APPENDIX W

PUMPING STATION AND DESILTING BASIN

APPENDIX VIII

PUMPING STATION AND DESILTING STATION

CONTENTS

		PAGE
1.	TYPE OF PUMPING STATION	, VII-1
	1-1. TYPE OF PUMPING STATION	. VII-1
	1-2. COMPARATIVE STUDY FOR THE PUMPING STATION	. WI-2
	1-3. ALTERNATIVE STUDY FOR THE PUMPING STATION FOR BARIND AREA	. VIII-24
	1-3-1. Alternative Plan	. YII-24
	1-3-2. Dimension of Pumping Facilities for Alternative Plan	. ¥ Ⅲ-2 5
	1-3-3. Cost Estimate	. VII-29
	1-3-4. Results of the Cost Estimate	. VII-29
2.	TYPE OF PUMP	Ⅷ-36
	2-1. DECISION OF THE PUMP TYPE	. WI-36
3.	DESIGN OF PROPOSED PUMPING STATION	. VIII-38
	3-1. DECISION OF BASIC FACTORS FOR THE PUMPING FACILITIES	. VIII-38
	3-1-1. Basic Factors for Design of Pumps	. WI-38
	3-1-2. Type of Pumping Station and Pumping Facility	. VII-46
	3-1-3. Diameter and Number of Pump	. WI-59
	3-1-4. Selection of Total Head	. WI-59
	3-1-5. Specific Dimension of Pumps	. WI-60
	3-2. DESIGN OF PUMPING STATION	. WII-60
	3-2-1. Design of intake canal	. ¥Ш-60
	3-2-2. Design of Inlet on Pumping Station	. ₩-63
	3-2-3. Scale of Pumping Station	. YIII-64
	3-2-4. Foundation Treatment and Protection Dike	. VIII-69
	3-2-5. Design of Delivery Pond	. VII-72
	3-2-6. Dual Purpose Pumps for Irrigation and Drainage at	. VII-74
	Kasba Pumping Station	
	3-2-7. Power Supply	. ¥II-78

LIST OF TABLES

		PAGE
TABLE VII-1-1	TYPES OF PUMPING STATIONS	
TABLE VIII-1-2	COMPARISON OF PUMPING STATION TYPE	VW-7
TABLE VII-1-3	COMPARISON OF COST FOR EACH TYPE	8-IIV
TABLE VIII-1-4	PUMP FACILITIES COST OF EACH TYPE	8-WY
TABLE YII-1-5	CONSTRUCTION COST PER 20 m³/ _{sec}	VIII-9
TABLE VIII-1-6	CONSTRUCTION COST OF PIPE LINE	VII-11
TABLE WI-1-7	OPERATION HOUR OF PUMP	
TABLE VIII-1-8	DIMENSION OF PUMPING FACILITIES	WI-26
TABLE VIII-1-9	COMPARISON OF COST FOR EACH CASE	AIII-'30
TABLE VIII-1-10	COMPARISON OF COST FOR EACH CASE	VII-31
TABLE VIII-1-11	PUMPING FACILITIES COST	WI-32
TABLE WI-1-12	CONSTRUCTION COST PER 20 m³/ _{sec}	VII-33
TABLE WII-1-13	OPERATION & MAINTENANCE FACILITIES COST	VⅢ-34
TABLE WI-1-14	RUNNING COST	VII-35
TABLE WI-3-1	DIMENSION OF PUMP	₩-39
TABLE WI-3-2	MONTHLY MEAN WATER LEVEL	VIII-44
TABLE VII-3-3	DIVERSION WATER REQUIREMENT	VIII-45
TABLE VII-3-4	NUMBER OF PUMP UNIT (BARIND AREA)	VIII-47
TABLE VIII-3-5	NUMBER OF PUMP UNIT (FLOOD PLAIN AREA)	VIII-48
TABLE WI-3-6	ANNUAL COST OF EACH CASE	VII-49
TABLE VIII-3-7	PUMPING FACILITIES COST (BARAIPARA P.S)	VШ-51
TABLE WI-3-8	PUMPING FACILITIES COST (KASBA P.S)	₩-52
TARIE VIII.3.0	FLECTRICITY CHARGE	. WI_54

TABLE YIII-3-10	PUMP OPERATION UNITS OF EACH MONTH Actual Head 21.9 m	 VIII-5!
TABLE YII-3-11	PUMP OPERATION UNITS OF EACH MONTH Actual Head 12.0m	 VIII-57

LIST OF FIGURES

		·	
FIGURE	VIII - 1 - 1	DIMENSION OF DOUBLE VOLUTE PUMP	VⅢ-12
FIGURE	VII-1-2	DIMENSION OF INCLINED MIXED FLOW PUMP	VIII-13
FIGURE	VII-1-3	DIMENSION OF VERTICAL MIXED FOLW PUMP	VII-14
FIGURE	VIII-1-4	PUMP CHARACTERISCIC CURVE OF DOUBLE VOLUTE	VIII-17
FIGURE	VIII-1-5	PUMP CHARACTERISTIC CURVE OF INCLINED PUMP	VIII-18
FIGURE	Ⅶ-1-6	PUMP CHARACTERISTIC CURVE OF VERTICAL MIXED FLOW PUMP	VII-19
FIGURE	VII-1-7	PUMP CHARACTERISTIC CURVE OF VERTICAL MIXED FLOW PUMP	VII-20
FIGURE	VII-1-8	AVERAGE IRRIGATION REQUIREMENT AND WATER LEVEL	VIII-21
FIGURE	VIII-1-9	VERTICAL MIXED FLOW PUMP	VIII-22
FIGURE	VIII-1-10	INCLINED PUMP	VIII-23
FIGURE	VIII-1-11	LOCATION MAP OF CASE STUDY -CASE I ,III	VII-27
FIGURE	VII-1-12	LOCATION MAP OF CASE STUDY -CASE II , IV	VII-28
FIGURE	VII-3-1	DIVERSION WATER REQUIREMENT (BARIND AREA)	VIII-40
FIGURE	YIII-3-2	IRRIGATION REQUIREMENT AND WATER LEVEL (BARIND AREA)	VII-41
FIGURE	₩-3-3	DIVERSION WATER REQUIREMENT (FLOOD PLAIN AREA)	VIII-42
FIGURE	₩-3-4	IRRIGATION REQUIREMENT AND WATER LEVEL(FLOOD PLAIN AREA)	VIII-43
FIGURE	VIII-3-5	COST OF PUMP AND MOTOR	₩ -53
FIGURE	VIII-3-6	PUMP CHARACTERISTIC CURVE (BARAIPARA P. S)	VШ-56
FIGURE	VIII-3-7	PUMP CHARACTERISTIC CURVE (KASBA P. S)	VIII-58
FIGURE	VIII-3-8	PARTICLE DISTRIBUTION OF BED MATERIAL OF THE GANGES RIVER	VIII-62

cicion Wi a O	PUMP SUCTION
	PUMP PIT
•	BARAIPARA PUMPING STATION VIII-67
FIGURE VIII-3-12	KASBA PUMPING STATION VIII-68
FIGURE VII-3-13	CHARACTERISTIC CURVE $124 \mathrm{m}^3/\mathrm{m} \times 13 \mathrm{m} \times 1,000 \times 370 \mathrm{kw}$ VIII-76
FIGURE VIII-3-14	CHARACTERISTIC CURVE 247 ^{m³} / _m × 13 m × 1,350 mm × 720 kw ₩I-77
FIGURE WII-3-15	TRANSMISSION LINE
	en e

1. TYPE OF PUMPING STATION

1-1. Type of Pumping Station

The water required for the Project will be diverted directly from the Ganges rivers. In case the irrigation water is lifted from the rivers by pumps, the following three types of structure are generally put for comparative study:

(1) Floating type structure

All pump facilities are furnished on a floor of barge or pontoon in order to cope with the water stage fluctuation in the river and also river course shifting.

(2) Inclined Type Structure

The pump facilities are installed along the side slope of the river embankment. This type is applicable when the river course is stable.

(3) Fixed Type Structure

The pump facilities are installed inside the existing river bank with connection canals constructed to conduct water.

The above three types were carefully compared in due consideration of the adaptability with the sites, construction cost and operation and maintenance cost. The following definitions were employed in the study:

-	Design Discharge	20m ³ /sec	
-	Design Water Level	Low Water level	9.6 m
	4.7	High Water level	20.0 m
		Delivery Water level	30.5 m
•••	Existing Embankment height		20.0 m
-	Actual Head	20.9 m	
-	Total Head	26.0 m	

Based upon the above definitions, main facilities of the pumps systems are designed as in the following table:

Items	Floating Type	Inclined Type	Fixed	Туре
Туре	Horizontal Axis of Volute Type	Inclined Axis with mixed flow	1	al Axis ked flow
Design Discharge (m ³)	120	120	240	360
Diameter (mm)	1,000	1,000	1,350	1,650
P×r.p.m	14×420	10×593	16×370	20×290
Total Head (m)	26	26	26	26
Output (kw/unit)	670	670	1,430	2,120
No. of Pumps	10	10	2	2
Total Output (kw)	6,700	6,700	7,100	

In this connection, a submergible motor pump are also evaluated but finally excluded from the comparative study due to the following reasons:

- Cost of the motor is extremely high.
- Supply of spare parts is very difficult
- 0 & M cost shall be expensive

1-2. Comparative Study for the pumping station

Three types of pumping station were comparatively studied and summarized in TABLE VII-1-1 — VIII-1-6.

Regarding general lay-out, these are prepared lay-out drawing in FIGURE VII-1-1 - VII-1-3.

As a results of comparative studies, the fixed type of pump station is recommendable for the project under the following reasons.

- · The construction cost is cheaper than the other two types
- \cdot The operation and maintenance costs are less than the other two types

Concerning the sedimention, countermeasures shall be required for all of the types of pumping station.

TABLE VII-1-1 (1) TYPES OF PUMP STATIONS

Fixed Type	At intake	the sediment from the river water, so less than(A) and the durable period	the higher In case of vertical type pumps and inclined type quipment situation is keeping in suction head. NBSHav ≥ NPSHre NPSHre NPSH; Net positive suction Head av; Available re; Required Accordingly, there are no occurrence of cavitation, and the discharge can be control with simple valve operation.
P STATIONS	At intake canal (Semi-Fixed Type)(C)	taken off should be	year. During the ased at about 150 in the pump equipena, rotary valve they are very cost
VII-1-1 (1) TYPES OF PUMP STATIONS Floating Type	At intake canal (B)	The intake canal shall be that abrasion of impeller shall be longer than (A)	The water elevation vary within 10 meter through a year. During the higher water level, the delivery discharge should be increased at about 150 percent, and these are occurrence of the cavitation in the pump equipment and control valve. In order to protect such phenomena, rotary valve shall be required to be installed in delivery pipes, and they are very costly.
TABLE	At main stream (A)	Pumps should lift up river water directly from main stream, which is inclusive of more sediments so that, the impeller should be taken the abrasion	The water elevation vary w water level, the delivery percent, and these are occand control valve. In ord be required to be installe
LAND	Location	1. Pump Equipment (1) Impeller	(2) Cavitation

TABLE VII-1-1 (2) TYPES OF PUMPING STATIONS

Fixed Type	At intake canal (D)	No there are problem	No there are problem	embankment, a intake e. On the other hand, the reverse phenomena.
	At intake canal (Semi-Fixed Type)(C)	the river or intake e required to avoid the to remove, it is s required additional	very pipes of pumps and the pipe line of land seanchors. On the other hands, the barges at any time, and it is not only up and down in above case should be done with removement of	If the river course removed far away from existing embankment, a intake canal should be extended upto the necessary distance. On the other hand, the protection facilities should be constructed for the reverse phenomena.
Floating Type	At intake canal (B)	Electric power cable should be laid with floater in the river or intcanal. In this case, the low voltage cable shall be required to avo damage of electric leakage. If the Barges required to remove, it is necessary to prepare additional cables, and then its required additilabour cost and less time.	t s e li	If the river course remove canal should be extended of the protection facilities
	At main stream (A)	Electric power cable shoul canal. In this case, the damage of electric leakage necessary to prepare addit labour cost and less time.	A part of joint between delivery pipes should be fixed with concrete anchors. should be required to remove at any tilbut also at front and rear. Accordingly, the adjustment in above of Barges anchor.	The Barges shall be removed as a counter measure for river shifting. However, the floating pipes and cable are required to be extension or reduction.
Type	Location Items	2. Electric Power Cable	ა ა ა დ ფ ზ	4. Shifting of the river course

TABLE VII-1-1 (3) TYPES OF PUMPING STATIONS

	Fixed Type	At intake canal (D)	t in intake canal	Pumping facilities are necessary to have regular maintenance same as the floating pumps. Housing and supporting structure shall be required to have regular maintenance. However, they are not so difficult as compared with floating type pumping station.
		At intake canal (Semi-Fixed Type)(C)	Dredger should be provided for dredging the sediment in intake canal	nge, floating pipes and or operation and repairing should be
	Floating Type	At intake canal (B)	Dredger should be provided	pe pumping station, the barge, floating pipes and we supporting facilities for operation and y, the space yards for the repairing should be
7700		At main stream (A)	Barges should be removed to other point available. However, the floating pipes and cables are required to remove at the same time. Furthermore, fixed land structures should be necessary to have reconstructed after the removement	As compared with fixed type cables are required to have maintenance. Particularly, required for barges.
	Type	Location	5. Sedimentation	6. Operation and Maintenance

TABLE VII-1-1 (4) TYPES OF PUMPING STATIONS

	E	anda t	TILED OF LOTTING SIGNATURE		() () () () () () () () () ()
/	adki		rioating lype		rixed Type
Items	Location	At main stream (A)	At intake canal (B)	At intake canal (Semi-Fixed Type)(C)	At intake canal (D)
-	30	1	5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	7.1 to 1.1 to 1.	
/. Conclusion	nsion	As mentioned above, the	inere are no merits ior	As compared with the	As lar as concerning the
ethel tren		floating type has	the river shifting and	other two iloating	river shifting, and
		several kinds of	sedimentation as	types, the structure of	sedimentation, there are
		of technics.	tvoe. Therefore this	cables can be simplified	Particularly concerning
in a graduate		Furthermore,	not so recommendable.	because of semi-fixed	the sedimentation, it
· ·		construction cost is the		anchor	can be solved by
·		highest as compared with	. :		dredging system. As for
VI		other three types. So		However, it is not so	operation and
· [{		that, this is not		expected to have much	maintenance, this type
Ò		recommendable for the		merit.	is the most acceptable
.		project.			for the project.
					Taking into
					consideration aboved
					reasons, this type is
					the most recommendable
Part of the					for this project.
t and the factors of the factors of					
	· · · · · · · · · · · · · · · · · · ·	:			
		-			

ТҮРЕ	001+00 H			Volute Pump Volute Pump Barge Suction Check Valve	1000 mm : 2.0 ~2.5 m/s
W-1-2 COMPARISON OF PUMP STATION TYPE	Туре	Inclined Type		Inclined Mixed Flow Fump	1000 mm : 2.0 ~2.5 m/s
TABLE W-1-2 COMPARIS	Fixed	Vertical Type		Motor Vertical Mixed Flow Pump	2800 mm : 19.0 m7/s
4.1	Punp Station	ltem	Pump Type		Maximum PumpBore and Capacity

TABLE VII-1-3 COMPARISON OF COST FOR EACH TYPE (1,000TK)

AND	Гуре	Fixed	Floating Type	
Item		Vertical Type Inclined Type		rioacing type
Pump Facilities Cost *1		337,100	432,000	345,500
Pump House	* 2	10,120	16,230	300,000 (Barge)
Construction Cost	*2	34,150	22,850	2,530
Initial Cost		381,370	471,080	648,030
		×0.1714	×0.1714	×0.1714
Annual Repayment		65,366	80,743	111,072
Electric Charge	*3	38,835	39,479	36,037
Total Annual Cost		104,201 (100%)	120,222 (115%)	147,109 (141%)

^{*1}

TABLE VIII-1-4 PUMPING FACILITIES COST OF EACH TYPE (1,000TK)

Туре	Fixed	Туре	Floating Type
Item	Vertical Type	Inclined Type	Floating Type
[Per 20m ³ /s]			
	Ø1,650,Ø1,350	Ø1,000	Ø1,000
Pump	95,500	143,600	79,600
Motor	2,150 ^{kw} ,1,430 ^{kw}	670 ^{kw}	670 ^{kw}
·	103,800	98,500	110,800
Valve, Pipe	31,700	32,200	36,600
Crane	10,400	4,500	4,500
Electric Equipment	24,700	47,300	47,800
Equipment Work	51,100	75,000	41,700
Transportation	19,900	30,900	24,500
Total Cost	337,100	432,000	345,500

*2

Refer to TABLE VI-1-4 Refer to TABLE VI-1-5 Refer to TABLE VI-1-7 *3

TABLE VII-1-5 CONSTRUCTION COST PER 20 %

(1000TK)

