5 - 1 | Drill Hole No | : MJP-5 | |------------------|---------------------------| | Location | : SURMAI-I | | Coordinate Point | : K=1,123,076 E=2,007,983 | | Depth | : 401.0m | | Dailling Machina | . 1 - 90 | | Elevation | : 1,549.57m | |---------------|--------------------------| | Inclination | : -60* | | Core Recovery | : 97.28% | | Term | : JUL 20 '88 ~ AUG 9 '88 | | | | | L | ithology | | | | | | Assay | Resul | ts | |--------|--|----------------------|-----------|---|------------------------|--------|----------------|-----|----|-------|-------|-----| | Depth | Geolog. | | | · · · · · · · · · · · · · · · · · · · | Mineralization | Sample | Dep t h | ¥d | Pb | Zn | Ba | ۸g | | (m) | Log | Стоир | Rock | Remarks | etc | No. | (m) | (m) | \$ | 1 | % | g/t | | 5 | -xxxxxxx | | Ls | gr, cmp, wtbos. | Hmz
Ça vn, vnt, flm | | | : | | | | | | 10 | ×× | I | S h | lam, lgt gr. | Z 45 | | . : | · | | | | | | | (XX - XX | Anjira Member-Unit-1 | Ls | gr, cmp, wtbos. lgt br, soil. gr, cmp, wtbos. | | | | | | | | | | 30
 | | | <u>Sh</u> | lam, lgt br. gr, cmp, wtbos. | 270 T | | | | | | | | Fig. II-2-18 Drilling Columns of MJP-5 | | | | Li | thology | | | | | | | ssay | Result | s | |-------------------|--|---------------|----------------------|---|-----------------------------|-------------|--------|-------|--|----|------|--------|------| | i | Geolog. | | , . | 11/11/2019 | Mineraliza | tion | Sample | Depth | \kd | Pb | Zn | Ba | Ag | | (n) | Log | Group | Rock | Remarks | etc | | No. | · (n) | (n) | % | | * | g/t | | 45 | | nit-I | Ls
Sh= | gr, cmp, wtbos.
br, soil.
gr, cmp, wtbos.
br, soil. | our our ca vn, vnt, flm | | | | | | | | - | | 50 | | ra Member-Uni | L s | gr, cmp, wtbos. | 170 | T | | | | | | | | | 55 | | Anjir | Sh | cmp∼lam, dk gr. | <u></u> | | | | | | · | | . 70 | | 60 | | : | S h | gr, cmp, wtbos. cmp, dk gr, lmy. gr, cmp. | /70
/65 | T | | | | | | | · | | 65 | | it-IV | Sh | cmp, dk gr, lmy. | 270 | | | | | | | | | | 70 | -0.0 | Member-Uni | Ls
Sh | gr, cmp, fos.
cmp, dk gr~bk, cl
gr, cmp, fos. | 250
2480 I
290
270 | Py dis | | | ST. 19 THE CHIEF C | | | | | | 75
— | | alai | Sh Ls Sh Ls | cmp~lam, dk gr~b
gr, cmp, fos.
lam,bk,arg.
gr, cmp, fos.
lam.bk,arg.
gr,cmp,fos. | 250
270 | F | | | | - | | | | | -
80
-
- | ###################################### | Lor | Sh
Sh
Sh
Ls | gr.cap.fos. cmp-lam.bk.ars-cly. gr.cap. tan-cmp,bk.ars-cly. gr, cmp, fos. cmp, bk. | | | | | | | | . : | - | | | 0 0 0 | | Ls
sh
Ls | gr, cmp, fos. wtbos. cmp.bk. gr, cmp, fos. cmp, bk. gr, cmp, wtbos, fos | 260 | h | | | The second secon | | | | | | | | | Lith | ology | | THE PERSON NAMED OF PE | agaga <u>an</u> salahan da Seraki salahan | COURT PARTY OF THE | ***** | | Assa | , | ùlts | |----------|-----------------|----------------------|--------------------------|--------------------------|---------------------------------------|--|---|--|------------------------|----|--------|--------------|------| | 1 | Geolog. | | | | Miner | ralization | Sample | Depth | ₩d
(=) | Pb | Zn | Ba | A8 | | (m) | Log . | Group | Rock | Remarks | · · · · · · · · · · · · · · · · · · · | etc | No. | (n) | (m) | À. | | * | g/t | | - | | | | | | | ** | | | | | | | | | ပုံ | | ٠, | • | | (Hmz | 1 | | | | | : | | | | | | Ls | gr, cmp, wtbos, | | | | | 1 . ¹
 | | | | | | 95 | | | : | fos. | | nt, | | | | | | | | | F | | | | | | vn, vi
diss | | *** | ·. | | ٠. | | | | | | | | | | Ca vn, vnt, | | | | | | | | | | | | Sh | cmp, bk, arg~cly. | |
_ | : | | | : | : ", | | | | 100 | | | | | £75 | | | - | | | | | | | | | | Ls | gr, cmp, wtbos. | | | | | | | | | | | _ | | | | | 250 | Lit | | ·
 | |] | | | | | <u> </u> | | | Sh | cmp~lam,bk~dk gr
cly. | • | | | | | | | | | | 105 | himil | IV | Ls | gr, cmp, wtbos. | | | | * | | | | | | | ļ. I |
 | | | Bx1 0mp1 110001 | | | | | | | | | | | | ΔXXX
≈ | ٠H .
أ | Sh | lam~cmp, | | | | | | | | : | | | _ | | Uni | | bk~dk gr. | | | | | | | | | | | 110 | | | s | gr, cmp. | 160 | 1 + | | | | | | | | | _ | | Member | Sh | lam, bk, | f0 10 | 4
1
2 | | | | | | | | | | | mŀ | | arg~cly. | ∠ 0~40 | | | | | | | | | | - | ļ
Turus
J | МС | — ls —
S h | gr.
lam, bk, | | - - | | | | | | | | | 115 | | | S II | arg~cly. | <i>1</i> 75 | <u>:</u> | | | | | | | ļ | | | : ∆
≈ × | oralai | <u>. L.S</u> | gr, cmp, fos. | | * - | | | | | | | | | _ | ~ × | a 1 | S h | cmp~lam,
bk~dk gr. | | !
!
! | | | | } | | | | | - | | 71.0 | | DR dR gi. | | | | | | • | | | | | 120 | 1 | Ľ | | | | T | | | | | [
] | | | | | | | | gr, mly. | | *
*
* | | | | | | | | | <u> </u> | | | Ls | : | | | | | | | | | | | - | | | | gr, cmp, wtbos. | | | | | | | | | | | 125 | ШШЦ | | | | | <u>.</u> | | | | | | | | | | | | .Sh | cmp, dk gr. | 160 | T : | | a la company | | | | | | | _ | | · | Ls | gr, emp, wtbos. | | | | | | | | | | | - | | | S h | lam, bk, | 270 | ÷ = | | | | | | | | | 130 | | | Ls | gr, cmp, wtbos. | | 1 | | | | | | | | | | X
TTTTT | | Sh | cn1~lan, bk. | | - - - - | | | | | | | | | _ | | | Ls | gr, cmp. | 175
165 | Ţ | <u> </u> | | 1 | | | | | | - | | | | | 700 | | | | | | | | | | 135 | | | Sh | cmp~lam, bk. | | \$
1
1 | | | , | | | | | | | | | | | | | | | į. | | | | | | - | | | Ls | gr, cmp. | | - 1
- ± | | . 1 | | | | | | | _ ' | | | Sh | cmp~lam, | 780 | ********************************** | | | i | | | | | | 140 | | | L s | | £65 | _ <u>_</u> | | | | | - | . : | | | - · | | | S h | | £80
£65 | | | | | | | | | | | | | Lit | hology | | | | | | Assay | Resul | ts | |-------------------|--|----------|----------------------|--|---|--------|-------|-----|------------|-------|-------|------| | Depth | Geolog. | · | | , 5, 41 | Mineralization | Sample | Depth | ¥d | Pb | 2n | Ва | NB - | | (n ₁) | 4 | Group | Rock | Remarks Sh.cmp~lam,bk,fos. | eic Ţ- | No. | (m) | (m) | * | * | | g/t | | 145 | | | Ls
Ls
Sh
Ls | gr, cmp, wtbos. lam,bk,cly gr, cmp, wtbos. cmp~lam, bk. gr,cmp~lam, bk, cmp~lam, bk, | 760 765 760 765 765 765 765 765 765 765 765 765 765 | | | | | | | | | | د:
۵: |) . | Ls | arg~cly.
gr, cmp, wtbos. | 45 KA 245 | ,/feet | | | | | | | | 150 | | | Sh | cmp~lam,
bk~dk gr. | L 75 | | | | | | | | | - : | | | Ls
Ls | gr, cmp. cmp, dk gr. gr, cmp, wtbos. | Z80 Z60 | | | | | | | | | 155 | | A | Sh | cly, bk~dk gr. | - 4 | | | | | | | | | | | Uni t-W | S h | lam~cmp, dk gr~bk, fos. cly. | 270 | | | | | | | | | 160 | ~
□ 0
!40 | Member-1 | L s
S h | gr, cmp, fos.
cmp~lam,
dk gr~bk, fos. | 170 | | | | | | | | | 165 | | aí | Ls
Sh | gr, crs, fos. lam~cmp, bk~dk gr, fos. sr.emp.wtbos. | + + + + + + + + + + + + + + + + + + + | | . , | | | | | | | 170 | ××× | Loral | Sh | cmp, dk gr. | | | | | | | - | | | 175 | ≈ ×××
≈ ×× | | Ls | gr, cmp, wtbos. | ± ± | , | | | | | | | | | ns ns | | sh | cmp, dk gr, cly. | | .** | | | | | | | | 180 | 88 | | Ls | fos. gr, cmp, crs, fos. | Z50 | | | | ser
Ser | , , | | | | | 0 | | S h | cmp, dk gr. fos. | Z 55 | | | | | | | : | | 185 | | | L s
S h | gr, cmp, wtbos, fo | s. 445 | | | | | | | | | 190 | ×××××××××××××××××××××××××××××××××××××× | | Ls | gr, cmp, crs, fos. | | | | • | | | | | | | | - | adenne Ciantita d | Lith | ology | The second second | | | | - | | | | Assa | y Res | ults | |----------|----------|----------------------|-------------------|----------------|--|-------------------|------------------|------------|--------|----|-------------|-----|------|----------|----------------|------------| | De | | Geolog. | : | | Y-Ma-1 | Mineral | | D. | Samp | le | Depth | ۲id | Pь | Zn | Ba | Ag | | ļ., | (m) | LO8 | Group | Rock | Remarks | | tc | | No. | | (n) | (m) | */ | * | * | g/t | | - | | ≈××
≈ | Μ- | Sh | lam~cmp, bk, | 190
175 | | - | | | | ١ - | | | | | | - | | | À | Ls | fos.
gr, brc. | 130 | Ī | i. | : | | | | | | | | | | | ≋ | | Sh | lam, bk, sft, | £ 40 | | : | | | | | | | į · | | | 19 | 5 | ~ | = | | arg~cly.
Sh:bk~dk gr,lam | 160 | Ť | : | | • | | | | | | | | _ | | | ħ | Sh Ls | Ls:gr, cmp. | Z10 | | ٠. | | | | | | | | | | - | | æxx
o∪ | n i | | amps.) am | | -1. | - | | | | | | | | | | - | | o
≈× | -Un | Sh | cmp~lam,
dk gr~bk,fos, | Z 70 | | : | | | | | | | | | | 20 | 0 | | H | | arg~cly. | £ 45 | | ; | | | | | | ļ , | | | | | - | गागाह | ешре | Ls
Sh | gr, cmp, crs, fos. | ⊉ 80 | Ţ. | , <u>-</u> | | | | | | | : | | | _ | | ЩЩ | E
N | L s | gr, cmp, fos. | 780 | Ţ | Ţ | | | | • | | | | 1 | | - | | *\$
0
11111111 | M | Sh | cmp~lam, bk, fos.
gr. cmp. | ∠80
∠25 | T | Ţ | | | | - | | | | : | | 20 | 5 | | ਜ | L S | gi, Cmp.
bk.ars.
sr.fos. | 223
240 | i. | <u>;</u> | | | | | | | | | | | - | ××× |] a | Sh | cmp~lam, | /60 | | : | | : | | | | | | | | | | X
TIIII
P | ರ | T | bk, arg~cly.
gr, cmp, wtbos, fo | 150 | 7 | . 1 | | | | | | | | | | - | | | Lor | Ls | cmp~lam,bk,arg. | 740 | 7 | Ξ | | | | | | | | | | 21 | . | | H | Ls | gr, cmp, wtbos,
bre.wt Ls.clywars. | L30 | | ; | | | · | | | | | | | <u> </u> | 0.4 | | | Sh | (shear zone) | - | | <u>:</u> | | | | | | | | : | | - | | | | Ls | gr, wtbos. | Z 70 | | | | | , | | | | | : | | | | uuu | | Sh
Ls
Sh | lam, bk.
gr.cmp.wibos.
lam,bk~dk gr. | 180 w w | It I | I. | | Ì | | | |] | | | | - | | 00 | | Ls. | gr.crs. | p di. | r. vn. | <u>-</u> | | | | | | | | | | 21 | 5.0 | | | Sh | сшр~lam, bk, arg. | 790 I ± Sp | ΣT | | /DH5- | | 215.0~215.2 | 0.2 | 0.12 | <0.01 | <0.01 | 1.3 | | 21 | 6.8 | New York | | Ls | gr, crs, wtbos. | 1 | | : | DH5- | | | 1.0 | 0.39 | 0.40 | <0.01
<0.01 | 3.7
0.8 | | | | | Ħ | | | £ 80 | 1 | •• | DH 5-1 | -3 | 215.0~216.8 | 1.8 | 0.19 | 0.85 | <0.01 | 1.8 | | | ļ | | Ÿ | Sh | lam~aln wt ml,
gr~dk gr | 1 80 | | dis | | | | | | | | <u></u> | | 22 | 0 | | Uni | | _ | Z 75 | 1 | Py | E | | | | - | | | | | - | | | \rightarrow | Sir | gr.cap.
lam.bk. | • | - I | | | | | | | | | : | | - | | | , L | Ls | gr, cmp, wtbos. | · | | | | | | | | | | | | | | ЩЩ | Member | | | | 1 | : | | | | | | | | | | 22 | 5 | | 0 | | | £80 | Ĺlm | | | · | | | | | | | | - | | | Z | Sha | raosm, bk~gr. | L 15 | Ca vn, vnt, flm∟ | | | Ì | | | | | | , | | - | | | · 년 : | | 3 | Z ,80 | ۷'n, ۲ | į | | İ | | | | | | | | \vdash | | , | . T | | | £ 65 | Ś | | | | | | | | | : | | 23 | 0 | | ଷ | Lsa
Sha | aolm, gr~dk gr. | 2 60 | | , c | | ļ | | | | | | | | _ | : | | Loral | Lsa | aolm, gr~dk gr. | | | dis | | . | - | | | | | | | - | | | = | | cmp~lam, bk, arg. | 175 | | ⊦-+ I³y | | } | | | | | | | | - | | | ; | Sh
Ls | gr, cmp~lam. | 170 | T
± | <u>.</u> | | | | | | | | i | | 23 | 5 | | | Sh | cmp~lam, | Z 70 | | | | | | | | | | . : | | | - | | : | | bk~dk gr, arg. | £ 65 | | | | | | | | | | | | - | | × | | | , | | 7 | 1 | | ļ | - | | | | | | | - | 8.1 | | | Ls | gr, cmp, wtbos. | <i>1</i> 50 | ıi | | | | | | | | · | | | 24 | 8.4
0 | hiiii | | Sha | Si,Ca vnt.
raosm,gr~dk gr. | Z65 | ; | | ٠. | | | | | | | | | | | <u> </u> | | | racom, gr an gr, | | 200 Auditoria | | | | | | | <u> </u> | | | | | | | | * | | | | Assay | Resul | ts |
--|---|-----------------|----------|--------|----------|-----|------|-------|-------|-----| | Depth Geolog. | | lineralizatio | n | Sample | Depth | ¥d | РЬ | Zn | Ba | AB | | | marks
gr~dk gr. | etc | | No. | (n) | (m) | * | % | % | g/t | | gr, cmr | | i i | | | | | | | | | | Sha raosm, | gr~dk gr. 245 | ynt | | | | | | | | | | - Cond Tuosin, | | | | | | | | | . v | | | 244.8 Si>Ca | vnt Z65 | 1 7 | (0 | | | | | | | | | L s gr, cm | o, wtbos. | | dis | 11.17 | N | : | | | | | | 247.2 S1>Ca | 1 202 | I | ۲P y | | AL AND T | , | | | | | | Sh lam~cm | np, arg. 150 | Ca vn, vnt, flm | - | | | * 1 | : | , | | | | Ls gr, cm | p, wtbos | u v | 3 | | | | | | | | | <u> </u> | p, wibos. | N. V. | | | | | | | | | | 252.2 Sh cmp, dl | k gr. | ى
T T | - | ٠ | ·. | , | | | | | | 252.7 Si>Ca | vnt, | _ | | | .: . | | | | | | | 255 | | 1 | | | | | : | | | | | L s gr, cm | p, wtbos. | 1 | ļ | | 1 × 1 | |
 | | | | | | , ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | 1 | | | | | | | | | | _ | 2 65 | | | | | | | | | | | 260 | 1200 | | | , | | | | | | | | Sha raosn,gr | -dk gr. 170 | · + | | | | | | | | • • | | 262.0 | 27 5 | I | | | | | | | | | | 262.2 Si>Ca | o, wtbos. | 1 | - 1 | | | | | | | | | 265.1 L s gr, cm | Z 65 | | | | | | | | | | | Si>Ca | | _ • | | | | | | | | | | Sha raosm, | gr~bk. 175 | ; | | | | | | | | · · | | 270 Sha raosm, Sha raosm, L s gr, cm | | | | | | | | | i | | | Ls gr.cmp | p, wtbos. | <u> </u> | S | | ;
] | | | | | | | | | •
•
• | ਹ | | | | | | | | | The state of s | op, dk gr. 150 | į | · · · Py | | • | | | | | | | | o, wtbos. \\\ 260 | _1. | ÷ | | | | - | | | | | Sh cmp~la | am, dk gr. | | | | | | | | | | | 275.6
276.0 Sh cmp~la | Z60
Z60 | | | ı | | | | | | | | Si>Ca | vnt. 200 | 1 : | _ | | | | | | | | | | | į | | | | | | | : : | | | Ls gr, cm | o, wtbos. | : | | • | | | | · | | | | 280 | | i | | | | | | | | | | | 1 75 | 1
1
2 | | | | | | | | | | Lsa aolm, a | gr~dk gr. 270 | | | • | | | | | | | | | ip, bk, fos. | | Ŧ. | - | | | | | | | | 285 IIII Br.ors.fo | .s. /80 | | 4 | i | | ٠. | | | , | | | She raosa,gr- LS gr.crs.fo Sh lam.dk gr | s. | | <u>.</u> | | | | | | · | | | · | o, wtbos. 275 | | - | | | | | | | | | Sha raosa,gr- | 1 510 | | 7 | | | | | | \ . | | | 290 Sh lam.bk. Ls gr.cap.wt | | | ÷ | • | . , | | | | | | | ay Results | Assa | | | | P-0-4 | | ology | Litt | 1 | | | |------------|----------|----|-----|-------|--------|--|---|--------------|---------------|-----------|---------| | Ba Ag | Zn. | Pb | Nd | Depth | Sample | Mineralization | | | - | Geolog. | Depth | | % g/ | \$ | 3 | (m) | (m) | No. | etc 275 | Remarks | Group Rock | Gr | Log | (m) | | | | | | | , r ** | 180 E | gr, cmp, wtbos. | Ls | | | - | | | | | | | . : | | aolm.gr.
lam.bk. | Lsa
- Sh | | 27777 | | | | | ; | | | | 710 Ga 711 710 710 710 710 710 710 710 710 710 | gr, emp, wtbos. | Ls | | | | | | | | | | , | 270 | B. i on b. i | | | | 295 | | | | | i.i | | | 170 প্র
175 | aolm, gr~dk gr. | Lsa | | | _ | | | | | | | | 270 I | gr, cmp, wtbos. | Ls | | | <u></u> | | | | | | : | . 1 | 175 | aolm, gr~dk gr.
cmp~lam, dk gr. | Lsa | 4 | 11/11/ | - | | | | | | | | 275 | gr, cmp, wtbos. | Ls | | | 300 | | | | | | | -* | 175 | aolm, gr~dk gr. | Lst | IJ | | | | | | | | | | 270 <u> </u> | lam~cmp, bk.
gr, cmp, wtbos. | Ls | 7 | | | | } · | | | Ì Ì | | | 275 | bk, brc. | Sh | 8 | 11111111 | - | | | | | | 1- | | † ± | | | | | 305 | | | | | | | | 2 75 | gr, cmp, wtbos. | Ls | - | | | | | | | | | , , | tar | | <u>.</u> | | | - | | | | | | | | 175 ± | iam,bk. | L S |] | | | | | | | | | | 170 | gr, cmp, wtbos. | D L s | ∐ | ЩЩЦ | 310 | | | | | - | | | | cmp~lam,
dk gr~bk. | k Sh | | | | | | | | | | | 190 | aolm. | Sh
On Lsa | 4 ,2 | 27.77 | | | | : | | | | | 270 | 6 | E | [| | - | | | | | | | | ∠ 80 T | aln of | ğ | 2 | | 315 | | | | | | | | Z70 1 | (Sh(dk gr.0.1~2.0sm)
Ls(sdy.0.1~1.0mm) | Sh | | | 57.5 | | | | * | | | 1. | 2 80 | | © | 9 | | | | | | i | | | | Z 85 | | 6 | ; | | L | | | | | | | 1 | 260
290 I | an one withou | Coralai | | = | 320 - | | | | ! | | | | <u>/60</u> | gr, cmp, wtbos.
cmp~lam, dk gr. | Sh | -4 - - |
≈ | 220 | | | | | | | | 790 I 6 | gr, cmp, wt raosm,
raosm, brc. | Ls | I | ШШ | | | | | - | | | | Z75 | (shear zone) | Sha | П | | | | | | | | | | Z 90 | | | | [| 005 | | | | | | · | | L70 | | | | | 325 | | | + .
