The cost disbursement schedule is as follows:

- 			:	•	(Un	it: mill	ion MŞ)
Year	SEK-1 (RES) 11.8MW	SEK-2 (RES) 17.0MW	K'WIT (RES) 25.1MW	MUKOH (RUN) 1.94MW	KAPIT-2 (RES) 4.2MW	PASIA (RUN) 12.4MW	MED-2 (RUN) 4.6MW
1	23.6	37.8	54.2	3.8	11.6	16.0	9.6
2	29.5	47.3	67.8	9.4	14.5	40.0	24.1
3	41.3	66.1	94.8	5.7	20.3	24.0	14.4
4	15.3	29.8	40.6	-	7.9	-	-
Extension	n* 7.9	8.0	13.5	2.4	3.7	7.0	
Total	117.6	189.0	270.9	21.3	58.0	86.0	48.1

....

1 . . .

Note : * Installation of 2nd unit

(2) OH cost

Operation and maintenance costs of the hydropower stations are estimated at 1.0% and 0.5% of the direct construction cost excluding engineering service and land acquisition/compensation costs.

14.3.2 Thermal power costs

(1) Construction cost

In view of relatively small size of the proposed hydropower schemes, diesel power is selected at this study stage to be the most-likely alternative thermal plant (Ref. Section 13.1 hereinbefore).

In developing the cost stream, following are taken into consideration:

- (a) Annual growth of power demand is less than 1 MW in all the demand centres. The extension of system capacity would be a series of installation of 1 MW class diesel generators.
- (b) Installation of diesel will be at 2-year interval or more (not to be in every year).
- (c) Retirement of the existing diesel generators will be as scheduled by SESCO up to year 1991 and subsequently at the end of service life herein assumed to be 15 years.

Unit construction cost of diesel generators to be newly installed is estimated as M\$3,200/kW (Ref. Subsection 13.2.1 hereinbefore). The equipment will be of a light fuel oil burning type.

(2) OM cost

(a) Fixed OM cost : 3% of capital cost per annum

(b) Variable OM cost : M¢ 0.52 (=US¢ 0.20) per kWh of generation

(3) Fuel cost

The following rates are used in evaluation:

Description	Light Fuel Oil	High Speed Diesel Oil
Fuel price <u>1</u> /	M cent 40/lit.	M cent 60/lit.
Consumption per kWh	0.3 lit.	0.3 lit.
Fuel cost per kWh	M\$ 0.12	M\$ 0.18
Note : 1/ Average pr	ice in 1985-86	

In calculating the fuel costs, following are also taken into account:

- (a) Fuel consumption for station use : approximately 4% of power generation for supply to the system,
- (b) Higher fuel price by 6% in Kapit area.

14.3.3 Cost streams

Merit of hydropower schemes is evaluated by comparing the following two cost streams:

- (a) All diesel programme (to represent a benefit stream)
- (b) Hydro + diesel programme (to represent a cost stream)

Construction of cost streams takes the following into consideration:

(a)	Investment horizon :	; 2	5 years from 1986 through 2010
(b)	Evaluation horizon :		5 years from that hydropower s commissioned
(c)	Power demand :		s projected by SESCO (Ref. 25, ee page 82)

14-- 5

(d) System capacity

: Peak demand + reserve capacity (largest diesel unit or 20% of peak demand, whichever is larger)

(e) Hydro energy

: A particular aspect is that, owing to relatively small size of power demands, all of hydropower energy would not be fed by the system during the initial period. Saleable hydro energy in each year was computed through a flow duration-load duration simulation analysis.

A cash flow schedule was prepared initially on the basis of financial cost for each scheme. Examples of the cash flow schedule are presented in Tables 14.2 to 14.6 for the cases of Mukoh, Pasia and Medamit-2, including that for the case of "All Diesel Programme" for Kapit and Limbang systems. These cash flow schedules are later used as the cost stream for economic analysis, after being converted to economic cost.

14.3.4 Economic costs used in evaluation

The evaluation is based on economic costs assessed for both hydropower and diesel alternatives. In this evaluation, the following conversion factors are introduced to derive the economic cost of each component of the works:

	Conversion Factor
 A provide a state of the state	
Hydro cost:	
- Civil works	0.76
- Access road	0.76
- Generating equipment	0.86
- Transmission line	0.85
- Contingency	Weighted average
	of above
- Operation and maintenance	0.97
Diesel cost:	
- Diesel capital cost	0.85
- Operation and maintenance	0.97
- Fuel	0.86
Source : Mini-Hydro Project, Final Re	port, ENEX

Mini-Hydro Consultants, May 1982

14.3.5 Evaluated indices

Evaluation is based on present worth of economic cost streams over the evaluation horizon set forth in Subsection 14.3.3 above. The cost stream analysis has revealed the following indices:

Evaluation Indices for Seven Schemes (Basic Case)

Demand Centre			Sarikei				
Scheme	SEK-1	SEK-2	K'WIT	MUKOH	KAPIT-2	PASIA	MED-2
Net present1/,2/ value, B-C (millio B/C 1/	-44.5 on M\$)	~65.3	-105.2	+1.0	-24.6	-1.1	-3.4
B/C 1/	0.75	0.67	0.66	1.04	0.57	0.99	0.96
IRR (%)	5.5	5.3	5.0	10.8	4.3	9.8	9.3

Note : 1/ At discount rate of 10% per annum 2/ Represent saving in thermal cost

As indicated above, favourable index values are accorded to three (3) schemes; Mukoh for Kapit system and Pasia and Medamit-2 for Limbang system.

14.4 Run-of-river Scheme with Regulating Pondage

(a) A set of the se

All of three (3) schemes favourably evaluated above are runof-river type development. For these schemes, an additional evaluation was attempted to examine merit of the scheme to have a diurnal peaking capability with provision of a regulating pondage.

In examining the plan, the pondage is planned to have a diurnal regulating capacity for 6-hour peak operation under a load factor of 0.5. The plant discharge is selected at two times greater than firm discharge.

The plans are evaluated by the method identical to that used in preceding Section 14.3. The results of the evaluation are summarized below in comparison with the plans examined in Section 14.3 (plans without regulating pondage):

	Mul	koh	Pa	asia	Med	amit-2
Item	Without Pondage	With Pondage	Without Pondage	With Pondage	Without Pondage	With Pondage
- Installed capacity (MW)	1.94	4.45	12.4	18.7	4.6	4.5
- Dependable capacity (MW)	1.94	4.45	8.5	18.7	2.0	4.5
- Annual energy (GWh)					·	. · · ·
- Primary	16.7	19.1	72.0	80.5	16.9	19.3
- Secondary	0	17.5	34.9	73.3	19.7	17.4
Total	16.7	36.6	106.9	153.8	36.6	36.7
- Construction		· · ·	·			· .
cost (M\$ mill)	21.3	37.1	86.0	108.6	48.1	51.1
- kWh cost						
(M¢/kWh)*	16.1	12.8	10.1	8.9	16.6	17.6
- EIRR (%)	10.8	9.3	9.8	9.1	8.9	10.8

Evaluation Indices of Three Run-of-River Schemes

* On basis that all energy is consumed.

It is seen in the table that relative merit of Medamit-2 site is much improved if the scheme is provided with a regulating pondage. Accordingly, Medamit-2 will be planned to have a regulating pondage to be used for diurnal peaking operation.

While, the plans at Mukoh and Pasia sites are evaluated to have a lower evaluation index in term of EIRR. The main reason is that the plan with a regulating pondage is too large in output capacity compared with demand level of the power supply system and relatively large investment cost required for the plan with a pondage is not justified at this moment.

14.5 Schemes Proposed for Subsequent Feasibility Study

Based on the outcomes of comparative studies in preceding Sections 14.3 and 14.4, this Section preliminarily examines the candidate schemes to be taken up in subsequent feasibility study.

The selection was made in a manner firstly to list one scheme (basically the scheme giving the higher EIRR value) for each load centre, but exceptionally for Limbang area two (2) competitive schemes are listed for a further comparison in succeeding Sections.

