya. Traffic to/from areas not located on these two routes is extremely limited. This fact presents an outstanding features of traffic distribution in the objective area of this investigation.

6.2.3 Inter-Trunk Center Traffic (Mean Busy-Hour Traffic) Forecast Models

(1) Primary Center - Secondary Center

The assumption is that the high usage circuit will not be established from the Primary Center. Therefore, all originating traffic from Primary Centers shown in Table IV-21 is carried to their respective parent Secondary Centers (or the Satellite).

Tertiary Center - Tertiary Center
 Secondary Center - Secondary Center
 Tertiary Center - Secondary Center

In the case of network shown in Figure IV-9, the inter-trunk center traffic is calculated by the methods identified below.  (a) Long distance trunk outgoing traffic in Tertiary Center area I, ALD (ti), is obtained by the following formula:

$$A_{LD}$$
 (ti) =  $\sum_{k=1}^{m} A_{LD}$  (sk) (Erlang)

where

- A<sub>LD</sub> (sk) : Long distance trunk outgoing traffic (in Barlng) from each Secondary Center in Tertiary Center area I.
- Note : Long distance trunk outgoing traffic from each Secondary Center is the sum of long distance trunk outgoing traffic from each Primary Center in the area.
- (b) Long distance trunk traffic between Tertiary Center area I and Tertiary Center area J, A LD (ti→tj), is obtained by the following formula:

<sup>A</sup>LD (ti→tj) <sup>= A</sup>LD (ti) × Interest Factor between Tertiary Center areas I and J : R (ti→tj)

 $R \{ti \rightarrow tj\} = \frac{\begin{pmatrix} A_{LD} (tj) \\ (dij)^{\alpha} \\ \vdots \\ \Sigma \\ j=1 \quad (dij)^{\alpha} \end{pmatrix}$ 

| where | ₩ | h | ė | r | e |
|-------|---|---|---|---|---|
|-------|---|---|---|---|---|

. • .

| A<br>LD (tj) : Long distance tr<br>going traffic in<br>Center area J. | unk out-<br>Tertiary |
|-----------------------------------------------------------------------|----------------------|
|-----------------------------------------------------------------------|----------------------|

dij

α

: Crow-flight distance between Tetiary Center areas I and J.

: Coefficient by which to convert crow-flight distance between Tertiary Center areas I and J into social/economic distance.

- (c) Long distance trunk traffic between Secondary Center area K and Secondary Center area L,
   A<sub>LD</sub> (sk→s1), is obtained by the following formula:
  - ALD (sk→sl) = ALD (ti) × Interest Pactor within Tertiary Center area I : R [ti→tj] × Interest Factor between Secondary Center areas K and L : R [sk→sl]

$$R [sk \rightarrow s1] = \frac{\begin{pmatrix} A & LD & (s1) \\ (\alpha k1)^{\beta} \\ \hline \\ \Sigma & \frac{A & LD & (s1)}{(\alpha k1)^{\beta}} \\ 1 = 1 & (\alpha k1)^{\beta} \end{pmatrix}$$

.

where

ß

- A<sub>LD</sub> (s1) : Long distance trunk outgoing traffic in Secondary Center area L
- dkl : Crow-flight distance between Secondary Center areas K and L
  - : Coefficient by which to convert crow-flight distance between Secondary Center areas K and L into social/economic distance

(d) Long distance trunk traffic from Tertiary
 Center area I to Secondary Center area
 Y, A<sub>LD</sub> (ti > sy), is obtained by the following formula:

ALD (ti→sy) = ALD (ti) X Interest Factor between Tertiary Center areas I and J : R [ti→tj] x ALD (sy) /ALD (tj)

6.2.4 Calculation of Inter-Trunk Center Traffic Forecast Value

(a) According to CCITT recommendation, busy-hour traffic to be used in the calculation of the required number of equipment or circuits should preferably be the mean value for 35 days when the busy-hour traffic during the year reaches the maximum. In this study, the following correction is made to the mean busy-hour traffic so as to compensate for seasonal traffic variations and, by this means, the traffic forecast value is calculated:

> A = K x (Average busy-hour traffic between trunk centers)

Provided:

For route where traffic is over 30 Brlangs, K = 1.15

For route where traffic is below 30 Brlangs, K = 1.20

(b) The result of calculation for the traffic forecast value appears in Table 23.

## 6.3 Non-Telephone Traffic Forecast

#### 6.3.1 Busy-Hour Originating Traffic

- (1) Telegram traffic, Atg, calculation is by the following formula:
  - Atg = (Annual total of outgoing telegrams x 1/12) x (1/25 : 1/Average monthly working days)
    - x (1/8 : Busy-hour concentration factor)
      - x (125 : Average handling time of messages in second)

x 1/3,600 : erlang

(2) Telex traffic, Atx, calculation is by the following fourmula:

Atx = (Number of demand) x 0.05 : erlang

Provided that the originating calling rate per subscriber is 0.05 Brlang.

(3) New service traffic, Adt, calculation is by the following formula:

 $Adt = (Number of demand) \times 0.1$  : erlang

Provided that the originating calling rate per subscriber is 0.1 Brlang.

The volume of originating traffic per local area, calculated by the foregoing formula, is given in Table IV-24.

#### 6.3.2 Inter-Tandem Exchange Traffic

The traffic distribution from Ujung Pandang tandem exchange to Jakarta, Surabaya and Medan tandem exchanges and international exchanges is given in Table IV-25. The traffic distribution ratio to each tandem exchange is determined, using field survey data for reference.

٠

# Table IV-17 (1/2) Present SLDD Traffic Analysis

## (Tertiary and Secondary Centers)

-

. •

| Tertiary and<br>Secondary Center | SLOD T             | raffic             | No. of<br>Lines | SLOD Traffic pèr<br>Line                          |                                     |  |
|----------------------------------|--------------------|--------------------|-----------------|---------------------------------------------------|-------------------------------------|--|
| Secondary center                 | Outgoing<br>(erl.) | Incoming<br>(erl.) | LINES           | Outgoing<br>(10 <sup>~3</sup> erl.)               | Incóming<br>(10 <sup>-3</sup> erl.) |  |
| Bandung                          | 109.0              | 133.3              | 24,399          | 4.50                                              | 4.60                                |  |
| Cirebon                          | 17.98              | 19.25              | 3,765           | 4.80                                              | 5.10                                |  |
| Yogyakarta                       | 21.08              | 32.48              | 3,321           | 6.30                                              | 9.80                                |  |
| Solo                             | 22.03              | 20.94              | 5,434           | 4.10                                              | 5.50                                |  |
| Sémarang                         | 57.03              | 59.88              | 16,624          | 3.40                                              | 3.60                                |  |
| Purwokerto                       | 7.74               | 8.28               | 1,725           | 4.50                                              | 4.80                                |  |
| Surabaya                         | 216.49             | 181.33             | 35,399          | 6.10                                              | 5.10                                |  |
| Medan                            | 88.75              | 78.70              | 16,682          | 5,30                                              | 4.70                                |  |
| Palembang                        | 38,90              | 30,50              | 4,979           | 7.80                                              | 6.10                                |  |
| Denpasar                         | 23.90              | 19.55              | 4,418           | 5.40                                              | 4.40                                |  |
| Padan                            | 26.13              | 33,76              | 4,929           | 5.30                                              | 6.80                                |  |
| Tj.Karang                        | 23.70              | 20.40              | 4,255           | 5.60                                              | 4.80                                |  |
| Total                            | 652.73             | 627.37             | 125,930         | $\overline{\mathbf{X}} = 5.18$<br>$\sigma = 1.10$ | X = 4.98                            |  |
|                                  |                    |                    |                 |                                                   |                                     |  |
| Jakarta                          | 520.6              | 462.0              | 125,116         | 4.16                                              | 3.69                                |  |

-

### Table IV-17 (2/2) Present SLDD Traffic Analysis

. •

### (Primary Centers)

| Primary Center | SLOD T             | taffic             | No. of | SLÐD Traff<br>Line                          |                                     |
|----------------|--------------------|--------------------|--------|---------------------------------------------|-------------------------------------|
|                | Outgóing<br>(erl.) | Incoming<br>(erl.) | Lines  | Outgoing<br>(10 <sup>-3</sup> erl.)         | Incoming<br>(10 <sup>-3</sup> er1.) |
| Serang         | 5.6                | 4.4                | 906    | 6.2                                         | 4.9                                 |
| Bogor          | 25.8               | 33.1               | 5,307  | 4,9                                         | 6.2                                 |
| Cilacáp        | 3.0                | 4.0                | 640    | 4.7                                         | 6.3                                 |
| Tègàl          | 7.0                | 5.7                | 1,771  | 4.0                                         | 4.9                                 |
| Kediri         | 6.5                | 6.6                | 1,338  | 4.9                                         | 4.9                                 |
| Mataram        | 7.5                | 6.5                | 2,239  | 3,3                                         | 2.9                                 |
| Bukittingi     | 4.5                | 4.5                | 1,168  | 3.9                                         | 3.9                                 |
| Kisaraa        | 3.0                | 2.5                | 400    | 7.5                                         | 6.3                                 |
| Total          | 62.9               | 63.3               | 13,769 | $\bar{\mathbf{X}} = 4.6$<br>$\sigma = 1.27$ | 4.60                                |

### Table IV-18 Conversion of Manual Traffic Data to Briang Value

. . .

| Semi-auto, ór<br>Hanual Service<br>Bxchange | No. of Lines<br>(A) | Monthly paid<br>Minutes<br>(B) | (B) ÷ (A)<br>= (C) | Brlang value;<br>(C) $\times \frac{1}{25} \times \frac{1}{6} \times \frac{1}{66}$<br>$\times 1.15;$ (10 <sup>-3</sup><br>erl.) |
|---------------------------------------------|---------------------|--------------------------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------|
| Ende                                        | 304                 | 6,570                          | 21.61              | 2.76                                                                                                                           |
| Віћа                                        | 576                 | 22,471                         | 39.01              | 4.98                                                                                                                           |
| Gorontalo                                   | 1,160               | 12,210                         | 10.43              | 1.33                                                                                                                           |
| Poso                                        | 559                 | 1, 348                         | 2.41               | 0.31                                                                                                                           |
| Luwok                                       | 591                 | 4,402                          | 7.45               | 1.00                                                                                                                           |
| Blak                                        | 635                 | 16,076                         | 25.32              | 3.24                                                                                                                           |
| Manokwari                                   | 394                 | 6,567                          | 16.67              | 2.13                                                                                                                           |
| Sorong                                      | 728                 | 17,798                         | 24.45              | 3.12                                                                                                                           |
| Pákfák                                      | 280                 | 7,943                          | 28,37              | 3.63                                                                                                                           |
| Merauke                                     | 343                 | 10,061                         | 29,33              | 3.75                                                                                                                           |
| Ternate                                     | 635                 | 26,240                         | 41.32              | 5.28                                                                                                                           |
| Total                                       | 6,205               | 131,686                        | 21,22              | $\overline{X} = 2.71$                                                                                                          |

. · · .

| Area                                  | Trunk Center  | 1989 | 1994  | 1999 | 2005 | Remark                                |
|---------------------------------------|---------------|------|-------|------|------|---------------------------------------|
| JAKARTA                               | Jakarta       | 4.96 | 4.99  | 5.01 | 5,03 |                                       |
|                                       | Bandung       | 6.18 | 6.22  | 6.24 | 5.26 |                                       |
|                                       | Cirebon       | 6.18 | 6.22  | 6.24 | 6.26 |                                       |
|                                       | Senarang      | 4.87 | 4.91  | 4.91 | 4.92 |                                       |
|                                       | Solo          | 6.18 | 6,22  | 6.24 | 6.26 | · · · · · · · · · · · · · · · · · · · |
|                                       | Purwokerto    | 4.87 | 4.91  | 4.91 | 4.92 |                                       |
| SURABAYA                              | Surabaya      | 7.49 | 7.54  | 7.56 | 7.58 |                                       |
|                                       | Jenbér        | 4.87 | 4.91  | 4,91 | 4.92 |                                       |
|                                       | Malang        | 4.87 | 4.91  | 4.91 | 4.92 |                                       |
|                                       | Madiun        | 4.87 | 4.91  | 4,91 | 4.92 |                                       |
|                                       | Denpasar      | 6.18 | 6.22  | 6.24 | 6.26 | - <del></del>                         |
|                                       | Sunbawa Besar | 4.87 | 4.91  | 4.91 | 4.92 |                                       |
|                                       | Bnde          | 3.28 | 3.62  | 4.00 | 4.50 |                                       |
|                                       | Kupàng        | 3.28 | 3.62  | 4.00 | 4.50 |                                       |
| · · · · · · · · · · · · · · · · · · · | Bima          | 4.80 | 4.89  | 4.97 | 5.03 |                                       |
| UJUNG PANDANG                         | Ujung Pandang | 6.18 | 6.22  | 6.24 | 6.26 |                                       |
|                                       | Paré-Paré     | 4.87 | 4,91  | 4.91 | 4.92 |                                       |
|                                       | Manado        | 6.18 | 6.22  | 5.24 | 6,26 |                                       |
|                                       | Palu          | 3.28 | 3.62  | 4.00 | 4.50 |                                       |
|                                       | Kendari       | 3.28 | 3.62  | 4.00 | 4.50 | *                                     |
| RANJARMASIN                           | Banjargasin   | 6.18 | 6.22  | 6.24 | 6.26 | <b> </b>                              |
|                                       | Sampit        | 4.87 | 4, 91 | 4.91 | 4.92 | <u> </u>                              |
|                                       | Samarinda     | 6.18 | 6.22  | 6.24 | 6,26 |                                       |

### Table IV-19 Mean Busy-hour Long-distance Telephone Traffic Porecast per Line (Outgoing) (1/2)

(unit: 10<sup>-3</sup> erlang)

| Table IV-19 | Mean Busy-hour Long-distance Telephone Traffic Porecast |
|-------------|---------------------------------------------------------|
|             | per Line (Outgoing) (2/2)                               |

2 • L

| Area        | Trunk Center   | 1989 | 1994 | 1999 | 2005 | Řemá  |
|-------------|----------------|------|------|------|------|-------|
| BANJARMASIN | Tarakan        | 4.87 | 4.91 | 4.91 | 4.92 |       |
|             | Pontianak      | 4.87 | 4.91 | 4.91 | 4.92 |       |
| MEDAN       | Medan          | 6.18 | 6.22 | 6.24 | 6.26 |       |
|             | Sibolgà        | 4.87 | 4.91 | 4.91 | 4.92 |       |
|             | Langsa         | 4.87 | 4.91 | 4.91 | 4.92 |       |
|             | Banda Aché     | 4.87 | 4.91 | 4.91 | 4,92 |       |
| PALEMBANG   | Paleabang      | 7.49 | 7.54 | 7.56 | 7.58 |       |
|             | Jambi          | 4.87 | 4.91 | 4.91 | 4,92 |       |
|             | Lahat          | 4.87 | 4.91 | 4.91 | 4.92 |       |
|             | Tanjung Karang | 6.18 | 6.22 | 6.24 | 6.26 |       |
|             | Pakanbaru      | 4.87 | 4.91 | 4.91 | 4.92 |       |
|             | Tanjung Pinang | 4.87 | 4.91 | 4.91 | 4.92 |       |
|             | Pàdàng         | 6.18 | 6.22 | 6.24 | 6.26 |       |
| AMBON       | Ambon          | 4.89 | 5.14 | 5.40 | 5.73 |       |
|             | Tèrnate        | 6.05 | 6.17 | 6.26 | 6.34 |       |
|             | Jayapura       | 4.89 | 5.14 | 5.40 | 5.73 | · · · |
|             | Merauke        | 3.72 | 4.11 | 4.54 | 5.11 |       |
|             | Sorong         | 3.72 | 4.11 | 4.54 | 5.11 |       |

Mean Busy-hour Long-distance Telephone Traffic Forecast, Outgoing from Each Trunk Center Area (1/12) Table IV-20

(Unit: Erlang)

|          | Area              |          | 000,               |                    |                    |                     |
|----------|-------------------|----------|--------------------|--------------------|--------------------|---------------------|
| Tertiary | Secondary .       | 710m212  | 2024               |                    | 5 C C T            | <007                |
| JAKARTA  | JAKARTA           |          | 1,973.95           | 3,182.94           | 28'TTT'S           | 7,700-76            |
|          | BANDUNG           |          | 433.48             | 82-007             | 1,131.24           | 1,706.43            |
|          | CIREBON           |          | 52-58              | 10-78              | 137.82             | 207.60              |
|          | SEMARANG          |          | (0-53)<br>216.88   | (0.81)<br>350-93   | (0.82)<br>562.41   | (1.39)<br>848_56    |
|          | Soro              |          | 131.93             | 210-10             | 342.77             | 20-812              |
|          | PURWOKERTO        |          | 100.68             | 162.85             | 267.02             | 404-14              |
|          | (Total - JAKARTA) | JAKARTA) | (0.53)<br>2,909.50 | (0.81)<br>4,694.11 | (0.82)<br>7,553.08 | (1.39)<br>11,385.56 |
| SURABAYA | SURABAYA          |          | (0.81)<br>614.71   | (1.62)<br>996.93   | (2.46)<br>1.595.13 | (4-170)<br>2,400-31 |
|          | JEMBER            |          | 74.12              | 117-94             | 191.97             | 290.53              |
|          | MALANG            |          | 171.68             | 279.48             | 453.24             | 682.89              |
|          | NDIOW             |          | 85.46              | 138.25             | 220.33             | 333-11              |
|          | DENPASAR          |          | 114.79             | 182.75             | 300.17             | 4.52_69             |
|          | SUMBAWA BESAR     |          | 12.62              | 21.35              | 35.16              | 53.21               |

( ) ; via Satellite

\*

Mean Busy-hour Long-distance Telephone Traffic Forecast, Outgoing from Each Trunk Center Area (2/12) Table IV-20

(Unit: Erlang)

- -

|          | Area      |                |                  |       |       |       |
|----------|-----------|----------------|------------------|-------|-------|-------|
| Tertiary | Secondary | Primary        | 5<br>2<br>5<br>7 | 455T  | 6651  | 2005  |
| SURABAYA | SUDE      | Ende           | 5. 02            | 9.12  | 16.20 | 27.54 |
|          |           | Maumere        | 2-12             | 2.70  | 4.39  | 6.67  |
|          |           | Larantuka      | 0.53             | 1.08  | 1.65  | 2.50  |
| •<br>•   |           | Bajawa         | 1.06             | 1.62  | 2.20  | 3.34  |
|          |           | Ruteng         | 2.39             | 405   | 6-59  | 10-01 |
|          |           | Wai ngapu      | 0.53             | 1- 08 | 1-65  | 2.50  |
|          |           | Waikabubak     | 0.53             | 1.08  | 1.65  | 2.+50 |
|          |           | (Total - ENDE) | 12.18            | 20.73 | 34_33 | 55-06 |
|          | X UPA NG  | bu e dn y      | 11.81            | 19.55 | 36-00 | 60-75 |
|          |           | Soe            | 0.53             | 1-08  | 1-65  | 2-50  |
|          |           | Kefamenau      | 0.53             | 1.08  | 1.65  | 2.50  |
|          |           | Atambua        | 1-59             | 2.70  | 4.39  | 6-67  |
|          |           | হহ             | 0-27             | 0.54  | 0.82  | 1.39  |

) ; via Satellite

Mean Busy-bour Long-distance Telephone Traffic Forecast, Outgoing from Each Trunk Center Area (3/12) Table IV-20

(Unic: Erlang)

|                | Area          |                  |                    |                    |                    |                    |
|----------------|---------------|------------------|--------------------|--------------------|--------------------|--------------------|
| Tertiary       | Secondary     | Primary          | λ<br>2<br>1        | ቻ<br>አ<br>1        | ~~~~               | 2007               |
| SURABAYA       | KUPANG        | Seba             | (0.27)             | (0.27)             | (55*0)             | (0.83)             |
|                |               | Kalabahi         | 1.06               | 1.62               | 2.20               | 3.34               |
|                |               | Ilwaki           | (0.27)             | (0.27)             | (0.55)             | (0.83)             |
|                |               | Baukau           | 7*06               | 1.62               | 2.75               | 4.17               |
|                |               | Dili             | 3.98               | 6-75               | 86-0T              | 16.69              |
|                |               | (Total - KUPANG) | (0.54)<br>20.83    | (0-54)<br>34.94    | (1-10)<br>60.44    | (1.66)<br>98.01    |
|                | (Total        | - SURABAYA)      | (1.35)<br>1,106.39 | (2.16)<br>1,792.37 | (3.56)<br>2,890.77 | (5.83)<br>4,365.81 |
| CUCING PANDANG | UJUNG PANDANG | Ujung Pandang    | 127-93             | 209-93             | 333.96             | \$07.06            |
|                |               | Watampone        | 1.59               | 2-16               | 2+75               | 4.17               |
|                |               | Bantaeng         | 3.98               | 6.48               | 88*6               | 15-02              |
|                |               | Benteng          | 1.59               | 2.70               | 4-39               | 6-67               |
|                | -<br>-<br>-   | Tanajampea       | 0.27               | 0-27               | 0_55               | 0.83               |
|                |               | (Total - UP)     | 135-36             | 221-54             | 25**55             | 553.75             |

(); via Satellite

Mean Busy-hour Long-distance Telephone Traffic Forecast, Outgoing from Each Trunk Center Area (4/12) Table IV-20

(Unit: Erlang)

. •

|               | Area      |                     |                 |        |        |         |
|---------------|-----------|---------------------|-----------------|--------|--------|---------|
| Tertiary      | Secondary | Primary             | α<br>α<br>Γ     | 1994   | 666T   | 2005    |
| UJUNG PANDANG | PARE-PARE | Pare-Pare           | 21.92           | 35-35  | 57.45  | 86-35   |
|               |           | Majene              | (1-06)          | 1.89   | 3-02   | 4.73    |
|               |           | Rantepao            | 0.80            | 3271   | 2-20   | 3.34    |
|               |           | Palopo              | 1.33            | 1-35   | 1.65   | 2.50    |
|               |           | Seng Kang           | 1.06            | 1.62   | 2-20   | 3.34    |
|               |           | mamuju<br>Mariju    | (0.80)          | 1.35   | 2.20   | 3.34    |
|               |           | Masamba             | 0.27            | 0.54   | 0.82   | 1.39    |
|               |           | Malili              | 0.27            | 0.54   | 0.82   | 1.39    |
|               |           | Karosa              | (0.27)          | 0.54   | 0.82   | 1.39    |
|               |           | (Total - PARE PARE) | (2.13)<br>25.65 | 44.53  | 71.18  | 107.77  |
|               | MR.NADO   | Manado              | 61-18           | 95-17  | 157.25 | 236. 63 |
|               |           | Tahuna              | (1-06)          | (1-62) | (2-20) | (3+34)  |
|               |           | Beo                 | (0.27)          | (0.27) | (0*55) | (0-83)  |

( ); via Satellite

Mean Busy-bour Long-distance Telephone Traffic Forecast, Outgoing from Each Trunk Center Area (5/12) Table IV-20