+ | | | | | ∠ 80 | | | | | - | | | | | | | | | gr, cmp, wtbos. | Ls | | | | | | | | | | .: (| | | | | | | | | | | | | | Z80 | | | | | 330 | | | | | | | | 1 ; } | raosm, gr~lgt gr. | Sha | 1 | | - | | | 1 | | | | ٠, , | 270 | | | ij | minii | - | | | | | | | | | lgt gr, cmp. | L s | | | | | | } | | | | | 2 40 İ | i
I | | Ц | | 335 | | | | | , | | | Z70 | raosm. | Cha | | | L | | | | | | | | 1 | {Sh(dk gr,0.1~1.0mm)
ts(sdy,gr,0.1~1.0mm) | Sila | | : :::: | _ | | | | | | | , | | lan.bk,arg. | Sh | - | • • • • • | - | | | | ļ | | | | 180 | | Ls | 1 | | 340 | | | | | | | | 285
275
270
240
1
270
280
260
270
1 | raosm, gr~lgt gr. lgt gr, cmp. raosm. aln of {Sh(dk gr, 0.1~1.0mm) Ls(gdy, gr, 0.1~1.0mm) | Sha L s Sha | | | | | | | FEET-ULTS THERESES | Lit | hology | ga ay kan Pati Pati Pati kan ing dada katan in SPA SEBA ya samani SPANA Kata sana sa | Carried Works on Carried Color | | | | Assay | Resu1 | ts | |----------|---|--------------------|------|--|--|--------------------------------|---------------|-------|----|-------|----------|-----| | Depth | Geolog. | | | a contract | Mineralization | Sample | Depth | ¥d | Pb | Zn | Ba | Ag | | (m) | Log | Group | Rock | Remarks | etc | No. | (m) | · (n) | % | * | * | g/t | | _ | | | | aolm. | | | | | | | | | | | | | Lsa | aln of | | | | | | | | | | _ | | | | (al (dk gr.0.1-5am) | Ę | | | | | | | | | | | : | Ls | grisdy. | 280 ₩
185 Ω
280 W | | | | : | : . | | | | 345 | **** | | Sha | Sha raosm dk grer.
Sh.lam,bk-dk gr.
raosm,dk gr. | vn t, | | | | | ÷ . | | | | <u> </u> | | | Lsa | aola,gr-dk gr.
gr.bed.sdy. | , E | | | | | - | | | | - | | | | : | 280 B | | | | | | | | | <u> </u> | | | | raosm, | 1 80 | | : | | | | | | | 350 | | | Sha | aln Of
{Ls(sdy,lgt gr,1-2mm)
{Sh(bk,1-2mm) | - ω | | | | | | | 4. | | 200 | | | | ¹ Sh(bk,1~2mm) | וסי | | | | | , | | | | - | •••• | | -51 | lea-cup.bk.arg | 780 Y | | | | | 1 | | | | | | | Lsa | aola.
lam-cmp,dk gr.arg. | 185 r | | | | | | | | | | | | Lsa | sola. | 1 85 | | | | | | | | | 355 | | | Ls | gr,crs,sdy. | L85 | | , . | | | | | | | | | ⊢ ~ | Sha | raosm, lgt gr~bk | 1 85 | | | | | • | | | | | | . 23 | | | ∠ 85 | | | | | | | | | <u></u> | 77777 | ٠.
ب | Lsa | aolm. | 185 | | | | | | | | | <u> </u> | | Uni | Sha | raosm,lgt gr~bk | ∠ 85 | | | | | | | | | 360 | ·:·:· | | SF | lam-cmp.bk.ars. | ∠85 _{- ∓} | | | | | | | | | <u></u> | | Ţ | Ls | gr, bed. | £90 | | | | | | | | | | ШШ | ЬG | LS | | £ 85 ≟ - ₹ | | | | | | | | | | 00 | , m | Sh | lam,
bk~dk gr,fos. | ∠ 85 | | | | | | ļ. | | | | 1.1.1.1 | Member | ļ | on on gry roo, | 180 <u>;</u> | | | | | | | | | 365 | | | | | £ 85 | | <u>.</u>
[| | | | | | | _ | • | •
ដ | | | | | | | | | | | | _ | | 1.5 | 01 | raosm~Sh, | | | | | | | ĺ | | | _ | | oral | Sha | dk gr. | Z 80 | | | | | | Į | | | _ | | Õ | | | žn. | | | | | ļ | | | | 370 | :::: | 1 | | | Z 85 | | | | | | | | | - | | | | | 2 60 | | | | | | | | | - | •
• • • • | | | | 1 65 | | | | | | | | | - | | | Sh | bed, gr. | <u>.</u> | | | | | | | | | 375 | | | | | Z 70 | | | | | | | | | 010 | : :::: | | [| | 1 80 | | | | | | | | | - | | | | • | £70 | | | | | | | | | - | ·:::: | | | raosm~Sh, | 1 85 | | | | | | | | | | | | Sha | dk gr. | | | | | | | | | | 380 | • • • • • | | | | L 75 | - | | | | | | | | - | | | | | ∠ 85 | | | | | | | | | - | :::::: | | | | Z70 | | | | | | | | | | 11111111 | | ļ | ., | 480 | | | | | · | ĺ | | | | | | Ls | gr~dk gr, arg,
sft, cmp. | | | | | | | | | | 385 | | | Ls | gr, sdy. | <i>L</i> 75 | | | | | | | | | | ::::: | | | , | | | | | | | İ | | | | :•:•: | | | | 2 40 | | | | | | | | | | | | Sha | raosm, lgt gr~bk. | , | 390 | <u> </u> | | | | | | | | | | <u> </u> | | | | | | | | | | | | | | | | | epth | | | | ithology | 1 | | I | , 1 | P | | Assay | Resul | LS | |-----------------|----------|---------------------------|------|-----------------------------|--|-----------------|--------|--------------|-------|----|-------|-------|----| | -, | Geolog. | | : | | Miner | alization | Sample | Depth | Жd | Pb | Zn | Ba | Λg | | (n) | Los | Group | Rock | Remarks | _ | etc | No. | (n) | (m) | \$ | % | . % | 8 | | <u>95</u>
00 | | Loralai Member
-Unit-I | Sha | raosm,
lgt gr~bk. | 260
270
245
270
260
240 | Ca vn, vnt, flm | | | | | | | | | 01 | | | Ls | gr~dk gr, arg,
sft, cmp, | 140 | | | | | | | | | | | <u> </u> | | | T STE, UMP. | | | | | | | | | | | | | | | | : | | | * 4 | ٠ | · · . | , . | | | - | - | · . | | | | | | | | | | | | | • | • | | | | | | | | | | | | | - | | | | | | ٠. | 6-1 : MJP-8 Drill Hole No : SURMAI-P Elevation : 1,549,57m Location : K=1,123,076 E=2,007,983 Inclination : -30° Coordinate Point Depth : 401.00 Core Recovery : 97.51% : L-38 Drilling Machine Term : JUN 29 '88 ~ JUL 18 '88 | <u></u> | Γ | | <u> </u> | ithology | Γ. | · | | | · · · · · · · · · · · · · · · · · · · | Assay. | Resul | 15 | |----------|--|--------------|----------------------------|---|------------------------|--------|--------|-----|---------------------------------------|--------|-------|-----| | Depth | Geolog. | | | | Mineralization | Sample | Depth | ¥d | Pb | Zn | Ba | Λg | | (m) | Log | Group | Rock | Remarks | etc | No. | (m) | (m) | <i>*</i> | * | * | g/t | | 3.1 | | | | non core. | III z | | | | | | | | | <u>5</u> | XXXXX——XXXXX | | | gr, cmp, wtbos,
partly with soil | | | | | | | | | | 10 | XXX XXX | | Ls | gr,cmp,wtbos,
partly with soil | 067
Ca Vi, vnt, [1] | - | :
: | | | | | | | 15
 | | Member-Unit- | | · | 275 | | | | | | | | | 25 | | Anjira Mer | Sh | сmp~lam, lgt br. | -
1 | | | | | | : | | | 30 | | V | Ls | · | /70
/90 | · | | - | • | - | | | | 35 | 48X
44X
11 43
1 1 23
1 1 X | | Sh
Ls
Ls
Sh
Ls | lam, bk, arg. sr.cmp.with much soil. sr.cmp. sr.cmp.with much soil. cmp. gr, cmp. | Ca vn, vnt, flm 11mz | | | | | | | | Fig. II -2-19 Drilling Columns of MJP-6 | | | | Lì | thology | An emilion of the property of the | | | en grinder grown grown grown gelected before each collection. | | | | Result | s | |-----|---|---------------------------|----------------|--|-----------------------------------|------------------------|-----------------|---|-----------|----------|----------|---------|-----------| | 1 | Geolog. | 0 | D i. | Remarks | Mine | eralization
etc | Sample
No. | Depth
(m) | ¥d
(n) | Pb
\$ | 2n | Ba
% | Ág
«/• | | (n) | Log | Group | Rock | Kemarks
Shilamidk gri
Lsigricmpiulth much soil | | † † | NO. | (m) | (n) | * | 70 | , š | 8/t | | | | jourd
 ··· 1 | Ls | Ls. cap. with much soil lar. cap. \Sh. cap. lam, srs br. \Sr. Cmp. | <i>1</i> 70 | vnt, fl | | | | | | | | | 45 | | -V | 1 | cap-lam,grs br | . 170 | Ca Vn. | | | | | | . : | | | | | | Sh
Ls | 8г.сыр. | 275
275 | Haz
I I I | | | | | | | | | 50 | | | Sh | cmp~lam, dk gr. | | | : | | | | | | | | | | | S h
L s | lam, bk, arg.
gr, cmp, fos. | 180 | - | | : | | | | | 1 | | | 0 | | S h | lam, bk, arg, fos.
partly mly~Ls. | L 75 | | ine
Light of | | | | | | | | 55 | 0 | | | fos. | £75
£65
£65 | | | | - | · | | | | | | | $\mathbf{t} - \mathbf{y}$ | Ls
Sh
Ls | gr, cmp.
lam, bk, arg, fos.
gr, cmp, wtbos. | 280
255
250 | T | | | ÷ | | | | · | | 60 | | -Uni | Ls
Sh
Ls | gr, cmp, wtbos.
lam, bk, arg.
gr, cmp, fos. | 170
165 | + + | | | - | | | | - | | | | Member- | S h | lam~cmp,
bk~dk gr.
gr, cmp. | /60
/65 | | | | | | | | | | | | r ri | Ls | Sh. bk, cly.
gr, cmp.
Sh. lam, bk. | Z80 | | | | | | | | | | 70 | X | Lorala | Ls | gr, cmp, wtbos. | | l m | | . : : : : | | | | | | | 75 | ××××××××××××××××××××××××××××××××××××××× | L | | | | z
vn, vnt, f
dis | | | | | | | | | | | | Sh | cmp~lam,
dk gr~bk. | £ 60 | Imz
Ca v | | | | | | | | | 80 | 0 | i | Ls | gr, cmp, wtbos.
fos. | | | | | | | | | | | | 0 | | S h | cmp, gr~dk gr.
fos. | | | :
:.
: | | | | | | | | 85 | TIIIIX | | Ls | gr, wybos. | | | | | | | | | | | _ | | | Sh | lam, dk gr~bk,
arg~cly. | ∠65
∠ 55 | | | | | | | | | | | ××××××××××××××××××××××××××××××××××××××× | | L s | gr, cmp.
lam, bk, arg~cly.
gr, cmp.
cmp, dk gr, cly | 175
175 | ± 4 | · | | | | | | | | 90 | | | Ls
Sh | cmp, dk gr, cly | 455 | | | | | | <u> </u> | | | | Depth (m) | Geolog. Log C T A A A A A A A A A A A A A A A A A | Group | Rock
Sh
L s | Remarks | Hine | ralization | Sample | Depth | ¥id | Pb | Zn | ay R
Ba | |-----------|--|---------------|-------------------|--|--------------|--|-------------|----------------|-------|-------------|-----|--| | (m) | LOB O | Group | L s | Remarks | † " " | | 1 044117.40 | 20,411 | 11.74 | | | | | | | | L s | cmp,dk gr,cly,fos. | | etc | No. | ·. (m) | (m) | .% | * | , | | 95
— | | | | | 7.60 | - 4 t | | . : | | | - | | | 95 | | | | gr, cmp. | 170 | 4 4 | | | | | | | | 95 | | · | Sh | cmp~lam, dk gr. | Z 60 | | | | | | | | | 95 | | | | | 11.4 | 2 | | | | | | | | | :۵ | | Ls | gr, wtbos. | | | | | | | 1 | | | _ | | | | | 270 | Ca vp, vnt, flp., | | | | ; | | | | | | | Sh | cmp, dk gr. | 180 | vint | | | | | | | | | 11111111 | | ļ | | 200 | T E | | | | | | | | 100 | | | Ls | gr, cmp, wtbos. | 1 | Ca) | | | | | | | | | | ٠ | 1.8 | gr, cmp, webos, | Z80 | Δd | | | | | | | | - | 1111118 | | Sh
Ls | cmp.dk gr. | Z80 | 1 | | : | | | | | | | | | Ls
Sh
Ls | gr,cmp.
cmp,dk gr.
gr.cmp. | Z90 | | | | | | | | | _ | | | C 2 | lam~cmp, | | т | | | | | | | | 105 | | | Sh | bk~dk gr. | 100 | 1 | | | | | | | | | $ \mathbf{m} $ | | | 1 | 270 | İ | | | | | | | | | | | Ls | gr, cmp. | | | | | | | 25 | - | | | | | Lo | gr, cmp. | | | | | | | | | | 110 | | 2 | | | | | | 4 1 | | | | | | | Δ: | | Sh | cmp~lam,
bk~dk gr. | 190 | | | | • | | | | | | | ٠.
ب | | | | | | | | | | | | | | Uni | Ls | gr, cmp. | | | | | | | | | |
115 | | 1 | | | | dis | | , - | | | | | | | | ber | - 5h | lam, bk~dk gr. | Z85 · | · 7 Y | | | | | i . | | | | ШШ | | Ls | gr, cmp.
lam, bk~dk gr. | 760 | Py I | 1 | | - ' | | | | | _ | | Mem | Ls | gr, cmp. | | | | : · · · · | , | | | | | _ : | | Z | | | 275 | بالنا | | | | | | | | 120 | | 'ឥ
ស | Sh | спр~lam, dk gr. | Z 60 | [[mz | | | | | | | | | | | | | Z45 .
Z65 | | | | | | ! | | | _ | | ก
เ | ls_ | gr, cmp. | | 1 - | | | | | | | | - | 1117111 | Loral | S h | cmp, gr~dk gr. | Z 70 | * - | | | | | | | | 125 | | > − | Ls | gralgt gr.cmp.wtbos. | 170 | | | | | | | | | | | | | lam.bk.arg. | 275 | ', ', ', ', ', ', ', ', ', ', ', ', ', ' | | | | | | | | | шШЩ | | L s
S h | gr.cmp.wibos.
lam.dk gr~bk.arg. | 170 | 1, VI | | : : : | | | | | | | | 1 | Ls | gr.cmp.wibos. | Z80
Z80 | | | | | | | | | 130 | | | S h | lam,bk-dk gr,arg.
gr,cmp. | Z80
Z80 | | | | | | | | | | ∴ | | Sh | lam,dk grobk.argody. | 175 | ;
;
; | | v 1 | · | | | | | | шш | | 1.5 | gr.cmp. | £80 | , , <u> </u> | | | | | | | | | تنستن | | S h | lan,dk gratk,argaely.
gr,cmp. | <i>L</i> 70 | , <u>†</u> | | | | | | | | <u>-</u> | Δ. | | Sh | lam, bk~dk gr, | £70 | : | | | | | | | | 135 | c | | 511 | arg~cly.
fos. | ∠ 80 | | | | | | | | | -, · · ! | | : : | Ls
sh | gr.cap.wtbos.
lam,dk gr.fos. | 270 | T = = | | | | | | | | - | | | Ls | gr.cmp.wtbos.
cmp-tam.dk gr-bk, | • | <u> </u> | | | | | | | | ~ | ,
1111111 | | Sh | arg.fos.
gr.cap.wtbos.
iam.bk.arg~cly. | 1 | | | | | | | | | | | | Lit | hology | | | | | | | Assay | Resul | ts | |---------|--|------------------------|------------|---|--------------------|------------|--------------------|----------------------------|-----|---------------|-------|----------------|-------------| | Depth | Geolog. | | Y | | Mineralizati |
On | Sample | Depth | ¥d | Pb | Zn | Вa | ys | | (n) | Log | Group | Rock | Remarks
gr.cmp.wtbos. | etc | | lio. | (m) | (m) | \$ | \$ | % | g/t | | - | | | | , | 160 | Ţ | | | | | | | | | | | | S h | lam~cmp, | Z50
Z30 | r) | | | | | | | | | - | | | | bk~dk gr.arg. | Z50 | d. | | | | | | | | | 145 | | | | | 2 70 | P | | | | | | | | | 140 | | λſ | Ls | er cmp.wtbos | 760 W | . 1 | į | | | | : | | | | | 717777 | | 17 3 | gr.cmp.wtbos.
Sh.cmp-lam.dk gr-bk.
Ls.gr.mtbos. | , en =6 | ī | | | | | | | | | | ۵; | iH
T | Sh | lam, bk, arg~cly. | S. I. | :- | | | | | | | | | | | un | " | Sp.Py dis
in Ca vn(149.5m). | لاية £175 <u>م</u> | | : | | | | 1. | | | | 150 | | رم _ا
ا ا | Ls | gr.cmp,wtbos. | 275 th | | | 1 | | | | | ĺ | | | | H | ~ · | lam,bk. | | T | | | : | | | | | | - | | pe | Sh | | ్డి | | | | | | | | | | | | emp | Ls | gr, cmp, wtbos. | <i>L</i> 60 | <u>i</u> , | | | | | * . | | | | | | Me | Sh | | Z80 | - | | | | | | | ĺ | | 155 | | ਾਜ | Ls | lam,bk~dk gr.
gr.cmp.wtbos. | 2 50
260 | i | | | | | | | | | _ | | aj | S·h | gr.emp.wtbos.
lam~cmp, | Z80
Z80 | 7 |] | | | | | | | | - | | H | | bk~dk gr, | Z45 | 7 |
 | | | | | | | | | ПППР | ra | L s
S h | gr.cup.wtbos.fos.
cmp.dk gr. | Z40
Z80 | Ĭ. | | | | | .: | | | |
160 | | Q | Ls | gr, cmp, wtbos. | 160 | | | | | ŧ
 | | | | | | | }~~ { | Sh. | lam, dk gr~bk, | 270 | 1 | | | | | | | | | - | | | L s | gr, wtbos. | | T | | , | | | | | | | | ШЩ | | Ls | gr, wtbos. | L75 " | 7 | | • | | | | ١. | | | | | | Sh | emp~lam.dk gr~bk.arg.
fos(coral # lcm). | s | į | | | | | | | | | 165 | | | Ls | gr.cmp.wtbos. | 275 | · ± | | | | | | | | | | | | Sh
Ls | lam.bk,arg.
gr.wibos. | ∠50 | ν,
T | | | | | | | | | _ | c | | Sh | lam,bk,ara,fos. | A dis | d. | | er to the second | | | | | | | | : | | " | · | Si Sp | by. | | | | | | | | | 168.5 | | | Ls | gr.bre.mixed wh Sh.
Si.Ca vnt+Sp dis. | | | DH6-1 | 168.5~169.5 | 1.0 | 0.13 | 4.26 | <0.01 | 2.0 | | 170 | 3 | | Sh | cmp.dk gr.wh Si vnt. | 276 11 : 1 | ì | DH6-3 | 169.5~170.3 | 0.8 | <0.01 | 0.04 | <0.01 | 0.5 | | | ×× | | Ls | gr.wybos.
Si>Ce vn-vnt
+Sp)Ga sg dis. | | | DH6-3 | 170.3~172.4 | 2.1 | 1.81 | 13.90 | <0.01 | 16.8 | | | | | Ls | gr.wtbos.Sp>Ga wk dis. | 1 00 | | DH6-4 | 172.4-173.3 | 0.9 | 0.97 | 0.57 | <0.01 | 7.5 | | 175 | | 11 - | Sh
Ls | lam,bk.arg.
gr.wtbos.Si vnt⇒Ga dis | 2 80 | , | DH6-5 | 173.3~173.9
173.9~174.6 | 0.6 | 0.11 | 0.04 | <0.01
<0.01 | 1.0
5.8 | | | | ۲ | Ls | gr.mtbos.Si>Ca vny.
