2. Rainfall

2.1 Climate

The climate of the Upper Citarum Basin is typically tropical, characterized by two (2) distinct seasons: rainy and dry. Average annual rainfall ranges from 1,800 mm to 2,800 mm. Isohyetal map of the annual rainfall is shown in Fig. G.2.

Heavy rainfall in the Upper Citarum Basin is caused by the east monsoon as shown in Fig. G.3. Rainy season extends from November to April during which approximately 70% of the annual rainfall occurs. Monthly distribution of annual rainfall in the representative stations of the Study Area is shown in Table G.5.

2.2 Storm Rainfall

2.2.1 Rainfall Intensity

Rainfall intensity-duration curves with 2-year and 50-year frequencies were made by the Study of Bandung Urban Development Project for four (4) gauging stations located in the Bandung Metropolitan Area. (See Fig. G.4.)

Rainfall intensities for duration of 60 minutes are:

2-year rainfall : $40 \sim 51$ mm/hr. 50-year rainfall : $67 \sim 80$ mm/hr.

2.2.2 Probable Basin Rainfall Depth

Probabilities of average basin rainfall of 1-day, and 2, 3, 4 and 5-consecutive days were computed for the following nine (9) drainage basins: Citarik (776.1 km²), Cisangkuy (330.2 km²), Cibodas (81.5 km²), Cikapundung (144.3 km²), Ciwidey (268.7 km²), Cibeureum (117.2 km²), Cimahi (54.0 km²), Dayeuh Kolot (1,332.1 km²) and Nanjung (1,718.0 km²).

The above nine (9) drainage basins are shown in Fig. G.5. The estimated probable basin rainfall depths are shown in Table G.6 and Fig. G.5.

Rainfall stations of which data were used for calculation of the probable average basin rainfall are shown in Fig. G.6.

Average basin rainfalls were obtained by constructing different Tiesen Polygons every year for the available rainfall stations.

2.2.3 Basin Rainfall Depth of the Past Floods

The large floods occurred in the recent years are the floods of March 1931, April 1982, February 1983, January 1984, January 1985 and March 1986.

The basin rainfall depths of 1-day and 5-consecutive days during the flood peaks in the above mentioned past floods were calculated for the upstream basins of Dayeuh Kolot and Nanjung. The estimated basin rainfall depths are shown in Table G.7. Their estimated return periods are also presented in the same table.

2.2.4 Regional Distribution of Basin Rainfall

Isohyetal maps of 5-consecutive days rainfalls during the flood peaks of the recent floods are shown in Fig. G.7 and Fig. G.8. The analysed recent floods are the floods of April 1982, April 1983, April 1984 and March 1986.

Regional distributions of the above mentioned 5-consecutive days rainfalls are shown in Fig. G.9. The southern part of the Basin is prone to heavy storm rainfall. The March 1986 Storm uniformly distributed the rainfall over the Basin.

3. Existing Hydraulic Condition

3.1 Water Stage and Discharge Relation

Water stage-discharge curves at Dayeuh Kolot (1,332.1 km²) and Nanjung (1,718.0 km²) gauging stations are shown in Fig. G.10. From the stage-discharge curves, the peak discharge of the March 1986 flood is estimated to be 265 m³/s at Dayeuh Kolot and 311 m³/s at Nanjung.

Yearly maximum discharges at Dayeuh Kolot and Nanjung in the past years are estimated as shown in Table G.8.

3.2 Water Stage, Flood Area and Flood Storage Volume Relation

The Citarum River floods in the upstream reaches of Dayeuh Kolot gauging station. The 1986 March flood marked the peak water stage of EL. 659.8 m at Dayeuh Kolot gauging station and caused 7,249 ha of inundation with approximately 66.0 million m³ of flood water storage in the upstream reaches. Fig. G.11 shows the flood depth contour map of the 1986 flood.

From the above mentioned map, the relations between river water stage at Dayeuh Kolot, and flood area and flood storage volume were obtained as shown in Fig. G.12.

4. Flood Run-off Simulation

4.1 Mathematical Model

(1) Calculation of Effective Rainfall

Effective rainfall (Re) is calculated as follows.

Re(t) = $f_1 \cdot R(t)$: before the accumulated basin rainfall $(\sum R(t))$ reaches the saturation basin rainfall (R_{sa}) .

Re(t) = f_{sa} ·R(t): after the accumulated basin rainfall ($\sum R(t)$) exceeds the saturation basin rainfall (R_{sa}).

Where f_1 and f_{sa} are flood run-off coefficients and R_{sa} is the rainfall depth required to saturate the soils of the basin. Those factors are all characteristic to each basin.

(2) Flood Run-off Calculation of Watershed Area

The Storage Function Method is applied for the calculation of flood run-offs of the watershed areas. Flood run-offs are obtained by solving the following equations.

 $S = Kq^p$

 $\gamma_e - q = ds/dt$

Where: S = Storm water storage depth (mm)

q = Run-off depth (mm)

 $\gamma_e = \text{Effective rainfall intensity (mm/hr)}$

K = Constant characteristic to drainage basin

p = Constant = 0.6

(3) Flood Routing in the Flood Plain

Flood routing in the upstream flood plain of Dayeuh Kolot is done by using the following continuity equation of flood flow.

$$I(t) - Q(t) = dv/dt$$

Where, I(t) = Inflow discharge of the flood plain

Q(t) = Outflow discharge at Dayeuh Kolot

dv/dt = Variation of flood water storage in the flood plain.

4.2 Flood Run-off Simulation Model

The Study Area is divided into 28 sub-basins to calculate flood run-offs of the watershed areas as shown in Fig. G.13.

The constructed flood run-off simulation model of the Study Area River Basin consists of 28 sub-basins and one (1) flood plain. It is also shown in Fig. G.13.

4.3 Flood Run-off Coefficients and Base Flow

Monthly average flood run-off coefficients in the watershed were calculated, based on the rainfall and discharge records observed during the period from October 1985 to April 1986. The calculated results are shown in Table G.9 and Fig. G.14.

The flood run-off coefficients increase gradually over the period of rainy season, reaching the maximum at the end of the rainy season.

It is mainly due to change in the infiltration capacity of rainfall in the watershed.

The following run-off coefficients are applied for flood run-off simulation of the Study Area, collating the above calculated run-off coefficients with the standard ones in Japan.

Land-use	Water	Forest	Paddy	Dry Field Plantation	Built-up
Factor	water	rorest	Field	Plantation	Area
f_1	1.0	0.3	0.4	0.4	0.7
R _{sa} (mm)	200	200	200	200	200
f_{sa}	1.0	0.3	0.4	0.4	0.7

River discharge in late June is assumed to be the base flow of the Upper Citarum Basin because:

(1) Rainy season is over before June and river discharge during the period after June does not include run-off of storm water.

(2) River discharge is affected by withdrawal of irrigation water during the period after July.

Average river discharges observed in late June at Nanjung and Dayeuh Kolot are shown in Table G.10.

Base flow of the Upper Citarum Basin is assumed to be 0.01 m³/s/km².

4.4 Characteristics of Drainage Basin

The characteristics of the divided 28 sub-basins are shown in Table G.11. The characteristics include: catchment area, existing land-use, ground elevation, basin length, basin slope, roughness coefficient of basin, constants of the Storage Function and time lag of flood run-off.

4.5 Calibration of Flood Run-off Simulation Model

Flood run-off simulation was conducted for the 1984 and 1986 floods under the following calculation conditions.

Case 1 (daily basis calculation)

Input data: Daily rainfall distribution

Output data: Daily discharge distribution

Land-use : Existing

Inundation: Actual record

Case 2 (hourly basis calculation)

Input data: Hourly rainfall distribution

Output data: Hourly rainfall distribution

Land-use : Existing

Inundation: Actual record

Daily basis calculation was made for both 1984 and 1986 floods. However, hourly basis calculation was done for only the 1986 flood because of lack of hourly data concerning the 1984 flood.

The calculated water stage and discharge hydrographs at Dayeuh Kolot and Nanjung gauging stations are illustrated in comparison with the recorded ones in Fig. G.15, Fig. G.16 and Fig. G.17. The corresponding basin rainfall distributions are also illustrated in the same figures.

The proposed flood run-off simulation model is considered adequate.

4.6 Comparison of Daily and Hourly Basis Calculations

Flood peak discharge calculated on hourly basis is larger than that calculated on daily basis. Flood peak discharges of the Citarum River and tributaries calculated under the following condition are shown in Table G.12.

(Daily basis calculation)

Input data: Daily rainfall distribution of the 1986 Storm

Output data: Daily discharge distribution

Land use : Existing

Inundation: Without inundation or with inundation of 1,000 ha

in the flood plain of the Citarum River.

(Hourly basis calculation)

Input data: Hourly rainfall distribution of the 1986 Storm

Output data: Hourly discharge distribution

Land use : Existing

Inundation: Without inundation or with inundation of 1,000 ha

in the flood plain of the Citarum River.

Ratio of the daily and hourly peak discharges calculated under the conditions without inundation is considerably large as shown in Table G.12. However, no significant difference is recognized between the daily and hourly peak discharges at Dayeuh Kolot and Nanjung if inundation of 1,000 ha is allowed in the flood plain of the Citarum River.

Complete removal of flood water from the low-lying areas along the Citarum River may be impracticable and inundation will be allowed to a certain extent in planning the improvement of the Citarum River (Refer to Supporting Report H).

From the above considerations, daily basis calculation will be applied in planning the improvement of the Citarum River, by that lack of available hourly rainfall data can be overcome. While, hourly basis calculation will be applied for the tributaries.

5. Basic Design Flood Discharge

Basic design flood discharge is defined as a discharge with a certain return period estimated under the basin conditions of future land-use, without dam and without inundation.

5.1 Characteristics of Drainage Basin

Future land-use of the Basin in the year 2005 is estimated as shown in Table G.13. The other characteristics of the Basin: ground elevation, basin length, basin slope, roughness coefficient of basin, constants of the Storage Function and time lag of flood run-off are also shown in Table G.13.

5.2 Design Basin Rainfall

A design basin rainfall is made up of the three (3) elements:

- Average basin rainfall depth
- Time distribution
- Regional distribution

The time and regional distribution patterns of the 1986 Storm are employed as the design ones for the following reasons.

- Sufficient daily rainfall data are available.
- The time and regional distribution patterns are typical and frequent ones.

Design average basin rainfall depth is determined to meet a required safety level of flood control project.

5-consecutive days rainfall is selected as a probability variable for calculation of design basin rainfall, because flood peak of the Citarum River is governed by the rainfall depth accumulated during several days before the peak occurs. It is due to the retarding effects of flood run-off in the Basin. In the 1986 flood, the period of flood rising stage was approximately 5 days.

Design basin rainfall depth of 5-consecutive days with various frequencies are calculated for the drainage basin of Dayeuh Kolot as shown in Table G.14. Ratio of the estimated design rainfall depth and recorded rainfall depth of the 1986 Storm is also shown in the same table.

A design basin rainfall of each basin of the Citarum River with a given return period is obtained by multiplying the recorded 1986 basin rainfall by the magnification ratio shown in Table G.14.

5.3 Estimated Basic Design Discharge

Basic design discharges with various probabilities at Dayeuh Kolot and Nanjung are estimated under the basin conditions of future land use, without dam and without inundation as shown in Table G.15.

Basic design discharges with 5-year, 20-year and 50-year frequencies estimated for the other major sites of the Citarum River are shown in Table G.16.

Basic design discharge hydrographs with 5-year and 20-year frequencies estimated for Dayeuh Kolot is shown in Fig. G.18.

6. Hydraulic Effects of River Dredging

The Citarum River inundates the low-lying areas located in the upstream reaches of Dayeuh Kolot. Dredging of the downstream of Dayeuh Kolot will lower the flood water level in the upstream flood plain. In this Chapter, hydraulic effects of the river dredging are discussed.

6.1 River Dredging

The following six (6) cases of river dredging are proposed for the study of the hydraulic effects.

- Case 1: Existing river condition, discharge capacity at Dayeuh Kolot of 160 m³/s
- Case 2: River improvement corresponding to the discharge capacity at Dayeuh Kolot of $310 \text{ m}^3/\text{s}$
- Case 3: River improvement corresponding to the discharge capacity at Daycuh Kolot of 390 m³/s
- Case 4: River improvement corresponding to the discharge capacity at Dayeuh Kolot of 450 m³/s
- Case 5: River improvement corresponding to the discharge capacity at Dayeuh Kolot of 505 m³/s
- Case 6: River improvement corresponding to the discharge capacity at Dayeuh Kolot of 540 m³/s

The cross sections at Dayeuh Kolot are proposed as shown in Fig. G.19, assuming that roughness coefficient is n=0.03 and river bed slope is 1/5,500.

Water stage-discharge curves at Dayeuh Kolot calculated for the six (6) cases of river dredging are shown in Fig. G.20.

6.2 Flood Run-off Simulation

Flood run-off simulation was conducted by the simulation model proposed in Chapter 4. The simulation was done under the following river and basin conditions.

Land-use : Land-use in the year 2005

Inundation of flood plain: Relation between water stage at Dayeuh

Kolot and flood water storage volume in

the flood plain is shown in Fig. G.12.

River discharge capacity: Water stage-discharge curve at Dayeuh

Kolot for each dredging case is shown in

Fig. G.20.

Hydraulic effects of the proposed six (6) cases of river dredging are estimated in terms of the maximum flood water level at Dayeuh Kolot, flood duration and inundation area in the flood plain, for various flood frequencies as shown in Table G.17.

Relation between flood water level and discharge capacity at Dayeuh Kolot with a parameter of flood frequency is shown in Fig. G.19.

7. Design Discharge Distribution of Citarum River

The design flood water level of the Citarum River at Dayeuh Kolot is proposed to be EL. 658.1 m, allowing approximately 1,000 ha of inundation and 2,700 houses unrelieved from floods in the low-lying parts of the flood plain (Refer to Supporting Report H).

Design discharge distribution of the Citarum River with various probabilities are estimated under the following river and basin conditions.

Land-use : Land-use in the year 2005

Inundation of flood plain: 1,000 ha of inundation is allowable.

Design flood water level: EL. 658.1 m at Dayeuh Kolot

Estimated design discharge distributions of the Citarum River with 5-year, 20-year and 50-year frequencies are shown in Table G.18, being compared with basic design discharge distribution.

Design discharge hydrographs with 5-year and 20-year frequencies at Dayeuh Kolot are shown in Fig. G.21, with a comparison to basic design hydrograph. The corresponding basin rainfall time distribution and water stage hydrograph are also shown in the same figure.

8. Hydraulic Effects of Cisangkuy Diversion

The proposed project diverts flood run-offs of the upstream basin of the Cisangkuy River to the downstream of the Citarum River as shown in Fig. G.22.

The main features of the diversion are:

Inlet site : 8.5 km distance of the Cisangkuy River

Outlet site : 11.7 km distance of the Citarum River (Margahayu)

Catchment area: 206.9 km², 16% of the drainage area of Dayeuh Kolot

 $(1,332.1 \text{ km}^2)$

Route length: 3.1 km

Flood run-off simulation was conducted for the following four (4) cases.

	Flood Frequency	Citarum	River	Improvement	Diversion Project
Case 1-1	5-year	5-year	design	discharge	Without
Case 1-2	5-year	5-year	design	discharge	With
Case 2-1	20-year	20-year	design	discharge	Without
Case 2-2	20-year	20-year	design	discharge	With

Estimated maximum flood discharge and water level at Dayeuh Kolot are shown in Table G.19.

Lowering of flood water level at Daycuh Kolot by the Cisangkuy Diversion is approximately 0.2 m.

Flood hydrographs with and without diversion at Dayeuh Kolot are compared in Fig. G.23.

9. Design Discharge of Tributaries

In this Chapter, design discharge of the Citarum (upstream), Citarik, Cikeruh and Cisangkuy Rivers is discussed. Flood run-off of the tributaries are calculated on hourly data basis. (Refer to Chapter 4).

9.1 Storm Rainfall Patterns Selected for Flood Run-off Simulation

Storm rainfall with a 24-hour rainfall more than 20 mm are selected for flood run-off simulation from among all the storm rainfalls occurred in 1986, because the available hourly rainfall data are limited to the records in 1986.

15 storm rainfalls are selected for the Citarum (upstream) River, 11 storm rainfalls for the Citarik River, 12 storm rainfalls for the Cikeruh River and 9 storm rainfalls for the Cisangkuy River.

Hourly distribution of the above selected storm rainfalls are shown in Fig. G.24 to Fig. G.27.

9.2 Estimated Probable Discharge

Probable storm rainfalls of the selected patterns with 5-year, 20-year and 50-year frequencies are obtained by magnifying the recorded 24-hour rainfall depths to 5-year, 20-year and 50-year daily rainfall depths respectively.

Flood peak discharges with 5-year, 20-year and 50-year frequencies are calculated from the corresponding probable storm rainfalls of the selected patterns.

The calculation results are shown in Table G.20 to G.23.

9.3 Design Discharge

Design discharges with 5, 20, 50-year frequencies are obtained by averaging the probable discharges simulated from the selected storm rainfalls with the corresponding rainfall frequencies.

The design discharges of the tributaries are shown in Table G.24.

The design discharge distribution of the tributaries are shown in Fig. G.28 and G.29.

10. Impact of Land-use Change on Flood Run-off

Land development of the river basin generally increases flood peaks in the downstream reaches. The existing urban area of 126.4 km² in the Upper Citarum Basin (1,771.0 km²) will expand to 284.0 km² in the year 2005. The urbanization will mostly take place in the Bandung Metropolitan Area. (See Table G.11 and Table G.13)

Flood run-offs were calculated under existing and future land-use conditions with 5, 20-year frequencies by the following methods.

- Citarum River : Storage Function method, 1986 storm

rainfall pattern, Daily basis calculation

- Major Tributaries : Storage Function method, 1986 storm

rainfall, Hourly basis calculation

- Triburtaries flowing: Rational formula, Rainfall intensity-

through Bandung duration curves of Bandung Station,

Urban Area Hourly basis calculation (Refer to

Supporting Report F)

Discharges estimated under the existing and future (2005) land-use by 5, 20-year frequency floods are compared in Table G.25.

The future land development will have no significant effect on the flood run-off of the Citarum, Cisangkuy and Citarik River. It will, however, give a impact on the run-off of some tributaries flowing through Bandung Urban Area, Citepus, Cicadas and Ciwastra Rivers, with an increase in peak discharge of 30 - 60%.

Measures for discharge increase of the tribuaries flowing through Bandung Urban Area is described in Chapter 3 of Supporting Report F.

11. Effect of Citarum River Improvement on Saguling Dam

The spillway of Saguling Dam was designed to be safe for 1,000-year flood hydrograph. The Citarum River improvement is proposed for 20-year flood discharge. So, in case a 1,000-year flood will occur, the Citarum River will be flooded widely in the flood prone area along the upstream streches from Dayeuh Kolot. The flood discharge change will, however, be insignificant even if the Citarum River is improved, because of the flood effect. Hence, the spillway of Saguling Dam will not be affected by the river improvement.

Design hydrograph for the Spillway is of short duration with high discharge, while the flood hydrograph for the Citarum River improvement is of long duration with low discharge. In this section, safety of the spillway was confirmed using the following data.