(Unit: Erlang)

|                | Area      |                  |                 |                  |                  | 1                |
|----------------|-----------|------------------|-----------------|------------------|------------------|------------------|
| Tertiary       | Secondary | Primary          | 707             | 4 V V -          | 6667             | 2005             |
| duding Pandang | OGENEW    | Kotamobagu       | 1.59            | 2.16             | 3.02             | 4.73             |
|                |           | Gorontalo        | 7.97            | 13-50            | 21-96            | 33.37            |
|                |           | Tilamuta         | 0.27            | 0.54             | 0.82             | 1-39             |
|                |           | Palelch          | (0.27)          | (0.54)           | (0.82)           | (1:39)           |
|                |           | (Total - MANADO) | (1.60)<br>71.01 | (2-43)<br>111.37 | (3.57)<br>183.05 | (5.56)<br>276-12 |
|                | PALU      | Palu             | 11.22           | 19-55            | 35.28            | 59.54            |
|                |           | - 080g           | 3.72            | 6.21             | 9.88             | 15-02            |
|                |           | roli-toli        | 2.66            | 4.32             | 6-86             | 10.57            |
|                |           | Tojo             | (0.27)          | 0.27             | 0.55             | 0.83             |
|                |           | Kolonedale       | (0.27)          | 0.27             | 0.55             | 0.83             |
|                |           | Bungku           | (0.27)          | 0.27             | 0.55             | 0_83             |
|                |           | Katupa           | (0-27)          | 0.27             | 0.55             | 083              |
| _              |           | Luwuk            | (3*38)          | 5-67             | 8-51             | 13-07            |

( ) ; via Satellite

Mean Busy-hour Long-distance Telephone Traffic Forecast, Outgoing from Each Trunk Center Area (6/12) Table IV-20

(Unit: Erlang)

÷ .

|               | Area      |                         |                   |                  |                  | 2000               |
|---------------|-----------|-------------------------|-------------------|------------------|------------------|--------------------|
| Tertiary      | Secondary | Primary                 | C-0 CT            | * C C T          |                  |                    |
| UUUNG PANDANG | DULU      | Banggai                 | (0-27)            | 0.27             | 0.55             | 0.83               |
| ·             |           | (Total - PALU)          | (5.33)<br>17.60   | 37-10            | 63.28            | 102.35             |
|               | KENDARI   | Kendari                 | (472)             | 8.15             | 14-40            | 24.30              |
|               |           | Baubau                  | (0.53)            | 1-08             | 1.65             | 2-50               |
|               |           | Kaha                    | 22.0              | 0.27             | 0.55             | 0-83               |
|               |           | Papalia                 | (0-27)            | (0.27)           | (0.55)           | (0-83)             |
| -             |           | Kolaka                  | 0.53              | 1.08             | 1.65             | 2.50               |
|               |           | Malamala                | 0.27              | 0_27             | 0.55             | 0-83               |
|               |           | Wawotobi                | 0.27              | 0_27             | 0.15.5           | 0.83               |
|               |           | (Total - UJUNG PANDANG) | (5.52)<br>1.34    | (0-27)<br>11-12  | (0.55)<br>19-35  | (0.83)<br>31.79    |
|               | (Total    | (Total - UJUNG PANDANG) | (14.58)<br>250.96 | (0.27)<br>425-66 | (4-12)<br>691.39 | (6.39)<br>1,051.78 |

) ; via Satellite

~

Mean Busy-hour Long-distance Telephone Traffic Forecast, Outgoing from Each Trunk Center Area (7/12) Table IV-20

(Unit: Erlang)

|                | Area        |             |                   |                   |                     |                     |
|----------------|-------------|-------------|-------------------|-------------------|---------------------|---------------------|
| Tertiary       | Secondary   | Primary     | 525T              | 4 A A A           | 666T                | 2005                |
| BA NJARMA SI N | BANJARMASIN |             | (7.14)<br>59.88   | (11.54)<br>96-59  | (18.20)<br>151.65   | (27-94)<br>228,80   |
|                | SAMPIT      |             | (8-92)<br>0       | (06-4T)<br>0      | (23.38)<br>0        | (36.57)<br>0        |
|                | Samarinda   |             | (l.08)<br>45.41   | (2-16)<br>73-62   | (3.28)<br>120.51    | (5.56)<br>182.15    |
|                | TARAKAN     | -           | (5.46)<br>0       | (9.23)<br>0       | (14.33)             | (22.39)<br>0        |
|                | PONTLANAK   |             | (1.07)<br>21.44   | (1.89)<br>35.70   | (3.01)<br>55.47     | (5-00)<br>84-13     |
|                | (Total -    | (NISYMYSIN) | (23.67)<br>126-73 | (39-72)<br>205-91 | (62-20)<br>327-63   | (97.46)<br>495.08   |
| NEDAN          | MEDAN       |             | (4.52)<br>404-91  | (6-75)<br>648-23  | (10-44)<br>1,042-04 | (15-85)<br>1,570-04 |
|                | SIBOLGA     |             | (1.07)<br>18.74   | (1.89)<br>31.55   | (3-02)<br>50-43     | (473)<br>76-77      |
|                | LANGSA      |             | (l. 86)<br>14.44  | (2.70)<br>22-66   | (3-57)<br>35-80     | (5.56)<br>54.10     |

); via Satellite

Ļ

Mean Busy-hour Long-distance Telephone Traffic Forecast, Outgoing from Each Trunk Center Area (8/12) Table IV-20

(Unit: Erlang)

, **-**

|           | Area           |              |                    |                   |                     |                     |
|-----------|----------------|--------------|--------------------|-------------------|---------------------|---------------------|
| Tertiary  | Secondary      | Primary      | א<br>א<br>ר<br>ר   | 755T              | 666T                | 2005                |
| Necaw     | BANDA ACEH     |              | (1.33)<br>30.96    | (1-62)<br>49-93   | (2.19)<br>75.53     | (3.16)<br>114.91    |
|           | (Total .       | - MEDAN)     | (8.78)<br>469.05   | (12-96)<br>752.37 | (19.22)<br>1,203.80 | (29.30)<br>1.815.82 |
| Paleneang | PALEMBANG      |              | (12.53)<br>(104.85 | (21.47)<br>162.29 | (34.76)<br>254.82   | (53.08)<br>383.69   |
|           | TANJUNG KARANG |              | 103.28             | 159-52            | 258.73              | 0T-06E              |
|           | LAHAT          |              | (0.27)<br>30.82    | (0_54)<br>49_44   | (0.82)<br>79_74     | (1.39)<br>121.36    |
|           | CAMBI          |              | (2.66)<br>30.84    | (4.32)<br>52.02   | (6.86)<br>83.04     | (10.57)<br>125.74   |
|           | PADANG         |              | (1.33)<br>86.97    | (2.16)<br>136-67  | (3.01)<br>219-69    | (5.00)<br>331-58    |
|           | PAKANBARU      |              | 37.47              | 62-01             | 96*96               | 149.66              |
| :         | TANJUNG PINANC |              | (1.35)<br>8.34     | (2.70)<br>13.21   | (4.10)<br>21.25     | (6.95)<br>32.13     |
|           | (Total -       | Palemea NG > | (18-14)<br>402-57  | (31.19)<br>635.16 | (49-55)<br>1,016-23 | (76-99)<br>1,534-26 |
|           |                |              |                    |                   | A A                 |                     |

( ) ; via Satellite

.

Mean Busy-hour Long-distance Telephone Traffic Forecast, Outgoing from Each Trunk Center Area (9/12) Table IV-20

(Unit: Erlang)

|          | Area      |                 |              |                 |                  |                   |
|----------|-----------|-----------------|--------------|-----------------|------------------|-------------------|
| Tertiary | Secondary | Frimary         | 606T         | 4 2 2 4         | א<br>ה<br>ד      | 2002              |
| AMBON    | AMBON     | nodma           | (26.41)      | 41-63           | 68-04            | 108-30            |
|          |           | Piru            | (0.27)       | 0.54            | 0.82             | 1.39              |
|          |           | Namlea          | (0.53)       | 18*0            | 1.37             | 2-22              |
|          |           | Maschi          | (0.53)       | 0.81            | 1-37             | 2.22              |
|          |           | Bula            | (0.27)       | 0-54            | 0.82             | 1.39              |
|          |           | Tual            | (2+66)       | (4.32)          | (6.86)           | (10.57)           |
|          |           | Dobo            | (0*80)       | (1.35)          | - (2+20)         | (3-34)            |
|          |           | Saumlaki        | (0-27)       | (0.54)          | (0.82)           | (1.39)            |
|          |           | Tepa            | (0.27)       | (0.54)          | (0.82)           | (1-39)            |
|          |           | Bandanaera      | (0.27)       | (0.54)          | (0.82)           | (1-39)            |
|          |           | (Total - AMBON) | (32.28)<br>0 | (7.29)<br>44.33 | (11.52)<br>72.42 | (18-08)<br>115-52 |
|          | TERNATE   | Ternate         | (9-80)       | 16-66           | 28.17            | 42-80             |
|          |           | Jailolo         | (0.27)       | 0.54            | 0.82             | 1.39              |

~

Mean Busy-hour Long-distance Telephone Traffic Forecast, Outgoing from Each Trunk Center Area (10/12) Table IV-20

(Unit: Erlang)

. • .

|          | Area      |                   |         |                   |                 |                |
|----------|-----------|-------------------|---------|-------------------|-----------------|----------------|
| Tertiary | Secondary | Primary           | 686T    | 1994              | 666T            | 2005           |
| AMBON    | TERNATE   | Daruba            | (0.27)  | 0.54              | 0.82            | 1.39           |
|          |           | Tobelo            | (08-0)  | 1-35              | 2.20            | 3.34           |
|          |           | Weda              | (0.27)  | 0.54              | 0.82            | 1-39           |
|          |           | Umera             | (0.27)  | (0.54)            | (0-82)          | (1-39)         |
|          |           | Labuha            | (0-27)  | 0.54              | 0.82            | 1-39           |
|          |           | Laiwui            | (0-27)  | 0.54              | 0.82            | 1-39           |
|          |           | Sanana            | (0.27)  | (0-54)            | (0-82)          | (1-39)         |
|          |           | (Total - TERNATE) | (12-49) | (11-08)<br>(20-71 | (1-64)<br>34-47 | (278)<br>53.09 |
|          | SORONG    | Sorong            | (7.70)  | (13-32)           | 23.70           | 40-01          |
|          |           | Samate            | (0-27)  | (0.54)            | 0.82            | 1.39           |
|          |           | Atkri             | (0.27)  | (0.54)            | (0.82)          | (I-39)         |
|          |           | Inanwatan         | (0-27)  | (0.54)            | 0.82            | 1-39           |
|          |           | Baho              | (0.27)  | (0.54)            | (0-82)          | (1-39)         |

( ) ; via Satellite

•

Mean Busy-bour Long-distance Telephone Traffic Forecast, Outgoing from Each Trunk Center Area (11/12) Table IV-20

(Unit: Erlang)

|          | Area      |                  |         |         |                  |                  |
|----------|-----------|------------------|---------|---------|------------------|------------------|
| Tertiary | Secondary | Primary          | λα<br>λ | * * *   | ~~~              | 5002             |
| AMBON    | SORONG    | Faktak           | (3-69)  | (6-58)  | (07-LL)          | (19-44)          |
|          | -         | Kaimana          | (0.53)  | (18.0)  | (1.37)           | (2-22)           |
|          |           | Mimika           | (0.27)  | (0*24)  | (0.82)           | (1:39)           |
|          |           | (Total - SORONG) | (13-27) | (23-41) | (15-23)<br>25-34 | (25.83)<br>42.79 |
|          | JAYAPURA  | Biak             | (4.03)  | (6-98)  | 12.31            | 20-79            |
|          |           | Manokwari        | (4.25)  | (6+75)  | (86°0T)          | (16-69)          |
|          |           | Serui            | (1.59)  | (2.+70) | 4.39             | 6*67             |
|          |           | Nabire           | (0.80)  | (1.35)  | (2-20)           | (3-34)           |
|          |           | Waren            | (0.27)  | (0-54)  | 0.82             | 1-39             |
|          |           | Sarmí            | (0-27)  | (0-54)  | 0.82             | 1-39             |
| ·        |           | Jayapura         | (22-01) | (37.01) | 58.32            | 92.83            |
| ·        | :         | සිදෙල්ය          | (0-27)  | (0.54)  | (0-82)           | (I.39)           |
|          | :         | Wamena           | (0.80)  | (1.35)  | (2+20)           | (3-34)           |

) ; via Satellite

 $\sim$ 

Mean Busy-hour Long-distance Telephone Traffic Forecast, Outgoing from Each Trunk Center Area (12/12) Table IV-20

(Unit: Erlang)

- **\*** 

|          |           |                    |          |                   |                   | -Sub-ta           |
|----------|-----------|--------------------|----------|-------------------|-------------------|-------------------|
|          | Area      |                    |          | ~~~               |                   |                   |
| Tertiary | Secondary | Primary            | 2021     | す<br>カ<br>カ<br>ー  | እ<br>እ<br>እ<br>1  | 5007<br>7007      |
| AMBON    | JAYAPURA  | Kive               | (0.27)   | (0,54)            | 0.82              | 1.39              |
|          |           | (Total - JAYAPURA) | (34.56)  | (58-30)           | (16-20)<br>77-48  | (24.76)<br>124.46 |
|          | MERAUKE   | Merauke            | (0*-20)  | (12-58)           | 22-47             | 38_17             |
|          |           | Okaba              | (0-27)   | (0-54)            | 0.82              | 1.39              |
|          |           | Kiman              | (0.27)   | (0.54)            | 0.82              | 1.39              |
|          |           | Koba               | (0.27)   | (0-54)            | (0.82)            | (1.39)            |
|          |           | Tanah Merah        | (0-27)   | (0.54)            | 0.82              | 1.39              |
|          |           | Agats              | (0.27)   | (0.54)            | (0-82)            | (1.39)            |
|          |           | cumbu yum          | (0-27)   | (0.54)            | (0:82)            | (1-39)            |
|          |           | Waropko            | (0.53)   | (0.81)            | 1.37              | 2.22              |
|          |           | (Total - MERAUKE)  | (8.85)   | (16.63)           | (2.46)<br>26.30   | (4.17)<br>44.56   |
|          | (Total    | (Total - AMBON)    | (101.45) | (106.71)<br>65.04 | (47.05)<br>236.01 | (75.62)<br>380.42 |
|          |           |                    |          |                   | -                 |                   |

( ) ; via Satellite

.

# Table IV-21 Mean Busy-hour Trunk (Long-distance and Suburban) Telephone Traffic Porecast, Outgoing from Bach Primary Center in Bastern Part of Indonesia (1/5)

| {Unit: | Brlang) |
|--------|---------|
|--------|---------|

|                  | Area             |                  |        |        |                                       | · · ·  |
|------------------|------------------|------------------|--------|--------|---------------------------------------|--------|
| Tertiary         | Secondary        | Primary          | 1989   | 1994   | 1999                                  | 2005   |
| SURABAYA         | ENDE             | Bnde             |        |        | · · · · · · · · · · · · · · · · · · · |        |
|                  |                  | Maumére          | 2.87   | 3.65   | 5.95                                  | 9.03   |
|                  |                  | Larantuka        | 0.72   | 1.46   | 2.23                                  | 3.39   |
|                  |                  | Bajáwa           | 1.44   | 2.19   | 2.97                                  | 4.51   |
|                  |                  | Ruteng           | 3.22   | 5.48   | 8.92                                  | 13.54  |
|                  |                  | Waingapu         | 0.72   | 1.46   | Ž.23                                  | 3.39   |
|                  |                  | Waikábubak       | Ó.72   | 1.46   | 2.23                                  | 3.39   |
|                  | KUPANG           | Kupang           | ·      |        |                                       |        |
|                  |                  | Soe              | 0.72   | 1.46   | 2.23                                  | 3.39   |
|                  |                  | Kefamenau        | 0.72   | 1.46   | 2.23                                  | 3,39   |
|                  |                  | Atambua          | 2.15   | 3.65   | 5.95                                  | 9.03   |
|                  |                  | Ваа              | 0.36   | 0.73   | 1.12                                  | 1.88   |
|                  |                  | Seba             | (0.36) | (0.37) | (0.74)                                | (1.13) |
|                  |                  | Kalabahi         | 1.44   | 2.19   | 2.97                                  | 4.51   |
|                  |                  | Ilwaki           | (0.36) | (0.37) | (0.74)                                | (1.13) |
|                  |                  | Baukau           | 1.44   | 2.19   | 3.72                                  | 5.64   |
|                  |                  | Dili             | 5.39   | 9.14   | 14.87                                 | 22.57  |
| ujung<br>Pandang | ujung<br>Pandang | Ujung<br>Pandang |        |        |                                       |        |
|                  |                  | Watampone        | 2.15   | 2.92   | 3.72                                  | 5.64   |
|                  |                  | Bantaeng         | 5.39   | 8.77   | 13.38                                 | 20.31  |
|                  |                  | Benteng          | 2.15   | 3.65   | 5,95                                  | 9.03   |

( ) : via Satellite

### Table IV-21 Mean Busy-hour Trunk (Long-distance and Suburban) Telephone Traffic Porecast, Outgoing from Bach Primary Center in Bastern Part of Indónesia (2/5)

. •

(Unit: Brlang)

|                  | Aréa             |            |        |        |        |          |
|------------------|------------------|------------|--------|--------|--------|----------|
| Tertiary         | Secondary        | Primary    | 1989   | 1994   | 1999   | 2005     |
| JJUNG<br>PANDANG | UJUNG<br>PANDANG | Tànajampea | 0.36   | 0.37   | 0.74   | 1.13     |
| -                | PARE-PARE        | Pare-Pare  |        |        |        |          |
| · · ·            |                  | Majene     | (1.44) | 2.56   | 4.09   | 6.40     |
|                  | · · ·            | Rantepao   | 1.08   | 1.83   | 2,97   | 4.51     |
| · .              |                  | Palopo     | 1.80   | 1.83   | 2.23   | 3,39     |
|                  |                  | Sengkang   | 1.44   | 2.19   | 2,97   | 4.51     |
|                  |                  | Навији     | (1.08) | 1.83   | 2.97   | 4.51     |
|                  | · · ·            | Hasamba    | 0.36   | 0.73   | 1.12   | 1.88     |
|                  |                  | Halili     | 0.36   | 0.73   | 1.12   | 1.88     |
|                  |                  | Karosa     | (0,36) | 0.73   | 1.12   | 1.88     |
|                  | KANADÓ           | Hanado     |        |        |        |          |
| :                |                  | Tahuna     | (1.44) | (2.19) | (2.97) | (4, 51)  |
|                  |                  | Вео        | (0.36) | (0.37) | (0.74) | (1.13)   |
|                  |                  | Kotamobagu | 2.15   | 2.92   | 4.09   | 6.40     |
|                  |                  | Gorontalo  | 10.77  | 18.27  | 29.74  | 45.14    |
|                  |                  | Tilamuta   | 0.36   | 0.73   | 1.12   | 1,88     |
|                  |                  | Paleleh    | (0.36) | (0.73) | (1.12) | (1,88)   |
| e to set         | PALU             | Palu       |        |        |        | <u> </u> |
| . •              |                  | Poso       | 5.03   | 8.40   | 13.38  | 20.31    |
|                  |                  | Toli-Toli  | 3, 59  | 5,85   | 9,29   | 14.30    |
|                  |                  | Тојо       | (0.36) | 0.37   | 0.74   | 1.13     |

( ) : via Satellite

### Table IV-21 Mean Busy-hour Trunk (Long-distance and Suburban) Telephone Traffic Forecast, Outgoing from Bach Primary Center in Bastern Part of Indonesia (3/5)

| (Unit: | Erlang) |
|--------|---------|
|--------|---------|

| :                | Area      |            |         |        |        |         |
|------------------|-----------|------------|---------|--------|--------|---------|
| Tertiary         | Secondary | Primary    | 1989    | 1994   | 1999   | 2005    |
| ujung<br>Pandang | PALU      | Kolonedale | (0.36)  | 0.37   | 0.74   | 1.13    |
|                  |           | Bungku     | (0.36)  | Ó.37   | 0.74   | 1.13    |
|                  |           | Katupa     | (0.36)  | 0.37   | 0.74   | 1.13    |
|                  |           | Luwuk      | (5.39)  | 7.67   | 11.52  | 17.68   |
|                  |           | Bànggai    | (0.36)  | 0.37   | 0.74   | 1.13    |
|                  | KENDARI   | Kendari    |         |        |        |         |
|                  |           | 8ลบbลับ    | (0.72)  | 1.46   | 2.23   | 3.39    |
|                  | :         | Raha       | 0,36    | 0.37   | 0.74   | 1.13    |
|                  |           | Papalia    | (Ó.36)  | (0.37) | (0.74) | (1,13)  |
|                  |           | Kolaka     | 0.72    | 1.46   | 2.23   | 3,39    |
|                  |           | Halamala   | 0.36    | 0.37   | 0.74   | 1.13    |
|                  |           | Wawotobi   | 0.36    | 0.37   | 0.74   | 1.13    |
| AMBON            | AMBON     | Anbon      |         |        |        |         |
|                  |           | Piro       | (0.36)  | 0.73   | 1.12   | 1.88    |
|                  |           | Namléa     | (0.72)  | 1.10   | 1.86   | 3.01    |
|                  |           | Masohi     | (0.72)  | 1.10   | 1.86   | 3.01    |
|                  |           | Bulá       | (0.36)  | 0.73   | 1.12   | 1.88    |
|                  |           | Tuàl       | (3, 59) | (5.85) | (9.29) | (14.30) |
|                  |           | Dobo       | (1.08)  | (1.83) | (2.97) | (4.51)  |
|                  |           | Saumlaki   | (0.36)  | (0.73) | (1,12) | (1.88)  |

( ) † via Satellite

### Table IV-21 Mean Busy-bour Trunk (Long-distance and Suburban) Telephone Traffic Forecast, Outgoing from Bach Primary Center in Bastern Part of Indonesia (4/5)

(Unit: Erlang)

|          | Area      |            |        |         |         |          |
|----------|-----------|------------|--------|---------|---------|----------|
| Tertiary | Secondary | Primary    | 1989   | 1994    | 1999    | 2005     |
| AMBON    | AMBON     | Tepa       | (0.36) | (0.73)  | (1.12)  | (1.88)   |
|          |           | Bandanaera | (0.36) | (0.73)  | (1.12)  | (1.88)   |
|          | TERNATE   | Ternate    |        |         |         |          |
|          |           | Jàilolo    | (0.36) | 0,73    | 1.12    | 1,88     |
|          |           | Daruba     | (0.36) | 0.73    | 1.12    | 1.88     |
|          |           | Tobelo     | (1.08) | 1,83    | 2.97    | 4.51     |
|          | :         | Weda       | (0.36) | 0.73    | 1.12    | 1.88     |
|          |           | Uméra      | (0.36) | (0.73)  | (1.12)  | (1,88)   |
|          |           | Labuha     | (0.36) | 0.73    | 1.12    | 1.88     |
|          |           | Laivui     | (0.36) | 0.73    | 1.12    | 1.88     |
|          |           | Sanana     | (0.36) | (0.73)  | (1.12)  | (1.88)   |
|          | SORONG    | Sorong     |        |         |         |          |
|          |           | Samate     | (0.36) | (0.73)  | 1.12    | 1.88     |
| · .      |           | Atkri      | (0.36) | (0, 73) | (1.12)  | (1.88)   |
|          |           | Inanwatan  | (0.36) | (0,73)  | 1.12    | 1.88     |
|          |           | Baho       | (0,36) | (0.73)  | (1.12)  | (1.88)   |
|          |           | Pakfak     | (5.05) | (9.02)  | (15.65) | (26, 64) |
|          |           | Kaimana    | (0.72) | (1.10)  | (1.86)  | (3.01)   |
| · .      |           | Minika     | (0.36) | (0.73)  | (1.12)  | (1.88)   |
|          | JAYAPURA  | Biak       | (5.53) | (9.56)  | 16.88   | 28, 51   |

( ) : via Satellite

.

