

SUPPORTING REPORT C

PRESENT WATERSHED AND RIVER CONDITION

TABLE OF CONTENTS

		Page
Tabl	of Contents	C-i
List	of Tables	Ċ-ii
List	of Figures	C-iii
1.	Watershed Condition	C-1
	1.1 River System	C -1
	1.2 Division of Drainage Basin	C-1
	1.3 Land-use Classification	
	1.4 Land Erosion	C-2
÷		
2.	River Condition	C-2
	2.1 River Profile and Cross Section	C-2
	2.2 Roughness Coefficient	C-3
	2.3 Hydraulic Characteristics	C-4
	2.4 River Facilities	C-4
	2.5 River Bed Materials	C-5
	2.6 Suspendid Load	C-6
	2.7 River Bed Sedimentation	
	2.8 River Bed Stability	C-7
3.	Water Use	C-8
٠.	3.1 Urban Water Supply	
	3.2 Irrigation Area	C-9

LIST OF TABLES

Table	C.1	Land-use of Basin	C-10
Table	C.2	Hydraulic Characteristics of Citarum River	C-11
Table	C.3	Hydraulic Characteristics of Citarum River (Upstream)	C-12
Table	C.4	Hydraulic Characteristics of Citarik River	C-12
Table	C.5	Hydraulic Characteristics of Cikeruh River	C-13
Table	C.6	Hydraulic Characteristics of Cisangkuy River	C-13
Table	C.7	List of Existing Irrigation Weir	C-14
Table	C.8	List of Existing Bridge	C-14
Table	C.9	Property of Bed Material of Citarum River	-
Table	C.10 ·	Grain Size Distribution of River Bed Material	C-16
Table	C.11	Future Water Demand for Bandung Water Supply	C-17
Table	C.12	Summary of Additional Abstruction Possibilities	C-18

LIST OF FIGURES

Fig. C.1	Citarum River System and River Slopes	C-19
Fig. C.2	Division of Drainage Basin	C-20
Fig. C.3	Land Classification Map	C-21
Fig. C.4	Soil Classification Map	C-22
Fig. C.5	Land Slope	C-23
Fig. C.6	Damaged Land Area	C-24
Fig. C.7	Areas of Scrious Land Erosion	C-25
Fig. C.8	Profile of Citarum River	C-26
Fig. C.9	Profiles of Citarum (Upstream) and Cikeruh River	C-27
Fig. C.10	Profile of Citarik River	C-28
Fig. C.11	Profile of Cisangkuy River	C-29
Fig. C.12	Typical River Cross Sections of Citarum and Citarum (Upstream) River	C-30
Fig. C.13	Typical River Cross Sections of Citarik, Cikeruh, and Cisangkuy River	C-31
Fig. C.14	Hydraulic Characteristics of Citarum River	C-32
Fig. C.15	Hydraulic Characteristics of Citarum (Upstream) River	C-33
Fig. C.16	Hydraulic Characteristics of Citarik River	C-34
Fig. C.17	Hydraulic Characteristics of Cikeruh River	C-35
Fig. C.18	Hydraulic Characteristics of Cisangkuy River	C-36
Fig. C.19	Existing Major River Facilities	C-37
Fig. C.20	Location of Sampling Points and Results of River Bed Material Tests	C-38
Fig. C.21	Location of Suspended Load Measurement Stations	C-39
Fig. C.22	Accumulated Garbage in the Tributaries	C-40
Fig. C.23	Accumulated Garbage in the Citarum River	C-41
Fig. C.24	Occurence of Sedimentation in the Citarum River	C-42
Fig. C.25	Meandering Condition of Existing Citarum River	C-43
Fig. C.26	Location of Irrigation Area	C-44

SUPPORTING REPORT C PRESENT WATERSHED AND RIVER CONDITION

1. Watershed Condition

1.1 River System

The Citarum River and its major tributaries are shown in Fig. C.1. Slope of the tributaries are steep ranging from 2% to 10% as shown in the same figure. Altitudes of the mountain ridges are around 2000 m and ground elevation at Sapan is 660 m. Middle and down stream reaches of the Citarum River, and downstream reaches of the Citarik and Cikeruh Rivers are located in the former lake area and the river bed slopes are rather mild.

1.2 Division of Drainage Basin

The Upper Citarum River Basin (1,771 km²) is divided into 15 major subbasins (see Fig. C.2).

The covered drainage areas are:

- 754.7 km² at Sapan
- 1,332.1 km² at Dayeuh Kolot
- 1.718.0 km² at Nanjung
- 1,771.0 km² at Curug Jompong

1.3 Land-use Classification

The land-use of the Basin can be roughly classified into five (5) categories: Water, Forest, Paddy Field, Field (upland, plantation, grass land, etc.) and Built-up Area.

The existing and future (year 2005) land-uses of the Basin were classified into the above five (5) categories respectively by sub-basin.

The results are shown in Table C.1.

1.4 Land Erosion

The land of the Basin is affected by serious erosion. An average erosion depth of the Basin is estimated to be 2.1 mm/year. (Source: Saguling Hydro Power Project, F/S Report)

The land rehabilitation and soil conservation of the Upper Citarum Basin were studied by Ministry of Forestry in March 1987.

According to the Study, the land and soil of the Upper Citarum Basin are classified as shown in Fig. C.3 and Fig. C.4. Slope of the land, damaged land area and serious land erosion area are also presented in Fig. C.5, Fig. C.6 and Fig. C.7 respectively.

2. River Condition

2.1 River Profile and Cross Section

The existing average bed and bank slopes of the Citarum River and its major tributaries in the flood prone stretches are as follows:

Citarum River

Main:

For 40 km stretches between Curug Jompong and

Sapan (Fig. C.8)

Bed slope

: 1/6,000 (0.00017)

Bank slope: 1/6,800 (0.00015)

Upstream:

For 6 km stretches upstream from Sapan (Fig. C.9)

Bed slope

1/3,600 (0.00028)

Bank slope: 1/3,600 - 1/1,000 (0.00028 - 0.001)

Citarik River:

For 15 km stretches upstream from the confluence

with the Citarum River at Sapan (Fig. C.10)

Bed slope

: 1/4,500 - 1/1,100 (0.00022 - 0.00091)

Bank slope: 1/4,500 - 1/1,100 (0.00022 - 0.00091)

Cikeruh River:

For 5 km stretches upstream from the confluence

with the Citarum River at Sapan (Fig. C.9)

Bed slope

: 1/2,250 (0.00044)

Bank slope: 1/4,500 (0.00022)

Cisangkuy River:

For 9 km stretches upstream from the confluence

with the Citarum River at Dayeuh Kolot (Fig. C.11)

Bed slope

: 1/2,800 (0.00036)

Bank slope: 1/2,800 (0.00036)

The cross sections of the Citarum, Citarik, Cikeruh and Cisangkuy Rivers are of single section with no major embankment. The river width and depth are as shown below.

Name of River	Width (m)	Depth (m)	Remarks
Citarum River		<u> </u>	
Main	30 ~ 70	3 ~ 6	Downstream of Sapan
Upstream	25 ~ 30	3 ~ 6	Upstream of Sapan
Citarik River	10 ~ 25	2 ~ 4	
Cikeruh River	10 ~ 20	2 ~ 3	
Cisangkuy River	15 ~ 30	3 ~ 6	

The typical cross sections of the Citarum, Citarik, Cikeruh and Cisangkuy Rivers are shown in Fig. C.12 and C.13.

2.2 Roughness Coefficient

Manning's roughness coefficient of the Citarum River was estimated by collating the water level profile of the 1986 flood obtained by nonuniform flow computation with the actual water level trace.

The estimated roughness coefficients under the existing conditions are:

0.040: For the stretches between Curug Jompong and the confluence

of the Ciwidey River.

0.035: For the stretches between the confluences of the Ciwidey

River and the Cisangkuy River.

0.030: For the stretches upstream from the confluence of the

Cisangkuy River.

2.3 Hydraulic Characteristics

Hydraulic characteristics of the Citarum, Citarik, Cikeruh and Cisangkuy Rivers are expressed in terms of flow area, ratio of river width to depth, discharge capacity and mean flow velocity.

Longitudinal variation of the hydraulic characteristics of the rivers is shown in Table C.2 to Table C.6 and Figs. from C.14 to C.18.

The main stream of the Citarum River, the distance expressed in km from Curug Jompong, (0 \sim 40 km) undergoes a clear change in its hydraulic characteristics at the sections between 20 km and 25 km distances at mid stream. The discharge capacity of the downstream stretches (0 \sim 20 km) is approximately two (2) times larger than that of the upstream stretches (20 \sim 40 km). Ratio of the river width to depth varies from 8 to 20 in the downstream stretches (0 \sim 20 km), while it remains rather constant at 8 \sim 10 in the upstream stretches (25 \sim 40 km).

Mean velocity of the bankful discharge is 1.0 m/s or less in all stretches $(0 \sim 40 \text{ km})$.

2.4 River Facilities

The existing river facilities related to the Project are 12 bridges, 13 irrigation weirs, dike of 10,720 m length and revetment of 250 m length.

Lists and location of the facilities are shown in Table C.7, C.8 and Fig. C.19.

2.5 River Bed Materials

Sampling tests of the bed materials of the Citarum River were conducted by this Study Team. The materials were sampled at three (3) points of the river section (left, center and right) of the following four (4) locations respectively.

Bojongrangkas: mid point between Sapan and Majalaya, 47 km

distance from Curug Jompong

Haurhapit: mid point between Dayeuh Kolot and Sapan, 32 km

distance from Curug Jompong

Dayeuh Kolot : just downstream of the confluence of Cisangkuy

River, 25 km distance from Curug Jompong

Pameuntasan: just downstream of the confluence of Ciwidey River,

9 km distance from Curug Jompong

Location of the sampling points are shown in Fig. C.20.

The river bed materials are fine sand or coarse sand at Bojongrangkas, fine sand or silt at Haurhapit, coarse sand or sandy gravel at Dayeuh Kolot, and gravel or coarse sand at Pameuntasan. The mean diameters of the materials are 0.86 ~ 1.01 mm at Bojongrangkas, 0.37 ~ 0.72 mm at Haurhapit, 0.52 ~ 2.62 mm at Dayeuh Kolot and 8.67 ~ 28.4 mm at Pameuntasan.

The river bed material is the minimum in size at Haurhapit located in the middle of the flood area. This fact shows that tractive force on sediment is decreased due to flood retarding effects in this location.

Specific gravity of the river bed materials is 2.73 ~ 2.80.

Results of the sampling tests are summarized in Tables C.9, C.10 and Fig. C.20.

2.6 Suspended Load

Suspended loads were measured by IHE and WJRRDP office at the stream gauge stations shown in Fig. C.21. The available data is for a period from 1987 to 1988 at Dayeuh Kolot and 1984 to 1986 at the other stations. The observed data are tabulated in Data Book III.

High concentration of suspended solids are recognized in the following rivers.

	River (Station)	Concentration	<u>Date</u>
-	Citarum (Majalaya)	1,782 mg/l	Dec. 5, 1984
-	Cipamokolan (Lis)	7,238 mg/l	Sep. 12, 1984
_	Citarum, Cisarea (Andir)	2,579 mg/l	Oct. 4, 1984
-	Citarik, Cijalupang (Peundeuy)	3,128 mg/l	Dec. 6, 1984
-	Cibodas (Jatisari)	2,124 mg/l	Sep. 15, 1984

Average suspended loads at Dayeuh Kolot during the flood season is 200 - 400 mg/l as shown below.

Obervation Period	<u>Range</u>	Average
Dec. 11 - 23, 1987	112 - 424 mg/i	218 mg/l
Jan. 6 - 27, 1988	109 - 484 mg/l	309 mg/l
Feb. 1 - 29, 1988	284 - 443 mg/l	364 mg/l

2.7 River Bed Sedimentation

The flood water stage of the Citarum River has risen from year to year since 1982. The yearly maximum water stage at Dayeuh Kolot rose by about 2 m during the four (4) years from 1982 to 1986 (Refer to Supporting Report G). The yearly minimum water stage has also risen since 1982. It rose by 0.6 m at Dayeuh Kolot during these four (4) years. However, it lowered again in 1987 to that of 1982 level due to the effects of the dredging works conducted by WJRDP office (See Fig. C.24).

The rising of the flood and low water stages might have been caused by the sediment deposits including garbages in the downstream of Dayeuh Kolot. In fact, large quantities of sediments and garbages flow into the Citarum River every year as illustrated below.

- (1) The yearly sediment yield of the Upper Citarum Basin is estimated to be 3.7 million m³/year (= 2.1 mm x 1,771 km²).
- (2) Volume of solid waste production in Kotamadya Bandung has rapidly increased as follows (Source: BUDP).

- 1978 year: 0.5 million m³/year

- 1981 year: 0.7 million m³/year

- 1986 year : 1.93 million m^3 /year

In October 1986, the volume of garbages flowing into the Sagling Reservoir was measured as $25,000 \text{ m}^3$ per week. It is equivalent to 1.3 million per year (= $25,000 \text{ x} \frac{365}{7}$).