Floating Type Inclined Type Fixed Type Type Quantity Quantity Quantity Unit Cost Cost Cost Item 1. Earth Work TK/m³ m³ m, m³ 96, 891 3,003 79,638 Excavation 31 36, 160 1, 120 2,467 2. Concrete Work TK/m³ Reinforced m, 1.844 2. 181 722 1,574 4.021 concrete TK/m² m² From Work 175 923 1613,856 674 Reinforcing bar TK/t 28.9 588 -147.5 3,003 Work 20,360 TK/m² m^2 m² m² 6,978 2,470 988 7,935 2,791 3. Brick Work 3, 174 400Unit TK/Unit Unit 155,000 100 4. Steel pile 1 J 68 10,540 15, 500 422 3,810 5,694 5. Others 20% TK/m² Total 23,600 2,530 22, 850 34, 150 m² W, 16, 230 429 10, 120 6886. Building Works 300,000 7. Barge

^{1]} Refer to unit cost of Steel pile

Unit Cost

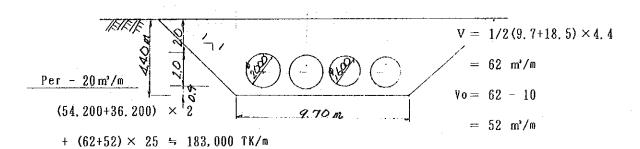
Steel Pile ϕ 500mm \times 40m (t·9mm)

Tp=5·n + 11=
$$5 \times 5$$
+11 = 36sec
Tb= $K\alpha \ L\beta = 1.0 \times 1.2 \times 40 = 40sec$

$$Tw = 22 \times 4 = 88 sec$$

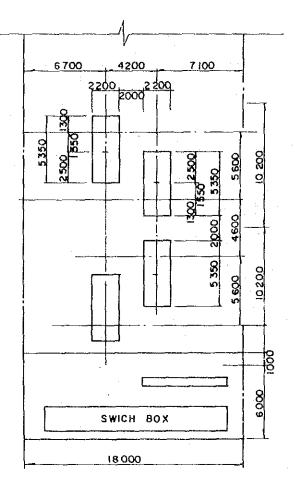
$$B = 0.9$$

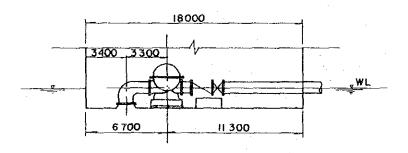
$$\alpha = 1.5$$

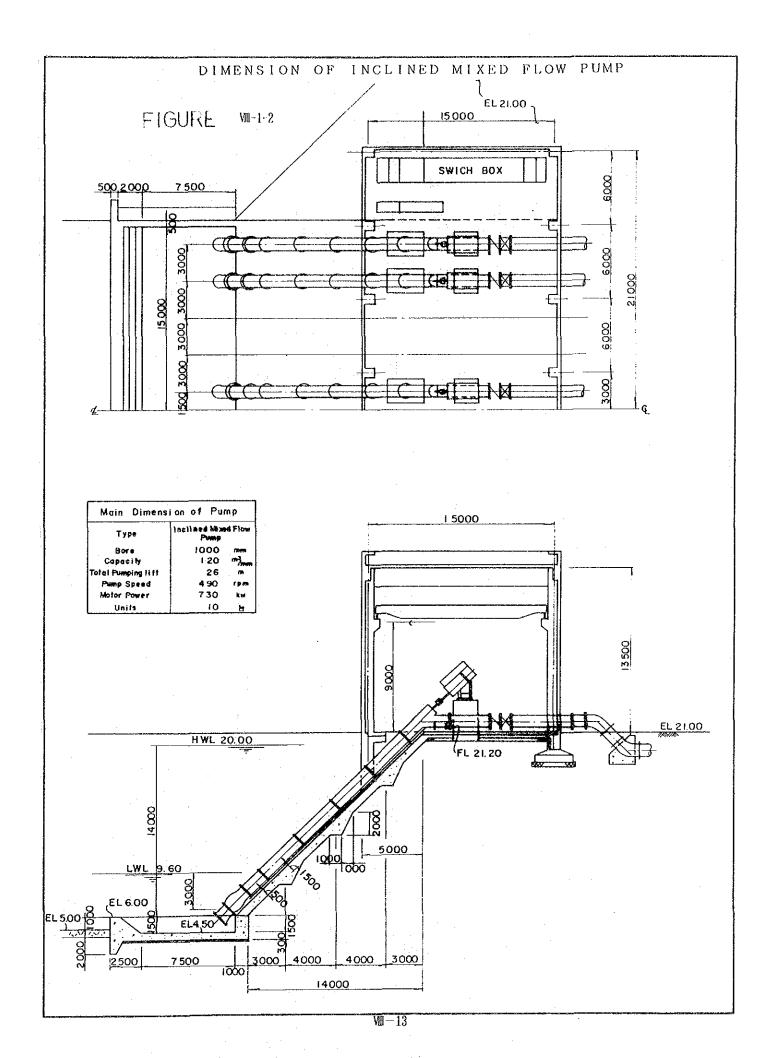

Steel Pile φ 500mm × 40m
$$109 kg/m × 40m · 97.060TK/t × 1.3$$
= 153,000 TK

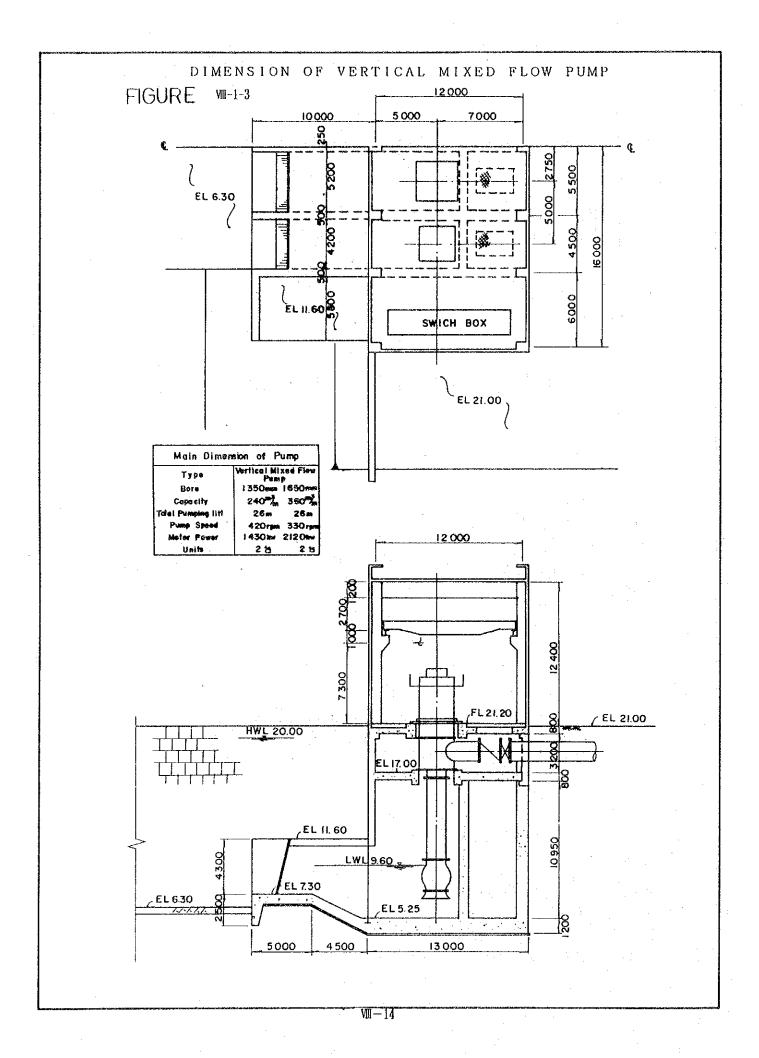
$$(1,290 + 110) \times 2/1.5$$

155,000 TK


TABLE WI-1-6 CONSTRUCTION COST OF PIPE LINE (1000TK)


Diameter	2000 mm	1800 mm	1600 mm	1350 mm	1200 տա
Item					
6meterlong	:				
Pipe	242.3	194.4	151.5	111.5	92. 7
Others	3. 7	3. 0	2. 5	1.9	1, 6
Sub - Total	246.0	197. 4	154. 0	113. 4	94.3
(perday)					
Constraction	1.8	2. 0	2. 2	2. 6	3. 0
Labour	1.5	1.4	1.4	1.4	1. 3
Crane	3. 2	2. 5	2. 0	1.8	1.8
Sub - Total	2. 6	2. 0	1.5	1. 2	1. 0
Welding	76. 4	64. 5	61. 4	46. 7	42. 0
(per6meter) Total	325. 0	263. 9	216. 9	161.3	137. 3
Per·meter	54. 2	44.0	36. 2	26. 9	22. 9




FIGURE WILL DIMENSION OF DOUBLE VOLUTE PUMP

Mein Dime	esion of Pump					
Type Horizontal Deuble Volute Fump						
Ber e	1000	m m				
Capacity	120	uy y Lavin				
Total Panaing lift	26	m				
Pemp Speed	420	rpas				
Motor Power	670	kw				
Units	10	늄				

TABLE W-1-7 OPERATION HOUR OF PUMP

Date	е	Unit duty of Water	lrrigable Area	Irrigation Requirement	Water Level		e Pump		ned Pump	Flow	1 Mixed Pump
		I/S/ha	ha	9%	m	0 %	llr	Q Ps	ll llr	0 %	Hr
Mar	1	1, 198	40, 060×0. 8	38, 394	9. 60	2. 00	4, 608	2, 00	4. 608	20.00	461
	2	1, 198	ıı .	38, 394	"	"		"	4, 608	"	461
	3	0, 871	"	27. 914	"	"	3, 685	"	3, 685	"	368
Apr	1	0. 783	11	25, 094	"11	"	3, 011	"	3, 011	"	301
	2	0.612	11	19. 613	"	"	2, 354	. //	2, 354	"	235
	3	0, 203	"	6. 506	"	, ·	781	" "	781	"	78
July	1	0.642	40, 060	25, 719	14, 00	2, 32	2, 661	2, 23	2, 768	22, 20	278
	2	0. 929	"	37. 216	17, 00	2, 52	3, 544	2. 37	3, 769	23. 16	386
	3	0. 671	"	26, 880	20.00	2, 72	2, 609	2. 53	2, 805	23, 84	298
Aug	1	0, 558	"	22, 353	20, 00	"	1, 972	2, 53	2, 120	23. 84	225
	2	0. 532	"	14. 101	20.00	. #	1, 244	2. 53	1. 338	23. 84	142
Nov	1	0.067	40, 060×0. 8	2, 147	14, 00	2, 32	222	2. 23	231	22, 20	23
	2	0. 123	"	3, 912	11, 00	2, 10	447	2, 10	441	21, 12	44
	3	0, 884	"	28, 330	"	"	3, 238	"	3. 192	. "	322
Dec	1	1. 026	//	32, 881	11	"	3, 758	"	3, 705	"	374
	2	1, 243	"	39. 836	"	"	4, 553	"	4, 489	"	453
	3	1, 300	<i>"</i>	41, 662	11	"	5, 238	"	5, 163	"	521
Jan	1	0. 422	"	13. 524	9, 60	2, 00	1, 623	2, 00	1, 623	20.00	162
	2	0.396	"	12. 691	"	"	1, 523	"	1, 523	"	152
	3	0. 437	. 11	13. 128	"	"	1, 733	"	1, 733	"	173
Feb	1	0. 746	. //	23, 908	"	. "	2, 869	"	2, 869	"	287
	2	0, 746	" "	23, 908	"	"	2, 869	"	2, 869	"	287
	3	0. 746	"	23, 908	"	"	2, 295	"	2, 295	"	230
Tota		3. 75TK/KWH		·			2, 607		2, 468		256
ivid	•	1. 65TK/KWH					58, 838		59, 512		6, 005

^{1]} Barind Area

^{2]} Refer to FIGURE - WN-1-4 , VNI-1-8

 $^{3 \}bot \mbox{ Refer to PIGURE} \sim \mbox{ VM-1-5}$, $\mbox{ VM-1-8}$

¹⁾ Refer to FIGURE - VII-1-6, 7, 8

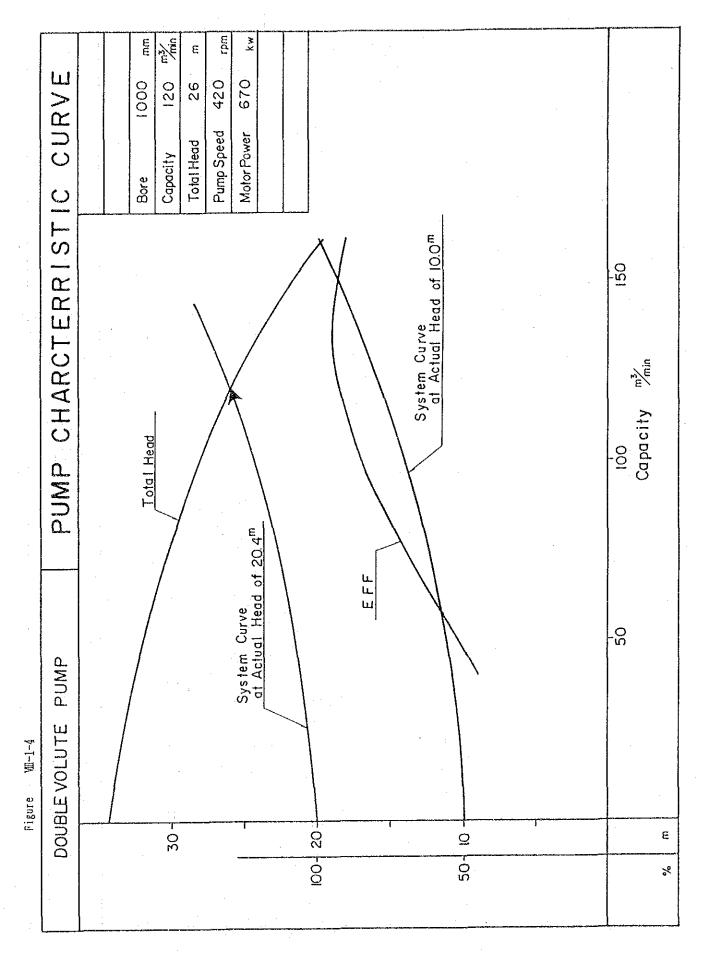
Estimation of Electric Charge.

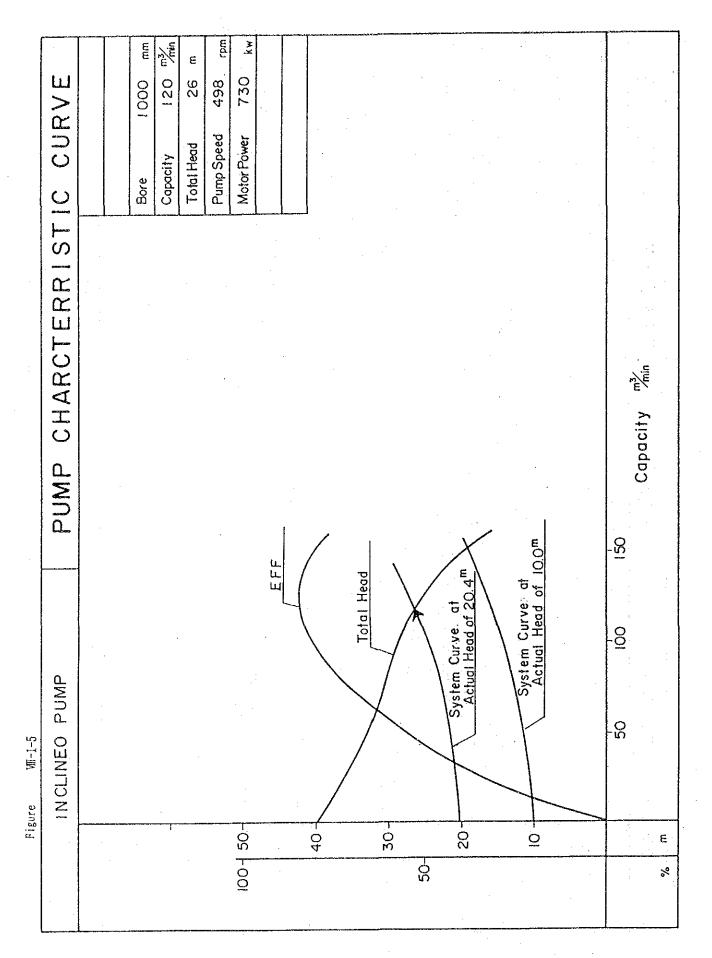
Electric charge was estimated by the following procedure;