Table IV-21 Mean Busy-hour Trunk (Long-distance and Suburban) Telephone Traffic Porecast, Outgoing from Bach Primary Center in Bastern Part of Indonesia (5/5)

(Unit: Brlang)

|          | Area      |             |        |        |         | · · · · · · · · · · · · · · · · · · · |
|----------|-----------|-------------|--------|--------|---------|---------------------------------------|
| Tertiary | Secondary | Primary     | 1989   | 1994   | 1999    | 2005                                  |
| AKBON    | JAYAPURA  | Manokwari   | (5.75) | (9.14) | (14.87) | (22, 57)                              |
|          |           | Serui       | (2.15) | (3.65) | 5,95    | 9.03                                  |
|          |           | Nabire      | (1.08) | (1.83) | (2,97)  | (4, 51)                               |
|          |           | Waten       | (0.36) | (0.73) | 1.12    | 1.88                                  |
|          |           | Sarmi       | (0,36) | (0.73) | 1.12    | 1.88                                  |
|          |           | Jayapura    |        |        | · · ·   | <u> </u>                              |
|          |           | Béoga       | (0.36) | (0,73) | (1.12)  | (1.88)                                |
|          |           | Wanena      | (1.08) | (1.83) | (2.97)  | (4.51)                                |
|          |           | Kive        | (0.36) | (0,73) | 1.12    | 1.88                                  |
|          | MERAUKE   | Kerauke     |        |        |         |                                       |
|          |           | Okaba       | (0.36) | (0,73) | 1.12    | 1.88                                  |
|          |           | Kiman       | (0.36) | (0.73) | 1.12    | 1.88                                  |
|          |           | Koba        | (0.36) | (0.73) | (1.12)  | (1.88)                                |
|          |           | Tànah Merah | (0.36) | (0.73) | 1.12    | 1,88                                  |
|          | · · ·     | Agats       | (0.36) | (0.73) | (1.12)  | (1.88)                                |
|          |           | Cuabu yun   | (0,36) | (0.73) | (1.12)  | (1.88)                                |
|          |           | Waropko     | (0.72) | (1.10) | 1.86    | 3.01                                  |

( ) : via Satellite

(Percentages)

Table IV-22 Distribution of Present Long-distance Telephone Traffic from Eastern Part of Indonesia

Manual 80 26 Ä Н Ċ1 20 32 н ч Ambon Auto. in detail Data Manual 100 Ö Ó 4 ÷. Ó 4 22 ထ Wamena avail-Auto. (SLDD not able) o o Manual 0-4 8°0 0 0 5 5 7 200 ý ရ က ø ŝ Sorong (STDD not avail-able) Auto 0 Ó Manual 4-0 0.2 0<u>-</u>5 2.2 007 700 сò Н 5 20 2 2 3 3 Merauke (SLDD not avail-Auto. able). 0 Ó Manual 200 ed. н ທີ່ ຕ α Υ 0 2 ŝ 0 Kupang in detail Auto. Data not t Manual Uj ung Pandang 5 0 0.4 51 200 Å ŵ 2 74 v Auto. ŝ 20 ĝ 1 1 0 202 Origin of Traffic Ambon Jayapura Ujung Pandang (Indistinct) Banj armasin Palembang Total Surabaya Jakarta Route Medan

IV-105 (147)

Terrestrial Long-distance Telephone Traffic Forecast from/to Secondary and Tertiary Centers in Kastern Part of Indonesia (1989) Table IV-23 (1/4)

|                                                                           |                                              | Settery3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|---------------------------------------------------------------------------|----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3x(Y42)         /           Y60(YAY)         /           SX0805         / |                                              | SISTA -<br>BVINVB<br>BVINVB<br>CVSVERBD<br>CNTTVX<br>SECONFS<br>CNTTVX<br>CNICOLICO<br>TVLOB<br>SECONFS<br>CNICOLICO<br>TVLOB<br>SECONFS<br>CNICOLICO<br>TVLOB<br>SECONFS<br>CNICOLICO<br>TVLOB<br>SECONFS<br>CNICOLICO<br>TVLOB<br>SECONFS<br>CNICOLICO<br>TVLOB<br>SECONFS<br>CNICOLICO<br>TVLOB<br>SECONFS<br>CNICOLICO<br>TVLOB<br>SECONFS<br>CNICOLICO<br>TVLOB<br>SECONFS<br>CNICOLICO<br>TVLOB<br>SECONFS<br>CNICOLICO<br>TVLOB<br>SECONFS<br>CNICOLICO<br>TVLOB<br>SECONFS<br>CNICOLICO<br>TVLOB<br>SECONFS<br>CNICOLICO<br>TVLOB<br>SECONFS<br>CNICOLICO<br>TVLOB<br>SECONFS<br>CNICOLICO<br>TVLOB<br>SECONFS<br>CNICOLICO<br>TVLOB<br>SECONFS<br>CNICOLICO<br>TVLOB<br>SECONFS<br>CNICOLICO<br>TVLOB<br>SECONFS<br>CNICOLICO<br>TVLOB<br>SECONFS<br>CNICOLICO<br>TVLOB<br>SECONFS<br>CNICOLICO<br>TVLOB<br>SECONFS<br>CNICOLICO<br>TVLOB<br>SECONFS<br>CNICOLICO<br>TVLOB<br>SECONFS<br>SECONFS<br>SECONFS<br>SECONFS<br>SECONFS<br>SECONFS<br>SECONFS<br>SECONFS<br>SECONFS<br>SECONFS<br>SECONFS<br>SECONFS<br>SECONFS<br>SECONFS<br>SECONFS<br>SECONFS<br>SECONFS<br>SECONFS<br>SECONFS<br>SECONFS<br>SECONFS<br>SECONFS<br>SECONFS<br>SECONFS<br>SECONFS<br>SECONFS<br>SECONFS<br>SECONFS<br>SECONFS<br>SECONFS<br>SECONFS<br>SECONFS<br>SECONFS<br>SECONFS<br>SECONFS<br>SECONFS<br>SECONFS<br>SECONFS<br>SECONFS<br>SECONFS<br>SECONFS<br>SECONFS<br>SECONFS<br>SECONFS<br>SECONFS<br>SECONFS<br>SECONFS<br>SECONFS<br>SECONFS<br>SECONFS<br>SECONFS<br>SECONFS<br>SECONFS<br>SECONFS<br>SECONFS<br>SECONFS<br>SECONFS<br>SECONFS<br>SECONFS<br>SECONFS<br>SECONFS<br>SECONFS<br>SECONFS<br>SECONFS<br>SECONFS<br>SECONFS<br>SECONFS<br>SECONFS<br>SECONFS<br>SECONFS<br>SECONFS<br>SECONFS<br>SECONFS<br>SECONFS<br>SECONFS<br>SECONFS<br>SECONFS<br>SECONFS<br>SECONFS<br>SECONFS<br>SECONFS<br>SECONFS<br>SECONFS<br>SECONFS<br>SECONFS<br>SECONFS<br>SECONFS<br>SECONFS<br>SECONFS<br>SECONFS<br>SECONFS<br>SECONFS<br>SECONFS<br>SECONFS<br>SECONFS<br>SECONFS<br>SECONFS<br>SECONFS<br>SECONFS<br>SECONFS<br>SECONFS<br>SECONFS<br>SECONFS<br>SECONFS<br>SECONFS<br>SECONFS<br>SECONFS<br>SECONFS<br>SECONFS<br>SECONFS<br>SECONFS<br>SECONFS<br>SECONFS<br>SECONFS<br>SECONFS<br>SECONFS<br>SECONFS<br>SECONFS<br>SECONFS<br>SECONFS<br>SECONFS<br>SECONFS<br>SECONFS<br>SECONFS<br>SECONFS<br>SECONFS<br>SECONFS<br>SECONFS<br>SECONFS<br>SECONFS<br>SECONFS<br>SECONFS<br>SECONFS<br>SECONFS<br>SECONFS<br>SECONFS<br>SECONFS<br>SECONFS<br>SECONFS<br>SECONFS<br>SECONFS<br>SECONFS<br>SECONFS<br>SECONFS<br>SECONFS<br>SECONFS<br>SECONFS<br>SECONFS<br>SECONFS<br>SECONFS<br>SECONFS<br>SECONFS<br>SECONFS<br>SECONFS<br>SECONFS<br>SECONFS<br>SECONFS<br>SECONFS<br>SECONFS<br>SECONFS<br>SECONFS<br>SECONFS<br>SECONFS<br>SECONFS<br>SECONFS<br>SECONFS<br>SECONFS<br>SECONFS<br>SECONFS<br>SECONFS<br>SECONFS<br>SECONFS<br>SECONFS<br>SECONFS<br>SECONFS<br>SECONFS<br>SECONFS<br>SECONFS<br>S |
|                                                                           | VISYAR REAL REAL REAL REAL REAL REAL REAL RE |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

Table IV-23 (2/4) Terestrial Long-distance Telephone Traffic Morectat from/to Secondary and Tertiary Centers in Eastern Part of Indonesia (1994)

| <b></b>      |                          | $\mathbf{k}$           | <u>K</u> -   | <b>`</b>       | K             | K m             | ĸ.                      | <u> </u>        | <b>K</b>                | <u>к</u>                | <del>.</del> | I        | ×                       | x                       | x              | T.                 | <b>1</b> —              | <b>1</b> | · · · · · | -                |
|--------------|--------------------------|------------------------|--------------|----------------|---------------|-----------------|-------------------------|-----------------|-------------------------|-------------------------|--------------|----------|-------------------------|-------------------------|----------------|--------------------|-------------------------|----------|-----------|------------------|
|              | TVIOL                    | $\square$              | $\Box$       |                | $\square$     | 203             | $[ \ ]$                 | 4               | $\left  \right\rangle$  | $\mathbb{N}$            |              |          | 2                       | $\mathbb{N}$            | $\square$      | Ν                  | Ν                       |          |           |                  |
|              |                          | $\left  \right\rangle$ | $\mathbb{N}$ | J ·            | $\bigwedge$   | $\mathbb{N}$    | $\mathbb{N}$            | $\square$       | $\overline{N}$          | $\overline{\mathbf{N}}$ |              |          | $\overline{\mathbf{N}}$ | $\overline{\mathbb{N}}$ | $\nabla$       |                    | N                       | -        | 1         |                  |
|              |                          | . :                    |              |                |               |                 | <u> </u>                |                 |                         | 1                       | Ĭ            | [-       | <b>`</b>                |                         |                | <u> -`</u>         |                         |          |           | ł                |
| 1            | DAYOGTYA                 | $\wedge$               | $\square$    |                | Ν             | ~               | $\overline{\mathbf{N}}$ |                 | $\wedge$                | $\overline{\mathbf{N}}$ |              | 1        | 2                       | $\overline{\mathbf{n}}$ |                | K                  | $\overline{\mathbf{h}}$ | ┢─       |           |                  |
|              | NYÓZI                    | $\bigwedge$            | $\square$    | ]              | Ν             | 3.              | $\overline{\mathbf{N}}$ |                 | $\square$               | $\square$               |              | 1        | ~                       | $ \langle \rangle$      | Ŕ              | Ŕ                  | $\mathbf{k}$            |          |           | ł                |
| objective    | NISYA -<br>Kyinya        | $\overline{\Lambda}$   | Ν            | ]              | N             | 2               | N                       | $\square$       | N                       | $\overline{\mathbf{N}}$ |              |          | 2                       | $\overline{\ }$         | $\overline{)}$ | $\checkmark$       | $\overline{\Lambda}$    | 1-       |           | ł                |
| Outeide      | 87234734J                | $\square$              | Ν            |                | N             | $\overline{\ }$ | $\overline{\mathbf{N}}$ |                 | $\overline{\Lambda}$    | $\overline{\mathbf{n}}$ | 1            |          | $\left  \right\rangle$  | $\overline{\ }$         | K              | Ŕ                  | Ŕ                       | 1        |           | ł                |
| ort          | SAVIYA                   | $\bigwedge$            | $\square$    | <u> </u>       | Ν             | 2               | $\overline{\mathbf{N}}$ | $\overline{\ }$ | $\overline{\mathbf{N}}$ | $\overline{\ }$         | 1            | <u> </u> |                         | $\overline{\ }$         | $\overline{)}$ | Ŕ                  | $\mathbb{R}$            | 1        |           | ļ                |
|              |                          |                        |              |                |               |                 |                         |                 |                         |                         |              |          |                         |                         |                | $\vdash$           | ╞─`                     | ┢        |           | ĺ                |
|              | DROGNYS                  | $\square$              | $\square$    |                | $\bigwedge$   | 23              |                         |                 | $\wedge$                |                         |              |          |                         |                         |                |                    | K                       |          |           |                  |
|              | AFALAQ                   | $\sum$                 | $\square$    |                | $\square$     | 1.1             | $\square$               | 1               | N                       | Ń                       |              |          | 22                      | $\mathbf{n}$            | Ń              | $\bigtriangledown$ | $\downarrow$            | 1        | -         | ł                |
|              | SN100100<br>TV101        | ล                      | ş            |                | 280           | 267             | ផ                       | <u>ج</u> ،      | 7                       | 2                       |              |          | 3                       | 33                      |                |                    |                         |          |           |                  |
|              | EX:NELS                  |                        |              |                |               |                 |                         |                 |                         |                         |              | ŀ        |                         |                         |                |                    |                         | <u> </u> |           | ┢                |
|              | JAYASUSA                 |                        |              |                |               |                 | -                       |                 |                         |                         |              |          |                         |                         |                |                    |                         |          |           |                  |
| 2            | 542565                   |                        |              |                |               |                 |                         |                 |                         |                         |              |          |                         |                         |                |                    |                         | ſ        |           | -                |
| Indonesia)   | 21VN333                  |                        |              | <u> </u>       |               |                 |                         |                 |                         |                         |              |          | 25                      |                         |                | -                  | <u>Γ</u>                |          |           | Ĭ                |
| of Ind       | NÓEXY                    |                        |              |                | 1             | 75              |                         |                 |                         |                         |              |          | •                       | 25                      |                |                    |                         |          |           | :                |
| Part o       | · · ·                    |                        | ·            | <u> </u>       |               |                 |                         |                 |                         |                         |              |          |                         |                         |                |                    |                         |          |           |                  |
| ern P        | TRYGNIN                  | <u> </u>               |              |                |               | 3               |                         |                 |                         |                         |              |          |                         |                         |                |                    |                         |          | -         | 5                |
| (Kastern     | 6774                     |                        |              |                |               | 42              |                         |                 |                         |                         |              |          |                         |                         |                |                    |                         |          |           | 9                |
| Area<br>Area | OCYNYM                   |                        |              |                | ž             | 65              |                         |                 |                         |                         |              |          |                         |                         |                |                    |                         | -        |           | 68               |
| ectve.       | 3449-3449                |                        |              |                |               | 20              |                         |                 |                         |                         |              |          |                         |                         |                |                    |                         |          |           | 3                |
| obș ec       | EVICOVICE<br>COLEME      |                        |              |                | 82            |                 | ł                       | 20              | Ċŧ                      | ล                       |              |          | 2                       |                         |                |                    |                         |          |           | 242              |
|              | (VAYEYES)                | 25                     | •            |                |               | 82              |                         | 53              |                         |                         |              |          | 2                       |                         |                | -                  |                         |          |           | 2 201            |
|              | _ ·                      |                        |              |                |               |                 |                         | ·               |                         |                         |              |          |                         |                         |                |                    |                         |          |           |                  |
|              | terretar                 |                        |              |                | 39            |                 |                         |                 |                         |                         |              |          |                         |                         |                |                    |                         |          |           | 65               |
|              | 3013                     |                        |              |                | 24            |                 |                         |                 |                         |                         |              |          |                         |                         |                |                    |                         |          |           | , e              |
|              | TO<br>From               | RUDE                   | XUPANG       |                | (XXVENZOS)    | DUCANC          | DARE-PAKE               | OCTVINI         | DTVG                    | KENDARE                 |              | ÷        | MOGN                    | TINNATE                 | BORONC         | JAYADUKA           | NC RAUNCE               |          |           | TOTAL - INCOMING |
|              | Teelfary<br>Area<br>Area |                        | ¥149         | Treis<br>Treis | <b>.</b><br>s |                 |                         | M38W4           | SNIG                    | <b>n</b>                |              |          |                         |                         |                |                    |                         |          |           | TOTAL            |

(Note) Z I Upper Outgoing from Objective Area -

-

Terreschal Long-distance Telephone Traffic Forecast from/to Secondary and Tertiary Centers in Mastern Part of Indonesia (1999) Table IV-23 (3/4)

ŝ 8 \$ ដ TV101 38 2 38 ส (ていた) Outside Objective Area A SAYERSAYA 5 7 ¢ \_\_\_\_\_\_ 28 NUC 5 NISCH ø đ SVINY3 2 a Z, NYSY4830 3 3 SNEW a ġ CONCERNS. <u>}</u> 225 ą ADEAUG Ś 5 š ર્સ 2 00100100 33 ģ 100 431 ŝ 250 2 2 212 Ŷ ۶ TVLOL 2 9 TISYAEX ន ÷ 2 VESTVIVE 4 + 4 ñ 2 200505 ÷ ຊ ន of Indonesia) 314NY31 ş ģ NDENT 50 ដ 4 9 226 33 ដ â . Objedtive Area (Kastern Part FeV 201 24 (ULA9 2 . 140 -OCYNYM сş 5 2 3275-3575 3 63 BYREYAS BIGSS 426 77 ĩ 3 2 ដ . 2 2 ŝ 2 (VAVEYE'S) 3 4 293 ទ Covera: 63 89 ŝ 3003 â (NYMINY DE) TANG-TANG TOTAL - INCOMING DANDANG PANDANG ê XCNINX AXABUXA PLANE. DOLANDICE. XUPANG MNNDO DHOKOB NO9A ENOX DIVE PYOD. Kreitisry Krea VAVEVENS SNYONYA SANDA NOONY

1 Upber: Outgoing from Objective Area I Lower: Incoming to Objective Area (NOC+)

IV-108 (150)

Table IV=23 (a/4) Torrestrial Long-distance Telfic Forecast from/to Secondary and Tertiary Centers in Eastern Part of Indonesia (2005)