The garbage deposits of the Citarum River and tributaries were identified by the field reconnaissance as follows.

- (1) Garbage accumulation is high in the downstream of the junction with the Cikapundung River extending over approximately 8.0 km (Station at 20 km to Station at 28 km). The garbage deposits are mixed in sediments. (See Fig. C.22).
- (2) Much garbage deposits are observed in the tributaries, Cikapundung and Citepus, which flow through Bandung urban areas. Those are the major garbage sources of the Citarum Main River (See Fig. C.23).

2.8 River Bed Stability

(1) Dominant Discharge

Dominant discharge is the discharge which causes the largest effect on the formation of a river section and profile.

The existing river channel was formed by repetition of scouring and deposition for a long period. Therefore, it is considered to be in a stable condition. Bankful discharge of the existing river channel is usually considered as the dominant discharge which is used in design of river channel improvements.

The bankful discharge of the exisiting Citarum River at Dayeuh Kolot is approximately 160 m³/s, which is equivalent to a 1-year frequency flood.

(2) Macro Check of Stability

The stability of the existing Citarum River is investigated from a macro-viewpoint, as explained below.

The Ministry of Construction of Japan conducted an empirical research on sand bar formation for 4 years from 1975 to 1979 using actual data of many rivers in Japan. According to the research results, the Citarum River is classified as a weak sand bar river as shown in Fig. C.25. Therefore the existing Citarum River is considered to be a relatively stable river since it is classified as a weak sand bar formation.

3. Water Use

3.1 Urban Water Supply

According to the Bandung Urban Water Supply Study (BUDS), future water demand of the Bandung Urban Area is predicted as shown below. (Refer to Table C.11)

	1990	Year 2000	2010
Domestic demand	1570 l/s	2456 l/s	3336 l/s
Non-domestic demand	523	819	1112
Total demand	3170	4710	6510
Incremental demand	1400	2800	4600

The existing water sources of the Bandung Urban Area are:

Cisangkuy River : 800 l/s
 Cikapundung River : 150 l/s
 19 wells : 470 l/s
 9 springs : 150 l/s
 Total : 1570 l/s

The possible sources of additional water abstraction are shown in Table C.12.

3.2 Irrigation Area

The existing irrigation areas in the upper Citarum basin are summarized below.

	Irrigation Area (ha)
Public Works Irrigation	33,608
Technical	21,709
Semi technical	11,899
Desa Irrigation	33,750
(Non technical)	
Rainfed Irrigation	8,844
Total	76,202

(Source: "Bina Program; Final Report, Upper Citarum Water Resources

Development and Flood control Study, 1986.")

Location of the irrigation area is shown in fig. C.26.

Table C.1 LAND-USE OF BASIN

)	Present	and Use				-			"	Future La	Land Use					
Name of Drainage basin	Area (km2)	Water	er	Forest		Paddy Field	Field	Dry Planta	Field Ition etc	Built-up Area) Area	Water	2.	Forest		Paddy Field		Dry Plantati	Field ion etc	Built-up Area	p Area
		Area (km2)	Percent	Area (km2)	Percent.	Area E (km2)	Percent	Area F (km2)	Percent (%)	Area B (km2)	Percent (*)	Area P (km2)	Percent (*)	Area F	Percent (%)	Area F (km2)	Percent (%)		Parcent (%)	Area I	Fercent (%)
1. Citarum	0-761	0,5	0.2	88.7	45.0	49.0	249.0	55.7	28.3	3.1	1.6	0.5	0.3	88.7	45.0	47.1	23.9	55.7	28.3	5.0	2.5
2. Cirasea	93.1	0.0	0.0	20.1	21.6	42.7	65.8	26.8	28.8	м *	89	0.0	0.0	20.1	21.6	34.7	37.2	25.1	27.0	13.2	14.2
3. Citarik	281.4	8	e, 0	35.0	12.4	137.5	48.9	0.66	35.2	1.6	3,2	8.0	e, 0	35.0	12.4	134.2	7.7	96.5	34.3	14.9	٠. د.
4. Cikeruh	204.6	0.0	0.0	43.6	21.3	6.08	44.5	62.5	30.5	7.6	7	0.0	0-0	43.6	21.3	77.9	39.1	48.7	23.8	34.4	16.8
5. Kopo	53.7	0	0,	8.0	1.5	33.6	9.29	18.2	33.9	et et	2.0	0.0	0.0	8.0	2.5	33.6	62.6	18.2	33,9	1,1	2.0
6. Cibodas	29.7	0.0	0	0.0	0.0	16.3	54.8	10.5	35.4	2.9	8.6	0.0	0.0	0.0	0.0	14.3	48.2	4,	32.3	80.	14.5
7. Cidurian	51.8	0	0.0	ۍ ط	2 9	33.6	64.9	5 4	70. 7	11.3	21.8	0.0	0.0	1.5	2.8	26.4	52.0	4 5	60	19.4	37.5
8. Cikapundung	144.3	0	0.0	38.7	26.8	13.8	9.6	48.0	e. e.	43.8	30.3	0-0	0	38.7	26,8	4.2	6.7	45.6	31.6	55.8	38.7
9. Cisangkuy	276.5	4.9	80	92.6	33.5	77.2	27.9	98.3	35.5	\$ E	1.3	۵.	1.8	92.2	33,3	68.2	24.7	8.36	35.0	14.4	ν. 2
Dayeuh Kolot	1332.1	6.2	5.0	321.0	24-1	494.5	37.1	424.5	31.9	85.9	6.4	6.2	0.5	320.6	24.1	940.6	33.0	400.7	30.1	164.0	12.3
10. Cijalupang	60.1	0.0	0.0	0.0	0.0	44.4	73.9	14.5	24.1	1.2	2.0	0.0	0.0	0.0	0 0	34.6	57.6	13.1	21.8	12.4	20.6
11. Ciwidey	200.6	0	0.0	73.9	36.8	78.4	39.2	48.0	23.9		10	0.0	0.0	73.9	36.8	9.61	36.8	45.3	22.6	7.5	8.
12. Cibaeureum	117.2	9 7	₽. 	7.9	6.7	51.6	44.0	19.1	16,3	37.0	31.6	0.0	0.0	7.9	6.7	11.5	82	12.0	10.2	85.5	73.3
13. The basin of the rest	8.0	0.0	0-0	0.0	0.0	5.1	63.7	2.7	33.8	0.2	2.5	0-0	0.0	0.0	0.0	5.1	63.8	2.7	33.8	0.2	2.4
Nanjung	1718.0	7.8	0.4	402.8	23.4	674.0	39.2	508.8	29.7	124.6	7.3	6.2	0.4	402.4	23.4	565.7	32.9	473.8	27.6	269.9	15.7
14. Cimahi	48.0	0.3	9.0	8-91	35.0	18.8	39.2	10.7	22,3	ē.	2.9	6.0	9.0	16.8	35.0	10.5	21.9	6.7	14.0	13.7	28.5
15. The basin of the rest	6.0	0.0	0.0	0 ° 0.	0.0	2.1	35.0	3.5	58.3	0.4	6.7	0.0	0.0	0.0	0.0	2.1	35.0	3.5	58.3	0.4	6.7
Curug Jompong	0.1771	8.1	0.5	419.6	23.7	694.9	39.2	523.0	29.5	126.4	7.1	6.5	0.4	419.2	23.7	578.3	32.6	484.0	27.3	284.0	16.0

Table C.2 HYDRAULIC CHARACTERISTICS OF CITARUM RIVER

Station	River	Flow	Wetted	Hydraulic	Roughness	Velocity	Discharge
NO.	Width	Area	Perimeter	Radius	Coefficient		· ·
	B (m)	A (m2)	P (m)	R (m)	n	V (m/s)	Q (m3/s)
į							
10.88	60.0	478.0	64.7	7.388	0.040	1.021	488
10.62	71.0	297.0	62.5	4.752	. "	0.760	226
10.35	57.0	325.0	67.0	4.851	"	0.771	251
10.22	76.0	261.0	60.0	4.350	"	0.717	187
9.93	68.0	268.6	67.8	3.953	17 .	0.673	181
9.66	64.0	260.5	64.9	4.014	" "	0.657	171
9.37	63.4	287.5	60.8	4.729	17	0.758	218
9.09	64.0	259.2	68.0	3.812	10	0.844	219
BTMC IX	57.0	197.0	54.2	3.635	"	0.818	161
8.88	54.0	272.1	55.3	4.920	"	1.001	272
8.61	56.0	308.5	59.6	5.176	"]	1.035	319
8.34	39.0	207.5	45.0	4.611	;i	0.959	199
8.05	47.0	296.6	52.1	5.693	0.035	1.103	327
7.78	49.0	242 1	53.6	4.517	n n	0.946	229
7.48	50.0	293.3	61.8	4.746	. R	0.977	287
7.19	70.0	262.5	68.5	3.832	. "	0.847	222
6.104	42.0	176.0	54.4	3.235	0	0.757	133
6.66	38.5	158.0	41.3	3.826		0.846	134
6.33	58.9	169.0	59.5	2.840	11	0.694	117
6.07	51.2	165.5	59.9	2.763	"	0.681	113
C.435	34.8	72.4	34.4	2.105	"	0.663	48
C.426	47.7	97.2	42.2	2.303		0.705	68
C.409	27.2	110.0	31.5	3.492	. 11	0.930	. 102
C.367	31.8	133.0	35.2	3.778	10	0.980	· 130
C.332	25.2	94.5	29.6	3.193	"	0.876	83
C.309	30.8	125.8	34.9	3.606	0.030	0.950	119
C.269	30.0	119.1	33.6	3.545	1 11	0.939	112
C.242	31.0	133.1	34.9	3.814	n	0.986	131
C.127	33.0	117.6	34.8	3.379	Ħ	0.910	107
C.99	37.0	145.0	38.2	3.796	11	0.983	143
C.71	34.0	122.2	36.7	3.330	+1	0.901	110
	i		1				
				· · · · · · · · · · · · · · · · · · ·			

HYDRAULIC CHARACTERISTICS OF CITARUM RIVER (UPSTREAM) Table C.3

Station	River Width	Width Flow Area	Wetted	Hydraulic	Hydraulic Roughness	Velocity	Discharge	
	B (m)	A (m2)	Perimeter P (m)	Radius R(m)	Coefficient	V (m/s)	Q (m3/s)	iii
	29,90	81.80	32.70	2.50	0.03	0.82	67.70	5.30
	26.10	62.30	28.10	2.22	0.03	0.76	47.70	3.90
	27.90	81.30	30.00	2.71	0.03.	0.87	71.00	4.70
	25.80	59.00	27.70	2.13	0.03	0.74	43.90	3.20
<u> </u>								
	27.10	76.50	29.10	2.63	0.03	2.00	153.60	4.20
	27.40	101.00	30.90	3.27	0.03	2.32	234.50	6.40
	28.90	135.10	35.20	3,84	0.03	2.58	349.20	6.40

HYDRAULIC CHARACTERISTICS OF CITARIK RIVER Table C.4

The same of the same of		*****		Carried Commencer Commence
щ	3.90	က က က က တ တ တ တ တ တ တ		2.00 2.00 1.00 2.00 1.00 2.00
Discharge	48.80	00.00 00.00 00.00 00.00		18.60 16.50 29.30 22.10 19.60 13.30
Velocity V(m/s)	9 8 . 0 0 .	0 0 0 7 0 0 8 8 8 0 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	0.76 0.77 0.79 0.88	1.11 1.11 1.37 1.21 1.20 1.00
Roughness Coefficient n	0.03	0.00 0.00 0.00 0.00	0.00	00000000000000000000000000000000000000
Hydraulic Radius R(m)		2 2 2 2 2 3 4 4 2 1 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	1.28 1.28 1.32 1.30 0.90
Wetted Perimeter P(m)	24.80	24.30 18.80 27.00 17.40	17.60 20.90 15.90 16.20 15.80	12.30 10.90 13.40 15.00 12.30 13.30
Flow Area A(m2)	56.80 36.60		33.70 40.30 31.60 38.40 28.40	15.80 13.96 21.40 18.90 16.20 13.30
River Width B(m)	23.00 15.20		16.00 17.60 13.60 12.00 13.60	10.40 7.60 10.80 13.90 10.80 12.40
Station	0.45	1 W 4 R	5.95 6.40 7.10 9.16	10.20 11.00 12.00 12.90 14.40 14.60
Hydraulic Gradient i	1/4500			1/1100