Gw>So dis. | Z90 | | DH6-7 | 174.6-176.2 | 1.6 | 1.22 | 0.51 | <0.01 | | | _ | 11111111 | ni | sh | bk~dk gr,cly. | Z 80 | . 1. | DH6-8 | 176.2~176.8 | 0.6 | 0.14 | 0.03 | <0.01 | 1.0 | | _ | XX XX | -Ur | Ls | gr.wtbos.
Si>Ca nlwk. | | | DH6-9 | 176.8~179.2 | 2.4 | 0.37 | 0.69 | <0.01 | 3.8 | | | | i, | | Sp.Ga wk dis.
law.bk.cly. | | | DH 6-10 | 179.2~179.4 | 0.2 | <0.01 | 0.01 | <0.01 | ⟨0.5 | | 180 | | Membe | Ls | lam.ok.cly.
gr.wtbos.
Ca≫Si vn~ntwk. | | | DH 6-11 | 179.4~180.8 | 1.4 | 0.09 | 1.11 | <0.01 | 0.8 | | - | 111112 | m× | St | non core. | | | DH 6 -12 | 180.8~181.3
181.3~181.5 | 0.5 | 0.02 | 0.01 | <0.01 | 3.0 | | | | Me | Ls | gr.wtbos.fos.
Ca Si vnt+Sp dis. | | | DH 6-13 | 181.5~182.4 | 0.9 | 0.31 | 3.84 | <0.01 | 2.5 | | - | .X. | | Ls | gr.wtbos. | | | DH 6-14 | 182.4~184.8 | 2.4 | 0.02 | 0.04 | <0.01 | <0.5 | | 185 | | ai | | | 2 70 | | DH6-15 | 184.8~185.6 | 0.8 | 0.02 | 0.02 | <0.01 | <0.5 | | | | = | S h | lam,dk gr~bk,arg.
Ca vn.Si vnt+Sp dis. | | . ; | DH 6-16
DH 6-17 | 185.6~186.0
186.0~186.6 | 0.4 | 0.06 | 1.22 | <0.01
<0.01 | 0.5
8.5 | | _ | | ra | Ls | Sp sg dis+Si dis.
ge,wthos. | | ٠. ٠ | DH 6-18 | 186,6~187.8 | 1.2 | 0.29 | 2,98 | 40.01 | 3.0 | | | | 0 | Ls | Šī vnt+Sp.Gz dis.
cmp.gr. | Z6 5 | | DH6-19 | 187.8~188.4
188.4~188.8 | 0.6 | <0.01
0.66 | 0.04 | <0.01 | <0.5
5.8 | | | ШФЯ | = | IS
S h | gr.brc.Si>Ca vnt.
lam,bk. | | : | DH 6-21 | 188.8~189.3 | 0.5 | 0.05 | 0.01 | <0.01
<0.01 | 1.0 | | 190 | | | Ls | gr.wtbos~brc. | | | DH6-22 | 189.3~190.3 | 1.0 | 1.57 | 0.50 | <0.01 | 14.0 | | | | | Lith | ology | | | | | | | Assa | y Res | ults | |--|----------------|-------------|------------|---|----------------------------|---------------|--------------------|----------------------------|------|---------------|--------------|---------------|--------------| | Depth | Geolog. | : | | | Mineralizati | on | Sample | Depth | ¥d | Pb. | Zn | Ba | Ag | | (n) | Log | Group | Rock | Remarks | etc | | No. | (m) | (n) | \$ | 4 | \$ | g/t | | - | | | Ls | ls.Si>Ca vnt.Ga dis.
gr.wlbos. | | | DH 6-23 | 190.3~191.5 | 1.2 | 0.05 | 0.01 | <0.01 | <0.5 | | | | | SI | lam,bk,cly. | 170
 T T 1 | rÏ | DH 6-24 | 191.5~191.8 | 0.3 | 0.01 | 0.01 | <0.01 | 1.0 | | _ | | | Ls | gr.wtbos.
Ca.Si vnt+Sp)/Ca dis. | | | DH6-25 | 191.8~193.8 | 2.0 | 0.10 | 1.59 | | 8.0 | | _ | | : | Sh | cmp.dk gr. | 270 ± ± ± ± | <u> </u> | DH 6-26 | 193.8~194.0 | 0.2 | 0.18 | 0.01 | <0.01 | 2.0 | | 195 | | | Ls | gr.wtbos.
Ca.Si vnt+Ga dis. | 170 | | DH 6-27 | 194.0~196.2 | 2.2 | 0.44 | 0.06 | <0.01 | 3.3 | | - . | | | Sh | Br. | | . <u>.</u> | DH 6-28 | 196.2~196.4 | 0.2 | 0.10 | 0.01 | <0.01 | 0.5 | | - | | ٠. | Ls | gr,mtbos.Ca)Si vn. | ₂₇₀ | | DH 6-29 | 196.4~197.5 | 1.1 | 0.20 | 0.05 | | 1.3 | | - | hmmi | | Sh L6 | cmp lan.dk gr.arg.
Si.Ca vnt+Ga dis. | Z80 ± 1 = 1 | | DH 6 - 30 | 197.5~197.9
197.9198.1 | 0.4 | <0.01 | 0.12 | 0.02
<0.01 | <0.5
<0.5 | | - | | | Ls | gr~lgt.cmp.wtbos. | | r. | DH 6-32
DH 6-33 | 198.1~199.3
199.3~199.7 | 0.4 | 0.03
<0.01 | 0.11
4.79 | <0.01 | <0.5
<0.5 | | 200 | | | ls
ls | Si,Ca vnt+Sp dis.
gr-lgt gr.cap.utbos. | | <u> </u> | DH 6-34 | 1999.7~200.2 | 0.5 | ₹0.01 | 0.06 | <0.01 | <0.5 | | 201.1 | | = | Sh | lam.dk gr-bk.ars. | 180 S S S | .] | DH 6-35 | 200.2~201.1 | 0.9 | <0.01 | 0.02 | <0.01 | <0.5 | | | | ١ | Ls | gr.wtbos,fos.
Ca Si vnt. | ρ.σ. | : | DH 6-36 | 201.1~201.1 | 1.0 | <0.01 | <0.01 | <0.01 | <0.5 | | - | Δ | πi | Sh | lam.dk gr~bk.ars. | 1 22 | | DH6-1-36 | 100 - 500 1 | 00.0 | 0.38 | 1.99 | <0.01 | | | 205 | | ្ដា | ls | gr,dc,crs,fos. | 780 K | | UNO-1-30 | 168.5-202.1 | 33.6 | 0.30 | 1.33 | | 3.7 | | 100 | |
 | Ls | lgt gr.wtbos. | ∠85 °C. | | | | | | i . | | | | <u> </u> | | . e | si | isa,dk gr-bk.
ts.gr,ole.ers.fos. | 780 % | i
r: | | | | | | | | | - | iiiiii | H | Sha
Ls | raosa, lgt gr~bk.
gr.wibos. | Z80 × | | | | | | | | . : | | | | Member | Sha | raosm,let sr~bk. | 1 80 | | | | | | | | | | 210 | | | Ls | Br.cmp. | Z90 | г
! | | • | | | | : | | | <u> </u> | | g
J | Ls | reosm.gr~bk.
gr.crs. | Z80 | | | | | | | | . | | - | | e
Le | Sha
L.s | gr, cmp, wtbos. | 185
185 | dis | | | | | | , ' | | | - | | 上 | Sha | raosm, gr~dk gr. | 485 | Py c | | | | | | | Ì | | 215 | ininii | ro
Lo | S h | crs.
lam, bk. | /90 | | | | | | | | 1. L | | | 111110 | | Ls | gr, crs, fos. | 1 85 | <u>:</u> : | | | | | | | | | | ĬĬĬĬĬĬ | | -s- | aolm. | 185 | : | | * . * | | | | | ļ | | L | | | LS | gr, cmp, wtbos. | 480 | · - | <u> </u> | | | - | | | | | <u></u> | • : • : • • | | Sh | lam, bk. | Z80 | ÷ <u>=</u> | j
 | | | ļ
1 | | | | | 220 | .::::: | | Sha | raosm. | Z 85
Z 80 | | | | |
 | | | | | - | | | | | ∠80 . | - | | | | | | | | | <u> </u> | | | _ | . • | - | | | | | | | | | | | | | Ls | gr, cmp, wtbos. | | : | | : . | | | - | | . | | 225 | | | L | | 180 | | | · | | | | | | | F | ::::· | | | | | | | | | | | | . | | - | ::::: | | | | | | - | | | | | | - | | - | ::::: | | | | | | | | | | | | | | 230 | | | | | · | - | | | | | | , | | | | | | Sha | raosm,gr~dk gr. | | ≝
≺ | | | | | | | | | | ::::: | : | | | 2 70 | ر
د | | , | | | | | | | _ | | | | | 270 £ | | | | | | | | | | 000 | ::::: | | | | **** | <u> </u> | | | | | | | | | 235 | ::::: | | | - | ى 280 | 3 | | | | | | | | | - | :::: | | | | | | | | | | ٠. | | | | | :::: | | | | ." | | | | | | | | | | | ::::: : | | | | <u>/</u> 80 | | | . • | | | . : | | | | 240 | | | Ls | gr, crs, fos. | | | | | | | | | | | | | | l.i t | hology | | | | | | Assay | Resul | ts | |----------|--------------|-----------------------|------------|----------------------------------|--|--------|-------|-----|----|------------|-------|-----| | Depth | Geolog, | | | | Mineralization | Sample | Depth | Nd | Pb | Zn | Ва | Ag | | (m) | log
HIIIS | Group | Rock | Remarks
gr, crs, fos. | etc | No. | (m) | (m) | * | * | \$ | g/t | | - | | | Sha | raosm, | 1 85 | | | .: | | | | | | | liiiiii | · 🖦 | Ls | gr~dk gr. | 185 | | | | | | · | | | <u> </u> | 1111111 | ni t | | gr, cmp. | /80 E | | | | | | | | | 245 |
 | er-U | Sh | lam, bk. | vn, vn t, flm 087 | | | | |
 | | | | <u> </u> | | emp | Ls | gr, cmp, wtbos. | vn, | | | | | | | | | | | ie | | | 780 යි <u>.</u> | | | | | 3 .
3 . | | | | 250 | | Loralai Member-Unit-F | Sha | raosm, | L 75 | | | | | | | | | 230 | | 김. | Sua | dk gr~gr. | 210 | | | | | | | | | _ | | | | | | | | | · | | | | | 252.8 | mini | | | | \delta 180 | | | | | | | | | 255 | | | Ls | gr, cmp, wtbos. | 785 A A | | | | | * 4 | | | | | | | Sh | lam, bk, arg. | 180 | | | | | | | | | | | | | . 5- | | | | | | | | | | | | | | | 11 | | · | | | | | | | 260 | | | Ls | gr, cmp, wtbos. | ₹ 80 | | | | : | | | | | | | : | | | ** | | | | | | .* | | | - | | | | | | | | | | | | | | | | I – | | | | | | | | | | | | 265 | **** | <u>ب</u> | | | 180 <u>:</u> | | | | | | | | | - | | Uni | Lsa
L s | aolm.
gr, cmp, wtbos. | ∠80 | | | | | | | | | | ///// | | | | Z 80 | | | | | | | | | | | ber
 Lsa | aolm. | <u>:</u> · | - | | | | | | | | 270 | | | Ls | gr, cmp, wtbos. | | | | • | | | | | | - | | Mem | | Бт, омр, жезоо. | | | | | | | | | | | | | | | 280 | | | | | | | | | 075 | 11/1/2 | lai | Lsa
Sha | aolm, gr~bk.
raosm, dk gr~bk. | ₹75
£80 - | | ·. | | | | : | | | 275 | | Loral | Ls | gr, cmp~lam, | 26 5 | | | | | | | | | | | ò | Sha | wtbos.
raosm,dk gr. | 180 i | | | | | | | | | - | | · | | gr, cmp. | ∠80 ≅ | | · | | | | | | | 280 | | | Sha | raosm, dk gr. | 175 TH | | | | | | | | | - | | | | | , n, v | | | | | | | | | F | | | Ls | gr, cmp, wtbos. | .Ca vn, vnt, [lm | | | | | | | | | | | , | ъ | Pricmbinence, | £75 | | | | | | | | | 285 | | | | | -19 | | | | | | | | | | | | Lsa | aolm. | | | | | | | | | | - | 1 |
 | Sha | raosm, dk gr. | 780 4 Sib | | | | | | - | | | - | | | LS
Sha | ers,fos,#tbos.
reosm.dk gr. | 780 YP 4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | | | | | | * : | | 290 | × | | Sh
Ls | lam.bk.
gr.cmp.wtbos. | T | 2.7 | | | | | | | | - | 7. | | Lith | ology | | | <u> </u> | - | | | Assa | y Res | ults | |-------|--------------------------|---------|------------------------|---|--------|--------------------------|----------|-------------|------|-------|-------|-------|---------| | Depth | Geolog. | | 1 | | binera | lization | Sample | Depth | ₩d | Pb | Zn | Ba | Ag | | (m) | | Group | Rock | Remarks | - | etc | No. | (m) | (tn) | * | * | 3, | g/t | | | | | Ls
Sha
Sha
Ls | gr, cmp, wtbos.
raosm,
lam, bk, wtbos.
gr, cmp, wtbos. | | I | | | | | | | | | 295 | | | S h_ | lam, bk, arg. | | 1 | | | | | | | | | | | | Ls | gr, cmp, wtbos. | | dis | | 11444 | | | | | : | | 300 | | | Lsa
S h | aolm, gr~dk gr.
lam, bk, arg. | | P | | | | | | | | | 305 |]]]]]]]
<i>[</i>][]2 | | Lsa
Sh | gr,cmp,wtbos.
aolm,gr~dk gr.
lam,bk,arg. | | vn, vnt, flm | | · 4 | | | | | | | | | i t-1 | Ls
Sh | gr, cmp, wtbos.
lam, bk, arg.
gr, cmp, wtbos. | | Ca | | : ' | | | | | | | 310 | | er-Uni | | lam~cmp, bk. | | ÷ = | | | | | | | | | | 707.5 | Member- | S h | lam~cmp, bk. | | # .
.
.
. | | | | • | | | | | 315 | | ai N | Lsa
S h | aolm.
lam, bk, arg. | | | | | | | | | | | - | | oral | Lsa | aolm, gr~dk gr.
gr, cmp. | | :
:
: | | | | | | | | | 320 | | Ţ | Lsa
Ls | aolm, gr~dk gr.
gr, cmp, wtbos. | - | dis | : | | | | | | | | 325 | | | S h | lam, bk. | | Si dis | | | | | | | | | 326.7 | | | Ls | 81, lak. | | | DH6-37 | 326.7~327.3 | 0.4 | <0.01 | <0.01 | 0.23 | <0.5 | | 327.1 | | - | Sha
Lsa
S h | Si,Ca vnt. raosm. gr.cmp. aolm. lam,bk. | | 11 | | OLO. ULI.S | V-7 | 70.UI | 10.01 | V.E3 | , v., 5 | | | | | Lsa | aolm, gr. | | | | · | | | | | | | 335 | | | Ls | gr, cmp, wtbos. | | dis | | | | | | | | | - | | : | Ls | lam, bk.
gr, cmp, wtbos. | | Ру | | | | | | | | | 340 | | | Sh | lam, bk. | | 0.5 | | | . | | | , | | | | 1 | | Lit | hology | | | | | | | Assay | Resul | ts | |-------|--|----------------|------------|---------------------------------------|---|---------|--------|--|-----|----|-------|---------------|-----| | Depth | Geolog. | | · | :: | Mineralization | | Sample | Depth | Хd | Pb | Zn | Ва | Ag | | (n) | Los | Group | Rock | Remarks | etc | | Кo. | (B) | (m) | % | 5 | % | g/t | | | | | Lsa | Sh. lam, bk.
aolm. | | Py dis | | | | | | | | | 345 | | | Ls | gr, cmp, wtbos. | L45 | | | | | | | | | | 350 | | | Lsa | aolm. | 720 con v. | , | : w | tion in the contract of co | | | | | | | 955 | | | Ls | gr, cmp. wtbos. | | | | | | | 1 | - | | | 355 | | i t-1 | Lsa
L s | aolm, gr~dk gr.
gr, cmp. wtbos. | 245
250 | | | | | | | . i : | | | 360 | | er-Uni | Lsa | aolm, gr~dk gr. | Z55
Z60
Z50
Z45 | | | | | | | | | | 365 | The state of s | LOralai
Member | Ls | gr, cmp, wtbos. | Z 50 Z 45 | | | | | | | | | | | | | | lam, dk gr~bk. | 260 ED 1.55 L55 ES 250 ES 250 | | | | | _ | | | | | 375 | | | Ls | gr, cmp, wtbos. | 155 5 150 150 160 | | | | | | | : | | | 380 | | | Sha | raosm, dk gr~gr. | ∠ 60 ∠ 45 | | | | | | | | | | 385 | 0 | | L s
S h | gr, cmp, wtbos.