| + ONICOINS<br>LOLVT                                                       | \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 469                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 62 317 64 36<br>35<br>75                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 203 116                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 917                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 37 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 219 91 25<br>64 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2                                                                                 | 214 39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|---------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 71(789)<br>Vedevive<br>990605<br>31(779)<br>809)                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 48 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 41 21                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | - 62 38 70 40 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 44                                                                                | 17 TT TT TT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 317 62 51 120 52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1410334<br>67743<br>6671354<br>2874-3874<br>2875334<br>2875334<br>2875334 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 267 66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | - 126 411 711 321 -                                | 124                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 877                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                   | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 617 226 200 219 37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| (VAV67675)<br>544767675<br>54476767<br>36545                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 62 111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 765                                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | TOTAL - INCOMING 62 111 477 61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                           | 311/12/32<br>NOON<br>14/10/34<br>14/10/34<br>14/10/34<br>26/14/37/27<br>26/14/37/27<br>26/14/37/27<br>26/14/37/27<br>26/14/37/27<br>26/14/37/27<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/37<br>20/3<br>20/3<br>20/3<br>20/3<br>20/3<br>20/3<br>20/3<br>20/3 | 2973505<br>3170755<br>80507<br>1870507<br>1870507<br>1870507<br>1870507<br>1870507<br>28705-3876<br>2870507<br>2870507<br>2870507<br>2870507<br>2870507<br>2870507<br>2870507<br>2870507<br>2870507<br>2870507<br>2870507<br>2870507<br>2870507<br>2870507<br>2870507<br>2870507<br>2870507<br>2870507<br>2870507<br>2870507<br>2870507<br>2870507<br>2870507<br>2870507<br>2870507<br>2870507<br>2870507<br>2870507<br>2870507<br>2870507<br>2870507<br>2870507<br>2870507<br>2870507<br>2870507<br>2870507<br>2870507<br>2870507<br>2870507<br>2870507<br>2870507<br>2870507<br>2870507<br>2870507<br>2870507<br>2870507<br>2870507<br>2870507<br>2870507<br>2870507<br>2870507<br>2870507<br>2870507<br>2870507<br>2870507<br>2870507<br>2870507<br>2870507<br>2870507<br>2870507<br>2870507<br>2870507<br>2870507<br>2870507<br>2870507<br>2870507<br>2870507<br>2870507<br>2870507<br>2870507<br>2870507<br>2870507<br>2870507<br>2870507<br>2870507<br>2870507<br>2870507<br>2870507<br>2870507<br>2870507<br>2870507<br>2870507<br>2870507<br>2870507<br>2870507<br>2870507<br>2870507<br>2870507<br>2870507<br>2870507<br>2870507<br>2870507<br>2870507<br>2870507<br>2870507<br>2870507<br>2870507<br>2870507<br>2870507<br>2870507<br>2870507<br>2870507<br>2870507<br>2870507<br>2870507<br>2870507<br>2870507<br>2870507<br>2870507<br>2870507<br>2870507<br>2870507<br>2870507<br>2870507<br>2870507<br>2870507<br>2870507<br>2870507<br>2870507<br>2870507<br>2870507<br>2870507<br>2870507<br>2870507<br>2870507<br>2870507<br>2870507<br>2870507<br>2870507<br>2870507<br>2870507<br>2870507<br>2870507<br>2870507<br>2870507<br>2870507<br>2870507<br>2870507<br>2870507<br>2870507<br>2870507<br>2870507<br>2870507<br>2870507<br>2870507<br>2870507<br>2870507<br>2870507<br>2870507<br>2870507<br>2870507<br>2870507<br>2870507<br>2870507<br>2870507<br>2870507<br>2870507<br>2870507<br>2870507<br>2870507<br>2870507<br>2870507<br>2870507<br>2870507<br>2870507<br>2870507<br>2870507<br>2870507<br>2870507<br>2870507<br>2870507<br>2870507<br>2870507<br>2870507<br>2870507<br>2870507<br>2870507<br>2870507<br>2870507<br>2870507<br>2870507<br>2870507<br>2870507<br>2870507<br>2870507<br>2870507<br>2870507<br>2870507<br>2870507<br>2870507<br>2870507<br>2870507<br>2870507<br>2870507<br>2870507<br>2870507<br>2870507<br>2870507<br>2870507<br>2870507<br>2870507<br>2870507<br>2870507<br>2870507<br>2870507<br>2870507<br>2870507<br>2870507<br>2870507<br>2870507<br>2870507<br>2870507<br>2870507<br>2870507<br>2870507<br>2870507<br>2870507<br>2870507<br>2870507<br>2870507<br>2870507<br>2870507<br>28707<br>28707<br>2870707<br>2870707<br>2870707<br>2870707<br>2870707<br>2870707<br>2870707<br>2870707<br>2870707<br>2870707<br>2870707<br>2870707<br>2870707<br>2870707<br>2870707<br>2870000000000 | 9979805<br>31103935<br>NOENY<br>NOENY<br>1870335<br>1870335<br>1870335<br>1870335<br>1870335<br>1870335<br>1870335<br>1870335<br>1870335<br>1870335<br>1870335<br>1870335<br>1870335<br>1870335<br>1870335<br>187035<br>187035<br>187035<br>187035<br>187035<br>187035<br>187035<br>187035<br>187035<br>187035<br>187035<br>187035<br>187035<br>187035<br>187035<br>187035<br>187035<br>187035<br>187035<br>187035<br>187035<br>187035<br>187035<br>187035<br>187035<br>187035<br>187035<br>187035<br>187035<br>187035<br>187035<br>187035<br>187035<br>187035<br>187035<br>187035<br>187035<br>18705<br>18705<br>18705<br>18705<br>18705<br>18705<br>18705<br>18705<br>18705<br>18705<br>18705<br>18705<br>18705<br>18705<br>18705<br>18705<br>18705<br>18705<br>18705<br>18705<br>18705<br>18705<br>18705<br>18705<br>18705<br>18705<br>18705<br>18705<br>18705<br>18705<br>18705<br>18705<br>18705<br>18705<br>18705<br>18705<br>18705<br>18705<br>18705<br>18705<br>18705<br>18705<br>18705<br>18705<br>18705<br>18705<br>18705<br>18705<br>18705<br>18705<br>18705<br>18705<br>18705<br>18705<br>18705<br>18705<br>18705<br>18705<br>18705<br>18705<br>18705<br>18705<br>18705<br>18705<br>18705<br>18705<br>18705<br>18705<br>18705<br>18705<br>18705<br>18705<br>18705<br>18705<br>18705<br>18705<br>18705<br>18705<br>18705<br>18705<br>18705<br>18705<br>18705<br>18705<br>18705<br>18705<br>18705<br>18705<br>18705<br>18705<br>18705<br>18705<br>18705<br>18705<br>18705<br>18705<br>18705<br>18705<br>18705<br>18705<br>18705<br>18705<br>18705<br>18705<br>18705<br>18705<br>18705<br>18705<br>18705<br>18705<br>18705<br>18705<br>18705<br>18705<br>18705<br>18705<br>18705<br>18705<br>18705<br>18705<br>18705<br>18705<br>18705<br>18705<br>18705<br>18705<br>18705<br>18705<br>18705<br>18705<br>18705<br>18705<br>18705<br>18705<br>18705<br>18705<br>18705<br>18705<br>18705<br>18705<br>18705<br>18705<br>18705<br>18705<br>18705<br>18705<br>18705<br>18705<br>18705<br>18705<br>18705<br>18705<br>18705<br>18705<br>18705<br>18705<br>18705<br>18705<br>18705<br>18705<br>18705<br>18705<br>18705<br>18705<br>18705<br>18705<br>18705<br>18705<br>18705<br>18705<br>18705<br>18705<br>18705<br>18705<br>18705<br>18705<br>18705<br>18705<br>18705<br>18705<br>18705<br>18705<br>18705<br>18705<br>18705<br>18705<br>18705<br>18705<br>18705<br>18705<br>18705<br>18705<br>18705<br>18705<br>18705<br>18705<br>18705<br>18705<br>18705<br>18705<br>18705<br>18705<br>18705<br>18705<br>18705<br>18705<br>18705<br>18705<br>18705<br>18705<br>18705<br>18705<br>18705<br>18705<br>18705<br>18705<br>18705<br>18705<br>18705<br>18705<br>18705<br>18705<br>18705<br>18705<br>18705<br>18705 | 20000000<br>311112232<br>300000<br>300000<br>300000<br>300000<br>300000<br>300000<br>300000<br>300000<br>300000<br>300000<br>300000<br>300000<br>300000<br>300000<br>300000<br>300000<br>300000<br>300000<br>300000<br>300000<br>300000<br>300000<br>300000<br>300000<br>300000<br>300000<br>300000<br>300000<br>300000<br>300000<br>300000<br>300000<br>300000<br>300000<br>300000<br>300000<br>300000<br>300000<br>300000<br>300000<br>300000<br>300000<br>300000<br>300000<br>300000<br>300000<br>300000<br>300000<br>300000<br>300000<br>300000<br>300000<br>300000<br>300000<br>300000<br>300000<br>300000<br>300000<br>300000<br>300000<br>300000<br>300000<br>300000<br>300000<br>300000<br>300000<br>300000<br>300000<br>300000<br>300000<br>300000<br>300000<br>300000<br>300000<br>300000<br>300000<br>300000<br>300000<br>300000<br>300000<br>300000<br>300000<br>300000<br>300000<br>300000<br>300000<br>300000<br>300000<br>300000<br>300000<br>300000<br>300000<br>300000<br>300000<br>300000<br>300000<br>300000<br>300000<br>300000<br>300000<br>300000<br>300000<br>300000<br>300000<br>300000<br>300000<br>300000<br>300000<br>300000<br>300000<br>300000<br>300000<br>300000<br>300000<br>300000<br>300000<br>300000<br>300000<br>300000<br>300000<br>300000<br>300000<br>300000<br>300000<br>300000<br>3000000<br>300000<br>3000000<br>30000000<br>300000000 | 982805<br>311V1232<br>NODN<br>NODN<br>NODN<br>NODN | 9780605         1           1         5580605           1         558070           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1 | 922605     922605       1     522200       1     522200       1     1       1     1       1     1       1     1       1     1       1     1       1     1       1     1       1     1       1     1       1     1       1     1       1     1       1     1       1     1       1     1       1     1       1     1       1     1       1     1       1     1       1     1       1     1       1     1       1     1       1     1       1     1       1     1       1     1       1     1       1     1       1     1       1     1       1     1       1     1       1     1       1     1       1     1       1     1       1     1       1     1       1     1 | 982805     982805       31     5828076       57     5829076       57     57       57     57       57     57       57     57       57     57       57     57       57     57       57     57       57     57       57     57       57     57       57     57       57     57       57     57       57     57       57     57       57     57       57     57       57     57       57     57       57     57       57     57       57     57       57     57       57     57       57     57       57     57       57     57       57     57       57     57       57     57       57     57       57     57       57     57       57     57       57     57       57     57       57     57       57     57       57     57 <tr< td=""><td>9828000     982800       982800     982800       982800     982800       982800     982800       982800     982800       982800     982800       982800     982800       982800     982800       982800     982800       982800     982800       982800     982800       982800     982800       982800     982800       982800     982800       982800     982800       982800     982800       982800     982800       982800     982800       982800     982800       982800     982800       982800     982800       982800     982800       982800     982800       982800     982800       982800     982800       982800     982800       982800     982800       982800     982800       982800     982800       982800     982800       982800     982800       982800     982800       982800     982800       982800     982800       982800     982800       982800     982800       982800     982800</td><td>580805     1     1       3115123     1     1       MOENY     1     1</td><td>9808005     9808005       31100238     97       NODAN     97       NOTAN     97       NOTAN</td><td>YENRYLY     R     R     R     R       520805     310023     9     7     R       310023     9     7     R       300000     9     7     R       300000     9     7     R       300000     9     7     R       310000     17     17     17       310000     17     17     17       311     17     17     17       311     17     17     17       311     17     17     17       311     17     17     17       311     17     17     17       311     17     17     17       311     17     17     17       311     17     17     17       311     17     17     17       311     17     17     17       311     17     17     17       311     17     17     17       311     17     17     17</td><td>YENRYLL     I     I     I     I     I       5000000000000000000000000000000000000</td><td>VERMANE     R     R     R     R     R       DXX805     I     R     I     R     I       JIMN233     R     I     R     I     R       JIMN233     R     I     R     I     I       JIMN233     R     I     R     I     I       JIMN233     R     I     R     I     I       JIMN233     I     I     R     I     I       JIMN233     I     I     R     I     I       JIMN233     I     I     I     I     I       JIMN333     I     I     I     I     I       JIMN333     I</td><td>VEDAVINI     17     17     17     17     17       SNESS     1     17     17     17     17       SINVERS     1     17     17     17     17       SNESS     17     17     17     17     17       SNESS     1     17     17     17     17       SNESS     17     17     17     17     17</td><td>VERMINE     1     1     1     1     1     1     1       VERMINE     1     1     1     1     1     1     1       SENSOS     1     1     1     1     1     1     1       SINDER     1     1     1     1&lt;</td><td>VERMINE     1     1     1     1     1     1     1     1       SENSOS     1     1     1     1     1     1     1       SINNESS     1     1     1     1     1     1     1       SINESS     1     1     1     1     1     1     1       SINESS     1     1     1     1     1     1     1       SINESS     1     1     1     1     1     1     1       SIN     1     1     &lt;</td><td>Vehanikye     17     17     17     17     17       31902735     57     57     57     17       31902735     57     57     57     17       3000000     9     17     17     17       14700000     9     17     17     17       14700000     9     17     17     17       14700000     9     17     17     17       14700000     9     17     17     17       14700000     9     17     17     17       14700000     9     17     17     17       14700000     9     17     17     17       14700000     97     17     17     17       14700000     97     17     17     17       14700000     97     17     17     17       14700000     97     17     17     17       1470000     97     17     17     17       14700000     97     17     17     17       1470000     97     17     17     17       1470000     97     17     17     17       1570000     97     17     17     17       157<!--</td--></td></tr<> | 9828000     982800       982800     982800       982800     982800       982800     982800       982800     982800       982800     982800       982800     982800       982800     982800       982800     982800       982800     982800       982800     982800       982800     982800       982800     982800       982800     982800       982800     982800       982800     982800       982800     982800       982800     982800       982800     982800       982800     982800       982800     982800       982800     982800       982800     982800       982800     982800       982800     982800       982800     982800       982800     982800       982800     982800       982800     982800       982800     982800       982800     982800       982800     982800       982800     982800       982800     982800       982800     982800       982800     982800       982800     982800 | 580805     1     1       3115123     1     1       MOENY     1     1 | 9808005     9808005       31100238     97       NODAN     97       NOTAN     97       NOTAN | YENRYLY     R     R     R     R       520805     310023     9     7     R       310023     9     7     R       300000     9     7     R       300000     9     7     R       300000     9     7     R       310000     17     17     17       310000     17     17     17       311     17     17     17       311     17     17     17       311     17     17     17       311     17     17     17       311     17     17     17       311     17     17     17       311     17     17     17       311     17     17     17       311     17     17     17       311     17     17     17       311     17     17     17       311     17     17     17       311     17     17     17 | YENRYLL     I     I     I     I     I       5000000000000000000000000000000000000 | VERMANE     R     R     R     R     R       DXX805     I     R     I     R     I       JIMN233     R     I     R     I     R       JIMN233     R     I     R     I     I       JIMN233     R     I     R     I     I       JIMN233     R     I     R     I     I       JIMN233     I     I     R     I     I       JIMN233     I     I     R     I     I       JIMN233     I     I     I     I     I       JIMN333     I     I     I     I     I       JIMN333     I | VEDAVINI     17     17     17     17     17       SNESS     1     17     17     17     17       SINVERS     1     17     17     17     17       SNESS     17     17     17     17     17       SNESS     1     17     17     17     17       SNESS     17     17     17     17     17 | VERMINE     1     1     1     1     1     1     1       VERMINE     1     1     1     1     1     1     1       SENSOS     1     1     1     1     1     1     1       SINDER     1     1     1     1< | VERMINE     1     1     1     1     1     1     1     1       SENSOS     1     1     1     1     1     1     1       SINNESS     1     1     1     1     1     1     1       SINESS     1     1     1     1     1     1     1       SINESS     1     1     1     1     1     1     1       SINESS     1     1     1     1     1     1     1       SIN     1     1     < | Vehanikye     17     17     17     17     17       31902735     57     57     57     17       31902735     57     57     57     17       3000000     9     17     17     17       14700000     9     17     17     17       14700000     9     17     17     17       14700000     9     17     17     17       14700000     9     17     17     17       14700000     9     17     17     17       14700000     9     17     17     17       14700000     9     17     17     17       14700000     97     17     17     17       14700000     97     17     17     17       14700000     97     17     17     17       14700000     97     17     17     17       1470000     97     17     17     17       14700000     97     17     17     17       1470000     97     17     17     17       1470000     97     17     17     17       1570000     97     17     17     17       157 </td |

(Note) V Upperi Outgoing from Objective Area

•

•

### Table IV-24

Originating Traffic in Non-Telephone Network (Year 2005)

| Ųń | it; | Brlangs |
|----|-----|---------|
|----|-----|---------|

|                       |          |       | 0010;           | Brlangs         |
|-----------------------|----------|-------|-----------------|-----------------|
| Area                  | Telegram | Telex | Néw<br>Services | Total<br>- Area |
| Ujung Pandang         | 18       | 44.5  | 27              | 89.5            |
| Kendari               | 3        | 3.5   | 2               | 8.5             |
| Palu                  | 7        | 16.5  | 10              | 33.5            |
| Manado                | 12       | 27.5  | 16              | 55.5            |
| Ambon                 | 15       | 21    | 14              | 50.5            |
| Jayapura, Meranke     | 7.5      | 19    | 12              | 38.5            |
| Sorong                | 4        | 8     | 4.5             | 16.5            |
| Total - Ujung Pandang | 66.5     | 140   | 85,5            | 292.0           |
| Kupang                | 9        | 7     | 4.5             | 20.5            |

### Table IV-25

## Distribution of Non-Telephone Traffic (Year 2005) from Ujung Pandang Tandem Area

|                        |          |       | Unit;           | Brlangs         |
|------------------------|----------|-------|-----------------|-----------------|
| Tandem Service<br>Area | Telègram | Telex | New<br>Services | Total<br>- Area |
| Ujung Pandang          | 12       | 21    | .13             | 46              |
| Jakarta                | 24       | 70    | 51.5            | 145.5           |
| Surabaya               | 18       | 14    | 8.5             | 40.5            |
| Medan                  | 6        | 7     | 4               | 17              |
| Oversea                | 6.5      | 28    | 8.5             | 43              |
| Total - Service        | 66.5     | 140   | 85.5            |                 |

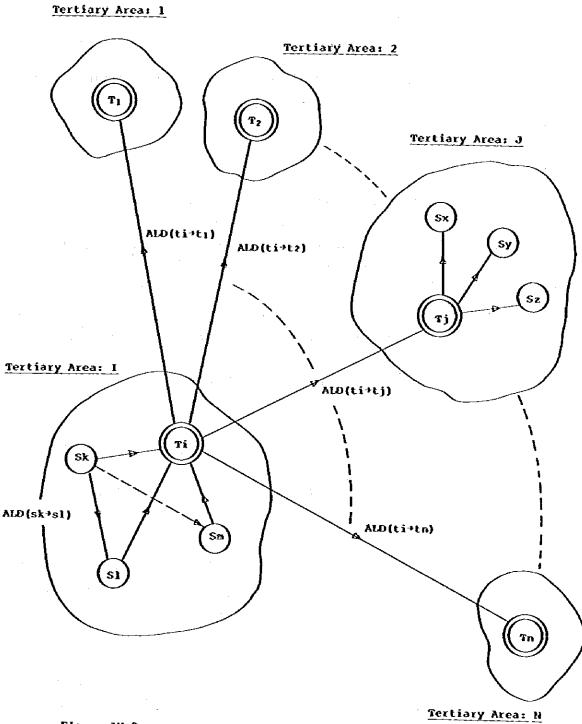



Figure 1V·9 Typical Traffic Flow between Trunk Zones

-

### 7. Circuit Calculation

### 7.1 Calculation Methods

The methods by which to calculate the required number of circuits in telephone and non-telephone networks are as follows:

- (1) Final Circuit
  - (a) For the section where the forecasted traffic is 30 Brlangs or less, the required number of circuits is given by means of Brlang's Loss Formula (B = 0.01)
  - (b) For the section where the forecasted traffic is more than 30 Brlangs, the calculation be made by

N (number of circuits) = 1.2 E + 5 where E : Porecasted traffic in the section.

This is to avoid the traffic overload.

(2) Direct Circuit

- (a) The Direct circit be established in the section where the sum of incoming and outgoing trunk circuits is greater than PCM primary group (30 circuits).
- (b) the number of direct circuits be determined under the condition where the following formula holds true:

$$LTC > \frac{ATC}{K}$$

### where

| LTC | Calls to be carried by the last<br>trunk circuit of the direct<br>circuit group, |
|-----|----------------------------------------------------------------------------------|
|     |                                                                                  |

- ATC : Traffic increment in the final circuit group per additional circuit.
- K : Final circuit to direct circuit cost ratio.
- 7.2 Number of Circuits Required
  - (1) Telephone Network
    - (a) The number of trunk circuits (in the years 1989, 1994, 1999 and 2005) between Primary Center and Secondary Center in the objective area of this investigation is given in Table IV-26.
    - (b) The number of trunk circuits (in the years 1989, 1994, 1999 and 2005) from/to Secondary Center and Tertiary Center in the objective area of this investigation is given in Table IV-27.
  - (2) Non-Telephone Network
    - (a) The number of inter-tandem exchange circuits and junction circuits from/to Ujung Pandang is given in Table IV-28.
    - (b) The number of junction circuits from/to Kupang is given in Table IV-29.

Table IV-26 (1/4) Number of Telephone Trunk Circuits between Primary and Secondary Centers in Eastern Part of Indonesia

Table IV-26 (2/4) Number of Telephone Trunk Circuits between Primary and Secondary Centers in Eastern Part of Indonesia

.