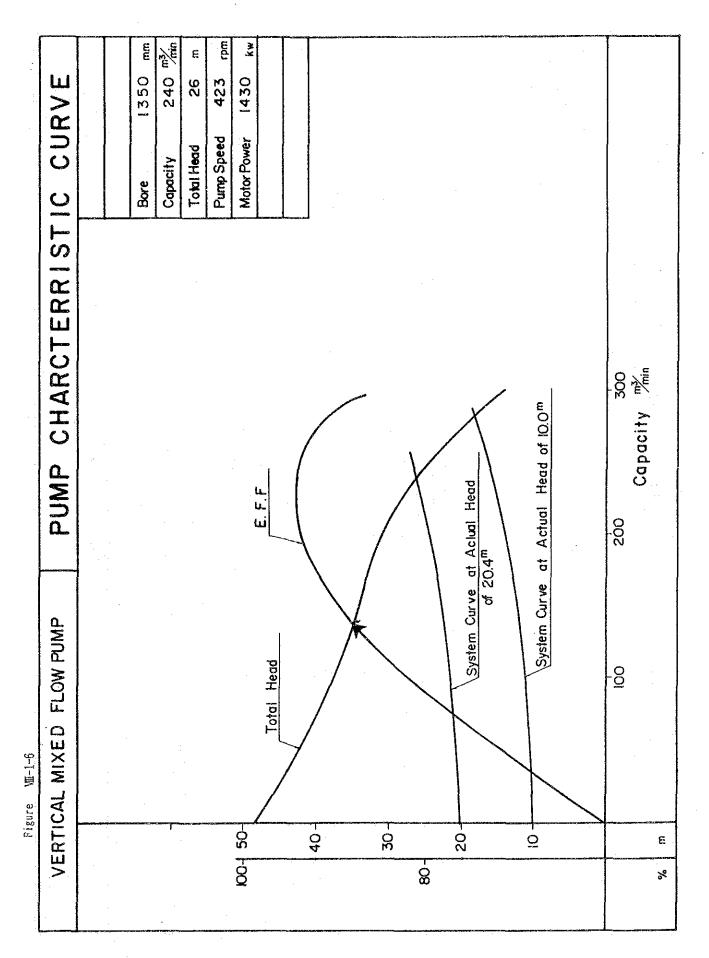
- (1) Service charge for one pumping station 400 TK/month
- (2) Basic fixed charge 35 TK/year
- (3) Consumption cost

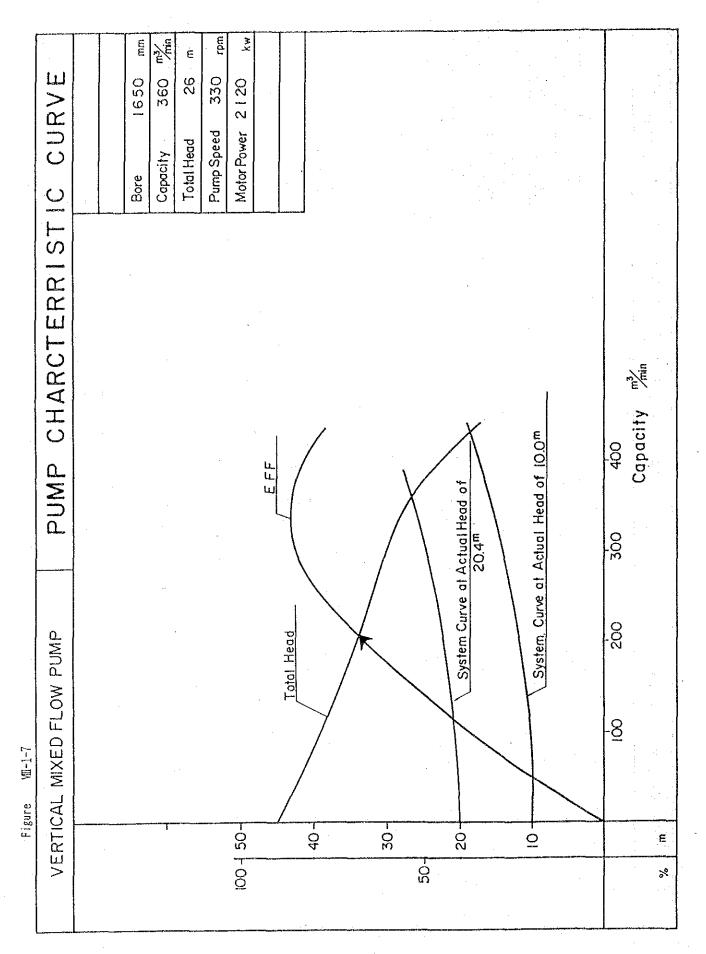
March - September PM 6:00 - PM 10:00 (4hr)

October - February PM 5:00 - PM 9:00 (4hr)

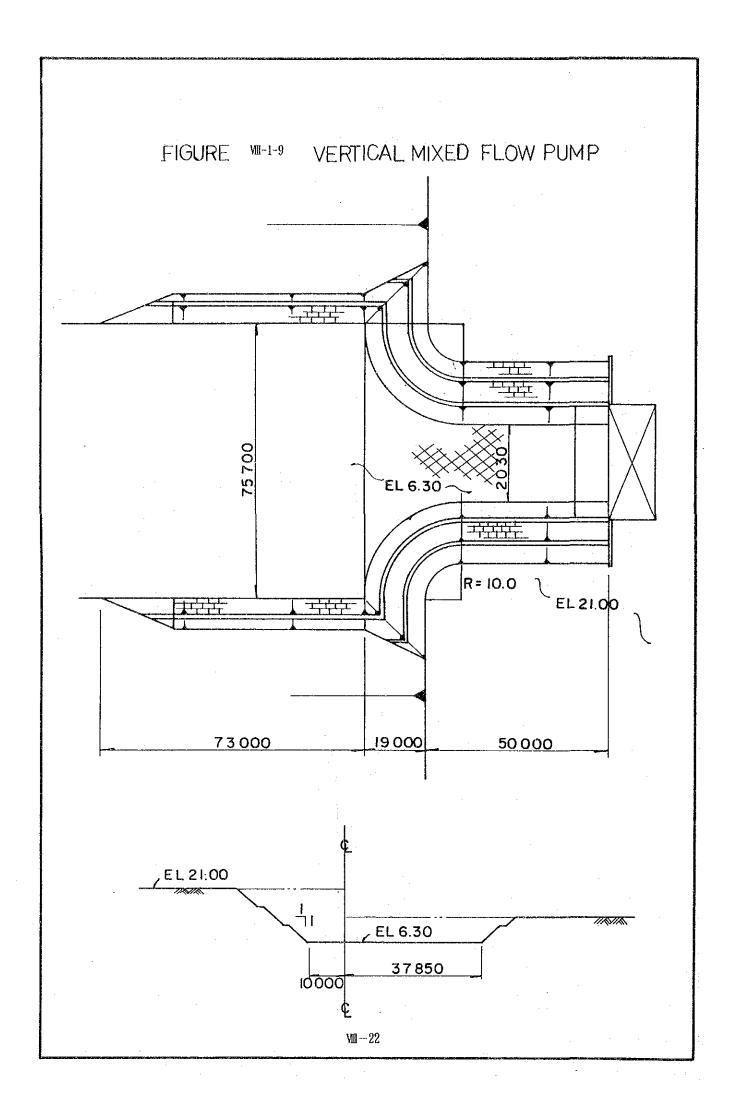

3.75 TK/kwh

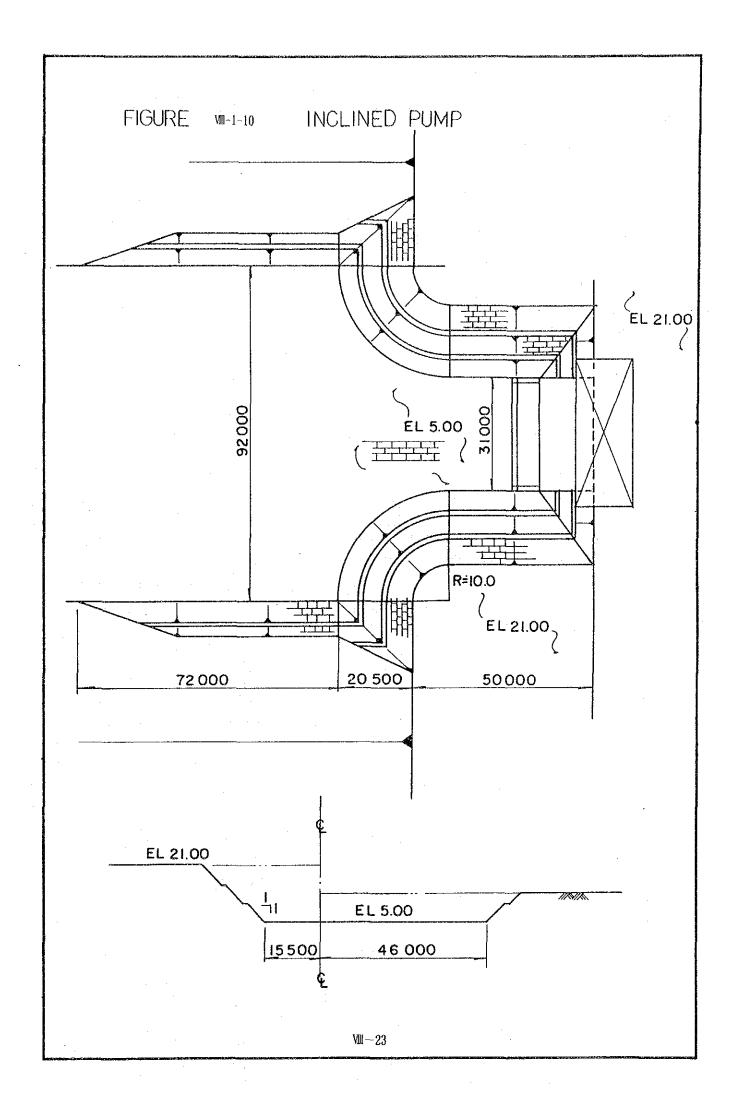

Others


9.65 TK/kwh


(4) Capacities of Pump 20 $m^3/s \times 2$ set

Type of Station	Floating Type ×1,000TK	Inclined Type × 1,000TK	Fixed Type × 1,000TK
(1) Service Charge 400TK/day/station	× 12 ^{month} × 2places = 9.6	×12month × 2places = 9.6	×12month × 2places = 9.6
(2) Basic Fixed Charge 35 TK/kw/year	× 670kw × 10unit × 2places = 469.0	× 730kw × 10unit × 2places = 511.0	×(1,430+2,120)×2 ×2 = 497.0
(3) Consumption Cost 3.75 TK/kwh 1.65 TK/kwh	× 2,607Hr × 670kw = 6,550.0 × 58,838Hr × 670kH	× 2,648Hr × 730kw = 6,756.1 × 59,512Hr × 730kw	× 256Hr × 7,100kw = 6,816.0 × 6,005Hr × 7,100kw
Total	= 65,045.4 72,074.0	z 71,682.1 78,958.9	= 70,348.5 77,671.1
1 set (Q = 20 m ³ /s)	36,037	39,479.4	38,835.5





Ε 80 ညီ Š FIGURE - M-1-8 AVERAGE IRRIGATAON REQUIREMENT AND WATER LEVEL ថ O Sept Aug July Month June Š Apr Mar Feb cb ก เล 30 — 20 – <u>0</u> 404 e E Irrigation 9 pp 19v A Reguirement

Water Level

1-3. Alternative Study for the Pumping Station for Barind Area

1-3-1. Alternative Plan

The proposed site for pumping stations have been selected at Baraipara on the basis of the river bank shifting records and cross section survey results of the Ganges river.

Sultanganj is also suitable to propose for a pumping station but it should be limited to utilize during the wet season only due to the sand dune in the river mouth of the Mahananda river during the dry season.

Accordingly, the following three alternatives will be compared each other to select the most suitable pump site and pumping station type.

(1) Alternative 1.1' (See FIGURE WI-1-11)

Revised plan of the selected plan No. 2 in the Interim Report; i.e. since the Godagari site is not suitable for pumping stations as explained in Paragraph 2-2. The Baraipara site can be proposed for the pumping site for floating type for 34.0 m³/sec instead of the Godagari site. A connecting canal to the existing natural depression for about 2.2 km will be necessary to be added to convey the water from Baraipara to Sultanganj.

At Sultanganj, pumping equipment to lift up the water from the Mahananda river for $6.0~\text{m}^3/\text{sec}$ together with the secondary lifting pumps of water from Baraipara for $34.0~\text{m}^3/\text{sec}$ will be necessary to be facilitated in the pump stations. This total capacity of $40~\text{m}^3/\text{sec}$ can also be utilized to lift the water from the Mahananda river during wet season.

(2) Alternative - 2 (See FIGURE ₩-1-12)

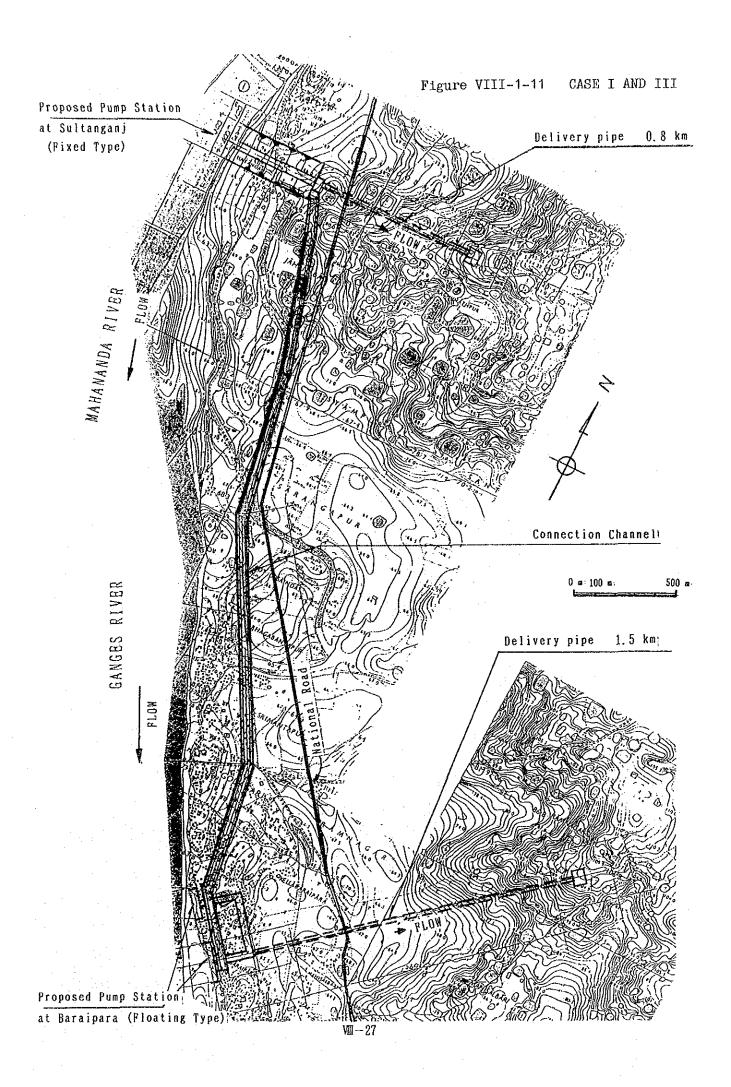
The Baraipara is the only site for pumping station where the water can be lifted up throughout a year.

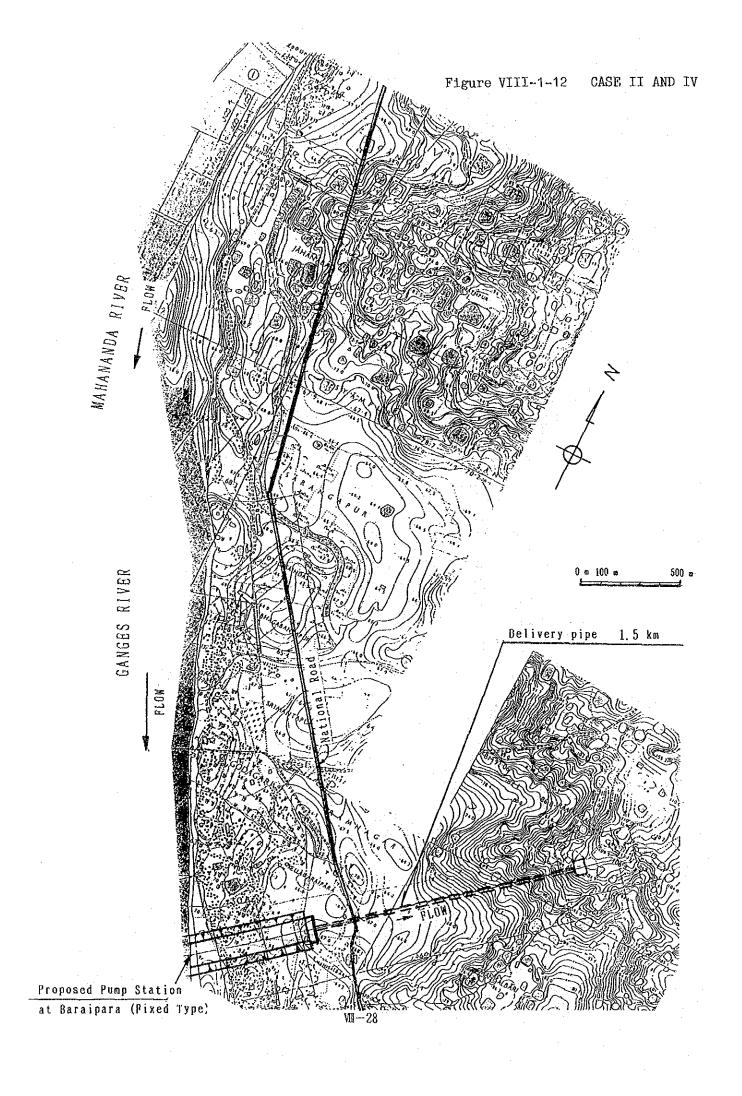
Instead of floating type, the standard fixed type pumping station can be proposed at Baraipara.