- Saguling Dam gate operation mode
- The relation between water stage and water volume of the reservoir
- 1000-year flood discharge hydrograph for the Citarum River improvement

The results are described below and that the safety of the spillway is confirmed.

Item	River Improvement Hydrograph	Saguling Design
Nanjung Discharge	1023 m ³ /s	••
Inflow to Reservoir	$1481 \text{ m}^3/\text{s}$	5195 m ³ /s
Outflow from Spillway	$1407 \text{ m}^3/\text{s}$	2384 m ³ /s
Reservoir Water Level	644.5 m	645,0 m

The method of calculations are described in Data Book III.

٤	No Cta	Name of Station Autho-	Autho-L		f	020		H		8	11				0+91				f	ki		Ļ		1080				2	1970		Ш		985		11
			717	- 5	•	9		*	-	9	8	7 6 8	-	2	9 0	1	•	2 -	-	8	7 0	*	2 3	4 3 6	7	0 0	V (2	¥ %	2 4 5 6	7 8 5	- - -	2	•	6 7 8 9	•
÷	150	Padalerang	8.X.C			_									_						ব	000	00	V∇	\ <u>\</u> \	_	বিত্	VV	VV	ŏ	4	-			
2	L		Z-H-Z						Е								0	0	000	0	joo	ololo	00	Ö Ö	ŏ	Š	ŏ	000000000000	0	응	000	0	00		
	151c	Batujajar	в.и.с												_		M	ঘ	VV	ত্ত্ত্ত্ত্ত্ত্ত্ত্ত্	ত্	7000	4	ব	4	ব্বব্	9	000	용						
•	152	Cimeni I.B.E	1.H.E							H							9	000	000	Š	<u> </u>	Š		000	ğ	ठ	00000000000	Š	0000	8	0	000	000	_	
ં	1536	Gambung	B.H.G						Е	F					H	_		ব	Ĭ O O	V O	절 증	440	0	V V V OO	4	3	<u> </u>	1			_				
<u>.</u>	1535	Cividey		Ħ	H	F	F			H	H			H	H	H	Н	Е	F		ŏ	Š	0000000	1000	O V	Ö	0	\ <u>4</u>	O V V O O V O	000	0000	4	<u>0</u>		
-	1545	Margahayu			F										-		00	O	ŏ	7000	 	\ <u>\{\</u>	POOPPVV	8	O Q	Ю	얼	<u> </u>	ব	_	ব		-		
8	157	Cikapundung	0	<u> </u>	Ř	0	V	ΔO	0	<u> </u>	000	OOK	00	0		Н			F				OOV	\(\frac{1}{2}\)	000	ᅙ			E	F			_	<u> </u>	
	160		1.H.E									Н					Q	000	0	00	000	000	000	lo.	000	Š	Š	00000000	0	<u>ŏ</u>	0000		000	_	
	1628	Cihampelas			F	0		OOO	ŏ	000	000	70	0	0		_	0	00	Ö		Š	000	응	Ö	ŏ	Š	Š	00000000	0	8	000	000000	8	_	
11	1634	Banjaren	B.M.G		F			E			_			Ė											_		0	000				Ō	ō		
12.	163c		3.H.I		Ц						Н				H		0	00	8	ŏ	000	Q	0000	0	8	000	0	00000	0	용	000	(4	000		
13	163d	Cirateun	B.M.G		_	Ě	000	000	00	이이이	엉엉	၀ု၀	000	5		_	E		F		-	L		-			_			_	-		_	_	
14.	163£	Cibedak	•			H		Ŏ.	ĕ	olololo	4	oov!	000			E	E					L			_					00			_		
115.	1639	Husein														Ш	이이	00	yolo	000	OOC	Š	থগণ)	٧	202	Q	VO	বিবিবিবিবি	ব্ৰত্ত্ব	77 C	400	ত্বত্	20	_	
16.	164	Jetinangor(perk)	• "														E					L		F			4	200A	0	ব্		-	-		<u> </u>
17.	1648	Buanbatu									9	ಠ	ОO	0	_		O O	OVO	ಶ	70 V	이덕덕이	ব্যব্	বৃত্ত্ত্	4	স্বত্ত	이지	<u> </u>	이		1			1		
18.	1645	Pasirjati		-			_			-					_					-	-			-	1 1	_	00	ololo	ব	VO	4	0000	VC		
19.	167	Majalaya	1.H.E		H	H	П			H		В				П	Ŏ	000	000	OOC	OOK	O	olololo	0	000	Ö	olololololo	OO	X O O	olololo	Q	00	0		П
20.	168	Arjasari(perk) B.M.G	N. R. G		Š	Ŏ C		0000	900	000	δΔ	000	0	0			বতা							1::	_		マ이	000		ଠାଠାଠ		70000	\ \ \ \		
21.	170	Paseh (Cipsku) I.H.E	3.H.										į,				ŏ	200	잉잉	000	ololo	0	ଠାଠାଠାଠାଠ		OO	QQ	00	ାଠାଠାଠ		olololo	OOK	o	00		۰
22.	172	Ciniron	•			00	ololo	0	ololo	ololo	OOV	0	000	0	Ц			엉엉	000	ooo	000	0	ଠାଠାଠ	OOC	ioloi c	이이	00	୦୦୦୦୦୦	O	ଠାଠାଠା	000	ola	00		
23.	1730	Cinchona	8.H.G	_					-								900	0000	첮	ାଦ୍ୱଦ	0	000	ব্বত	ব	0		\ <u>\</u>	VQV	0					1	_
24	173b	Pangalengan		-	-	_							_	_	_				-	-			_				00	VQ	স্বত	Solc		7 V V	ত্ত্ত্	1	
25	174	Ciboureum				-		H			В		H					H					-			-	힉	O	Ĭ	양		<u> থতাতাত</u>	7		٦
26.	178	Argesart	·	000000000	Š	첮	0	0	응	8	000	0	000	_					_		_									_				_	~
27.	1780	. Gn. Halimun	•		Š	ŏ	0	olok	성	ଠାଠାଠାଠାଠାଠ	<	ୀଠା	000	<u> </u>		_				-	-			-	1	-				_	_	-	1		
28	179	Cibitung	ŏ	o o o o o o o o	Š	ö		000	00000	000	0	0000	900	_										1	_						_	-			
53	1793	Pacet			Š	ال ا	О	OVO	OOC	0 0 0	OO		ଠାଠ	_										_		_			_	-		_	_		-
9	180	Malabar	1 R E			-											Ĭ	ololo		OO	0	OOO	000	$\boldsymbol{\alpha}$	OVO	00	ololo	0	000	000	000	olojo	ဝ		-
31	1816	Cileunce	5 X G		0	이이어지		V V									V O	00			_		_		⊽	0	000	0000	ঠুত	이이이이이	VQ	$\Delta \Delta$	0		_
32	194b	Tanjungsari 1	*					\dashv					-				\exists	O V	9	0	이시시	00	ব্বব্				4	⊽	স্কৃত	이이이이	V V				~~
£	195d	Tanjungsari 2						=	_	듸	4	o o	이지			Ť	ব	OOVO	일	0	000	0	4	0	ব্বত	0	1	000	O	0000			- - -		-7
ř	196	Cimanggerang														Ĭ	00	000	000	00	0			=			_					-	Q		1
8	200	Sitiarja	8		Š	Š		ö	900	응		힝	000	H			H														0	ଠାଠାଠାଠାଠ	ŏ		

Table G.2

AVAILABLE RAINFALL DATA (HOURLY)

Type A : Automatic Type T : Telemeter Type _ : Manual

19 19	1984 1985 1985	Type	2 E E E E E E E E E E E E E E E E E E E	1983 5 6 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	90000 60000 800044	표 0 0 0 0 0 H	2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	© 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	100000000 200000000	지 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	© 0000000 © 00000000	1985 000000000000000000000000000000000000	© 000000 © 040000	A COLUMN TO A STATE OF THE PROPERTY OF THE PRO
Bojongmonyet " Tanjakan " Ciharalang "	F F F	A A A													0 0
Selacan Lemburawa "	E E S	AAA													0
rten Kidul engka															4
	5 5	티타													
Ciparay Ujungberung "	2 5	E4 E4													
Bandung " Sukawarna "	E E	E4 E4		.,,,											
Cisondari "	z 2	E4 E4													

(Continued) AVAILABLE F

AVAILABLE RAINFALL DATA (HOURLY)

Type A : Automatic Type I : Telemeter Type _ : Manual

							j
No.	Station Name	Year	Type	1986			
				1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2	3 4 5 6 7	8 9 10 1	127
7	Cibintinu	1983	А				
2.	Pasir Jampana	=	A		300 A		
3.	Cibuntu	н	Ą				
4.	Bbk.Siliwangi	ε	Ą	0000			
5.	Banjaran	1984					
9	Cisondari	18	A				
7.	Pangalengan	94	A	00000000000			
8	Perwati	1985	A				
9.	Bojongmonyet	D.	ß				
10.	Tanjakan	좥	A				
11.	Ciharalang	F	A				
12.	Selacan	te.					
13.	Lemburawa	11	A				
14.	Mande	2	Ą				
15.	Cisaranten Kidul	B	Ą				
16.	Cicalengka	11	Ţ	000000000			
17.	Paseh	н	E	0000000000			
18.	Cinchona	=	T				
19.	Ciparay	=	Ħ	000000000000000000000000000000000000000			
20°	Ujungberung	8	[-4	000000000000000000000000000000000000000			
21.	Bandung	E	E-4	000000000000000000000000000000000000000			
22.	Sukawarna	2	H	000000000000000000000000000000000000000			
23.	Cisondari	F	E	000000000000000000000000000000000000000			
24.	Cililin	=	Ę.				

AVAILABLE WATER LEVEL AND DISCHARGE DATA (DAILY)

		واطعاعات				,						S. C. S. C. C.				·		രഹവിത
1982		0			:											account on		
1981	◁	0							و المراد الم			◁		0				
1980	V	abla								يانفشسون		0	7	٥		•	- 5.5	
1979	∇								:			0	0	0				الموارث وعدد
1978	∇											0	0	٥		- 30, 10, 10	PER MERITA	
1977	◁											0	◁	◁				
1976	0											٥	0	0				
1975	0											0	0	◁				
1974	0											0	0	V				
1973	4											0	0	0				
Year	1973	1980	1984-2	1984-2	1984-10	1984-2	1985-10	1985-10	1984-2	1984-10	1985-9	1957	1952	1952	1985-10	1984-9	1984-9	1984-2
Туре	A	А			A		A	A		Ą	Ą	A	A	A	A	Ą	A	
Catchment Area (Km ²)	1718.0	1138.5	447.1	268.2	48.3	53.9	9.21	15.3	18.8	64.0	38.5	88.7	54.1	9.91	85.6		8.02	67.5
River	Citarum	Citarum	Citaric	Citarum	Cikeruh	Cikeruh	Cidurian	Cipanjalu	Cibodas	Cirasea	Cibeureum	Cikapundung	Cikapundung	Cigulung	Citarum	Cisangkuy	Cijalupang	Cirasea
Station	Nanjung	Dayeuhkolot	Rancakemit	Majalaya	Bbk. Bandung	Cikkuda	Sukapada	Kepuh	Jatisati	Cengkrong	Sukajadi	Gandok	Maribaya	Maribaya	Cibangoa	Cipendeuy	Peundeuy	Andir
No.	1	2.	3.	4.	ഗ	9	7.	8	9	10.	11.	12.	13.	14.	15.	16.	17.	18.

 Δ = Partially lacking

Type A : Automatic Type T : Telemeter Type _ : Manual

(Continued)

AVAILABLE WATER LEVEL AND DISCHARGE DATA (DAILY)

						•							•	
No.	Station	River	Catchment Area (Km²)	Type	Year	1983	1984	1985	1986				and the second s	-3-mi
1.	Nanjung	Citarum	1718.0	A	1973									7
2.	Dayeuhkolot	Citarum	1138.5		86									
m	Rancakemit	Citaric	447.1		viσ			1	-					
4	Majalaya	Citarum	268.2		984				1 (_	
Ŋ	Bbk. Bandung	Cikeruh	48.3	Ą	984									
9	Cikkuda	Cikeruh	53.9		984-	-								T
7.	Sukapada	Cidurian	17.6	A.	985-	-					_		_	
80	Kepuh	Cipanjalu	15.3	A	985							-	_	
9	Jatisari	Cibodas	8.81		984-									T
10.	Cengkrong	Cirasea	64.0	A	984.				- -					
11.	Sukajadi	Cibeureum	38.5	4	1 1 X X			 	1 <					j
12.	Gandok	Cikapundung	88.7	- A	957			 	1				_	7
13.	Maribaya	Cikapundung	54.1	A.	95	-								
14.	Maribaya	Cigulung	9.91	ď	0			+						-
15.	Cibangoa	Citarum	85.6	A	1985-10				-					T
16.	Cipendeuy	Cisangkuy		4	984-9		1		+					7
17.	Peundeuy	Cijalupang	8.05	ď	984-			-	\triangleleft					<u> </u>
18.	Andir	Cirasea	67.5		84-				0			-		
							4			1				1

Type A : Automatic Type T : Telemeter Type _ : Manual

△ = Partially lacking Note : ()= Existing

AVAILABLE WATER LEVEL AND DISCHARGE DATA (HOURLY) Table G.4

Year 1986 (Max) 1984 (Feb) 1984 (Apr) 1982 (D 1/3 ~ 30/4 1/1 ~ 31/1 1/2 ~ 28/2 1/4 ~ 30/4 1/1 ~ 30/4 1973 O O O O O O 1980 O O O O O O 1984-2 O O O O O O 1984-10 O O O O O O 1985-10 O O O O O O O 1985-10 O				1 3 4 1 1			r		2		3		₽*		ເດ	
W.L. D W.L. D 0 0 0 0 -2 0 0 0 -10 0 0 0 -10 0 0 0 -9 0 0 0 -10 0	No. Station River Area		Catchm Area	ด ผ ก	Type	Year	1986 1/3 ~∃	(Mar) 30/4		Jan) 31/1	4.	10 ~	[ᢏ,	(Apr)	0 1	Dec)
-10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	(Km²)	Km²	(Km²)				M I	D	W.L	Ω	W.L	Ω	니	Ω	W.L	C
-2 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10	1. Nanjung Crtarum 1718.0		1718.0	***	Ą	9	0	0	0		0		0		0	
-2 -10 0 0 0 -10 0 0 0 -10 0 0 0 0 0 0	Dayeuh kolot Citarum 1138.5		1138.5		4	1980	Ö	0.	0		0		0		0	
-10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Rancakemit Citaric 447.	·	447.			1984-2										خ نده دیس
-10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4. Majalaya Citarum 268.2		268.2			ł										
-10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	BBK. Bandung Cikeruh ,48.3		4 8.8		ď	1		0								
5-10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Cikuda Cikeruh 53.9		6. 6.			1984-2										
4-10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Cikapada Cidurian 17.6	-	17.6		æ	985		0						!		,
4-2 4-10 5-9 0 0 0 0 0 0 0 0 0 0 0 0 0	Kepuh Cipanjalu 15.3		<u>5</u>		Ą	1985-10		0		* a.		ı				
4-10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Jatisari Cibodas 8.8		8.8			984								\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	:	
	10. Cengkrong Cirasea 64.0		64.0		Æ	 		0		1.		:				
	11. Sukajadi Cibeureum 38.5	· ·	38.5		Æ	985	0	0		1. 1.		٠				· ·
	12. Gandok Cikapundung 88.7		88.7		æ		<u> </u>		0		0		0		0	
	13. Maribaya Cikapundung 54.1		54.		Ø	1952									0	0
000	14. Maribaya Cigulung 16.6		9. 91		ď	1952	0	0	0	0 .	0	0,	0	0	0	0
00	15. Cibangoa Citarum 85.6		85.6		ধ					• .						:
-0 -2	16. Cipeundeuy Cisangkuy	Cisangkuy			æ	1984-9	0	0							· · · · · · · · · · · · · · · · · · ·	
1984-2	17. Peundeuy Cijalupang 20.8		20.8		Ø	1984-9	0	0							· .	
	18. Andir Cirasea 67.5		67.5			1984-2										

Note: 1) W.L: Water Level data
D: Discharge data

Type A : Automatic Type I : Telemeter Type _ : Manual

(Continued)

AVAILABLE WATER LEVEL AND DISCHARGE DATA (HOURLY)

)-at.		4		<u>r</u>		Ó		O	
o Z	Station	River	Catchment Area	Туре	Year	1985 (1/1~3	Jan) 1/1	1985 1/2 ~	(Feb) 28/2		(Oct) -24/10	1985 (N 20/12~2	Nov)
			(Nill =)			1.4	Ω			니			C
r-1	Nanjung	Cıtarum	1718.0	Ą	1973							0	O
2.	Dayeuh kolot	Citarum	138.5	Ø	1980	0		0					DOM AND THE
m	Rancakemit	Citaric	1. 744		1984-2						general (francisco de la compansión de l		
4	Majalaya	Citarum	268.2		1984-2	·				0			ina preside
<u>ب</u>	BBK. Bandung	Cikeruh	48 8.3	<	1984-10					,			alan raha pin
6	Cikuda	Cikeruh	53 G		1984-2					0		◁	germ Washing g
7.	Cikapada	Cidurian	17.6	4	1985-10						**************************************		******
∞	Kepuh	Cipanjalu	15.3	ø	1985-10						aineg fancysi y Proj	0	0
o,	Jatisari	Cibodas .	8.81		1984-2						- Contract of the Contract of		re aconst.
10.	Cengkrong	Cirasea	64.0	Þ	1984-10	·							. j. 2 2022.
11.	Sukajadi	Cibeureum	38.5	⋖	1985-9							0	O
12.	Gandok	Cikapundung	88.7	⋖	1957	0		0					nuddirii
13.	Maribaya	Cikapundung	54	4	1952						4.00.00.00		ži turis dite
14.	Maribaya	Cigulung	9. 9.	Ø	1952	0	0	0	0	0	0	0	0
15.	Cibangoa	Citarum	85 G	ď	1985-10							0	kong 2 (f. 102)
16.	Cipeundeuy	Cisangkuy		4	1984-9								e autore profes
17.	Peundeuy	Cijalupang	20.8	⋖	1984-9	-				0	0	0	0
18	Andir	Cirasea	67.5		1984-2		. :				And		
	Note : 1) W.1	Note : 1) W.L : Water Level data	el data								Type Type Type	A : Aut T : Tel	Automatic Telemeter Manual

Note : 1) W.L : Water Level data

: Discharge data Д

						Month							Total
Station	Jan.	Feb.	Mar.	Apr.	May	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.	
Cimahi	240	186	247	. B 1 1	102	45	73	.5. 4.	84	144	218	228	1804
Pakar	238	223	233	213	148	55	ហ ហ	5.9	8 5	176	256	260	2011
Cisondari	. 254	211	258	247	255	T 6	о С	89	117	171	თ 0 ო	314	2390
Majalaya	269	211	ರ ೯	215	137	7.9	മ	4	89	121	242	287	2051
Cinyiruan	407	317	323	316	189	107	79	20	601	66 E	304	19E	2790
				7									