. -

| Kr         Baccondacy           21         Area           22         Area           23         24           24         42           42         43           43         43           43         43           43         43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |             | Pr1   | Primery Ares |             | -                                 | 5007             |       |                                |      |                                   | 1994      |           |         | -        | - 11-                         | 1949     |          |     |                                          | -                                   | 2005             |             |                         |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------------|-------|--------------|-------------|-----------------------------------|------------------|-------|--------------------------------|------|-----------------------------------|-----------|-----------|---------|----------|-------------------------------|----------|----------|-----|------------------------------------------|-------------------------------------|------------------|-------------|-------------------------|
| Pace-Pace         41         Due-Pace         42         Due-Pace         41         4.0         4.11         1.5         1.70         4.18         7.7           423         Mayone         400         3.19         1.71         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1                                                                                                                                                                                                                                                                                                                                        |          | Area        | 2°2   |              | NO.<br>CLAN | Reaffic<br>Per<br>Line<br>(m Kri) | Traffic<br>(Krl) | Noute | 20' 05<br>C15-<br>C15-<br>C25- |      | Traffic<br>Pen<br>Line<br>(T Kri) | Traffio A |           |         | 10. 01 H | KACCIO<br>PC<br>LDP<br>M XCL) | (MCL) X  |          |     | 10 00 10 10 10 10 10 10 10 10 10 10 10 1 | raffic<br>af<br>ine<br>afre<br>afre | traffic<br>(Kel) |             | No. of<br>Cle-<br>Ouita |
| Weak         Wateres         Wood         Wateres         Wood         Wateres                                                                                                                | ounCo    | Partemparte | ļ., J | 20144-224    |             |                                   |                  |       |                                |      |                                   |           |           |         |          |                               | <u>:</u> |          |     |                                          |                                     |                  |             |                         |
| 423       Rentryno       700       3.19       1.1       1.0       500       4.06       2.1       1.4       600       4.11       2.7       1.6       1.8       1.00       4.18       5.4         424       Paloboo       500       1.99       1.7       1.2       600       4.10       2.7       1.6       900       4.18       3.4         424       Paloboo       500       1.99       1.7       1.2       600       4.10       2.7       1.6       900       4.18       3.4       9.4         426       Memuju       300       3.19       1.7       1.2       600       4.10       2.7       1.6       9.00       4.18       3.4       9.4         426       Memuju       300       3.19       1.7       1.2       600       4.10       2.0       1.0       5.0       4.16       2.1       1.4       5.0       4.10       5.4       1.2       5.4       1.2       5.4       1.2       5.4       1.2       5.4       1.2       5.4       1.2       5.4       1.2       5.4       1.2       5.4       1.2       5.4       1.2       5.4       1.2       5.4       1.2       5.4       1                                                                                                                                                                                                                                                                                                                                                                       | (CT)     | (208)       | 423   | Kajene       | 00+.        |                                   | 2:7              | •     | អ                              | 700  | •••                               |           |           | ·       | 1100     | - 11+                         | 4.4      |          | 22  | 1700                                     | 4.16                                | 2.7              |             | 8                       |
| 434         Pailogo         500         3.4         500         4.13         2.7         1.4         500         4.13         2.7         1.4         500         4.13         5.4         500         4.13         5.4         500         4.13         5.4         500         4.13         5.4         500         4.13         5.4         500         4.13         5.4         5.4         5.4         5.4         5.4         5.4         5.4         5.4         5.4         5.4         5.4         5.4         5.4         5.4         5.4         5.4         5.4         5.4         5.4         5.4         5.4         5.4         5.4         5.4         5.4         5.4         5.4         5.4         5.4         5.4         5.4         5.4         5.4         5.4         5.4         5.4         5.4         5.4         5.4         5.4         5.4         5.4         5.4         5.4         5.4         5.4         5.4         5.4         5.4         5.4         5.4         5.4         5.4         5.4         5.4         5.4         5.4         5.4         5.4         5.4         5.4         5.4         5.4         5.4         5.4         5.4         5.4                                                                                                                                                                                                                                                           | <u> </u> |             | 27    | Rent spac    | 300         | 99.C                              | , <b>C</b>       |       | 70                             | 005  | 4.04                              | 2.2       | -         | 4       | -00#     | 51.4                          | 3.6      |          | 19  | 1200                                     | 4.26                                | 5.4              | - <u></u> - | ส                       |
| 435         Barrylawry         400         3.0         3.0         3.0         4.0         2.0         3.0         3.0         3.0         4.0         3.0         4.1         3.0         4.1         3.0         4.1         3.0         4.1         3.0         4.1         3.0         4.1         3.0         4.1         3.0         4.1         3.0         4.1         3.0         4.1         3.0         4.1         3.0         4.1         3.0         4.1         3.0         4.1         3.0         4.1         3.0         4.1         3.0         4.1         3.0         4.1         3.0         4.1         3.0         4.1         3.0         4.1         3.0         4.1         3.0         4.1         3.0         4.1         3.0         4.1         3.0         4.1         3.0         4.1         3.0         4.1         3.0         4.1         3.0         4.1         3.0         4.1         3.0         4.1         3.0         4.1         3.0         4.1         3.0         4.1         3.0         4.1         3.0         4.1         3.0         4.1         3.0         4.1         3.0         4.1         3.0         4.1         3.0         4.1                                                                                                                                                                                                                                                                |          |             | 727   | Palepo       | 200         | 1.99                              | 2.2              | :     | 3                              | 300  | *.06                              | 2.2       |           |         | \$00     | 17.7                          | 2.7      |          | \$7 | s<br>S                                   | 87.7                                | 4                |             | ន                       |
| 436         Mamulu         300         3.49         1.3         B         10         300         4.13         1.0         300         4.13         1.0         300         4.14         300         4.13         1.0         300         4.18         3.4         3.4         3.4         3.4         3.4         3.4         3.4         3.4         3.4         3.4         3.4         3.4         3.4         3.4         3.4         3.4         3.4         3.4         3.4         3.4         3.4         3.4         3.4         3.4         3.4         3.4         3.4         3.4         3.4         3.4         3.4         3.4         3.4         3.4         3.4         3.4         3.4         3.4         3.4         3.4         3.4         3.4         3.4         3.4         3.4         3.4         3.4         3.4         3.4         3.4         3.4         3.4         3.4         3.4         3.4         3.4         3.4         3.4         3.4         3.4         3.4         3.4         3.4         3.4         3.4         3.4         3.4         3.4         3.4         3.4         3.4         3.4         3.4         3.4         3.4         3.4         3                                                                                                                                                                                                                                                       |          |             |       | Duel (heg    | 400         | 3.99                              | 7.7              |       | 12                             | 400  | 90 1                              | 2.6       |           | 79      | 900      | 11-1                          | 3.6      |          | 10  | 1200                                     | 4.18                                | 5.4              |             | 2                       |
| 427       Meanules       100       3.99       0.4       8       200       4.06       0.9       100       3.99       0.4       8       200       4.05       0.9       1.0       300       4.13       1.3       10       300       4.18       2.3         429       Malii       100       3.99       0.4       8       200       4.06       0.9       100       3.09       4.18       2.3         431       Malueo       100       3.99       0.4       8       100       3.09       4.18       1.3       1.0       500       4.18       2.3         431       MANUCO       1       100       3.99       0.4       8       100       3.09       0.4       8       100       1.0       100       4.18       2.4       2.3         431       MANUCO       1       1       1       1       1       1.0       1.0       1.0       1.0       1.0       1.0       1.1       1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1                                                                                                                                                                                                                                                                                                                                                                                           |          |             | +26   | n Enwew      | 00C         | 04°C                              | 1.3              | 8     | 10                             | 200  | 4.06                              | 2.2       |           | :<br>   | .001     | 7.                            | 3.6      |          | 3   | 1200                                     | 4.16                                | 5.4              |             | 2                       |
| 428       Mallii       100       3.99       0.4       8       200       4.06       0.9       10       300       4.13       1.0       300       4.14       2.3         428       Kareaa       100       3.99       0.4       8       200       4.06       0.9       0.0       4.10       1.0       300       4.13       1.0       300       4.14       2.3         431       MANDO       0       0       1       1.0       300       4.11       1.1       1.0       300       4.14       2.3       1.3       2.3       2.3       2.3         431       MANDO       00       3.99       2.7       8       1.2       600       4.06       2.6       8       1.0       300       4.13       1.0       300       4.14       2.3       1.4       2.3       1.4       8       2.3       1.4       8       1.4       8       1.4       8       1.4       8       1.4       8       1.4       8       1.4       8       1.4       8       1.4       8       1.4       8       1.3       1.4       8       1.4       8       1.4       1.4       1.4       1.4       1.4 <th< td=""><td></td><td></td><td></td><td>Hasamba</td><td>100</td><td>3,99</td><td>4.0</td><td>_</td><td><b>30</b></td><td>200</td><td>4.00</td><td>s.0</td><td></td><td>97</td><td>80<br/>20</td><td></td><td>3</td><td><u> </u></td><td>4</td><td>200</td><td>4.18</td><td>2.3</td><td></td><td>A</td></th<>                                                                                 |          |             |       | Hasamba      | 100         | 3,99                              | 4.0              | _     | <b>30</b>                      | 200  | 4.00                              | s.0       |           | 97      | 80<br>20 |                               | 3        | <u> </u> | 4   | 200                                      | 4.18                                | 2.3              |             | A                       |
| 4.2P       Karcean       100       3.09       0.4       B       200       4.06       0.0       4.10       100       3.00       4.14       1.2       1.0       300       4.14       2.13       1.0       300       4.14       2.13       1.0       300       4.14       2.13       1.1       2.13       2.13       2.13       2.13       2.13       2.13       2.13       2.13       2.13       2.13       2.13       2.14       2.13       2.14       2.13       2.14       2.13       2.14       2.13       2.13       2.14       2.13       2.14       2.13       2.14       2.13       2.14       2.13       2.14       2.13       2.14       2.15       2.14       2.15       2.14       2.15       2.14       2.15       2.14       2.15       2.14       2.15       2.14       2.15       2.14       2.15       2.14       2.15       2.14       2.15       2.14       2.15       2.14       2.15       2.14       2.15       2.14       2.15       2.14       2.15       2.14       2.15       2.14       2.15       2.14       2.15       2.14       2.15       2.14       2.15       2.15       2.15       2.15       2.15       2.15 <td></td> <td></td> <td>426</td> <td>MALLLE</td> <td>100</td> <td>90°C</td> <td>••0</td> <td></td> <td>8</td> <td>200</td> <td>4.06</td> <td>6.0</td> <td></td> <td>-<br/>07</td> <td>300</td> <td>دي.،</td> <td>1.1</td> <td> '</td> <td>2</td> <td>500</td> <td>4.18</td> <td>2.2</td> <td></td> <td>*1</td> |          |             | 426   | MALLLE       | 100         | 90°C                              | ••0              |       | 8                              | 200  | 4.06                              | 6.0       |           | -<br>07 | 300      | دي.،                          | 1.1      | '        | 2   | 500                                      | 4.18                                | 2.2              |             | *1                      |
| 431       MNUCO       4.0       3.99       1.7       8       12       600       4.06       2.6       8       16       0.0       8.11       1.0       4.18       1.200       4.18       3.4       5         432       Tahuna       400       3.99       1.7       8       12       600       4.06       2.6       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |             | 424   | Karoan       | 100         | 94.6                              | 4.0              | 9     | •                              | 200  | 4.06                              | 0.9       |           | 9       | 300      |                               | 5.5      | :        | 3   | 200                                      | 4.18                                | 2.2              | <del></del> | *7                      |
| 432       Tahuna       400       3.99       1.7       2       400       4.13       3.6       2       12       600       4.06       2.6       5       16       800       4.13       3.6       2       1200       4.14       3.4       2       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5 <t< td=""><td><b>د</b></td><td>Manado</td><td>432</td><td>MINDO</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td> </td><td>-</td><td></td><td></td><td> </td><td></td><td></td><td><u>-</u>-</td><td></td><td></td><td></td></t<>                                                                                                                                                                              | <b>د</b> | Manado      | 432   | MINDO        |             |                                   |                  |       |                                |      |                                   |           |           |         | -        |                               |          |          |     |                                          | <u>-</u> -                          |                  |             |                         |
| Bec         100         2.99         0.4         B         100         4.10         4.06         0.4         B         1         0.0         B         100         4.14         144         S           XotamoDanu         600         3.49         2.6         146         8         6         0.0         4.13         0.0         8         7.7         144         8           XotamoDanu         600         3.49         2.6         146         3.5         13         4.9         3.2         1700         4.18         7.7         1           Corentaio         3000         3.99         12.9         4.0         6.00         4.13         35.7         96         1.200         4.18         31.9         7.7         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1                                                                                                                                                                                                                                                                                                                    |          | (cod)       |       | Tahuna       | 400         | 99.6                              | 2.7              | -     | ង                              | 600  | 4 06                              | 2.6       | 1.<br>113 | 79      | -        | . 11.4                        |          |          |     | 200                                      | वरः भ                               | 3.4              | :           | *                       |
| XotamacDapu       600       3.99       2.6       16       8.00       4.10       1.100       4.13       35.7       95       1.200       4.18       7.7         Corontaio       3000       3.99       12.9       4.0       500       4.06       21.5       0.4       000       4.13       35.7       95       1.2000       4.18       31.9         Tilamuta       100       3.99       0.4       8       200       4.06       21.5       0.4       000       4.13       35.7       95       1.200       4.18       31.9         Tilamuta       100       3.99       0.4       8       200       4.06       0.9       10       30.0       4.13       1.3       1.0       200       4.18       2.3       3.5         Dalabaten       100       3.99       0.4       8       200       4.06       0.9       10       30.0       4.13       1.3       10       200       4.18       2.3       3.1       3.1       3.0       4.13       1.0       300       4.18       2.3       3.3       3.3       3.3       3.3       3.3       3.3       3.3       3.3       3.3       3.3       3.3       3.3 <t< td=""><td></td><td>_</td><td></td><td>Bec</td><td>100</td><td>3.99</td><td>0.4</td><td></td><td>-</td><td>007</td><td>4.06</td><td>4.0</td><td></td><td></td><td></td><td>4.23</td><td>- ·</td><td></td><td>50</td><td>300</td><td>4-28</td><td>*"T</td><td>63</td><td>я</td></t<>                                                                            |          | _           |       | Bec          | 100         | 3.99                              | 0.4              |       | -                              | 007  | 4.06                              | 4.0       |           |         |          | 4.23                          | - ·      |          | 50  | 300                                      | 4-28                                | *"T              | 63          | я                       |
| Corontaio     3000     3.99     12.9     4.0     5000     4.10     21.9     30.0     4.10     31.9     36.7     96     31.9     31.9       Tilamuta     100     3.99     0.4     8     200     4.06     0.9     10     30.0     4.13     1.3     1.3     200     4.14     2.3       Dalelen     100     3.99     0.4     8     200     4.06     0.9     10     300     4.13     1.3     20     4.18     2.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |             |       | Kotamobagu   | 600         | 64°C                              | 2.6              |       | 79                             | 909  | 4.04                              | 3.5       |           |         |          |                               | 419      |          |     | 1700                                     | 4.18                                | 2.7              |             | 8                       |
| Tilemute     100     3.99     0.4     8     200     4.06     0.9     10     200     4.18     2.3       Deleden     100     2.94     0.4     8     200     4.06     0.9     8     10     300     4.13     1.3     8     2.3     8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |             |       | Gorontalo    | 3000        | 3.99                              | 12.9             |       | 3                              | 0005 |                                   | 23. 5-    |           |         |          |                               | 35.7     |          |     | 2000                                     | 4.28                                | 6"TS             |             | 136                     |
| Deleten 100 3.99 0.4 3 8 200 4.06 0.9 3 10 300 4.13 1.3 8 10 300 4.18 2.3 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          | _4          |       | TLANUCA      | 100         | 3.99                              | 0.4              | <br>  | 23                             | 200  | 4,06                              | -6"0      |           | 8       | <b>_</b> | 1                             | 1.3      |          | 9   | 500                                      | 4.16                                | 2.3              |             | я                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |             |       | Deleteh      | 100         | 3.94                              | 0.4              | 8     | -                              | 200  | 4,06                              | <u> </u>  |           | 9       |          | 3.                            |          | ~        |     |                                          | 4.18                                | 2.3              | **          | 3                       |

(Note 2)

Satellite Route Traffic per Line (m Erl) and Traffic (Erl) are of one way: outgoing

1V-115 (157)

| E Indonesia           |
|-----------------------|
| ц<br>Н<br>Ц           |
| ö                     |
| Fart of Ind           |
| astern P              |
| in Eastern            |
| g                     |
|                       |
| Centers               |
|                       |
| ולשג                  |
| Secondary             |
| and                   |
| - >+                  |
| rmar                  |
| <u><u><u></u></u></u> |
| etween                |
| 0                     |
| 바라                    |
| Circuits              |
| 3                     |
| yun k                 |
| Ĕ                     |
| anong                 |
| ere                   |
| કર<br>કર              |
| ਾ<br>ਮੁ               |
| Numbe                 |
| (7)                   |
| (3/4                  |
| IV-26                 |
|                       |
| Pable                 |

| Mean         Mean         Vol. of Prestate                                                                                                                                                                                                                                                                                                                            |                          |              |     | Primery Area  |                 |        | 1989        | Ī    |           | Ī           | Ì                             | 1994             |            |         |          | 2992  | 2                |            |            |       | - :<br>           | 2005                                   | - 1               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|--------------|-----|---------------|-----------------|--------|-------------|------|-----------|-------------|-------------------------------|------------------|------------|---------|----------|-------|------------------|------------|------------|-------|-------------------|----------------------------------------|-------------------|
| PALU         431         PALU         431         PALU         431         PALU         341         PALU         342         PAUU         343         94.0         349         6.0         2.0         2.00         10.1         36         3600         4.13         11.1           433         TGLI=EGLI         2000         3.99         6.0         2.00         3.99         6.0         3.00         3.91         4.13         3.01           453         TGLI=EGLI         2000         3.99         0.4         8         2.00         4.13         3.01         4.10         2.0         2.00         4.13         3.01           454         TGLI=EGLI         2000         3.99         0.4         8         2.00         4.13         3.01         4.05         0.4         8         2.00         4.13         3.11         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1 <th>Torthary<br/>Area<br/>(TA)</th> <th>Area<br/>Area</th> <th></th> <th>Afea Name</th> <th>No. of<br/>Lines</th> <th>R 2</th> <th></th> <th></th> <th>2</th> <th> 1</th> <th>traffic<br/>en<br/>ine<br/>mikth</th> <th>Traffio<br/>(Erl)</th> <th>No.<br/>CLF</th> <th>NO.</th> <th></th> <th></th> <th>tio<br/>ti) Route</th> <th>No.<br/>CLF</th> <th><b>8</b> .</th> <th>L LO.</th> <th>t No. of<br/>Lines</th> <th>t No. of Per<br/>Lines Line<br/>(m. Kch)</th> <th>t No. of<br/>Lines</th> | Torthary<br>Area<br>(TA) | Area<br>Area |     | Afea Name     | No. of<br>Lines | R 2    |             |      | 2         | 1           | traffic<br>en<br>ine<br>mikth | Traffio<br>(Erl) | No.<br>CLF | NO.     |          |       | tio<br>ti) Route | No.<br>CLF | <b>8</b> . | L LO. | t No. of<br>Lines | t No. of Per<br>Lines Line<br>(m. Kch) | t No. of<br>Lines |
| 452         Peec         1400         3.99         6.0         230         4.01         36         3600         4.13         16.1           433         Folievoli,         1000         3.99         6.0         3.90         4.13         11.1         1           434         Foojo         100         3.99         0.4         8         100         4.05         7.0         28         2300         4.13         11.1           455         Foojo         100         3.99         0.4         8         100         4.05         0.4         8         200         4.13         0.9           455         Koumedale         100         3.99         0.4         8         100         4.05         0.4         8         200         4.13         0.9         0.9           455         Koumedale         100         3.99         0.4         8         100         4.05         10.1         0.9         10.9         0.9         0.9         0.9         10.1         10.1         10.1         10.1         10.1         10.1         10.1         10.1         10.1         10.1         10.1         10.1         10.1         10.1         10.1         10.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Sun Co                   | <b>A</b>     | 454 | DTVA          |                 |        |             |      |           |             |                               |                  |            |         |          |       |                  |            | -          |       |                   | -<br>                                  |                   |
| 453       Telleolii       200       3.99       4.3       20       4.06       7.0       28       2300       4.13       11.1.         454       Tojo       3.99       0.4       8       300       4.05       0.6       8       200       4.13       0.9         454       Tojo       3.99       0.4       8       3       200       4.13       0.9       0.9         455       Zurreu       300       3.99       0.4       8       3       200       4.13       0.9       10         457       Keuvan       300       3.99       0.4       8       3       200       4.13       0.9       1.9       0.9         457       Keuvan       300       3.99       0.4       8       3       200       4.13       0.9       1.9       0.9       1.9       0.9       1.9       0.9       1.9       0.9       1.9       0.9       1.9       0.9       1.9       0.9       1.9       0.9       1.9       0.9       1.0       1.9       1.9       1.9       1.9       1.9       1.9       1.9       1.9       1.9       1.9       1.9       1.9       1.9       1.9       1.91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |              | 452 | Poeo          | 1400            | 3.99   | 6.0         |      | 26        | 2300        | 4.06                          | , T • 0T         | ۶¢         |         |          |       | -                | 36         |            | 8     | 5400 4.25         |                                        | 4.28              |
| 454       Tojo       1.00       3.99       0.4       8       100       4.00       0.4       8       100       4.13       0.9       4.13       0.9       4.13       0.9       4.13       0.9       4.13       0.9       4.13       0.9       4.13       0.9       4.13       0.9       4.13       0.9       4.13       0.9       4.13       0.9       4.13       0.9       4.13       0.9       4.13       0.9       4.13       0.9       4.13       0.9       4.13       0.9       4.13       0.9       4.13       0.9       4.13       0.9       4.13       0.9       4.13       0.9       4.13       0.9       4.13       0.9       4.13       0.9       4.13       0.9       4.9       4.13       0.9       4.13       0.9       4.9       4.13       0.9       4.9       4.9       4.14       4.10       4.13       0.9       4.9       4.9       4.13       0.9       4.9       4.9       4.14       4.14       4.13       0.9       4.9       4.9       4.13       4.9       4.13       0.9       4.9       4.9       4.13       4.9       4.13       4.9       4.14       4.14       4.14       4.14       4.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                          |              | 455 | Toli- toli    | 1000            | 3.99   | 4.3         |      | 30        | 1600        | 4.06                          | 7.0              | 26         | 250(    |          | ·<br> | 4                | 36         |            | 3600  | 3600 4.28         |                                        | 4.28              |
| 455       Xunzku       100       3.99       0.4       3       4       100       4.05       0.4       8       200       4.13       0.9         455       Jungku       100       3.99       0.4       3       8       300       4.06       0.4       8       200       4.13       0.9         457       Xeuga       100       3.99       0.4       3       8       300       4.05       9.2       8       300       4.13       0.9         458       Lumuk       1300       3.99       6.5       3       200       4.13       0.9       0.9         459       Banygai       100       3.99       0.4       3       3       3100       4.13       0.9         451       Kunuk       1300       3.99       0.4       3       3       310       4.13       0.9         401       Kunuk       100       3.99       0.4       3       30       4.13       0.9       3         402       Danau       200       3.19       0.4       8       100       4.06       1.2       32       3.7       3.7       3.7         403       Mahau       200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                          |              | 454 | 7050          | 100             | 3.99   | 0.4         | . 63 | •         | 100         | 4.06                          | 0.6              | 8          | 20(     |          |       | 6,               | 70         | <u> </u>   | 300   | 300 4.28          | ÷                                      | 4-28              |
| 455       Burgku       100       3:99       0.4       B       100       4:19       0.4       B       200       4:13       0.9         457       Karuga       100       3:99       0.4       B       300       4:06       0.4       B       200       4:13       0.9         457       Karuga       100       3:99       6.5       5       2100       4:06       9.2       34       3100       4:13       0.9         459       Banggai       100       3.99       6.5       5       2100       4:06       9.2       34       3100       4:13       0.9         401       Xewenx       100       3.99       0.4       1       1       1       1       1       0.9         401       Xamau       200       3.99       0.4       1       10       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1 </td <td></td> <td></td> <td>455</td> <td>Kulonedale</td> <td>100</td> <td>2.99</td> <td>0.4</td> <td>8</td> <td>8</td> <td>200</td> <td>4.06</td> <td>0.4</td> <td>8</td> <td>20(</td> <td></td> <td></td> <td></td> <td>70</td> <td></td> <td>300</td> <td>300 4.10</td> <td><u> </u></td> <td>81.4</td>                                                                                                                                                                                                                                                                                                                                                      |                          |              | 455 | Kulonedale    | 100             | 2.99   | 0.4         | 8    | 8         | 200         | 4.06                          | 0.4              | 8          | 20(     |          |       |                  | 70         |            | 300   | 300 4.10          | <u> </u>                               | 81.4              |
| 457       Xasupa       100       3.99       0.4       8       300       4.06       0.4       0       4.13       0.9         458       Zuwuk       1300       3.99       6.5       5       2       240       4.05       0.4       0       4.13       0.9         458       Zuwuk       1300       3.99       6.5       5       240       4.05       0.4       0       4.13       0.9         401       XEMEAXI       100       3.99       0.4       1       1       4.15       0.4       1       0       0.9         401       XEMEAXI       200       3.99       0.4       1       1       1       0       1       0       1       0       1       1       0       1       1       0       1       1       0       1       1       0       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1 <td></td> <td></td> <td>456</td> <td>Bungku</td> <td>200</td> <td>3.99</td> <td>0.4</td> <td>•</td> <td>-</td> <td>700</td> <td>4.06</td> <td>0.4</td> <td></td> <td>Š</td> <td></td> <td>!</td> <td>à</td> <td>or<br/>or</td> <td><u>.</u></td> <td>000</td> <td>300 4.18</td> <td>:</td> <td>4.20</td>                                                                                                                                                                                                                                                                                                                                                                    |                          |              | 456 | Bungku        | 200             | 3.99   | 0.4         | •    | -         | 700         | 4.06                          | 0.4              |            | Š       |          | !     | à                | or<br>or   | <u>.</u>   | 000   | 300 4.18          | :                                      | 4.20              |
| a58       Zuwuk       1500       3.99       6.5       E       26       2100       4.06       9.2       3.4       3100       4.13       13.8         a59       Banygak       100       3.99       6.5       E       3       300       4.05       9.2       3       300       4.13       13.8         401       XENDARX       200       3.99       0.4       2       400       4.05       1.6       1.2       600       4.13       0.9         402       Mahau       200       3.99       0.4       2       400       4.6       1.6       1.2       600       4.13       0.9       2.7         403       Mahau       200       3.99       0.4       2       1.0       4.13       0.9       2.7       2.7         404       Papalia       100       3.99       0.4       2       2.0       4.13       0.9       2.7       2.7         405       Mahania       200       3.99       0.4       2       2.0       4.13       0.9       2.7       2.7         405       Mahania       200       3.9       0.4       2       2.0       4.13       0.9       2.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          |              | 457 | Katuga        | 700             | 3.99   | •••         | 8    | 10        | ş           | • . 06                        | 0.4              | •          | Ř       |          | :<br> |                  | 2          |            | ğ     | 300 4.16          |                                        | 4.10 1.           |
| 459       Banygai       100       3.99       0.4       3       8       100       4.06       0.4       8       200       4.13       0.9         401       XEMEANX       200       3.99       0.4       3       40       4.06       1.6       1.2       600       4.13       0.9       7         401       XEMEANX       200       3.99       0.4       3       10       4.0       4.0       1.6       1.2       600       4.13       2.7       4.3         403       Anha       100       3.99       0.4       8       100       4.16       1.2       600       4.13       0.7       4.13       0.9       8       4.13       0.9       8       1.0       4.0       4.0       4.0       0.4       0.4       0.9       8       1.0       9       9       1.0       9       9       9       9       1.0       1.0       1.0       1.1       0.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          |              | 454 | Lunk          | 1300            | -66°t  | 6.5         | 53   | 26        | 21.00       | 4.06                          | 9.2              | *          | 3700    |          |       | -                | \$         | *          | 4700- | 00 * TA           |                                        | 4.10              |
| 401       X2WGANKX       401       4.04       1.6       1.6       1.2       600       4.13       2.7         402       Jandau       200       3.99       0.4       10       400       4.06       1.6       1.2       600       4.13       2.7         403       Maha       100       3.99       0.4       1       10       4.06       0.4       12       600       4.13       0.9       17         403       Maha       100       3.99       0.4       1       10       4.06       0.4       12       600       4.13       0.9       17         405       Xciaka       200       3.99       0.4       10       4.06       0.4       13       600       4.13       0.9       17       17       0.9       17       17       0.9       17       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10 <td></td> <td></td> <td>454</td> <td>Banggal</td> <td>700</td> <td>2.99</td> <td>0.4</td> <td>a</td> <td>-<br/>- 52</td> <td>700</td> <td>4.06</td> <td>0.<b>•</b></td> <td>•</td> <td>201</td> <td>[</td> <td>[</td> <td></td> <td>9</td> <td>Ň</td> <td>300</td> <td>0 4.20</td> <td></td> <td>4.20 1.</td>                                                                                                                                                                                                                                                                                                                           |                          |              | 454 | Banggal       | 700             | 2.99   | 0.4         | a    | -<br>- 52 | 700         | 4.06                          | 0. <b>•</b>      | •          | 201     | [        | [     |                  | 9          | Ň          | 300   | 0 4.20            |                                        | 4.20 1.           |
| 402       Dandmau       200       3.99       0.9       10       400       1.6       1.2       600       4.13       2.7         403       Maha       100       3.99       0.4       1       0       0.4       1       0       0.4       0       4.05       0.4       1       0       9.9       0.9       4.13       2.7         403       Maha       100       3.99       0.4       1       0       4.13       0.9       4.13       0.9       8         404       Pagalia       100       3.99       0.4       1       0       4.06       0.4       1       1       0.9       8         405       Kolaka       200       3.99       0.9       1       0       4.06       3.6       1       1       0.9       8       1       0       1       1       0       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                          | Kendach      | 104 | XENDANE       |                 |        |             |      |           | . •         |                               | -                |            |         |          |       |                  |            |            |       |                   |                                        |                   |
| Maha         100         3.99         0.4         8         100         4.13         0.9         8         200         4.13         0.9         8         200         4.13         0.9         8         200         4.13         0.9         8         200         4.13         0.9         8         200         4.13         0.9         8         200         4.13         0.9         8         200         4.13         0.9         8         201         4.13         0.9         8         201         4.13         0.9         8         201         4.13         0.9         8         2.7         8         10         8         2.0         4.13         0.9         8         2.7         8         10         9         10         4.05         1.0         4.05         1.0         4.13         0.1         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | •                        | tear         | 402 | <b>Danbau</b> | 200             | 44.0   | 9.0         | *    | 97        | 400         | 4.06                          | 2.6              | ส          | \$00    | -        |       | ۰<br>۲           | 97<br>7    | 006        |       | 4.28              |                                        | 4.28              |
| Pagealia         100         1.99         0.4         8         100         4.04         8         8         200         4.13         0.9         8           Nolaka         200         1.99         0.9         5         10         400         4.06         1.0         3.2         600         4.13         0.9         8           Malawala         100         1.99         0.4         5         3         200         4.13         0.9         8           Malawala         100         2.99         0.4         5         3         200         4.13         0.9         8           Mawecobit         100         2.59         0.4         5         3         0.9         9         9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |              | 403 | Rehe          | 100             | 3.99   | 4.0         | -    | 3         | 100         | 4.06                          | 0.4              | -          | 200     |          | · ·   | ·<br>            | 9          | 300        |       | 4.28              | <u> </u>                               | 4.28              |
| XOLARA     200     1.99     0.9     6     0.0     4.06     1.0     1.0     1.3     2.7       Malamala     100     3.99     0.4     5     8     100     4.06     0.4     8     200     4.13     0.9       Malamala     100     3.99     0.4     5     8     100     4.06     0.4     8     200     4.13     0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                          |              | +0+ | Papalia       | 100             | -96° C | <b>*</b> •0 | -    | •         | 907         | 4.06                          | -                | •          | 200     | <u> </u> |       |                  | 3          | 00¢        |       | 4.16              | 4.18 2.4                               |                   |
| Malamala 100 1.99 0.4 5 8 100 4.06 0.4 8 200 4.13 0.9<br>Warecobi 100 1.59 0.4 8 0 100 4.06 0.4 6 200 4.13 0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                          |              | 405 | Kolaka        | 200             | 96-5   | 6'0         | 5    | 9         | 00 <b>.</b> | 4.06                          | 2.0              | я          | \$<br>0 | <b> </b> | .<br> | ~                | Ä          | 006        |       | 4.28              |                                        | 4.28              |
| Wareford 100 3-59 0.4 2 0 100 4-05 0.4 5 200 4.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                          |              | 404 | Malamaka      | 700             | 3.99   | 4.0         | \$   | æ         | 807<br>700  | •••                           | 4.0              | -          | 87<br>1 |          | .     |                  | 9          | 300        |       | 4.28              |                                        | 4.28              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                          |              | +01 | Wawotobl      | 007             | 66°C   | 4.0         |      | 0         | 700         | 4.06                          | 0*4              | 8          | 200     | CT.4     |       | 4                | 70         | 300        |       | 4.28              |                                        | 4.28              |

Traffic per Line (m Erl) and Traffic (Erl) are of one way: outgoing (Note 2)

۰.