(3) Alternative - 3 (See FIGURE VII-1-11)

Alternative Plan 3 proposes a direct lifting up of the Ganges river water to the delivery pond at EL 30.5 m PWD by the floating pump with the capacity of $40 \text{ m}^3/\text{sec}$.

(4) Alternative - 4 (See FIGURE WI-1-12)


The fixed pumping station (Inclined Mixed Flow Pump) can be proposed at Baraipara instead of the floating pump.


1-3-2. Dimension of Pump Facilities on Alternative Plan

As mentioned above four kinds of alternative plans are considered. Necessary facilities for each plan are considered as in the following TABLE VII-1-8.

FACILITIES PUMP O FI DIMENSION VII-1-8 TABLE

Case IV	Baraipara P. S. (Fixed)	2 2 2 2 4 4 0 0 4 4 0 0 0 0 0 0 0 0 0 0	Inclined Mixed Flow Pump	1000	2.0	670	85 55	20	2000 1600 1.5 2.4
Case III	Baraipara P.S (Float)	04.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Double Volute Pump	1000	2.0	0.29	85	20	2000 1600 1.5 2 , 4
Case II	Baraipara P.S (Fixed)	20.4 20.6 20.6 20.5 20.9 20.9	Vertical Mixed Flow Pump	1650 1350	6.0 4.0	2100 1400	84.5 83.5	ंचा चा	2000 1600 1.5 2 4
• I	Baraipara P.S (Float)	34.0 20.4 19.9.6 10.2 8.8.0 0	Volute Pump OR Inclined M·F·P	1000	2.0	340	85	17	2000 1600 1.5 5,3
Cas	nganj P.S (Fixed)	34, 0 20, 4 19, 4 11, 2 7, 5 7, 5	Mixed ımp	1650 1350	6. 0 4. 0	1220 830	84.5 83.5	æ.33	2000 0.8 4.3
	Sultang. (F	20.4 20.09 20.09 20.09 20.09 10.09	Vertical Mi Flow Pump	1650	6.0	2000	84.5	1	2000 0.8 1
Pump Station	Item	Irrigation Requirement (P\$) Water Level H.W.L. (m) L.W.L. (m) Discharge Water Level (m) Actual Head (m) Total Head (m)	Pump Type	Bore (mm)	Capacity (ツᇂ)	Motor Power (kw)	Pump Bfficiency (夢)	Pump Unit	Pipe Line Diameter (mm) Length (km) Unit

1-3-3. Cost Estimate

The cost estimate was carried out for the construction cost of structures, facilities cost of the pumps, including the accessary and operation and maintenance cost based on semi-feasibility study level.

As for fixed type pumping station, the maintenance cost for sedimentation is the most important factor, particularly, estimation of the volume of sedimentation has been estimated in the basis of the observed suspended load discharge at Hardinge Bridge, and the dredging cost calculated under the consideration of using dredgers.

Regarding the maintenance cost for floating type pumping station, it has assumed to be utilize the Towing Boat (5t), Anchor Boat (3t), and Crane Boat (10t) for the transfer of the barges in the river.

1-3-4. Results of the Cost Estimate

The results of the cost estimate is tabulated in the TABLE WI-1-9~VII-1-14.

It is indicated that case II proposed plan (Fixed Type at Baraipara) is the most recommendable for the construction of pumping station at Barind Tract Area.

(1000TK)	CaseTV	(Fixed)	1,463,100	112, 800	1. 575,900	117,000
CASE	CaseII	(floating)	1,774,000	137, 700	1,911,700 (133%)	123, 800 (103%)
COMPARISON OF COST FOR BACH CASE	Case II	(Fixed)	1, 327, 800	112,800	1,440,600	120,000 (100%)
TABLE VII-1-9 COMPAR	Case I *	(floating, Fixed)	1, 909, 800	206, 300	2, 116, 100 (147%)	122,300 (102%)
TA	Case I	(floating, Fixed) Mixed Flow, Volute	2, 223, 600	231, 200	2, 454, 800 (170%)	129, 200 (108%)
	Case	Item	1. Construction Cost	2. Operation & Maintenance	Total Cost (Cost Ratio)	3. Running Cost (Cost Ratio)

1] Refer to TABLE 1-3-3

CASE
EACH
FOR
COST
9
COMPARISON
MI-1-10
TABLE

(1000TK)	Case IV (Inclined) Baraipara·P·S	835, 900 627, 200 1, 463, 100	112, 800	1, 575, 900	100, 100	117,000
	Case III (floating) Baraipara-P-S	710,000 554,000 510,000 1,774,000	112, 800 24, 900 137, 700	1, 911, 700	10000 0000 00000 12110000	123, 800
CASE	Case II (Fixed) Baraipara-P-S	690, 200 637, 600 1, 327, 800	112, 800	1,440,600	164, 500 1, 100 14, 400	120,000
OF COST FOR BACH	Case I (Inclined) Baraipara-P-S	659, 700 175, 200 834, 900	93, 500	928, 400	32, 400 1, 000 9, 200	42, 600
COMPARISON	Case I (floating) Baraipara·P·S	525, 600 113, 100 510, 000 1, 148, 700	93, 500 24, 900 118, 400	1, 267, 100	32 129-1-20	49, 500
TABLE VII-1-10	Case I, I' Sultanganj·P·S (Fixed)	$\frac{660,600}{414,300}$ 1.074,900	112, 800	1, 187, 700	66, 800 1, 100 11, 800	79,700
	Case	1. Construction Cost 1J Pump Facility Cost Pump Station & Pipe Barge Sub - Total	2. Operation & Maintenance Bredger Equipment Cost Maintenance Equipment (Floating Pump) Sub - Total	Total Cost (1+2)	3. Running Cost 3J Electric Charge Fuel Charge Painting Charge Other	Total Cost

3] Refer to TABLE-1-3-7 1] Refer to TABLE-1-3-4,5 2] Refer to TABLE-1-3-6

TABLE VII-1-11 PUMP FACILITIES COST

		TABLE	VII-1-11 PUMP FA	PUMP FACILITIES COST		(1000TK)	0
Case	Case I.		Case I	Case I	Case II	Case III	Case IV
Item	Sultanganj.P.S (Fixed)	S (Fixed)	Baraipara-P-S	Baraipara - P - S	Baraipara.P.S	Baraipara·P·S	Baraipara-P-S
Capacity × Total Head × Motor Power × Unit	6×24.1× 2000×1	6×14.7× 1220×3 4×14.7× 830×4	2×13×340 ×17	$2 \times 13 \times 340 \times 17$	6 × 25. 9 × 2150 × 4 6 × 25. 9 × 1450 × 4	6×25.9× 670 ×20.	6×25.9× 670 ×20
dend	28,000	84, 000 78, 800	135, 200	244, 100	291, 200	159, 100	287, 200
Motor	36, 500	46, 000 72, 900	122, 400	108,800	207,600	221, 600	197,000
Valve×Pipe	9,700	67, 200	62, 200	68, 400	63, 400	73, 200	64, 400
Crane	10,400	0	4,500	4,500	10,400	4,500	4,500
Electric Equipment	40,400	0	74,000	74,000	40, 400	79, 400	79, 400
Equipment Work	126, 300	0	79,600	99, 900	126, 300	107,600	126, 500
Transportation	60, 200	0	47,700	60,000	51, 100	64, 500	75, 900
Total Cost	660, 600	0.	525, 600	659, 700	690, 200	710, 000	835, 900

TABLE VII-1-12 CONSTRUCTION COST PER 20%

	Case IV	Baraipara·P·S		×1380 m² 32, 500	$\times 22,850/20 \times 40$	×1500m 459,000			627, 200
(1000TK)	Case II	Baraipara.P.S	510,000		$\times 2,530/20 \times 40$ 5,000	×1500m 549,000			510,000 554,000
\$\$ \$\dots\$	Case II	Baraipara.P.S.		× 860 m² 20,300	$\times 34, 150/20 \times 40$ 68, 300	×1500m 549,000			637, 600
CONSTRUCTION COST PEK 20™S		Baraipara·P·S		$\times 1170 \mathrm{m}^{2}$	$\times 22,850/20 \times 34$ 38,800	×350m 108,800			175, 200
VII-1-12	Case I	Baraipara.P.S	510, 000		$\times 2,530/20 \times 34$	×350m 108,800			510, 000 113, 100
TABLE	Case I, I'	Sultanganj.P.S (Fixed)		× 730 m² 17,200	$\times 34,150/20 \times 40$ 68,300	× 800m 292.800	36m	36, 000	414, 300
	+000	10°TK	300, 000/20	23. 6/m²	e E	183/20 /m		.	
	Case	Item	Barge	Pump House	Intake Canal	Pipe Line		Regulater	Total Cost

TABLE VM-1-13 OPERATION & MAINTENANCE FACILITIES COST

.X	Case IV (Inclined) Baraipara-P·S	\$450 ×320 × \$350 ×	65, 900	3,700	13,500	9,000	112,800			112, 800
(1000TK)	Case III (floating) Baraipara·P·S	\$450 ×320 × 1 \$350 ×230 × 1	65, 900	3,700	13, 500	9, 000	112, 800	17, 100 7, 800	24, 900	137, 700
FACILIIES CUST	Case II (Fixed) Baraipara•P·S	\$450 ×320 × 1 \$50 × 1	38, 000 27, 600	3,700	13, 500	9,000	112, 800			112, 800
& MAINTENANCE FACT	Case I' (Inclined) Baraipara.P.S	\$350 × 230 × 2	55, 200	3.700	11, 200	7, 400	93, 500			935, 500
VIII-1-13 OPERATION	Case I (floating) Baraipara•P·S	$\phi 350 \times 230 \times 2$	55, 200	3, 700	11, 200	7, 400	93, 500	17, 100 7, 800	24, 900	118, 400
ABLE	Case I, I' Sultanganj.P.S (Fixed)	\$450 × 320× 1 \$350 × 230× 1	38, 000 27, 600	3, 700	13, 500	9,000	112, 800		112, 800	112, 800
	Cost	Dredger Pump	Dredger Pump	Towing Boat	Assemblage	Transportation	Sub - Total	Maintenance Equipment Floating Pump Anchor Boat Crane Boat	Sub - Total	Total Cost
	<u>k</u> /		3				VII - 34			<u>:</u>

1] Length; 500m (Steel Pipe, Rubber Joint, Floater) 72imes (15.3+66.9)+77

 $72 \times (15.3 + 66.9) + 71 \times 29.4 = 8,000 \times 10^3$ $72 \times (18.3 + 103.0) + 71 \times 56.6 = 12,700 \times 10^3$

		IABLE VIII-I-14	KUNNING CUSI		(1000TK)	7K)
Cost	Case I, I'	Case I	Case I	Case II	Case III	Case IV
Item	Sultanganj.P.S (Fixed)	Baraipara - P - S	Baraipara·P·S	Baraipara·P·S	Baraipara-P-S	Baraipara.P.S
Amount Motor Power (kw) Operation Hour (hr)	2, 000 6, 980 4, 000 4, 000	5, 780 3, 000	5, 780	14, 000 4, 000	13, 400 4, 000	13, 400
Electric Charge Charge	3,000 11,800 41,400	250 250 200 200	200 200 200 200 200 200 200 200 200 200	821, 000 83, 100	20. 70. 70.	000 1149 000 000
Demand Service		200	500	400	400	400
Sub - Total	66, 800	32, 400	32, 400	104, 500	100, 100	100, 100
Fuel Charge 1]	1, 100	1,000 3,500	1,000	1, 100	3, 500	1.100
Uther Sub - Total	11, 800	12, 600	9, 200	14, 400	19, 100	15, 800
Total Cost	79, 700	49, 500	42, 600	120,000	123,800	117, 000

1] Dredger ; ϕ 450mm imes 320kw, ϕ 350mm imes230kw

2. TYPE OF PUMP

2-1. Selection of the Pump types

Generally, the type of the pumps shall be decided based on the total head required at proposed site.

In general, the relation between the type of pumps and total head required is given as follows:

<u>Type</u>	<u>Horizontal Axis</u>	<u> Vertical Axis</u>
Volute Type	15.0 m more	15.0 m more
Mixed flow Type	2.0 m - 9.0 m	9.0 m - 20.0 m
Axial flow Type	1.5 m ~ 5.0 m	1.5 m - 5.0 m

Design water level of suction side is estimated based on computation of probability of exceedance at 100 years return period. Results of estimation is shown as follows;

Pumping station	<u>KASBA</u>	<u>BARAIPARA</u>
Low water level	7.860 m	8.686 m
High water level	20.325 m	21.826 m
Deference	12.465 m	13.140 m

On the other hand, the actual pump head are estimated at each proposed pump site are as follows;

KASBA 13.0 m approx

BARAIPARA 27.0 m approx

As for the selection of pump type from actual head, there are considered to be applied two type, namely, one is volute type, and other one is mixed flow type.

In case of volute type pump, there are some weak points in cavitation for variation of the water level at suction side. Accordingly, mixed flow type has been selected for both proposed sites. Comparatively, submergible motor pump is considered to be utilized at both proposed sites. However, the construction cost is excessively high for design capacity at both sites, thus, the idea has been canceled. As for

supporting structure of vertical mixed flow type pump, semi-two floor type is proposed for both stations as mentioned attached TABLE VII-1-2.

3. DESIGN OF PROPOSED PUMPING STATION

According to the results studied for type of pump station, pump facilities and hydrological analysis, details lay-out has been carried out. They are as follows.

3-1. Selection of Basic Factors for the Pumping Facilities

3-1-1. Basic Factors for Design of Pumps

Design capacity of the pump has been decided under the consideration of water requirement and water level of the Ganges river at the proposed pumping site are as follows;

Pumping station Baraipara P.S. Paba P.S. Water Requirement *1 44.242 m 3 /s 9.436 m 3 /s Pump Capacity *2 42.588 m 3 /s 8.247 m 3 /s

- *1 Maximum water requirement 1978-1986
- *2 Maximum W.R. in dry season 1978-1986