Load Centre	Power De 2000	<u>mand(MW)</u> 2010	Name of Scheme	Installed Capacity(MW)	EIRR (%)
Sri Aman	8.6	17.0	Sekrang-1	11.8	5.5
Sarikei	13.0	27.0	Kanowit	25.1	5.0
Kapit	2.5	4.2	Mukoh	1.94	10.8
Limbang	7.0	12.4	Medamit-2 Pasia	4.5 12.4	10.8 9.8

Prospective Site for Each Load Centre

Of the above, Sekrang-1 and Kanowit have relatively low EIRR values and are presumably out of further consideration by SESCO. The remaining three (3) schemes, Mukoh, Pasia and Medamit-2, are finally retained as the candidates for feasibility study. The main features of these (3) schemes are reproduced below for mutual comparison of the schemes.

	Name of Scheme			
Description	Mukoh	Pasia	Medamit-2	
Load centre	Kapit	Limbang	Limbang	
Type of development	RUN	RUN	RUN with regulatin pondage	
Installed capacity (MW)	1.94	12.4	4.49	
Annual energy (GWh) - Primary - Secondary Total	16.7 0 16.7	72.0 34.9 106.9	19.3 17.4 36.7	
Construction cost (million M\$)	21.3	86.0	51.1	
Cost indices - Const. cost/kW	11,210	6,940	11,380	
(M\$/kW) - Const. cost/kW	1.28	0.80	1.39	
(M\$/kWh*) - kWh cost (M ¢/kWh*)	16.1	10.1	17.6	
EIRR (%)	10.8	9.8	10.8	

Scheme Proposed for Feasibility Study

Note: * On basis of total annual energy

Breakdowned details of the estimated construction cost are contained in Appendix VII (Volume VIII). It is furthermore noted that a flow duration curve derived from monthly runoff data instead of daily runoff data is used for the evaluation of runof-river schemes, and that Supplementary Note No. 6 in this volume tries to evaluate the three remained schemes with the flow duration curve prepared with daily runoff data for reference.

14.6 Sensitivity Tests

A further evaluation was made for the three favourably evaluated schemes (Mukoh, Pasia and Medamit-2) to examine sensitivity for several cases of variation in conditions relevant to the projects. The tests examined are the following cases:

- (a) Variation in the construction cost on hydro and diesel plant and the fuel price
- (b) Extra power demands from timber industries for Mukoh

(c) Consideration of benefits accrued from transfer and cold reserve of excess diesels.

14.6.1 Variation in the construction cost and fuel price

The sensitivity tests varying the construction cost on hydro and diesel plant and the fuel price are examined for the following cases, placing an emphasis on the variation of fuel price:

Case	Basic Fuel Price	Escalation	Diesel Cost	Hydro Cost
A1	As estimated (M ¢ 40/lit)	0	-20%	As estimated
A2	na an H art Na an Artainn an Artainn an Artainn	0	As estimated	+20%
A3	n an	0	As estimated	-10%
A4	11	2% p.a.	As estimated	As estimated
B1	Price as at March 1986 (M ¢ 34.3/lit)	Ο	R	n ale di n
B2	tt	3.86% p.a.	F2	EA

A tentative rate of 2% per annum is based on the assumption that the price of oil will increase in a long term, while the rate of 3.86% per annum is based on the SESCO's forecast.

The results of sensitivity test varying the construction cost on hydro and diesel plant and the fuel price are detailed in Table 14.7. The EIRR values obtained are summarized below:

	Economic	Internal Rate	of Return (%)
Case	Mukoh	Pasia	Medamit-2
Base <u>Sensivity test</u>	10.8	9.8	10.8
A1	10.0	9.3	9.9
A2	8.8	8.3	8.7
A3	12.0	10.8	12.1
A4	13.8	12.7	13.7
B1	9.7	9.0	9.7
B2	15.5	14.5	15.3

Result of Sensitivity Test

The above shows that all three schemes have a fair viability in all cases, with IRR to be higher than 8%.

It is projected that oil price would gradually increase over a long term. If this is taken into account, the viability of the schemes would be as high as 13 to 15% in terms of EIRR value (represented by Cases A3 and B2 above).

14.6.2 Extra power demands from timber industries for Mukoh

There is a great possibility of future power demand increase in Kapit area in view of potentiality for development of timber industries in the area. A sensitivity test is examined to see how the merit of Mukoh scheme would be improved in case such incremental demands from timber industries (saw mills) arise.

It is at moment not known in what extent timber companies would pay interest to future improved supply condition in Kapit area which would be attainable by incorporation of the Mukoh scheme.

This study assumes the following three scenarios of increment of demands:

- (a) Demand from timber industries will be 0.5 MW in 1994 when the Mukoh is commissioned and thereafter increase by 0.1 MW per year up to 1 MW in total demand.
- (b) Demand will be 1.0 MW initially in 1994 and increase at a rate of 0.2 MW per year to 2 MW in total demand.
- (c) Demand in Kapit area is as large as 6.6 MW in 1994, which would feed all primary energy from the Mukoh scheme (16.7 GWh). This case represents that most part of hydro benefit arises from the beginning.

Load factor is assumed to be 0.5.

Two (2) alternative development scales examined in Section 14.3 and 14.4 are also taken into consideration in this study as follows:

Case	Installed capacity (MW)	Energy (GWh)	Descript	lon
Case-1	1.94	16.7	Run-of-river at minimum	development scale with
			$Q = 7.4m^3/s$ discharge)	(firm
		5.1		
v it j	4 · · ·		+	

Case-2 4.45 36.6 Run-of-river development of Q =14.8 m³/s (2 times of firm discharge)

The detailed features are given in Table 14.8.

The evaluation of scheme was made by preparing cash flows. The results evaluated in terms of EIRR are summarized as follows:

Development Scale Case-1 case-2 (1.9 MW) (4.5 MW) Demand Scenario في حد الله الله عنه الله الله عنه عنه عنه الله عن عنه الله عن عنه الله الله والله الله عنه الله الله الله الله (a) Additional demand 0.5 MW 1994 + 0.1 MW x 5 years 12.5 10.6 (b) Additional demand 1.0 MW in 13.2 1994 + 0.2 MW x 5 years 12.0 (c) System demand suffuciently large at 6.6 MW in 1994 15.7 15.8

As seen above, the attractiveness of Mukoh scheme will be significantly improved if the scheme supplies its unused energy to timber industries. It is noted that Case-1 (run-of-river development as a base power plant) remains to be more beneficial than Case-2 in cases of demand scenarios (a) and (b). However, Case-2 turns to be attractive in demand scenario (c). Further details are refer to Supplementary Note No. 2 in this volume.

14.6.3 Consideration of transfer and cold reserve

The development of a hydropower scheme with a relatively large scale on the isolated power system will make possible the transfer and cold reserve of diesel plant retained in the power system beyond the reserve capacity, which are taken into account as the negative cost and reduction of 0 & M costs in the cash flow diagram of economic evaluation, respectively. The merit of transfer and cold reserve on excess diesel plant is examined as the sensitivity test of Mukoh and Medamit-2. Following are the conditions and assumptions for this sensitivity test:

(1) Excess diesel plants will be tranferred to other load centres, if they are not required in the system at least for succeeding three years.

A criterion given herein is that, during initial period after removal of excess diesel units, the system should still retain a sufficient capacity of diesel units which would be capable of meeting the demand even under

Evaluated Index (EIRR in %)

malfunction of one unit of hydropower plant. Only surplus diesel unit beyond this requirement is transferred to the other places.

- (2) Excess diesel plants will be kept as cold-reserve unit, if they are again required within the succeeding three years.
- (3) In the evaluation, costs of transferable diesel plant are regarded to be saving in purchasing new diesel plant otherwise required at the other load centres, which is counted as benefit accorded to the hydropower project. The value of diesel plant is estimated at 80% of equipment cost $(M$2,000 \times 0.8 = M$1,600/kW)$ after deduction of removal costs.

In case of cold reserve, saving of fixed O/M cost on diesel units is counted in the evaluation.

Alternative capacities examined in the study are as follows:

Mukoh	Medamit-2	Remarks
1.94 MW	4.5 MW	Base case
3.1 MW	5.5 MW	Alternative case-1
4.2 MW	6.5 MW	Alternative case-2

The plant will be installed at its full capacity in 1994, i.e. installation of two units at one stage.