Table IV-26 (4/4) Number of Telephone Trunk Circuits between Primary and Secondary Centers in Eastern Part of Indonesia

| 2994  | tio Traffico Not of No. of Det Traffic Route Cite (Kri) Route Cite 11 (Kri) Route Cite 11 (Kri) Route Cite 11 (Kri) | 7 20.6 8 36 3300 5.27 28.8 8 50 | 6 2.2 3. 20 . 300 4.12 2.2 38 34 | 07 8 7.7 7.8 009 900 900 9 | 5 11.5 3 40 4000 4.69 20.3 60 | 6 11.0 B 38 4000 4.12 27.8 B 54 | 6 4.4 8 20 2600 4.13 7.1 28 | 6 2.2 8 14 800 4.13 3.6 8 38 | 5 0-9 8 10 300 4.13 1.3 20 | 5 0.9 B 20 4.13 2.3 |               | 1 0.9 S 20 300 4.23 2.3 S 20 | 1 2.2 8 1.4 800 4.13 3.6 8 28 | 0.9 8 20 300 4.13 2.3 20 |                     | 0.0 8 10 300 4.13 1.3 10 | 0.9 5 10 300 4.13 1.3 10 | 0.9 8 1.0 300 4.1. 1.3 8 10 | 0.9 \$ 10 300 4.12 1.2 | 0" 8 T'T 200 910 8 5"3 8 | 0.9 8 10 300 4.13- 1.3 8 10 | 2.2 50 500 4.13 2.2 24 | Lite Route    |
|-------|---------------------------------------------------------------------------------------------------------------------|---------------------------------|----------------------------------|----------------------------|-------------------------------|---------------------------------|-----------------------------|------------------------------|----------------------------|---------------------|---------------|------------------------------|-------------------------------|--------------------------|---------------------|--------------------------|--------------------------|-----------------------------|------------------------|--------------------------|-----------------------------|------------------------|---------------|
|       | NO. Of No. of Pen<br>Cirt<br>Cirt<br>Lines Lines Line<br>Guitte (m Erl)                                             | 26 2100 4.77                    | 10 300 4.06                      | 8 200 4.06                 | 26 2500 4.25                  | 26 2500 4.06                    | 1000 4.06                   | 20 500 4.06                  | 8. 200. 4.06               | A 200 4.06          |               | 8 200 a 4,06                 |                               | 8 200 4.06               |                     | 6 200 4.06               | 8 200 4.06               | 8 200 4.06                  | 6 200 4.06             | 8 200 4.05               | 8 200 4.06                  | 10 300 4.06            | 1) S: Satelli |
| 1949. | NO. OF Per Traffio<br>Lines Line (ECL) Route<br>(m Kel)                                                             | 1300 4.32 4.1 8                 | 200 3.99 0.9 8                   | 200 3.99 0.4 8             | 3400 3.84 6.6 3               | 1600 3.99 6.9 3                 | 600 3.99 2.6 g              | . C.L. 60.C 00C              | 100 1.99 0.4 5             | 100 3.99 0.4 8      |               | 100 3.99 0.4 5               | 300 3.44 2.5 8                | 100 3.99 0.4 8           |                     | 3 9.0 3.99 0.4           | 200 3.99 0.4 8           | 100 3.99 0.4 3              | 100 3.99 0.4 8         | 100 3.99 0.4 \$          | 200 3.99 0.4 5              | 200 3.99 0.9 8         | (Note         |
|       | Articles Area according Area Area Name                                                                              | Ambon Borong 956 Fakfak         |                                  | 958 Mimika                 | Vayapura 461 Biax             | 962 Manokrari                   | 963. Berui                  | 964 Nabire                   | 945 Waten                  | 946 Barmi           | WEDAVAY2 296. | 968 . Decta                  | 969 Wamena                    | 940 Kive                 | Merauke 971 MRIAUKH | 972 Okaba                | 973 Kinan                | 974 Koba                    | 975 Tanah Merah        | 976 Agasa                | 977 Cumbuyum                | 978 WACOPKO            |               |

| Ľ                |                  |                         | _                                     |            | objective            |           | Ver    | (Kastern | n Pace     | 8     | Indonesia) |         |           | •        |           |                    | -       | •         | Outside   | 8                       |                                       | •ctive /             | scive Area      | 2                                     |
|------------------|------------------|-------------------------|---------------------------------------|------------|----------------------|-----------|--------|----------|------------|-------|------------|---------|-----------|----------|-----------|--------------------|---------|-----------|-----------|-------------------------|---------------------------------------|----------------------|-----------------|---------------------------------------|
| Terffary<br>Kiéš | r.com            | 567371<br>57783<br>5726 | · · · · · · · · · · · · · · · · · · · | (VIVEY6.S) | Services<br>Services | 3578-3574 | QUINTS | 6 YT G   | INVEST     | NOSAY | 317531     | 587560S | VEDAVAY   | KESWLE   | - 005001X | VLSONC             | SKIGNYS | KATYAS    | EVEYERE   | entave                  | SISYN -<br>Synnys                     |                      | NISTA -         | NYGER<br>NYGER -                      |
|                  | ZONZ             |                         |                                       |            |                      |           |        |          |            |       |            |         |           |          |           | F                  |         |           | $\square$ | $\square$               |                                       | $\square$            |                 |                                       |
| 1                | KUPANG           |                         |                                       |            |                      |           |        |          |            |       |            |         |           |          |           | $\left\{ \right\}$ | k       | $\square$ | $\square$ | $\square$               | · · · · · · · · · · · · · · · · · · · | $\sum$               |                 |                                       |
| SY&              |                  |                         |                                       |            |                      |           |        |          |            |       |            |         |           |          | f—        |                    |         |           |           |                         |                                       |                      |                 |                                       |
| xs               | (NYAANYUS)       |                         |                                       |            | 78                   |           | 97     |          |            |       |            |         |           |          | 2         | $\vdash$           |         | $\sum$    | $\sum$    | $\sum$                  | N                                     | $\overline{\ }$      |                 |                                       |
|                  | UTUNG<br>PANDANG |                         |                                       | 26         | •                    | 40        | 56     | ŝ        | ۲          |       | · · · ·    |         |           |          | 209 111   |                    | 2       | $\geq$    | $\sum$    | 25                      | 3                                     | $\overline{5}$       | 11 11           |                                       |
|                  | PARC-PARC        |                         |                                       |            | 43                   |           |        |          |            |       |            |         |           | 1        | 2         |                    | k-      | $\geq$    | $\sum$    | $\backslash$            | $[ \]$                                | $ \left[ - \right] $ |                 |                                       |
| YGNYS            | OGUNA            | :                       | -                                     | 70         | 63                   |           |        |          |            |       |            |         |           |          | 79 20     | 1                  |         | $\geq$    | $\sum$    | $\sum$                  | $\mathbb{N}$                          |                      |                 |                                       |
|                  | PALU             |                         |                                       |            | 4                    | , i       |        |          |            |       |            |         |           | -        | 7         | $\sim$             | $\sum$  | $\sum$    | $\sum$    | $\geq$                  | $\mathbb{N}$                          |                      |                 |                                       |
| เ<br>งา          | KENDAJE          |                         |                                       |            | 2                    |           |        |          | ·          |       |            |         |           |          | 2         |                    | $\geq$  | $\sum$    | $\sum$    |                         | $\mathbb{N}$                          | <u> </u>             |                 |                                       |
| ·                |                  |                         |                                       |            |                      |           | -      |          |            |       |            |         |           |          |           |                    |         |           | -         |                         |                                       | <b></b>              |                 |                                       |
|                  |                  |                         |                                       | :          |                      |           |        |          | . <u>.</u> | -     |            |         |           | ·        |           |                    |         |           |           |                         |                                       | · .                  | ;               |                                       |
| <b> </b>         | MBON             |                         |                                       |            |                      |           |        |          |            |       |            |         |           |          |           |                    |         | $\geq$    |           |                         | $\mathbf{N}$                          | <u> </u>             |                 |                                       |
| II               | TEMMATE          |                         |                                       |            |                      | ·         |        |          |            |       |            |         |           |          |           |                    |         | $\square$ | $\square$ |                         | $\square$                             | $\sim$               |                 |                                       |
| ×                | SURGING .        |                         |                                       |            |                      | -         | -      |          |            |       |            |         |           |          |           |                    |         | $\sum$    | $\sum$    | $\square$               | $\land$                               | L                    |                 |                                       |
| XENY             | JAXADURA         |                         |                                       |            |                      |           |        | · ·      |            |       |            |         | - <b></b> |          |           |                    |         | $\sum$    | $\sum$    | $\overline{\Lambda}$    | $\mathbb{N}$                          |                      | $\overline{\ }$ |                                       |
|                  | MERAUKK          | •                       |                                       |            |                      |           |        |          |            |       |            |         |           |          |           | $\sum$             |         | $\sum$    | $\sum$    | $\overline{\mathbf{N}}$ | $\mathbf{N}$                          |                      |                 |                                       |
|                  |                  |                         |                                       |            |                      |           |        |          |            |       |            |         |           |          |           |                    |         |           |           |                         |                                       |                      |                 | · · · · · · · · · · · · · · · · · · · |
|                  |                  |                         |                                       |            |                      |           |        |          |            |       |            |         |           | <b> </b> |           |                    |         |           |           |                         |                                       |                      |                 |                                       |
| 750              | Joyat - Incoming |                         |                                       | 22         | 222                  | ę         | 72     |          | ~          |       |            |         |           | -        |           |                    |         |           |           |                         |                                       |                      |                 |                                       |

۰.

.

Table IV-27 (1/4) Number of Telephone Trunk Circuits from/to Secondary and Tertiary Centers in Eastern part of Indonesia (1989)

(Note) 7 Uppers Outgoing from Objective Area

IV-118 (160)

Table IV-27 (2/4) Number of Telephone Trunk Cirquite from/to Secondary and Tertiary Centers in Eastern part of Indonesia (1994)

|                        |                                       |        | /               | <br>$\langle \rangle$ | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | $\overline{\ }$ | 44        |                    |                  | 47<br>1       | ľ                       | $\langle$       |                         |                 |   |   |     |
|------------------------|---------------------------------------|--------|-----------------|-----------------------|----------------------------------------|-----------------|-----------|--------------------|------------------|---------------|-------------------------|-----------------|-------------------------|-----------------|---|---|-----|
| Acea                   | DAY DATA                              | $\sum$ | $\backslash$    | $\square$             |                                        | $\overline{\ }$ |           | $\overline{\ }$    | $\overline{\ }$  | 1             | K                       | $\overline{)}$  |                         | $\overline{\ }$ |   |   |     |
| Objective              | NYGEN                                 | $\sum$ | $\sum$          | <br>$\square$         | 9,50                                   | $\sum$          | $\sum$    | N                  | $\setminus$      |               | Л                       | $\sum$          | $\overline{\mathbf{N}}$ | $\square$       |   |   |     |
|                        | NISYA -<br>BYRNYS                     | $\sum$ | $\sum$          | <br>$\square$         | 22                                     | $\sum$          | $\sum$    | $\sum$             | $\sum$           | ~             | $\mathbb{N}$            | $\backslash$    | $\mathbf{N}$            | $\mathbb{N}$    |   |   |     |
| Outside                | BYSYANIG                              | $\sum$ | $\sum$          | <br>$\square$         |                                        | $\sum$          | $\sum$    | $\sum$             | $\sum$           | <br>$\square$ | $\overline{\mathbb{N}}$ | $\setminus$     | $\backslash$            | $\setminus$     |   |   |     |
| 3                      | KYTY/AC                               | $\sum$ | $\setminus$     | $\sum_{i}$            | 24                                     | $\setminus$     |           | $\mathbf{\lambda}$ | $\sum_{i=1}^{n}$ | <br>$\square$ | $\square$               | $\sum$          | $\sum$                  | $\mathbb{N}$    | - | - |     |
| -                      | 58735773                              |        |                 |                       | 26                                     | $\overline{\ }$ |           |                    |                  |               | K                       |                 |                         |                 |   |   |     |
|                        | ATEAUL                                | $\sum$ | $\overline{\ }$ | $\mathbb{N}$          | 100                                    | $\setminus$     | 413<br>50 | $\mathbb{N}$       | N                | 8             | Л                       | $\overline{\ }$ | $\overline{\ }$         | $\overline{\ }$ |   |   |     |
|                        | - GALCOING<br>LOLYF                   | 36     | 3               | 244:                  | 362                                    | 44              | 115       | 57                 | 22               | 80            | Ä                       | <br>            |                         |                 |   |   |     |
|                        | RESELLE                               |        |                 |                       |                                        |                 |           |                    |                  |               |                         |                 |                         |                 |   |   | -   |
|                        | ARMAYAK.                              |        |                 |                       |                                        |                 |           |                    |                  |               |                         |                 |                         |                 |   |   |     |
| (internet)<br>internet | Servisos                              |        |                 |                       |                                        |                 |           |                    |                  |               |                         |                 |                         |                 |   |   |     |
| Indonesia)             | 3111131                               |        |                 |                       |                                        |                 |           |                    |                  | ž             |                         |                 |                         |                 |   |   |     |
| 8                      | YACK                                  |        |                 | <br>67                | 24                                     |                 |           |                    |                  | <br>          | ×                       |                 |                         |                 |   |   | :   |
| PCN PACE               | ISTAN                                 |        |                 | <br>                  | 22                                     |                 |           |                    |                  |               |                         |                 |                         |                 |   |   |     |
| (EAACACN               | EVTV3                                 |        |                 |                       | 56                                     |                 |           |                    |                  |               |                         |                 |                         | -               |   |   |     |
| Afea                   | 05YYYZ                                |        |                 | 26                    | 40                                     |                 |           |                    |                  |               |                         |                 |                         |                 |   |   |     |
|                        | 3576-3476                             |        |                 | <br>:<br>             | 65                                     | -               |           |                    |                  |               |                         |                 |                         |                 |   |   |     |
| 00100E1V#              | 58745978<br>582976                    |        |                 | 112                   | • :                                    | -6.7            | 68        | 57                 | 22               | 22            |                         |                 |                         |                 |   |   |     |
|                        | (VAVEVOS)                             | 36     | 2               | <br>                  | 111                                    |                 | 26        |                    | _                | 3             |                         |                 |                         |                 |   |   | ••• |
|                        | · · · · · · · · · · · · · · · · · · · |        |                 | <br>                  |                                        |                 |           |                    |                  | <br>          |                         |                 |                         |                 |   |   |     |
|                        | SNY40X<br>                            |        |                 | <br>35 52             |                                        |                 |           |                    |                  | <br>          | <b> </b>                |                 |                         |                 |   |   | :   |
| -                      |                                       |        |                 |                       |                                        |                 |           |                    |                  | <br>          |                         |                 |                         |                 |   |   | -   |
|                        | To To                                 | ENDE   | KUPANG          | (VXVVVAS)             | SNYDANA<br>SNUTU                       | PANE-PAIG       | OGANAM    | PALU               | DENDNAX          | MBON          | JIVNUL                  | SORONC          | JAXAPURA                | ENOVE           |   |   |     |

(Note) Z : Upper: Outgoing from Objective Area

.

### IV-119 (161)

Table IV-27 (1/4) Number of Telephone Trunk Circuits from/to Becondary and Tertiary Centero in Eastern part of Indonesia (1999)

|             | Tertfary<br>Strea   |                        |                        |    |                        |          |                        | ¥                      |                        |                        |   | •<br>• | 2                 | F                      |                        | 5<br><br>YAC | 2                      |            | <u> </u> | TOTAL - INCOMING |
|-------------|---------------------|------------------------|------------------------|----|------------------------|----------|------------------------|------------------------|------------------------|------------------------|---|--------|-------------------|------------------------|------------------------|--------------|------------------------|------------|----------|------------------|
|             | ۶<br>۴              | SUDE                   | KUPANG                 |    | (AVAMANA)              | DANDANC  | PARK-PARK              | OGANAD                 | DYA                    | KENDARE                |   |        | VRBAN             | Temate                 | BORONC                 | WINAVXVE     | MERAUKE                |            |          |                  |
|             | 3003                |                        |                        |    | 52                     |          | _                      |                        |                        | -                      |   | -      |                   |                        |                        |              |                        | -          |          | 3                |
| Ì           | 56776731            |                        |                        |    | 67                     |          |                        |                        |                        |                        |   | -      |                   |                        |                        |              |                        |            |          | 07               |
| ł           | ······              | <br>·                  | ·                      |    |                        | -1       |                        |                        | •                      |                        |   | -      |                   |                        |                        |              |                        |            |          | 379              |
| 0           | 56000<br>(VAVEYENS) | 2                      | 89                     |    | <u>- 7</u><br>- 1      | र्षद्र   | 20                     | 45 11                  | <u>م</u>               |                        | - | -      | <b>4</b> 2<br>61  |                        |                        | 7            |                        |            |          | 575 0            |
| 034051 V4   | SANGNYA             |                        |                        |    | 151                    | ੇਸ<br>-  | 40                     | 67                     | 52                     | - 7                    | - |        |                   |                        |                        |              |                        | -          |          | 87               |
| Ve Area     |                     |                        |                        |    |                        | 105 222  |                        |                        |                        |                        | - |        |                   |                        |                        | :<br>        |                        |            |          | 200              |
| 1           | 6770<br>            |                        |                        |    | 45                     | 2 94     | -                      |                        |                        |                        |   |        | ~                 |                        |                        |              |                        |            |          | ž                |
| (KARCech    |                     |                        |                        |    |                        | 4 33     |                        |                        |                        |                        |   |        |                   |                        |                        |              |                        |            |          | 3                |
| 1 Pact      | IEVOSEI             | _                      |                        |    |                        |          |                        |                        |                        |                        |   |        |                   |                        |                        |              |                        |            |          |                  |
| 8           | NGON                |                        |                        |    | 52                     | ÷        |                        | 27                     |                        |                        |   |        | •                 | 53                     | 96                     | 99           | 40                     |            |          | 50<br>20         |
| Indones La) |                     |                        | <u> </u>               |    |                        |          |                        |                        |                        |                        |   |        | 5                 |                        |                        |              |                        |            |          | ŝ                |
| (et         | Čerzeos             |                        |                        |    |                        |          | _                      |                        | _                      |                        |   |        | 36                |                        |                        | 4            |                        |            |          | \$               |
|             | AKARCPA             |                        |                        |    |                        | 2        |                        |                        |                        |                        |   |        | 12                |                        | ۵                      |              | ۷                      |            |          | 96               |
|             | JLWER               |                        |                        |    |                        |          |                        |                        |                        |                        |   |        | 91                |                        |                        | 6            |                        |            | <u> </u> | \$               |
|             | 58100500<br>TYLOS   | 3                      | 89-                    |    | 380-                   | 2 195    | 104                    | 191                    | 2                      | 34                     |   |        | ° 515             | 3                      | *                      | 95 25        | 16                     |            | <u></u>  |                  |
|             | V DEVINE            | $\overline{\ }$        | Ń                      |    | [                      | 200      | $\overline{\ }$        | 81.86                  | k                      | Ħ                      |   |        | 95                |                        | $\left  \right\rangle$ | 2            |                        | -          |          |                  |
|             | 5000078             |                        |                        |    |                        |          |                        |                        | $\mathbb{R}$           | Ĺ                      |   |        |                   |                        |                        |              | $\left\{ {} \right\}$  |            |          |                  |
|             |                     |                        |                        | -  | $\vdash$               | 22       |                        |                        |                        | $\left  \right\rangle$ |   |        |                   |                        | $\vdash$               |              |                        |            |          |                  |
| OUCAIde     | SATTYAS             |                        | $\left  \right\rangle$ |    | $\vdash$               | à )<br>s | $\left  \right\rangle$ | $\vdash$               | $\left  \right\rangle$ | $\left  \right\rangle$ |   |        | $\langle \rangle$ | $\left  \right\rangle$ | $\vdash$               |              | $\left  \right\rangle$ | - <u>-</u> |          |                  |
| de Obj.     | 5765738<br>87574830 |                        | $\left  \right\rangle$ |    | $\left  \right\rangle$ | 11 21    | $\left  \right\rangle$ | $\sum$                 | $\square$              | $\mathbb{N}$           |   |        | 2                 | $\sum$                 | $\square$              |              | $\sum$                 |            |          |                  |
| Jective     | NYCZA<br>NISYA -    | $\left  \right\rangle$ | $\left  \right\rangle$ |    | $\sum$                 | 22       | $\left  \right\rangle$ | $\left \right\rangle$  | [                      | $\left\{ \right\}$     |   |        |                   |                        | $\square$              |              | $\sum_{i=1}^{n}$       |            |          |                  |
| esv ev      | ONYOGTYA            | $\sum$                 | $\left  \right\rangle$ |    | $\left  \right\rangle$ |          | $\sum$                 | $\left  \right\rangle$ | $\square$              | $\square$              |   |        |                   | $\sum$                 | $\square$              | $\sum$       | $\sum$                 |            |          |                  |
| 4           | :                   |                        |                        |    | <u> </u>               | <u>.</u> |                        |                        | [                      |                        |   | _      | <u> </u>          |                        |                        |              |                        |            |          |                  |
|             |                     | $\sum$                 | $\sum$                 |    | $\square$              | $\sum$   | $\square$              | $\sum$                 | []                     | $\square$              |   |        |                   | $\sum$                 | $\square$              | $\sum$       | $\mathbb{N}$           |            |          |                  |
|             | TYLOS               | [ ]                    | [ ]                    | L. | $\square$              | 3/5      | []                     |                        | $\overline{\nabla}$    | []                     |   |        |                   | $\setminus$            | $\backslash$           | 22           | $\mathbf{N}$           |            |          |                  |