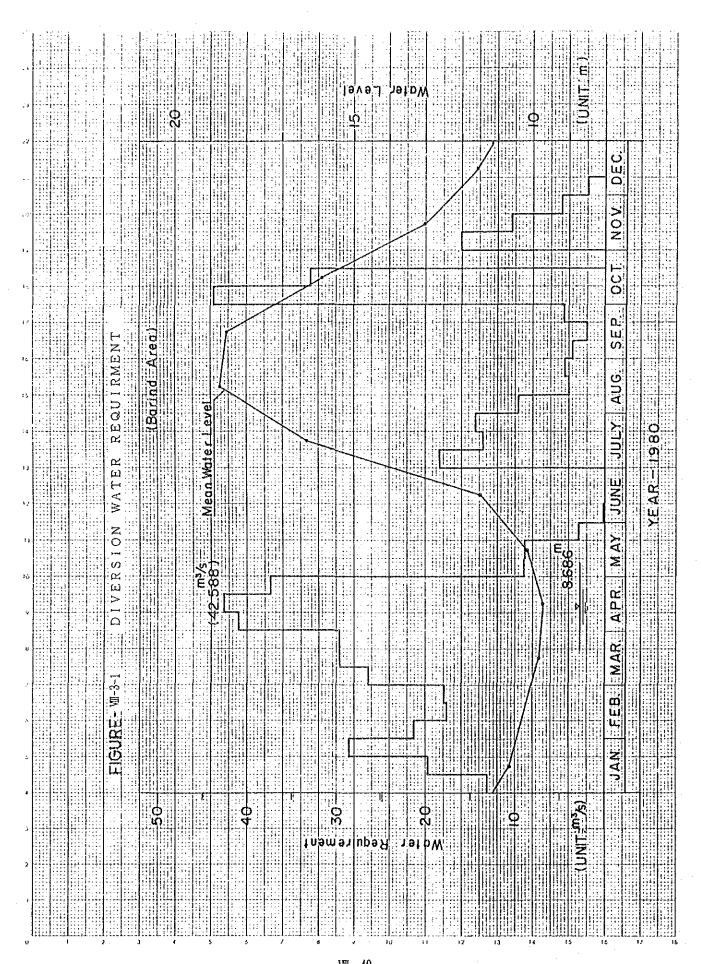
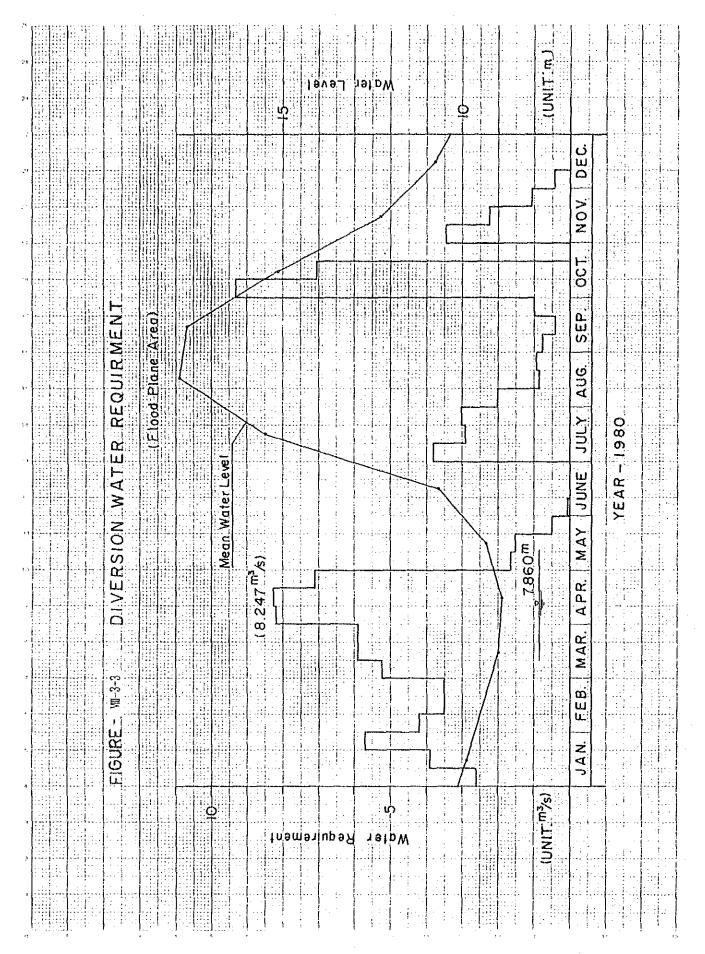
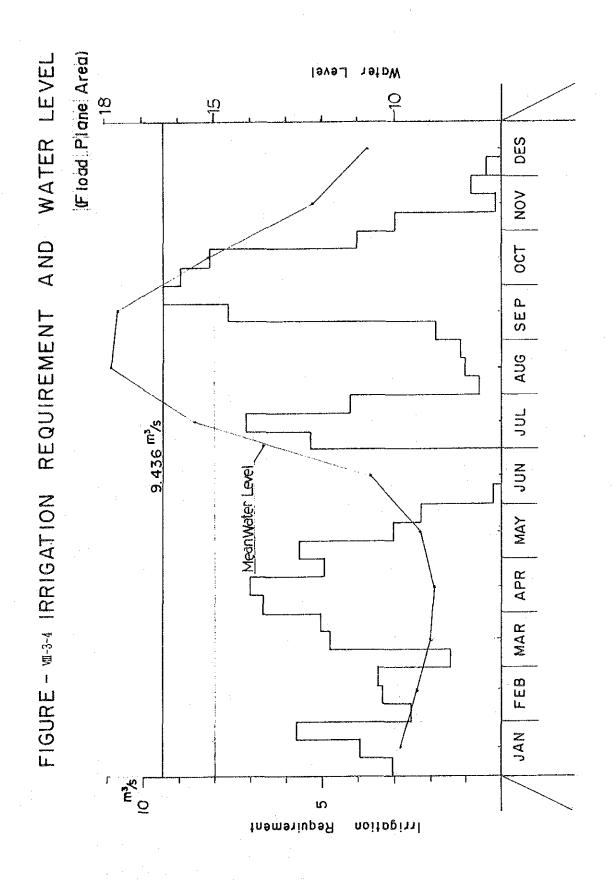

Regarding the difference between the water requirement and the pump capacity, there are some consideration on the water level of the Ganges river. Namely, the maximum water requirement appeared at third week of September, at the same time, the water level was higher than low water level and its about 6.0 m, so that, the pumping capacity could be reduced depending on said allowance of the head. Basic factor for the design and hydrological analysis are summarized in FIGURE VII-3-1 — VII-3-4 and TABLE VIII-3-1.

TABLE VM-3-1 DIMENSION OF PUMP


Pump Station	Baraipara Pump Station	Paba Pump Station	-
1] (1) Irrigation Requirement			
Dry season (%)	42. 588	8, 247	1980-Apr
Wet season (약)	44. 242	9, 436	1982-Sep
2 J (2) Water Level			
H.W.L (m)	21. 826	20. 325	1/100 Probability
L.W.l (m)	8. 686	7. 860	"
(3) Suction Water Level (m)	8. 50	7. 70	
(4) Discharge Water Level W.L (m)	30. 50	19, 80	


¹_J Refer to FIGURE VII-3-1~VII-3-4

^{2]} Refer to 4-2

Water Level REQUIREMENT AND WATER LEVEL <u>5</u> (BARIND AREA) ű OEC >0N OCT SEP AUG JUL Mean Water Level 44.242 m3/s APR MAY JUN FIGURE - M-3-2 IRRIGATION MAR <u>н</u> Ю JAN m³/s 50 ⊥ 40 30 20 <u>0</u> noitagini Requirement

11.570 11.722 10.569 10,752 9, 595 10.022 9.667 9.786 10.436 10.25311.637 11.413 413 10.744 DBC. 10. 12.213 11,486 12,466 11.51311.882 13.03911.96010,288 10.884 11, 171 539 12, 424 001 13, 191 ¥0. 14. 12. 12.846 14.144 14, 133 345 14.90315.541 13.071 939 622 802 133 957 17.477 111 OCT. 16. 13 15. 14. 5 ici 6 Rajshuhi (1977. Apr ~ 1987. Mar) 17.678 18.504 18,656 14,788 17.983 347 16.877 18.029 18,086 16.712 18.248 17.571 16.708 18, 471 SEP. 17 17,515 16.789 18,256 17.544 17.875 18.701 17.726 17.23216,622 17.658 17,558 18.327 17,761 18.853 16.305 15, 479 15.09416.350 14.218 15, 711 15,670 13.925 00.2 148 457 13, 391 16.371 14.727 JULY. 16. 15. 16. 11.482 9.945 325 10.042 11.975 9.188 10,576 9.530 10.691 9.485 12, 227 9,587 656 634 10. Ħ 19. Monthly Mean Water Level 8.658 9.922 8.798 8.765 0669.194 8.722 8.668 8.722 9, 492 10.147 8.961 9.321 299 MAY. ∞ 10. 8.483 9,165 568 8.899 8.933 8,399 8, 373 7.935 8, 183 9,1829, 725 877 8.561 8.461 ∞. o, 8.346 9.108 8,449 8.244 8,000 8.453 8.646 9.638 8.638 9.029 9.855 9.111 10,007 VII-3-2 9.223 9.474 8.568 8, 533 8.478 8.933 7.084 9.070 10,379 9,877 902 8,631 9.401 10.227TABLE 8.676 10,576 10.813 9.619 8.813 8.644 9,613 5049.835 677 8.994 9,604 10.82610,661 Ä o, Water Year :≭: Sultanganj Baraipara ∞ ರು 0 $^{\circ}$ က r-00 ∞ ∞ LEVEL. Kasba ත රා ත ග a) ග တ ೦ಾ O σ တ

TABLE VII-3-3 DIVERSION WATER REQUIREMENT

. •	1	BARIND AREA		F1	OOD PLAIN ARE	A
Year	Dry Season	Wet Season	Total	Dry Season	Wet Season	Total
1977				· · · · · · · · · · · · · · · · · · ·	· 	
78	3, 326	1, 753	5, 080	646	372	1.018
79	M 4. 164	1. 164	5, 328	(A) 794	248	1.042
80	(A) 3. 383	(A) 1. 469	(A) 4, 853	(A) 661	(A) 311	(A). 972
81	2. 682	1. 685	4. 367	522	358	880
82	3, 018	(M) 2. 967	3 5. 986	577	(f) 628	M 1. 205
83	3. 782	802	4. 585	727	169	896
84	3. 452	837	4. 290	668	178	846
85	3, 338	1.039	4. 377	649	222	871
86	3. 435	1. 370	4. 805	664	291	955
	3. 398	1. 454	4. 852	656	309	965

Bry Season ; JAN \sim JUNE

Wet Season ; JULY~ DEC

(M); Diversion Water Requirement ; Max

(A); " ; Ave

3-1-2. Type of pumping station and pumping facility

On the basis of detail discussion in the previous chapter, it was decided that the pumps will be of fixed type, the pumping facilities will be of vertical mixed flow type at Baraipara & Kasba.

3-1-3. Diameter and Number of Pumps

(1) Selection of Diameter and Number of Pumps

As for mentioned subject, the following items were taken into consideration;

- to get the most suitable combination of diameter and number for seasonal water requirement including the higher efficiency of operation.
- to consider the diversification of risks and exchangeable parts

 The following combination has been studied to select the most suitable combination of pump capacity & number.

	Baraipara P.S.	Kasba P.S.
Case-1 1/3 division	$14.20 \text{ m}^3/\text{s} = 852 \text{ m}^3/\text{m}$	$2.749 \text{ m}^3/\text{s} = 165 \text{ m}^3/\text{m}$
Case-2 1/4 division	$10.65 \text{ m}^3/\text{s} = 639 \text{ m}^3/\text{m}$	$2.062 \text{ m}^3/\text{s} = 124 \text{ m}^3/\text{m}$
Case-3 1/5 division	8.52 m ³ /s = 511 m ³ /m	$1.65 \text{ m}^3/\text{s} = 99 \text{ m}^3/\text{m}$

The studies for these combination have been shown in TABLE VW-3-4 and VW-3-5, for Baraipara and Kasba stations, respectively.

The cost of the pumping facilities and the operation costs for each case have been estimated as shown in TABLE W=3-6.

As a result,

Baraipara P.S. Case-2 Ø1,650
$$^{\rm m/m}$$
 \times 4 unit Kasba P.S. Case 2-2 Ø1,350 $^{\rm m/m}$ \times 1 unit Ø1,000 $^{\rm m/m}$ \times 2 unit

The scale of mentioned facilities are considerable for this project from the view point of operation and maintenance.

TABLE VM-3-4 NUMBER OF PUMP UNIT

(Brind Area)

Case	Unit		1		2	3	- 1	3	- 2
Pump Type			Vertica	al Mixed	Flow Pur	n p	· · · · · · · · · · · · · · · · · · ·		
Irrigation Requirement	™ å		1	42. 588	(2, 556 m²)	(n)	1		
Pump Capacities	m³/m	552	300	399	240	331	180	318	240
Pump Bore	mm	2, 000	1. 500	1.650	1.350	1,650	1, 200	1, 500	1,350
Actual Head	m			21.	90				
Total Head	m			27,	00		•		
Pump Efficiency	%	85	84	84.5	83. 5	84. 5	83	84	83. 5
Motor Power	kw	3, 290	1,810	2, 390	1, 460	1.990	1, 100	1, 920	1, 460
Pump Units		3	3	4	4	5	5	2	8
Total Motor Power	kw	15.	300	15,	400	15.	450	15,	520

TABLE VM-3-5 NUMBER OF PUMP UNIT

(Flood Plane Area)

Case	Unit	1	2 - 1	2 - 2	3
Pump Type Irrigation		Ver	tical Mixed Flow 8.247 (495m³/m)		
Requirement	98		1		
Pump Capacities	m³/m	165	124	247 124	99
Pump Bore	mm	1.200	1.000	1,350 1,000	900
Actual Head	m		12.00		
Total Head	m		13.00		
Pump Efficiency	%	83	82	83.5 82	81
Motor Power	kw	490	370	720 370	300
Pump Units		3	4	1 2	5
Total Motor Power	km	1, 470	1.480	1, 460	1,500

1] Motor Power ; RHP = 0.163 $\frac{Q \times H \times (1 + \alpha)}{np \times nt}$

Item	PUMP FACILI	TIES COST 1	Plantria	Total Cont
Case	Initial Cost []	Annual Cost 3]	Electric Charge	Total Cost
1. Baraipara P.S				
1	646.100	110, 700	92,500	203, 200
2	633.400	① 108, 500	① 87,800	196, 300
3-1	701, 500	120, 200	88, 800	208, 200
3-2	651, 500	111. 600	88, 700	200, 300
2. Paba P.S				
1	230, 300	39, 400	12. 900	52, 300
2-1	250, 200	42, 800	11,000	53, 800
2-2	216, 100	① 37,000	① 10, 400	① 47, 400
3	274, 300	47. 000	10, 400	57, 400

- 1 Refer to TABLE VII-3-7, 8
- 2.] Refer to TABLE VIII-3-9
- $3 \rfloor$ The formula of estimation on the capital recovery ratio is shown as following.

$$P = \frac{1 (1+i)n}{(1+i)n-1}$$
 (1 + Interest Ratio for Construction periods.)

Interest Ratio = $\alpha \times 1' \times t$

Where : f = Interest 12%

> α = Parmer's share 40%

> f'= Interest of Parmer's share 14%

t = Periods 5 years

n = Durable Life

(2) Economical Study

As for the mentioned proposed plan in the previous section, the costs for the facilities are summarized in TABLE VII-3-7 and VII-3-8 and 0 & M costs are shown in TABLE VII-3-9, furthermore, seasonal operation pumps number are shown in TABLE VII-3-10 and VII-3-11.

	TABLE VII-3-7	PUMP FACILITIES COST (Baraipara-P-S)	1	(1000TK)
\$2000 1 \$1500	0	\$ 41650 2 \$ 41350	ϕ 1650 3-1 ϕ 1200	ϕ 1500 $^{3-2}$ ϕ 1350
@ 38,000 @ 23,500	00	@ 28,000 @ 20,000	@ 28,000 @ 17,500	@ 23,500 @ 20,000
@ 47,000 @ 19,000	0	@ 27,500 @ 15,500	@ 21,000 @ 13,000	@ 20,000 @ 15,500
@ 14,100 @ 8,200	0	@ 10,500 @ 7,000	@ 10,500 @ 5,800	@ 8,200 @ 7,000
14, 100		11,700	11,700	8, 200
40,000		48, 200	56, 400	56, 400
85,600		83,700	92,700	86, 100
57,000		55, 800	61,700	57, 400
646, 100	l ·	633, 400	701, 500	651, 500
	1			

1] Refer to FIGURE VII-3-5

	,								,
(1000TK)	3 \$00	@ 11,000	@ 17,000	6,700	6, 200	35,000	35, 800	23, 800	274, 300
	-2 \$\phi 1000	@ 14,000	@ 17,000	@ 8,500	8, 200	26, 500	28, 100	18, 800	216, 100
oa P.S)	\$ 1350 2-2	@ 25,000	@ 18,000	@ 12,500	တ်	26,	28,	18,	216,
PUMP FACILITIBS COST (Kasba P.S)	$\phi_{1,000}$	@ 14,000	@ 17,000	@ 8,500	7,000	30, 800	32, 700	21, 700	250, 200
TABLE VM-3-8	φ1, 200	@ 20,000	@ 17,500	@ 11,200	7,700	26,500	30,000	20, 000	230, 300
	Item	Pump 1,	Motor 2J	Valve & Pipe	Crane	Blectric Equipment	Equipment Work	Transportation	Total Cost

☐ Refer to FIGURE VII-3-5

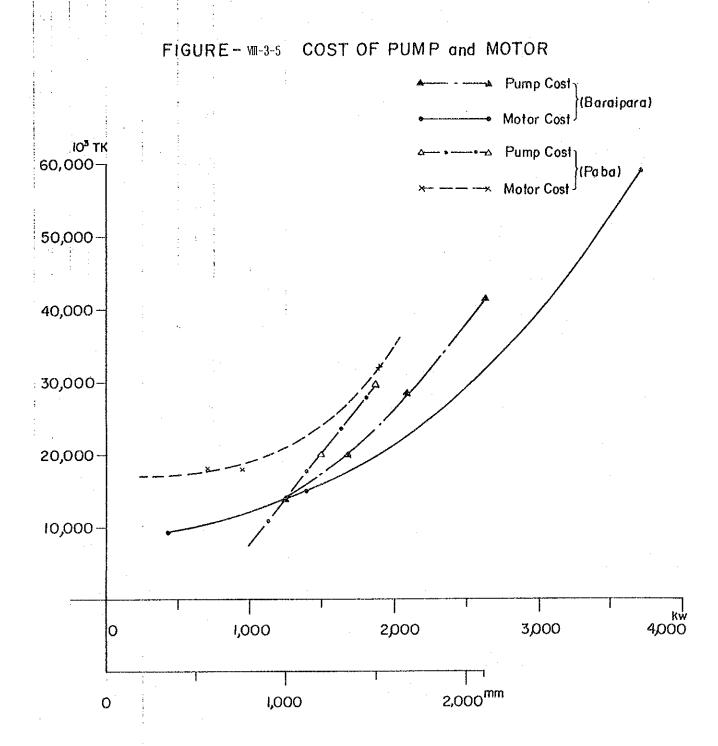


TABLE VM-3-9 ELECTRIC CHARGE

(1000TK)