Source: Pre Feasibility Study 21 Lokasi: Paket III Dalam Bidang, Water Resources Studies and Hydrologic Analysis, (Appendix III-2) Rainfall Data, August 1986

				Retur	n Perio	od (Yea	r)		· · · · · · · · · · · · · · · · · · ·
Day	Drainage Basin	2	5	10	20	30	50	100	2
1	1. Citarik	50.0	63.6	72.0	80.1	84.5	90.0	97.3	10
,L,	2. Cisangkuy	53.8	66.8	74.8	82.2	86.3	91.3	97.9	10
-	3. Cibodas	55.0	68.9	77.4	85.3	89.8	95.2	102.4	10
	4. Cikapundung	54.3	73.6	86.3	98.3	105.3	114.0	125.7	13
	5. Ciwidey	62.1	87.7	105.1	122.0	131.8	144.2	161.3	17
	6. Cibeureum	51.8	70.3	82.4	93.9	100.6	108.9	120.2	13
٠.	7. Cimahi	62.1	87.7	105.1	122.0	131.8	144.2	161.3	17
	Dayeuh Kolot	45.3	57.3	64.8	71.7	75.5	80.3	86.6	9
	Nanjung	44.7	56.1	63.3	69.8	73.5	78.1	84.1	9
2	1. Citarik	76.8	98.1	111.5	124.0	131.0		151.0	16
	2. Cisangkuy	82.4	101.4	113.0	123.6	129.5		146.3	
	3. Cibodas	78.7	98.6	110.9	122.2	128.6	136.3	146.6	15
	4. Cikapundung	81.9	108.6	125.8	142.1	151.9	163.0	178.6	19
	5. Ciwidey	90.6	125.1	148.1	170.3	183.2	199.2	221.2	24
	6. Cibeureum 7. Cimahi	74.4	99.6 86.4	116.0 96.3	131.6 105.4	140.5 110.4	151.6 116.6	166.7 124.7	18 13
			:		108.8		120.4		13
	Dayeuh Kolot Nanjung	72.3	89.1 86.3	99.4 96.3	105.4	114.0 110.4	116.6	124.8	13
3	1. Citarik	98.2	124.0	140.0	154.8	163.2	173.4	187.0	20
	2. Cisangkuy	102.5	124.9	138.6	150.9	157.8	166.1	177.2	18
	3. Cibodas	96.5	121.4	136.9	151.2	159.2	169.0	182.1	1
	4. Cikapundung	102.8	136.4	158.2	178.8	190.5	205.1	224.8	
	5. Ciwidey	108.6	148.3	174.5	199.6	214.1	232.3		28
	6. Cibeureum 7. Cimahi	92.2	121.1	139.6 157.6	157.1	167.0 194.2	179.3	195.9	
	Dayeuh Kolot	91.4	112.3	125.0	136.7	143.2	151.0	161.5	1
	Nanjung	88.6	108.1	120.0	130.8	136.8	144.1	153.7	1
4	1. Citarik	113.9	145.3	166.0	186.0	197.5	211.8	231.1	2
	2. Cisangkuy	120.1	147.1	163.5	178.4	186.7		210.1	2:
1	3. Cibodas	112.6	140.9	158.4	174.5	183.5	194.6	209.2	
ļ	4. Cikapundung	121.1	160.7	186.3	210.5	224.3	241.5		
	5. Ciwidey	125.9	172.3	203.0	232.4	249.5	270.7		
	6. Cibeureum	108.4	141.9	163.4	184.5	195.0	209.2	228.3	
	7. Cimahi	114.1	155.9	183.5	210.0	225.3	244.4	270.4	2
	Dayeuh Kolot	108.7	133.3	148.2	161.8	169.4	178.7	190.8	
	Nanjung	106.1	129.4	143.6	156.4	163.6	172.3	183.7	1
5	1. Citarik	131.9	164.8	185.1	203.8		227.0	1	
	2. Cisangkuy	131.5	169.7	193.9	216.5	229.3			•
	3. Cibodas	127.2	160.4	181.0	200.0		223.8		
	4. Cikapundung	136.2	181.7	211.1	239.1				
	5. Ciwidey	140.6	195.8	232.9	268.8				
	6. Cibeureum	123.1	160.7		207.3				
ŀ	7. Cimahi	129.7	176.6	207.6	237.3	1. 254 4	275.7	304.8	; 3

Table G.7 BASIN RAINFALL OF PAST FLOOD

		Dayeuh l	Kolot	Nanji	ing
		Depth	Return	Depth	Return
Day	Date		Period		Period
· •		(mm)	(Year)	(mm)	(Year)
	3/ 1,1931	47	1.8	45	1.9
	3/16,1982	35	1.3	31	1.1
1-day	3/17,1983	38	1.4	37	1.3
	3/24,1984	42	1.6	36	1.3
	3/27,1985	37	1.4	35	1.2
	3/11,1986	36	1.3	34	1.2
·					
	2/28 - 3/ 4,1931	1,77	14.0	164	10.0
	4/11 - 4/15 ,1982	107	1.4	105	1.4
5-day	2/15 - 2/19,1983	109	1.4	116	1.7
_	1/11 - 1/15,1984	141	3.0	134	3.0
	1/ 4 - 1/ 8 ,1985	100	1.2	94	1.1
	3/ 7 - 3/11 ,1986	116	1.5	119	1.8

Table G.8 YEARLY MAXIMUM DISCHARGE OF THE CITARUM RIVER

* * * * * * * * * * * * * * * * * * *	Vonu		Discharge	e (m3/s)
	Year		Nanjung	Dayeuh Kolot
	1918	·	244	146
	1919		244	146
	1920	·	217	179
	1921		261	210
	1922		275	200
14	1923		252	179
	1924		252	_
	1925		204	-
100	1926		208	_
÷	1927	į	194	
	1928		256	•••
	1929		207	-
	1930		355	
	1931		455	_
:	1932		350	<u>-</u>
	1933		335	-
	1934		328	_
	1973		269	-
	1974		323	***
	1975		364	-
	1976		247	_
	1977		290	-
	1978		302	
	1979		301	-
	1980		220	82
	1981		197	108
	1982	·	261	149
	1983		303	132
	1984		335	230

Table G.9

Station : Majalaya (A=176.5 $\rm km^2$)

Case	Date	Rainfall Depth (mm)	Run-off Depth (mm)	Rate of Run-off
	Oct. 1985	287.5	219.5	0.76
	Nov.	117.0	182.4	1.56
	Dec	354.5	266.5	0.75
1	Jan. 1986	331.0	0.92	
	Feb.	267.0	1.06	
	Mar∙	463.0	513.2	1.11
	Arp.	191.0	410.0	2.15
	Total	2011.0	2178.2	1.08
	Oct. 1985	287.5	140.8	0.49
	Nov.	117.0	106.3	0.91
	Dec.	354.5	187.8	0.53
2	Jan. 1986	331.0	224.2	0.68
	Feb.	267.0	212.6	0.80
	Mar.	463.0	434.5	0.74
	Apr.	191.0	333.9	1.75
	Total	. 2011.0	1640.1	0.82

Station: Andir (A=67.5 km²)

-	15 t	Rainfall	Run-off	Rate of
Саве	Date	Dopth (mm)	Depth (mm)	Run-off
	Oct. 1985	171.5	63.9	0.37
	Nov.	141.5	49.5	0.35
	Dec.	168.5	150.1	0,89
1	Jan. 1986	284.0	189.6	0.67
	Feb.	187.0	161.5	0.86
	Mar.	411.0	298.6	0.73
	Apr.	288.1	223.6	0.78
	Total	1651.6	1136.8	0.69
	Oct. 1985	171.5	50.8	0.30
	Nov.	141.5	36.8	0.26
ja arti	Dec	168.5	137.0	0.81
2	Jan. 1986	284.0	176.5	0.62
	Feb.	187.0	149.7	0.80
	Mar.	411.0	285.5	0.69
	Apr.	288.1	210.9	0.73
	Total	1651.6	1047.2	0.63

Station : Peundeuy (A=20.8 km²)

		-		· · · · · · · · · · · · · · · · · · ·				
_	n	Rainfall	Run-off	Rate of				
Case	Date	Depth (mm)	Depth (mm)	Run-off				
	Oct, 1985	778.0	69,0	0.09				
	Nov.	254.0	53.7	0.21				
	Dec.	541.0	92.0	0.17				
1	Jan. 1986	261.0	154.1	0.59				
	Feb.	214.0	90.5	0.42				
	Mar.	468.0	238.4	0.51				
	Apr.	176.0	205.9	1.17				
	Total	2692.0	903.6	0.34				
	Oct. 1985	778.0	42.2	0.05				
	Nov.	254.0	27.8	0.11				
	Dec.	541.0	65.2	0.12				
2	Jan. 1986	261.0	127.3	0.49				
	Feb.	214.0	66.3	0.31				
	Mar.	468.0	21.6	0.45				
	Apr.	176.0	180.1	1.02				
	Total	2692.0	720.5	0.27				

Station : Cikuda (A=53.9 km²)

Case	Date	Rainfall	Run-off	Rate of
		Depth (mm)	Depth (mm)	Run-off
	Oct. 1985	247.0	13.0	0.05
	Nov.	220.0	25.0	0.11
100	Dec.	302.0	38.0	0.13
- 1	Jan. 1986	262.0	96.6	0.37
	Feb.	268.0	59.2	0.22
	Mar.	281.0	146.3	0.52
	Apr.	177.0	138.5	0.78
	Total	1757.0	516.6	0.29
	Oct. 1985	247.0	10.4	0.04
	Nov.	220.0	22.5	0.10
	Dec.	302.0	35.4	0.12
2	Jan. 1986	262.0	94.0	0.36
	Feb	268.0	56.8	0.21
	Mar.	281.0	143.8	0.51
	Apr.	177.0	135.9	0.77
	Total	1757.0	418.8	0.28

Station: Jatisari (A=18.8 km²)

Case	Dar	t-o	Rainfall	Run-off	Rate of
Case	Da.		Depth (mm)	Depth (mm)	Run-off
	Oct.	1985	247.0	267.8	1.08
	Nov.		220.0	186.1	0.85
	Dec.		302.0	304.1	1.01
1	Jan.	1986	148.8	101.6	0.68
	Feb.		106.6	153.6	1.44
	Mar.		245.0	324.6	1,32
	Apr.		236.3	324.6	1.11,
,	To	otal	1505.7	1600.0	1.06
	Oct.	1985	247.0	215.3	0.87
	Nov.		220.0	135.3	0.62
	Dec.		302.0	251.6	0.83
2	Jan.	1986	148.8	49.1	0.33
	Feb.		186.6	106.2	1,00
	Mar.		245.0	273.8	1.12
	Apr.		236.3	209.7	0.89
	To	tal	1505.7	1241.0	0.82

Station : Sukajadi (A=38.5 km²)

	Data	Rainfall	Run-off	Rate of
Case	Date	Depth (mm)	Depth (mm)	Run-off
	Oct. 1985			
	Nov.	294.0	46.5	0.16
	Dec	80.0	65.1	0.81
1	Jan. 1986	218.0	51.2	0.23
	Feb.	188.0	62.5	0.33
	Mar.	367.0	102.0	0.28
	Apr.	219.0	87.9	0.40
	Total	1366.0	415.2	0,30
	Oct. 1985			
	Nov.	294.0	33.8	0.11
	Dec.	80.0	65.0	0.81
2	Jan. 1986	218.0	38.1	0.17
	Feb.	188.0	50.7	0.27
	Mar.	367.0	89.3	0.24
	Apr.	219.0	74.8	0.34
	Total	1366.0	338.7	0.25

Note: (1) Case 2: Base flow is excluded.

Table G.10 BASE FLOW DISCHARGE

	Nanji	ıng	Dayeuh	Kolot
	Discharge	Specific	Discharge	Specific
Date	9	Discharge		Discharge
	(m3/s)	(m3/s/km2)	(m3/s)	(m3/s/km2)
1974	14.5	0.008	-	
			·	
1975	24.6	0.014		_
		0.000		_
1976	5.8	0.003	_	
1077	54.6	0.014		
1977	24.0	0.017		
1978	_	_	-	-
25.0				
1979	17.8	0.01		
1980	7.0	0.004	10.8	0.008
			100	0.01
1981	21.4	0.012	12.8	0.01
	100	0.000	7.6	0.006
1982	13.3	0.000	1	".""
		 		
Average	16.1	0.009	10.4	0.008
Average	1			
	1975 1976 1977 1978 1979	Date (m3/s) 1974 14.5 1975 24.6 1976 5.8 1977 24.6 1978 - 1979 17.8 1980 7.0 1981 21.4 1982 13.3	Date Discharge (m3/s/km2) 1974 14.5 0.008 1975 24.6 0.014 1976 5.8 0.003 1977 24.6 0.014 1978 - - 1979 17.8 0.01 1980 7.0 0.004 1981 21.4 0.012 1982 13.3 0.008	Date Discharge (m3/s) Specific Discharge (m3/s) Discharge (m3/s) 1974 14.5 0.008 - 1975 24.6 0.014 - 1976 5.8 0.003 - 1977 24.6 0.014 - 1978 - - - 1979 17.8 0.01 - 1980 7.0 0.004 10.8 1981 21.4 0.012 12.8 1982 13.3 0.008 7.6

CHARACTERISTICS OF DRAINAGE BASIN (EXISTING) Table G.11

	Remarks		Cibangoak		Cengkrong		Peundeuy			Bbk. Bandung			Jatisari	٠.		Sukapada		Gandok	Maribaya (Cigulung)	Maribaya (Cikepundung)		Cipeundeuy				Sukajadi				
Q) E-4	(hr)	0.26	0	0	0	06.0	0	0.17	0	0.05	0	0	:	0.17	0.07	0	0.07	0.19	0	0	0	0.52	0	0.71	0	0.15	0	0.57	0	
í).i	9.0	9.0	9-0	9-0	9.0	9.0	9.0	0.6	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9-0	9.0	9.0	9 0	9.0	9-0	9-0	9.0	9 0	9	0.6	9 0	
	¥	C) A)	12.7	19.2	124	27.7	n L	22.8	10.4	17.8	21€	27.0	0.1	0,70	26.4	13.8	12.4	14.4	0.6	ţ.	25.2	16.1	20.4	20.5	20.0	13.9	4.7	25.5	14.4	
Co-efficient	Roughness	1.243	0.940	1.622	1.116	1.292	1.109	1.347	1.138	1,025	1.436	1.518	1.138	1.345	1.378	1.397	0.360	0.800	0.763	0.867	1.256	010.1	1.599	1.270	0.897	0.961	1.640	1.389	1.007	
Slope	. ⊢t	0.0179	0.0517	0.0068	0.0444	0.0174	0.0433	0.0000	0.0729	0.0231	0900.0	0.0022	0.0612	0.0000	0.0044	0.0217	0.0104	0.0438	0.0518	0.0333	0.0022	0.0357	0.0192	0.0349	0.0104	0.0627	0.0240	0.0352	0.0053	
Length	(km)	17.5	12.0	0,0	0	31.0	0.9	15.5	ຜູ	13.0	6.5	0	80	15.5	13.5	0 9	13.5	16.0	υ υ	0.9	7 6	23.0	9.5	27.0	10.0	15.0	1.0	24.0	4.5	
	Elevation Diff. H (m)	314	620	34	400	540	260	139	620	300	9.0	20	520	139	9	130	141	200	440	200	21	820	182	942	104	940	24	844	24	
Š		999	086	999	700	660	200	661	680	800	199	099	680	199	660	720	629	800	1160	1000	659	089	658	658	656	760	656	959	656	
EL	Max. Elevation Hl (m)	980	1600	200	1100	1200 -	096	800	1300	1100	200	680	1200	800	720	850	800	1500	1600	1200	680	1500	840	1600	160	1700	680	1500	680	
	Built- , up Area	2.9	0.2	3.5	0.0	80	۳. 0	6.3	0.2	0.0	1.1	1.6	1.3	1.1		1.5	39.7	1.2	2.6	0.3	3 2	0.3	1.2	რ 0	32.2	4 8	0.2	1.4	0	
	Dry Field Plantation etc.	22.3	33.4	2.6	24.3	88 W	10.7	3 7.2	4.2	14.4	18.2	1.4	9.1	6.7	H.3	4.1	æ.	15.9	17.6	7.7	19.4	78.9	14.5	48.0	4.0	15.1	2.7	10.7	М	
(Km2)	- R1	38.1	10.9	23.0	19.6	129.6	7.9	66.3	4.4	83	33.6	7.9	8.4	8	23.1	10.5	7.4	2.2	2.6	1.6	30.6	46.6	44.4	78.4	40.9	10.7	5.1	38	2.1	
Area	Forest	33.4	55.3	0.0	20.1	33.1	6.1	Ø.	6:5	25.5	0.8	0	0.0	8, 1	0.0	2	0.0	15.2	14.0	9.5	16.4	76.2	0.0	73.9	0.0	7.9	0.0	16.8	0 0	
	Water	0.5	0.0	0.0	0.0	8	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	.0	0.0	0.0	0.0	0.0	6	0.0	0.0	9-1	0	0.0	m. O	0 0	
Catch-	Ment Area (Xm2)	97.2	8.66	29.1	64.0	260.6	20.8	119.6	15.3	48.3	53.7	10.9	18.8	21.4	34.2	17.6	53.9	34.5	36.8	19.1	9-69	506.9	60.1	200.6	78.7	38.5	0.8	0.85	6.0	
Block No		1. 18	2. 1B	3. 2A	4. 2B	S. 3A	6. 3B	7. 4A	8. 48	9. 40	10.5	11. 68	12. 6B	13.60	14. 7A	15. 78	16.8A	17.88	18.80	19.80	20. 9A	21, 98	22. 10	23. 11	24. 12A	25. 12B	26. 13	27. 14	28. 15	

1) : Te : time lag of flood run-off

Table G.12 COMPARISON OF DAILY AND HOURLY BASIS CALCULATIONS

	Catchment	Land		Peak Dis		
River	Area	Use	Inundation	Daily	Hourly	Hourly/Daily
	(km2)			(m3/s)	(m3/s)	
Citarum River		Existing	Without			
Dayeuh Kolot	1,332.1			320	480	1.50
Nanjung	1,718.0	·		420	580	1.38
Citarum River	, *	Existing	With 1,000ha			
Dayeuh Kolot	1,332.1		,	271	287 .	1.06
Nanjung	1,718.0			363	378	1.04
Cikapundung River	114.3	Existing	Without	31	74	2.30
Cisangkuy River	276.5	Existing	Without	62	93	1.50