٠,

•

(Note) 2 Uppert Outgoing from Objective Area

Table IV=27 (4/4) Number of Telephone Trunk Circuits Crow/to Secondary and Tertiary Centers in Eastern part of Indonesia (2005)

-

|            | . • .                 |                        |                        |      |                        |                |                                       |              |                        |                 |          |          |        |                 |               |              |                         |   |                  |
|------------|-----------------------|------------------------|------------------------|------|------------------------|----------------|---------------------------------------|--------------|------------------------|-----------------|----------|----------|--------|-----------------|---------------|--------------|-------------------------|---|------------------|
|            | IN TOP                |                        | $\sum$                 |      |                        | 656            | $\mathbb{N}$                          | 22           | $\mathbb{N}$           | $\backslash$    |          |          | 201    |                 | Ń             | 200          | Ń                       |   |                  |
|            |                       | $\backslash$           | $\sum$                 |      | $\setminus$            |                | $\square$                             | $\setminus$  | $\sum$                 | $\overline{\ }$ |          |          |        | $\mathbf{N}$    | $\sum$        |              | $\overline{\backslash}$ |   |                  |
|            |                       |                        |                        |      |                        | ,              |                                       | )<br>        |                        |                 | :        |          |        |                 |               |              |                         |   |                  |
| ACea       | SALENEANS             | $\geq$                 | $\sum$                 |      | $\leq$                 | 31             | $\mathbb{N}$                          |              |                        |                 |          |          | 12     | $\overline{\ }$ |               |              | $\overline{\mathbf{N}}$ |   |                  |
| Objective  | NYCZK                 | $\sum$                 | $\square$              |      | $\sum$                 | 36             | $\square$                             | $\sum$       | $\mathbf{N}$           | $\mathbf{X}$    |          |          | 22/    | $\sum$          | $\sum$        | $\mathbf{X}$ | $\sum$                  |   |                  |
| •(qo       | NISYA -<br>Nyenye     | $\sum$                 | $\square$              |      | $\sum$                 | 43             | $\square$                             | $\mathbf{N}$ | $\sum$                 | $\mathbb{N}$    |          |          | 25     |                 | $\mathbb{N}$  | $\mathbb{N}$ | $\mathbb{N}$            |   |                  |
| outside    | <b>XYSY</b> &X3C      | $\square$              | $\square$              |      | $\sum$                 | 25             | $\square$                             | $\sum$       | $\sum$                 | $\sum$          |          |          | $\geq$ | $\geq$          | $\geq$        | $\setminus$  | $\backslash$            |   |                  |
| ő          | SALANS                | $\sum$                 | $\sum$                 |      | $\sum$                 | 03             | $\square$                             | $\geq$       | $\sum$                 | $\sum$          |          |          | $\geq$ | $\mathbf{N}$    |               | $\geq$       | $\setminus$             |   |                  |
|            |                       |                        |                        |      |                        |                |                                       | <u> </u>     |                        | _               |          |          | · · ·  |                 |               |              | _                       |   |                  |
|            | Seconte               | $\left  \right\rangle$ | $\left  \right\rangle$ |      | $\sum$                 | 68<br>18<br>18 | $\left  \right\rangle$                |              | $\left  \right\rangle$ | $\sum$          |          |          | 22     | $\sum$          | $\sum$        |              | $\sum$                  |   | <br>l            |
| -          | VUEVAV<br>- ORLOODING | 4                      | <u>_</u>               |      | $\left  \right\rangle$ | 862            |                                       |              | · `                    | $\sum_{n}$      |          |          | 12.1   | $\sum$          |               | 42           | $\mathbf{\Sigma}$       |   |                  |
|            | TYJOL<br>TIJVETK      |                        | 142                    |      | - 294                  | 608            | 134                                   | 249          | 147                    | 3               |          |          | 7 432  | 64              | 2             | 7 745        | 5                       | - |                  |
|            | 14142084              |                        |                        |      | 71                     | 23             |                                       |              |                        |                 |          |          | 89- 57 |                 | दर्भ          | 2            | •                       |   | <br>74           |
|            | 5002806               |                        |                        |      |                        |                |                                       |              |                        |                 |          |          | 55     |                 |               | रू<br>त      |                         |   | <br>1 150        |
| Xndonesia) | IIWNII                |                        |                        |      |                        |                |                                       |              |                        |                 |          |          | 80 5   |                 |               |              |                         |   | <br>80 73        |
|            | NCEAY                 |                        |                        |      | 68                     | 54             |                                       | 28           |                        |                 |          |          | •      | 79              | 29            | <b>ಸ</b>     | 64                      |   | <br>427 8        |
| PACE OF    |                       |                        |                        |      |                        |                |                                       |              | · ·                    |                 |          |          |        |                 |               |              | <u> </u>                | - | 2                |
| to Pa      | Isvear                |                        |                        |      | 1                      | \$             |                                       |              |                        |                 |          | <b>.</b> |        |                 |               |              |                         |   | <br>50           |
| (Kastern   | frTfa                 |                        |                        |      |                        | 148            |                                       |              |                        |                 |          |          |        |                 |               |              | · · · - ·               |   | <br>148          |
| Acea       | 076552                |                        |                        |      | 70                     | 155            |                                       |              |                        |                 |          |          | 20     |                 |               |              |                         |   | <br>245 3        |
| 14         | 3544-3574             |                        |                        |      |                        | 451            |                                       | •            |                        |                 |          |          |        |                 |               |              |                         |   | <br>157          |
| 003401     | SAYGNYA<br>SANGYA     |                        |                        |      | -220                   | 1              | 154                                   | 257          | 247                    | 20              |          |          | 56     |                 |               | 20           |                         |   | 562              |
|            | (VIVSYSOS)            | 28                     | 242                    |      |                        | 27.8           |                                       | 88           | •                      |                 |          |          | 74     |                 |               | 79           |                         |   | 603              |
|            |                       | · ·                    |                        |      |                        | :              |                                       |              | -                      |                 |          |          |        |                 |               |              |                         |   |                  |
|            | Sirverd               |                        | <b></b>                |      | 139                    |                |                                       |              |                        |                 |          |          |        |                 |               |              |                         |   | <br>119          |
|            | 30/3                  |                        |                        |      | 50                     |                |                                       |              |                        |                 |          |          |        |                 |               |              |                         |   | <br>8            |
|            | 70                    | אלואא                  | KUPANG                 |      | (BURABAYA)             | DUNCH          | DAXE-PAXE                             | OCANN        | DTVA                   | KENDAR          |          |          | MBCN   | TERNATE         | <b>BORONC</b> | JAYAPUKA     | HE RADICE               |   | TOTAL - INCORING |
|            | Lerelsry<br>Ares      |                        | VIV                    | eva: | s                      |                | ـــــــــــــــــــــــــــــــــــــ | NGNYA        | E.<br>Seith            | n               | <u>l</u> |          |        |                 | ا<br>م        | <br>17-900   | []                      |   | <br>TOTAL        |

(Note) Z ! Upber: Outgoing from Objective Area

IV-121 (163)

| Main Offices | No. of Circuits<br>(OG + IC) |
|--------------|------------------------------|
| Jakarta      | 412                          |
| Surabaya     | 122                          |
| Medan        | 62                           |
| Over seás    | 130                          |
| Kendar i     | 36                           |
| Palu         | 104                          |
| Manado       | 164                          |
| Ambon        | 148                          |
| Jayapura     | 118                          |
| Sorong       | 58                           |
| Total        | 1,354                        |

## Table 28 Non-Telephone Circuits (Year 2005) between Ujung Pandang and Main Offices

۰.

### Table 29 Non-Telephone Circuits (Year 2005) between Kupang and Surabaya/Denpasar

| Tandem Exchange   | No. of Circuit<br>(OG + IC) |
|-------------------|-----------------------------|
| Surabaya/Denpasar | 60                          |

.

# V SELECTION OF TERRESTRIAL TRANSMISSION ROUTE AND TRANSMISSION SYSTEM

V. Selection of Terrestrial Transmission Route and Transmission System

What are the optimum transmission route and transmission system from the viewpoint of most effective constitution of toll telephone circuits connecting major cities in the eastern region of Indonesia and of non-voice circuits, such as data communication and facsimile circuits, in that region, based on the demand forecast made in the preceding Chapter? Study about the selection of such transmission route and transmission system is the subject of this and succeeding chapters.

The transmission route and transmission system selected for the objective areas of study are illustrated in bloc in Figure V-1. This chapter deals with the selection of transmission route and system for the overland section. About the selection of transmission route and system for the submarine section that connect one island to another, a detailed description will be made in the next chapter.

1. Selection of Terrestrial Transmission Route

1.1 Basic Conditions of Selection

Main points to be considered in the selection of terrestrial transmission route are as follows:

(1) Generally, the transmission system construction cost increases in proportion to the transmission distance, so that the transmission route should be as short as possible. Especially in the case of digital transmission system, the terminal system cost can be reduced to less than one-severalth of the cost required in the case of analog system, but the repeater system cost increases to several times as

V-1 (165)

much. Hence the need for selection of the shortest possible transmission route, i.e., the route where the number of repeater station can be reduced to the minimum.

- (2) From the viewpoint of construction cost curtailment, as well as the ease of maintenance and operation, repeater sites should be selected near the public road as far as the situation permits. Selection of repeater sites at such places that are located far from the public road so that access roads must be newly built or such places that require land readjustment at high cost should be avoided.
- (3) The transmission route to be selected must of course be such that will connect all cities covered by the study. The transmission route must also be such that branching/insertion to/from small local cities outside the objective cities of the study, which may be required in the future, is easy.
- (4) For the transmission route, the areas of adverse geographic conditions, such as volcanic zone, frequent flood zone and moist zone, should be avoided. In the case of terrestrial radio transmission route, the paddy field zone and the sea section should be avoided to the utmost because they exert an ill influence on radio propagation characteristics.

In the actual selection of transmission route, several other conditions than those basic conditions must also be studied in full depth. 1.2 Existing Status of Roads and Road Construction Plans in Objective Areas of Study

Most important out of the foregoing basic conditions of terrestrial transmission route selection is the status of road network. Therefore, the study as to whether the roads are already well developed or will henceforward be newly constructed in the objective areas of study has also vitally to do with the selection of transmission route.

Study findings from the foregoing viewpoint are summarized and graphically presented in Figures V-2, V-3, V-4 and V-5. Descriptions by regions follow:

(1) Sulawési Région

2.00

(Refer to Pigure V2.)

Both backbone and branch road networks have already been constructed except in a few sections. Even in those sections, the road construction/improvement is scheduled to be completed in the near future.

(2) Nusa Tenggara Timur and Timor Timur Regions

(Refer to Figure V-3.)

As in Sulawesi region, both backbone and branch networks are complete except in a few sections where the construction/improvement work is now underway.

#### (3) Maluku Region

(Refer to Figure V-4.)

Almost all roads are in the planning stage. According to the Government of Indonesia authorities in charge of road administration, the completion of those planned roads is expected in the closing period of REPBLITA IV, or, more precisely, in 1990.

(4) Irian Jaya Region

(Refer to Figure V-5).

The road improvement work in this region is lagging far behind, compared with other regions. Authorities concerned initially scheduled the completion of Jayapura - Merauke and Nabire - Wamena roads at the end of 1981, but the construction has not yet been completed. Road construction in other sections belongs to the master plan formulated as part of regional transmigration program, scheduled to be completed by the year 2000. Both the commencement and completion periods for these road construction works, as well as other construction work details, are not yet to be determined.

In Sulawesi and Nusa Tenggara Timur/Timor Timur regions, the road construction/improvement is practically complete so that no serious trouble is foreseen in the introduction of terrestrial transmission network. However, in Maluku and Irian Jaya regions, where the road development/improvement work is delayed, the introduction of terrestrial transmission network is difficult for the time being. Hence, for the planning of transmission network introduction in these regions, an in-depth study of the progress of road development work is prerequisite. This study assumes that all the illustrated road development plans have been completed according to the schedule and, on such assumption, formulates the master plan for the projected terrestrial transmission network.

#### 1.3 Transmission Route Plan

Based on the aforementioned basic conditions of transmission route selection and the road constructon/improvement plans, the transmission route plan, inclusive of the alternate route plan, covering the whole target areas of study has been formulated. The plan appears in Figure V-1.

The transmission route plan has been selected as a realizable route. The selection followed the general study of radio propagation path outlines on the topographical maps of the scale of 1:500,000 and, for part of the areas, 1:1,000,000. Therefore, each section distance indicated in the illustration is not the point-to-point linear distance but in the radio transmission route distance that extends by way of through repeater sites scheduled to be established.

The transmission route plan, however, is a schematic route plan formulated by on-thé-table design only. Therefore, at the time of project implementation, the plan must of course be modified where necessary, based on the findings in more detailed investigations and studies including field surveys.

# 1.4 In-depth Study of Transmission Route Plan

(1) Areas where terrestrial transmission route network formation is impossible and relief measure for those areas

Cities in part of the objective areas of investigation cannot be covered by the terrestrial transmission network. The reasons are as follows:

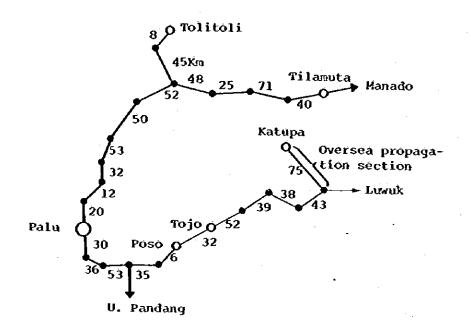
- The public road construction plan does not exist. Nor can the road improvement be expected in the foreseeable future. (Refer to Paragraph 1.2 of this Chapter.)
- b. Being located in scattered remote islands. In the digital radio system, the maximum no-repeater section length for oversea propagation is about 110 km. For the longer section than this, the network formation is technically impossible.

The number of cities that cannot be covered by the terrestrial transmission network for the reasons mentioned above is tabulated below.

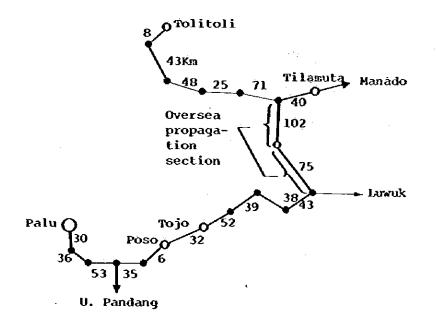
| Region             | No, of City That<br>Cannot be covered | No. of All<br>Objective Cities |
|--------------------|---------------------------------------|--------------------------------|
| Sulawési Sélatan   | 0                                     | 14                             |
| Sulawesi Utara     | 3                                     | 7                              |
| Sulawesi Tengah    | 0                                     | 9                              |
| Sulawesi Tenggara  | 1                                     | 7                              |
| Maluku             | 7                                     | 19                             |
| Irian Jaya         | 12                                    | 26                             |
| Nusa Ténggara Timu | it 2                                  | 15                             |
| Timor Timur        | 0                                     | 2                              |
| Total              | 25                                    | 99                             |

The sole relief measure presently available for those cities that cannot be covered by the terrestrial tarnsmission network is by the domestic satellite communication system. Therefore, the relief measure issue is excluded from the scope of study.

(2) Study of Alternate Route Plan


- +

For Palu - Tilamuta and Ende - Kupang sections, the alternate route plans can be considered. Each alternate route plan for each section has its merits and demerits.


a. Palu - Tilamuta Section

Two alternate route plans, A and B, which are illustrated below, can be taken up for comparison.

#### - Alternate Route Plan A



#### - Alternate Route Plan B



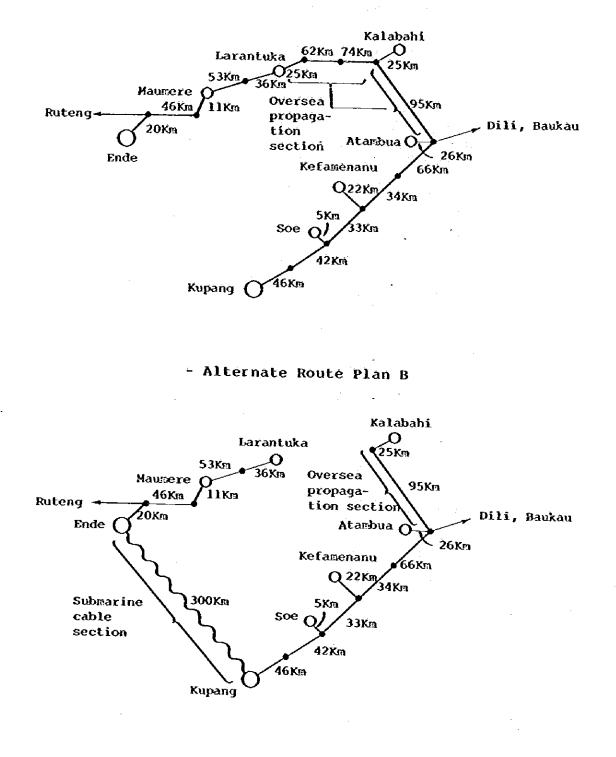
Comparison between the above two alternate route plans follows:

#### o Route Distance

\_ -

Plan A route is 893 km long (répéaters: 18) and Plan B route 776 km long (répéaters: 13). Plan B route commànds gréater advantagé.

**o** Propagation Conditions


Plan A route includes one oversea propagation section on the spur route whereas Plan B route comprises two oversea propagation sections on the main route. In these oversea propagation sections, the adoption of space diversity system and automatic equalizer is necessary in order to keep transmission performance at the required level. For this reason, the system cost in the oversea propagation section becomes about 1.5 times the system cost in the overland propagation section.

o Relief of Local Cities

In Palu - Tolitoli section on Plan A route are scattered local cities including Tobali, Ampebado and Sigenti. When the system branching to those local cities becomes necessary in the future, Plan A route can attain such purpose with advantage.

b. Bide - Kupang Section

Por this section, two alternate route plans, A and B, illustrated below, can be considered.



V-10 (174)

Comparison between the above two alternate route plans follows:

ò Róute Distance

Plan A route is 721 km long (répéaters: 11). Plan B route consists of 560 km long overland route (répéaters: 9) and about 300 km long submariné route. Plan A route commands greater advantagé.

O Propagation Conditions

Plan A route includes four oversea propagation sections but Plan B route comprises only one oversea propagation section.

#### o Topography

Larantuke - Kalabahi section on Plan A route belongs to the active volcanic zone. Purthermore, this section extends via two islands, and the repeater station must be established on each island. Therefore, Plan A route involves greater disadvantages than Plan B route in terms of construction, maintenance and operation.

o Network Formation

Both Bnde and Kupang are the Secondary Centers. Maumere and Larantuka are the Primary Centers in the Bnde area. Other cities are the Primary Centers in the Kupang area. From the viewpoint of network formation, the optimum choice is to connect the two Secondary Centers, i.e., Ende and Kupang, by the shortest distance.

From the economic viewpoint only, Plan B route is preferable for Palu - Tilamute section and Plan A route is advantageous for Ende - Kupang section. However, since there are other factors to be considered, it will be hasty to draw a conclusion by economic considerations only.

Decision as to which route plan to adopt depends upon the result of detailed comparative study of all route plans at the time of project implementation.

1.5 Circuit Distribution on Selected Transmission Route When the inter-city circuit requirements forecasted in Chapter IV are distributed on the transmission routes selected in the preceding Paragraph, the results are as shown in Figures V-6, V-7, V-8, V-9, V-10, V-11, V-12, V-13 and V-14. These route by route circuit distribution charts include the submarine cable sections. (See Figure V-14.) The selection of submarine cable sections is based on the study which is made in the next chapter.

The inter-city circuit requirements in the illustrations are given in the 110% value of the forecasted telephone circuit demand as of 2005, the final year of the plan, this time. The figure in parentheses is the number of basic primary groups required when the above circuit requirements are calculated in terms of basic primary group of 30 channels. The reason why the inter-city circuit requirements are indicated in the 110% value of telephone ciruit demand is this: As is stated in Appendix V-1, no-voice circuit, such as data communication and facsimile, circuit requirements are calculated in terms of telephone circuits, i.e., at the same transmission bit rate of 64 Kbit/s as in telephone circuits, and, as the result, no-voice circuit requirements between cities are estimated uniformly at 10% of telephone circuit requirements.

The circuit distribution summary by transmission routes follows:

- (1) Between Secondary Center and Primary Center: On all routes except two, the circuit distribution comprises 180 channels (30 channels x 6) or less. The two exceptions are Kupang - See route with 300 channels (30 channels x 10) distributed and See - Atambua route with 270 channels (30 channels x 9) distributed. Both these routes are Plan B routes.
- (2) Between Tertiary Center and Secondary Center and between Secondary Centers: On each route, the number of circuits distributed is not uniform as shown below.

| Route                               | Circuit Dis<br>Minimum | tribution<br>Maximum |  |  |  |
|-------------------------------------|------------------------|----------------------|--|--|--|
| Ujung Pandang - Manado              | 900 ch -               | 1,770 ch             |  |  |  |
| Malili (Ujung Pandang)<br>- Kendari | 120 ch -               | 180 ch               |  |  |  |
| Bnde - Kupang (Plan A route)        | 330 ch -               | 630 ch               |  |  |  |
| Jayapura - Merauke                  | 210 ch -               | 270 ch               |  |  |  |

(3) Submarine cable route: The number of circuits distributed varies from route to route as shown below.

| Route                 | Circuit Distribution |
|-----------------------|----------------------|
| Ujung Pandang - Ambon | 1,290 ch             |
| Ambon - Ternate       | 210 ch               |
| Ambon - Sorong        | 810 ch               |
| Sorong - Blak         | 660 ch               |
| Biak - Jayapura       | 960 ch               |
| Bnde - Kupang         | 330 ch               |

• •

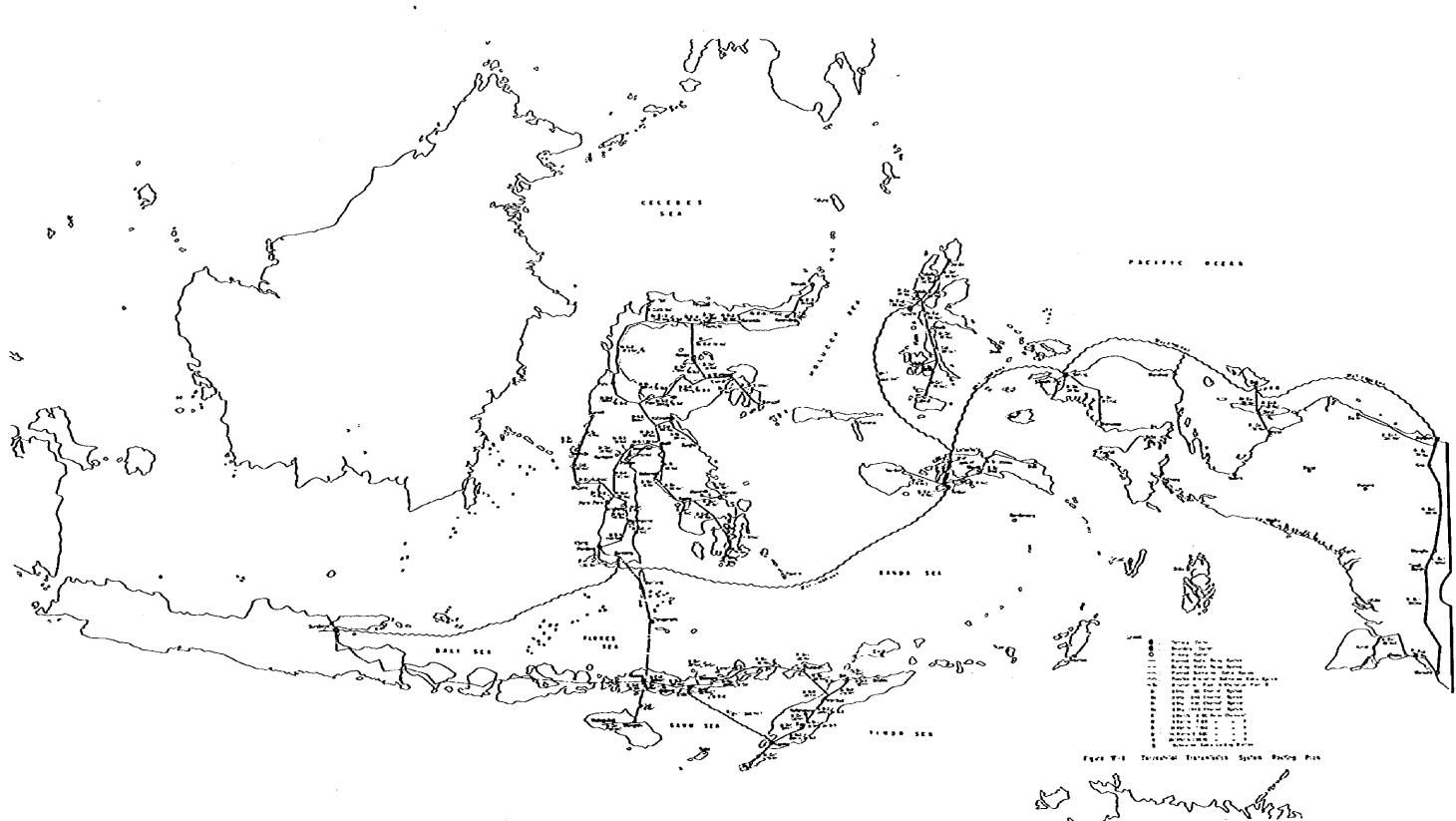
÷ .