2,508

644

3, 220

1, 136

5,680

2,900

14,500

12,540

3,400

7,600

1,700

3,800

1,500

3,400

3,200

7,200

Item 1 kw 2 kw Demand Charge Pump Operation Electric Charge Hour [4hr/D 20hr/D $0 \times \begin{bmatrix} 3.75 \text{TK/KWH} \\ 1.65 \end{bmatrix}$ Motor power Total TK/kw/Y ×Pump Unit Motor Power $@ \times 35$ Case hг 1. BaraiparaP. S 1 3.290×3 1,568 19,300 15, 300 500 7,840 42,500 1.810×3 1.416 9.600 7,080 21, 100 2 2.390×4 1,532 13,700 15, 400 500 7,660 30, 200 $1,490 \times 4$ 2.460 13,700 12,300 30, 200 3-1 $1,920 \times 5$ 2.308 16,600 500 36,500 15, 450 11,540 1.100×5 10,900 2,644 13, 220 24,000 3-2 1.920×2 1,008 7, 200 500 15.520 5.040 15,900 1, 460 $\times 8$ 3,748 20,500 45, 100 18,740 2. Paba P. S 490×3 1,470 2, 224 4,000 1 11, 120 8,900

1 Refer to TABLE - VII-3-10.11

1.480

1.460

1,500

 370×4

 720×1

 370×2

 300×5

2-1

2-2

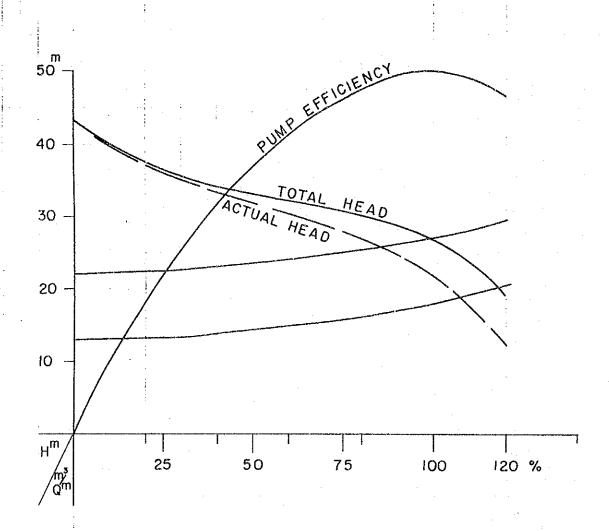
3

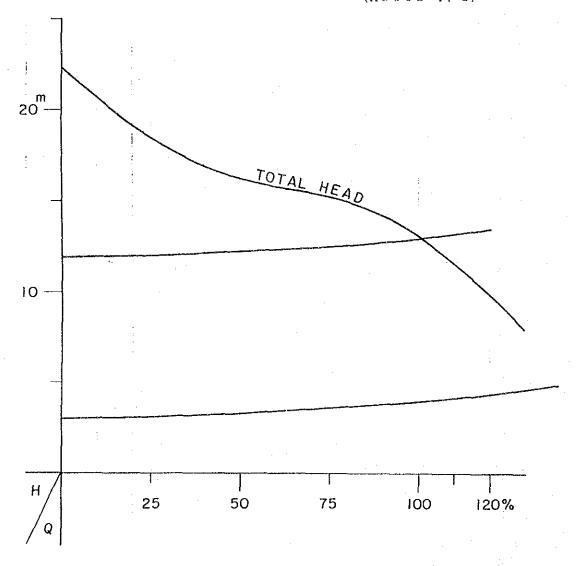
TABLE VM-3-10 PUMP OPERATION UNITS OF EACH MONTH
Actual Head 21.9m

					•		Į.	Actual Head	21.9m
Date	Water Requirement ™å	%	Suction Water Levelm	Actual flead m	Capacity	1 2000 × 3 1500 × 3	2 1650×4 1350×4	3-1 1650×5 1000×5	$3-2$ 1500×2 1350×2
JAN 2 3	8. 685 17. 395 17. 167		10.6	19. 9	104	1 — 2 — 2 —	1 1 2 1 2 1	1 1 2 3 2 3	$\begin{array}{cccc} 1 & 1 \\ 1 & 3 \\ 1 & 3 \end{array}$
1 FEB 2 3	21. 269		10. 2	20.3	104	2 1 2 1 2 1	2 2 2 2 2 2	1 5 1 5 1 5	1 4 1 4 1 4
1 MAR 2 3	29. 523 " 34. 385		9. 8	20. 7	102	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2 4 2 4 3 4	5 1 5 1 5 3	1 6 1 6 2 6
1 APR 2 3	42. 685 17. 395 17. 167		9. 7	20. 8	102	3 3 3 2 2 2	4 4 3 4 3 2	5 5 5 3 4 3	2 8 1 8 — 7
1 MAY 2 3	2. 317 4. 507 2. 583		10.1	20. 4	104	- 1 - 1 - 1	— 1 — 1 — 1	- 1 1 - 1	$ \begin{array}{ccc} $
JUN 2 3	0. 646 2. 194 16. 070		11. 4	19. 1	108	- 1 - 1 1 1	$\begin{array}{c c} - & 1 \\ - & 1 \\ 1 & 2 \end{array}$	1 1 2 2 .	$\begin{array}{ccc} - & 1 \\ \hline - & 1 \\ 2 & 1 \end{array}$
1 JUL 2 3	16, 167 3, 410 2, 405		16, 3	14. 2	116	1 1 — 1 — 1	1 2 1 1	1 3 1 1	2 1 — 1 — 1
1 AUG 2 3	1. 553 3. 199 0. 945		18. 7	11.8	118	- 1 - 1 - 1	— 1 — 1 — 1	1 1 1	- 1 - 1 - 1
1 SBP 2 3	0. 515 0. 008 0. 760		18. 5	12. 0	118	- 1 - 1 - 1	- 1 - 1 - 1	— 1 — 1 — 1	— 1 — 1 — 1
0CT 2 3	22, 401 30, 240		15. 9	14. 6	116	2 3 —	2 3 2 3 — —	5 2 5 2 — —	1 6 2 4
NOV 2 3	9. 326 8. 398 5. 705		13. 0	17.5	110	1 — 1 — 1 —	- 2 - 2 1	1 1 1 1 1 —	- 2 - 2 1 -
DEC 2 3	2. 540 10. 044. 17. 251		11.5	19. 8	108	$\frac{}{}$ $\frac{1}{2}$ $\frac{1}{2}$	1 1 1 2 1	- 1 1- 2 2 2	- 1 1 1 1 3
Total						392 354	383 615	577 661	252 937

1/ Refer to Figure VII 3-6

FIGURE - VII-3-6 PUMP CHARACTERISTIC CURVE (Baraipara P. S)




TABLE VIII-3-11 PUMP OPERATION UNITS OF EACH MONTH

Actual Head 12.0m

· · · · · · · · · · · · · · · · · · ·			<u> </u>	T		 		Total Heat	· · · · · · · · · · · · · · · · · · ·
Date	Water Requirement	%	Suction Water Level m	Actual Head m	Capacity レ %	•	2 1000×4	$ \begin{array}{c c} 3-1 \\ 1350 \times 1 \\ 1000 \times 2 \end{array} $	$\begin{vmatrix} 3-2 \\ 900 \times 5 \end{vmatrix}$
1 JAN 2 3	1. 729 3. 462 3. 417		9, 8	10, 0	112	1 2 2	1 2 2	— 1 1 — 1 —	1 2 2
FEB 2 3	4. 234		9. 4	10. 4	110	2 2 2	2 2 2	1 — 1 — 1 —	3 3 3
1 MAR 2 3	5. 877 " 6. 298		9. 0	10.8	109	2 2 3	3 3 4	1 1 1 1 1 1	4 4 4
1 APR 2 3	8. 247 6. 779 4. 941		8.8	11. 0	107	3 3 2	4 4 3	1 2 1 1 1 1	5 4 3
1 MAY 2 3	0. 395 0. 769 0. 441		9, 3.	10. 5	110	1 1 1	1 1 1	- 1 - 1 - 1	1 1 1
1 JUN 2 3	0. 110 0. 468 3. 427		10. 6	9. 2	116	1 1 2	1 1 2	- 1 - 1 1 -	1 1 2
1 JUL 2 3	3. 311 0. 727 0. 410		15. 4	4. 4	120	2 1 1	2 1 1	1 — — 1 — 1	2 1 1
AUG 2 3	0. 331 0. 682 0. 202		17.8	2. 0	120	1 1	1 1 1	— 1 — 1 — 1	1 1 1
SEP 2 3	0. 110 0. 002 0. 162		17. 6	2, 2	120	1 1 1	1 1	- 1 - 1 - 1	1 1 1
0CT 2 3	6. 910 6. 449		15. 1	4. 7	120	3 2 -	3 3 —	1 1 1 1 — —	4 4 —
NOV 2 3	1. 989 1. 791 1. 217		12. 2	7. 6	120	1 1 1	1 1 1	1 1 1	2 1 1
DEC 2 3	0. 542 2. 142 3. 679	÷	10. 7	9. 1	116	1 1 2	1 1 2	$\begin{bmatrix} - & 1 \\ - & 1 \\ 1 & - \end{bmatrix}$	1 2 2
Total			-			556	627	161 284	725

1/ Refer to Figure VM-3-7

FIGURE - VII-3-7 PUMP CHARACTERISTIC CURVE (Kasba P. S)

3-1-4. Selection of Total Head

The pipe line should be prepared from the pumping station to delivery ponds at Baraipara and Kasba. The steel pipe is the most suitable under the consideration of strength, and availabilities for construction.

In this case, the diameter of the pipes are decided based on the average velocity of 2.0 m per second. The head loss in the pipe line is computed as follows.

Station	Q	Diameter	Velocity	Loss Head	Hf *1	hf *2
	m^3/s	mm	m/s	m/m		
					ℓ=1,400m	
Baraipara	6.92	1,800	2.719	0.00268	4.5	0.4
·	4.17	1,500	2.360	0.00256	4.3	0.3
	8.34	2,000	2.655	0.00226	3.8	0.4
					ℓ=50m	
Kasba	4.72	1,500	2.671	0.00322	0.2	0.4
·	2.37	1,200	2.096	0.00267	0,2	0.3

^{*1} Hf = Loss Head/m \times 1.2 \times ℓ

From the above computation, total head estimated at Baraipara and Kasba are as follows;

Baraipara; 30.50-8.50+4.50+0.40 = 26.9 = 27.0 m

Kasba : 19.80-7.70+0.20+0.40 = 12.7 = 13.0 m

^{*2} hf \doteq Loss Head inside of pump facilities

3-1-5. Special Dimension of Pumps

Station	Baraip	ara P.S.	Kasb	a P.S.
Items	1.		32 1 2 3	Wined Dies
Pump Facilities	Aerricar	Mixed Flow	vertical	MIXEG LIOW
Capacity (m ³ /s)	399	240	247	124
Diameter (m·m)	1,650	1,350	1,350	1,000
Max. Actual Head (m)	22.0	22.0	12.0	12.0
Max. Total Head (m)	27.0	27.0	13.0	13.0
Power Source	Electr	ie motor	Electr	ic motor
Output (kw)	2,390	1,460	720	370
Number of Pump	4	4	1	2
Number of Pump Max. Discharge	4 415	4 250	1 283	2 142
	415	·		

Note; The variation of actual head is 9.0 m is average year

3-2. Design of Pumping Station

3-2-1. Design of Intake Canal

The water of the Ganges river consists of sediment, and its contents vary throughout the year, and the most high value appeared at end of flood season. In order to protect the damage to the pump facilities and canals function, it is proposed to construct a silting basin in front of suction tank of the pumping station.

As a basic criterion for design, average water velocity decided to have 0.15 m/s to 0.30 m/s in the canal, and the retarding period assumed to be 30-60 seconds in the basin.

Based on the intake discharge and depth of water, the width of canal estimated as follows;

Baraipara

<u>Kasba</u>

42.588m³/s Width of Canal

On the other hand, the length of silting basin is calculated by the following formula,

$$L = K \frac{Q}{B \cdot Vg}$$

L ; Length of silting basin

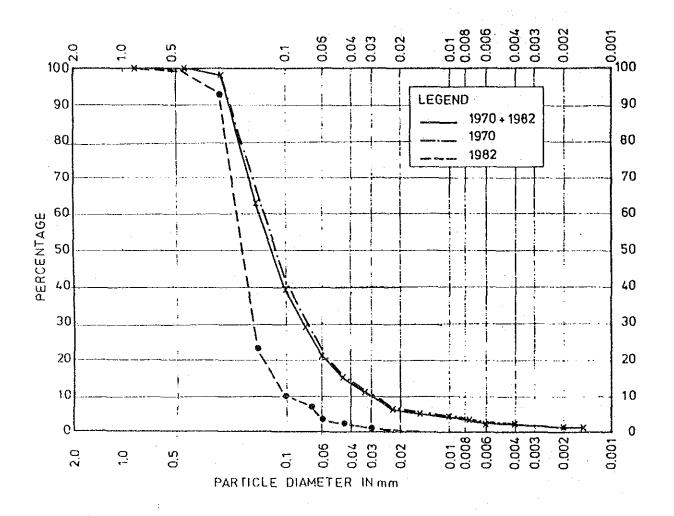
K ; Safety factor (1.5 - 2.0)

Q; Discharge (m³/s)

B ; Width of Basin (m)

Vg; Silting velocity on sediment of minimum size (m/s)

where; Vg = 0.003 m/s (Grain size 0.1 mm S.G.S.S. = 1.10)


S.G.S.S; Specific Gravity of soil suspension. (See FIGURE VII-3-8)

Baraipara Kasba Remarks
$$L = 2.0 \times \frac{42.588}{100 \times 0.003} = 300 \text{ m} \quad L = 2.0 \times \frac{8.247}{30 \times 0.003} = 200 \text{ m}$$

Main items of silting basin are summarized as follows;

Items	Baraipara	Kasba	Remarks
- Pump Capacity	_ · i	8.247 m ³ /s	The water depth is decided based
- Depth of water in the canal - Velocity of discharge	2.10 m 0.20 m/s	1.50 m 0.20 m/s	on water level in dry season.
- Width of Basin	100 m	30 m	lin dry boason.
- Length of Basin	300 m	200 m	

PARTICLE DISTRIBUTION OF BED MATERIAL OF GANGES RIVER

3-2-2. Design of Inlet of Pumping Station

(1) Height of sill at Inlet structure

Basically, the velocity of inlet is assumed to have 0.5 m/s below. The results of the computation for the height of the sill are shown as follows;

CONTRACTOR OF THE PROPERTY OF	Baraipara P.S.	Kasba P.S.
Design discharge at Lowest Water Level	42.588 m ³ /s	8,247 m ³ /s
Width of inlet (B) *1	8.686 m	7.860 m
Water Depth (H) *2	40.20 m	11.20 m
Elevation of sill	6.5 m	6.30 m

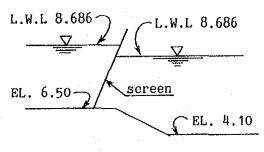
^{*1} See (3)

(2) Height of bottom at Suction Pump

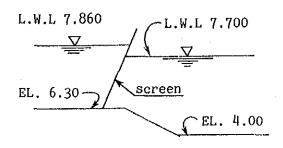
At first, the head loss should be decided at the screen, after that, necessary water depth, and the height of bottom shall be determined. The procedure and the results are shown as follows;

- Screen loss : $\triangle hr1 \doteq 0.10 \text{ m}$

Baraipara P.S.


Kasba P.S.

Suction Water level


 $8.686-0.10 \pm 8.50 \text{ m}$ $7.86-0.10 \pm 7.70 \text{ m}$

Height of bottom at Suction pit

 $8.50-4.35^{*3} = 4.10 \text{ m} \quad 7.70-3.65^{*4} = 4.0 \text{ m}$

At Baraipara

At Kasba

² Q/0.5×H ≦ H

3-2-3. Scale of Pumping Station

(1) Lay-out of supporting structure for pumps

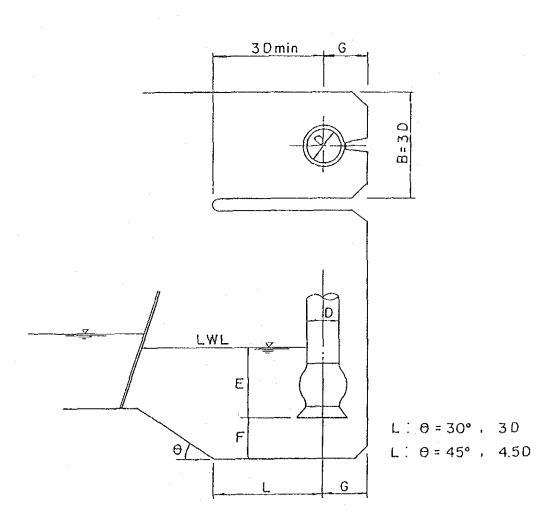
Taking into consideration of the following factors, the scale of structures is decided are shown below.