CHARACTERISTICS OF DRAINAGE BASIN (YEAR 2005) Table G.13

	Remarks		Cibangoak		Cengkrong		Peundeuy			Bbk. Bandung			Jatisari			Sukapada		Gandok	Maribaya (Cigulung)	Marribeya (Cibepundung)		Cipeundeuy			:	Sukajadi				
a €-	(hr)	0.26	0	0	0	06.0	0	0.17	0	0.05	0	0	0	0.17	0.07	0	0.07	0.19	0	0	0	0.52	0	0.71	0	0.15	0	0.57	0	
	<u>α</u>	9.0	9.0	9.0	0.6	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9	9-0	9.0	9 0	9-0	9-0	9.0	9.0	9	9-0	9 0	9*0	9.0	9.0	9.0	9.0	
;	×	25.4	12.7	16.2	1.0	2.7.3	9.7	20.7	9.2	178	21.6	258	0 0	28.1	2.1.1	13.8	5.0	129	о 6	σ,	21.8	60	17.7	20.0	7.8	10	4	20.5	4.4	
Co-efficient	of Roughness N	1.243	0.940	1.622	1.116	1.292	1.109	1.347	1.138	1.025	1.436	1.518	1,138	1.345	1.378	1,397	0.360	0.800	0.763	0.867	1.256	1.010	1.599		0.897	0.961	1.640	1.389	1.007	
Slope) H	0.0179	0.0517	0.0068	0.0444	0.0174	0.0433	0600.0	0.0729	0.0231	0,0060	.0.0022	0.0612	0.0090	0.0044	0.0217	0.0104	0.0438	0.0518	0.0333	0.0022	0.0357	0.0192	0.0349	0.0104	0.0627	0.0240	0.0352	0.0053	
Length	(km)	17.5	12.0	2.0	0	31.0	6.0	15.5		13.0	6.5	0.6	ω ω	15.5	13.5	6.0	13.5	16.0	8.5	0.9	7.6	23.0	9.5	27.0	70.0	15.0	1.0	24.0	4.5	
	Elevation Diff. H (m)	314	620	34	400	540	260	139	620	300	თ წ	20	520	139	909	130	141	700	440	200	21	820	182	942	104	940	24	844	24	-
Levation	Min. Elevation H2 (m)	999	086	999	100	099	200	661	680	800	199	099	680	199	099	720	629	800	1160	1000	629	680	658	658	656	760	656	959	656	
3	Max. Elevation Hl (m)	980	1600	700	1100	1200	960	800	1300	1100	700	089	1200	800	720	850	800	1500	1600	1200	680	1500	840	1600	760	1700	680	1500	680	
	Built- up Area	8 4	0.2	8.0	2 4	14.6	0.3	26.9	φ 	0.0	1.1	2.2	3.6	7 4	6 / 1	7.	483	ص ص	е Ю	o ع	4	0	12.4	7.5	70.2	3-6	0.5	3.7	0	
	Dry Field H	22.3	33.4	8.0	24.3	8 5 8	16.7	26.5	0	4.4	18.2	4	8 .2	8	4	4	8.6	15.5	16.8	7 . 7	17.9	78.9	13.1	۵ د د	σ Ο		2.7	6.7	ιυ N	
(Km2)	Paddy	36.2	10,9	17.5	17.2	126.3	7 9	56.4	0	ω	3.3.6	7 3	7.0	10.7	ر ان ان	10.5	0	0 0	5 6	9	21.6	4 6.6	3. 4. G	73.9	7.6	ص ص	ر. د.	10.5	2 1	
Area	St	33.4	55.3	0	20.1	33.1	<u>د</u> ق	ο σ	8.8	2 5 5	8.0	0	0	8	0.	ru L	0.0	15.2	0	у б	1 6 0	7 5 2	0	7.3	0.0	7 9	0	16.8	0.0	
	Water	0.5	0	0.0	0.0	8.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0-0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0	0.0	0.0	0	0.0	0	m 0	0.0	
Catch-	2002	97.2	8.66	29.1	64.0	260.6	20.8	119.6	15.3	48.3	53.7	10.9	18.8	21.4	34.2	17.6	53.9	34.5	36.8	19.1	69.6	206.9	60.1	200.6	78.7	38.5	O+ 80	•	6.0	
Block No		1. 1A	2. 13	3. 2A	4. 2B	5. 3A	6. 3B	7. 4A	8. 4. 8.	9. 40	10. 5	11. 64	12. 6B	13. 60	14. 7A	15.78	16.8A	17.88	18.80	19.8D	20. 9A	21. 9B	22. 10	23. 11	24. 12A	25. 12B	26, 13	27. 14	28. 15	

1) : Te : time lag of flood run-off

Table G.14 DESIGN BASIN RAINFALL FOR DAYEUH KOLOT BASIN

Return Period (Year)	1 1		Ratio	
2	115.9	124.8	1.08	
5	115.9	152.2	1.31	
10	115.9	168.9	1.46	
20	115.9	184.0	1.59	
50	115.9	202.6	1.75	
100	115.9	216.1	1.86	

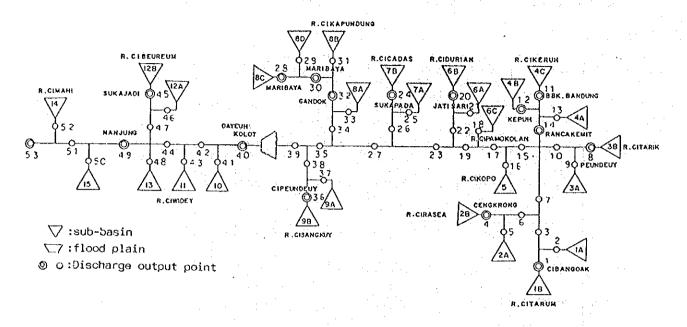
Table G.15 ESTIMATED BASIC DESIGN DISCHARGE (DAYEUH KOLOT, NANJUNG)

Basic Design D	
Dayeuh Kolot	Nanjung
(1,332.1 km2)	(1,718.0 km2)
331	438
414	547
467	617
514	678
572	754
614	809
	(1,332.1 km2) 331 414 467 514 572

Table G.16 ESTIMATED BASIC DESIGN DISCHARGE (MAJOR SITES OF CITARUM RIVER)

Basic De	esian Discoarde				
Basic Design Discharge (m3/s)					
5-year	20-year	50-year			
256	316	351			
277	342	380			
309	382	424			
414	514	572			
414	514	572			
501	622	691			
547	678	754			
563.	698	775			
	256 277 309 414 414 501 547	256 316 277 342 309 382 414 514 414 514 501 622 547 678			

[
Level of	Rainfall	Hax, Flood	flood	*	*	* 1
River	Probability	Elevation at Daycub Kolot	Depth at D. K.	1	2	3
Improvement	(Year)	(m)	(m)	(m)	(m)	(day)
	(Tear)	(1117	(1117	(1517	\"'''	
	1986 Harch	659,60	1.50	0.00	0.00	
1	1/2	659, 84	1.74	-0.24	0.00	~ &
Existing	1/5	660.28	2. 18	-0.68	0.00	more than 2 months
River	1/10	660, 59	2.44	-0.99	0.00	2 2 2 2
400 7/0	1/20	660.87	2.77	-1.27	0.00	, g
160 m ² /s	1/50 1/100	661, 21 661, 45	3, 11 3, 35	-1.61 -1.85	0.00	-
	17 100		0,00,	-1.03	0.00	
	1986 Harch	657.83	-0.27	1.77	1.77	19
2	1/2	657.99	-0.11	1.61	1.85	37
	1/5	658, 58	0.46	1.02	1.70	51
[1/10	658.95	0.85	0.65	1.64	54
	1/20	659.27	1.17	0.33	1.60	57
310 m²/s	1/50	659.66	1.56	0.06	1.67	58
	1/100	659, 87	1.77	-0.27	1.58	58
	1986 Harch	657, 23	-0.87	2.37	2.37	. 9
3	1/2	657.45	-0.65	2. 15	2.39	13
	1/5	657, 99	-0.11	1.61	2.29	22
	1/10	658.31	0.21	1.24	2.23	39
	1/20	658,55	0.45	1.05	2.32	46
390 ni/s	1/50	658.88	0.78	0.72	2.33	51
	1/100	659. 12	1.02	0.48	2.33	53
	1986 Harch	656. 84	-1.26	2.76	2.76	7
4	1/2	657. 13	-0.97	4.47	2.71	9
	1/5	657.69	-0,41	1,41	2.09	15
	1/10	657.97	-0.13	1.63	2.62	- 18
	1/20	658.22	0.12	1.38	2.65	24
450 m/s	1/50	658.50	0.40	1.10	2.71	38
	1/100	658.71	0.61	0.89	2.74	47
	1986 Karch	656.56	-1.54	3.04	3, 04	4
5	1/2	656, 78	-1.32	2.82	3.06	8
	1/5	657.37	-0.73	2.23	2.91	. 13
	1/10	657, 68	-0.42	1.93	2,91	14
	1/20	657.93	-0.17	1: 67	2.94	21
505 m³/s	1/50	658.20	0.10	1.40	3.01	29
	1/100	658, 34	0.29	1.21	3, 04	38
	1986 Harch	656.37	-1, 73	3, 23	3, 23	2
6	1/2	656.57	-1.53	3.03	3.27	3
	1/5	657.26	-0.84	2. 34	3.02	8
	1/10	657.54	-0.56	2.06	3.05	12
	1/20	657.81	-0.29	1.79	3.06	16
540 m/s	1/50	658.07	-0.03	1.53	3. 14	18
	1/100	658. 30	0.20	1, 30	3. 15	27


flood depth reduction

^{*2} Rood depth reduction
from 1986 Flood

*2 Rood depth reduction
from existing river condition

*3 Haximum flood duration
at the lowest point of flood area

Table G.18 DESIGN DISCHARGE DISTRIBUTION OF CITARUM RIVER

Site No.	Design Discharge (m3/s)			Basic Design Discharge (m3/s)			
	5-year	20-year	50-year	5-vear	20-vear	50-year	
15	256	316	351	256	316	351	
(Sapan) 23	277	342	380	277	342	380	
35	309	382	424	309	382	424	
39	414	514	572	414	514	572	
40 (Dayeuh Kolot)	374	466	534	414	514	572	
44	465	578	658	501	622	691	
49 (Nanjung)	505	627	712	547	678	754	
53 (Curug Jompong)	521	647	733	563	698	775	

Table G.19 HYDRAULIC EFFECTS OF CISANGKUY DIVERSION

	Max. Discharge (m3/s)	Discharge Reduction (m3/s)	Max. Water Stage (EL.m)	Water Stage Reduction (m)	Remarks
Case 1-1	373	 -	658.04	-	5-year flood, without diversion
Case 1-2	324	49	657.83	0.21	5-year flood, with diversion
Case 2-1	465		658.09		20-year flood, without diversion
Case 2-2	401	64	657.85	0.24	20-year flood, with diversion

Table G.20 PROBABLE DISCHARGE OF CITARUM (UPSTREAM) RIVER

						UNIT: m3/s
No.	Selected	Sto	rm	5-year	20-year	50-year
1	1986,	1.	2	80	102	120
2		1.	4	1.41	190	226
3	i .	1.	8	71	88	105
4		2.	8	90	117	138
. 5		2.	10	71	90	108
6.		2.	23	87	110	128
7		2.	27	101	132	155
8	·	3.	-5	171	225	263
9		3.	8	178	242	287
10	٠,	3.	9	73	93	109
11	Ì	3.	11	77	101	119
12	ļ	3.	13	122	165	197
13	·	3.	20	73	93	109
14	1.	3.	23	112	107	126
15	<u> </u>	4	11	73	94	111
Avera	ge			101	130	153

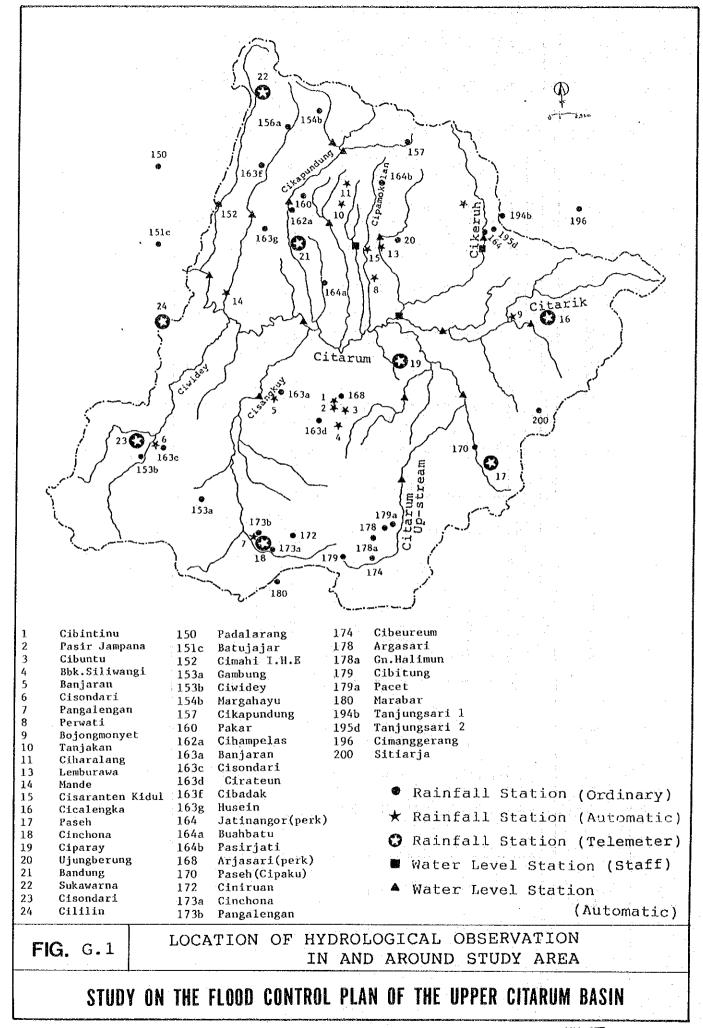
Table G.21 PROBABLE DISCHARGE OF CITARIK RIVER
Unit: m3/s

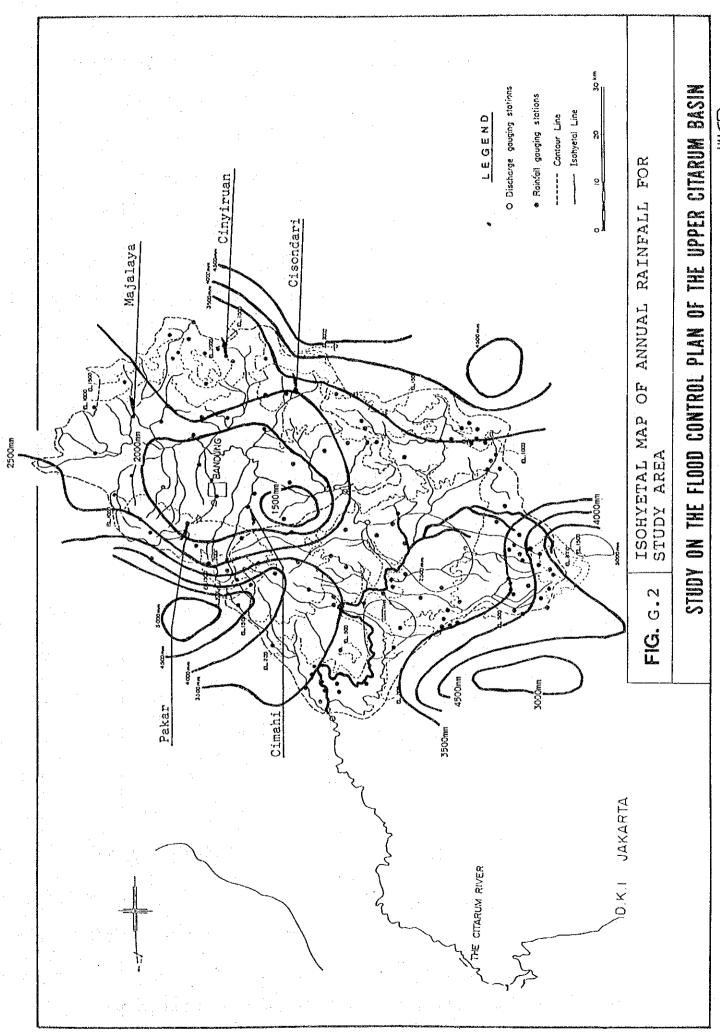
-					0113.01 11107.0
No.	Selected S	torm	5-year	20-year	50-year
1 2 3 4 5 6 7 8 9 10	1 1 2 2 3 3 3 3 3 3	2 4 6 2 27 1 5 5 5 9 1 1 1 3 2 2 3 1 7	71 61 62 73 82 67 72 70 82 68 102	94 79 80 97 112 94 95 92 109 89	110 91 92 112 131 109 110 106 126 103 162
Avera	ge		74	98	114

Table G.22 PROBABLE DISCHARGE OF CIKERUH RIVER

		-			Unit: m3/s
No.	Selected	Storm	5-year	20-year	50-year
		A		OMBODIE DES TOTOLOGICO	
1	1986,	1. 2	67	90 :	105
2		1. 5	87	121	149
3		1. 7	85	117	139
4		1. 8	61	.82	97
5	ĺ	2. 5	88	121	144
6	1	2. 8	57	75	86
7		2. 27	61	79	91
8		2. 28	77	105	123
9	Ì	3. 7	65	88	102
10		3. 31	82	111	129
11	ļ	4. 12	70	95	111
12		4. 18	64	87	101
Averag	ge		72	98	115
	<u> </u>				

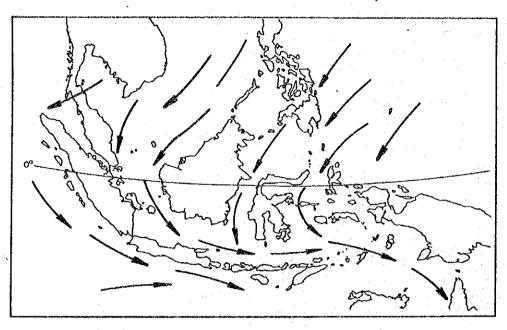
Table G.23 PROBABLE DISCHARGE OF CISANGKUY RIVER

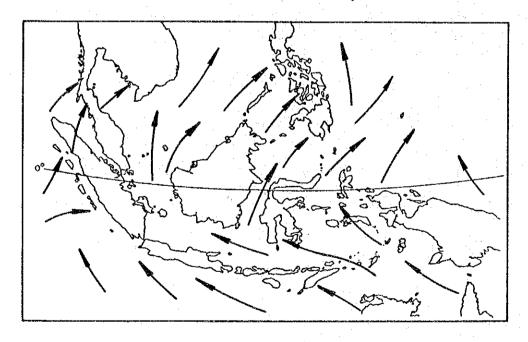

					Unit: m3/s
No.	Selected	Storm	5-year	20-year	50-year
1 2 3 4 5 6 7 8	1986,	2. 10 2. 23 2. 27 3. 5 3. 10 3. 11 3. 14 3. 23 4. 2	123 135 145 124 147 122 139 125	159 173 187 158 191 155 180 159 163	183 196 214 179 218 175 205 179
Avera	ge		132	169	193