.

.

# V-14 (178)

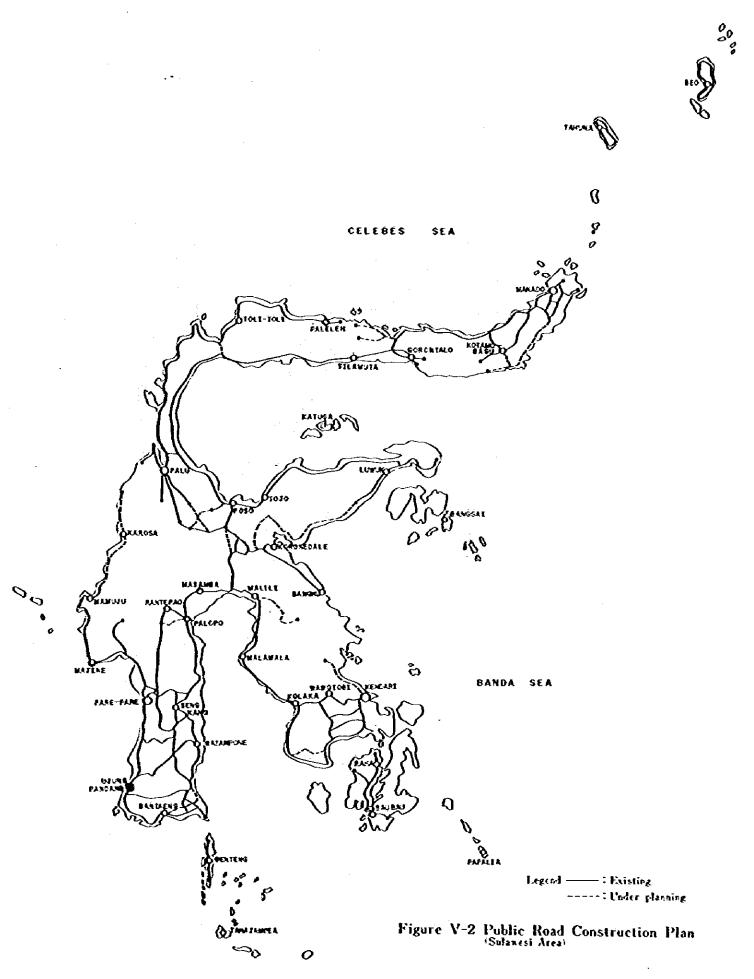
-


.

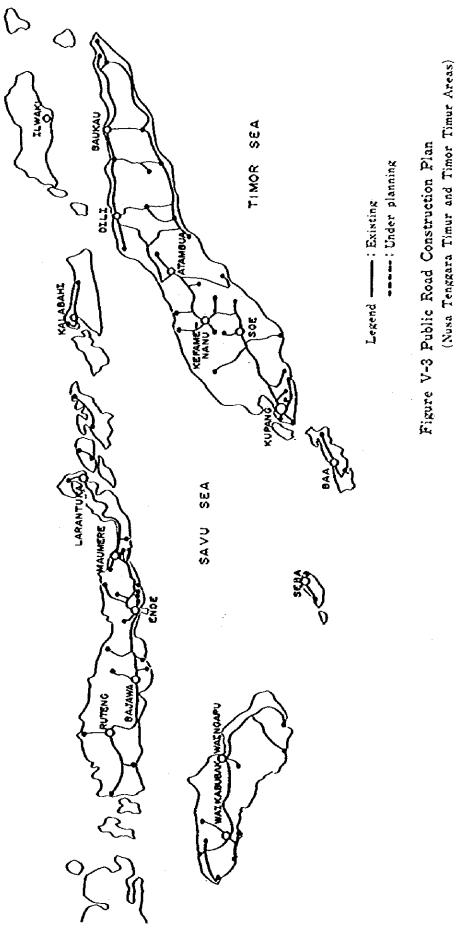
-

.

--


·




-

.**.** 

• • •



V-16 (181)



BANDA SEA

V-17 (182)

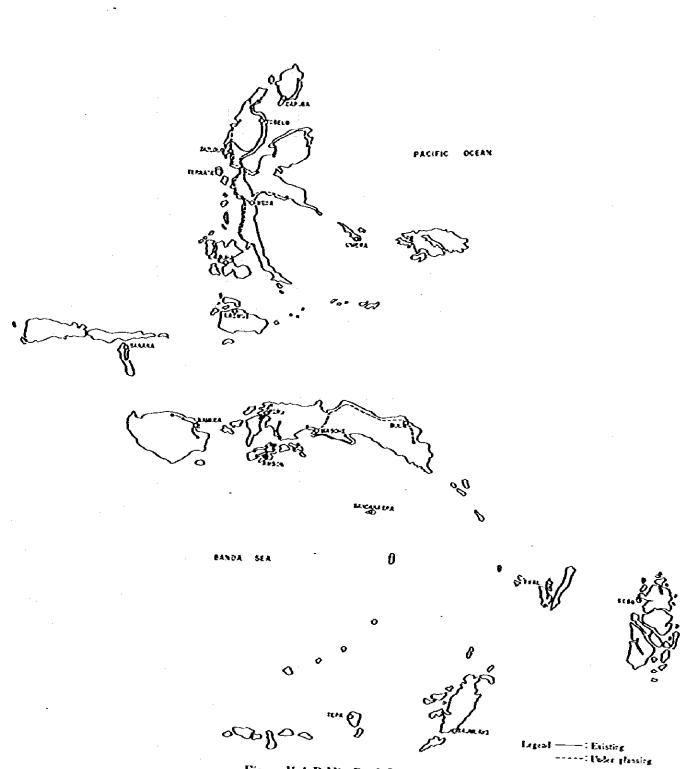
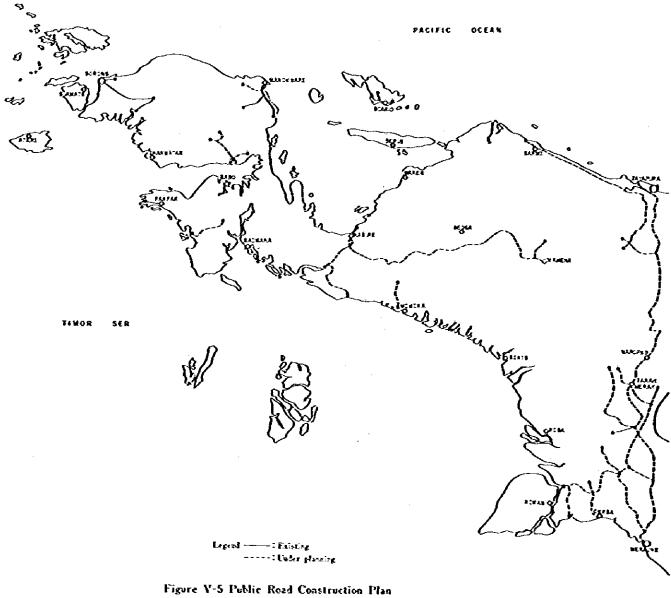
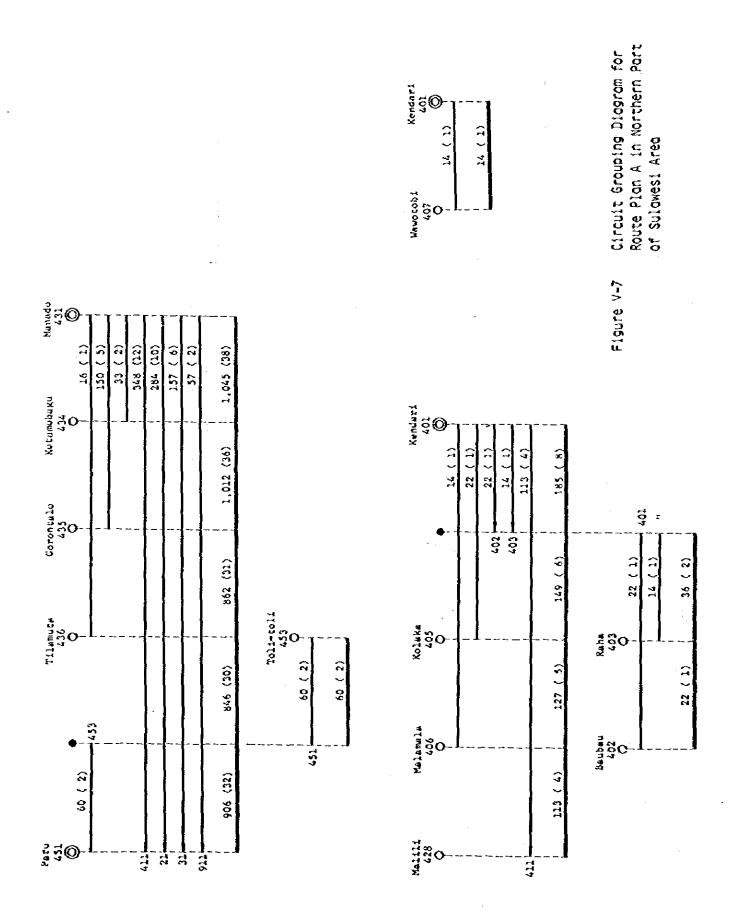
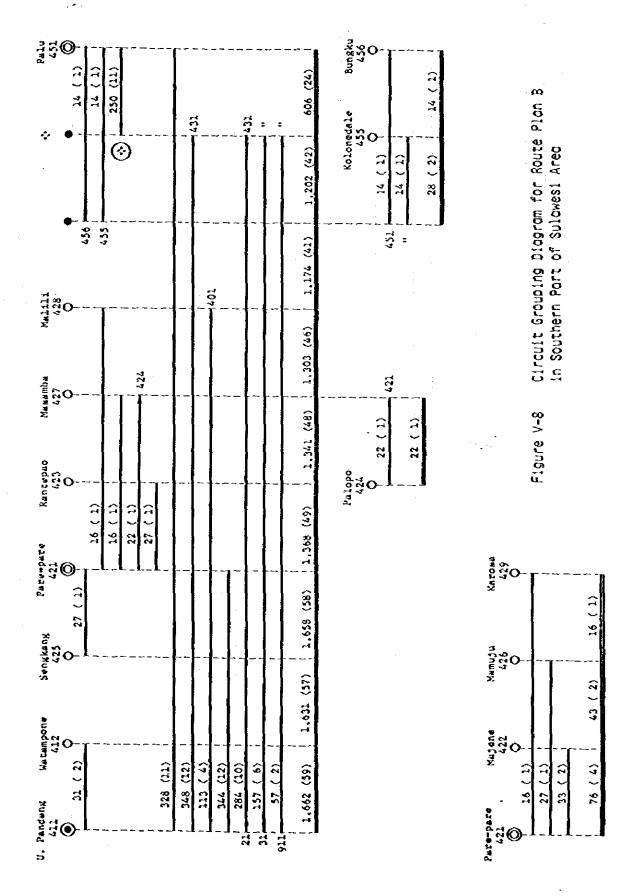




Figure V-4 Public Road Construction Plan

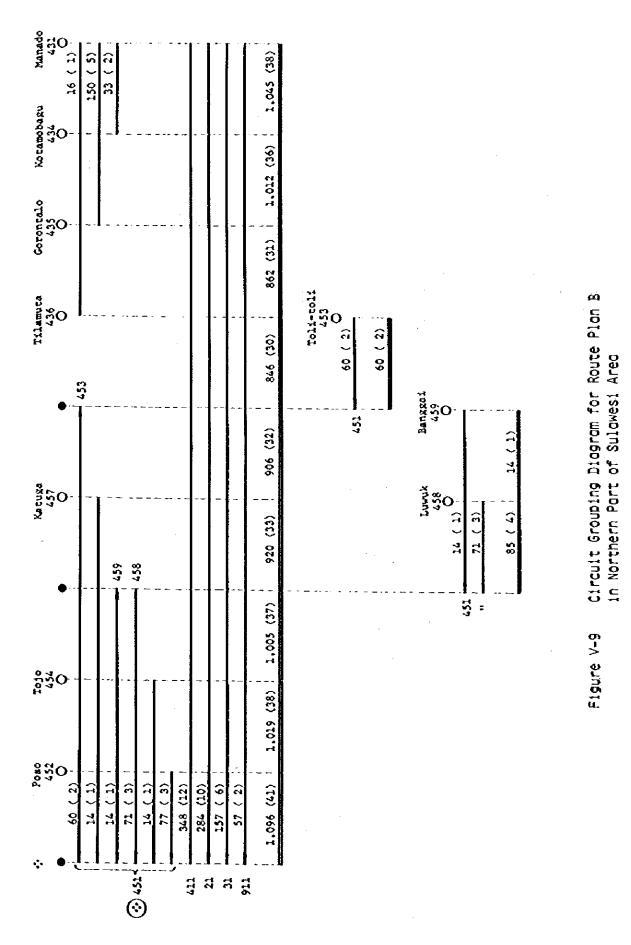
•

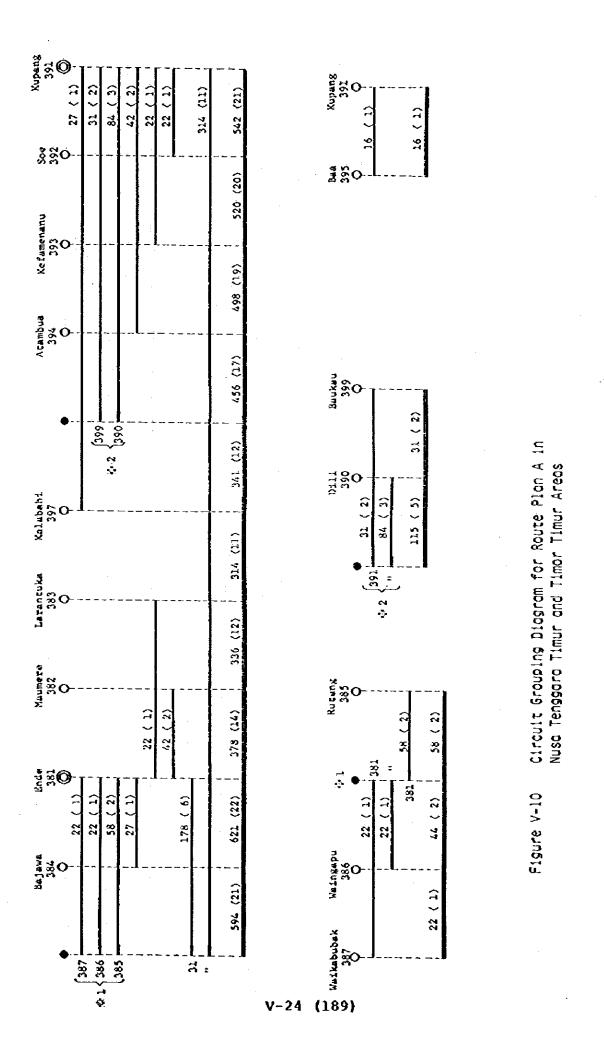


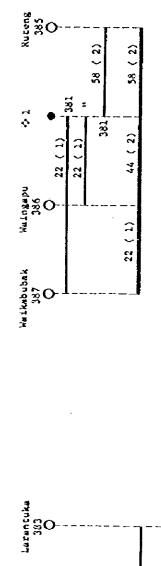

Irian Jaya Areas

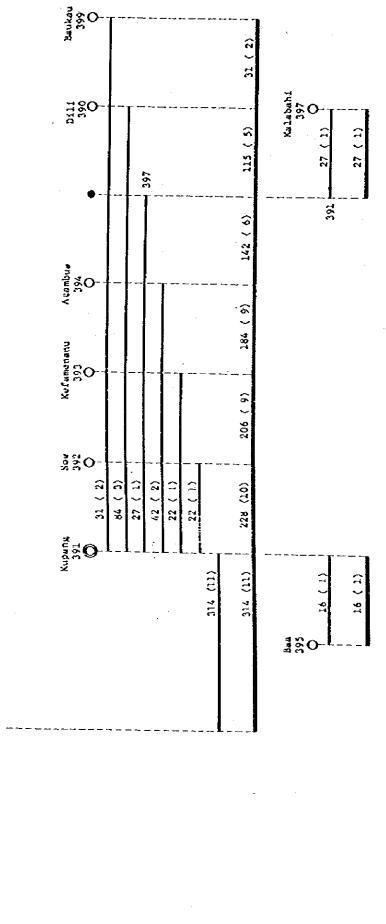

.




V-20 (185)



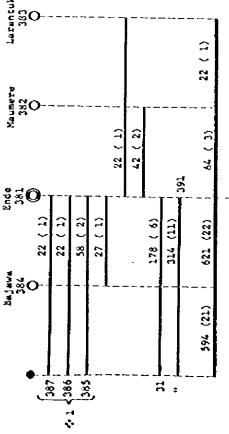


V-21 (186)




V-22 (187)









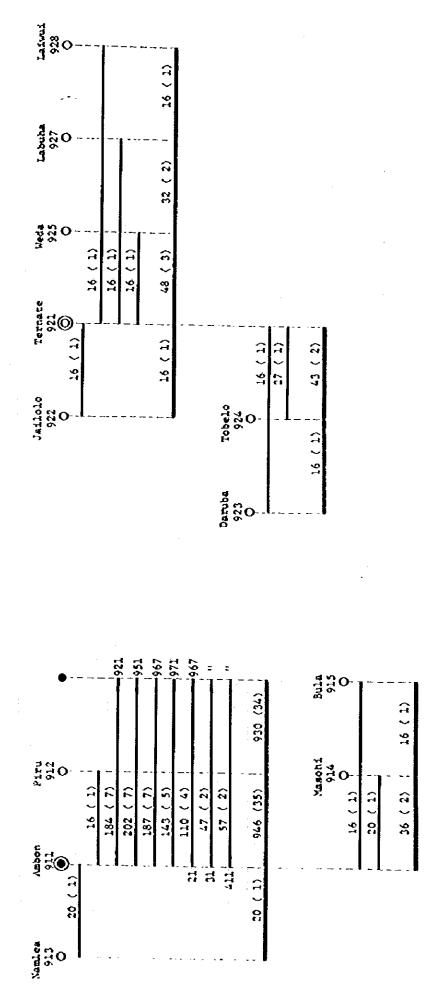
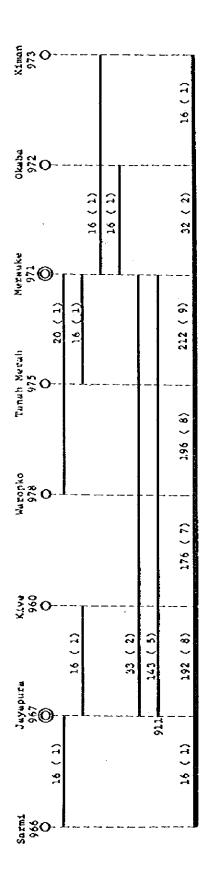
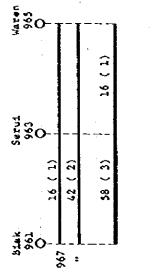
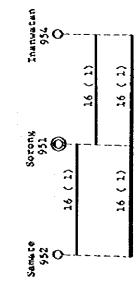


Circuit Grouping Diagram for Route Plan B in

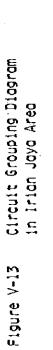
Figure V-11

Nusa Tenggara Timur and Timor Timur Areas





V-25 (190)




V-26 (191)









V-27 (192)



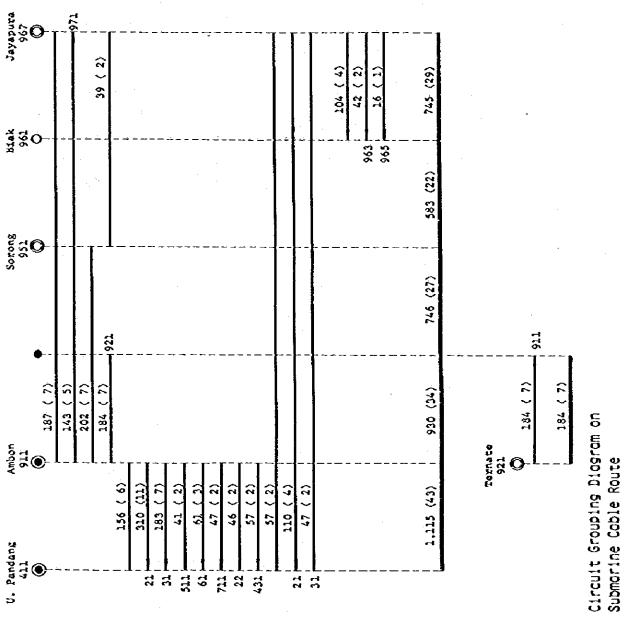



Figure V-14 Circuit

V-28 (193)

#### 2. Selection of Terrestiral Transmission System

In this study, for the transmision system to be adopted in the terrestiral section, the line-of-sight UHF and SHP radio systems of digital configuration will be taken up for consideration. (Refer to chapter III Basic Philosophy and Preconditions of Study.)

This Paragraph is dedicated to the study of digital radio systems of all kinds so far developed in UNF and SHP frequency bands. The 2 GHz system for UNF band and the 6 GHz (upper band) system for SHP band have been selected as optimum systems. The reasons of this selection are described below.

- 2.1 Selection of Optimum Frequency Band
  - (1) Selection of 2 GHz Band

The frequency band commonly used for multiplex telephone repeating in UHF band is from 800 MHz to 2 GHz. Here, the selection is made for 2 GHz band. The reasons are:

a. In the circuit formation, it is generally the case that the equipment cost increases proportionally as a higher frequency is adopted. Contrarily, the antenna directivity deteriorates, or, when space diversity is employed, a large antenna spacing is required as a lower frequency is used. Therefore, depending upon the section, the system cost is bound to increase unproportionally as a lower frequency is used.