- Diameter of the pumps
- Size of power equipment
- Distribution of the valves and pipe
- Scale of overhead travelling crane

	<u>Width</u>	<u>Length</u>	<u>Height</u>
Baraipara P.S.	15.80 m	40.80 m	13.0 m
Kasba P.S.	14.30 m	11.80 m	12.0 m

The allowance space for installation of the equipment and the space of operation are as follows;

	Width	Length	Height
Baraipara P.S.	15.80 m	5.60×2 m	13.0 m
Kasba P.S.	14.30 m	4.60×7.20 m	12.0 m


Finally, the shapes of the planes for supporting structures are shown as follows;

	Width	Length	Spaces
Baraipara P.S.	15.80 m	52.00 m	$ \pm 830 \text{ m}^2 $
Kasba P.S.	14.30 m	23.60 m	≐ 350 m ²

(2) Dimension of suction pump and space of pumps

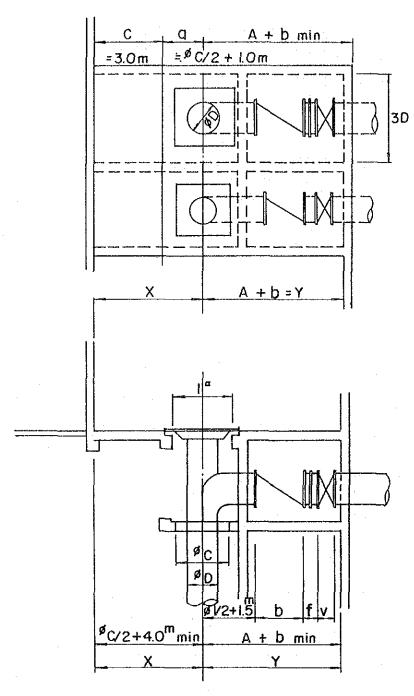

There are some design criteria for the suction pit and space for the pump equipments. Based on the criteria, the lay-out of the structures are shown in the following figures.

FIGURE WI-3-9 PUMP SUCTION

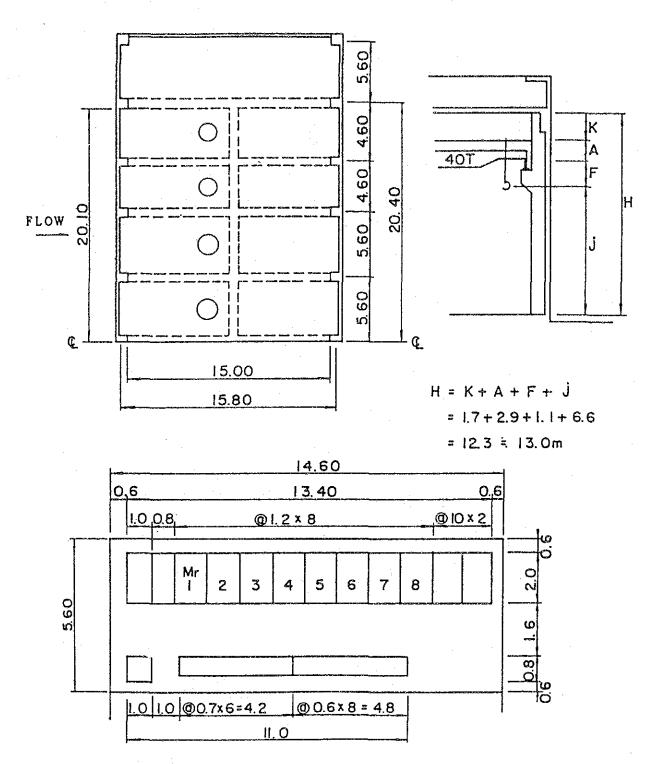
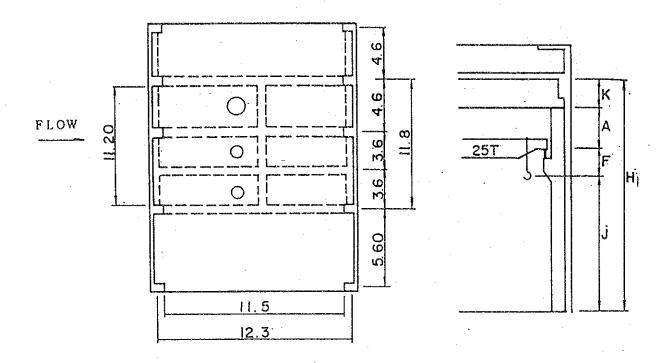
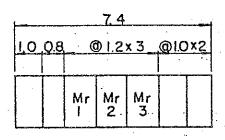

0	8=L	<u> </u>	<u>F</u>	G mm
1650	5000	2700	1650	1800
1350	4000	2300	1350	1500
1000	3000	1700	1000	1100

FIGURE- VII-3-10 PUMP PIT




ø _D	<u>B≒3D</u>	A	ø _C	1°	b	<u> </u>	<u> </u>	
1650	5000	5 500	2900	3300	2600	6000	9000	
1350	4000	5000	2300	2900	2200	5500	8000	
1000	3000	4500	1750	2400	1800	5000	7000	

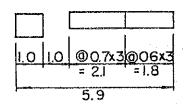

FIGURE-W-3-11 BARAIPARA PUMPING STATION

FIGURE - WI-3-12 KASBA PUMPING STATION

H = K + A + F + J= 1.5 + 2.6+0.9+6.2 = 11.2 = 12.0m

3-2-4. Foundation Treatment and Protection Dike

(1) Foundation Structures

According to the test boring data at proposed pump site, shallow layer is covered with very hard clay, and deep layer consist of the sand with high degree of consolidation.

The value of N of standard penetration tests at an elevation of -3.0 m to -4.0 m is expected to be more than 30. So that, this layer can be considered as the bearing zone for the structures.

The concrete pile foundation should be previded for foundation treatment at the proposed site.

The bearing capacity of pile shall be estimated from the following formula.

Ra = 1/3 {30N·Ap +
$$(\frac{\text{NsLs}}{5} + \frac{\text{NeLe}}{2}) \Psi$$

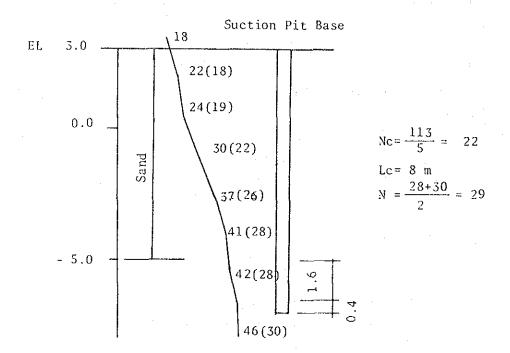
where ;

Ra; Long term allowable bearing capacity

N : N value at the top of pile under the ground

Ap; Cross section of top of the pile $(m^2 \text{ or } cm^2)$

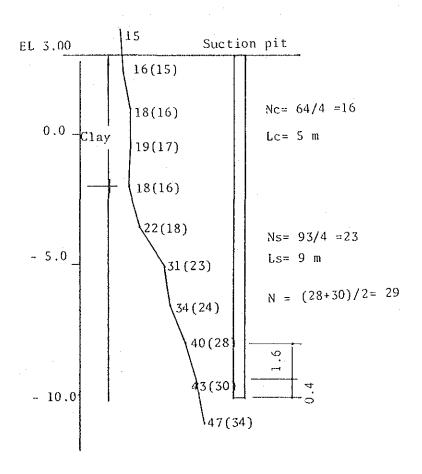
Ns ; Average N value in sandy layer


Ls: Length of the pile in sandy layer

No; Average N value in clayey layer

Lc : Length of the pile in clayey layer

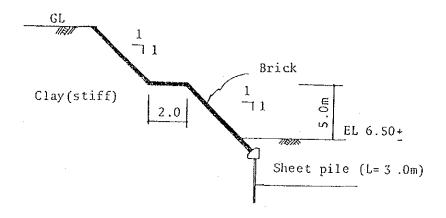
ψ : Length of circumference of the pile


(a) Bearing capacity of the pile at Baraipara P.S.

$$\square 400 \qquad \text{Ra} = \frac{1}{3} \left\{ 30 \times 29 + 0.4 \times 0.4 + \frac{22 \times 8}{5} \times 1.6 \right\}$$

$$= 65t < 0.075 \times 40^{2} = 120t$$

(b) Bearing capacity of the pile at Kasba


$$\square 400 \qquad \text{Ra} = \frac{1}{3} \left\{ 30 \times 29 + 0.4 \times 0.4 + \left(\frac{23 \times 7}{5} + \frac{16 \times 5}{2} \right) \times 1.6 \right\}$$

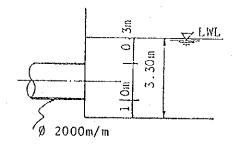
$$= 84t < 120t$$

(2) Flood Protection Structure

The flood protection structure is required to install for the protection of the erosion in the river bed at the conjunction of the Ganges river and intake canal.

A typical section of the structure is shown as follows;

3-2-5. Design of Discharge Pond


(1) Shape of the discharge pond

1) Barind Tract Area

Discharge pond should be connected with the main canal directly. Therefore, the lay-out was carried out considering the following items.

- flow velocity inside of the pond should be within 0.5 m/sec.
- the location of outlet of the pipe line should serve as a wave protector
- sedimentation in the pond

As a result of the analysis and under the consideration of the said items, the typical section of the structure is shown as follows;

The width of discharge pond was computed by the following formula

$$B = \frac{Q}{hr \times v} = \frac{44.242}{3.30m \times 0.3} = 45 m$$

This width could cover outlet of the pipe line ($B \doteq 23.0m$) sufficiently. Necessary length of the pond was calculated by the following formula.

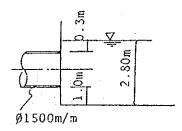
$$L = K \frac{Q}{B \cdot Vg} = 80 \text{ m}$$

Q ; 44.242 m^3/x

B ; 45

Vg ; 0.025 m/s

K ; 2


Therefore, dimensions of the discharge pond are as follows;

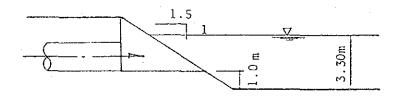
Width \times Length \times Depth

 $45 \text{ m} \times 80 \text{ m}$ 3.30 m

2) Paba Flood Plain Area

The same approaches and considerations were applied for this area also. Typical shape is shown as below;

$$B = \frac{Q}{\text{hi} \times \text{v}} = 15.0 \text{ m}$$


$$L = 2 \times Q / B \cdot \text{Vg} = 50 \text{ m}$$

Width
$$\times$$
 Length \times Depth 45 m \times 80 m 3.30 m

(2) Construction materials

It should be considered to protect the leakage of costly water.

Main dike shall be made by clayey materials with sufficient compaction and also inside surface of pond should be covered by concrete pavement.

3-2-6. Dual Purpose Pumps for Irrigation and Drainage at Kasba Pump Station

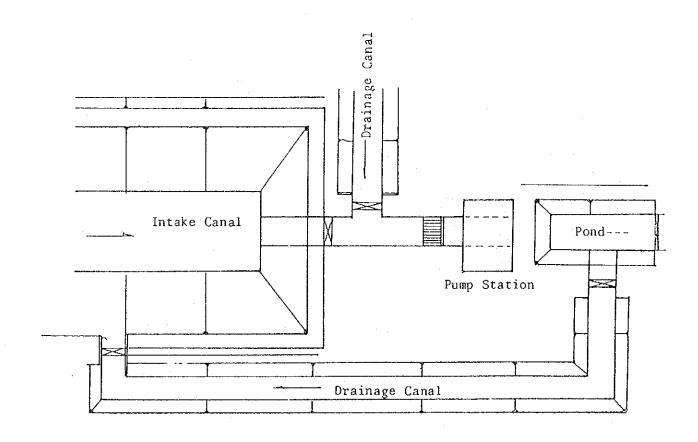
It has been proposed to review the possibility of dual purpose pumps for irrigation and drainage at Kasba Pump station. Terms to be considered for drainage plan at Kasba pump station are shown below, particularly, on the water level at the site.

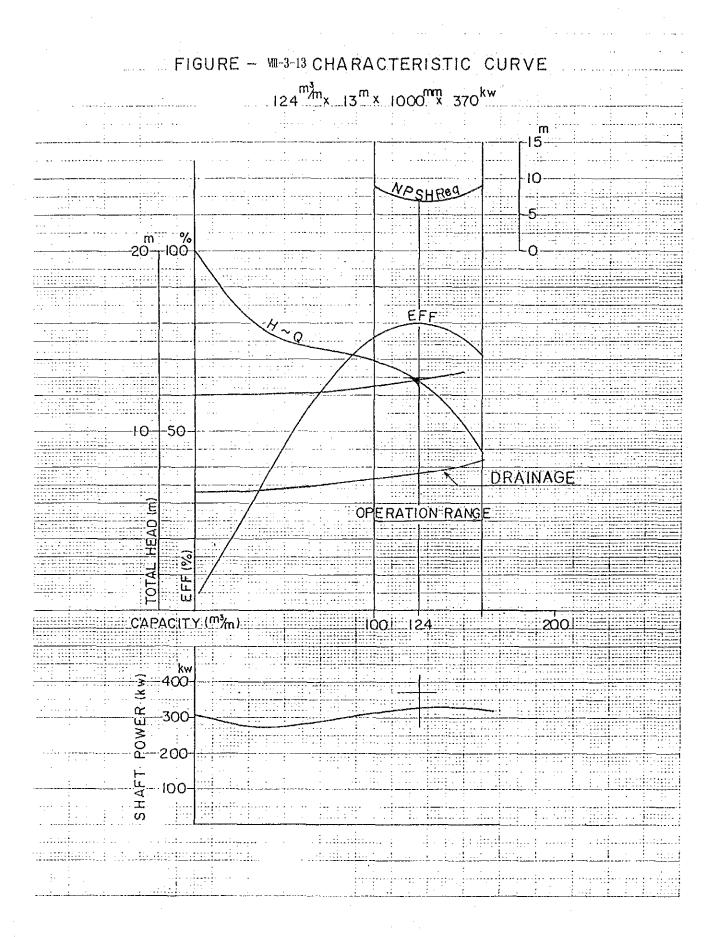
- Inside water level 13.70 m
- Outside water level 20.325 m
- Actual Head 6.700 m

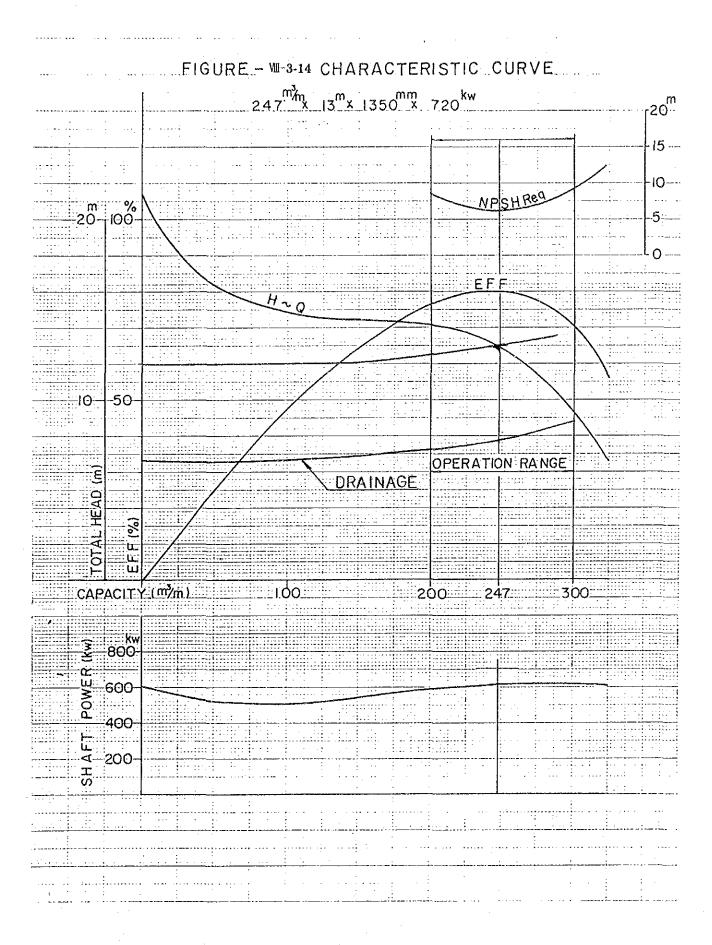
- Total Head 7.700 m

Pump capability has been evaluated from the pump characteristic curve considering the above mentioned points (FIGURE WI-3-13 and FIGURE WI-3-13).