Table G.24 DESIGN DISCHARGE OF TRIBUTRIES

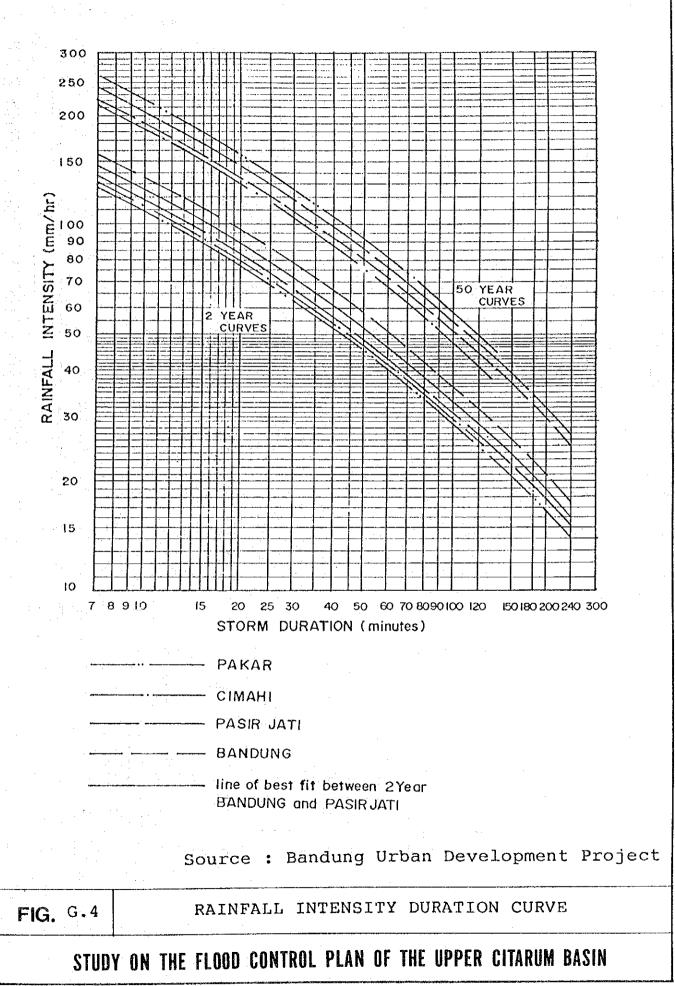
	Catchment	Design	Discharge	(m3/s)
	Area (km2)	5-year	20-year	50-year
Citarum (upstream) River	290.1	110	130	160
Citarik River	281.4	80	100	120
Cikeruh River	183.2	80	100	120
Cisangkuy River	276.5	135	170	195

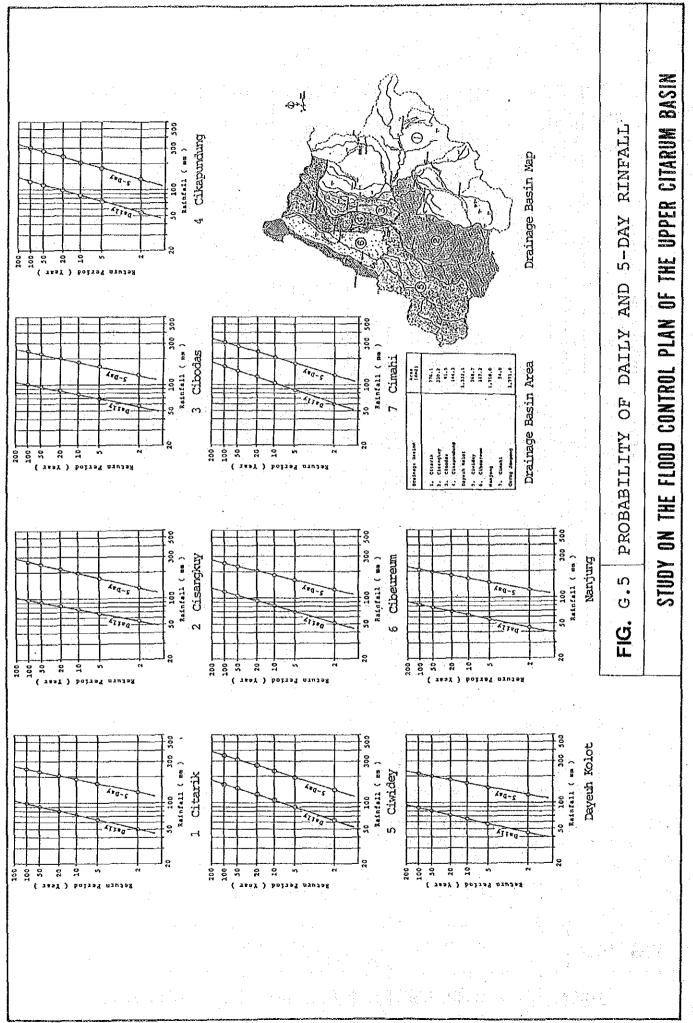
FLOOD RUN-OFF CHANGE DUE TO LAND DEVELOPMENT Table G.25


	Catchment		5 - year			20'- year	
River	Area	Land	Use	Ratio	Land	Use	Ratio
	(km2)	Existing	Future		Existing	Future	
Citarum River							
Dayeh Kolot	1,332.1	406	414	1.02	505	514	1.02
Nanjung	1,718.0	528	547	1.04	656	678	1.03
Tributaries							
Citarum (Upstream)	290.1	91	101	Н.	911	130	00.⊥
Citarik	281.4	71	74	1.04	9.50 5.00	86	1.03
Cikeruh	183.2	59	72	1.22	08	86	4
Cisangkuy	276.5	126	132	1.05	161	69 T	1.05
Tributaries of							
Bandung Urban Area							
Citapus	18.4		92	1.64	99	105	1.57
Cikapundung	110.2	144	165	1.15	168	170	1.13
Cikapundung Kolot	22.5		1	1.15	Н	125	⊣.
Cicadas	24.1	54	68	1.26	64	080	1.25
Ciwastra	•	26	32	1.35	30	040	ო
Cidurian	27.1	5.4	9	1,11		70	1.1
Cipamokolan	44.8	104	111	1.07	124	130	H 0 H



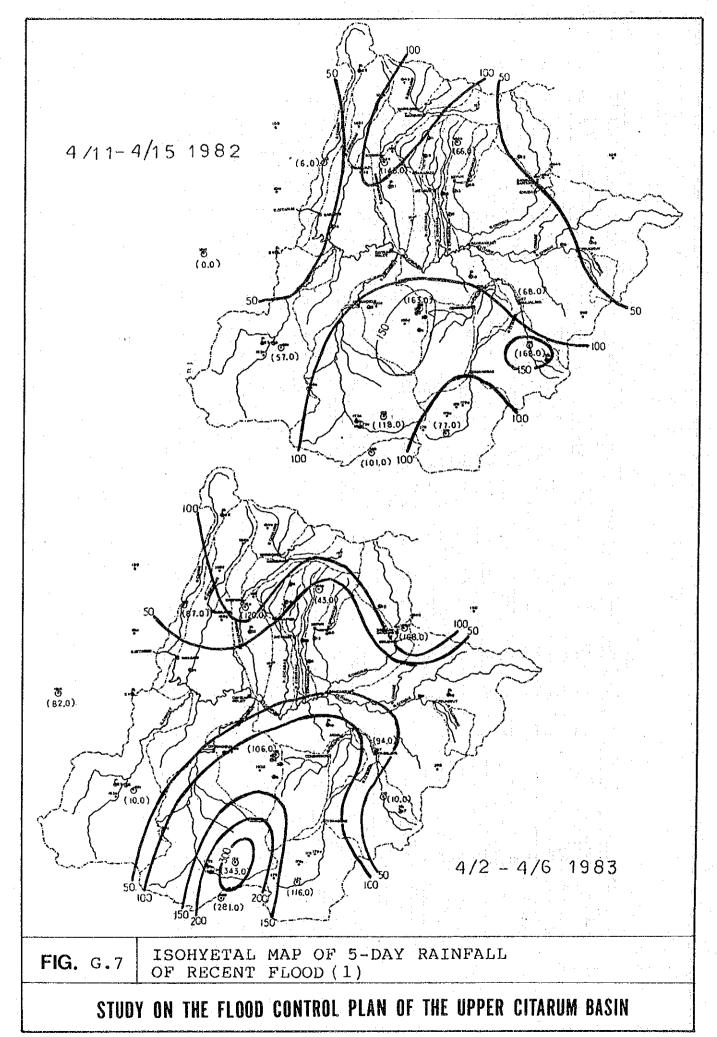
EAST MONSOON (DEC, JAN)

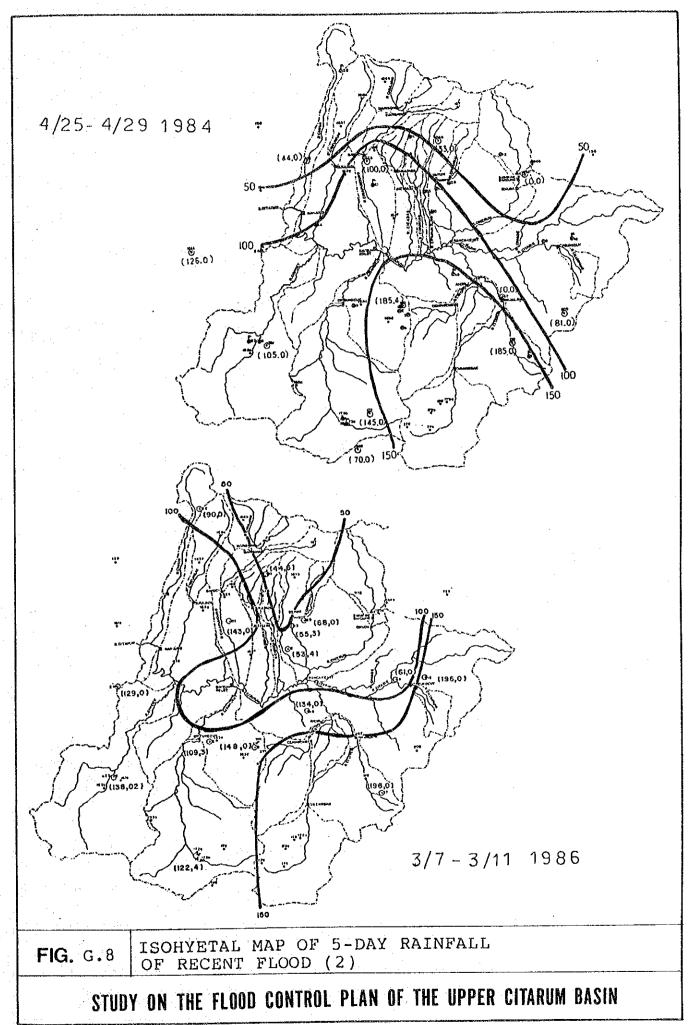

WEST MONSOON (JUL, AUG)