Results of evaluation are summarized hereunder:

	· · · · ·			· · ·	
Site	Installed capacity of hydropower (MW)	Transferable diesel capacity (MW)	Duration to the next installation of diesel (year)		EIRR (%)
1.Basic case	(not consider	ing transfer a	nd cold resea	rve)	
MUKOH	1.94	—	• • • • • •	1.0	10.8
MEDAMIT-2	4.49	~	-	2.3	10.8
2.This Study	(considering	transfer and c	old reserve)		
MUKOH	1.94	1.3	4	2.6	12.0
	3.1	2.7	.7	4.0	12.1
: .	4.2	2.7	14	0.6	10.3
and the second second		· · ·	and the second	· · · ·	

MEDAMIT-2	4.49	2.1	3	1.5	10.5
	5.5	2.3	4	3.9	11.1
	6.5	2.8	5	1.5	10.4
		به جمع بری جو بی بری بری دی است بانه خان این بری بر			

As shown in the above table, the optimum development scale is evaluated to be 3.1 MW and 5.5 MW for Mukoh and Medamit-2, respectively, which are larger in installed capacity than the base cases by around 1 MW. Furthermore, if this evaluation method (transfer of excess diesel units) is taken into account, EIRR value is improved by 1.3 and 0.3%, respectively.

It will be interesting to evaluate the above, including study on practicability of transfer of diesel units. Further details are discussed in Supplementary Note No. 8 in this volume.

14.7 Technical Features of Selected Three Schemes

Table 14.9 summarizes technical features of the three schemes. In general, no major technical constraint is foreseen for all the schemes. Major works involved in the scheme are the construction of an intake weir of about 5 to 20 m high and a headrace tunnel of about 2 m diameter, while geology at all the sites is assessed to be competent to accommodate these structures.

A difficulty to be noted is the remoteness of Pasia site, due to which the scheme would involve a relatively heavy work for the access and transmission line as noted in the table.

No specific social/environmental problem is foreseen for all three (3) schemes. Common to all schemes, land acquisition/ resettlement requirement is minimal and the river is not used for navigation in the reach where the scheme is proposed. A particular aspect is that logging activity is in progress or is about to start in all three basins. The subsequent study should take into account this aspect in its runoff study. In case subsequent study reveals the passage of migratory fish in the river reaches, a provision of fish will have to be planned at the weir.

14.8 Schemes to Proceed into the Feasibility Study Stage

A steering committee meeting was held at Kuching on January 21, 1987 for selecting the schemes to proceed into the feasibility study stage among three promising schemes in development; Mukoh, Pasia and Medamit-2. Taking into account the project viability discussed above, Mukoh for the Kapit load centre and Medamit-2 for the Limbang load centre were then selected as the schemes to advance to the feasibility study stage.

A standard design criterion was proposed for the estimate of construction cost in the identification stage as discussed in Section 11.2 due to the reason that an aim in the identification stage is to find out the relative attractiveness in development among the identified schemes. The characteristics at the site, when the construction cost is estimated for Mukoh and Medamit-2 in the coming feasibility stage, should carefully be taken into account not only to increase the economic viability of the scheme, but also to reduce the financial burden to the executing agency.

A cut-and-cover conduit type was proposed besides the tunnel type as the headrace of Mukoh in Supplementary Note No.3 in this volume in order to increase the economic viability. Although cost comparison on both types showed the tunnel plan is less costly, a cut-and-cover conduit type would be worthly to be considered as an alternative headrace in the coming feasibility study.

Economic viability at the minimum development of Medamit-2 was examined on Supplementary Note No. 4 in this volume for reducing the burden of initial investment cost, obtaining the promising figures in the evaluation index. This plan with a minimum development scale would be worthy to be taken into account as an idea of stage development.

A 66 kV transmission line of 60 km long is required for supplying the power generated at Medamit-2 to Limbang and is one of shackles for its development. Steel is originally conceived as the material to build towers for supporting the transmission line, but the use of wooden poles was examined on Supplementary Note No. 5 in this volume for reducing the construction cost, resulting in much improvement in the economic viability. Wooden poles will be considered in the feasibility study stage as one of methods to support the transmission line.

14.9 Power Supply to Lawas and Brunei on Pasia

Pasia was intended to develop as the power source to the Limbang area. The distance from the project site to Limbang is some 60 km in a crow line, but the geography that East Brunei is located between the site and Limbang makes the transmission line of 110 km long. In addition, the development scale is limited to 12.4 MW to meet the power requirement of Limbang in 2010, which would be far small compared with the optimal development scale. Due to the reasons mentioned above, Pasia results in less viable compared with Mukoh and Medamit-2.

A study is examined to see additional merits which may be accorded to the Pasia scheme, in case it supplies power to Lawas and Brunei (both east and west parts of Brunei) in addition to Limbang area.

14.9.1 Development scale of Pasia scheme

Following four alternative cases of development at Pasia were examined for this purpose:

Case	Installed Capacity (MW)	Energy (GWh)	Description
Case-1	12.4	106.9	Run-of-river (ROR) type at a scale with $Q = 5.3 \text{ m}^3/\text{s}$
Case-2	25.9	189.0	ROR at a scale assessed to produce lowest cost energy; (refer to Fig. 14.1) $Q = 11.1 \text{ m}^{-3}/\text{s}$
Case-3	18.7	153.8	ROR with a regulating pondage $Qmax = 7.2 m^3/s$
Case-4	29.0	211.6	ROR with a regulating pondage = 11.1 m ³ /s (same discharge as for Case-2)

14.9.2 Transmission line system

Power will be supplied to the following demand centres:

Maj	or Load Centres	1990	Demand 1995	Level (MW) 2000	2010
(a)	Lawas	1.2	1.8	2.5	4.5
(b)	East Brunei		(To be	informed)	
(c)	Limbang	3,2	5.0	7.0	12.4
(đ)	West Brunei		(To be	informed)	

In the above case, the transmission line route would be as given in Fig 14.3. In order to ensure a reliable supply of power to Brunei, the line would be of double circuits construction. The line voltage and length will be:

Section	Line Length (km)	Voltage/ circuit
Pasia - Trusan	69	66 kV DC
Trusan - Brunei (east) border	3	66 kV DC

Brunei (east) territory	26 66 kV DC
Border - Limbang	7. 66. kV DC
· · ·	order 15 66 kV DC
(66 kV DC)	120 km
Trusan - Lawas	17 33 kV DC
Total	17 km

14.9.3 Evaluation results

The method of evaluation is virtually same as adopted in Section 14.3.

The results of evaluation are shown below:

Evaluated Indices

Description C	ase-1	Case-2	Case-3	Case-4
Type of development	ROR	ROR	ROR with pondage	ROR with pondage
Power :				
Installed capacity (MW)	12.4	25.9	18.7	29.0
Dependable output (MW)	8.5	8.5	18.7	29.0
Annual energy (GWh)	106.9	189.0	153.8	211.6
Evaluation indices :	* .			
kWh cost* (M¢/kWh)	10.3	8.0	9.0	8.0
Net present value** (million M\$)	27.8	58.9	51.2	72.9
B/C**	1.35	1.61	1.59	1.77
EIRR	18.5	21.4	20.5	21.9

** At discount rate of 10% p.2

As indicated above, high evaluation is accorded in all alternative cases. Although relative merits of both Case-2 and Case-4 in terms of EIRR are almost comparable, a recommened plan would be Case-4 in view that it has a larger dependable output capacity and accordingly is more flexible for meeting the demands in Brunei.

Although it is noted, however, that the above gives optimistic indices in view of an assumption that all the surplus energy would be saleable to Brunei, Pasia is worthy to keep as the scheme to proceed into the feasibility study stage. Further detailed discussions are referred to the Supplementary Note No. 1 in this volume.

14.10 Preliminary Study on Low Head Schemes

The schemes identified for the Sri Aman and Sarikei demand centres have low viability compared with those in the Kapit and Limbang load centres. The sites where relatively high head can be created were searched as a basic rule for identifying hydropower schemes. An attempt to search the sites with possibilities of hydropower schemes by ample discharge even having relatively low head was made to meet the power demands particularly for the Sri Aman and Sarikei areas.