Table C.5 HYDRAULIC CHARACTERISTICS OF CIKERUH RIVER

		···	-	*****					
щ		2.90	3.20	3.00	3.20	2.00	2.50	09.0	
Discharge	Q(m3/s)	29.50	16.80	22.90	12.80	8.00	5.50	09.0	
Velocity	V(m/s)	0.72	0.62	0.66	0.59	0.55	0.37	0.23	
Roughness Coefficient	С	0.03	0.03	0.03	0.03	0.03	0.03	0.03	
Hydraulic Radius	R (m)	2.03	1.64	1.79	1.51	1.36	0.76	0.37	
Wetted Perimeter	P (m)	20,10	16.30	19.30	14.30	10.70	11.20	6.70	
Width Flow Area	A (m2)	40.90	26.80	34.60	21.60	14.50	14.70	2.50	
River Width	B (m)	18.30	14.70	17.30	12.60	00.6	9.40	6.10	
Station	No	0.35	1.00	1.50	1.70	3:00	4.00	5.00	
Hydraulic Gradient	·	1/5500							_
					-	_			

Table C.6 HYDRAULIC CHARACTERISTICS OF CISANGKUY RIVER

	iti	3.90	7.07	4.91	5.28	6.78	08.6	3.78	4.29	3.85	3.17	4.94	5.83	5.34	4.79	
Discharge	O(m3/s)	87.00	06.06	67.00	72.96	109.46	60.06	77.77	89.93	90.08	48,83	47.38	80.86	56.66	71.39	
Velocity	V (m/s)	1.08	1.16	1.10	1.09	1.19	1.15	1.07	1.11	1.08	0.90	06.0	1.08	0.97	1.01	
Roughness	Coefficient n	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	e0.0	_
Hydraulic	Radius R(m)	2.82	3.17	2.89	2.87	3.26	3.08	2.75	2.92	2.81	2.24	2.14	2.82	2.40	2.56	
Wetted	Perimeter P(m)	28.70	24.66	\circ	23.26	28.32	25.54	26.06	26.32	29.74	25.21	24.70	26.58	24.42	27.52	
Flow Area	A (m2)	80.80	78.09	61.02	66.84	92.24	78.75	71.68	76.93	83.69	54.26	52.84	75.01	58.56	70.57	
River Width	(m) m	25.80	18.00	16.50	20.00	23.00	21.50	22.00	24.50	28.00	24.90	22.60	24.50	20.10	28.80	
Station	NO	BM.17	8T.4	P.31	P.41	0 0 0	P.73	ъ.82	P.88	BM.18	8/29	S/40	8/53	S/71	06/8	
Hydraulic	Gradient	1/2800		J.												

Table C.7 LIST OF EXISTING IRRIGATION WEIR

No	Name of Weir	River	Desa	Irrigation Area (ha)	Ramarks
1	Bugel	Cikeruh	Sukamanah	182	Non PU
2	Ciyasana	Cikeruh	Rancaekek	1,682	PU
3	Tanggeung	Citarik	Bojongloa	138	Non PU
4	Citarik	Citarik	Sukamanah	140	Non PU
5	Bojongmonyec	Cibodas	Bojongsalam	48	Non PU
6	Bojongbraja	Citarik	Bojongsalam	79	Non PU
7	sangiang	Citarik	Bojongsalam	309	Non PU
8	Sawahgede	Cibodas	Cikuya	55	Non PU
9	Nyalindung	Cimande	Linggar	454	Non PU
10	Ciendog `	Cikeruhanak	1	50	Non PU
11	Ciwirahma/ Situkuluwung	Ciwirahma/ Tanjunglya		100	Non PU
12	Citangkrak	Talun	٠.		Non PU
13	Buah Batu	Cibeuwying			Non PU

Table C.8 LIST OF EXISTING BRIDGE

No	Brige Name	Super -	Structure		Pier	Abutment
		Туре	Length (m)	Width(m)	type	Туре
1	Nanjung	Truss/Steel Cirder			RC	RC
2	Cilampeni	Steel Cirder	46.0	9.0	RC	RC
3	Dayeuh Kolot (Road)	Concrete Cirder	88.3	8.5	Masonry	Masonry
4	Dayeuh Kolot (Water Supply)	Concrete Cirder	٠.		Pile Bent	RC
5	Dayeuh Kolot (Railway)	Truss	87.2	7.7	Masonry	Masonry
6	Jemb Cipurut	Concrete Slab	10.0		_	Masonry
7	Jemb Leuwikuray	Steel Cirder	31.0	3.0	Masonry	Masonry
8	Sapan - 1	Steel Cirder			Masonry	Masonry
9	Sapan - 2	Steel Cirder			RC	Masonry
10	Rantjatuodjung	Truss	30.0	3.5	RC	RC
11	Bodjonggede	Suapendid	35.0	2.5	<u></u>	Masonry
12	Jemb Citaric	Steel Cirder	22.0		Masonry	Masonry

Table C.9 PROPERTY OF BED MATERIAL OF CITARUM RIVER

	Sampling Location	Bo	Bojongrangkas	ias.	Ä	Haurhapit		Da	Daveuh Kolor	0,0	ů.	Pamelintagan	
Item	1	Left	Center	Richt	Left	Center	Right	Left	Center	Right	T.e.f.	Center	Right
													2
	Gravel (%)	0.0	0.1	2.0	2.0	0.0	0.0	0.0	0.0	0.6	0.69	72.0	63.0
	Sand (%)	0.89	78.0	82.0	72.0	48.0	74.0	86.0	0.89	65.0	29.0	24.0	33.0
	4	C	1	<	, c	c	0			((
	מדור (פ)	0.00) 	⊃ • # 	0.07))	7.07	O•#⊣	7.4.0) 0 7) 7	4,	4
	Clay (%)	2.0	4.0	2.0	1	19.0	1		0.0	0.0	1	l	
형	Visual classification	Fine & Middle Sand	Coarse Sand	Fine Sand	Fine Sand	Silt	Fine Sand	Corse Sand	Corse Sand	Sand Gravel	Gravel Sand	Gravel	Gravel, Coarse Sand
	Maximum Size (mm)	4.76	4.76	4.76	4.76	2.00	2.00	2.00	2.00	19.10	38.10	38.10	9.52
	Mean Size (mm)	0	0,86	98.0	0.72	0.37	0.40	0.57	0.52	2.62	28.40	16.80	8.67
	Medium Size (mm)	0.38	0.32	0.32	0.23	40.0	0.22	0.34	0.13	0.28	9.50	9.20	2.40
	Dispersion Coefficient	1.51	3.45	3.45	2.00	4.47	1.80	1.49	3.61	2.59	5.98	86 86 86	3.18
· ***	Standard Deviation	2.34	4 64	4.64	2.85	13.54	2.60	2.12	8.40	5.99	10.64	9.13	5.70
	Uniformity Coefficient	12.40	20.60	20.60	00.6	l	6.60	12.30	62.50	20.60	83.30	413.80	12.10
·	Curvature Coefficient	5.10	0.51	0.51	1.53	 -	1.26	5.61	3.16	2.29	0.74	22.50	1.78
လို	Specific Gravity	2.77	2.79	2.79	2.79	2.73	2.80	2.77	2.75	2.76	2.80	2.80	2.79

Note: Mean size is weighted mean size. Medium size is 50% passing size.

GRAIN SIZE DISTRIBUTION OF RIVER BED MATERIAL Table C.10

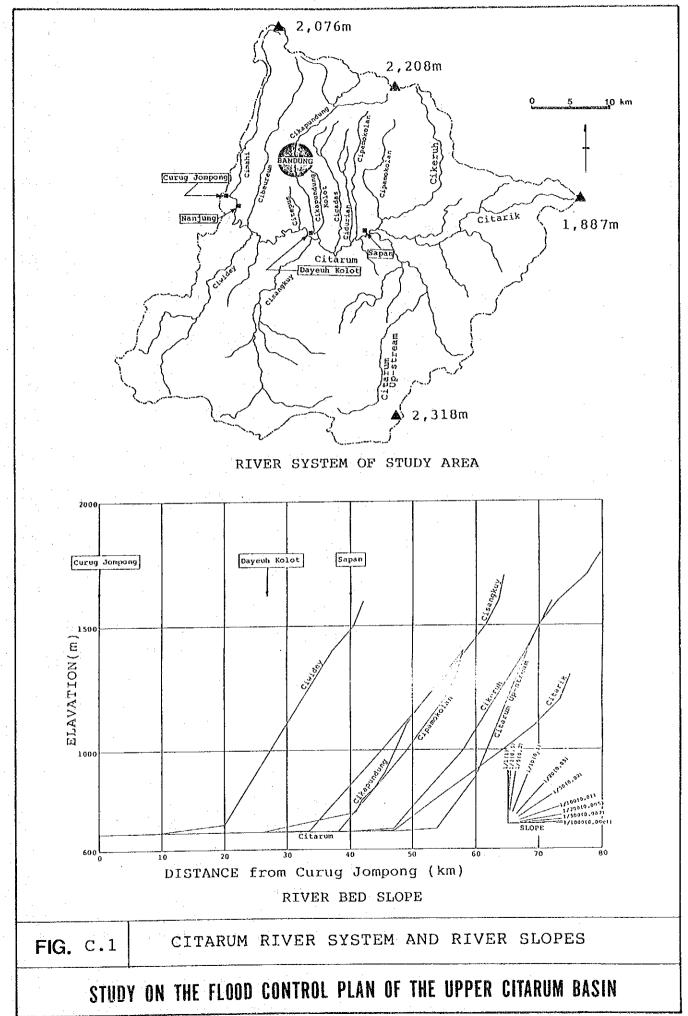
	U1	Right	0.28	0.51	0 6	2.00	2.40	3.40	6.60	11.00	15.50	19.10
ນ)	Pameuntasan	Center	0.029	0.40	2.80	00.9	9.20	12.00	14.50	00.81	24.00	38.10
(Unit: mm)	Cu	Left	0.21	0.57	1.65	4.60	9.50	17.50	28.00	39.00	47.00	50.80
	ot	Right	910.0	0.035	0.1	0.21	0.28	0.33	0.40	0.65	1.80	19.10
	Dayeuh Kolot	Center	0.0032	0.013	0.045	0.085	0.130	0.200	0.330	0.48	0.70	2.00
	Ď	Left	0.031	0.185	0.257	0:30	0.34	0.38	0.45	0.525	0.78	2.00
		Right	0.034	0.057	0.098	0.17	0.215	0.225	0.234	0.254	0.30	2.00
	Haurhapit	Center		0.003	0.012	0.027	0.043	090.0	0.083	0.18	0.40	2.00
		Left	0.027	0.053	0.10	0.19	0.23	0.24	0.26	0.31	0.44	4.76
	as	Richt	0.034	0.18	0.27	0.34	0.38	0.42	0.48	0.56	0.69	4.76
	Bojongrangkas	Center	0.013	0.055	0.158	0.25	0.34	0.42	0.55	0.73	1.10	4.76
	Bo	Left	0.017	0.029	0.055	0.25	0.32	0.35	0.40	0.48	0 · 10	4.76
	Passing	Percentage	0	20	တ	40	.00	09	70	80	0	100

Table C.11 FUTURE WATER DEMAND FOR BANDUNG WATER SUPPLY

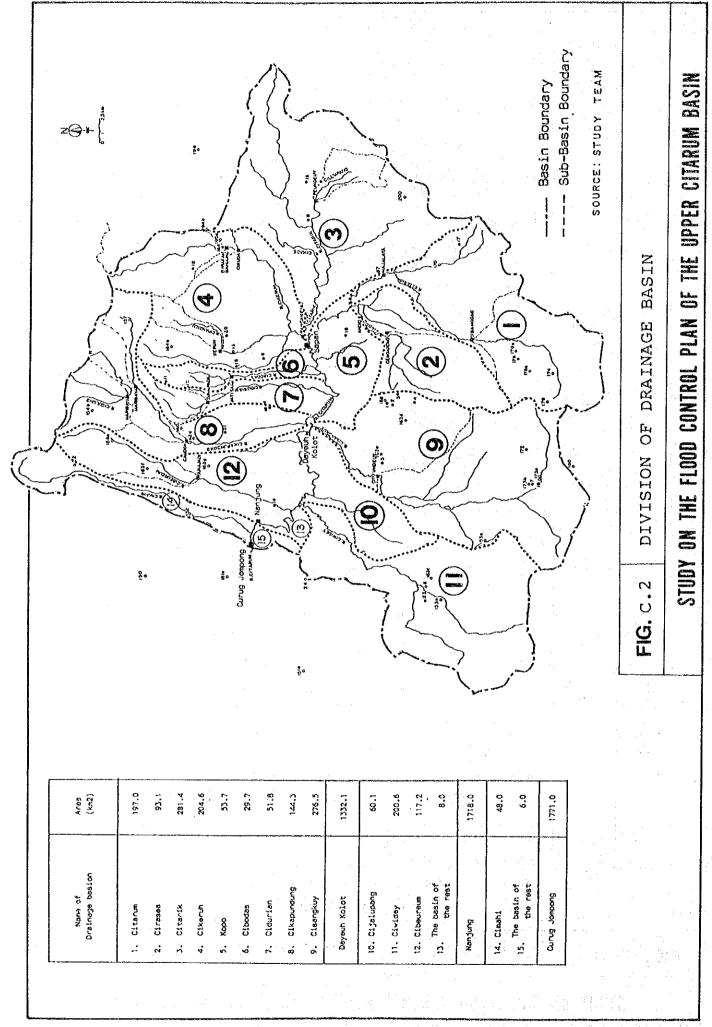
Descriprion	N-r-Helicides (FILE) and rechard	1990	2000	2010
Maria (Maria di Maria di Maria) maria (Maria) maria (Maria) maria (Maria di Maria (Maria di Maria di Maria di Maria di Maria (Maria di Maria di		excl.Cimahi	incl.Cimahi	incl.Cimahi
Population		2,160,200	3,093,300	3,771,200
Population urban supply area		1,858,529	2,773,200	3,479,600
Population served	(%)	75	80	85
Population served		1,403,379	2,218,600	2,957,700
Houseconnections	(%)	61	63	66
Demand houseconnections	(1/cd)	139	135	132
Demand public taps	(1/cd)	30	30	30
Average dom.demand	(1/cd)	97	96	97
Domestic demand	(1/s)	1,570	2,456	3,336
Non domestic demand	(1/s)	523	819	1,112
Total demand	(1/s)	2,093	3,275	4,448
Physical loss	(1/s)	583	702	1,045
Total distributed	(1/s)	2,676	3,977	5,493
In-plant losses	(1/s)	80	119	168
Raw water demand (average)	(1/s)	2,756	4,096	5,660
Raw water demand (maximum)	(1/s)	3,170	4,710	6,510
Existing capacity	(1/s)	1,770	1,910	1,910
Incremental demand	(1/s)	1,400	2,800	4,600