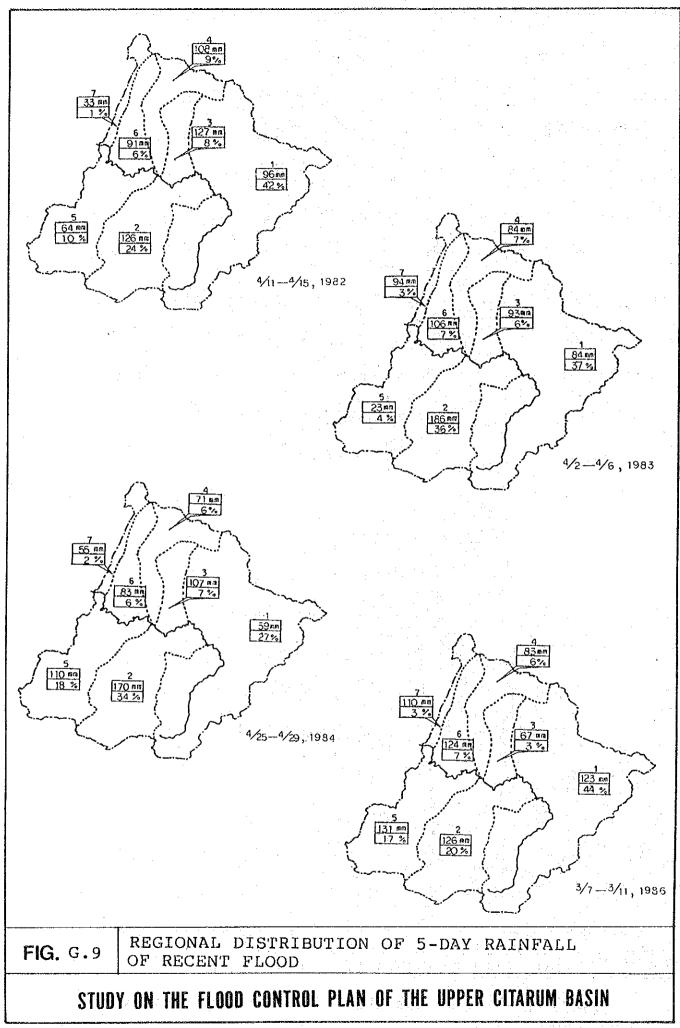


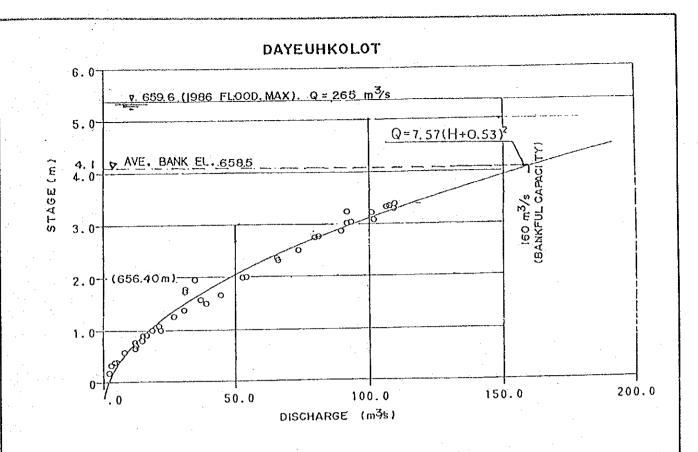
SOURCE : B M G

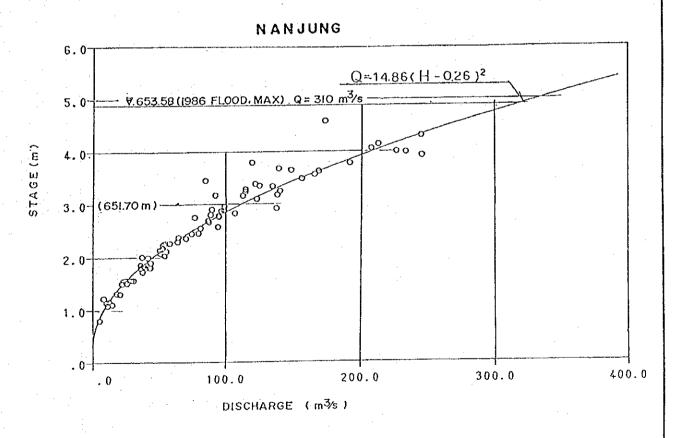
FIG. G.3

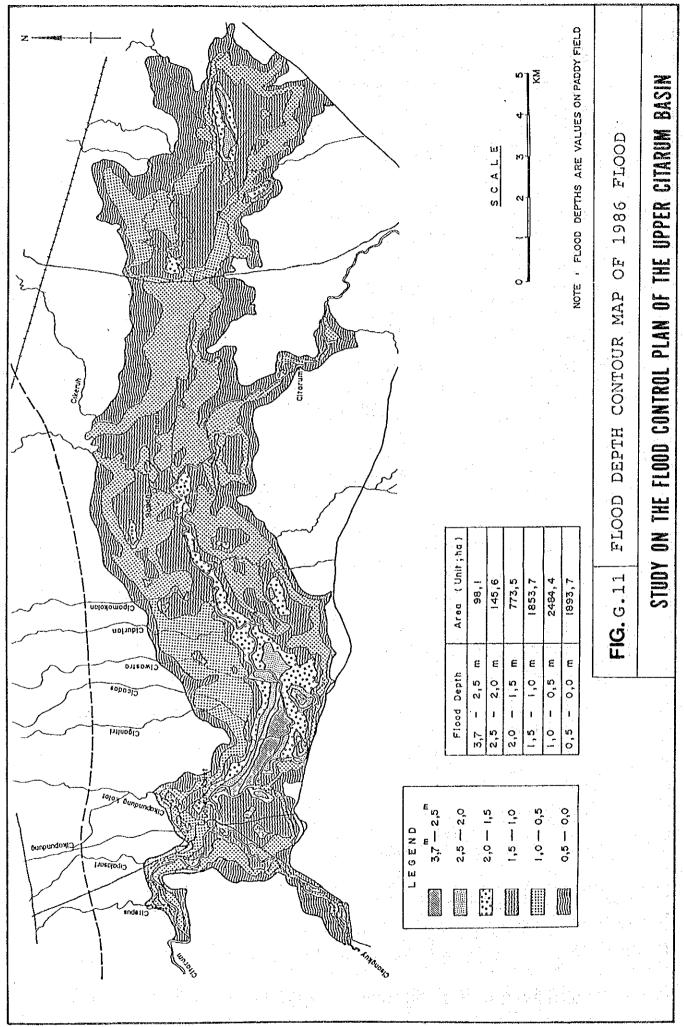

MONSOON OF INDONESIA

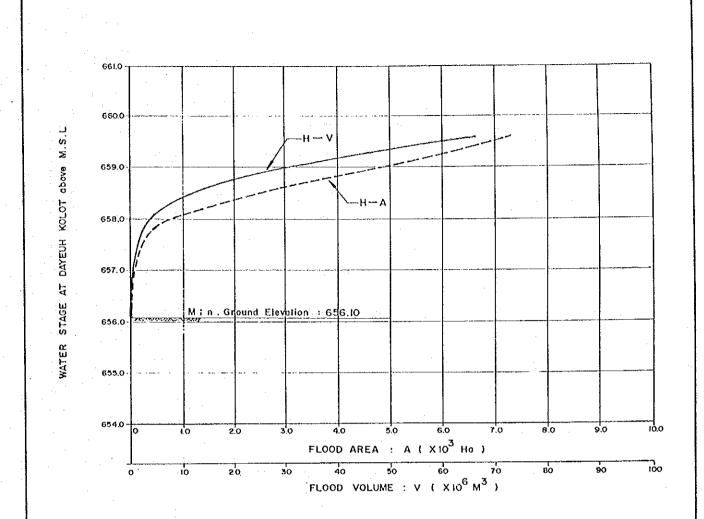





												1	ĺ	ļ				1			ŀ	9	0,50		۲	ĺ	1970				1980	Ľ	
9,	No.Sta.	Name of Station	Aucho-	۲ <u>۱:</u>	ď.	, ,					8 7 8 8	ď	1 2 3 4	3 4	5 6 17	6 17 18 9	Þ	1 2 3 4 5 6 7 6	916		4 6	2	1 2 3 4 3 6 7 8	5 7	9 9		1 2 3 4		7 8 3	-	2 3 4 5	9	6 7 8 9
			21.57		-				-	-	-	L		-	-	E	L	L	-			-	E		E				<u> </u> _			_	
킈	2	ı		1	‡	+	‡	1	1	Ŧ	†	‡	1	+	+			+	+		1	-		F	-	-	E	Ľ				1	
2	151.8	Sindangkerta	3.H.E		-	1	-		1	1	1	+	1	†	+	1	1	#	+	-	+	‡	1	†	†	H			F		-	L	H
-	151c	Barujajar	B.M.C		_			_]	1	1	1	#	1	1	Ħ	Ħ	H	H	1	1	1	+	+	4		+	+		+		-[-
-	152	3.1	1.8.2								-			1	1	\exists	\coprod	\parallel			H		H	H	#	+					+		-
5	1534	Cambung	B.M.G	-	-			_	_	_	<u> </u>	_				_		İ	#	1	\dagger	\dagger		_	_	H		1	-	1	-	$oxed{I}$	-[
-	153b		,		-											\exists				\exists	1	1		+	+	1	1	+			+	I	+
	154b	Hargabayu	•			_		_								\exists	\blacksquare	#			\parallel	\parallel				H		+	-		+	-	Ţ
	153	Cikepundung	•		1	+	#			#		╁		_		4		_			1			1	+	1	1	‡	1		+	$ar{1}$	F
-	168		1.H.E	E		_	L			_	_							\exists		_		_		-	1	\int	1	+		1	+	-	
	1628	Cihampalas	-			L	\parallel		\mathbb{H}			\dagger	\coprod		_		#	\parallel	\parallel	\parallel	H	\parallel		#		H							Ŧ
-	1638		8. K. G											_				_				_	-		1	1	1	+			-		-
-	1630	٠	Z.H.E	E											\exists		\parallel	\parallel	\prod		#	$\ $		H	#	H		#					F
1	1634		B.K.G			L	H			1	\parallel	#						4				1		+	1	-[1	+	-	1	+		Ŧ
1	1635	Cibadak	•	E			E	H		+		\parallel		4					-			_		1	#	\exists	1	+	1	1	+	1	Ŧ
-	1630	Busein	ŀ	Ŀ	_			-						\dashv	_	-	H	\parallel	\parallel		\parallel	╁┧		#	#	H					1		- -
<u></u>	164	Jatinangor(park		E		_													\exists		_	_	7	+	1	H	#	H	-				7
۲.	1640	Bushbatu			Ļ						1	#	\blacksquare			_	\parallel	\parallel			H	\parallel	\mathbb{H}	#		\prod		+	1	\pm	-		7
:	1648	1_																\dashv			4	\exists		-		-	1	- -					
.i	167	1	I.H.E		日						1	_		1	1	1	#	╫	\prod	Ħ	\parallel	#		#									F
	168	Ariassti(perk) B.H.G	B.H.G		\pm	Щ	\parallel	\parallel	\prod	\parallel	\parallel	\prod	\prod	1	-		4	1	\perp]	1	+	1	+	+			#					-
17	55	Paseh (Cipaku) I.R.E	I.R.E.						3	-	_	\exists	\exists	+	_			#	\coprod	H		H											-
-	172	Cinizuan				1	+	#	\prod	H	\parallel	#	H	7	1	-		#	Ш		1	1		#	-	\mathbb{H}	-						·
-	1738		8.M.G				-		\exists	-	_		-	1	1	1	_	1	1	4	#	#	1	‡	1	Ŧ	#	#	F	1		E	1-
7.	1730	jan Jan	·					\exists	\exists	_	_			+	_	1	1	_	$\frac{1}{2}$	1	1	_	1	+	+	Ŧ	1	+	-		-	$\frac{1}{1}$	F
. 56	17.4	Clbeureum	•		Ц				\exists		_			1	1	_	-	1	1	1	+	1	-	+	1	Ŧ	1	‡	T				F
26.	178	Argasari	•		\exists		_		\exists		1	1]	1	1		1	+	1	1	#	+	1	+			1	+	F				+
27.	1788	Gn. Ralimun	•		#	\parallel	#	\prod	\prod	#	#	#		+	1		+	_	1	1	1	+	-	+	1	E	+	+	F		1		-
28.	179	Cibitung		_					-	-	1	_	1	1	1	-	-	- -	1	1	1	+	1	+	†	Ŧ	1	+			-		
- 6	1794	Pacet	•						\exists	4	1	1	1	+	1		-	+	1	1	1	+	-	†	1			╀				1	-
-	180	Malabar	I.H.E						\exists		_			1	_		-	#	\pm	7	#	1	1	‡	‡	H	+	+					T
-	1815		3.H.S				4	1	-		1		1	-	1	1	+	1	1	1	1	+	1	+	+	$oxed{\mathbb{F}}$	-	‡			-	E	F
2	194b	ari 1	•		\dashv	1	1	1	-	_	#	\prod		-	+	1	+	+	1	+	1	#	-	1	+	E	F	╀					
-	1954	Teniungsari 2	•				\dashv		\exists	_	1	-	1	+	-	1	#		Ш		+	+	-	+	†	F	1	+			-		F
*	196	Cimenggerang					_		\exists		+	1		1	1			\parallel	\coprod	H	+	1	1	+	1	T	1	+	I		+	1	1
2	200	Sitiatia	•	1	1	1	+	\pm	F	1	+		H								4			7	4	-		-					-
1					1																												

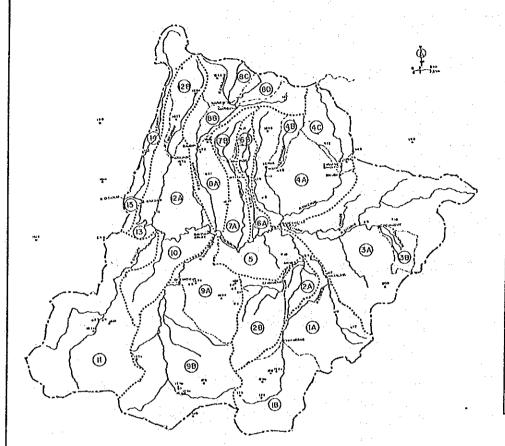

FIG. G.6 RAINFALL STATION USED FOR STATISTICAL ANALYSIS

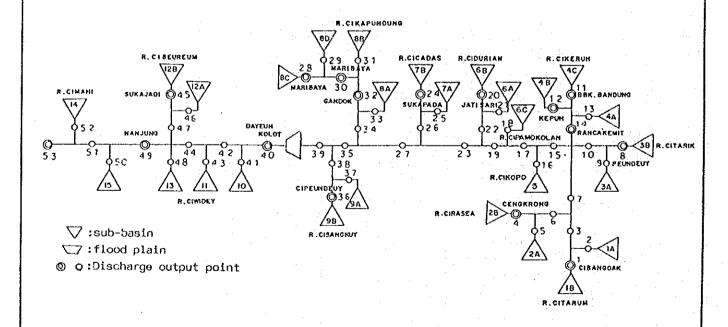




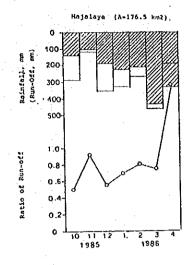
SOURCE: IHE DATA, STUDY TEAM

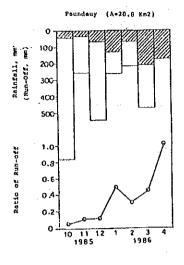
FIG. G.10 WATER STAGE - DISCHARGE CURVES AT DAYEUH KOLOT AND NANJUNG GAUGING STATIONS

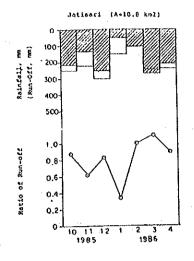


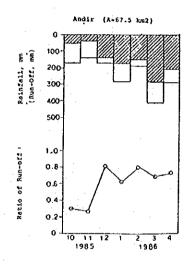


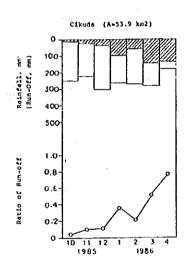
WATER STAGE (m)	fLOOD AREA (x10 ³ ha)	FLOOD VOLUME (x 10 ⁶ ha)
656.I	0	0
657.I	0.098	0.49
657.6	0.244	1.34
658.1	1.017	4.50
658.6	2.871	14.22
659.1	5.355	34.78
659.8	7 - 249	66.29

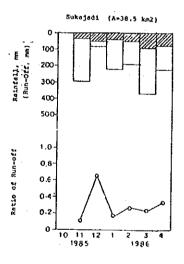

FLOOD WATER STAGE AT DAYEUH KOLOT - FLOOD AREA AND FLOOD WATER STORAGE VOLUME CURVE

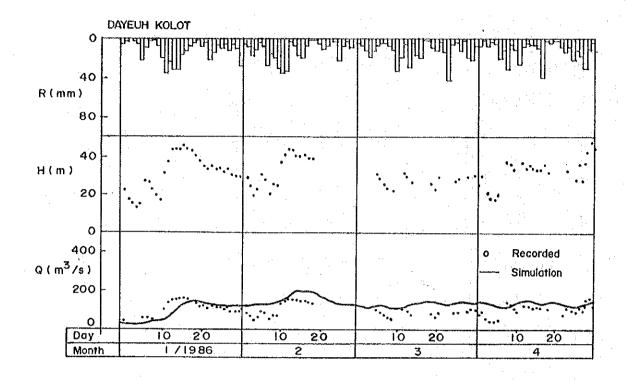


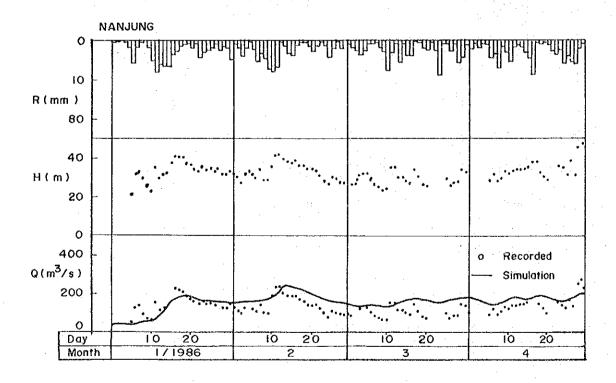

	7
None of - Oreinage basion	Arga (ka2)
1. Citaria	197.0
2. Cireson	93.1
3. Citarik	261.4
4. Cikersh	204,6
5. Kopo	53.7
6. Cibodus	29.7
7. Cldurian	51.6
B. Cikapundung	141.5
9. Cleangkuy	276.5
Daymus Kalat	1332.1
10. Cijaluşang	60.1
II. Cividey	200.6
12. Cibeureum	117.2
13. The basin of the rest	5.0
Manifung	1718.0
14, Cleani	48.0
15. The basin of the rest	6.0
Curug Jampang	1771.0



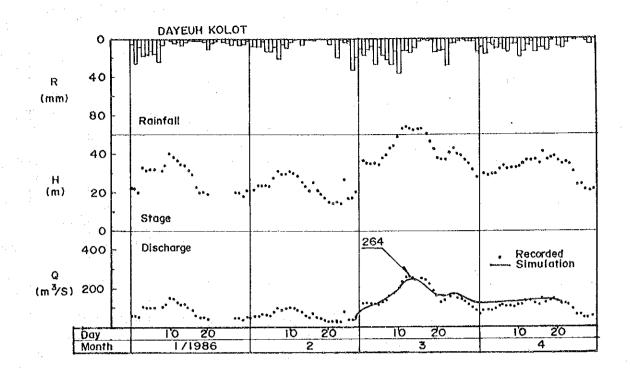

FLOOD RUN-OFF SIMULATION MODEL







Monthly Rainfall
Monthly Run-off


FIG. G. 14

MONTHLY RUN-OFF CO-EFFICIENTS (1986 FLOOD, TRIBUTARIES)

RUN-OFF SIMULATION OF 1984 FLOOD (DAILY COMPUTATION)

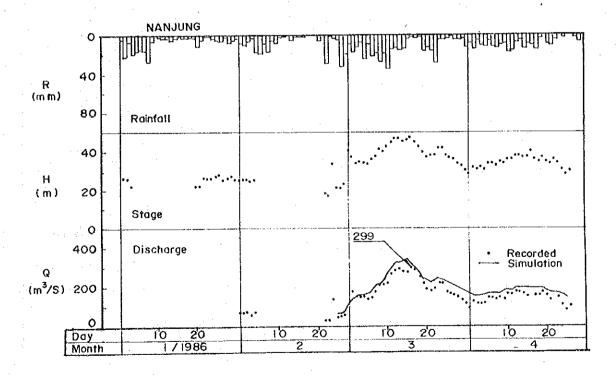
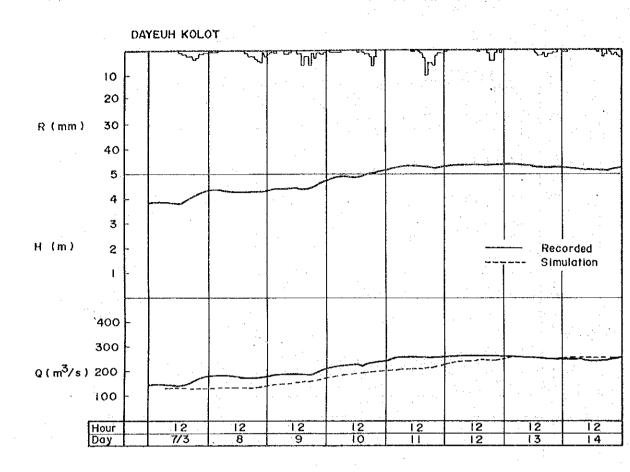
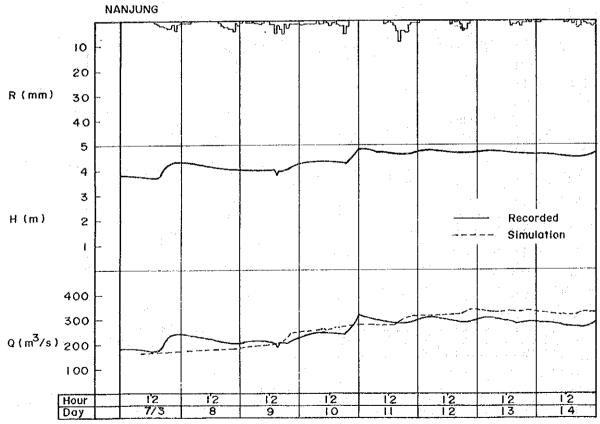
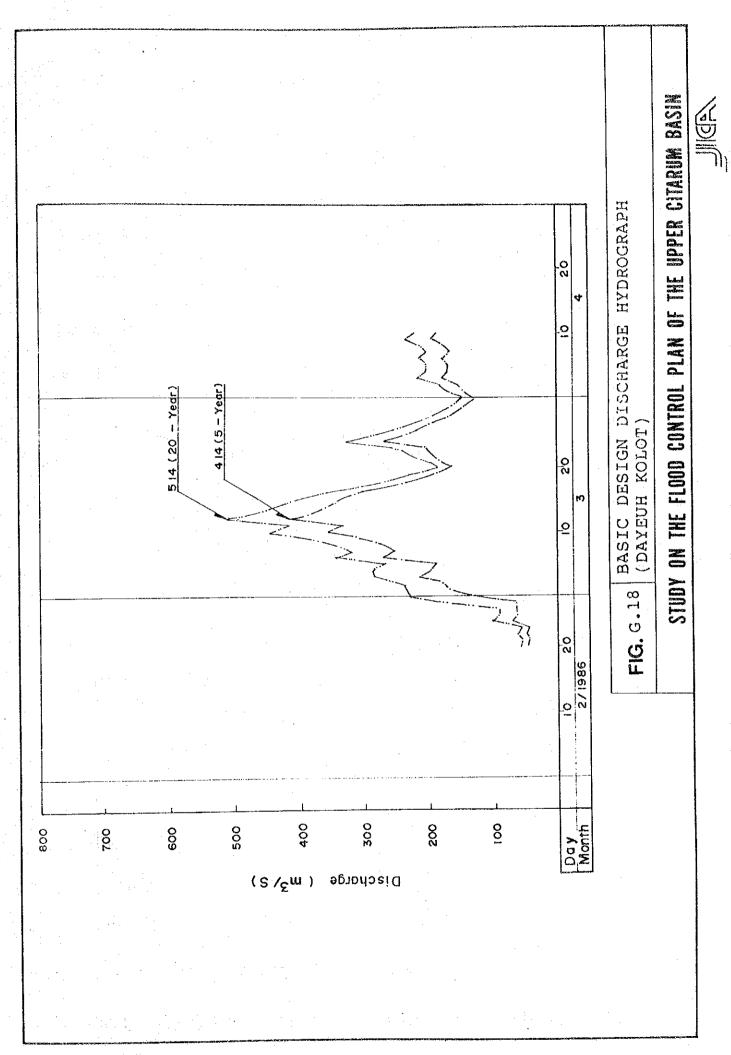
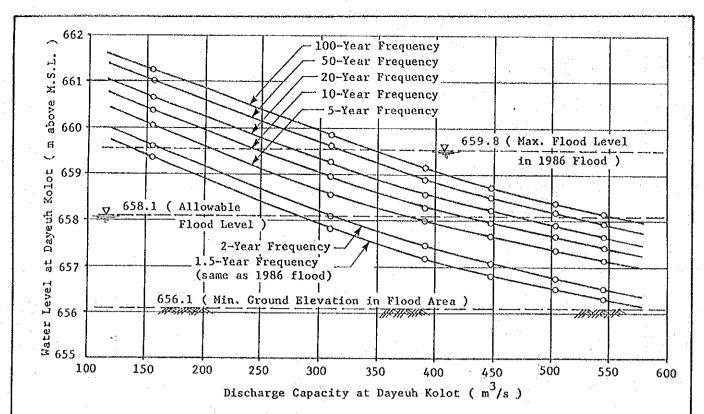
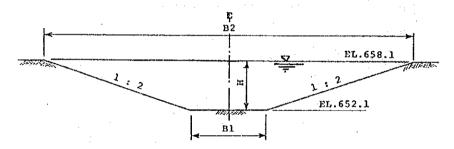
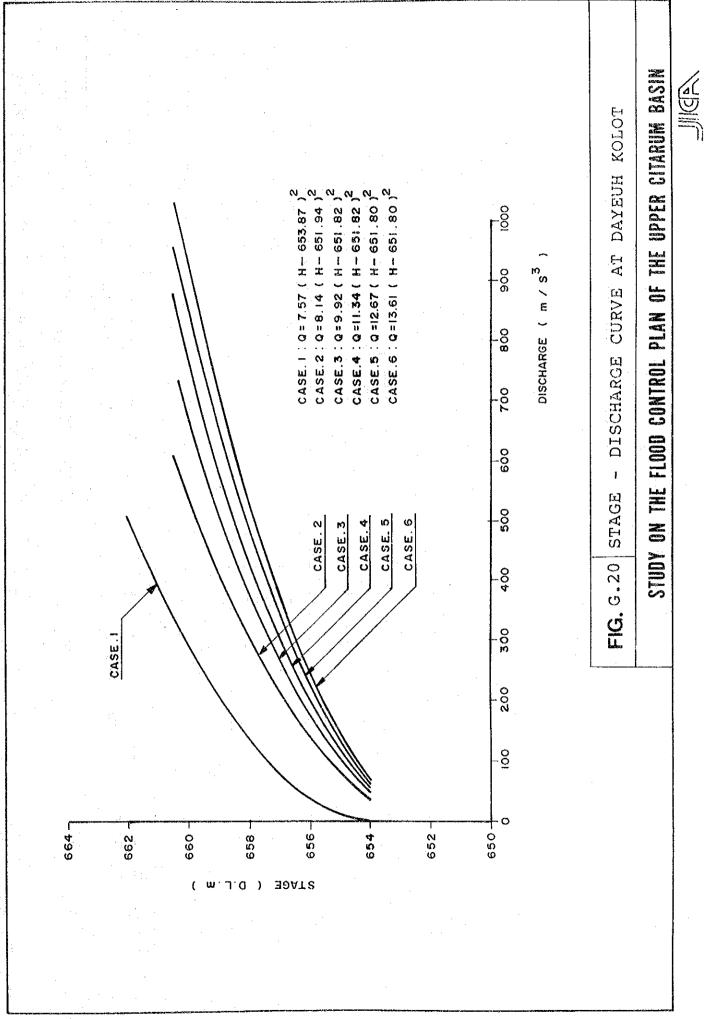