The proposed schemes would be a scale meeting future power demand of 2 to 32 MW (see Subsection 7.2.3), and the sites should have a relatively large discharge, i.e. a large runoff catchment area if planned as a low head scheme. Such sites would only be found in lower river reaches already developed in most cases to some extent, whereat impounding of water at a high level is practically difficult. Hence, this study tentatively assumes the scheme to have a 3 m head of water impounding which would presumably be possible within the existing river channel, although the actual condition may vary by site.

Through a study on 1 to 50,000 scale maps, the following five (5) sites were identified to be potential sites:

Load Centre	Site (River)	Catchment Area, km ²	Air Distance from Load Centre, km
Sri Aman	Btg. Lupar	2,220	25
Sarikei	S. Kanowit	2,530	50
Kapit	Btg. Katibas Btg. Baleh	3,150 12,150	45 20
Limbang	S. Limbang	2,820	30

The location of sites is shown in Fig. 14.4.

Outlines of the proposed schemes are shown in Table 14.10. Information required for estimating the basic features of schemes (such as length of weir, etc) was obtained on 1 to 50,000 map.

Construction cost was estimated on a very preliminary basis by applying the same unit rates to all the sites. The proposed schemes are compared in terms of cost indices based on the above information as summarized below:

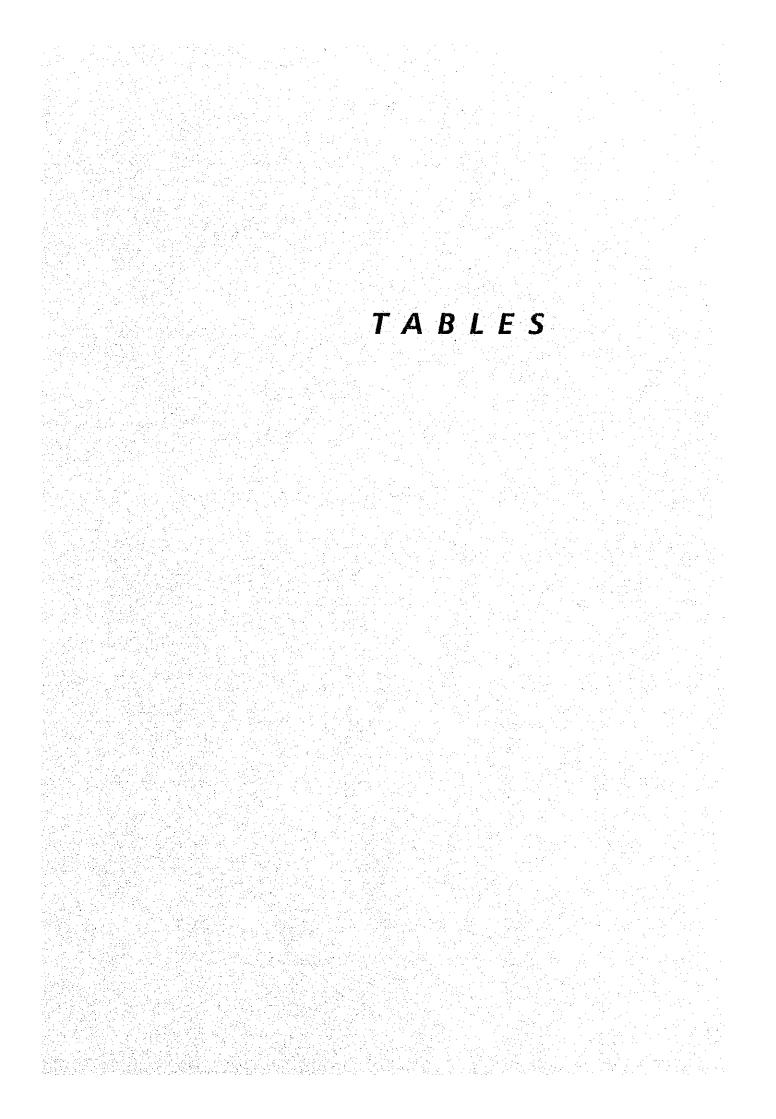
				·	
Description	Btg. Lupar	Sg. Kanowit	Btg. Katibas	Btg. Baleh	Sg. Limbanç
Installed capacity(MW)	5.7	3.2	5.0	24.5	3.0
Annual energy (GWh)				an an the states An an	
	24.7	13.9	21.5	105.1	12.9
_		11.1	17.2	84.1	10.3
		25.0	38.7	189.2	23.2
Construction cost					
	67.0	49.5	72.0	330.0	56.0
Cost indices					
- Construction cost/)	(W	1. Sec. 1.		e e sta	
(M\$/kW) 1		15,470	14,400	13,470	18,670
- Construction cost/1					
(M\$/kWh)	1.51	1.98	1.86	1.74	2.41
- kWh cost*					
(M¢/kWh)	19.0	24.9	23.4	22.0	30.4
EIRR (%)	7.1	6.6	4.2	2.4	4.6

Comparison of Low Head Schemes

Note: * Primary energy + 1.0 x Secondary energy

Batang Lupar has a relatively fair index, i.e. 7.1% in EIRR. The present evaluation is based on supply of power limited to Sri Aman area where the size of power demand is still relatively small; 2.2 MW in 1986, 3.4 MW in 1990, 8.6 MW in 2000 and 16.9 MW in 2010. If all energy is consumable, the index will be a higher figure.

Notwithstanding a relatively high kWh cost, Sungai Kanowit is accorded a fair index of 6.6% as compared with other three schemes. This is due to relatively large demand size of Sarikei which consumes most of Sungai Kanowit energy from the initial period.


Further details are discussed in Supplementary Note No.7 in this volume.

Reference

- 1. Colombo Plan, "Hydro-Electric Survey, Sarawak, Report on Preliminary Survey", March/April, 1962
- Department of Statistics, "Annual Statistical Bulletin, Sarawak (1983-1984)"
- 3. DID, "Sarawak Hydrological Year Book", 1962-1980
- 4. DID, "Estimation of the Design Rainstorm (Hydrological Procedure No.1)", 1973
- 5. DID, "Estimation of Design Rainstorm in Sabah and Sarawak (Hydrological Procedure No.26)", 1982
- 6. DID, "Average Annual Surface Water Resources of Sabah and Sarawak (Water Resources Publication No.15)", 1984
- 7. ENEX Mini-Hydro Consultants, "Final Report on Hydrological Study for Sarawak", March, 1982
- 8. Government of Malaysia, "Fifth Malaysia Plan (1986-1990)", 1986
- 9. Japan Society of Electrical Engineering, "Handbook on Electrical Engineering (Japanese version)", 1985
- 10. JICA, "National Water Resources Study, Malaysia", October, 1982
- 11. Juridical Foundation of New Energy, "Manuals for Planning and Designing the Small Scale and Mini-Hydropower Station (Japanese version)", 1983
- 12. L.Linsley, "Hydrology for Engineers (Third Edition)", McGRAW-Hill, 1982
- 13. M+R international, "Prefeasibility Study Limbang River Basin", January, 1980
- 14. SAMA Consortium, "Master Plan for Power Systems Development", April, 1981
- 15. SAMA Consortium, "Feasibility Report on Bakun Hydro-electric Project", November, 1983
- 16. SESCO, "21st Annual Report", 1983
- 17. SESCO, "22st Annual Report", 1984
- 18. SESCO, "Preliminary Survey of Hydro-electric Potential, Sarawak", Revised January, 1979