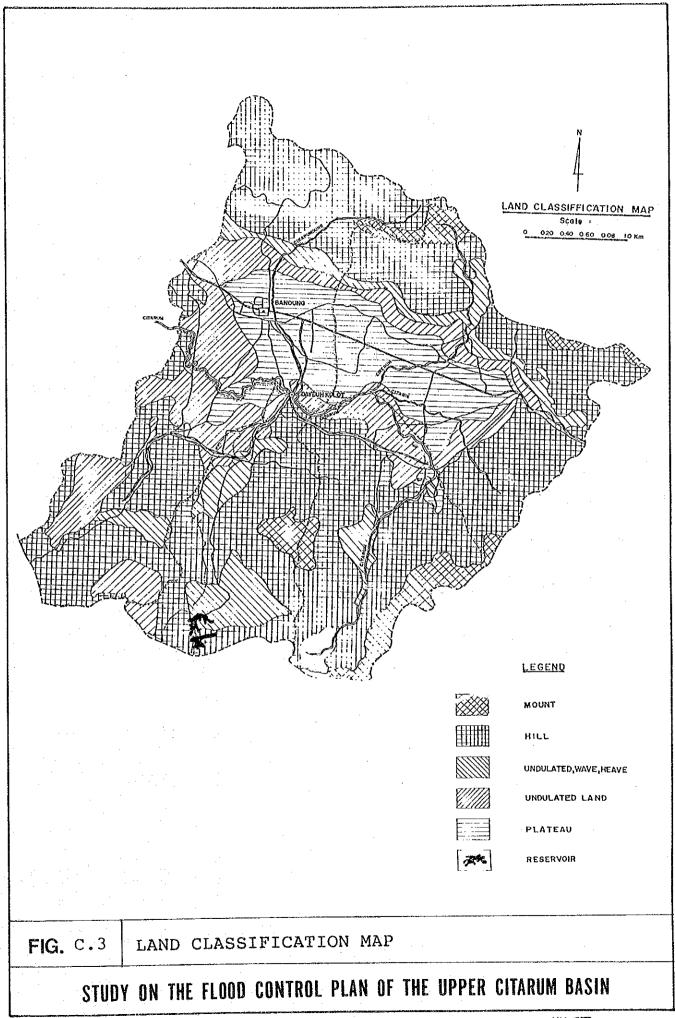
Table C.12 SUMMARY OF ADDITIONAL ABSTRACTION POSSIBILITIES

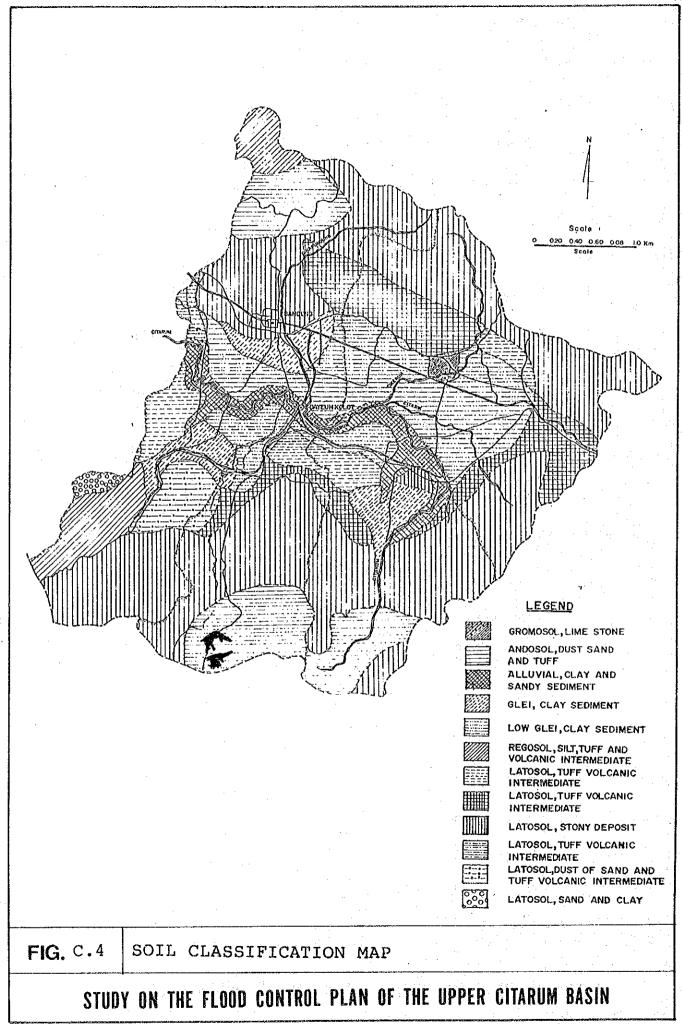
No. Source	Location	Max.pdd. capacity (m3/s)	Remarks
1. Cikapundung	downstream Dago	0.63	Irrigation affected
2. Cikapundung	upstream Pakar	0.63 1)	Irrigation and PLN affected
3. Cikapundung	reservoir needed	0.60 2)	Reservoir location not very suitable
4. Cisangkuy	downstr.Cikalong	0.80	PLN should co-operate
5. Cisangkuy	downstr.Cikalong	0.60 3)	Enlarge reservoirs to 42 million m3
6. Citarum	near Cioray	0.80	Much sediment
7. Citarum	downstream Dayeuhkolot	1.80 4)	Includes Bandung's wastewaters
8. Saguling	from ex.reservoir	*1	Large distance, large static head.