lam, bk, arg, fos. | L45 , | 17y d1s | | | | | | | | | | | | Ls | gr, cmp~bed. | | | | | · . | , | | | | | 390 | · . · . · · | ···- | | | -186- | | | | | | | | ļ | | | | | 1 | ithology | | | | | *********** | Assay | Resul | ts | |-------|---------|-----------------------|-------------------|--|------------------------|--------|-------|-----|-------------|-------|-------|-----| | Depth | Geolog. | | | | Mineralization | Sample | Depth | ١٧d | РЬ | Zn | Ba | AB | | (m) | Log | Group | Rock | Remarks | etc | No. | (m) | (m) | % | .7 | 70 | g/l | | 395 | | Loralai Member-Unit-1 | Sha Ls Sha Ls Sha | raosm, dk gr~bk, gr, crs, br. raosm, dk gr~bk. gr, cmp~bed. raosm, dk gr~bk. | Ca vn, vnt, flm Py dis | | | | | | | | -189.190- Fig. II-2-21 Geological Profile of Surmai- I (MJP-1-MJP-3) -191,192- Fig. II -2-22 Geological Profile of Surmai- I (MJP-1, MJP-4) Fig. Π -2-23 Geological Profile of Surmai- Π (MJP-5-MJP-6) -195,196- # 2 - 4 - 1 - 4 Geologic structure # ((4)) , $(\mathrm{surmai-I}_{i})$, i_{i+1} The geological profile by drilling for this area is shown in Figure II - $2-21\sim II-2-22$ and PL. II $-2-2\sim II-2-3$. There are two significant geological characteristics of this area seen from these sections. processing and the specific control of the processing of the control of the specific control of the control of - a. The beds which constitute the Loralai Units-I ~ IV dip approximately 70° westward, bend gently and the dip becomes gentler with depth. The above structure was inferred from the correlation of each bed and the cross angle. The cross angle of the Loralai Units-I and II in MJP-2,3 and 4 located below the fault, which will be described later, is very stable and shows that the geologic structure of the vicinity is not disturbed. The cross angle of the Loralai Units-II and IV located above the fault locally varies considerably and indicate the local disturbance of geologic structure and the existence of small faults. - b. In the central part, there is a westward steeply dipping normal fault whose displacement is 300~400 m. This fault was known from surface survey, but the existence, the shape and the exact location were confirmed by the present survey. The correlation of the units above and below this fault among the drill holes is very clear as shown in the cross section, and thus its existence is confirmed. The displacement was estimated from the position of the boundary of Units-II and III on both side of the fault in the cross section. Control of the property of the control contr # (2) Surmai-Mark various and selection of the There are two structural characteristics of this area interpreted from the geological profiles (Fig. Π -2-23 and PL. Π -2-4). a. The beds of the Loralai Unit-I and Anjira Unit-I dip westward at 60°~70° with gentle folding and the dip becomes lower with depth. The above structure was inferred from the correlation of each bed and the cross angle. The cross angle of the Loralai Units-I and II in MJP-5 and 6 below the fault is very stable and indicates that the geologic structure of the vicinity is not disturbed. The cross angle of the Loralai Member Units-IV located above the fault locally varies considerably and it indicates the local disturbance of geological structure and the existence of small faults. The fact that a strata which would be correlated to the bed at 315~360 m of MJP-6 does not exist in MJP-5 and that the cross angle in MJP-6 changes from 80°~90° in higher horizons to 45°~60° below 315 m and also that there are fractured zones near 315 m of MJP-6 and near 320 m of MJP-5 was interpreted to be the evidence for the existence of a continuous fault at the fractured zone. From similar approach, it is inferred that a fault exists in the central part of Loralai Unit-IV. b. In the central part of this area, there is a normal fault dipping steeply westward and the displacement is approximately 350 m. This fault was known from the surface survey, but the existence, the shape and the exact location were confirmed by the present survey. The correlation of the units above and below this fault among the drill holes is very clear as shown in the cross section, thus the existence of this fault is confirmed. The displacement was estimated from the position of the boundary of Units-II and III on both sides of the fault in the cross section. # 2-4-1-5 Mineralization As mentioned earlier, lead-zinc sulfide mineralized zones were confirmed by MJP-2~5 drillings. Only MJP-1 did not intercept ore. The characteristics of the mineralization will be reported below. ## (1) Nature of Mineralization The nature of mineralization is similar in both Surmai-I and M. The mineralization is composed mainly of dissemination of powdery to granular sphalerite (ZnS_2) and galena (PbS), pale brown siderite $(FeCO_3)$ and calcite vein-veinlets which cut through the zone and is accompanied by garafine tanggeragi na nga Salahayayaya ng mga kating na salahay smaller amount of pyrite (FeS_2) , chalcopyrite $(CuFeS_2)$ and also weak silicification. The ratio of sphalerite and galena is approximately 10:1. The sphalerite is brown and appears to have higher content of iron than those in normal Mississippi Valley type lead-zinc deposits. Siderite and calcite often occurs in the same vein and, in such cases, calcite occurs in the central part and siderite on both sides (host rock side) of calcite, thus it is inferred that siderite crystallized before calcite. In many intensely mineralized zones, the host rock, limestone is fractured. The sketch of the mineralized core is shown in Figure II -2-13. Aside from the above minerals, minor amount of marcasite and hematite was observed by ore microscopy of 15 samples from the mineralized zone. Sphalerite grains are 0.05~0.2 mm in diameter and occurs scattered or grouped in calcite matrix. Generally, the boundary of the sphalerite grains and the calcite matrix is irregular. This indicates that very fine grains of sphalerite accumulated to form nodular grains. Galena often occurs independently as euhedral grains of around 1 mm. The results of the microscopic study is shown in Table II -2-18 and representative ore texture are shown in Photograph-6 and 7. X-ray diffraction of ten samples revealed the rather strong reflection of ankerite $(Ca(Fe^2,Mg,Mn)(CO_3)_2)$ and weak reflection of chlorite and sericite from several samples. The x-ray diffraction peak of siderite lies between those of $FeCO_3$ and $(Fe,Mn,Zn)CO_3$. The results are laid out in Table II-2-19. The representative x-ray diffraction patterns of above samples are attached in the Appendix. Seventy eight samples collected from various mineralized parts were assayed. The samples for analysis were prepared by taking a quarter of the core, separating 100 g by quartering, grinding to under 80 mesh and 20 g were extracted for analysis. The samples were analysed for Pb,Zn,Ba and Ag. They were analysed by atomic absorption spectrometry (AAS) at Chemex Labs Ltd., in Canada. The results are shown in Table II -2-20. The Karachi Branch of GSP analysed Cu as well as the above four elements by AAS. The results are shown in the table. Table II -2-18 Description of Microscopic Observation of Polished Specimens | | | | | | de la | · · · · · | gamental en la proposition de la constanta de | |------------|----------------|------------|------|------------|----------|-----------
--| | er er er | o i. | - <u> </u> | Mine | rals | . | .i. b | at magnification and an experience of | | Sample No. | Sp | Ga | Py | Ср | Мa | lle | Position & mineralization | | DH3- 1-1 | (O) | | Δ | | | | 170.0m, Sp>Si dis,Si>Ca vnt, | | DH3- 1-2 | ¹ © | . : | Δ, | *. | • | | 170.5m, Sp>Si dis,Si+Ca vnt. | | DH3- 1-3 | 0 | • | Δ | | | | 170.8m, Sp>>Si dis,Ca>Si vnt. | | DH3- 1-4 | 0 | | Δ | | | , | 171.3m, Sp dis,Ca>Si vnt. | | DH3 1-5 | Δ | | | | 0 | | 171.5m, Sp dis, Ca+Si vnt. | | DH3- 3 | 0 | Δ | Δ | | | | See Table-II -2-20. | | DH3- 4 | | O | Δ | | | 1.1 | aditto | | DH3- 5 | 0 | Δ | - Δ | - 17 | 1. | Δ | ditto | | DH3- 7 | • | 0 | Δ | : 1 | | 14 | ditto | | DH3- 8 | Δ | | • | 0 | 100 | Δ | ditto | | DH3-10 | 0 | | Δ | | | ¢ | ditto | | DH3-12 | | 0 | Δ | | | | ditto | | DH3-14 | | 0 | Δ | | | | ditto | | ЪН3-16 | 0 | Δ | Δ | | | | anditto a language and a constitution | | DH3-17 | 0 | | Δ | + 2
- 1 | | * -1 | ditto | Legend ⊚: abundant ○: common △: a few •: rare Sp: Sphalerite Ga: Galena Py: Pyrite Cp: Chalcopyrite Ma: Marcasite He: Hematite Ca: Calcite Si: Siderite Table II -2-19 X-Ray Diffraction Analyses | | | | · . | Mi | n e r | a 1 s | | | | | |------------|----|----|-----|----|-------|-------|----|----|-------------|-----| | Sample No. | Sp | Ga | Ру | Сp | Qz | Si | Ca | Ak | Se | Ch | | DH2-3 | 0 | • | | | 0 | 0 | 0 | 0 | 1 | • | | DH3- 1 | Δ | | | | Δ | - O | 0 | Δ | | Δ | | DH3- 3 | 0 | Δ | | | 0 | 0 | 0 | Δ | | • | | DH3- 4 | 0 | | | | 0 | 0 | | | | 24 | | DH4- 4 | • | • | Δ | | 0 | 0 | • | • | | | | DH4- 6 | | | • | | 0 | Δ | Δ | Δ | • | : | | DH5- 2 | Δ | | | | 0 | 0 | 0 | O | | • | | DH6-3 | 0 | Δ | | | 0 | 0 | • | Δ | | | | DH6-17 | 0 | • | | | Δ | . 0 | • | • | | 1.3 | | DH6-20 | • | • | | | 0 | 0. | Δ | 4 | | | Legend \odot : abundant \odot : common \triangle : a few •: rare Sp: Sphalerite Ga: Galena Py: Pyrite Cp: Chalcopyrite Qz: Quartz Si: Siderite Ca: Calcite Ak: Ankerite Se: Sericite Ch: Chlorite See Table-II-2-20 about the position and mineralization of each samples. | lumber | Drill | Horizon | Sample | Depth | Nidth | T T | G | rade | | | Mother | Hineralization | |--------|----------------|---------|-----------|-------------|-------|-------|-------|-------|-------|--------|----------------|----------------------------| | | No. | | No. | | | Ph \$ | 2n # | Ba 🕻 | 189/1 | Cu pps | rock | | | 1 | | | DH3-1 | 169.1-171.5 | 2.4 | 0.02 | 4.26 | <0.01 | 3.5 | 44 | L-I Ls | Sp)Ga dis.Ca+Si vn~ntwk | | 2 | | - | -2 | -171.9 | 0.4 | 0.59 | 0.15 | <0.01 | 8.9 | 24 | L-1 Sh | | | 3 | | ო | -3 | ~172.9 | 1.0 | 1.17 | 7.68 | <0.01 | 17.0 | 132 | L-I Ls | Sp>Ca dis,Ca+Si vn~ntwk | | | | A | | (Average) | 3.8 | 0.38 | 4.73 | <0.01 | 7.6 | 65 | | | | 4 | | | -4 | 176,3~177,1 | 0.8 | 0.20 | 8.86, | <0.01 | 15.2 | 100 | l-Ils | Sp>Ga dis,Si>Ca va~ntwk | | 5 | | | -5 | ~178.0 | 0.9 | 0.15 | 0.96 | <0.01 | 5.0 | 32 | Լ- Ls | Sp)Ga dis,Si>Ca vn\ntuk | | 6 | : | | -6 | ~178.3 | 0.3 | 0.02 | 0.01 | <0.01 | <0.5 | 12 | l-1 Ls | Ca vnt | | 7 | | | -7 | ~179,4 | 1.1 | 0.34 | 0.01 | <0.01 | 5.7 | 68 | L- Ls | Ga dis,Ca>Si ntwk | | 8 | ന | | -8 | ~180.1 | 0.7 | 0.16 | 0.01 | <0.01 | 3.0 | 580 | ե-1 ե s | Ga dis,Ca>Si vnt,Cp?,Py | | 9 | t | | -9 | -180.9 | 0.8 | 0.02 | 0.01 | <0.01 | <0.5 | 8 | l-1 ls | Ca vnt | | 10 | P ₄ | 0 | -10 | ~183.7 | 2.8 | 0.24 | 0.37 | <0.01 | 3.7 | 36 | L-1 ls | Sp)6a dis,Si+Ca vn\ntwk,Py | | 11 | J. | ω
 | -11 | -184.2 | 0.5 | 0.01 | 0.01 | <0.01 | ₹0,5 | ĨΓ | ե- Ls | Ca vnt | | 12 | X | A A | -12 | ~186.3 | 2.1 | 0.43 | 0.01 | <0.01 | 5.4 | 12 | L-1 Ls | Ca dis.Si+Ca vn~ntwk.Py | | 13 | | ` | -13 | ~187.3 | 1.0 | 0.10 | 0.01 | <0.01 | 2.3 | 20 | L-ILs,Sh | Py dis | | 14 | | | -14 | ~189.1 | 1.8 | 0.50 | 0.07 | <0.01 | 7.4 | 20 | Llls | Ga dis.Si+Ca va.atuk.Py | | 15 | | | -15 | ~191.0 | 1.9 | 0.02 | 0.01 | <0.01 | ₹0.5 | 12 | L-ILs,Sh | Ca vnt | | 16 | | | -16 | ~191.7 | 0.7 | 0.63 | 4.52 | <0.01 | 15.3 | 20 | l- Ls | Sp)Ga dis,Si>Ca va>ntwk | | | | | | (Ауегаве) | 15.4 | 0.25 | 0.80 | <0.01 | 4.9 | | | | | 17 | , | | -17 | 210.1~211.8 | 1.7 | 0.54 | 2.02 | <0.01 | 5.7 | 29 | L-i Ls | Sp>Ga dis,Si>Ca vn~ntwk | | | | -3-3 | ********* | | | | | | | | | | | 18 | | -45 | DH2-1 | 288.2~289.7 | 1.5 | 0.01 | 0.05 | <0.01 | <0.5 | | L-1 Ls | Si.Ca vnt | | 19 | | | -2 | -290.4 | 0.7 | 0.01 | <0.01 | <0.01 | <0.5 | | L-1 Sh | | | 20 | | -2 | -3 | ~291.0 | 0.6 | 0.23 | 5.74 | <0.01 | 3.9 | | t-ils | Sp.Ga dis.Si>Ca vnt.Py dis | | 21 | ' | ш | -4 | ~292.3 | 1.3 | 0.01 | 0.09 | (0.01 | ₹0.5 | | L-1 Sh | Sp.Ca,Si wk dis,Ca vat | | | 7 | | | (Average) | 4.1 | 0.04 | 0.89 | <0.01 | 1.0 | | | | | 22 | Д | | -5
 | 323.2~323.4 | 0.2 | 0.01 | 0.03 | <0.01 | ₹0.5 | | L-1-Ls | Si dis | | 23 | ¥. J. | N | -6 | -323.9 | 0.5 | 0.01 | 0.41 | <0.01 | <0.5 | | L-ILs,Sh | | | 24 | | ı | -7 | ~326.0 | 2.1 | 0.01 | 0.56 | <0.01 | ₹0.5 | ļ | L- Ls | Sp.Ga dis.Si>Ca vnt | | 25 | | Ĭ | -8 | -328.6 | 2.6 | 0.06 | 1.54 | <0.01 | 0.8 | | L-i Ls | Sp.Ca dis,Si>Ca vat | | | | | | (Average) | 6.4 | 0.03 | 1.00 | <0.01 | 0.6 | | | | | 26 | | | DH4-1 | 283.4~284.6 | 1.2 | <0.11 | 0.19 | <0.01 | <0.5 | | L-I-Sh | | | 27 | | | -2 | ~285.6 | 1.0 | 0.02 | 0.18 | <0.01 | <0.5 | | L-I Ls | Spreb+Gadis,Cantwk | | 28 | | | -3 | ~286.9 | 1.3 | 0.36 | 0.08 | <0.01 | 2.5 | | L-1 Sh | Py>Ga dis,Si>Ca vat | | 29 | | 1 | -4 | ~289.0 | 2.1 | 0.75 | 0.54 | <0.01 | 7.4 | | L- Ls | Sp>Cp,Ga dis,Ca>Si vnt | | 30 | | Ω | -5 | ~289.6 | 0.6 | 0.16 | 4.11 | <0.61 | 2.8 | | L-I Ls | Sp>Ga dis,Si dis,Ca vnt | | 31 | | | -6 | ~290.1 | 0.5 | 0.02 | 0.05 | <0.01 | ⟨0.5 | | L-I Sh | Si.Ca vnt.Si>Ca vnt | | | 4. | | | (Average) | 8.7 | 0.33 | 0.82 | <0.01 | 3.3 | | <u> </u> | D II o | | 32 | ı | | -7
 | 308.5~309.6 | 1.1 | 0.01 | 0.03 | <0.01 | <0.5 | | l-I is | Py dis,Ca vnt | | 33 | <u>Д</u> , | 4 | -8 | ~310.4 | 0.8 | 0.01 | 0.03 | <0.01 | (0.5 | | l-! Ls | Ca,Si vnt | | | Α. | U | | (Average) | 1.9 | 0.01 | 0.03 | <0.01 | 40.5 | | | CIAD. 4: | | 34 | | | -9 | 316.2-317.1 | 0.9 | 0.01 | <0.01 | ₹0.01 | <0.5 | | L-1 Ls | SixPy dis | | 35 | | 1 2 | -10 | ~318.1 | 1.0 | 0.01 | 0.02 | <0.01 | <0.5 | | L-I Ls | Sp dis,Ca va,Si dis | | 36 | | 4 | -11 | -319.9 | 1.8 | 0.08 | 0.72 | <0.01 | 0.5 | | L-i Ls | Sp>Ga dis,Si dis>vn,Ca vn | | 37 | | 5 | -12 | ~320.2 | 0.3 | 0.08 | 11.10 | <0.01 | 5.6 | | L-I Ls | Si>Py>Ca dis | | 38 | | | -13 | -320.4 | 0.2 | 0.02 | 0.12 | <0.01 | 0.5 | | L-1 Ls | SiDPy dis,Ca vnt | | | | | L | (Ачегаде) | 4.2 | 0.04 | 1.11 | <0.01 | 0.9 | | <u> </u> | <u></u> | | Иниве | n Drill | Horizon | Sapple | Depth | Nidth | | ** ************************************ | Grad | e | 17. 1 | Hother | Mineralization | |----------|--------------|---------|---------------------------------------|---------------------|------------|----------------|---|----------------|-------------|--|---
--| | | No. | | No. | | | Pb % | Za š | Ba I | N8"/. | Cu pps | | | | 39 | | | DH6-1 | 168,5~169.5 | 1.0 | 0.13 | 4,26 | <0.01 | 2.0 | 57 | l- ls | Sp dis Si+Ca vnt | | 40 | | | · · · · · · · · · · · · · · · · · · · | -170.3 | 0.8 | <0.01 | 0.04 | ⟨0.01 | 0.5 | 20 | L-1 Sh | Si vnt. wk Sp dis | | 41 | | | - 3 | ~172.4 | 2.1 | 1.81 | 13.90 | <0,01 | 16.8 | 154 | L-I Ls | Sp)Ga dis,Si>Ca vn\vat | | 42 | | | -d | ~173.3 | 0.9 | 0,97 | 0.57 | <0.01 | 7.5 | 18 | i-į is | Sp>Ga dis | | 43 | - | | -5 | ~173.9 | | | 0.04 | <0.01 | 1.0 | 31 | L-1 Sh | arg | | | - | | | | 0.6 | 0.11 | | | | | | | | 44 | .[· | ન | -6 | -174.6 | 0.7 | 0.82 | 2.96 | <0.01 | 5.8 | 41 | Լ- Ls | Si dis,Si vnt | | 45 | 434 | 9 | -7
 | -178.2 | 1.6 | 1,22 | 0.51 | <0,01 | 11.0 | 21 | l-1 Ls | Ca>Sp dis Si>Ca ynt | | 46 | | | -8 | ~176.8 | 0.6 | 0.14 | 0.03 | <0.01 | 1.0 | 32 | ե-1 Տե | cly | | 47 | | ¥ | -9 | ~179.2 | 2.4 | 0.37 | 0.69 | <0.01 | 3.8 | 15 | L- Ls | Sp.Ca wk dis.Si>Ca ntwk | | 48 | | | -10. | ~179.4 | 0.2 | <0.01 | 0.01 | <0.01 | <0.5 | 33 | L-1 Sh | cly as a second | | 49 | .]. | | -11 | ~180.8 | 1.4 | 0.09 | 1.11 | <0.01 | 0.8 | 19 | L-I Ls | Ca)Si vn\ntwk | | | .] | | | ~181.3 | 0.5 | _ | - | (Non co | re) – | | | *************************************** | | . 50 | ¹ | | -15 | ~181.5 | 0.2 | 0.02 | 0.01 | <0.01 | 8.0 | 35 | L-1 Sh | rely of the grown of | | 51. | | | -13 | ~182.4 | 0.9 | 0.31 | 3.84 | <0.01 | 2.5 | 49 | L-[ls | Sp dis Ca Si yat | | | | | | (Average) | 13.9 | 0.66 | 3.25 | <0.01 | 6.0 | 45 | | | | 52 | 1 | | -14 | ~184.8 | 2.4 | 0.02 | 0.04 | <0.01 | (0.5 | 11 | L-I Ls | | | 53 | | | -15 | ~185.6 | 0.8 | 0.02 | 0.02 | <0.01 | <0.5 ⋅ | 30: | L-1 Sh | arg | | | | | *********** | | | * | | | | | | | | 54 | ဖ | | -16 | ~186.0 | 0.4 | 0.06 | 1.22 | <0.01 | 0.5 | 25 | L-ILs | Sp dis Ca vn.Si vnt | | 55 | | | -17 | ~186.6 | 0.6 | 0.34 | 20.90 | <0.01 | 8.5 | 224 | L I Ls | Sp.Sg dis,Si dis | | 56 | | 2 | -18 | ~187.8 | 1.2 | 0.29 | 2.96 | <0.01 | 3.0 | 37 | L-I Ls | Sp.Ga dis,Si vnt | | 57
58 | μ, | 9 | -19
-20 | -188.4
-188.8 | 0.6 | <0,01
0.66 | 0.04 | <0.01
<0.01 | <0.5
5.8 | 15
19 | L-ISh
L-ILs | Si>Ca vnt | | 59 | ר | A - | -21 | 189.3 | 0.5 | 0.05 | 0.01 | <0.01 | 1.0 | 35 | L-I Sh | 1 | | 60 | 🔀 | ` | -22 | ~190.3 | 1.0 | 1.51 | 0.50 | <0.01 | 14.0 | 17 | L-I Ls | Ga dis,Si>Ca vnt | | | 7 | | 7 3 4 | (Average) | 4.7 | 0.51 | 3.66 | 00.01 | 5.5 | 51 | | | | 61 | 1 1 | | -23 | ~191.5 | 1.2 | 0.05 | 0.01 | <0.01 | <0.5 | 10 | Lils | | | 82 | .] | | -24 | -191.8 | 0.3 | 0.01 | 0.01 | (0.01 | 1.0 | 36 | L-1 Sh | cly | | 63 | | | -25 | ~193.8 | 2.0 | 0.10 | 1.59 | <0.01 | 0.8 | 23 | L-i Ls | Sp)Ga dis Ca,Si vnt | | 64 | 1 | 1124 | -26 | -194.0 | 0.2 | 81.0 | 0.01 | ₹0:01 | - 2.0 | 15 | L-I Sh | | | 65 | 1 | 8 | -27 | ~196.2 | 2.2 | 0.44 | 0.06 | <0.01 | 3.3 | 10 | L-1 Ls | Ga dis,Ca,Si vnt | | 66 |] | φ | -28 | 196.4 | 0.2 | 0.10 | 0.01 | <0.01 | 0.5 | 18 | L-1 Sh | | | 67 | | - A | -29 | ~197.5 | 1.1 | 0.20 | 0.05 | <0.01 | 1.3 | 11 | l-I Ls | Ga dis,Ca)Si vn | | 68 | - i | | -30 | ~197.9
(Average) | 0.4
6.1 | <0.01
0.24 | 0.64 | 0.02
<0.01 | 0.5 | 29 | L-I Sh | arg | | 69 | ·} | | -31 | ~198.1 | 0.1 | <0.01 | 0.12 | ⟨0.01 | <0.5 | 9 | l-I ls | Ga dis,Si,Ca vnt | | 70 | 1 | | -32 | ~199.3 | 1.2 | 0.03 | 0.11 | <0.01 | <0.5 | 12 | L-I Ls | | | |] | | | | | | | | | | | | | 71 |] | -9-4 | -33 | ~199.7 | 0.4 | <0.01 | 4.79 | <0.01 | <0.5 | 38 | Lils | Sp dis.Si,Ca vnt,Py | | 79 | . J | | | ~200.2 | 0.5 | ZA 61 | O VE | (0.01 | (0.5 | 14 | L-I Ls | | | 72 | | | -34
-35 | ~200.2 | 0.5 | <0.01
<0.01 | 0.06 | <0.01
<0.01 | <0.5 | 30 | L-I Sh | arg | | 74 | 1 | | -36 | ~202.1 | 1.0 | <0.01 | <0.01 | ₹0.01 | ₹0.5 | 11 | L-1 Ls | Ca.Si vnt | | | | 2 12 | 24 4 2 | | | i Dago | 1111 | 1.1 | | | | | | | | | | (Ground Av) | 33.6 | 0.38 | 1.99 | <0.01 | 3.7 | 34 | | | | 75 |] | | -37 | 326.7~327.1 | 0.4 | <0.01 | <0.01 | 0.23 | <0.5 | 10 | Ls | Si,Ca vnt | | | | | חויב (| 215.0~215.2 | 0.2 | n 19 | <0.01 | <0.01 | 1.3 | | L-ISh | Si>Ca vnt | | 76
77 | ا ب | ່ເດ | DH5-1