- 19. SESCO,"Preliminary Investigation of Mini-Hydroelectric Potential of Sarawak", February,1980
- 20. SESCO,"Preliminary Appraisal of Ulu Batang Ai Hydro-electric Project," May,1984
- 21. Snowy Mountain Engineering Corporation,"Feasibility Report on Kenyir Multi-Purpose Dam Project", February,1976
- 22. Snowy Mountain Engineering Corporation, "Feasibility Report on Batang Ai Hydroelectric Project", December, 1978
- 23. Toshio TAKENOUCHI (JICA)"Hydrological Characteristics of Sarawak (Vols I to III)", October,1982
- 24. WMO, "Manual for Estimation of Probable Maximum Precipitation (Operational Hydrology Report No.1)", WMO-No.332,1973
- 25. SESCO, "Data and Information on Small-scale Hydroelectric Power Project in Sarawak, Malaysia", September 1986

a da anti-arresta de la companya de la comp

INSTALLED CAPACITY, GENERATED ENERGY AND CONSUMPTION OF ELECTRICITY IN SARAWAK TABLE 1.1

•

) ? C () {	Installed	era	Number		Consumption	(CWh)	•
	reat Capacity Energy (M) (KW) (KW)	u)	Consumer	Domestic	Industrial	Street	Total
1975	80,885	159,924	46,631	41,662	125,450	2,924	170,034
1976	36, 602	223,555	50,138	47,337	142,415	3,432	193,133
7761	102,184	258,155	53,477	53,137	164,217	3,271	220,625
1978	138,362	301,193	61,433	56,458	198,411	3,412	258,280
1979	147,387	343,178	65,722	69,034	227,240	3,688	299,962
1980	152,755	383,319	73,212	93,270	232,502	4,194	329,965
1931	156,002	429,201	83,358	107,655	259,026	4,396	371,077
1982	189,246	463,059	94,200	120,788	286,658	4,807	412,253
1983	203,499	551,852	106,102	147,464	328,066	5,408	480,938
1984	228,508	601,987	116,107	148,295	356,279	5,806	510,379

Source : Annual Statistical Bulletin Sarawak, 1984

.

TABLE 3.1 ROUTE LENGTH OF DISTRIBUTION NETWORK

				(Unit:km)
Voltage Type	33 kV	11 kV	6.6 kV	400/230V
Overhead Line Underground	140	702	95	1,864
Cable	22	474	114	346
Total	162	1,176	209	2,210

TABLE	3.2	ENERGY	GI

GENERATED IN SARAWAK

			(1	Unit : MWh)
Station	1982	1983	1964	1935
1. Kuching	230,048	261,034	295,458*	344,975*
2. Sibu	80,217	88,018	91,941	101,412
3. Miri	70,224	78,053	31,186	92,343
4. Bintulu	24,996	33,615	37,908	53,481
5. Sarikei	9,016	9,718	10,234	13,375
6. Sri Aman	8,372	9,294	9,546	10,223
7. Limbang	7,506	8,781	9,462	10,609
8. Kapit	3,465	3,838	4,209	5,038
9. Marudi	3,091	3,192	3,312	3,614
10. Lawas	2,024	2,619	2,355	3,544
Total				
(For Whole Sarawak)	451,242	513,397	563,317	656,593

Remarks :

* 1984, 1985 for Kuching inclusive of Batang Af Station

T – 2

TABLE	3.3	ENERGY	SOLD	IN	Sarawak	

Station	14	1982	1983	1984	1985
1. Kuching		191,954	220,586	239,067	270,682
2. Sibu	5.15 A			78,597	84,572
3. Miri		56,168		66,403	62,686
4. Bintulu		21,441	29,572	32,849	47,845
5. Sarikei		8,291	8,863	9,672	10,890
6. Sri Aman		7,222	7,966	8,170	8,776
7. Limbang		6,331	7,499	8,083	9,239
8. Kapit	4.1.1.1.1.1.1.1	3,038	3,398	3,689	4,611
9. Marudi		2,584	2,737	2,834	3,117
0. Lawas	1. S.	1,688	2,175	2,338	.2,835
 Total			· · · · · · · · · · · · · · · · · · ·		
For Whole Sa	rawak)	382,604	445-518	473.806	532,897