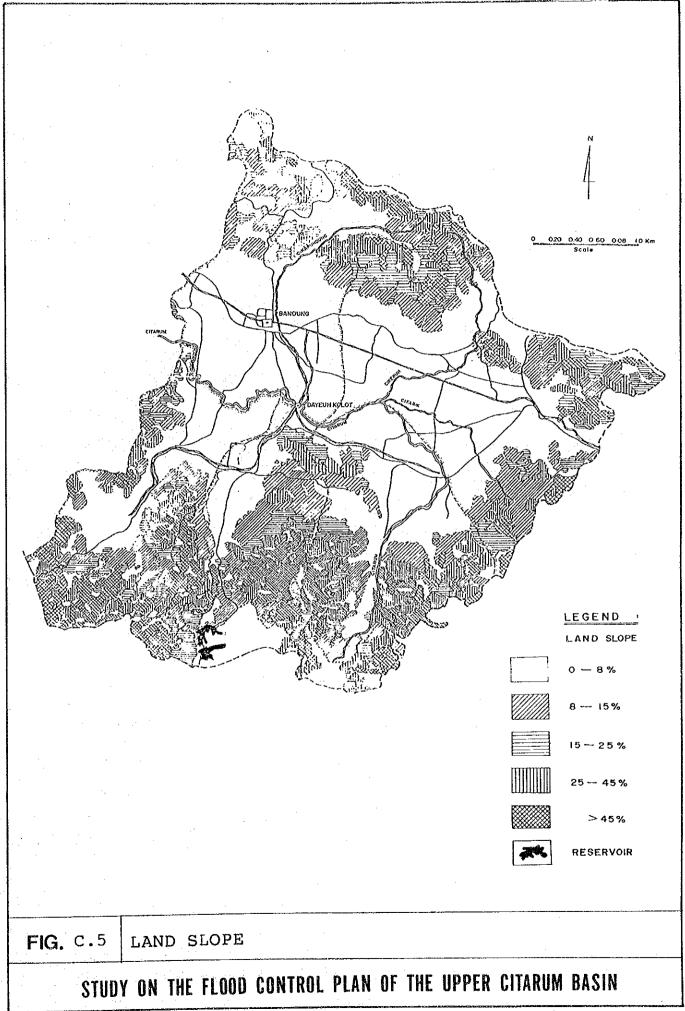

¹⁾ abstracted volume same as option 1

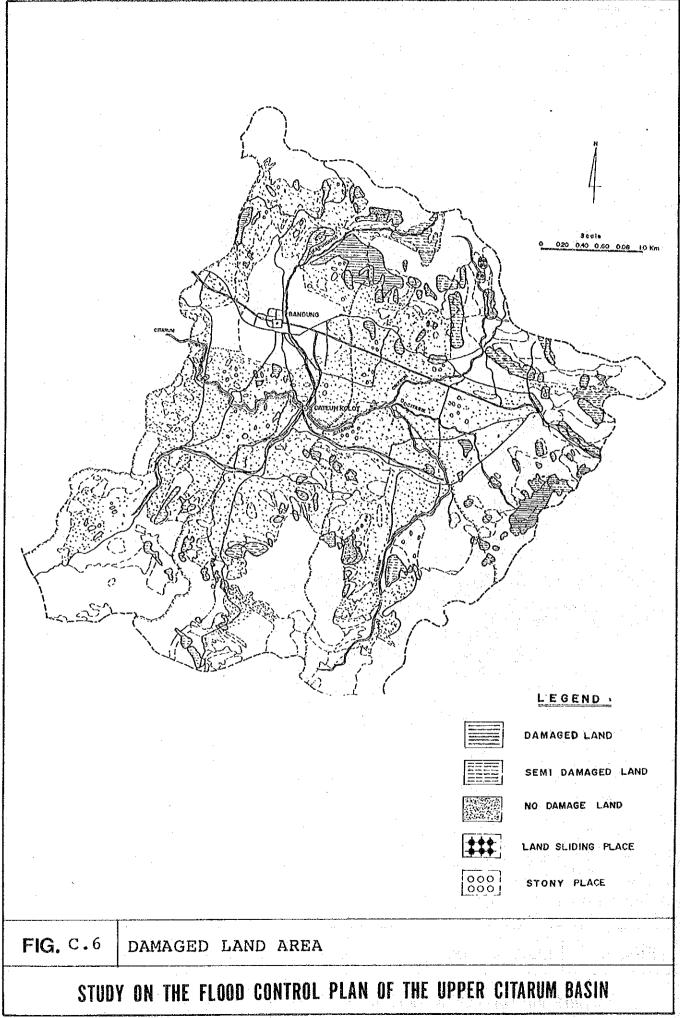
Source:Bandung Water Supply Study

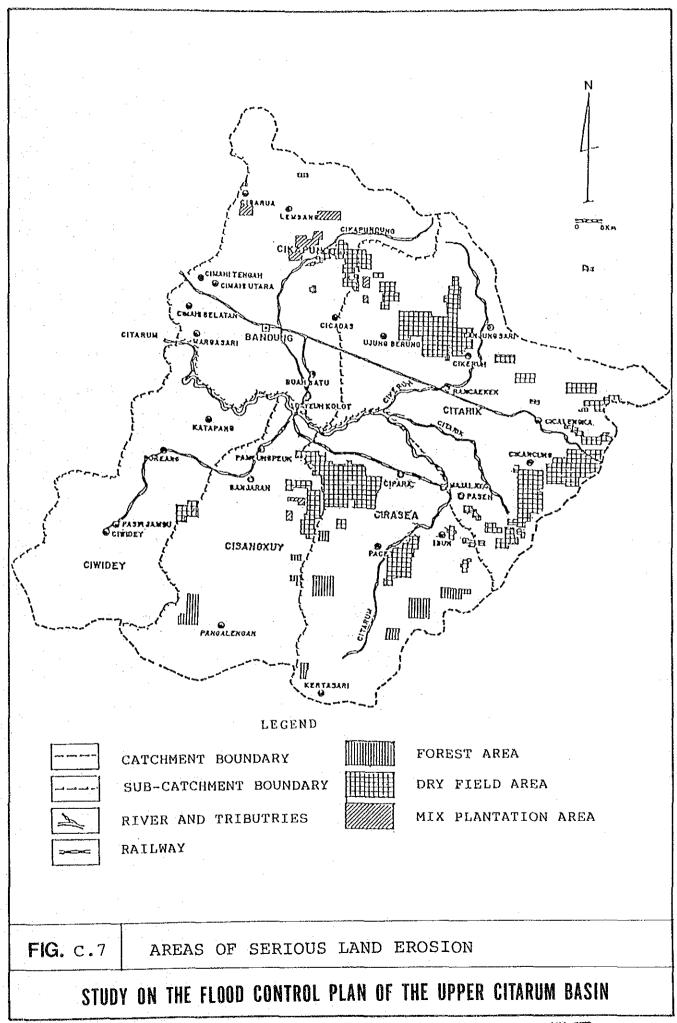

²⁾ volume is extra above option 1 or 2

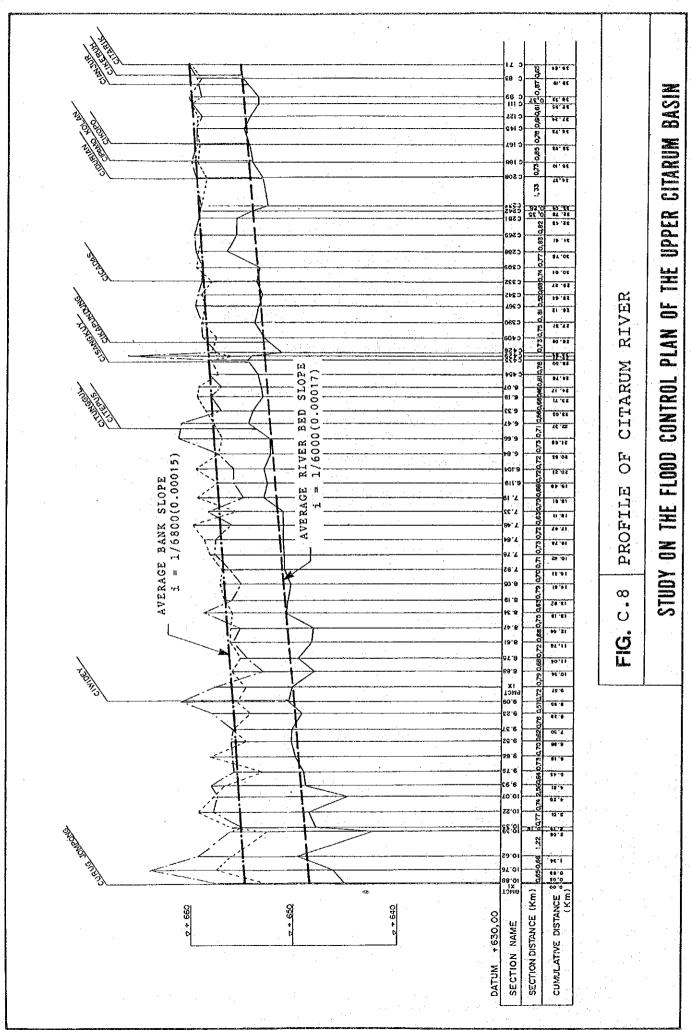

³⁾ volume is extra above option 4

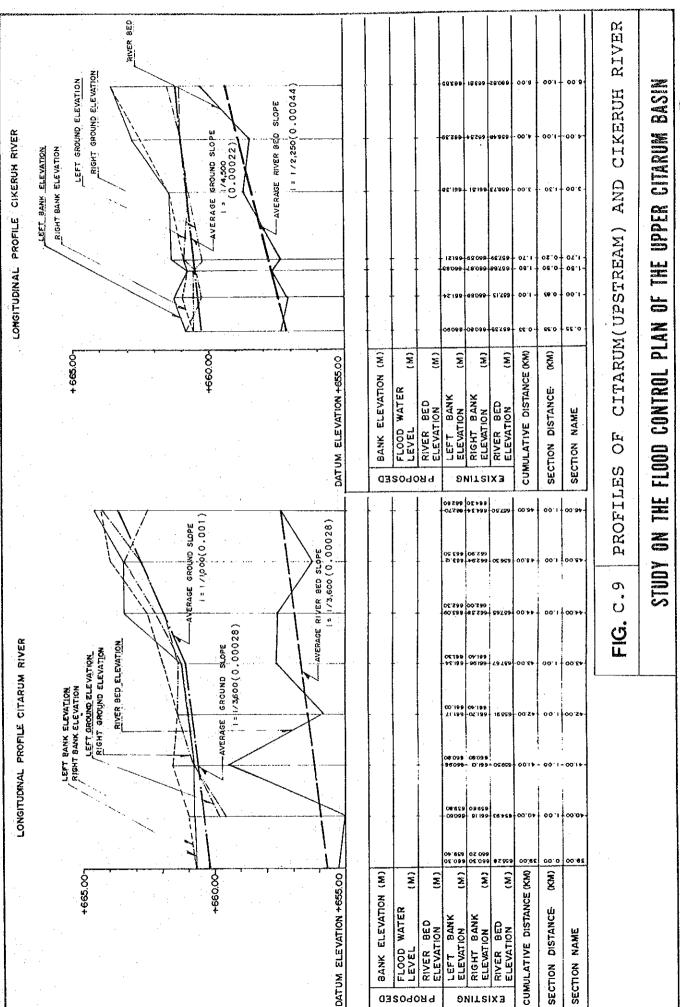

⁴⁾ volume will alter if their will be abstractions from option 1-6 as well

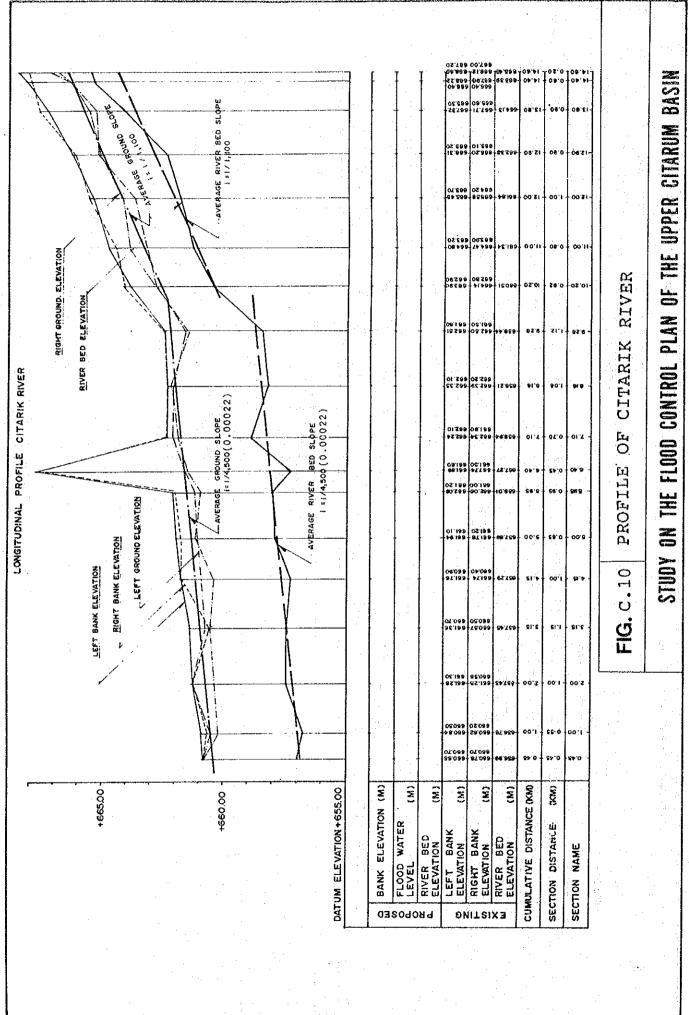


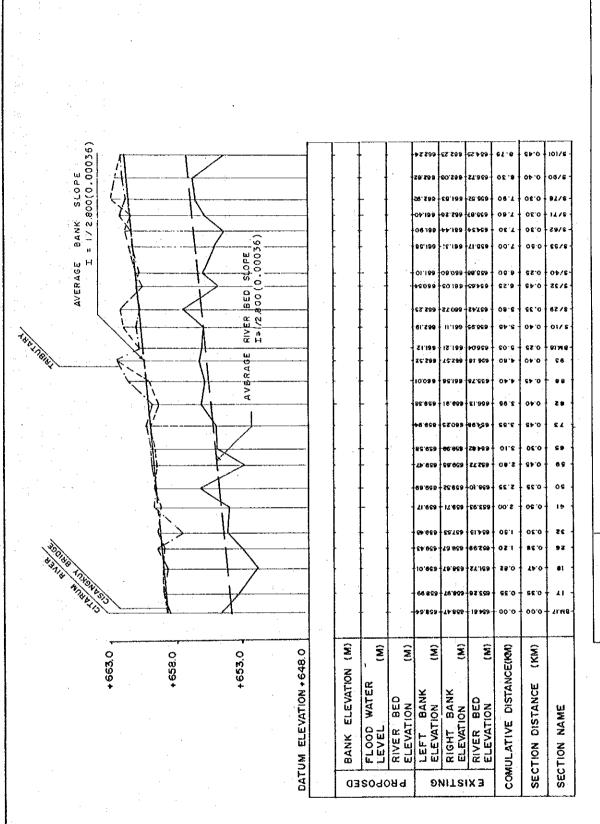
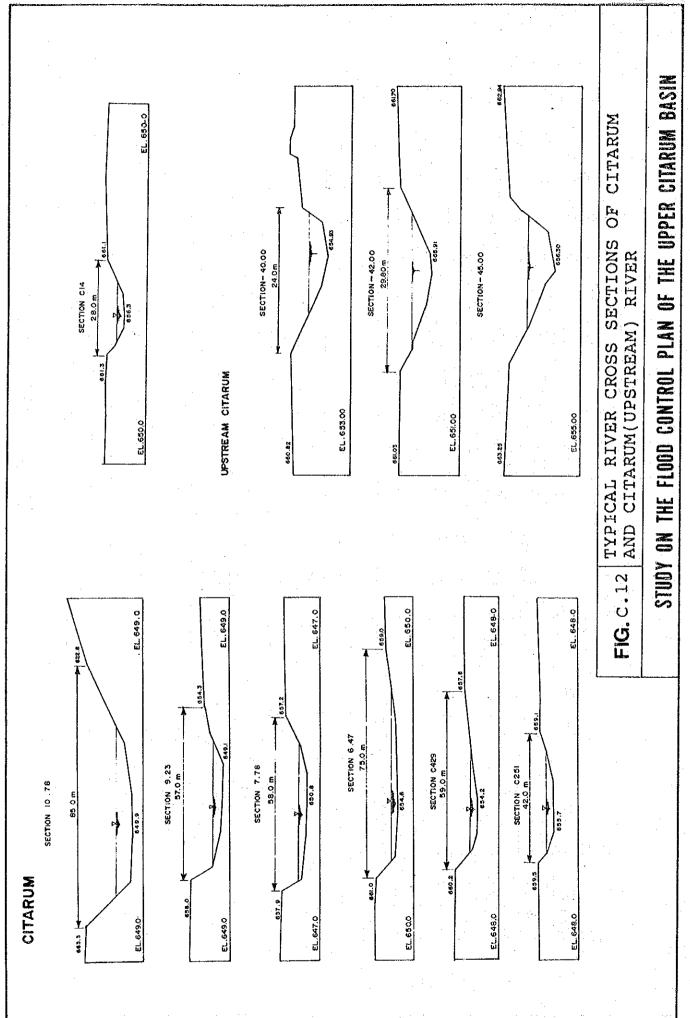
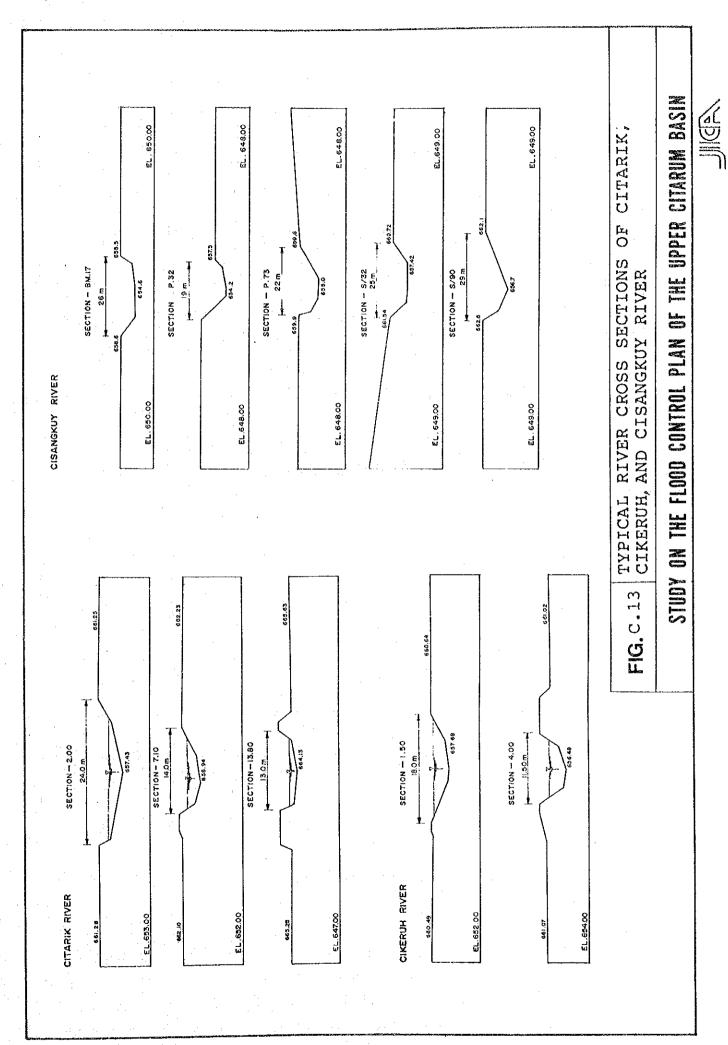