-2 | ~215.8 | 0.2 | 0.12 | 1.89 | <0.01 | 3.7 | | L-I Ls | Sp>Ga dis,Si,Ca vnt | | 78 | , <u>4</u> , | ! | -3 | ~216.8 | 1.0 | 0.09 | 0.40 | <0.01 | 0.8 | ······································ | L-I ls | Sp>Ga dis,Si,Ca vnt | | | N | m | <u> </u> | (Average) | 1.8 | 0.19 | 0.85 | <0.01 | 1.8 | | .,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | The section of se | | | | | | | | | | | | | | | ## (2) Mineralized horizon It is seen from the results of the geological survey that most of the mineralized zone are controlled stratigraphically and they are emplaced in Loralai. We have located the stratigraphic position of the mineralization, correlated the horizons and prepared a drill hole stratigraphic correlation diagram in scale of 1:1,000 (Fig. II -2-20). The stratigraphic correlation diagram for other drill holes is shown in PL. II -2-1, which is an attempt to correlate the mineralization horizon and the individual beds by using 1:200 scale column. The lead-zinc sulfide mineralized horizons all belong to the three horizons of the Loralai Unit-II which have been designated as A,B,C horizons in descending order. The mineralized parts of each hole are given drilling numbers after the horizon name such as A-3,B-2,C-2 (Fig.I-2-20). Horizon A indicates the upper to middle part of Loralai-II, B the middle part and C horizon the lower part. The thickness of the mineralized horizons are, A >55 m, B 6~7 m and C 10~15 m. The mineralization occurs in these horizons with slightly varying position. The A horizon is confirmed in MJP-3 and MJP-6, B and C horizon in all drill holes except MJP-1. These three horizons occur continuously in Surmai-I to III. Also concentration of siderite veinlets occur in narrow parts (20~50 cm) of Loralai Unit-II~I of MJP-5 and MJP-6. # (3) Stratigraphic positions and conditions of mineralized zones The stratigraphic position, the average grade, the highest grade of the mineralized zone, as well as the promising zone for mining for each area and drilling site are reported below. The conditions for the promising zone are; more than 2.5 m wide and higher than Pb+Zn 5 %. The chracteristics of the assay results are; althouth high Zn parts occur locally, the Pb+Zn content is generally low and the promising zone is small, the Ba content is generally very low, the Ag content is somewhat high compared to other Mississippi Valley type lead-zinc deposits. The highest contents are, Pb; 1.81~% at A-6-1, Zn; 20.90~% at A-6-2, Ba; 0.23~% at 327~m of MJP-6, Ag; 17.0~% at A-3-1. ### a. Surmai-I In this area, mineralization was confirmed in A horizon by MJP-3, in B and C horizons by MJP-2 and 4. The mineralized zone (A-3) in A horizon is divided into, A-3-1, A-3-2 and A-3-3 by MJP-3. The conditions are as follows. taka dan jarapa da kata da da kata k | <u> </u> | <u>15 (47) (47) (4) (4) (5)</u> | eren e <u>reger e t</u> | 50 1 1 1 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | <u> </u> | 1, 16 pp 61 | <u> </u> | |----------|-------------------------------------|-------------------------|----------|---------------------------------------|----------|-------------|----------| | Horizon | Grade | Depth (m) | Width(m) | Pb(%) | Zn(%) | Ba(%) | Ag(g/t) | | | Average | 169. 1~172. 9 | 3.8 | 0. 38 | 4.73 | < 001 | 7. 6 | | A-3-1 | Maximum | 171. 9~172. 9 | 1. 0 | 1. 17 | 7. 68 | < 0.01 | 17. 0 | | | P. Z. M. | 169. 1~172. 9 | 3. 8 | 0. 38 | 4.73 | < 0.01 | 7. 6 | | | Average | 176. 3~191. 7 | 15. 4 | 0. 25 | 0.80 | < 0.01 | 4. 9 | | A-3-2 | Maximum | 176. 3~177. 1 | 0.8 | 0. 20 | 8.86 | < 0.01 | 15. 2 | | A-3-3 | Av. & Max. | 210. 1~211. 8 | 1.7 | 0. 54 | 2. 02 | < 0.01 | 5. 7 | Note) P.Z.N.: Promising Zone for Mining Av. & Max.: Average & Maximum The mineralized zone in B horizon is divided into two parts B-2 and B-4 by MJP-2 and 4. The conditions are
listed below. | Horizon | Grade | Depth (m) | Width(m) | Pb(%) | Zn(%) | Ba(%) | Ag(g/t) | |--------------|---------|---------------|----------|-------|-------|--------|---------| | | Average | 288. 2~292. 3 | 4. 1 | 0. 04 | 0.89 | < 0.01 | 1.0 | | B-2 | Maximum | 290. 4~291. 0 | 0.6 | 0. 23 | 5. 74 | < 0.01 | 3. 9 | | leponers and | Average | 283. 4~290. 1 | 6.7 | 0. 33 | 0. 62 | < 0.01 | 3. 3 | | B-4 | Maximum | 289. 0~289. 6 | 0.6 | 0. 16 | 4. 11 | < 0.01 | 2.8 | The mineralized zone in C horizon is divided into two parts C-2 and C-4 by MJP-2 and 4. C-4 is further subdivided into C-4-1 and C-4-2. The conditions are listed below. tanda Analikasa kendilah dianggalan menjadi pada kendalah dianggalan berajah dianggalan berajah dianggalan ber | Horizon | Grade | Depth (m) | Width(m) | Pb(%) | Zn(%) | Ba (%) | Ag(g/t) | |---------|---------|---------------|----------|-------|-------|--------|---------| | | Average | 323, 2~328, 6 | 5. 4 | 0. 03 | 1.00 | < 0.01 | 0.6 | | C-2 | Naximum | 326. 0~328. 6 | 2.6 | 0, 06 | 1. 54 | < 0.01 | 0, 8 | | | Average | 308. 5~310. 4 | 1. 9 | 0. 01 | 0.03 | < 0.01 | <0.5 | | C-4-1 | Maximum | 308. 5~309. 6 | 1.1 | 0. 01 | 0.03 | < 0.01 | <0.5 | | | Average | 316, 2~320, 4 | 4, 2 | 0.04 | 1.11 | < 0.01 | 0.9 | | C-4-2 | Maximum | 319. 9~320. 2 | 0.3 | 0.06 | 11.10 | < 0.01 | 5. 6 | Thus the mineralized zones in Surmai-I are largely grouped into three locations; A-3 in A, B-2 \sim B-4 in B and C-2 \sim C-4 in C horizons. There is a promising zone for mining in the uppermost part of A-3. It is seen from the geological profiles by drilling that the A-3-1 and A-3-2 continues to the large and extensive oxidized exposures on the surface. It is highly possible, therefore, that the sulfide mineralization in Loralai Unit- \mathbb{M} which could not be confirmed by this year's drilling, is emplaced at higher horizon than A-3. The horizontal distances between B-2 and B-4, and C-2 and C-4 are close, approximately 20 m. Thus they can largely be cosidered as continuous, but in detail there are many parts which cannot be correlated. The B-2 \sim B-4 and C-2 \sim C-4 mineralizations are not observed in MJP-3 which lies 120 m along the bedding. The grade is locally high, at over 10 % Zn, but it is generally low. ### b. Surmai-Ⅲ Mineralized zones were confirmed in A horizon by MJP-6 and B horizon by MJP-5 in this area. Mineralized zone of A horizon in MJP-6 is divided in to five parts, $A-6-1\sim5$. But A-6-5 is excluded because it consists of siderite and calcite veinlets and the Ph+Zn grade is below the limit of detection. In extracting the promising zone for mining of A-6-1, two calculations were made, one with emphasis on the grade and the other on the width of the zone. The conditions are listed below. | Average | | | Pb(%) | Zn(%) | Ba(%) | Ag(g/t) | |------------|--|--|---|---|---|--| | | 168, 5~182, 4 | 13. 9 | 0, 66 | 3, 25 | < 0.01 | 6. 0 | | Maximum | 170. 3~172. 4 | 2.1 | 1.81 | 13. 90 | < 0.01 | 16.8 | | P. Z. N. | 170. 3~172. 8 | 2. 5 | 1.68 | 11.77 | < 0.01 | 15. 3 | | P. Z. M. | 168. 5~172. 4 | 3. 9 | 1. 01 | 8. 59 | < 0.01 | 9. 7 | | Average | 185. 6~190. 3 | 4. 7 | 0. 51 | 3. 66 | < 0.01 | 5. 5 | | Maximum | 186. 0~186. 6 | 0.6 | 0. 34 | 20. 90 | < 0.01 | 8. 5 | | P. Z. N. | 185. 6~188. 1 | 2. 5 | 0. 23 | 6. 64 | < 0.01 | 3. 6 | | Average | 191. 8~197. 9 | 6. 1 | 0. 24 | 0. 64 | < 0.01 | 0. 7 | | Maximum | 191. 8~193. 8 | 2.0 | 0. 10 | 1. 59 | < 0.01 | 0.8 | | Av. & Max. | 199. 3~199. 7 | 0.4 | <0.01 | 4. 79 | < 0.01 | <0.5 | | | P. Z. M. P. Z. M. Average Maximum P. Z. M. Average Maximum | P. Z. M. 170. 3~172. 8 P. Z. M. 168. 5~172. 4 Average 185. 6~190. 3 Maximum 186. 0~186. 6 P. Z. M. 185. 6~188. 1 Average 191. 8~197. 9 Maximum 191. 8~193. 8 | P. Z. M. 170. 3~172. 8 2. 5 P. Z. M. 168. 5~172. 4 3. 9 Average 185. 6~190. 3 4. 7 Maximum 186. 0~186. 6 0. 6 P. Z. M. 185. 6~188. 1 2. 5 Average 191. 8~197. 9 6. 1 Maximum 191. 8~193. 8 2. 0 | P. Z. M. 170. 3~172. 8 2. 5 1. 68 P. Z. M. 168. 5~172. 4 3. 9 1. 01 Average 185. 6~190. 3 4. 7 0. 51 Maximum 186. 0~186. 6 0. 6 0. 34 P. Z. M. 185. 6~188. 1 2. 5 0. 23 Average 191. 8~197. 9 6. 1 0. 24 Maximum 191. 8~193. 8 2. 0 0. 10 | P. Z. M. 170. 3~172. 8 2. 5 1. 68 11. 77 P. Z. M. 168. 5~172. 4 3. 9 1. 01 8. 59 Average 185. 6~190. 3 4. 7 0. 51 3. 66 Maximum 186. 0~186. 6 0. 6 0. 34 20. 90 P. Z. M. 185. 6~188. 1 2. 5 0. 23 6. 64 Average 191. 8~197. 9 6. 1 0. 24 0. 64 Maximum 191. 8~193. 8 2. 0 0. 10 1. 59 | P. Z. M. 170. 3~172. 8 2. 5 1. 68 11. 77 < 0. 01 | B-5 is the only mineralization in MJP-5, and the conditions are listed below. | Horizon | Grade | Depth (m) | Width(m) | Pb(%) | Zn(%) | Ba (%) | Ag(g/t) | |---------|-------------|---------------|----------|-------|-------|--------|---------| | | Average | 215. 0~216. 8 | 1.8 | 0.19 | 0.85 | < 0.01 | 1.8 | | B-5 | Maximum | 215. 2~215. 8 | 0.6 | 0. 39 | 1.89 | < 0.01 | 3.7 | | | No. 1 Table | | 1: | • | 1 1 1 | | | and the program of the control th Thus, in Surmai-III, mineralization occur in two stratigraphic positions A-6 in A and B-5 in B horizons. There are two promising zones for mining in A-6. It is clear from the cross section that the A-6 mineralization and the large continuous oxide exposure at the surface are connected. Therefore, it is highly possible that the sulfide mineralization in Loralai Unit-III, which could not be confirmed by drilling this year also lies stratigraphically higher than A-6 in underground. B-5 mineralization does not occur in B horizon in MJP-6 which is located about 110 m along the bedding from A-6. ## 2-5 Discussions ## 2-5-1 Characteristics of the Geologic Structure and Mineralization It was clarified by the work of the first phase that the mineralization in Surmai area consisted of bedded orebodies emplaced along the bedding and of bodies emplaced along faults and fractures. Also it was shown that the larger bedded bodies were developed in Loralai Unit-II to III of the Surumai-I and III prospects, and that smaller fissure-filling type occured accompanying the bedded bodies. The mineralized horizons confirmed by drilling in the above area in the second phase agreed with those of the gossan on the surface. Therefore, it was proved that the inferrence during the first phase, that the gossan was formed by oxidation of the primary sulfides and that the primary mineralization was controled stratigraphically was correct. Usually the division of oxide and sulfide ores occur at the water table. It is inferred from the depth of the circulation loss during drilling and the distribution of hematitization of limestone that the water table is located at the depth of about 100 m from the surface. There is a westward dipping normal fault with a displacement of 300~400 m on the hanging wall side of the mineralized horizon of Surmai-I and Surmai-II. This fault cuts the mineralized horizon at 150~250 m below the surface. The water table and the fault are the factors which restrict the distribution of the sulfide ores. Generally, the Mississippi Valley type deposits are characterized by the following six features. - (1) They occur mostly in Paleozoic \sim Mesozoic limestone \sim dolomite horizon. - (2) They are formed epigenetically by precipitation and are accompanied by replacement process along fractured zones, fissures and voids. In many cases, solution collapse breccia formed prior to the pricipitation provided the coduits for ore fluid and thus emplacement. - (3) There are no igneous activity in the vicinity which would be related to the ore genesis. - (4) The composition of the deposit is relatively simple with galena and sphalerite as the main constituent minerals, pyrite and chalcopyrite are minor constituents if they exist. - (5) The iron content of sphalerite is low. The gold and silver contents are lower than in other types of lead-zinc deposits. - (6) Fluid inclusion studies have shown that the ore-forming fluids were saline water of about 100°C containing Na-Ca salts. and the contract of contra The results of the works of both phases of this project including drilling show that the mineralization in the Khuzdar District has features which mostly agree with those of Mississippi Valley type deposits. The process of forming of the Mississippi Valley type deposits in this area is considered to have proceeded as follows. - (1) Since Early Jurassic time, sedimentary basins which
formed relatively unstable shallow seas were distributed in this area. Clastic rocks such as the shale dominant Wulgai Formation and sandstone dominant Spingwar Member of the Shirinab Formation were deposited. Subsequently, limestone and shale alternation and limestone of Loralai were later deposited. Pyrite dissemination which is believed to be of chemical precipitation origin occur in the shale of Loralai. - (2) The saline water, similar to the oil-field brine, was formed by evaporation and reaction of the sea water with sediments. This water was trapped as interlayer water in the clastic rocks and migrated to the periphery of the sedimentary basins during compaction. - (3) The clastic rocks were dehydrated by the rise of temperature at the lower parts of the sedimentary basins due to ophiolite activities. This caused the solution of Pb, Zn, Ba and other heavy metals into the interlayer water. - (4) Voids such as the pores, solution brecciated parts had existed in the limestone near the basin. These were formed by groundwater. The movement of groundwater was controlled by faults, joints, and bedding. - (5) The old interlayer water containing the metals which migrated into the voids through structural lineations, were mixed with groundwater, cooled, diluted and reduced by H_2S present in the sediments. Thus the solubility of the metals decreased, and first the Pb-Zn-Hg-S was precipitated and then the siderite-calcite fluids were squeezed into thin veinlets. Thus the lead-zinc sulfide deposits were formed. The deposit can be largely grouped into those which filled the faults, solution collapse breccia and those which replaced the limestone widely in stratiform manner. The latter type is developed in the thick limestone of the Loralai Member (Units-II \sim III at Surmai Area), and is considered to be related to the fissile nature of the rock. - (6) After the deposition of Pb-Zn-Hg, Ba-Mg deposited and formed the mineralization in the periphery of the Pb-Zn-Hg zone in a larger area with some time lag. The Ba-Mg bearing fluid migrated through the same channels or at some distances from those of Pb-Zn-Hg. - (7) Sulfur existed in shale of the Loralai as primary pyrite and also widely as sulfide due to mineralization, but it was later oxidized and leached. - (8) Subsequent to the above, small veins were formed near the Pb-Zn deposits by diagenesis associated with structural movements and other phenomena. (9) The exposed surfacial part of the deposit was weathered and oxidized gossan was formed. The pyrite bearing shale patches in the limestone of the Loralai was hematitized by weathering and caused the colouring. organisation for the contraction of the property of the contraction 2-5-2 Geophysical Anomalies and Mineralization y a 1946 at 1976 a grant agus a leigh an gailte agus a fha an air a gailte a gailte an air an air an air an air ## We (1) Surumai - It is to be discussional to the work of the first of the contract of the Drilling of the second phase was conducted at approximately 20 m south of Point 7, Line C of the geophysical traverse of the first phase. The directions of the holes are oblique to Line C by 18° and 28°. Thus, although it is not possible to directly correlate the drilling results to the simulation analysis for Line C (Fig. M -3-42, of First Phase Report = Report on the Cooperative Mineral exploration in Khuzdar Area of Baluchistan, Phase I = henceforth; FPR), the relation of the two is considered as follows. The existence of an source with resistivity 100 ohm-m, PFE 10 % under Points 9 and 10 and another with resistivity 10 ohm-m, PFE 10 % under Points 11 and 12 both of Line C was inferred by the simulation. It was shown by drilling that the geology of this area cosists of alternation of limestone and shale and that fine-grained pyrite occurs throughout the shale. The content of sulfur in the shale due to the pyrite is considered to be less than 10 %. This is believed to be the cause of the PFE values in the vicinity of 1 % which is the PFE background. The lead-zinc mineralized zone with Pb+Zn combined grade of 1.6 % at 169.1~191.7 m of MJP-3 is believed to correspond to the weak anomalous zone of over 1.5% PFE under Points 9~12 (Fig. M -3-19, of FPR). ### (2) Surumai-II Two holes were drilled in this area during the second phase. They were drilled along Line R from near Points 1 and 2 (Fig. M -3-48, of FPR). Line R section (Fig. M -3-23(1), of FPR) shows weak anomaly of PFE over Description of the control of the first and the second of the first second of the control 1.5 % under Points 3 and 4. And Line J section (Fig. M -3-23(1), of FPR) confirms the existence, in the deeper parts, of anomaly of PFE over 3 % which corresponds to the weak anomaly of Line R. Lines J and R cross each other obliquely. Drilling MJP-6 revealed the lead-zinc anomalous zone with combined Pb+Zn grade of 2.4 % at 168.5~202.1 m, and as in the case of Surmai-I, the disseminated pyrite was observed in the shale of alternation with limestone. For the above lead-zinc mineralized zone, 0.8 % PFE is obtained in Line R and 1.1 % PFE in Line J. These values are higher than the background, but is not high enough to form anomalous zones. The fact that the dimensions of the deposit in Surmai-III are similar to the Main Orebody of Surmai-I, leads to the conclusion that this discrepancy is the result of the longer spacing of measurements (a=100m) in Surmai-II, compared to Surmai-I (a=50m) which made the determination of PFE anomalies difficult. The PFE anomaly in the deeper parts of Points 3~6 of Line J (Fig. M -3-44, of FPR) suggests the existence of mineralization. But MJP-5 has not reached the mineralized zones in spite of the fact that it has reached the inferred locality. This PFE could have been affected by the pyrite in shale and/or the graphite which was found in the shale by x-ray diffraction. During the first phase, physical properties were measured for rock samples and the data was used for interpretation. For future work, it is desirable to measure the physical properties of the drill cores and conduct simulation on the basis of obtained data. ### 2-5-3 Mineral Potential of the Area The mineralization in Surumai-I occurs largely in three geologic localities, namely A-3 in A horizon, B-2~4 in B horizon and C-2~4 in C horizon. A promising zone (3.8 m wide, Pb+Zn 5.11 %) occurs in the uppermost part of A-3 and it warrants further exploration. It is quite clear from the cross section that the mineralized zones A-3-1 and A-3-2 is connected with the extensive (450 m in strike direction) oxidized exposure on the surface. It is, thus, expected that A-3 mineralization extends around the drill hole of the mineralized zone. Although it was not possible to confirm by this drilling because of fault, it is believed that sulfide mineralization occurs stratigraphically above A-3 which is correlated to the oxidized exposure in Loralai Unit-M. In other words, A-3 has the potential for expansion, The horizontal distance between B-2 and B-4, C-2 and C-4 is small, approximately 20 m and probably these mineralized zones are largely continuous, but