TABLE 3.4 MAXIMUM DEMAND IN SARAWAK

		ter en		(Unit : kW)
Station	1982	1983	1984	1985
1. Kuching	54,140	55,600	60,500	68,500
2. Sibu	17,050	18,050	19,320	20,450
3. Miri	12,350	13,810	15,300	16,500
4. Bintulu	5,409	6,532	7,200 ·	11,500
5. Sarikei	1,910	2,060	2,480	3,030
6. Sri Aman	1,751	1,993	1,960	1,971
7. Limbang	1.541	1,659	1,912	2,006
8. Kapit	738	796	945	1 184
9. Marudi	800	589	661	782
10. Lawas	430	582	585	820
Total (For Whole Sarawak)	100,580	107,194	116,939	133,507
		~~~~~~		

Station	1982	1983	1984	1985
1. Kuching	36,737	40,136	44,261	48,874
2. Sibu	16,754	17,923	18,790	19,835
3. Miri	8,939	10,234	11,386	12,673
4. Bintulu	3,018	4,027	4,756	5,827
5. Sarikei	2,760	2,860	3,161	3,522
6. Sri Aman	2,637	2,801	2,966	3,203
7. Limbang	1,753	1,960	2,109	2,209
8. Kapit	742	817	958	1,074
9. Marudi	1,032	1,079	1,141	1,193
10. Lawas	595	733	764	737
Total		فظ غلة 45 كل جن جاء جيز عند غنة ونة (	- Ann Any Mar yay <u>an</u> 199 199 199 An An An ar	
(For Whole Sarawak)	93,200	105,102	115,106	128,949

TABLE 3.5 NUMBER OF CONSUMER IN SARAWAK

les en la construction de la construction de la

# TABLE 3.6PRIVATE POWER SECTOR

Descriptio Name		Installed Capacity	v Location
Malaysia Liquifed Natu Gas (MLNG)	ural	(S) 3 x 10 MW (G) 2 x 20 MW	Dintulu
Asea Bintulu Fertilize (AGF)	er.	(D) 2 x 8 MW	ditto
Sarawak Shell Berhad (SSB)	• •	(D) 7 x 1 NW	Miri
Total			

(D) : Duel Fuel.

T-4

Station	Name of Major Consumers	Nonthly Power Consumption	Remarks
Sarikei	CTC Factory	78,720	
and the second sec	King Eastern Food	37,020	June 1986
	Sea Food Trading Rejang Icework	34,525 26,506	1. Sec. 1997
	Govt. Hospital	21,002	
	Total	197,773	
Sri Aman	JKR Pump House	66,390	July 1986
	Tentera	53,367	June 1986
•	RTM	36,790	August 1986
	Telecom	26,220	August 1986
· · · · ·	General Hospital	24,614	July 1986
· · ;	Total	207,881	-
Limbang	Limbang Trading Co.,	86,653	
	Transmitting	54,702	
·	Hospital	26,407	
	Microwave Station Broadcasting Station	20,403 19,526	
	Total	207,691	(Share=23%)
	Energy Sold/month	908,409	
Kapit	Water Treatment Plant	38,370	
	Federal Complex	11,298	· · · ·
	Booster Pump House	28,988	
	VHF Station	10,163	
	Meligai Hotal	13,612	
	Total	102,431	(Share=24%)
	Energry Sold/month	431,209	tere data data data data data data data dat

MAJOR CONSUMERS IN THE SELECTED 4 LOAD CENTRES TABLE 3.7

The figures for both Limbang and Kapit snow the ave over past three months from June to August, 1986.

TABLE	3.8	SYSTEM	LOSSES	AND	STATION	USES

(Unit : MWh)

Deso Year	cription Energy Generate	Energy d Sold	Station Uses	System Losses	Remarks
Limbang					
1983	8,781	7,499	264	1,018	· · · · ·
1984	9,462	8,083	272	1,107	
1985	10,609	9,239	320	1,050	
1986	7,613	6,727	283	603	until Aug.
Total	36,465	31,548	1,139	3,778	
Kapit			• • • •		•
1983	3,838	3,398	156	284	
1984	4,209	3,689	1.67	353	
1985	5,038	4,611	191	236	
1986	3,676	3,337	139	200	until Aug.
Total	16,761	15,035	653	1,073	

TABLE 3.9 MONTHLY OIL CONSUMPTION

(Unit : kl)

t singe

11

Year	Description		Lubricating Dil	Remarks
Limbang 1983		2,494	38 ¹	
1984		2,640	53	
1985		2,900	46	
1986		2,045	36	Unitl Aug
Total		10,079	173	···
Kapit (c	liesel)			
1983	· · · · · · · ·	1,164	9	
1984		1,294	10	
1985	•	1,501	13	
1986	te de la construcción de la constru La construcción de la construcción d	1,070	о 	Until Aug
Total		5,029	40	

to light fuel from April, 1986.

Kuching/ )	•				
Batang Ai )	No addition		• • • • • • •	. *	
Sri Aman )					
Sibu					· .
Mukah	1	280	D	в	198
	<b>1</b>	450	D	В	198
. *	1		D	В	198
	. 1	600	D	В	199
Sarikei	No addition	•			
Vonit	4	200	D	12	198
rapic				D	190
•				7)	
· · · · · · · · · · · · · · · · · · ·					198
	1			B	199
	С. До		· :	· .	
Miri	1	15,000	GT	В	198
	1	20,000	GT	B	198
Bintulu	1 : 1	10,000	GT	B	198
Mamudi	2	200	n	· מ	1.98
Maruur					199
	<b>S</b>		D	5	
Limbang	1	600	D	В	198
<b>j</b>	1		D	a B	198
		•			
	2	75	H	В	: -
Lawas	1	400	D	В	198
	4.57.0			~	
Other Station					198
1					198
					198
					1.98
					199 199
	*3	*450	H	B	198
	Sri Aman ) Sibu Mukah Sarikei Kapit Miri Bintulu Marudi Limbang Lawas Other Stations	Sibu Mukah 1 1 Sarikei No addition Kapit 1 (retire 1 un (retire 2 un 1 1 Miri 1 Bintulu 1 Marudi 2 1 Limbang 1 1 2	Sibu Nukah 1 280 1 450 1 300 1 600 Sarikei No addition Kapit 1 300 (retire 1 unit 75 kW in (retire 2 units 144 kW ex 1 400 1 1,000 Miri 1 15,000 1 20,000 Bintulu 1 10,000 Marudi 2 300 Limbang 1 600 Limbang 1 600 Limbang 1 600 Other Stations *70 *5,775 10 75 *11 *1,275 *16 *1,581 *13 *1,361	Sibu Mukah 1 280 D 1 450 D 1 300 D 1 600 D Sarikei No addition Kapit 1 300 D (retire 1 unit 75 kW in 1986) (retire 2 units 144 kW each in 198 1 400 D 1 1,000 D 1 1,000 GT Miri 1 15,000 GT Bintulu 1 10,000 GT Marudi 2 300 D Limbang 1 600 D Limbang 1 600 D Limbang 1 600 D Other Stations *70 *5,775 D 10 75 D *11 *1,275 D *16 *1,581 D *13 *1,361 D	Sibu Mukah 1 280 D B 1 450 D B 1 600 D B Sarikei No addition Kapit 1 300 D B (retire 1 unit 75 kW in 1986) (retire 2 units 144 kW each in 1987) 1 400 D B 1 1,000 D B 1 1,000 GT B Miri 1 15,000 GT B Bintulu 1 10,000 GT B Bintulu 1 10,000 GT B Limbang 1 600 D B 1 1,000 D B Limbang 1 600 D B Limbang 1 600 D B 1 1,000 D B Limbang 1 600 D B 1 1,000 D B Limbang 1 600 D B 1 1,000 D B 1 1,000 D B Limbang 1 600 D B 1 1,000 D B Limbang 1 600 D B 1 1,000 D B 1 1,000 D B Limbang 1 600 D B 1 1,000 D B Limbang 1 600 D B 1 1,000 D B Limbang 1 600 D B 1 1,000 D B 1 1,000 D B Limbang 1 600 D B 1 1,000

TABLE 3.10 SESCO'S POWER EXPANSION PROGRAMME

.

T-7

.

## TABLE 5.1 BASIN LOSS FOR THE SELECTED 15 RIVER BASINS

	ی ۱۹۹۰ و دیکر اور دیگر میں وی دیگر میں وی دیگر میں ور ور و و و و و و و و و و و و و و و و			( unit : mm )
Station	Catchmant Area		Annual Average	
Name	(sq.km)	Rainfall	Runoff Depth	Basin Loss
Serian	941	3,666	2,021	1,645
Sg.Bedup	46	3,516	2,050	1,466
Sg.Pedi	123	4,417	2,959	1,453
Buan Bidi	217	4,259	2,258	2,001
Kpg. Git	425	4,177	2,687	1,490
Lubok Antu	1,300	3,527	2,399	1,128
Rh. Bilong	21,266	4,539	3,039	1,500
Batang Balle	h 10,309	4,190	2,690	1,500
Nanga Gaat	1,701	3,750	2,538	1,212
Rumah Nyabon	g 10,931	4,131	2,631	1,500
Lio Matu	2,630	3,081	1,915	1,166
Long Pilah	9,292	4,049	2,579	1,470