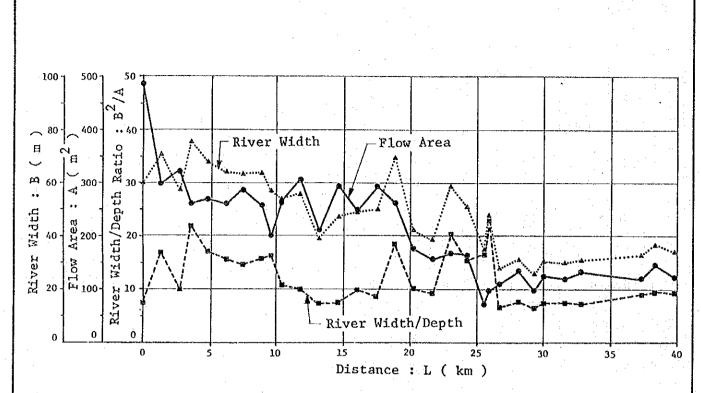




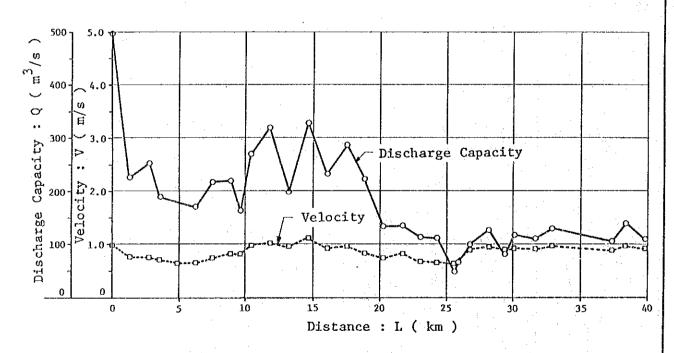


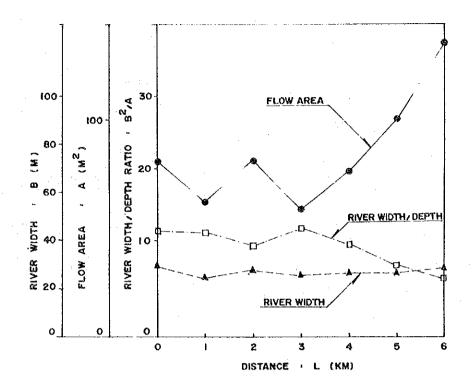


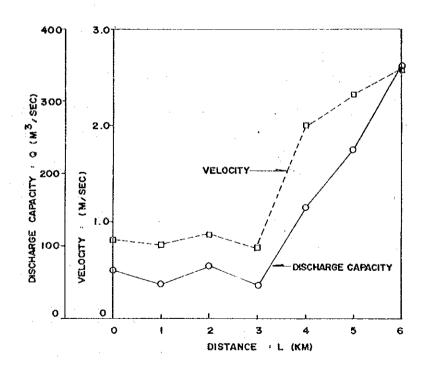

FIG. C.11 PROFILE OF CISANGKUY RIVER

STUDY ON THE FLOOD CONTROL PLAN OF THE UPPER CITARUM BASIN



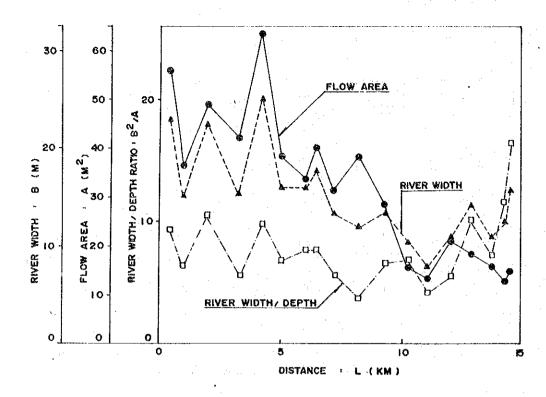


VARIATION OF FLOW AREA, RIVER WIDTH AND RIVER WIDTH/DEPTH

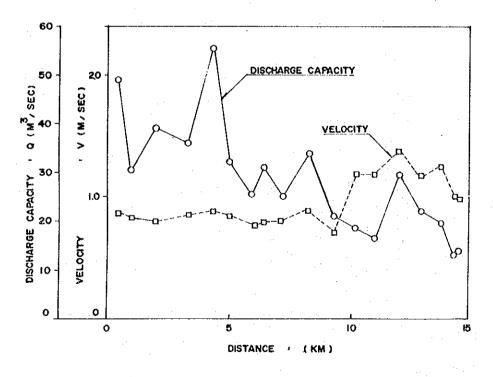


VARIATION OF VELOCITY AND DISCHARGE CAPACITY

FIG. C.14 | HYDRAULIC CHARACTERISTICS OF CITARUM RIVER

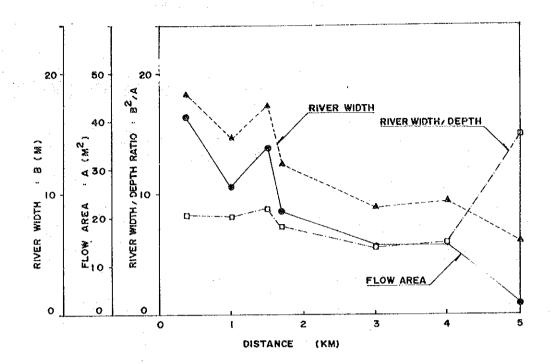


VARIATION OF FLOW AREA, RIVER WIDTH (CITARUM RIVER)
AND RIVER WIDTH / DEPTH

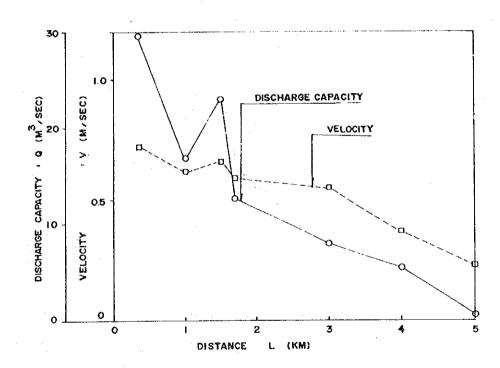


VARIATION OF VELOCITY AND DISCHARGE CAPACITY (CITARUM RIVER)

FIG. C.15 HYDRAULIC CHARACTERISTICS OF CITARUM(UP-



VARIATION OF FLOW AREA, RIVER WIDTH (CITARIK RIVER) AND RIVER WIDTH / DEPTH



VARIATION OF VELOCITY AND DISCHARGE CAPACITY (CITARIK.R)

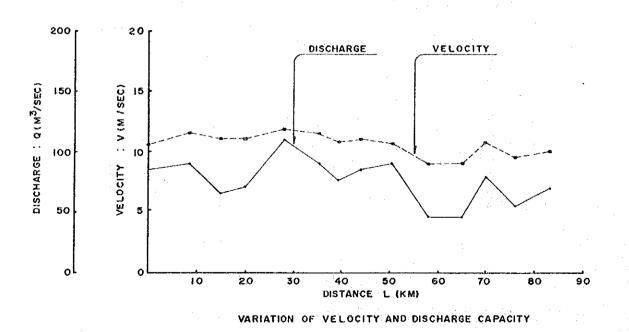
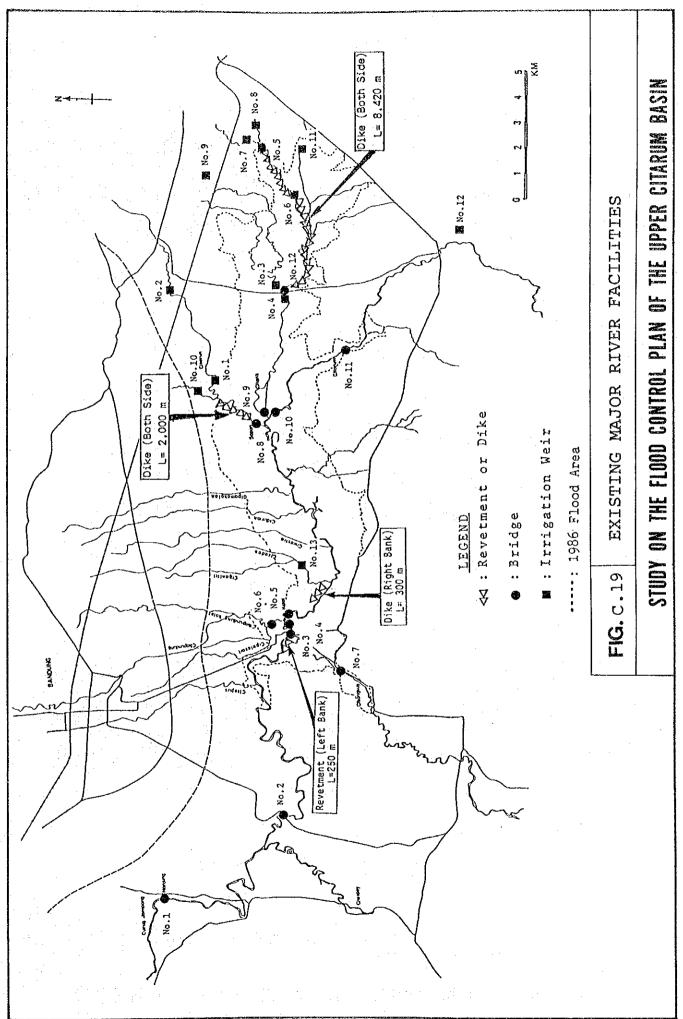
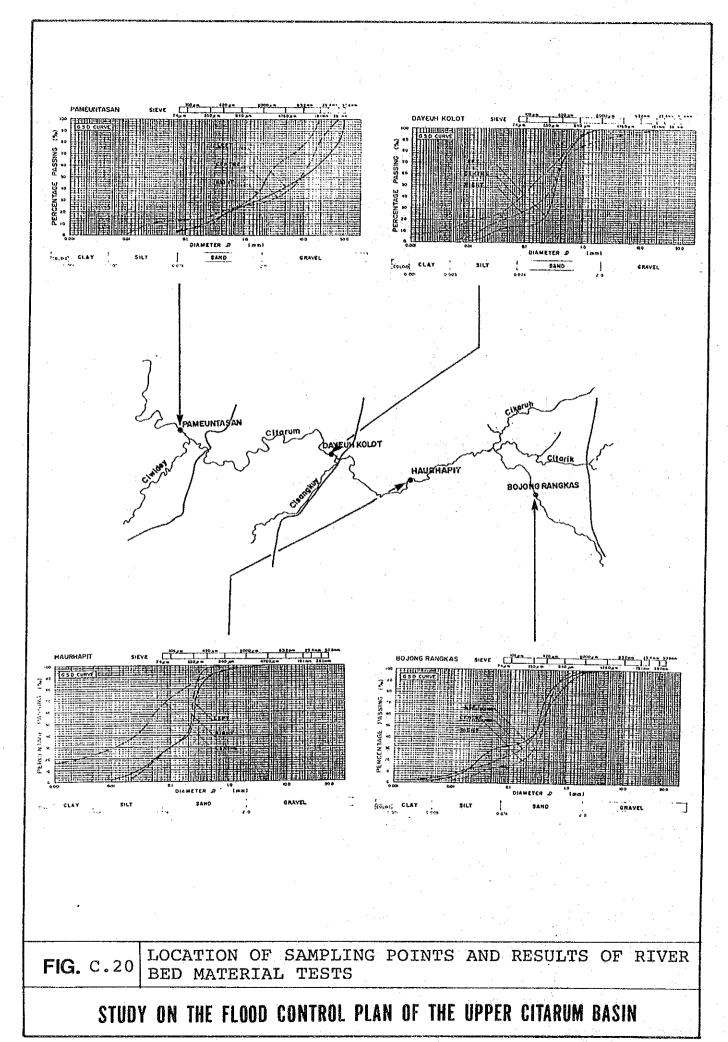
FIG. C.16 HYDRAULIC CHARACTERISTICS OF CITARIK RIVER