there are many parts of the mineralized zones which cannot be correlated. Also the mineralization of B-2~B-4 and C-2~C-4 is not observed in B and C horizons of MJP-3 which is only 120 m along the bedding from the ore in MJP-2 and 4. This indicates that the stratigraphic positions and the conditions of the mineralization vary rapidly in B and C horizons. The grade is generally low although it locally exceeds Zn 10 %. The mineralization of the Surumai- $\mathbb M$ is grouped into two stratigraphic positions, A-6 of A horizon and B-5 of B horizon. There are two promising zones for mining (3.9 m wide, Pb+Zn 9.60 %; 2.5 m wide, Pb+Zn 6.87 %) in A-6. Higher grade is expected. It is clear from the geological profiles on drilling that the A-6 mineralization continues to the extensive (450 m in strike direction) oxidized exposure on the surface. It is, thus, expected that A-6 mineralization extends around the drill hole of the mineralized zone. Although it was not possible to confirm by this drilling because of fault, it is believed that sulfide mineralization occurs stratigraphically above A-6 which is correlated to the oxidized exposure in Loralai Unit-M. In other words, A-6 has the potential for expansion in volume. B-5 mineralization is not observed in B horizon of MJP-6 which is approximately 110 m along the bedding from the ore in MJP-5. The grade is generally low. It has been shown that there are promising zones in A horizon of Surumai-I and M. The grade and the volume can be expected to rise. The mineralization in B and C horizon is locally of high grade, but the volume is small and it lacks continuity. Thus the Main Orebody of Surumai-I prospect and the A horizon in the lower part of Loralai Unit-M under the oxidized exposure of the Northwest Orebody of the West Deposit at Surumai-M showing have high potential. The potential of B and C horizons are not high but they warrant further prospecting. en de la composition de la composition de la composition de la composition de la composition de la composition La composition de la composition de la composition de la composition de la composition de la composition de la La composition de la composition de la composition de la composition de la composition de la composition de la A second of the control co . The second constant is a second constant of the second constant in the second constant of the second constant is $\mathcal{L}_{\mathcal{A}}$ ## PART III CONCLUSIONS AND RECOMMENDATIONS # PART III. CONCLUSION AND RECOMMENDATIONS ### CHAPTER 1 CONCLUSIONS During the second phase, geological and geochemical survey have been carried out in the Northern Khuzdar District. And drilling survey have been done in the Surmai Area. The following are the results of the surveys. #### 1-1 Northern Khuzdar District - (1) The Jurassic limestone of this district
consists of Shirinab Formation which is of Early Jurassic age. This formation comprises, in ascending order, Spingwar Member consisting mainly of calcareous sandstone, Loralai Member composed of limestone, shale alternation and Anjira Member. - (2) The Shirinab Formation is distributed largely in eight zones, and it extends in east-west direction and is gently protruding northward in conformity with the large scale structure of Khuzdar Knot. The members of this formation show complex anticlinal and synclinal structure with axes along the general trend. - (3) Promising mineral showings such as those observed in the Surmai~ Sekran Zone of the Southern Khuzdar District, do not exist in the Northern Khuzdar District. In the Northern Khuzdar District, only a few small occurrences of limonite, siderite and calcite veins~veinlets were confirmed in the southern part of the district. The mineral showings in district of both phases are distributed around the ophiolite zone in the Surmai~Sekran Zone. This zone is located in the southwestern part of the Southern Khuzdar District. The area surveyed during this second phase lies on the outerside of the Surumai~Sekran Zone, and mineral showings were not observed. - (4) The results of the second phase geochemical prospecting do not yield promising anomalous zones. In the Northern Khuzdar District, the anomalies are scattered and the values are low. The highest rank for complex anomalous zones was C for barium, and the lead-zinc zones were ranked the lowest E. The lead-zinc anomalous zones reflecting the Surmai~Sekran Zone mineral showings are distributed around the ophiolite zone and the barium anomalous zones occur on the outerside of the lead-zinc zones. These are in the southwestern part of the Southern Khuzdar District. The lead-zinc zones with rank E in the southernmost part of the Northern Khuzdar District are located at the northernmost part of the above anomalous zone. - (5) The study of all geochemical data obtained by this project during the last two phases, also clearly shows that the promising geochemical anomalies all exist in the Southern Khuzdar District, the Surumai~Shekran zone. - (6) Thus, it is concluded that the mineral potential of the Northern Khuzdar District is very low. ### 1 — 2 Surmai Area - (1) The Surmai Area is underlain by three members of the Shirinab Formation. They are, in ascending order, Spingwar, Loralai and Anjira. Loralai and Anjira are divided, respectively, into four Units (I~IV) and three Units (I~III). The units, confirmed to contain mineralized zone by drilling, range between Loralai Unit-I to the overlying Anjira Unit-I. The rocks of these units are mainly limestone and shale with minor amount of two types of limestone, shale and marly shale alternation. These four types of rocks form alternation with individual beds of 0.2~10 m thick. - (2) The geologic units of the area drilled dip 60°~70° westward with gentle folding in both Surmai-I and M area. Also the central part dips steeply westward and fault with $300{\sim}400$ m displacement transects the formation. - (3) Mineralized zones of lead-zinc sulfides considered to be of Mississippi Valley type were confirmed by five drill holes MJP-2~6 aimed at the lower parts of the oxide outcrops. The only hole which did not intercept a mineralized zone was MJP-1. The mineralization consists mainly of disseminated powdery to granular sphlerite and galena in limestone, and siderite and calcite vein~veinlets which transects the above. - (4) The stratigraphic horizon of lead-zinc mineralization is the same for all drill cores as well as for the outcrops. Thus it is clear that the mineralization is stratigraphically controlled. The mineralized horizons confirmed by drilling are all in Loralai Unit-II and are divided into A,B,C in descending order. - (5) The distribution of the lead-zinc sulfides is controlled by the water table at about 100 m depth and the fault mentioned in (2). - (6) The promising mineralization confirmed in Surmai-I area is that located by MJP-3, at depth 169.1~172.9 m (approximately 180 m below the surface) in A horizon. It is 3.8 m wide and the grade of Pb+Zn is 5.11%. Those in Surmai-III occur at two locations in MJP-6, in A horizon, depth 168.5~172.4 m and 185.6~188.1 m (approximately 140 m below the surface). They are 3.9 m wide, Pb+Zn 9.60% and 2.5 m wide, Pb+Zn 6.87%. - (7) In the Surmai-I area, the mineralization zone confirmed by MJP-3 corrseponds to the PFE anomaly detected in geophysical traverse C (IP,SIP) carried out during the first phase. Also mineralized zone was confirmed by MJP-6 in Surmai-III area at a location where geophysical anomalies were not very clearly detected. It is inferred that the reason for not detecting this mineralized zone is that the length of the intervals in Surmai-II was too long(100m in Surmai-II and 50m in Surmai-I areas). (8) The mineralization in the A horizon of both Surmai-I and M is promising in both grade and scope and its development is anticipated. The mineralization in B and C horizons is small and discontinuous, but as there are parts of high grade, we recommend that the prospecting be continued. #### CHAPTER 2 RECOMMENDATIONS FOR PHASE III SURVEY # 2-1 Surmai Area #### (1) Drilling in Surmai-I and Ⅲ During the work of the second phase, lead-zinc sulfide mineralized zones were confirmed in the lower parts of the Main Orebody of Surmai-I and the Northwest Orebody of Surmai-M, by drilling. It is recommended that drilling be carried out in the vicinity of the findings of this year to confirm the shape, grade, continuity and the possibility of development of these zones. Regarding the above drilling of the third phase, we recommened that five holes at one site in Surumai-I area and also five holes at two sites in Surumai-III be carried out. The draft implementation plan —the site and direction— are laid out in Figures II—2-11 and II—2-12. Also the inferred cross sections of the geology and ore deposit are shown in Figures III—1-1 \sim III—1-4. ### References # 【Geological & Geochemical Survey】 - Ahmed, W., et al. (1983): Brief report on evaluation of Gunga Pb-Zn-Ba deposit. PAK/79/016, Unpublished report. GSP. - Asad, J. & Subhani, A. M., et al. (1986): Zinc-lead prospect of Surmai-Garri, Khuzdar, Baluchistan. GSP. - Cowan, D. S. (1974): Deformation and metamorphismofthe Franciscan subduction zone complex, nortwest of pacheoPass, California, Geol. Soc. Am. Bull., 85, 1623-1634 - Durrazai, M. I., et al. (1983): Lead-zinc-barite deposit, Gunga district, Khuzdar, Bauchistan. GSP. - Fatmi, A. N., et al. (1986): Stratigraphy of "Zidi formation" (Ferozabad group) and "Parh group" (Mona Jhal group) Khuzdar district, Baluchistan, Pakistan, GSP. - Govett, G. J. S. (1983): Handbook of Exploration Geochemistry. Elsevier Scientific Publishing Company. - GSP, (1964): Geological map of Pakistan, GSP, - GSP. (1977): Stratigraphy of Pakistan, GSP. - GSP. (1979): Geodynamics of Pakistan. GSP. - GSP. (1982): Tectonic map of Pakistan, GSP. - Heyl, A. V. (1968): The Upper Mississippi Valley Base-Metal District. Ore Deposits of the United States, 1933-1967. vol-1, 431-459. USGS. - Illunting Survey Co., Ltd. (1961): Reconnaissance geology of part of west Pakistan (Λ Colombo plan co-operative project). Published for the government of Pakistan by the government of Canada. - Igarashi, T., Fujinuki, T. (1978): Autogenous Quartz in Carbonate Rocks., Studies on Geology, No. 15, 61-80 - Isihara, S. (1985): Mississippi Vally Type Deposit in Tennessee State. Chisitu News, vol. 375, P6-19. GSJ. (in Japanese) - Jankovic, S. (1983): Final Report on exploration & preliminary evaluation, leadzinc-barite deposits, Lasbela-Khuzdar district, Baluchistan. United Nations. - Jankovic, S. (1984): Preliminary evaluation of the lead-zinc-barite deposit at #### Gunga, - Jenkyns, H. C. (1986): Plelagic Environments in H. G. Reading ed., Sedimentary Environments and Facies, 343-398 - JICA and MNAJ(1987): Report on the cooperative mineral exploration in the Khuzdar area of Baluchistan, the Islamic Republic of Pakistan, Phase I. - Lepeltier, C. (1969): Simplified statistical treatment of geochemical data by graphical representation. Econ. Geol. 64, 538-550. - MMAJ. (1974~1977): Report on The Overseas Geotectonic Survey (Central Iran). MMAJ. (in Japanese) - MMAJ. (1975) : Report on The Overseas Mining Circumstances, MMAJ. (in Japanese) - Nakajima, T. (1986~1987) : Himalayan Sca and Its Disappearance(1~3). Chisitu News. vol. 376, 387, 389. GSJ. (in Japanese) - OTCA. (1971): Report on The Plane of Mineral Resources Development in West Pakistan. OTCA. (in Japanese) - Rankama, K. K., and Sahama, T. G., (1950) : Geochemistry. Univ. Chicago Press, 912p. - Sellwood, B. W. (1986): Shallow-marine Carbonate Environments., ibid., 283-342. - Sinclair, A. J. (1974): Serection of Threshold Values in Geochemical Data Using Probability Graphs. J. Geoch. Explor. 3, 129-149. - Tucker, N. E. (1981): Limestone, in SedimentaryPetrology an Introduction., 96-157 United Nations(1984): Strengthening the Geological Survey of Pakistan. United Nations. - Vredenburg, E. W. (1909): Report on the goology of Sarawan, Jhalwan, Makran and the State of Lasbela. Ibid., Recs., v. 38, pt. 3, 189-215. - Williams, M. D. (1959): Stratigraphy of the Lower Indus Basin, West Pakistan, World Petroleum Cong., 5th, New York, Proc., sec. 1, Paper 19, 377-390. - GSJ : Geological Survey of Japan - GSP : Geological Survey of Pakistan - JICA: Japan International Coperation Agency - MNAJ: Metal Mining Agency of Japan - OTCA: Overseas Technical Cooperation Agency - USGS: United States Geological Survey ${\tt Phot.}-3 \qquad {\tt Mottled\ limestone}$ Location : 34 L/4 Formation: Loralai Member Phot. - 4 Concretion in limestone Location : 34 L/11 Formation : Loralai Member Phot. - 5 #### ThinSection(X nicol) SampleNo.: 26-40 Formation : Loralai N. Rock Name : Limestone Location : 34 L/8 Allochems: Ooids, bioclasts Orthochems:
Nicrits ## Phot. - 6 POlished Section Sample No. : DH3-1-2 Drill No. : MJP-3 Position : 170.5m # Phot. - 7 Polished Section Sample No. : DH3-1 Drill No. : MJP-3 Position: 185.0m LEGEND : SP : Spharelite Py : Pyrite Ga : Galena Ca : Calcite 0.2mm # APPENDICES - 1. CHART OF X-RAY DIFFRECTION ANALYSIS(1)~(5) - 2. GEOCHEMICAL ANALYSIS DATA(1)~(11) -3- -5- | ample No. | Ph | Zn
ppu | ll g
ppb | Ba.
pon | Иg | Ş
X | Sample No. | 2 b | Zn
ops | lig
ppb | Ва | Ng
ppa | | |------------------------|---------------------------------------|-----------|-------------|------------|---------------|---|------------------------|--------------|------------|------------|------------|--------------|--------------| | 2A-01 | P P B | 2.5 | 50 | 160 | 1250 | <0.001 | 5 Y ~ B O | 1 | 7 | 20 | 200 | 3450 | 0.01 | | 2A-02
2A-03 | 1 | 11 | 40 | 960 | 1600
2500 | <0.001 | 21-91
21-92 |]
1 | 8 | 20
10 | 220
180 | 3150
4100 | 0.00 | | 21-04 | i | 27 | 7.0 | 620 | 5500 | <0.001 | 2A-93 | 1 | 7 | 20 | 200 | 2800 | 0.0 | | 21-05 | 1 | 23 | 50 | 480 | :5000 | <0.001 | 21-94 | 1 | 10
6 | · 50 | 180 | 2450
7500 | 0.0 | | 21-08
21-07 | 7 | 48
15 | 70
50 | 200
140 | 3000 | <0.001 | 21-95
21-96 | · | 19 | 110 | 220 | 2600 | 0.0 | | 21-08 | 1 | . 12 | 30 | 80 | 5000 | < 0.001 | 2X-97 | . 1 | . 8 | 20 | 200 | 9500 | < 0.0 | | 2A-09
2A-10 | | 23
110 | 30 | 120
140 | 3150 | < 0.001 | 2A-98
2A-99 | 1 | " 10
11 | 30 | 200
180 | 2600
3800 | < 0.0 | | 21-11 | 1 | 11 | 30 | 140 | 2900 | <0.001 | 28-100 | i | 16 | 20 | 160 | 4100 | < 0, 0 | | 21-12 | 1 | 11 | 20 | 160 | 3800 | <0.001 | 2 A - 101
2 A - 102 | 8 | 38
16 | 30
20 | 220
160 | 3000 | 0.1 | | 21-13
21-14 | J 1 | 13 | 30
20 | 180 | 4300
3300 | <0.001
<0.001 | 24-103 | - | 17 | 30 | 120 | 3250 | 0.0 | | 2 A - 15 | Ť | 9 | 20 | 120 | 3550 | < 0.001 | 21-104 | ī | 20 | 50 | 80 | 3500 | < 0.0 | | 2 A - 1 6 | 1 | 11 | 20 | 180 | 13500 | <0.001 | 2A-105 | . ! | 2 2
2 1 | 30
30 | 110 | 6000
4650 | 0.0 | | 21-17
21-18 | 1 | 6
6 | 20
20 | 180
160 | 5250 | <0.001 | 24-107 | i | 10 | 20 | 160 | 2850 | 0.0 | | 21-13 | 1 | . 8 | 30 | 8.0 | 10500 | <0.001 | 2X-108 | . ! | 6 | 30
20 | 180 | 3200
2800 | 0.0 | | 2 X - 2 0 | 1 | 12 | 2 0
4 0 | 160 | 4500 | <0.001 | 2A-109
2A-110 | . 3 | 11 | 30 | 140 | 9000 | 0.0 | | 21-21
21-24 | t | 26 | 50 | 220 | 6500 | <0.001 | 21-111 | J | 7 | 30 | 140 | 3600 | < 0.0 | | 2 A ~ 2 5 | 2 | 23 | 30 | 120 | 6500 | <0.001 | 2A-112
2A-113 | | 12 | 30
20 | 140 | 4850
3350 | 0,0 | | 2A-26
2A-27 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 24
16 | 30
70 | 200 | 7500
2750 | <0.001 | 21-114 | i | ii | 100 | 140 | 2050 | 0.0 | | 21-28 | 1 1 | 16 | 40 | 280 | 1600 | < 0.001 | 21-115 | 1 | 13 | 60
20 | 140 | 2000 | 0.0
<0.0 | | 21-29 | -1 | 41
38 | 40
50 | 280
360 | 3400 | <0.001
<0.001 | 21-116
21-117 | .1 | 8
23 | 30 | 220 | 1050 | 0.0 | | 21-30
21-31 | 1 | 8 | 20 | 140 | 3500 | < 0.001 | 2A-118 | 1 | 23 | 40 | 140 | 3200 | 0.0 | | 21-32 | 1. | 15 | 70 | 180 | 2100 | | 2A-119
2A-120 | - 1 | 10 | 40
10 | 140 | 2600
2900 | < 0.0 | | 21-33
21-34 | ; 1
1 | 11
12 | 3 0
5 0 | 180 | 3650
2500 | <0.001
<0.001 | 24-121 | 1 | 18 | 20 | 120 | 2200 | 0.0 | | 2 A - 35 | i | 15 | 30 | 220 | 2650 | < 0.001 | 5Y-155 | 1_ | 11 | 10
80 | 180 | 2300 | | | 2 A - 36 | 1 | 12 | 50
30 | 800
180 | \$250
3700 | <0.001 | 21-123
21-121 | 1
1 | 7 | 30 | 100 | 2650 | < 0. (| | 2A-37
2A-38 | 1 | . 13 | 30 | 180 | 2300 | 1.00 | 21-125 | | 10 | 20 | 180 | 2800 | < 0. (| | 21-39 | 1 | 16 | 40 | 180 | 2850 | | 2A-126
2A-127 | 1 | 6
11 | 40 | 200
100 | 2750 | 0.6 | | 2X-40
2X-41 | 1 | 26
15 | 30
50 | 200 | 3950
2650 | <0.001
<0.001 | 2Å-128 | i | 33 | 50 | 1100 | 5500 | 0.0 | | 21-42 | <u>l</u> | 34 | 140 | 440 | 3200 | <0.001 | 21-129 | 1 | 10 | 50
20 | 140 | 2550
2100 | < 0. 0 | | 2 k - 43 | 1 | 17 | 40
30 | 200
320 | 3100
2700 | <0.001
<0.001 | 2A-130
2A-131 | . 1 | 8 | 30 | 180 | 2800 | < 0.0 | | 21-44
21-45 | ī | . 20 | 40 | 1040 | 4800 | <0.001 | 21-132 | 1 | 10 | 20 | 200 | 2750
3000 | 0.1 | | 2A-46 | 1 | 11 | 30
30 | 100
120 | 2850
2750 | | 2A-133
2A-134 | 1 | 10
21 | 2 0
2 0 | 220 | 3100 | 0. | | 2A-47
2A-48 | 1 1 | 14
13 | 30 | 100 | 2350 | 1 | 2A-135 | 1 | 77 | 20 | 160 | 3550 | : 0. (| | 21-49 | 1. | 13 | 20 | 280 | 7000 | < 0.001 | 2 A - 136
2 A - 137 | 1
1 | 15
16 | 20 | 160
180 | 2200 | | | 2 A - 5 G
2 A - 5 I | ´2
 | 9 | 40
30 | 160
320 | 6000
8000 | 0.191 | 2A-138 | 1 | 17 | 10 | .200 | 2900 | 0.0 | | 2A-52 | 1_ | 17 | 5.0 | 110 | 3700 | | 21-139 | 1 | 8
17 | 10 | 200
150 | 3650
8500 | 0.0 | | 21-53 | 1 | 5 7 | 2 0
3 0 | 120 | 2550
3400 | 0.001 | 2A-140
2A-141 | 1 | 20 | 20 | 180 | 2950 | < 0.4 | | 2A-54
2A-55 | 1 | 8 | 20 | 100 | 3200 | 0.009 | 21-142 | 1_ | 7 | 20 | 220
300 | 3500 | 0. | | 2 J - 56 | 1 | 13 | 20
20 | 160 | 60G0
4000 | < 0.001
0.001 | 2A-143
2A-144 | 1 | 8
15 | 20
20 | 200 | 2650 | 0. (| | 21-57
21-58 | 1 | 10 | 20 | 140 | 3600 | 0.021 | 24-145 | 1. | 6 | 10 | 120 | 2250 | | | 2 A - 59 | 1 | 8 | 20
50 | 180
160 | 3600
4050 | | | 1 | 9
9 | 10
10 | 160
160 | 3250
3100 | | | 2A-60
2A-61 | î
Î | 17 | 20 | 180 | 3150 | 0.001 | 21-148 | · 1 | 7 | 10 | 140 | 3400 | 0.4 | | 2 A - 62 | 4 | 63 | 30 | 240 | 7500 | 0.004 | 24-149 | 1·
1 | 18 | 50 | 200
140 | 4400
3200 | 0. (| | 2A-63
2A-64 | 3
1 | 30
27 | · 40 | 180
240 | 4600
5500 | 0.010 | 2A-150
2A-151 | 1 | 25 | 160 | 20 | 5500 | 0.0 | | 2A-65 | i i | 2.6 | 20 | 200 | 5000 | 0.008 | 2A-152 | <u>1</u> _ | 15 | 200
160 | 30
20 | 3250
3500 | 0, 0 | | 2A-68
2A-67 | 1 1 | 30 | 2 D
3 D | 220 | 6500
5500 | | 2A-153
2A-154 | j | 7 | 200 | 20 | 3250 | 0.1 | | 2A-68 | 1 , | 96 | 40 | 140 | 8500 | 0,002 | 24-155 | 1 | 7 | 160 | 10
20 | 2950
1950 | | | 21-69 | .1 | 10
16 | 2 0
3 0 | 160 | 3300
5500 | | 2A-156
2A-157 | <u>1</u> . | 8
8 | 140
200 | 20 | 3500 | 0. (| | 21-70
21-71 | 1 | 21 | 30 | 420 | 5500 | 0.018 | 21-158 | 1 | . 10 | 140 | 30 | 2500 | < 0.4 | | 2A-72 | | 10 | 20 | 200 | 4100 | 0.003 | 2A-159
2A-160 | /1
1 | . 8
12 | 100 | 20
20 | 3350
2900 | 0.0 | | 21-73
21-74 | 1.