Long Jegan	2,390	4,949	4,046	913
Long Yerawan	3,360	4,193	3,265	928
Ng. Medamit	2,817	4,312	2,157	2,155

• 19 V

:

. .

.

general de la terra

.

2. S 3. S SRI A 4. L 5. S	anowit ari-1 ari-2	1,331 160 20 184 360	3,600 3,300 3,400 3,400 3,400 3,400	1,480 1,480 1,480 1,480	2,120 1,820 1,920 1,950	2,822 291 38
1. K 2. S 3. S SRI A 4. L 5. S 6. S	anowit ari-1 ari-2 MAN emanak ekerang-1	160 20 184 360	3,300 3,400 3,400	1,480 1,480	1,820 1,920	291 38
2. S 3. S SRI A 4. L 5. S 5. S	ari-1 ari-2 MAN emanak ekerang-1	160 20 184 360	3,300 3,400 3,400	1,480 1,480	1,820 1,920	291 38
3. S SRI A 4. L 5. S 6. S	ari-2 MAN emanak ekerang-1	20 184 360	3,400 3,400	1,480	1,920	38
SRI A 4. L 5. S 6. S	MAN emanak ekerang-1	184 360	3,400	•		
4. L 5. S 6. S	emanak ekerang-1	360		1.450	1 050	
4. L 5. S 6. S	emanak ekerang-1	360		1.450	1 050	
5. S 6. S	ekerang-1	360		1,450	1 060	
5. S			3.400			359
	ekerang-2			1,450	1,950	702
1. 5.		508 65	3,400	1,480 1,430	1,920 1,820	975 118
	ria-2	90	3,500	1,470	2,030	183
					-,	
КАРІТ	•					
9. B	angkit	167	4,100	1,395	2,705	452
	apit-1	101	4,000	1,470	2,530	256
11. K	apit-2	220	4,100	1,430	2,670	587
12. A		59	4,000	1,355	2,645	156
13. I		163	3,500	1,465	2,035	332
14. 10	ekalit	518	3,250	1,490	1,750	912
LIMBA	NG	н 		. e 1		
15. T	rusan	2,027	3,500	1,370	2,130	4,318
16. T		221	4,000	1,415	2,585	. 571
17. M	edamit-1	145	4,000	1,390	2,610	378
	edamit-2	135	3,750	1,410	2,340	435
	imbany	1,860	4,250	1,440	2,810	5,227
20. L 21. P		718 177	4,250 3,500	1,470 1,180	2,780 2,320	1,996 . 411

TABLE 5.2 MEAN ANNUAL RUNOFF FOR 21 POTENTIAL SITES

,

T-9

ouration	Serian	Station Kg.Git	Pk.Buan Bidi	Average
10	176.6	194.8	190.2	187
20	140.2	142.8	129.7	138
30	115.9	117.3	107.8	113
40	98.3	97.0	91.2	. 96
50	83.7	80.0	78.2	81
60	73.4	65.9	65.6	68
70	63.6	52.5	55.3	57
80	50.8	39.9	46.9	46
90	39.8	29.6	38.7	36
95	31.6	20.4	32.7	28
97	27.6	17.8	30.4	25
100	13.5	6.8	21.6	14

#### TABLE 5.3 DIMENSIONLESS FLOW DURATION CURVE the first the states

. . .

TABLE 5.4 DIMENSIONLESS STORAGE DRAFT CURVE

	$(1, \dots, n, k) \in \mathbb{R}^{n \times n}$	- <u>-</u>		
		( u	nit: %)	
Ga	uging Stat	tion	Average	
Serian				
,				
0.3	1.6	1.7	1.2	
4.3	9.8	2.1	5.1	
8.1	16.7	5.1	10.0	
	24.4	9.3	15.6	
	33.2	15.3	22.4	
	45.4	23.1	31.3	
			39.9	
		· · · · ·	57.8	
			99.1	
161.0	313.5	118.1	197.5	
	Serian 0.3 4.3 8.1 13.1 18.7 25.4 31.1 48.6 92.7	Serian Kg.Git 0.3 1.6 4.3 9.8 8.1 16.7 13.1 24.4 18.7 33.2 25.4 45.4 31.1 58.7 48.6 85.2 92.7 149.8	Gauging Staticn Serian0.31.61.74.39.82.18.116.75.113.124.49.318.733.215.325.445.423.131.158.730.048.685.239.692.7149.854.9	

T-10

## ANNUAL MAXIMUM DAILY RAINFALL DEPTH AT RIDDAN

STATION NAME : RIDDAN STATION NO. : 1217011

YEAR	ANNUAL MAX, DEPTH (mm)				
	IDAY	2DAY	3DAY	5DAY	
1963	154.2	154.2	158.8	169.0	
1964	119.4	134.9	138.2	163.5	
1965	80.5	119.4	121.2	151.4	
1966	118,9	164.6	198.1	279.1	
1967	254.0	254.0	254.0	381.0	
1968	104.0	132.3	148.0	174.2	
1969	110.7	146.3	189.5	209.9	
1970	97.0	122.1	134.3	158.2	
1971	·	(miss	ing)		
1972	99.8	108.0	151.1	174.2	
1973	89.4	144.3	201.2	214.1	
1974	80.8	131.0	173.0	227.3	
1975	208.8	221.5	235.0		
1976	126.5	127.3	156.7	218.6	
1977 🗄	119.4	144.8	160.0	186.0	
1978	94.0	134.0	166.6	186.5	
1979	62.0	110.0	125.0	160.0	
1980	49.5	80.0	95.0	124.0	
1981	48.0	81.0	100.0	133.0	
1982	45.0	45.0	65.0	81.0	

T--11

.

TABLE 9.1

## TABLE 9. 2 ANNUAL MAXIMUM DAILY RAINFALL DEPTH AT KANOWIT W/WORKS

STATION NAME : KANOWIT W/WORKS STATION NO. : 2021036

YEAR	ANNUAL MAX. DEPTH (mm)				
	1DAY	2DAY	3DAY	5DAY	
1964	111.5	152.1	190.2	197.6	
1965	111.0	164.3	167.6	174.5	
1966	91.2	134.6	135.4	176.6	
1967	102.9	166.4	188.2	218.7	
1968	90.2	109.8	138.7	169.2	
1969	107.7	136.4	167.4	234.5	
1970	120.1	120.9	153.6	213.2	
1971	78.2	121.6	156.9	188.6	
1972	99.1	138.5	143.3	176.3	
1973	128.0	128.0	144.3	210,9	
1974	84.3	90.1	121.8	149.2	
1975	215.4	215.4	215.4	269.3	
1976	97.8	101.1	125.9	155.1	
1977	97.5	122.9	140.0	216.4	
1978	134.0	134.0	179.0	229.0	
1979	168.0	170.0	171.0	189.0	
1980	101.0	114.0	123.5	130.0	
1981		(miss	ing)		
1982	95.0	95.0	96.0	125.0	
1983	89.0	139.5	148.0	174.0	
1984	119.0	123.5	180.0	213.0	

.

STATION NAME : LONG BILONG STATION NO. : 4349016

YEAR	ANNUAL MAX. DEPTH (mm)				
	IDAY	2DAY	3DAY	5DAY	
1973	154.7	182.9	245.4	282.0	
1974	184.1	184.1	233.1	322.5	
1975	128.3	165.1	176.6	263.4	
1976	132.1	199.2	209.6	242.3	
1977	131.2	143.0	204.4	261.4	
1978	106.0	153.6	153.6	195.4	
1979	133.6	253.8	253.8	253.8	
1980	115.6	166.6	209.8	235.8	
1981	174.0	174.0	228.4	268.2	
1982	108.2	144.4	169.4	207.2	
1983	116.5	152.0	198.0	205.0	

T-13

. .

4

.

# Table 9,4 ANNUAL MAXIMUM DAILY RAINFALL DEPTH AT LONG SEMADOH

STATION NAME : LONG SEMADOH STATION NO. : 4255006

		و سند هند مند چې مېر دي. دي. چې چې و			
YEAR	ANNUAL MAX. DEPTH (num)				
	IDAY	2DAY	3DAY	5DAY	
1963	73.9	117.6	139.0	214.7	
1964	54.6	66.0	87.7	102.9	
1965	69.6	112.3	148.4	176.8	
1966	69.1	102.1	120.6	147.1	
1967	73.2	102.9	119.4	164.3	
1968 -	88.9	95.2	127.0	187.7	
1969	74.7	103.1	118.8	156.7	
1970	89.7	110.3	128.8	174.1	
1971	93.5	101.9	115.3	157.7	
1972	51.1	85.1	111.0	160.3	
1973	75.2	98.6	124.0	148.6	
1974	58.2	101.8	128.5	166.2	
1975	49.3	67.8	86.8	122.6	
1976	51.8	89.9	100.6	137.4	
1977	57.2	88.1	106.9	144.0	
1978	52.1	100.1	107.2	148.9	
1979	95.0	148.6	160.5	200.6	
1980	107.5	152.5	165.5	176.5	
1981	130.6	192.5	285.0	355,0	
1982	81.5	85.0	94.1	134.2	
1983	93.4	102.0	136.0	185.0	
1984	71.0	78.0	109.5	131.0	

.

T-14

### TABLE 9. 5 ANNUAL MAXIMUM DAILY RAINFALL DEPTH AT KAPIT P.W.D

. بالارتحاق البيد اليان البيد الباد الباد الباد الباد الباد الباد الباد الياد الياد

STATION NAME : KAPIT P.W.D STATION NO. : 2029001

YEAR	ANNUAL MAX. DEPTH (mm)					
IGOR	IDAY	2DAY	3DAY	5DAY		
1948	101.6	121.9	180.3	193.0		
1949	112.3	147.1	148.1	172.8		
1950	100.1	100.1	168.4	195.0		
1951	82.8	97.5	142.5	156.0		
1952	82.8	119.4	173.2	263.4		
1953 -	129.3	131.8	158.5	226.8		
1954	61.0	85.3	107.4	136.6		
1955	48.8	59.7	71.9	95.3		
1956	70.6	120.7	156.8	160.9		
1957	92.7	121.9	153.6	197.6		
1958	87.1	88.6	117.1	148.1		
1959	96.3	124.0	133.2	175.0		
1960	127.3	198.8	234.9	260.0		
1961	136.7	258.9	286.3	341.5		