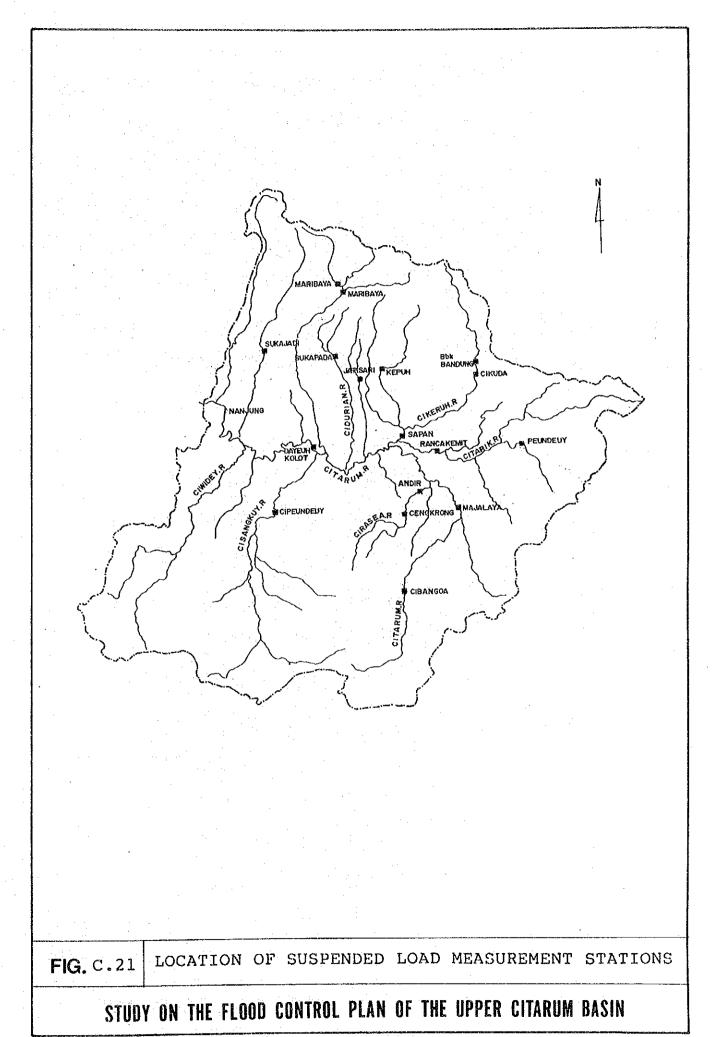

VARIATION OF FLOW AREA, RIVER WIDTH (CIKERUM RIVER) AND RIVER WIDTH, DEPTH

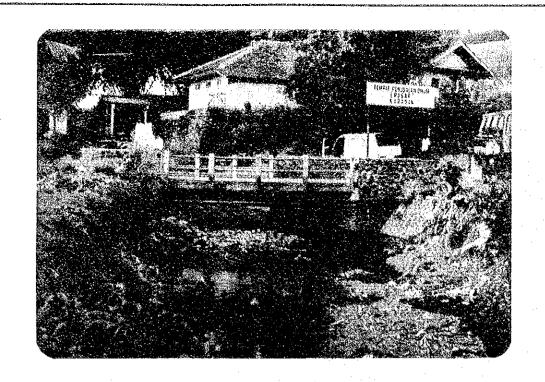
VARIATION OF VELOCITY AND DISCHARGE CAPACITY (CIKERUH RIVER)

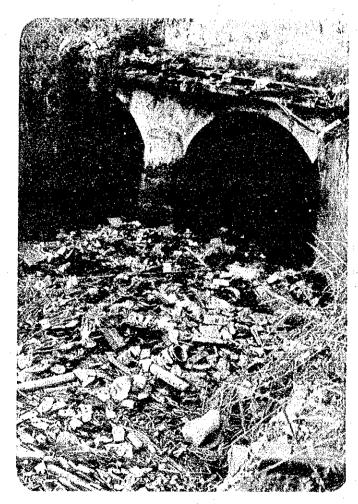
FIG. C.17 HYDRAULIC CHARACTERISTICS OF CIKERUH RIVER

CISANGKUY RIVER

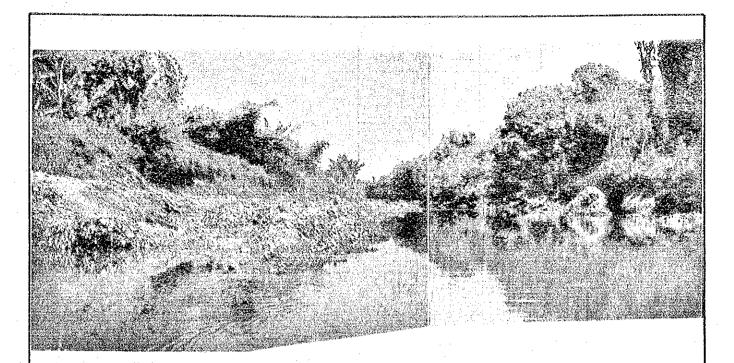





FIG. C.18 HYDRAULIC CHARACTERISTICS OF CISANGKUY RIVER



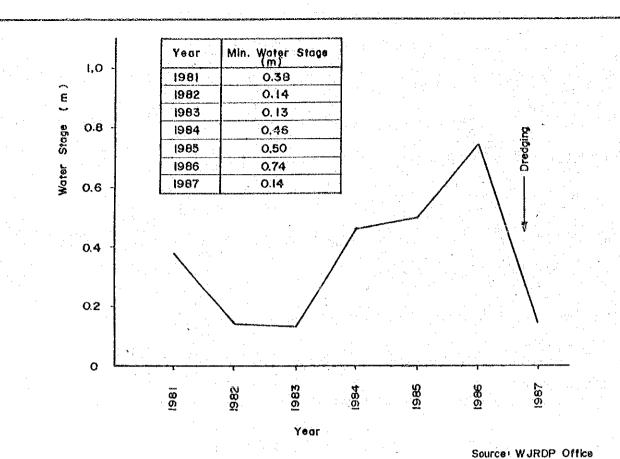


ADIL



CITEPUS RIVER

FIG. C.22 ACCUMULATED GARBAGE IN THE TRIBUTARIES


CITARUM RIVER (Approx.5km downstream of Dayeuh Kolot) Upstream stretch of this section has been dredged.

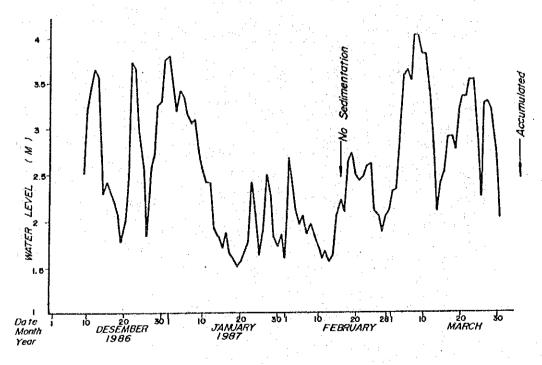
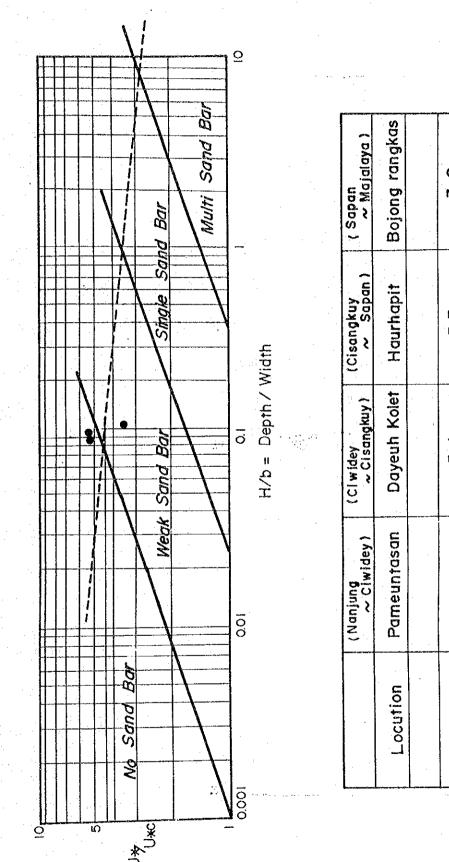

CITARUM RIVER

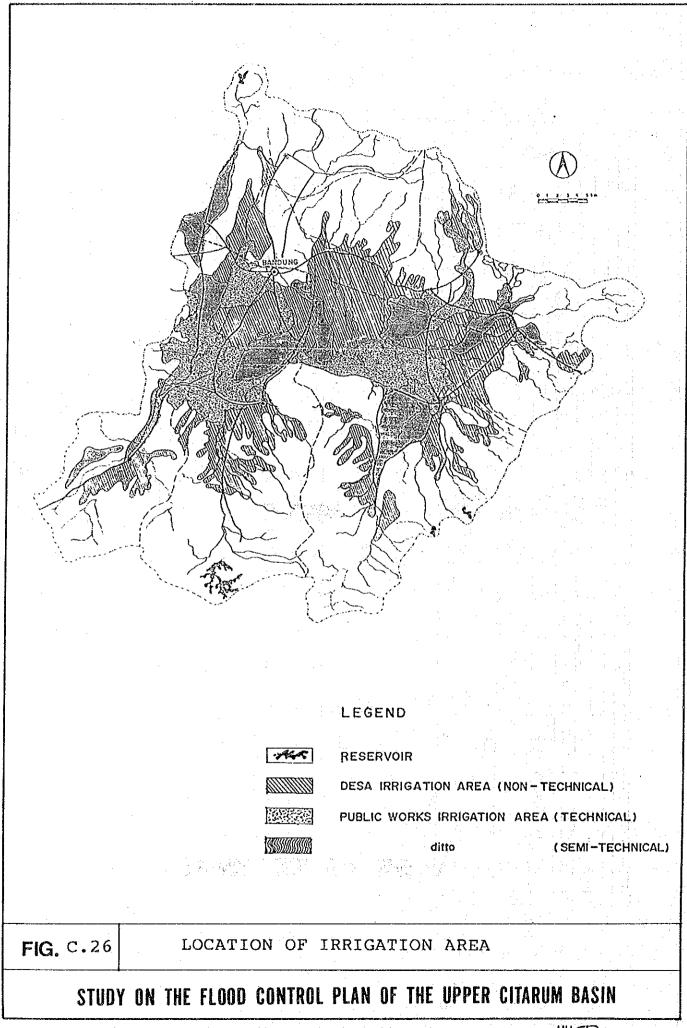
FIG. C.23

ACCUMULATED GARBAGE IN THE CITARUM RIVER


Yearly Minimum Water Stage at Dayeuh Kolot Gauging Station

Daily Water Level at Dayeuh Kolot

FIG. C.24 OCCURRENCE OF SEDIMENTATION IN THE CITARUM RIVER



Locution Pameuntasan Dayeuh Kolet Haurhapit Bojong rangkas U* / U*c 0.8 5.1 5.3 3.6 H / b 0.07 0.10 0.13	ya)	gkas			
Pameuntasan Dayeuh Kolet 0.8 5.1	√ Majala	Bojong ran		3.6	0.13
Pameuntasan Dayeuh Kolet 0.8 5.1	(updus ~	Haurhapit		5.3	0
	~ Cisangkuy)	Dayeuh Kolet		5.1	0. 0
Locution U* / U*c H/b	Ciwidey)	Pameuntasan		0.8	0.07
		Locution	-	0*0 / *0	H/b

FIG. C. 25

MEANDERING CONDITION OF EXISTING CITARUM RIVER

SUPPORTING REPORT D

FLOOD CONDITION

TABLE OF CONTENTS

			Page
		Contents	D-i
List	of Fi	gures	D-i
1.	Histo	orical Floods	D-1
2.	Frequ	uent Flood Area	D-2
3.	1986	March Flood	D-2
	3.1	Flood Depth and Flood Duration	D-2
	3.2	Flood Water Stage Profile	D-3
•	3.3	Typical Cross Section of Flood Area	D-4
		LIST OF FIGURES	
Fig.	D.1	Frequent Flood Area	D-5
Fig.	D.2	Flood Depth Contour Map of 1986 Flood	D-6
Fig.	D.3	Flood Duration Map of 1986 Flood	D-7
Fig.	D.4	Maximum Flood Water Stage Profile of Citarum River in 1986 Flood	D-8
Fig.	D.5	Maximum Flood Water Stage Profile of Citarik River in 1986 Flood	D-9
Fig.	D.6	Typical Cross Sections of Flood Area (1)	D-10
Fig.	D.7	Typical Cross Sections of Flood Area (2)	D-11

SUPPORTING REPORT D FLOOD CONDITION

1. Historical Floods

Large floods in Bandung and its surrounding area have occurred in the years 1931, 1945, 1977, 1982, 1983, 1984 and 1986. Among these floods, 1931, 1984 and 1986 floods were very severe.