FIG. G.16 RUN/OFF SIMULATION OF MARCH 1986 FLOOD (DAILY COMPUTATION)

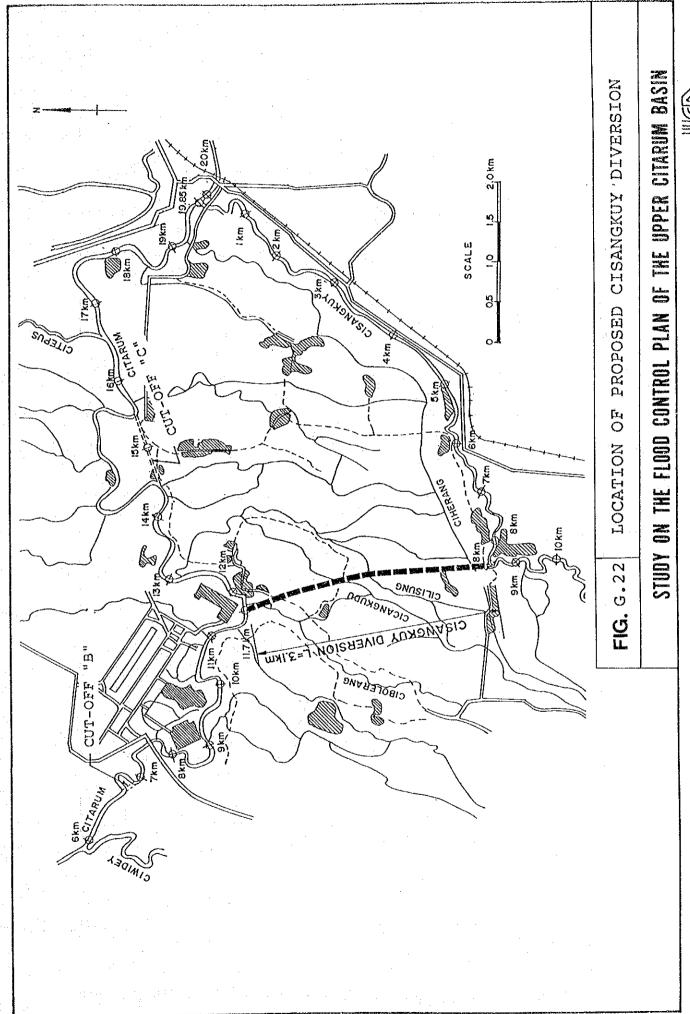

FIG. G. 17 RUN-OFF SIMULATION OF 1986 FLOOD (HOURLY COMPUTATION)

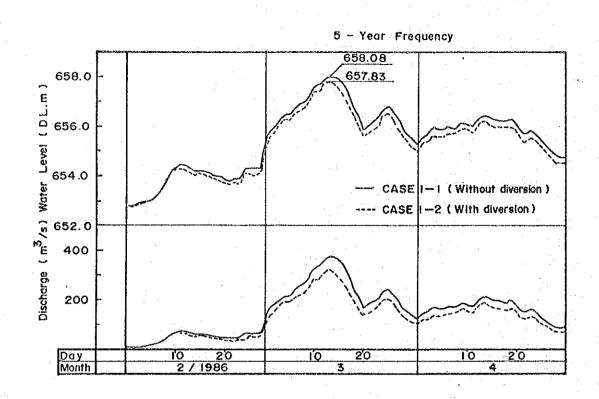
RELATION BETWEEN FLOOD WATER LEVEL AND DISCHARGE CAPACITY AT DAYEUH KOLOT



Hydraulic Cross Section at Dayeuh Kolot

Improvement Plan	Bl (m)	B2 (m)	H (m)	Expected Discharge Cap.(m ³ /s)	Corresponding Frequency
Case 1	Exis Sect	ting Cr ion	öss	160	Frequent
Case 2	30.5	54.5	6.0	310	2-Year
Case 3	40.0	64.0	6.0	390	5-Year
Case 4	47.0	71.0	6.0	450	10-Year
Case 5	53.0	77.0	6.0	505	20-Year
Case 6	56.5	80.5	6,0	540	50-Year


HYDRAULIC EFFECTS OF RIVER IMPROVEMENT



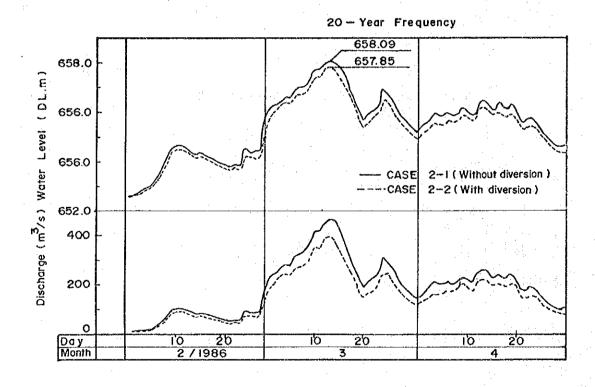
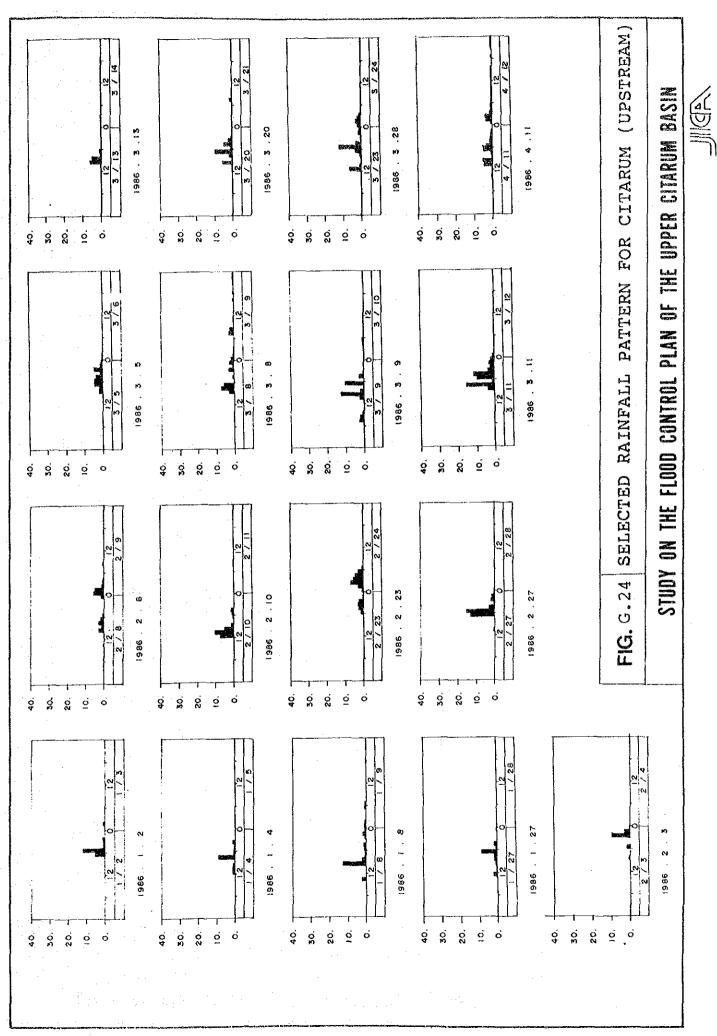
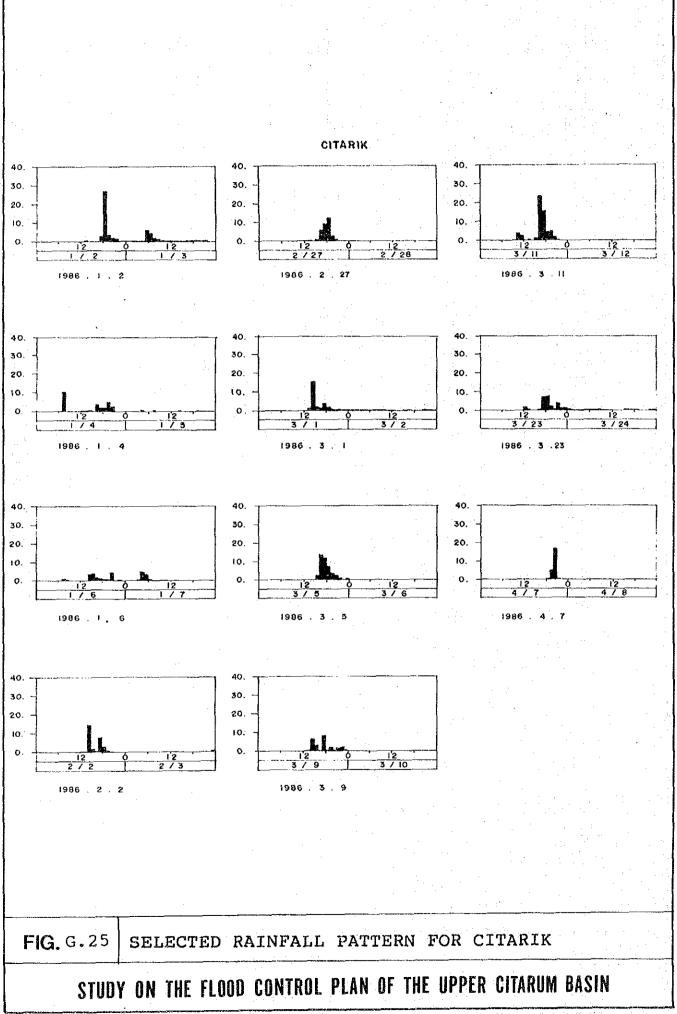
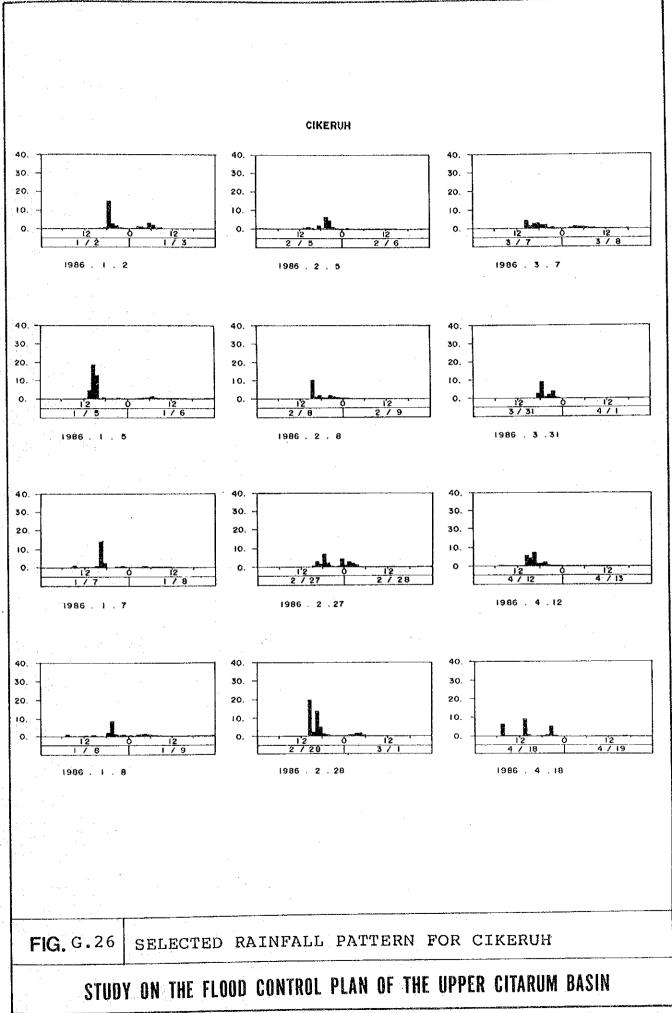





FIG. G.23 HYDROGRAPH AT DAYEUH KOLOT WITH AND WITHOUT CISANGKUY DIVERSION

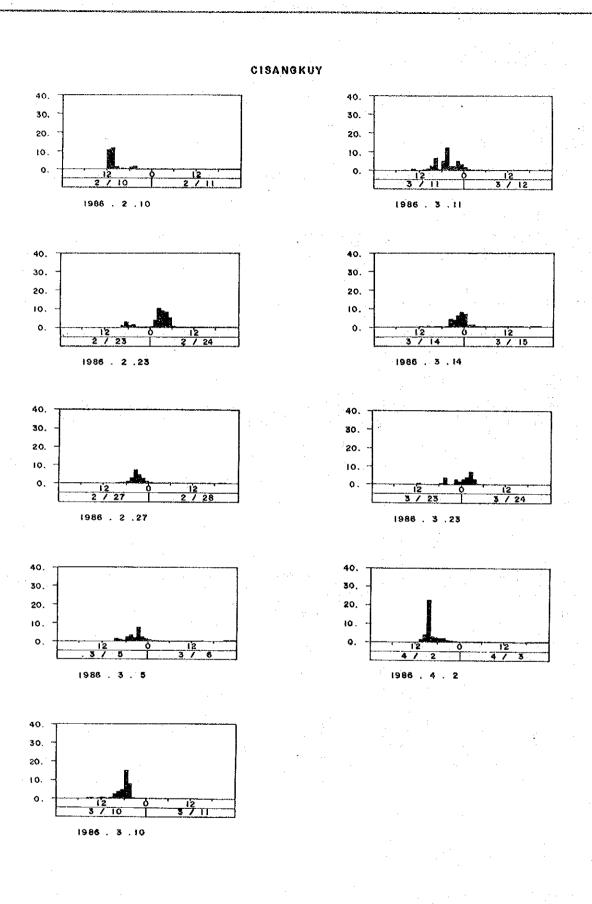
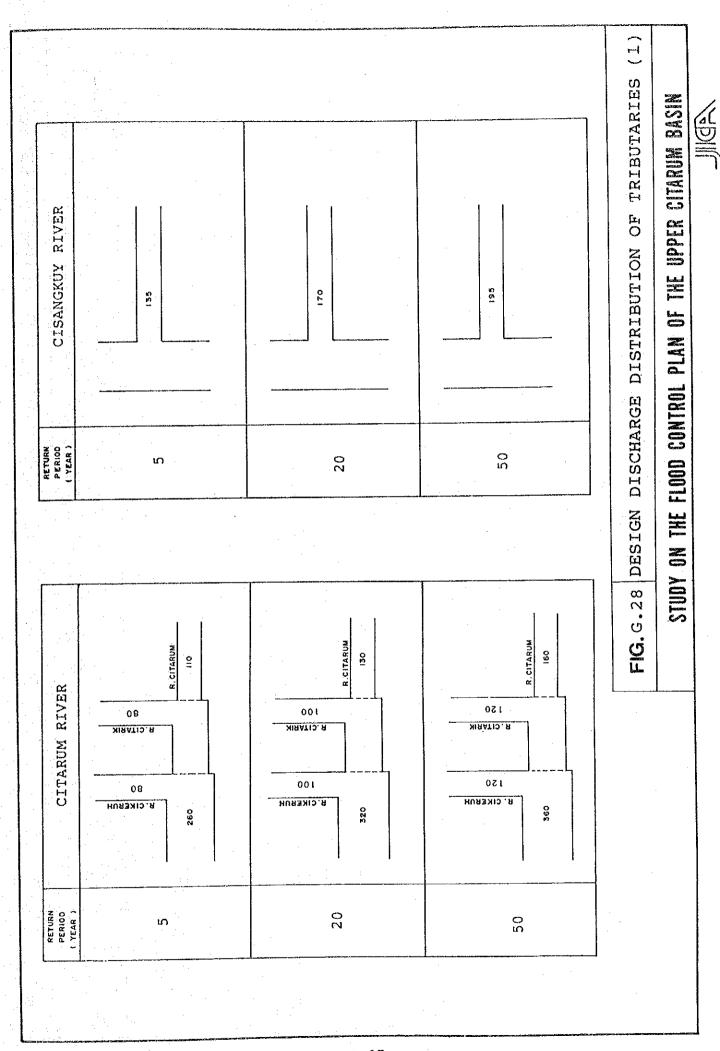
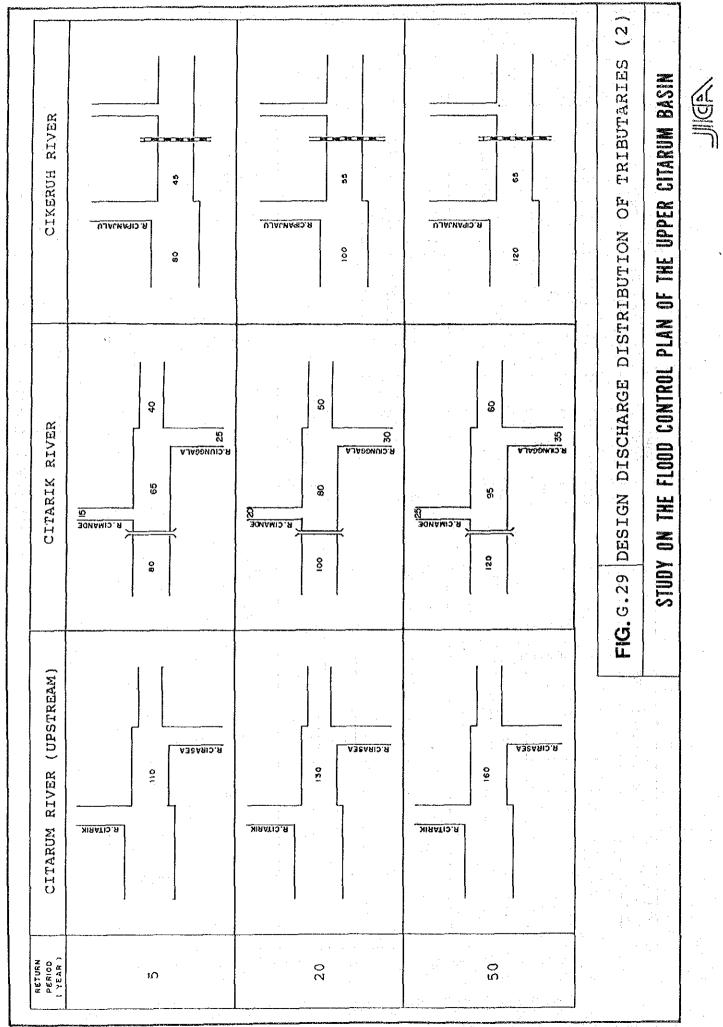