1 | 20
17 | 50
20 | 580
360 | 4300
3750 | 0.014 | 2A-161 | 1 | 11 | 140 | 10 | 2500 | <0.0 | | 2 A ~ 75 | | 32 | 30 | 320 | 6000 | 0.001 | 21-162 | 1 | 8 | 140 | 20 | 3000
2850 | 0. (| | 21-78
21-77 | 1
1 | 35
19 | 30 | 200 | ,6000
4900 | 0.009 | | | . 6 | 140 | 10 | 3000 | 0. 0 | | 21-78 | ĵ | . 11 | 20 | 240 | 3800 | 0.018 | 21-165 | I | . 8 | 120 | 10 | 6000 | 0, (| | 21-79 | 1 | 13 | 20 | 220 | 3900 | 0.015 | 2A-166 | 1 | 33 | 140 | 20
30 | 6000
3250 | <0.0 | | 2A-80
2A-81 | 1 | 9 | 20 | 180 | 6000
3400 | 0.008 | 2A-167
2A-168 | . ; | 14 | 120 | 5.0 | 3000 | 0.0 | | 21-82 | 1 | 26 | 4.0 | 360 | 6500 | 0.043 | 21-169 | 1 | 11 | 120 | 20 | 2900 | 0. 0
0. 0 | | 2 A - 83 | 1 | 13 | 30 | 180 | 3600 | | 2 X - 170
2 X - 171 | 1.
l | 9
20 | 120 | 30
20 | 3500
3250 | | | 2A-84 | 1 | 8 | 30 | 140 | 10000 | <0.001 | 60"311 | | 13 | 1 | | 3100 | | | Sample | No. | Pb | Z n | Нg | Ba | Ив | S | Sample No. | Pb | Zn | Hg | Ва | Nε | S | |--|---|------------------|--|--|--|---|---|--|-----------------------|-------------------------------------|----------------------------------|--|--|--| | 2 Å · 1 | 77 | P P M | | 120 | . <u>₽₽₩</u>
10 | 9 p №
3500 | 0.003 | 2B-37 | ppa
1 | <u>ррв</u>
11 | PP b
20 | 240 | 4500 | 0.003 | | 2 1 - 1 | 78 | 1. | 12 | 100 | -10 | 2900 | 0.005 | 2B-38 | 1 | 9 | 10 | 140 | 1200 | < 0.001 | | 2 A - 1 | | 1 | 59
12 | 120 | 70
20 | 2100
2500 | 0,003 | 28-39
28-40 | 1 | 10
10 | 10 | 160
180 | 7500 | 0.002 | | 2 h - 13 | | 1 | 19 | 200 | 30 | 1850 | <0:010 | 28-41 | í | 1 5 | 10 | 100 | 4750 | 0.002 | | 2 A - 1 | 82 | 1 | 8 | 120 | 30 | 2300 | 0.001 | 28-42 | 1 | 12 | 20 | 200 | 3900 | 0,009 | | 2 A ~ 14 | | 1. | 12 | 120 | 40 | 1800 | 0.002 | 2B-43
2B-44 | 1 1 | 7 | 10 | 180
160 | 2650
2600 | <0.001
0.002 | | 2 Å ~ 1 ?
2 Å ~ 1 ? | | 1 1 | 19 | 100 | 30
20 | 1900 | 0.007 | 2B-45 | | 57 | 20 | 160 | | < 0. 001 | | 2 Å - 1 | | ĺ | ıň | 120 | 20 | 2800 | 0,001 | 2B-46 | 1 | . 8 | 2.0 | 280 | 2600 | < 0.001 | | 2 A - 1 | | 1 | 2.5 | 140 | 50 | 3150 | 0.020 | 2B-47 | 1 | 9 7 | 20 | 340
160 | 1850
1400 | 0.004 | | 2 A - 1 | | 1 | 11 | 120 | 10 | 2150 | <0.001
0.020 | 2B-48
2B-49 | | 12 | 20 | 400 | 8000 | <0.001
0.003 | | 2 1 - 1 | | i | 15 | 120 | 10 | 3500 | 0.012 | 2B-50 | i | 28 | 20 | 220 | 2650 | < 0.001 | | 2 A - 15 | | 1 | 31 | 160 | 50 | 3700 | 0.015 | 2B-51 | ! ! | 7 7 | 20 | 160 | 3850 | < 0.001 | | 2 A - 19
2 A - 19 | | 1 1 | 9 7 | 120 | 20
10 | 3600
1850 | 0.034
<0.001 | 2B-52
2B-53 | 1 | 10 | 100 | 140
180 | 1900
3300 | <0.001
<0.001 | | 2 Å~ 1.5 | | j. j. | 13 | 200 | 10 | 4450 | 0.024 | 2B-54 | 1 | 12 | 120 | 120 | 4050 |
0.002 | | 2 A - 1 S | | 1 | 8 | 400 | 10 | 2700 | < 0.001 | 28-55 | 1 | 6 | 20 | 100 | 1450 | 0.002 | | 2 Å - 1 S
2 Å - 1 S | | 1 | 7 | 120
120 | 20
20 | 2500
18000 | 0.005 | 2B-56
2B-57 | 1 1 | 15 | 4 0
2 0 | 110
120 | 2900 | 0.006
<0.001 | | 2 A - 1 | | 1 | 9 | 140 | 10 | 3,000 | 0.001 | 2B-58 | 1 | 24 | 50 | 1140 | 5000 | 0.004 | | 21-20 | 00 | 1. | 10 | 120 | 10 | 3200 | 0.003 | 28-59 | . 1 | 28 | 40 | 200 | 1850 | 0.002 | | 2A-20 | | 1 | 22 | 200
180 | 20
10 | 3000
4200 | 0.017 | 28-60
28-61 | 1 | 33
48 | 30
30 | 160
260 | 5500
6500 | 0.002 | | 2 A - 20
2 A - 20 | | 1 | 14 | 160 | 3.0 | 4000 | 0.004 | 28-62 | j | 30 | 40 | 260 | 3200 | 0.003 | | 21-20 | 04. | i | 14 | 180 | 10 | 2700 | 0.004 | 2B-63 | ! | 10 | 30 | 600 | 2100 | 0.024 | | 21-20 | | 1 | 28 | 200 | 50
50 | 4000
2250 | 0.008 | 28-64
28-65 | 1 | 17
15 | 40
50 | 200
340 | 3200
2200 | 0.008
<0.001 | | 2 A - 2 (| |]
]- | 10 | - 140 | 10 | 3300 | 0.002 | 2B-66 | 1 | 35 | 30 | 200 | 6500 | 0.003 | | 21-20 | | 1 | 11 | 160 | 20 | 5500 | 0.003 | 2B-67 | 1 | 36 | 30 | 220 | 6000 | < 0.001 | | 21-20 | | i | 14 | 120 | 10 | 2950
2700 | 0.006 | 2B-68
2B-69 | 1 | 34
37 | 30
30 | 180
180 | 4750
5500 | 0.005 | | 2 A - 2
2 A - 2 | | 1 | 12 | 140
200 | 10
10 | 3200 | 0.010 | 2B-70 | 1 1 | 14 | 30 | 200 | 3850 | 0.005 | | 21-2 | | í | 14 | 100 | 50 | 3100 | 0.012 | 2B-71 | 1 | . 9 | 20 | - 140 | 1950 | < 0.001 | | 2 h - 2 | | . 1 | 14 | 140 | 10 | 3750 | 0.007 | 2B-72 |] | 7 | 20
40 | 220
120 | 5500
1650 | <0.001
<0.001 | | 2 A ~ 2 : | | 1 | 63
18 | 200
5500 | 10
20 | 3500
4350 | 0.033 | 2B-73
2B-74 | 1 | 24 | . 40 | 140 | 1800 | < 0.001 | | 2 A - 2 | | 1 1 | 9 | 540 | 30 | 3950 | 0.013 | 2B-75 | <u>î</u> | 2.5 | 20 | 160 | 3600 | < 0.001 | | 2 A - 2 | 18: | | 13 | 260 | 80 | 3000 | 0.011 | 2B-76 | 1 | 12 | 40 | 220 | 1450 | 0.009 | | 2 A - 2
2 A - 2 | | 1 | 2 6
1 0 | 180
120 | ·10 | 3600
2400 | 0.048 | 2B-77
2B-78 | 1 | 16 | 40
30 | -340
420 | 3350
3950 | 0.004 | | 2 A - 21 | | i | 13 | 140 | 20 | 4500 | 0.023 | 28-79 | . i | 33 | 30 | 220 | 4700 | < 0.001 | | 24-2 | | J | . 7 | 440 | 10 | 3500 | 0.012 | 28-80 | 1 | 9 | 20 | 160 | 2900 | < 0.001 | | 21-21 | | 1 | 20 | 100 | 10 | 3500 | 0.007 | 28-81
28-82 | 3 3 | . 59 | 50 | 300
-220 | 8500
5500 | 0.008 | | 2 h - 2 i | | 1 1 | 5
5 | 120 | 10 | 15500
2000 | < 0.001 | 2B-83 | 1 | 24 | 20 | 140 | 2650 | 0.003 | | 21-2 | | í | 12 | 100 | 10 | 3000 | 0.005 | 28-84 | 1 | 11 | 20 | 160 | 3350 | 0.002 | | 2 A - 22 | | 1. | . 22 | 180 | 50 | 6000 | 0.011 | 28-85 | 11 | 38 | 20 | 100 | 3800
2650 | 0.007 | | 21-22
21-23 | | 1 1 | 9
15 | 120 | 20 | 5500
2550 | 0.006 | 2B-86
2B-87 | 1 | 10 | 10 | 200 | 2550 | <0.001 | | 28-01 | | 3 | 26 | 20 | 120 | 2700 | 0,024 | 28-88 | . 1 | - 10 | 10 | 140 | 11500 | 0.003 | | 28-02 | | 1 | . 44 | 10 | 140 | 3100 | 0.004 | 28-89
28-90 | 1
1 | 10
40 | 50
30 | 100 | 2750
5500 | 0.001 | | 2B-03
2B-04 | | 1 | 8 7 | 30
30 | 160
180 | 1650
2100 | <0.001
<0.001 | 2B-91 | ĺ | 7 | 20 | 140 | 8500 | 0.003 | | 2B-0: | | i | 7 | 30 | 140 | 2100 | < 0.001 | 2B-32 | - 1 | 14 | 20 | 120 | 3050 | 0.001 | | 2B-08 | | 1 | 15 | 30 | 300 | 4050 | 0.029 | 28-093 | 1 | 10 | 280 | 40 | 5500
2700 | 0.103 | | 28-07 | | 1 | 129 | 20
10 | 260
140 | 7500
7500 | 0.006 | 2B-94
2B-95 |]] | 32 | 20
30 | 100
200 | 4000 | 0.004 | | 2B-08
2B-09 | | 1 | 16 | 20 | | | | 28-96 | 1 | 86 | 50 | 180 | 4600 | < 0.001 | | 2B-10 | | í | - 10 | 10 | 200 | 2550 | 0.003 | 28-97 | 2 | 37 | 4.0 | 200 | 1250 | 0.003 | | 2B-11 | 1 | 1 | 13 | 20 | 140 | 3250 | 0.002 | 2B-98
2B-99 | 1 | 7 7 | 20 | 120 | 2950
3300 | 0.002 | | 2B-12
2B-13 | | 1 | 8
26 | 20
20 | 180
160 | 3400
3700 | 0.030 | 2B-98
2B-100 | 1 | 8 | 20 | 140 | | < 0.002 | | 2B-14 | | 1 | 13 | 30 | 400 | 6500 | 0.025 | 2B-101 | 1 | 7 | 20 | 100 | 2750 | < 0.001 | | 2B-15 | 5 | 1 | 11 | 20 | 200 | 4250 | 0.011 | 2B-102 | 1 1 | 8 8 | 20
10 | 100 | 2900
3800 | 0:005 | | 28-11 | | 1 | 15 | 20
20 | 200
140 | 3800
5500 | 0.014
<0.001 | 2B-103
2B-104 | 2 | 7 | 20 | 140 | | < 0.001 | | 2B-17
2B-18 | | 1 | 6
4 D | 20 | 200 | 3800 | 0.006 | 2B-105 | 11_ | 16 | 20 | 110 | 3350 | 0.002 | | 2B-15 | | 1 | 7 | 20 | 160 | 3500 | < 0.001 | 28-106 | ! | 18 | 20 | 160 | 4700 | 0.002
<0.001 | | 2B-21 | 0 . | 1 | 18 | 20 | 200 | 4900 | 0.004 | 2B-107
2B-108 | 1 | 7 | 10
20 | 140
120 | 3050 | 0.001 | | | | 1 | 13
9 | 20
10 | 120 | 2250
2800 | < 0.001
0.007 | 2B-109 | . 1 | 7 | 10 | 100 | 6500 | < 0.001 | | 2B-2 | | | 7 | 10 | 100 | 1500 | < 0.001 | 2B-110 | | 7 | 20 | 160 | 3450 | < 0.001 | | 28-23 | | 1: 1 | | 20 | 160 | 2500 | 0.001 | 28-111 | 1 | 6
8 | 50
50 | 100 | 2550
2700 | 0.013 | | 2B-22
2B-2
2B-2 | 3
4 | 1 | . 11 | | | ~~~ | . 0.002 | 2B-112 | | 8 | 50
60 | | 2750 | 0.006 | | 2B-2
2B-2
2B-2
2B-2 | 3
4
5 | 1
1 | 7 | 20 | 120 | 2300 | | 1 28-113 | | | | 120 | 21301 | | | 2B-2
2B-2
2B-2
2B-2
2B-2 | 3
4
5
6 | 1
j | 13 | | | | <0.001
0.008 | 2B-113
2B-114 | 1 | 12 | 30 | 120 | 3500 | <0.001 | | 2B-2
2B-2
2B-2
2B-2 | 3
4
5
6
7 | 1
1 | 13
10
6 | 20
10
20
20 | 120
200
120 | 2900
2000
1450 | <0.001
0.008
<0.001 | 2B-114
2B-115 |)
1 | 12
8 | 30
20 | 120
140 | 3500
2700 | 0.002 | | 2B-2:
2B-2:
2B-2:
2B-2:
2B-2:
2B-2:
2B-2:
2B-2: | 3
4
5
6
7
8
9 | 1
1
1
1 | 13
10
6 | 20
10
20
20
10 | 120
200
120
180 | 2900
2000
1450
1900 | <0.001
0.008
<0.001
0.002 | 28-114
28-115
28-116 | ,
1
1 | 12
8
18 | 30
20
20 | 120
140
140 | 3500
2700
3650 | 0.002 | | 2B-2
2B-2
2B-2
2B-2
2B-2
2B-2
2B-2
2B-2 | 3
4
5
6
7
8
9 | 1
1
1
1 | 7
13
10
6
7 | 20
10
20
20
10
10 | 120
200
120
160
120 | 2900
2000
1450
1900
10000 | <0.001
0.008
<0.001
0.002
<0.001 | 2B-114
2B-115 |]
1
1
1 | 12
8
18
15
13 | 30
20
20
10
20 | 120
140
140
200
160 | 3500
2700
3650
3700
2600 | 0.002
<0.001
0.002
0.005 | | 28-2
28-2
28-2
28-2
28-2
28-2
28-2
28-2
28-3
28-3 | 3
4
5
6
7
8
9
0 | 1
1
1
1 | 13
10
6 | 20
10
20
20
10 | 120
200
120
180 | 2900
2000
1450
1900
10000
2300
2500 | <pre>< 0. 00 1 0. 008 < 0. 001 0. 002 < 0. 001 < 0. 001 < 0. 001</pre> | 28-114
28-115
28-116
28-117
28-118
28-119 | 1
1
1
1 | 12
8
18
15
13
7 | 20
20
10
20
30 | 120
140
140
200
160
100 | 3500
2700
3650
3700
2600
3600 | 0.002
<0.001
0.002
0.005
<0.001 | | 2B-2
2B-2
2B-2
2B-2
2B-2
2B-2
2B-2
2B-3
2B-3
2B-3
2B-3 | 3
4
5
6
7
8
9
0
1
2
3 | 1 1 1 1 1 1 | 7
13
10
6
7
7
30
29
23 | 20
20
20
10
10
10
10 | 120
200
120
180
120
140
160 | 2900
2000
1450
1900
10000
2300
2500
1600 | <pre>< 0. 00 1 0. 00 8 < 0. 00 1 0. 00 2 < 0. 00 1 < 0. 00 1 < 0. 00 1 < 0. 00 1 < 0. 00 1</pre> | 28-114
28-115
28-116
28-117
28-118
28-119
28-120 |)
1
1
1
1 | 12
8
18
15
13
7
8 | 20
20
10
20
30
10 | 120
140
140
200
160
100 | 3500
2700
3650
3700
2600
3600
3150 | 0.002
<0.001
0.002
0.005
<0.001
0.002 | | 2B-2:
2B-2:
2B-2:
2B-2:
2B-2:
2B-2:
2B-3:
2B-3:
2B-3:
2B-3: | 3
4
5
6
7
8
9
0
1
1
2
3
4 | 1 1 1 1 1 1 | 7
13
10
6
7
7
30
29 | 20
10
20
20
10
10
10 | 120
200
120
180
120
140
160
100 | 2900
2000
1450
1900
10000
2300
2500 | <pre>< 0. 00 1 0. 008 < 0. 001 0. 002 < 0. 001 < 0. 001 < 0. 001</pre> | 28-114
28-115
28-116
28-117
28-118
28-119
28-120
28-121 | 1
1
1
1 | 12
8
18
15
13
7 | 20
20
10
20
30 | 120
140
140
200
160
100 | 3500
2700
3650
3700
2600
3600 | 0.002
<0.001
0.002
0.005
<0.001 | | . 1 | Sample | Жo. | Pb | Z n | ilg | Ва | Иg | 5 | Sample No. | Pb | Z n | ll g
p p b | Ва | Ng
PP# | \$
* | |-----|--------------|-------|--|------------|------------|------------|---------------|------------------|----------------------|----------|---------------|---------------|------------|----------------|------------------| | | 2B-1 | 24 | <u> </u> | 24 | _ ppb | 200 | 4950 | 0.018 | 28-211 | <u> </u> | 12 | 140 | 10 | 2850 | 0: 014 | | | 2B-1 | 25 | 1 | 18
30 | 30 | 300
160 | 3400
5500 | 0,004
<0.001 | 2B-212
2B-213 | 1 | 15
13 | 160
120 | 10
20 | 2800
1650 | | | | 28-1
28-1 | | 3 | 30 | 50
30 | 300 | 8000 | 0.053 | 2B-214 | 2 | 14 | 180 | 20 | 3700 | | | | 2 B - J | 28 | 1 | 12 | 20 | 180 | 3800 | 0.002 | 2B-215
2B-216 | <u>1</u> | 8 | 160 | 2 Q
1 Q | 2300 | < 0, 007 | | | 2B-1
2B-1 | | 10.0 | 21
8 | 40
50 | 180 | 4050
3200 | 0.003 | 2B-217 | i | 9 | 160 | 10 | 3150 | 0,068 | | | 28-1 | | 1 | 12 | 20 | 140 | 2800 | 0.006 | 2D-218 | 1. | 10 | 200 | 10 | 2900 | 0.002 | | 1 | 2B-1 | | 1 | 14 | 20
20 | 140 | 16500 | 0.002 | 2B-219
2B-220 | 1 | 15
13 | 140 | 10 | 3250
4250 | 0.004 | | | 28-1
28-1 | | 1 | 15
10 | 30 | 300 | 3750 | 0.004 | 2B-221 | i | 15 | 8,0 | 10 | 3650 | 0.006 | | | 2B-1 | 35 | 1 | 17 | 40 | 140 | 3100 | 0.003 |
28-222 | 1 | 12
21 | 200
160 | 10
10 | .4300
:3850 | 0,019 | | | 2B-1
28-1 | | 1 | 20
10 | 4,0
2.0 | 200 | 3100
3050 | <0.001
0.003 | 2B-223
2B-224 | i | 7 | 140 | 10 | 2550 | 0.008 | | .] | 2B-J | | : i | 10 | 40 | 140 | 2500 | 0.009 | 2B-225 | 1 | 9 | 120 | 10 | 3350 | 0.025 | | | 2B-1
2B-1 | | . 1 | 1 B
8 | 40
20 | 200
220 | 3100
2900 | 0.008 | 28-226
28-227 | 1 | 8 7 | 180
160 | 10
20 | 3250
2900 | 0.011 | | | 2B-1 | 4 2 3 | i i | 14 | 20 | 560 | 3500 | 0.019 | 2B-228 | 1 | 16 | 200 | 10 | 3400 | 0.009 | | • | 2 B 1 | 4.2 | [| 24 | 40 | 300 | 3500 | 0.006 | 2B-229
2B-230 | 1 | 12 | 120 | 40
20 | 2200 | 0.021 | | 1 | 2B-1
2B-1 | | 1 1 | 10 | 10 | 160
200 | 6500
3100 | 0.009 | 28-231 | 1 | 11 | 140 | 20 | 3450 | 0.019 | | | 2 B - 1 | 45 | 1 | 8 | 20 | 120 | 1900 | 0 007 | 2B~232 | 1 | 12 | 160 | 20 | 2350 | 0.011 | | | 2B-1 | | 1 | 11
. 8 | 20
10 | 140 | 2150
2650 | 0:008 | 2B-233
2B-234 |]