The available records of the large floods are tabulated below.

Year	(1) Max. Flood Level at Dayeuh Kolot (m)	(2) Basin Average Rainfall Depth (mm) 5 days Monthly	(3) Max. Discharge at Nanjung (m ³ /s)
1931, Mar.	· -	177 (14) 476	455
1982, Apr.	3.88	107 (1.4) 437	261
1983, Feb.	3.98	109 (1.4) 351	303
1984, Jan.	4.78	141 (3.0) 353	335
1986, Mar.	5.38	116 (1.5) 357	310

Source: (1), (3): IHE, (2): Study Team

Note: Figure in parenthesis is recurrent interval of basin rainfall depth at Dayeuh Kolot (year).

From the year 1982 until 1986, the maximum flood water level at Dayeuh Kolot has risen year to year. The March 1986 flood marked the highest flood water level at Dayeuh Kolot although the average basin rainfall depth and maximum flood discharge at Nanjung was not the largest. This fact shows that the discharge capacity of the downstream stretches of Dayeuh Kolot has decreased in the recent year due to sediment and garbage deposit, resulting in increase of back-water effect on the upstream reaches.

2. Frequent Flood Area

A frequent flood area which has been flooded two (2) or three (3) times a year is shown in Fig. D.1. The area was obtained by interviewing the residents. The area is located in the low-lying area along the Citarum, Citarik and Cisangkuy rivers with a total area of 2,000 ha and a width of about 1 km.

The area includes Kampungs in Dayeuh Kolot and Sapan. In the area between Dayeuh Kolot and Sapan, there is a low area that consists of some former rivers.

Flood water levels of frequent flood area at each block are lower than that of 1986 flood by 0.75 m at Dayeuh Kolot, 1.5 m at the confluence with the Cicadas River, 0.9 m at Sapan and Lancakemit.

3. 1986 March Flood

3.1 Flood Depth and Flood Duration

Flood condition survey was carried out to investigate the actual flood situation for the March 1986 flood and frequent floods at 67 Kampungs in the flood plain along the Citarum river. Through this survey, the inundation depths and durations were interviewed with the residents at 728 locations and a flood depth contour map was prepared.

Objectives of the survey are:

- To identify the actual flood circumstances.
- To prepare materials for the inundation analysis and river improvement planning.
- To prepare the flood condition data for analysis of the relation between assets and damages.

Ground elevations of the Kampungs are often higher than that of paddy field nearby. Therefore, the interviews were conducted both for residential lands and paddy fields at every survey points in Kampung.

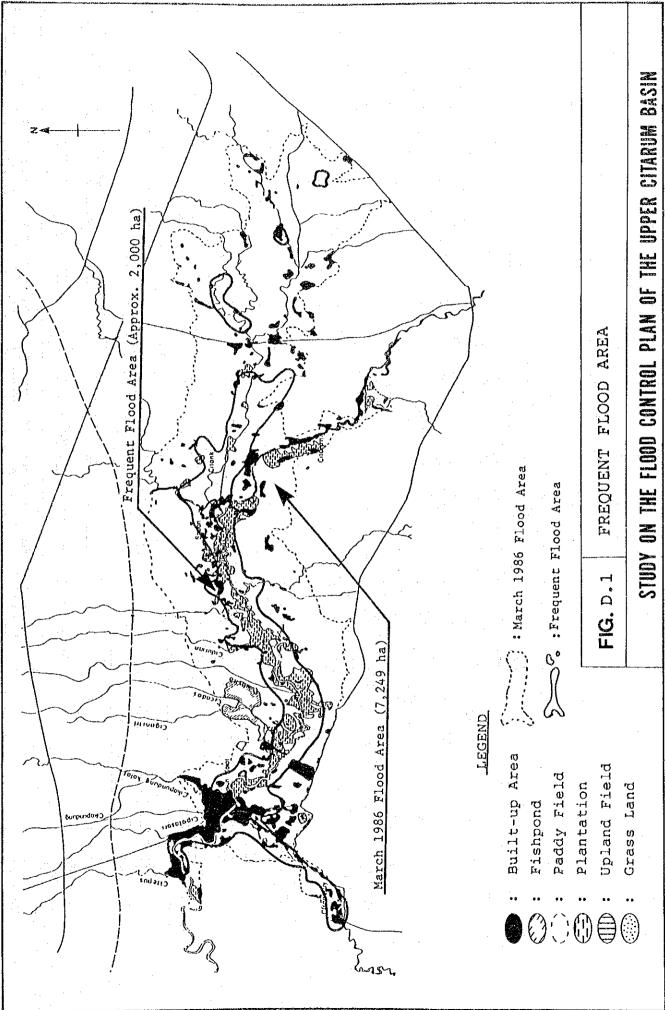
The total inundation area of the March 1986 flood was 7,249 ha with about 66 million m³ of water volume. The inundation depth and area are summarized as follows:

Depth (m)	Area (ha)	Ratio (%)
Less than 0.5	1,894	26.1
0.5 - 1.0	2,484	34.3
1.0 - 1.5	1,854	25.6
More than 1.5	1,017	14.0
Total	7,249	100.0

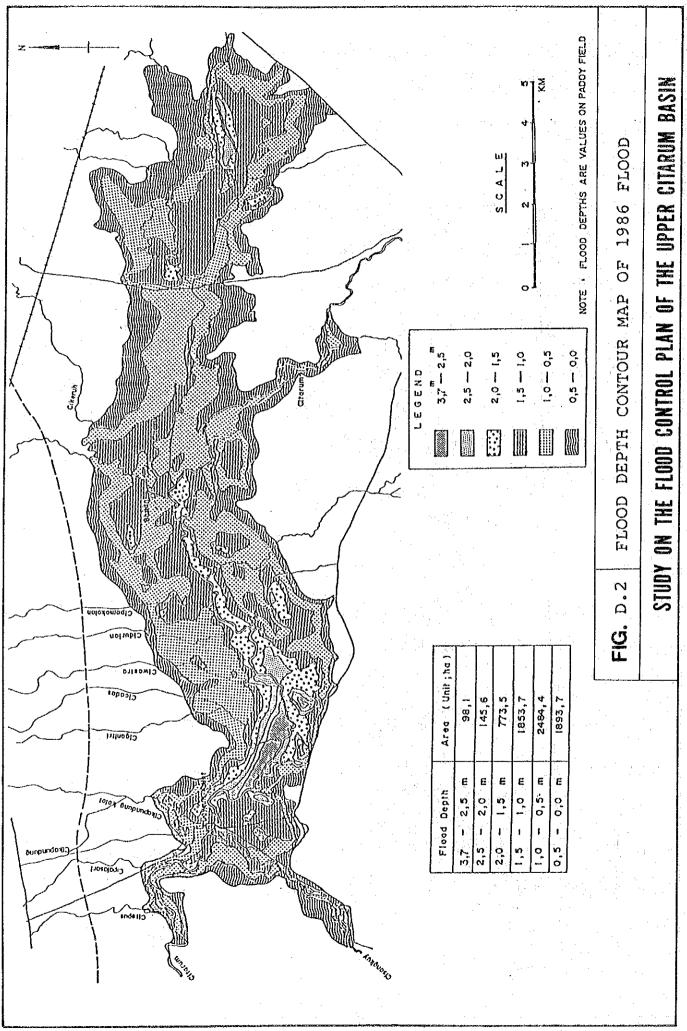
The flood depth contour map and flood duration distribution map of the 1986 March flood are shown in Fig. D.2 and Fig. D.3 respectively.

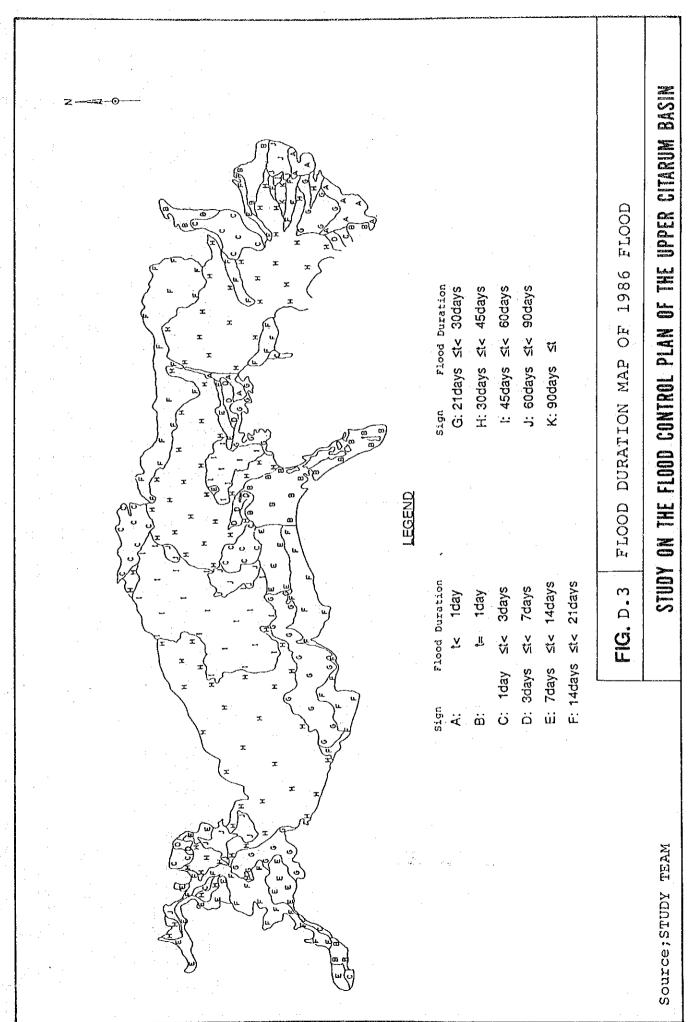
3.2 Flood Water Stage Profile

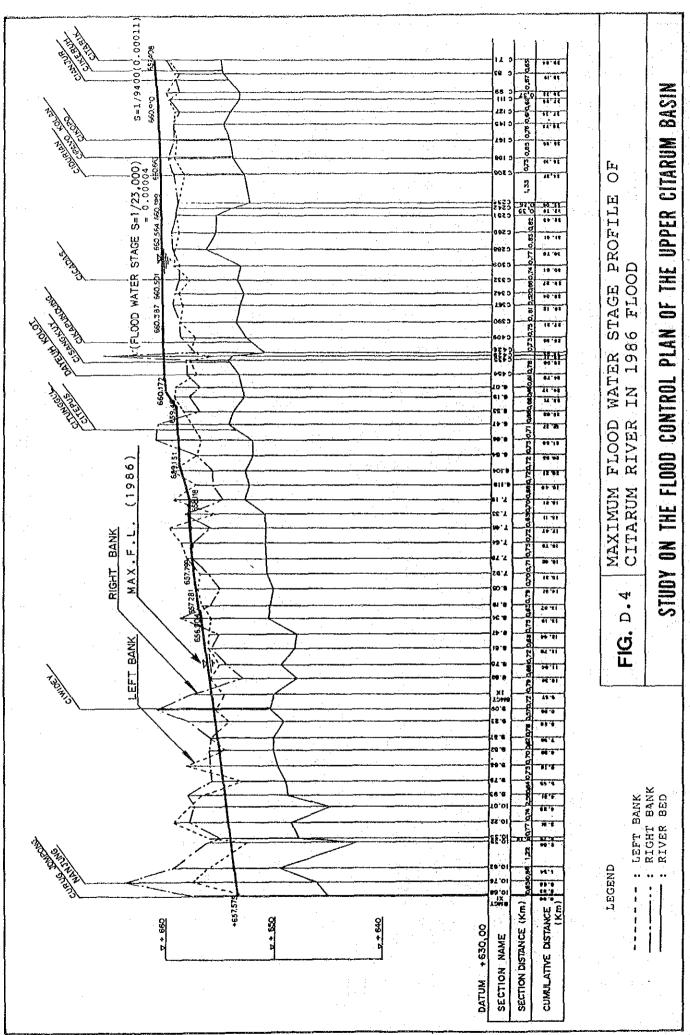
The maximum water stage profile of the March 1986 flood was surveyed for the Citarum and Citarik Rivers. The results are shown in Fig. D.4 and Fig. D.5. The flood water was dammed up by about 2.0 m due to the narrow sections extending over a 6 - 7 km in the downstream reaches of Dayeuh Kolot.


The slope of the flood water stage was:

- 1/23000 (0.00004) in the stretches between Dayeuh Kolot and the site of 35 km distance of the Citarum River.
- 1/9400 (0.00011) in the stretches between the site of 35 km distance and Sapan of the Citarum River.
- 1/6100 (0.00016) in the Citarik River.


The above facts show that dredging or widening of the narrow sections in the downstream of Dayeuh Kolot is essential for draw-down of the flood water level in the upstream reaches.


3.3 Typical Cross Sections of Flood Area


Cross section survey for four (4) locations of the March 1986 flood area was conducted to obtain the data for river improvement and flood plain management planning. The results are shown in Figs. D.6 and D.7.