FIG. G. 27 SELECTED RAINFALL PATTERN FOR CISANGKUY

SUPPORTING REPORT H

OVERALL FLOOD CONTROL PLAN

TABLE OF CONTENTS

		Page
Tab	le of Contents	H-i
List	of Tables	H-ii
List	of Figures	H-iii
1.	Target Flood Area	H-1
2.	Flood Control Measures	H-2
3.	Alternative Study of Long-Term River Improvement Plan	H-3
	3.1 Alternative Scheme of River Improvement Method	H-3
	3.2 Alternative Scheme of Design Flood Frequency	H-5
	3.3 Alternative Scheme of Cisangkuy Diversion	H-7
::	3.4 Alternative Scheme of Design Flood Water Level	H-9
4.	Proposed Long-Term River Improvement Plan (Structural Measure)	H-10
	4.1 Planning Policy and Design Criteria	H-10
	4.2 Improvement Reaches and Design Discharge	H-12
	4.3 Proposed River Alignment, Profile and Cross Section	H-12
	4.4 Proposed River Structure	H-21
٠.	4.5 Construction Works	H-21
5.	Flood Plain Management (Non-structural Measure)	
٠.	5.1 Flood Risk Map	
	5.2 Target Area of Flood Plain Management	
	5.3 Land-use Regulation	
	5.4 Flood Forecasting and Warning System	H-24
6.	Project Cost of Long-Term Plan	Н-24
	6.1 Unit Construction Cost	
	6.2 Project Cost	H-24
7.	Economic Evaluation	Н-25
	7.1 Economic Costs	
_	7.2 Economic Benefit	
	7.3 Economic Internal Rate of Return (EIRR)	. Н-26

LIST OF TABLES

Table	H.1	Cost Comparison of Improvement Method Alternatives	H-27
Table	H.2	Design Discharge of Rivers in Indonesia	H-28
Table	Н.3	Cost Comparison of Design Flood Alternatives	H-29
Table	H.4		H-30
Table	H.5	Economic Evaluation of Design Flood Alternatives	H-32
Table	H.6	Design Discharge Distribution of Cisangkuy Diversion Alternatives (20-Year Frequency Flood)	H-33
Table	H.7		H-33
Table	H.8	Cost Comparison of Cisangkuy Diversion Alternatives	H-34
Table		Cost Comparison of Cut-off "A" Alternatives	
Table	H.10	Case Study of Tractive Force of the Citarum River	H-37
	H.11	Construction Works of Proposed Long-Term Plan of Citarum River Improvement	Н-38
Table	H.12	Breakdown in Project Cost of Long-Term Plan	H-39
Table	H.13		H-40
		Long-tolin ttui	H-43
Table	H.15	Economic Cost for Proposed Overall Flood Control Plan	H-45
Table	H.16	Estimated Flood Damage and Average Annual Damage Potential Under Without-Project Condition at 1987 Economic Price	H-46
Table	H.17	Estimated Flood Damage After Completion of the Long-Term Plan	Н-46
Table	H.18	Estimated Flood Reduction Benefit by Asset Item of Long-Term Plan	H-46
Table	H.19	Annual Flow of Economic Cost and Benefit of Long-Term Plan	

LIST OF FIGURES

			40
Fig.	H.1	Trood Areas in the Opper Citatum Danie	H-48
Fig.	H.2	Location and Main Features of Festivic Sun	H-49
Fig.	H.3	Component of Proposed Overall Flood Control Plan of Upper Citarum River Basin	H-50
Fig.	H.4	Alternative Scheme of River Improvement Method	H-51
Fig.	H.5	Design Discharge Distribution of Design Flood Frequency Alternatives	H-52
Fig.	H.6	Design River Cross Sections of Design Flood Frequency Alternatives	H-53
Fig.	H.7	Location of Proposed Cisangkuy Diversion	H-54
Fig.	H.8	Proposed Design Discharge/River Cross Section of Cisangkuy Diversion Alternative	H-55
Fig.		Proposed River Profiles of Cisangkuy River and Cisangkuy Diversion	Н-56
		and Cisangedy Diversion	H-57
Fig.	H.11	Flood Level - Inundation Area and Flood Prone House Curves	H-58
Fig.	H.12	Design Discharge Hydrograph at Dayeuh Kolot and Peak Discharge Distribution of Proposed Long-Term Plan	H-59
		Location of Proposed Cut-off Channels of Long-Term River Improvement Plan	
		Comparison of Cut-off Channel Route Alternatives (1)	
		Comparison of Cut-off Chamber Route	H-62
		Comparison of Cut-off Channel Route Alternatives (3)	
Fig.	H.17	Comparison of Cut-off Channel Route Alternatives (4)	H-64
		Location of Cut-off Channel-A Alternative and Design River Cross Sections	H-65
		Proposed River Profiles of Cut-off Channel-A Alternatives	
		Proposed Improvement Reaches for Long-Term Plan	
		Long-Term River Profile of Citarum River	H-68
		Long-Term River Profiles of Ciatrum (Upstream) and Cikeruh Rivers	H-69
Fig	. Н.23	Long-Term River Profile of Citarik River	H-70
		Long-Term River Profile of Cisangkuy River	
		Hydraulic Effect of Curug Jompong Fall	
		Design River Cross Sections for Long-Term Plan	
-		Location Map of Proposed Major Structures for Long-Term Plan	

Fig. H.28		Flood Risk Long-Term	Map Plan	by 20-Year Flood after Completion of						H-75				
Fig. I	JOΩ	Flood Risk Long-Term	Man	hv	50. Vear	Flood	after	Com	nletio	n of				
					$(x,y) = \int_{\mathbb{R}^n} (x,y) dy$. :	:				:			:
						<i>t</i> .				4.55				
					1.11					5 - 3		* 1		

english kanala manala di Albania di A

SUPPORTING REPORT H OVERALL FLOOD CONTROL PLAN

1. Target Flood Area

Flood control measures in the Study Area will be provided to mitigate the flood problems existing in the following flood prone areas as shown in Fig. H.1.

- Citarum River flood area:

 This is the flood areas of the Citarum River and its related tributaries,

 Citarik, Cikeruh and Cisangkuy, with a potential flood area of
 7,249 ha.
- Flood area in Bandung Urban Area:

 This is the flood areas of the tributaries flowing through Bandung
 Urban Area with a potential flood area of 971 ha.

For the flood area in Bandung Urban Area, the flood control project consisting of the improvements of the related tributaries is on-going by the Government of Indonesia. The tributaries included in the project are the Cipamokolan, Cidurian, Ciwastra, Cicadas, Cikapundung Kolot, Cipalasari and Citepus Rivers. The improvements of most of the above tributaries are planned to carry the design floods with a 20-year frequency for the projected land-use conditions in 2005. Even the discharge capacity of the remaining tributaries can be increased to carry 20-year design floods only by dredging within the proposed river widths (Refer to Supporting Report F). The proposed project is considered to meet the long-term requirement of flood control for Bandung Urban Area.

In this Study, the overall flood control plan is prepared to meet the projected socio-economic conditions in the year 2005, however, only for the Citarum River flood area, based on the above considerations.

2. Flood Control Measures

An integrated approach of structural and non-structural flood control measures is required to attain a satisfactory solution of the flood problems in the flood areas of the Citarum River and related tributaries. Since the non-structural flood control measures is effective only with a proper land-use regulation and guidance, both flood control and land-use plans of the Basin shall be well coordinated.

Conceivable structural and non-structural measures are as follows.

- Flood control dam
- Retarding basin
- River improvement
- Watershed management
- Flood plain management

(1) Flood Control Dam

Possible dam sites are limited to the upstream of the tributaries, and are also with a low storage volume and a small catchment area. Potential dams have been studied by Bina Program (1986), Bandung Water Supply Project (1987) and the West Java Province Public Work Service (1985).

In these studies, it is concluded that there are some potential dams for water use but not for flood control, because their low storage capacity is too small compared to the magnitude of flood.

Locations and main features of the potential dams are shown in Fig. H.2.

Flood control by dam is not proposed in this Study.

(2) Retarding Basin

To attain an effective flood control of the Citarum River, retarding basin with a large area is required. No suitable retarding basin

sites are available since the flood prone areas are all highly developed with paddy cultivation and residential uses.

Flood control by retarding basin is not proposed in this Study.

(3) Watershed Management

Erosion control in the watersheds is essentially required to maintain the downstream river course as planned. Erosion control works of the critical areas are being carried out in accordance with the plans proposed by the Ministry of Forestry. The proposed erosion control works include:

- 1) Terrace formation of dry fields
- 2) Small dams for sediment storage
- 3) Drainage channel
- 4) Storm water infiltration works.

(Refer to Supporting Report F)

From the above considerations of $(1) \sim (3)$, the flood control measures consisting of river improvements and flood plain management are only considered as the viable alternatives for the overall flood control plan of the Citarum River.

The project components constituting the overall flood control plan of the Upper Citarum Basin are shown in Fig. H.3.

3. Alternative Study of Long-Term River Improvement Plan

3.1 Alternative Scheme of River Improvement Method

Two (2) basic methods are conceivable for the improvement of the Citarum River, namely dredging method and dyke method.

The dredging works will be conducted for the Citarum Main River and major tributaries to lower the flood water level down to the allowable level. The planned stretches of dredging are:

- Citarum Main River: 40.2 km (Curug Jompong-Sapan)

- Major Tributaries : 31.5 km (Citarum upstream, Citarik, Cikeruh

and Cisangkuy Rivers)

Location of the river dredging reaches is shown in Fig. H.4.

The dyke construction will be carried out not only for the Citarum Main River and major tributaries but also for the small tributaries joining the Citarum Main River to confine flood waters within the dykes. The dyke method will require additional pump drainage of the inner water of the areas surrounded by the constructed dykes.

The planned stretches of dyke construction and areas of pump drainage are:

- Citarum Main River : 16.8 km (Dayeuh Kolot-Sapan)

- Major Tributaries : 45 km (Citarum upstream, Citarik, Cikeruh

and Cisangkuy Rivers)

- Small Tributaries : 63.9 km

- Pump Drainage Area: 137 km²

Location of the dyke construction reaches and pump drainage areas is shown in Fig. H.4.

Estimated costs of both alternative methods, shown in Table H.1, are summarized below. In this estimates, the design flood frequency for the river improvements is assumed to be 20 years.

Dredging method = Rp. 118.7 billion

Dyke method = Rp. 210.0 billion

Dredging method is more economical and recommended.

3.2 Alternative Scheme of Design Flood Frequency

The design flood frequency of long-term flood control plan in Indonesia is 20 to 50 years in general as shown in Table H.2. In this Section, the following two (2) alternative river improvement plans are discussed.

Alternative Scheme of Design Flood Frequency

Name of River	Improvement Stretch (km)	Alternative I (20-year plan)	Alternative II (50-year plan)
Citarum (main)	40.2	20-year	50-year
Citarum (upstream)	6.0	20-year	20-year
Citarik	15.0	20-year	20-year
Cikeruh	2.0	20-year	20-year
Cisangkuy	8:5	20-year	20-year

(2) Design Discharge Distribution

The design discharge distributions for the two (2) alternative plans are shown in Fig. H.5.

(3) Design River Profile and Cross Section

The design river profiles of both alternative plans are as follows:

Citarum River (main stream) : 1/5,500 (0.00018) Citarum River (upstream) : 1/3,600 (0.00028)

Citarik River : 1/4,500·1/1,100 (0.00022 - 0.00091)

Cikeruh River : 1/4,500 (0.00022) Cisangkuy River : 1/2,800 (0.00036)

The design river cross sections of the two (2) alternative plans are shown in Fig. H.6.

(4) Construction Works and Costs

The required construction works and costs of the two (2) alternative plans are shown in Table H.3 and Table H.4.

(5) Flood Damage Reduction and Economic Internal Rate of Return (EIRR)

Reduction of average annual flood damage and EIRR by the two (2) alternative plans are estimated as follows:

	Annual		Reduction			
Item	Flood Damage (Million ERp.)	Reduction (Million Rp.)	Rate (%)	EIRR (%)		
Without Project	16,136	<u>-</u>				
Alternative I	130	16,006	99.2	11.6		
Alternative II	88	16,047	99.5	10.2		
	2.00		4.5			

Note: 1. ERp shows economic price in Rupiah.

2. Breakdown of economic evaluation is shown in Table H.5.

(6) Conclusion

A design flood frequency of 20-year is applied for the long-term river improvement plan based on the following facts considerations.

- 1) The design flood frequency of 40 to 50-year is applied for the flood control plan of the important rivers long-term Those rivers are all planned by dyking Indonesia in general. While, a design flood of lower safety level can be applied for the flood control plan by dredging system than that by dyking system in consideration of the difference of flood damages caused by overflow floods of the rivers with dykes and without dykes.
- 2) The river improvement of 20-year frequency flood can drain a 50-year frequency flood with a small flood depth of 0.3 m above ground level at Dayeuh Kolot (See Fig. G.19 of Supporting Report G).

3) The 50-year plan increases the construction cost to a large extent than the 20-year plan. While, it produces a small additional benefit.

3.3 Alternative Scheme of Cisangkuy Diversion

3.3.1 General

The Ministry of Public Works has carried out the preliminary study on the Cisangkuy Diversion Plan, as a link in the chain of the mid-term plan for the Citarum River flood control program. The study consists of a hydrological and hydraulic study, alternative study of its diversion routes and their topographic survey.

The feasibility of the Cisangkuy diversion plan is, however, not yet concluded. The Study Team has carried out the feasibility study on the Cisangkuy diversion plan by the request of the Indonesian government.

3.3.2 Outline of the Plan

(1) Objectives of the Plan

The Cisangkuy diversion plan is prepared for the following three objectives:

- 1) To reduce flood damages occurring in the Citarum upstream area of Dayeuh Kolot. It is roughly estimated that 20 percent of the flood damages is caused by the Cisangkuy flood water, considering that the drainage area of the Cisangkuy River occupies approximately 20% of the total drainage area at Dayeuh Kolot.
- 2) To divert flood waters of the Cisangkuy upstream area to the Margahayu site of the Citarum River, in order to supplement the existing poor discharge capacity between Margahayu and Dayeuh Kolot of the Citarum River.
- 3) To mitigate the flood damage occurring frequently along the Cisangkuy downstream reaches.

(2) Diversion Route

The proposed diversion route is illustrated in Fig. H.7.

- Intake site : 8.5 km upstream of the Cisangkuy River

- Outlet site : 11.7 km upstream from the Curug Jompong

of the Citarum River

- Diversion length: Approximately 3.1 km

(3) Effect of Diversion

The diversion would make it unnecessary the improvement of the existing Cisangkuy River course and would reduce the requirement of river enlargement for the reaches between Margahayu and Daycuh Kolot of the Citarum River.

3.3.3 Comparison of With and Without Project Alternaties

The following two (2) alternative plans are compared.

Alternative I: Existing Cisangkuy River improvement and large

(Without Diversion) scale improvement of the Citarum River

Alternative II : Diversion construction and small scale

(With Diversion) improvement of Citarum River

(1) Design Discharge

Based on the flood run-off calculations presented in Supporting Report G, the design discharge distributions with a 20-year frequency of the two (2) alternative plans are proposed as shown in Table H.6 and Fig. H.8.

(2) River Profile and Cross Section

The proposed river profiles and cross sections of two (2) alternative plans are shown in Table H.7 and Fig. H.8 and Fig. H.9. Main features of the improvement plans are determined based on the hydraulic characteristics of the existing rivers, topographic

conditions of the diversion route and the scale of the proposed design discharges.

The location of the proposed major structures to be constructed in the Cisangkuy River and Cisangkuy Diversion are illustrated in Fig. H.10.

(3) Required Construction Works and Costs

The required construction works and costs of the two (2) alternative plans are shown in Table H.8.

(4) Conclusion

The Cisangkuy Diversion is not recommended for the following reasons.

- 1) Alternative II requires a higher construction cost than Alternative I.
- 2) The diversion channel splits the communities and would affect the traffic and agricultural activities of residents.
- . 3) The diversion project can produce no beneficial effects until its completion. On the contrary, the improvement of the existing river course can yield beneficial effects in accordance with its progress.

3.4 Alternative Scheme of Design Flood Water Level

The lowest ground elevation of the flood area is EL. 656.1 m. Dayeuh Kolot is located at an level of EL. 658.1 m.

The inundation area and flood prone houses existing between EL. 656.1 m and EL. 658.1 m are estimated to be approximately 1,000 ha and 2,700 houses (10% of the potential flood prone houses of 27,310). They increase at a high rate when the flood water level rises above EL.

658.1 m. On the other hand, they decrease rapidly when the flood water level lowers down to an EL. 657.6 m as shown in Fig. H.11.

From the above facts, the design flood water level of the Citarum River at Dayeuh Kolot is decided to be at an elevation between EL. 658.1 m and EL. 657.6 m.

Lowering of the design flood water level increases the required river dredging cost although it will reduce flood damages. The following two (2) alternatives are compared to obtain the optimum design flood water level.

Item	Alt. I	Alt. II	Difference			
Design Flood Frequency	1/20	1/20	_			
Design Flood Water Level (EL. m)	658.1	657.6	0.5			
Required Const. Cost (Million Rp.)	118,996	138,824	19,826			
Annual Flood Damage Reduction (Million ERp.)	16,006	16,048	42			

Alternative I is recommended.

The design flood water level of the Citarum River at Dayeuh Kolot is proposed to be EL. 658.1 m, allowing approximately 1,000 ha of inundation and 2,700 houses unrelieved from floods in the low-lying parts of the flood plain.

4. Proposed Long-Term River Improvement Plan (Structural Measure)

4.1 Planning Policy and Design Criteria

The long-term river improvement is planned and designed in accordance with the following policy and criteria.

- (1) Target year is set for the year 2005. Plans are to be prepared to meet the population and land use condition projected in the year 2005.
- (2) The plans are to be prepared to mitigate flood damage in the existing potential flood prone areas surveyed in this Study.
- (3) As for design flood and rainfall pattern, respectively, a 20-year frequency flood and the March 1986 Storm are adopted.
- (4) Allowable inundation area considered is approximately 1,000 ha.
- (5) Target flood water levels determined at Daycuh Kolot, Sapan and Rancakemit (Majalay-Rancaekek Rd.) are respectively of EL. 658.1 m, EL. 660.1 m and EL. 661.6 m, considering the ground elevation in the flood prone area and extent of allowable inundation area.
- (6) The proposed river channel will be improved by dredging and no major dykes will be provided.
- (7) Manning's coefficient of roughness adopted are 0.030 and 0.035, respectively, for low-water and high-water channels based on the channel conditions.
- (8) A standard bank slope for the river channel will be adopted as follows:

Citarum River : downstream reaches from Dayeuh Kolot 1:1.5

Citarum River : upstream reaches from Daycuh Kolot 1:2

Cisangkuy River: 1:1.5

Other River : 1:2

The river channel is designed based on the following surveys.

(1) A series of the topographic maps of 1/10,000 scale and aerial photograph of 1/10,000 scale are used for design of river channel alignments.