1 | 14 | 180 | 10 | 2200
4150 | 0.008 | | . [| 2B-1
2B-1 | | 1 | 7 | 20 | 120 | 2450 | 0.008 | 28-235 | 1 | 8 | 120 | 10 | 3250 | 0.007 | | 1 | 2B-1 | 49 | 1 | 13 | 70
20 | 180
180 | 2800
3150 | 0.002 | 28-236
28-237 | 1 1 | 25 | 140
180 | 10
20 | 2350
2550 | 0.001 | | ĺ | 2B-1
2B-1 | | 1 | 6 | 200 | 10 | 3700 | 0.013 | 2B-238 | 1 | 9 | 150 | 10 | 2250 | < 0.001 | | | 28-1 | 5 2 | 1 | . 8 | 140 | 20 | 3100 | 0.022 | 28-239 | 1 | 8
13 | 120
140 | 20
20 | 6000
2950 | <0.001
<0.001 | | | 2B-1
2B-1 | | 1 1 | 33 | 760
260 | 30
20 | 6000
4250 | 0.027 | 28-240
28-241 | 1 1 | 13 | 140 | 20 | 8400 | 0.004 | | | 28-1 | | <u>i</u> | 9 | 200 | 10 | 3350 | 0.005 | 2B-242 | 111 | 11 | 120 | 20 | 3000 | 0.010 | | | 2B-1
2B-1 | | 1 1 | 22
16 | 160
280 | 10
30 | 62500 | 0.002 | 2B-243
28-244 | 1 | 13
27 | 160
160 | 50
10 | 1700
6000 | <0.001
0.001 | | | 2B-1 | | , | 22 | 140 | 20 | 1950 | <0.001 | 28-245 | 1 | 15 | 160 | 10 | 3350 | 0.006 | | | 28-1 | 59 | 1 | 14 | 140 | 20 | 2000 | < 0.001 | 2B-246 | 1 | 28 | 140
160 | 10
10 | 3050 | 0.003 | | - | 2B-1
2B-1 | | 1 | 10 | 180
180 | 10
10 | 3400 | 0.004 | 2B-247
2B-248 | 1 | 16 | 160 | 10 | 2850 | 0.002 | | | 28-1 | | i | ž | 900 | . 10 | 2500 | < 0.001 | 28-249 | - 1 | 8 | 140 | 20 | 2300 | 0.005 | | | 2B-1 | | ! | 14 | 120
160 | 4 0
1 0 | 9000
29000 | 0.002
<0.001 | 2B-250
2B-251 | 1 | 13 | 200
140 | 10 | 45500
5500 | <0.001
<0.001 | | | 2B-1
2B-1 | | $\begin{bmatrix} & 1 \\ & 1 \end{bmatrix}$ | 21 | 260 | 20 | 4500 | <0.001 | 28-252 | 1 | 14 | 160 | 10 | 2950 | 0.004 | | | 2B-1 | 66 | 1 | 29 | 240 | 20 | 4150 | 0.003 | 28-253 | 1 | 12 | 120 | 30
30 | 2200
6000 | < 0.001 | | | 2B-1
2B-1 | |] | 18
23 | 200
120 | 10 | 2150 | 0.001 | 28-254
28-255 | . 1 | 17
38 | 160
200 | 20 | 4250 | <0.001
0.013 | | | 2B-1 | | . 1 | 3 0 | 120 | 10 | 6000 | 0.002 | 28-256 | 1 | 9 | 140 | 10 | 4050 | 0.009 | | | 2B-1 | | 1 | 17
16 | 100 | 20 | 1550
1450 | <0.001 | 2B-258
2B-259 | 1
1 | 9 9 | 180
160 | 8 0
2 0 | 5500
49000 | 0.007
<0.001 | | ٠, | 2B-1
2B-1 | | 1 1 | 13 | 140 | 30 | 3000 | < 0.001 | 2B-260 | î. | 10 | 120 | 4.0 | 3350 | < 0.001 | | | 28-1 | | 1 | 20 | 160 | 30 | 3100 | < 0.001 | 2B-261 | 1 | 9 14 | 120
160 | 20
10 | 2800
3100 | <0.001
<0.001 | | | 2B-1
2B-1 | | 1 1 | 7
10 | 140 | 10 | 3150
2250 | 0.002 | 2B-262
2B-263 | i | 7 | 160 | 10 | 3250 | <0.001 | | | 2B-1 | 78 | 1 | 9 | 120 | 30 | 2100 | 0.002 | 2B-264 | 1 | 13 | 240 | 20
10 | 3500
2850 | 0.002 | | | 2B-1
2B-1 | | 1 | 17 | 120
120 | 10 | 2400 | < 0.003 | 2B-265
2B-266 | 1 | 8
18 | 140
180 | 10 | 3450 | 0.002 | | | 2B-1 | | i | 11 | 140 | 20 | 5000 | 0.187 | 2B-267 | 1 | 8 | 160 | 10 | 3350 | 0.003 | | | 2B-1 | | 1 | 8 | 140 | 10 | 4000 | 0.093 | 2B-268
28-269 | 1 | 34 | 220
180 | 20
10 | 5500
3100 | 0.003
<0.001 | | :] | 2B-1
2B-1 | | 1 | 12 | 120 | 40
60 | 2150 | < 0.001 | 28-270 | j | ıi | 120 | 10 | 9500 | < 0.001 | | J | 2B-1 | 83 | 1 | 17 | 120 | 20 | 3750 | 0 002 | 28-271 | 1 | 10 | 140 | 10 | 2050
2050 | <0.001
<0.001 | | | 2B-1
2B-1 | | 1 | 15 | 140 | 20 | 2250
3250 | 0.002 | 2B - 272
2B - 273 | . 1. | 11 | 160
160 | 10 | 3200 | | | ı | 2B-1 | | 1 | 14 | 200 | 20 | 3400 | 0.006 | 2B-274 | 1 | 12 | 520 | 10 | . 2900 | 0.007 | | Ì | 2B-1 | 87 | 1 | 20 | 180 | 10 | 3300 | 0.005 | 2B-275
2B-276 | 1 | 11 8 | 160
160 | 10 | | <0.001
<0.001 | | i | 2B-1
2B-1 | | 1 | 66 | 120
120 | . 30 | 5000
2650 | 0.007 | 28-275 | 1 | 8 | 120 | 10 | 2550 | <0.001 | | : | 2B-1 | 90 | 1 | 7 | 100 | 10 | 6000 | <0.001 | 2C-01 | i | 8 | 10 | 140 | 2850 | | | į | 2B-1 | | 1 1 | 11 | 100
120 | 10 | 13500
4100 | 0.001 | 2C-02
2C-03 | 1 | 5 | 20
10 | 140 | | <0.001 | | | 2B-1
2B-1 | | 1 | 48 | 600 | 60 | 8000 | 0.003 | 2C-01 | // 1 | 6 | 20 | 160 | 2000 | 0.004 | | | 28-1 | 94 | 1 | . 32 | 180 | 50. | 3000 | 0.022 | 2C-05
2C-06 | .1
1 | 8 | 10
10 | 160
140 | | <0.001
<0.001 | | - | 2B-1
2B-1 | 96: | 1 | 127 | 180
300 | 10 | 2900
3250 | 0.008 | 20-05 | 1 | 7 | 10 | 200 | 1800 | 0.001 | | - | 28-1 | 97 | 1 | 6.5 | 280 | 40 | 2700 | 0.003 | 20-08 | 1 | 10 | 10 | 160 | | < 0.001 | | | 2B-1 | | 1 | 10 | 160
120 | 20
70 | 2550.
3250 | <0.001
0.015 | 2C-09
2C-10 | 1 | <u>6</u>
5 | 10
10 | 140 | 1500 | 0.002
<0.001 | | | 2B-1
2B-2 | | 1 | 34 | 160 | 30 | 8000 | 0.003 | 2C-11 | 1 | 6 | 10 | 160 | 2400 | 0.002 | | ļ | 28-2 | 01 | . 1 | 2 2 | 180 | 30 | 4450 | 0.003 | 20-12 | 1 1 | 5
8 | 20
20 | 140 | | <0.001 | | 1 | 2B-2
2B-2 | | 1 1 | 30 | 1500 | 30
10 | 8000
3450 | 0.033 | 20-13
20-14 | 1 | 24 | 10 | 120 | 3250 | 0.002 | | | 2B-2 | | 1 1 | 21 | 120 | 10 | 2300 | < 0.001 | 2C-15 | 1 | 11 | 20 | 160 | 2800 | < 0.001 | | - | 2B-2 | | 1 1 2 | 48 | 160 | 10
60 | 2400 | 0.030 | 2C-16
2C-17 | 1 | 18 | 10 | 180
140 | | <0.001 | | ļ | 2B-2
2B-2 | | 12 | 2400
15 | 80
120 | 20 | | <0.001 | 20-17 | 1 | 9 | 20 | 160 | 2800 | <0.001 | | | 28-2 | 8.0 | 1 | 18 | 140 | 10 | 2650 | <0.001 | 20-18 | 2 | 30
15 | 10 | 140 | 1500 | 0.002 | | | 2B-2
2B-2 | | | 9 9 | 120
140 | 10
10 | | <0.001
<0.001 | 2C-20
2C-21 | 1 | 19 | 20 | 120 | 3700 | | | - 1 | 4 D - Z | | | <u> </u> | | | | | | | | | | | | | Sample No. | Рb | 2 n | ll g! | Ва | Ng | 2 | Staple No. | Pb. | : Zn | ll g : | Ва | Иg | s | |------------------|--|------------------|-------------------|-------------|---------------|------------------|------------------|-------------|--------------|------------------|------------|---------------|------------------| | 2C-22 | 99 m | рр в
8 | <u>рр</u> ь
30 | ррв.
200 | 3000 | 0,002 | 2C-109 | 29% | 9 p.m.
19 | <u>рев</u>
10 | 140 | 3400 | <0.001 | | 2C-23 | i | 11 | 40 | 360 | 1550 | 0.004 | 2C-110 | i | 26 | 10 | 160 | 11500 | < 0.001 | | 20-24 | 1 | 8 | 10 | 200 | 2200 | <0.001 | 20-111 | 1 | 10 | 50 | 120
160 | 15500 | <0.001 | | 2C-25
2C-26 | | 7 | 10 | 140 | 1300
2500 | 0.001 | 2C-112
2C-113 | | 8 | 20 | 160 | 3750 | 0.001 | | 20-27 | 1. | 27 | 10 | 120 | 6500 | 0,065 | 2C-114 | 1 | 8 | . 10 | 160 | 3100 | < 0.001 | | 2C-28
2C-29 | | 7 | 1 0
I 0 | 140 | 1850
3700 | 0.005 | 20-115
20-116 | 1 | 13 | 20
10 | 180
140 | 3550
2500 | <0.001 | | 20-30 | i | 6. | 10 | 180 | 3250 | < 0.001 | 2C-117 | i | 9 | έŏ | 160 | 3000 | < 0.001 | | 2C-31 | 1 | 39 | 30 | 160 | 5500 | 0.028 | 20-118 | 1 | 7 | 10 | 200 | 2500 | <0.001 | | 2C-32
2C-33 | 1 | 9
15 | ፈር
30 | 180 | 3600
1450 | 0.009
<0.001 | 20-119
20-120 | 1 | 13 | 10 | 160 | 1850 | < 0.001 | | 2C-34 | 1 | 15 | 20 | 120 | 2500 | < 0.001 | 2C-121 | 1 | 7 | 10 | 200 | 3150
5000 | < 0.001 | | 2C-35
2C-36 | 1 | 11 | 20
20 | 120 | 3050 | 0.003 | 2C-122
2C-123 | 1 | 13 | 20
20 | 140 | 3650 | <0.001 | | 2C-37 | i | 7 | 20 | 140 | 1650 | 0.001 | 2C-124 | 1 | 12 | 10 | 200 | 4000 | < 0.001 | | 20-38: ; | 1. | 13 | 10
20 | 120 | 70000
1750 | 0,060
<0,001 | 2C-125
2C-126 | 1 | 8 | 30
10 | 160 | 2850
2750 | 0.013 | | 2C-39
2C-40 | 1 | 6 | 20 | 140 | 1600 | < 0.001 | 2C-127 | i | 7 | -10 | 180 | 10000 | <0.001 | | 2C-41 | 1 | 7 | 20 | (00 | 1500 | 0.002 | 2C-128 | 1 1 | 6 7 | 10
20 | 120
180 | 3000 | 0.003 | | 2C-42
2C-43 | . 1 | 17
16 | 40
30 | 120 | 37500
1800 | 0.075 | 2C-129
2C-130 | | 7 | 20 | 180 | 2800 | 0.018 | | 20-44 | 1 | 18 | 40 | 120 | 4250 | 0.009 | 2C-131 | | 10 | 10 | 200 | 3900
3600 | 0.001 | | 2G-45
2C-46 | 1 | 10 | 20
30 | 120 | 3200
1600 | 0.011
<0.001 | 2C-132
2C-133 | 1 | 29
6 | 10
10 | 180
160 | 1500 | <0.001 | | 2C-47 | . 1 | 10 | 50 | 100 | 18000 | 0.001 | 20-134 | 1 | 15 | 20 | 500 | 3200 | | | 20-48 | 1 | 17
14 | 90
110 | 240
5800 | 9000
2750 | 0.015 | 2C-135
2C-136 | 1 | 8 | 10 | 140 | 2000
2900 | 0.002
<0.001 | | 2C-49
2C-50 | $\begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix}$ | 18 | 90 | 180 | 2300 | 0.001 | 2C-137 | 1. | 10 | 1.0 | 280 | 5400 | <0.001 | | 2C-51 | 1 | 21 | 110 | 1260 | 1850 | 0.001 | 2C-138
2C-139 | 1 | 12 | 20 | 160
180 | 3000
3150 | 0.002
<0.001 | | 2C-52
2C-53 | 2 2 | 22 | 60
30 | 440
220 | 5500
3700 | < 0.001 | 2C-140 | 1 | 8 | _10 | 240 | 2850 | < 0.001 | | 20-54 | . ! | 32 | 30 | 140 | 3050 | <0.001 | 2C-141
2C-142 | 1 | 6 | 10
30 | 160 | 2700 | 0.001 | | 2C-55
2C-56 | 11 | 10 | 10
10 | 160
180 | 1600
1500 | <0.001
<0.001 | 2C-143 | 1 | 10 | 20 | 140 | 2500 | 0.002 | | 2C-57 · | [i] | 7 | 10 | 140 | 1500 | < 0.001 | 2C-144 | 1. | 51 | 20
20 | 140 | 4350
3700 | | | 2C-58
2C-59 | 1 1 | 7 7 | 10
10 | 140
160 | 16500
4350 | <0.001 | 2C-145
2C-146 | 1 | 30 | 10 | 140 | 2100 | | | 2C-60 | 1 | s | 50 | 140 | 6000 | < 0.:001 |
20-147 | 1 | 13 | 10 | 140 | 1800 | | | 2C-81 | 1 | 10 | 5.0 | 120 | 3150
18000 | <0.001 | 2C-148
2C-149 | 1 | 11 | 20 | 160
560 | 13500
3200 | 0.032 | | 2C-62
2C-63 | | 8 8 | 50
50 | 140
200 | 11500 | <0.001 | 2C-150 | 1 | 30 | 10 | 320 | 2750 | 0.013 | | 2C-64 | 1 | 7 | 5.0 | 120 | 2200
2900 | <0.001
<0.001 | 2C-151
2C-152 | 1 | 10 | 20
20 | 160
220 | 3400
2100 | <0.001
<0.001 | | 2C-65
2C-66 | - 11 | 12 | 50 | 140
160 | 2750 | 0.002 | 2C-153 | î | 10 | 40 | 140 | 2650 | < 0.001 | | 20-67 | | 8 | 50 | 180 | 2900 | 0.002 | 20-154 | 1 | 23 | 3 0
1 0 | 160 | 3050
1750 | | | 20-68
20-69 | 11 | 21
22 | 50
60 | 600
320 | 4900
13000 | 0.008 | 2C-155
2C-156 | i | . 10 | 20 | 140 | 2500 | 0.008 | | 2C-70 | 1 | . 8 | 130 | 280 | 3050 | < 0.001 | 20-157 | . 1 | 10 | 10
10 | 150 | 4050
2650 | | | 2C-71
2C-72 | 1 | 1 2
3 0 | 8.0
4.0 | 940
360 | 3750
3900 | 0.014 | 2C-158
2C-159 | i | 11 | 10 | 140 | 2450 | < 0.001 | | 26-23 | <u> </u> | 25 | 5.0 | 780 | 2900 | 0.020 | 2C-160 | 1 | 14 | 10
20 | 120 | 3900
2600 | <0.001
<0.001 | | 2C-74
2C-75 | 1 1 | 25 | 50
40 | 2200
440 | 2650
5500 | 0.084 | 2C-161
2C-162 | 1 | 6
6 | 20 | 180 | 7000 | 0.011 | | 2C-76 | i [| 17 | 10 | 160 | 1900 | 0.001 | 20-163 | 1 | . 6 | 20 | 180 | 3500 | 0.394 | | 2C-77
2C-78 | 1 1 | 19 | 50 | 420 | 4000
3900 | <0.001 | 2C-164
2C-165 | 1 | . 9
10 | 10 | 120 | 3500
1950 | <0.001 | | 20-79 | 2 | 46 | 30 | 840 | 8500 | 0.002 | 20-166 | 1 | 7 | 10 | 180 | 29000 | <0.001 | | 2C-80
2C-81 | - 1 | 39
26 | 40
30 | 760
660 | 7000
5500 | 0.025 | 2C-167
2C-168 | 1 | 6
6 | 20
10 | 160 | 2050
13000 | | | 2C-81
2C-82 | 1 | 12 | 30 | 240 | 4400 | <0.001 | 2C-169 | 1 | 10 | 10 | 140 | 3000 | < 0.001 | | 2C-83 | 1 | 45 | 30 | 240 | | <0.001
0.143 | 2C-170
2C-171 | 1 | 7 | 10 | 140 | | <0.001
<0.001 | | 2C-84
2C-85 | 2 | 35
21 | 40 | 240
180 | | < 0.001 | 2C-172 | . 1 | 5 | 10 | 160 | 1800 | <0.001 | | 2C-86 | 1 | 20 | . 30 | 200 | 6000 | < 0.001 | 2C-173 | 1 | 9 | 20 | 140 | 2400
3300 | | | 2C-87
2C-88 | 1 1 | 35 | 60
30 | 580
460 | 5500
4900 | 0 053 | 2C-174
2C-175 | 1 | 7
10 | 10 | 160 | | < 0.001 | | 2C-89 | 1 | 4.6 | 20 | 160 | 3400 | 0.028 | 2C-176 | 1 | 13 | 10 | 240 | 3150 | 0.002 | | 2C-90
2C-91 | | 18 | 20 | 160
320 | 2650 | <0.001 | 2C-177
2C-178 | 1 | 8
7 | 20 | 260 | 3100
3250 | | | 2C-91
2C-92 | 1 | 11 | 20 | 200 | | <0.001 | 2C-179 | 1 | 18 | 20 | 980 | 4300 | 0.015 | | 2C-93 | . 1 | 19 | 30 | 400 | 3250 | 0.031 | 2C-180 | | 17 | 10 | 280 | 3400 | 0.031 | | 2C-94
2C-95 | - 11 | 34 | 20
20 | 140 | | <0.001 | 2C-181
2C-182 | 1 | 8 | 10 | 140 | 3400 | 0.016 | | 2C-98 | . 1 | 23 | 10 | 220 | 4500 | <0.001 | 2C-183 | 1 | 9 | 20 | 180 | 3750 | 0.001 | | 2C-97
2C-98 | 1 [
1] | 6 | 40
20 | 300 | | <0.001
<0.001 | 2C-184
2C-185 | 1 | 10
24 | 140 | 140 | 2250 | 0.003 | | 2C-99 | 1 | 11 | 20 | 220 | 15000 | <0.001 | 2C-186 | · I | 9 | 140 | . 10 | 2800 | 0.058 | | 2C-100 | 1 | 8 7 | 30 | 120 | | <0.001 | 2C-187
2C-188 | 1 | 22
18 | 200 | 20
10 | 3350
4450 | 0.029 | | 2C-101
2C-102 | i) | 7 | 20
10 | 200 | | <0.001 | 2C-189 | 1 | 13 | 180 | 20 | 2050 | <0.001 | | 2C-103 | 1 | 21 | 10 | 140 | 2300 | < 0.001 | 2C-190 | | 8 | 140 | 10
20 | 3150
2250 | < 0.008 | | 2C-104
2C-105 | l
1 | 8 | 20
10 | 140 | | <0.001
<0.001 | 2C-191
2C-192 | 1
1 | 16
29 | 140 | 20 | 3600 | 0.083 | | 20-106 | 1 | 23 | 20 | 100 | 1600 | <0.001 | 2C-193 | 1 | 53 | 400 | 10 | 3000 | 0.003 | | 2C-107
2C-108 | 1 | 33 | 20
20 | 120 | | <0.001
<0.001 | 2C-194
2C-195 | 1
2 | 11
38 | 120 | 10
10 | 2900
3000 | | | Fr-100) | 1.1 | 101 | 4 1 |) | ~ ~ ~ ~) | × × 4 | | | | | لمتنب | | |