From the evaluated result it is clear that the discharge should be controled by the valves to avoid cavitation.


The recommended capacities are as follows.


 \emptyset 1,000 mm A = 160 m³/m = 2.7 m³/s

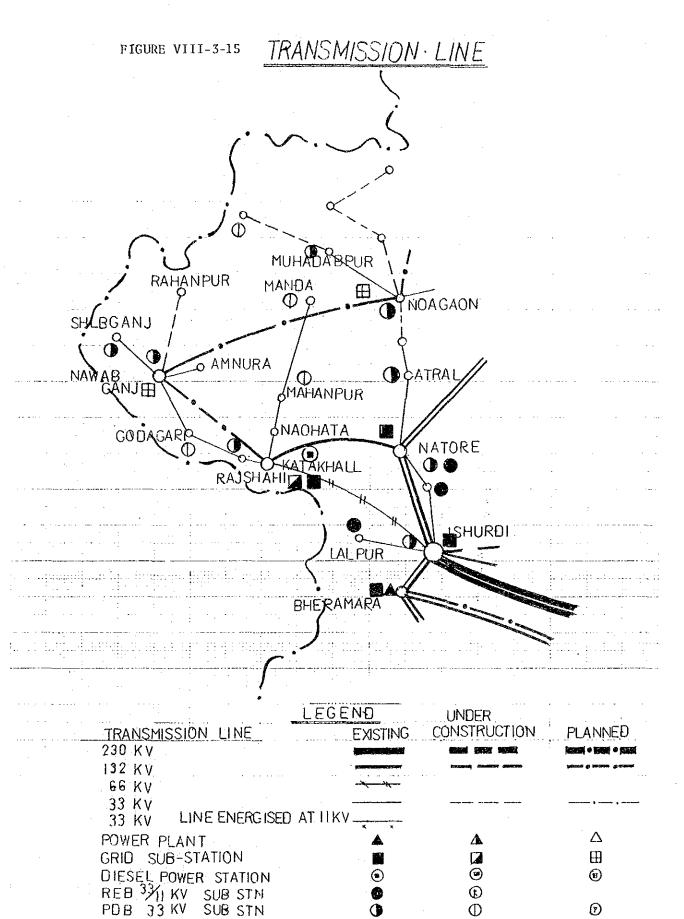

 \emptyset 1,350 mm Q = 300 m³/s = 5.0 m³/s

Therefore, total capacity shall be at about $10.0 \text{ m}^3/\text{s}$.

For dual purpose application, some additional facilities shall be required. The development plan including additional facilities are shown in the following illustration.

3-2-7. Power Supply

Total demand of electricity at Baraipara and Kasba pumping stations is about 17,000 kw.


Electric supply systems in the project area are described as follows, according to the information obtained from the Bangladesh Power Development Board.

<u>Area</u>	Existing transmission line	Planning transmission line
Natore	kv line(s) 132×2	kv line(s)
Rajshahi	132 × 1 66 × 1	
Godagari	33 × 1	132 × 1
Sultanganj	33 × 1	132 × 1

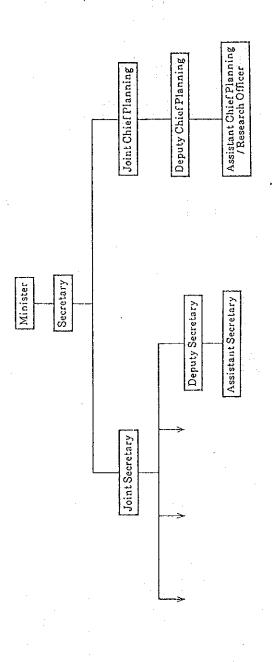
Therefore, pumping stations at Godagari and Sultanganj, total demand of electricity can not be supplied by existing 33 kv transmission line.

However, in 1990 132 kv transmission line will be constructed and will be able to operate the pumping stations.

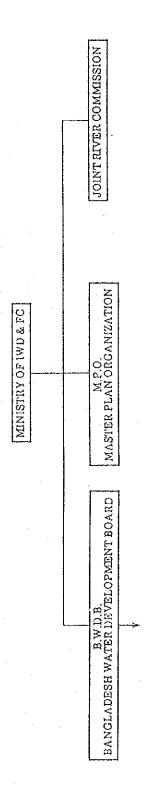
Transmission line in this project area is shown in FIGURE VM-3-15.

APPENDIX IX

ORGANIZATION AND MANAGEMENT


APPENDIX IX

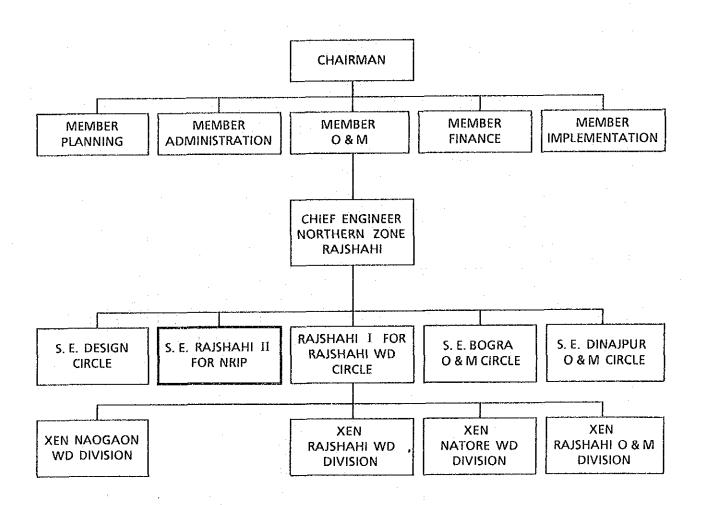
ORGANIZATION AND MANAGEMENT


CONTENTS

				PAGE
1. 0	ORG	ANIZAT	ION OF BWDB	IX - 1
			ION FOR PROJECT IMPLEMENTATION	
			ATION SCHEDULE	
4. (ORG	ANIZAT	ION FOR OPERATION AND MAINTENANCE	IX -8
			LIST OF FIGURE	
FIGU	RE	IX - 1 - 1	ORGANIZATION CHART OF MINISTRY SECRETARY OFFICE	LX -1
FIGU	RE	IX -1-2	ORGANIZATION CHART OF BANGLADESH WATER DEVELOPMENT BOARD	IX -2
FIGU	RE	IX -2 -1	STRUCTURE OF BWDB FOR NRIP	IX -3
FIGU	RE	IX -2-2	PROPOSED ORGANIZATION CHART FOR IMPLEMENTATION OF THE NRIP	IX -4
FIGU	RE	IX -2-3	CENTRAL COORDINATION COMMITTEE	IX -5
FIGU	RE	IX -2-4	LOCAL COORDINATION COMMITTEE	IX -6
FIGU	RE	IX -3-1	THE PROJECT IMPLEMENTATION SCHEDULE	IX -7
FIGU	RE	IX -4-1	PROPOSED ORGANIZATION CHART FOR OPERATION AND MAINTENANCE OF THE PROJECT	IX -8

ORGANIZATION CHART OF MINISTRY SECRETARY OFFICE FIGURE IX-1-1

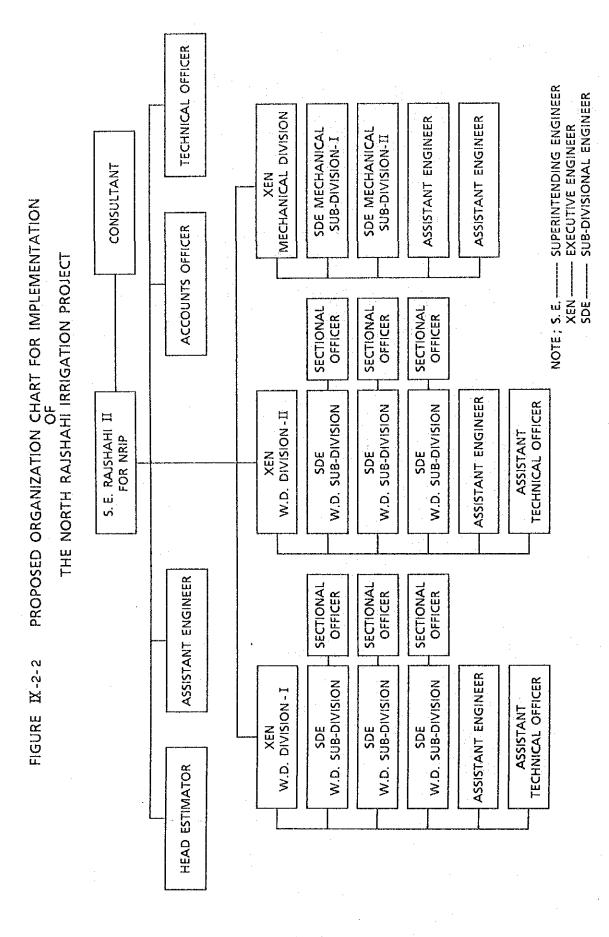
WATER DEVELOPMENT AND FLOOD CONTROL ORGANIZATION CHART OF MINISTRY OF IRRIGATION

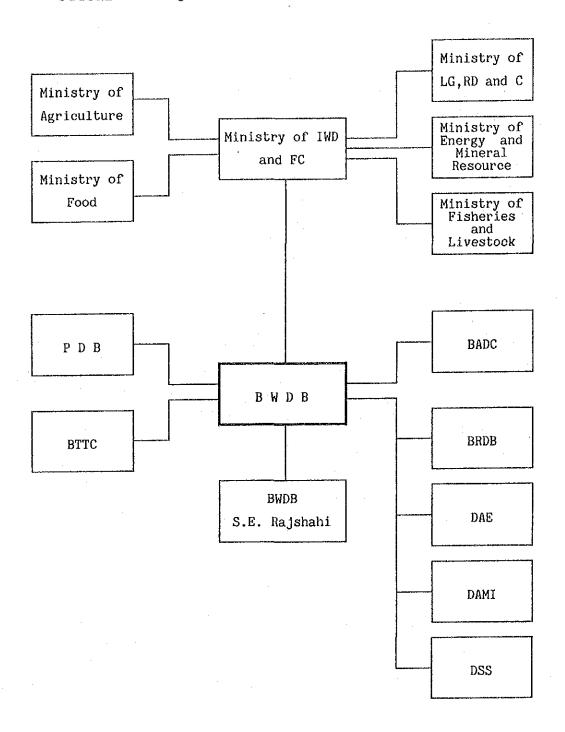


Director, (Land & Water Use) DIRECTOR, SECURITY & INTELLEGENCE Director, Land & Revenue, Dhaka Chief Engineer, Dredger Ganj Chief Engineer F/F. W., Dhaka Chief Engineer, M.E., Dhaka Member (O & M) Chief Engineer N.Z., Rajshahi Chief Engineer, S.W.S./Faridpur Chief Engineer, N.E.Z., Dhaka Chief Engineer, SEZ, Comilla DIRECTOR
PROCRAMME ORGANIZATION CHART OF BANGLADESH WATER DEVELOPMENT BOARD Chief Engineer, Project-IV, Rangpur Chief Engineer Project-I, Comilla Chief Engineer, Project-III, Barical CHIEF ENGINEER, MONITOR-ING & EVALUATION Member Imprementation (Mr. Lutfor Rasul Munsir) Chief Engineer Design Chief Engineer Project-II, Pabna Director Accounts Controller (FA & A) Member (Finance) CHAIRMAN Director Finance Director (P & M) Director Audit Director, TRG.-Career, PLG. & CCR Director Personnel Director Relations c.s.o. Director Welfare Member (Administration) Superintending Engineer / Director Planning General Director Discipline Deputy Director/ Executive Engineer Assistant Engineer Director, Engineering Academy, Kaptai Director, Estate & Transport SECRETARY (BOARD) Planning Chief Engineer Water Investigation Chief Engineer Planning SE / Director Planning Schemes - I Member (Planning) FIGURE IX-1-2 SE / Director Planning Schemes - II Chief Engineer Hydrology Chief Engineer/ D.G.,RRI - 2

FIGURE IX-2-1

STRUCTURE OF BWDB FOR


NORTH RAJSHAHI
IRRIGATION PROJECT



NOTE; S. E. ------ SUPERINTENDING ENGINEER

XEN ------ EXECUTIVE ENGINEER

SDE ------ SUB-DIVISIONAL ENGINEER

FIGURE I X-2-4 LOCAL COORDINATION COMMITTEE

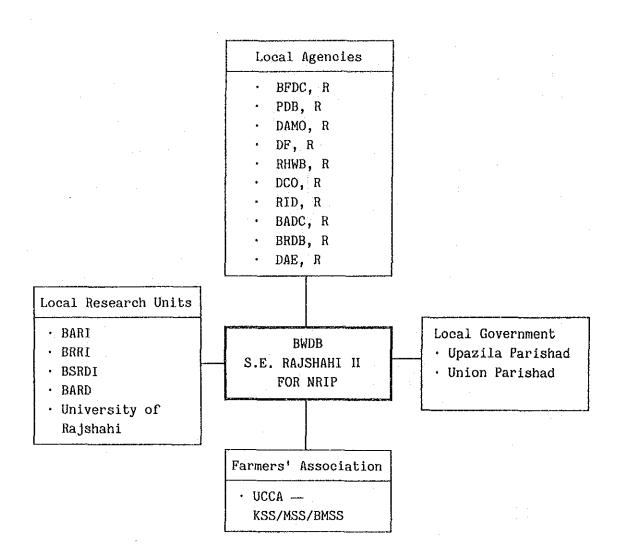
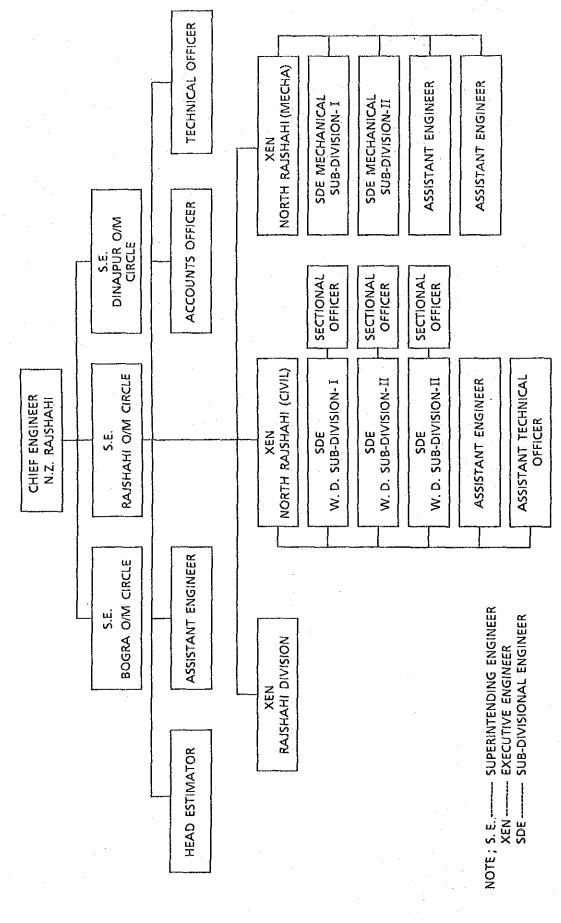



FIGURE IX-3-1

The Project Implementation Schedule

	1st Year		2nd Year	ri Li	3rd)	Year	#th	Year	5th	Year		6th Ye	Year	7th	Year	
	I II	IШ	п	目	11 1	Ħ	Н	II III	Н	п	I	Ħ,	目	1-1	H	目
I Detailed Design		-										_				
II. Tendering			<u> </u>		-		:							-		
II. Loan Procedure		Ш	+		_											<u> </u>
N. Construction	-					7										
1. Land Acquisition			-1-											 		
2. Procurement of Equipment	•	:		1						1						
3. Preparation Works								1								
4. Flood Plain Area											_			 - I		
a. Pumping Station								_								
b. Irrigation Canal								1			-	1				
c. Irrigation Facilities								-			-	7				
d. Drainage Facilities					T			\parallel	-							
e. Road and Bridge					T			Ш			+					
f. On-farm								1		-1		-1				
g. Transmission Line												.,				
h. Telephone Line																
5. Barind Area	·							_		-						
a. Pumping Station								1		-1-		_			-	
b. Irrigation Canal																
c. Irrigation Facilities								_		-					\parallel	Π
d. Road and Bridge		_								_1_	$\left\ \cdot \right\ $	1				
e. On-farm	-		_		_			1			-					
f. Transmission Line										i	-					
g. Telephone Line										T						
6. Agricultural Extension										_1_	+					
V.Consulting Service		T	-			-		+				-			+	
									-				_			
						l							-			1

PROPOSED ORGANIZATION CHART FOR OPERATION AND MAINTENANCE OF THE PROJECT FIGURE IX 4-1