1962	91.7	135.1	156.7	175.5		
1963	73.2	127.7	144.3	203.7		
1964	118.9	151.4	224.3	278.4		
1965	120.1	124.7	156.7	196.6		
1966	156.0	158.5	172.8	272.9		
1967	94.7	109.5	127.5	156.7		
1968	143.5	153.7	199.7	236.0		
1969	106.7	119.4	190.5	193.3		
1970	107.7	173.0	240.6	291.9		
1971	151.4	176.5	209.3	335.3		
1972	135.6	229.8	231.6	250.6		
1973	107.9	145.0	177.5	218.7		
1974	101.6	102.6	132.3	180.3		
1975	101.6	135.1	158.5	194.3		
1976	89.4	114.0	114.0	162.3		
1977	91.0	117.0	128.5	205.9		
1978	90.0	139.0	197.0	248.0		
1979	90.0	131.0	140.5	240.5		
1980	112.0	167.0	197.0	231.0		
1981	124.0	193.5	226.0	319.0		
1982	120.0	143.5	162,5	270.0		
1983	174.0	277.0	318.5	336.0		
1984	136.5	179.0	242.0	350,0		

# TABLE 9. 6 ANNUAL MAXIMUM DAILY RAINFALL DEPTH AT SONG

Υ.

STATION NAME : SONG STATION NO. : 2025012

YEAR	1DAY	2DAY	3DAY	5DAY	
1962	54.9	61.0	82.3	111.5	
1963	101.1	112.2	140.3	198.2	
1964	76.2	100.3	133.3	185.4	
1965	105.4	105.9	110.0	130.0	
1966	86.4	97.5	147.5	186.4	
1967	152.4	184.1	200.6	210.5	
1968	50.8	74.2	96.8	134.6	
1969	64.8	97.8	119.7	145.9	
1970	125.2	133.8	148.3	183.3	
1971	86.4	146.1	182.9	257.8	
1972	55.1	61.2	78.0	95.7	
1973	93.5	112.5	122.7	167.9	
1974	79.5	124.2	131.4	202.0	
1975	101.6	160.5	171.4	197.1	
1976	66.0	94.2	94.2	127.8	
1977	150.0	164.0	169.0	218.0	
1978	76.0	78.0	106.5	156.0	
1979	54.0	92.0	98.0	133.0	
1980	50.0	84.0	91.0	117.5	
1981	95.0	100.0	119.0	124.0	
1982	65.0	100.0	148.0	165.0	
1983	89.5	133.5	133.5	174.5	
1984	57.5	80.5	120.0	173.5	

T-16

 $\mathbf{x} \in \mathbf{F}$ 

 $(\mathbf{z})$ 

4

2

.

. .

.

STATION NAME : NANGA BANGKIT STATION NO. : 1726041

YEAR	AN	NUAL MAX.	DEPTH (m	m)
Indix	1DAY	2DAY	3DAY	5DAY
1964	75.4	109.4	133.8	167.5
1965	100.3	146.8	178.0	267.2
1966	124.2	136.9	175.0	269.7
1967	81.5	113.6	117.4	133.2
1968	103.4	116.1	143.2	167.6
1969	71.9	71.9	76.7	109.3
1970	113.0	152.9	207.0	225.8
1971	234.9	318.7	321.7	441.0
1972	75.9	129.0	183.6	207.7
1973	95.2	146.3	160.7	223.5
1974	93.7	154.9	232.4	301.0
1975	85.1	100.3	148.3	199.1
1976	72.6	97.3	106.2	184.1
1977		(miss	ing)	
1978		(miss	-	
1979	80.0	106.0	130.0	180.0
1980	115.5	157.0	201.0	248.5

T-17

#### RESULTS OF GUMBEL FREQUENCY ANALYSIS

#### RETURN PERIOD (YEAR) : STATION NAME : STORM : DURATION :-200 : : STATION NO. : (DAYS) : 340 : : 101 RIDDAN ; 339 : : 128 : 362 : : 1217011 : 150 495 : : 184 : n=19 : 251 : : 107 : KANOWIT : 262 : : 130 : W/WORKS : : 150 279 : : 2021036 : 349 : : 185 : n=20 : وحيتم 165 : : LONG SEMADOH : : 229 : : 100 : 305 : : 4255006 : : 122 381 : : 161 : n=22 ÷ 257 : : 131 : LONG BILONG : 324 : : 170 : 357 : : 203 : 4349016 : 426 : : 244 : n=11 : 218 : : 103 : KAPIT : 330 : : 136 : : 402 : : 2029001 : 164 ŧ 483 : : 314 : n=37 210 : : SONG : : 249 : : 104 : 268 : : 123 : 2025012 : 337 : : n=23 : 159 285 : : NANGA . : 391 : : BANGKIT : 129 ê : 1726041 : 159 436 : : 584 : : 211 : n=15 :

DAILY RAINFALL DATA

#### (UNIT: mm)

- :

Note :

n indicates number of years (Calendar Year) of record used in analysis.

RESULTS OF IWAI FREQUENCY ANALYSIS

DAILY RAINFALL DATA

(UNIT: mm)

.

.

:	STATION NAME			:		REI	URN PE	ERIOD (	(YEAR)		
1	& STATION NO.		DURATION (DAYS)	:	2	5	10	20	50	100	200
:	RIDDAN		1	:	98	146	182	218	267	306	348
•		;	2	÷	127	170	197	222	253	276	299 :
:	1217011	:	3	:	149	191	215	236	262	280	297 :
. :	n=19	:	5	•	184	246	288	328	381	420	460
:	KANOWIT	:	1		109	136	156	177	207	232	258
.:	W/WORKS	;	2	:	131.	156	169	181	195	205	213
:	2021036	:	3	· :	152	177	190	202	216	226	234
:	n=20	;	5		187	221	241	258	280	295	310
:	LONG SEMADOH	:	1	:	73	94	108	122	139	152	165
5		:	2	:	100	130	149	168	192	210	229
:	4255006	:	3	;	124	154	171	187	207	220	234
:	n=22	:	5	:	163	110	223	245	272	292	312
:	LONG BILONG		1		133	157	174	190	212	228	245
:		:	2	:	172	203	227	252	288	318	350
:	4349016	:	3	:	205	234	251	266	284	296	308
:	n=11		5	:	246	281	303	322	346	364	381
:	KAPIT	:	1	:	104	127	141	153	167	177	186
:	· ·	:	2	:	136	178	206	232	266	292	318
:	2029001	;	3		162	212	240	266	296	317	337
:	n=37	•	5	;	215	270	302	330	364	388	410
:	SONG	:	 l	:	80	108	130	151	181	206	231
:		:	2	:	104	133	150	167	187	201	215
:	2025012	:		:	124	153	171	188	208	222	236
:	<u>.</u>	:	-	:	160	196	216	234	255	270	284
:	NANGA	::	1	;	96	125	142	159	179	195	210
	BANGKIT	:	2		129		198	223	255	280	304
	1726041	:	3		159	211	245	278	317	347	376
	n=15	:			210	276	316	352	396	428	458

Note : n indicates number of years (Calendar Year) of record used in analysis.

# TABLE 9.10 RESULTS OF LOG PEARSON TYPE ILL FREQUENCY ANALYSIS

## DAILY RAINFALL DATA

### (UNIT: mm)

م مرجع الما بين عند الماجي بير بير مير ميراني السري		. سیدهنده مند هند هند می موز هید دن	<u>.</u>	فد هد هد مرد مو						
STATION NAME			-			URN P	ERIOD	YEAR)	ile i i i i i. Line andre i i	ر د رحد مند می مید م
& STATION NO.		DURATION (DAYS)	• ټر د د	2		10	20	50	100	200
RIDDAN		1		97	144	177	210	257	293	332
	:	2	:	127	173	204	233	272	301	331
1217011	4	3	:	149	196	226	254	291	318	345
n=19		5	•	184	245	284	321	370	406	443
KANOWIT		l		103	128	149	173	208	239	274
W/WORKS	:	2	÷'	129	156	173	188	210	225	241
2021036			:	152	178	193	207	224	236	247
n=20	( <b>•</b>	5	2	187	221	241	258	280	295	310
LONG SEMADOH	 	1	:	72	91	103	115	130	142	154
	2	2		98	123	141	159	184	205	227
4255006	1	3		116	147	173	203	251	293	342
		5	: :	154	193	225	259	312	356	407
LONG BILONG	:	1	;	130	153	169	185	205	221	238
	:	2	2-	166	194	215	236	267	291	318
4349016	•	3	1	205	234	251	266	284	296	308
n=11	:	5		246	279	299	315	335	349	363
KAPIT		1	•••••	104	129	145	160	178	191	204
	. <b>.</b>	2	÷	136	176	202	225	257	280	<u>`</u> 304
2029001		3	÷.	162	227	271	312	369	412	
n=37	:	5	÷	215	274	311	345	389	421	453
SONG	. <b>.</b>	1	:	78	104	123	141	167	187	208
		2	:	104	133	152	170	193	210	227
2025012	:	3	:	124	154	188	198	209	224	239
n=23	:	-	:	160	197	220	240	266	285	303
NANGA	 :	 l	:	88		143	176	231	283	346
BANGKIT	;	2	:	122	165	202	242	305	361	425
1726041	:	3	:	159	212	247	280	323	355 ^{°°}	387
n=15	:	5		207	278	326	372	436	485	536

т — 20

POTENTIAL SITE : KANOWIT CATCHMENT AREA : 1331(SQ.KM)

(Unit:mm)

RETURN PERIOD (YEARS)	1941 - N	DURATION (HRS)										
	3	6	9	12	15	18	21	24	TOTAL			
2	9	14	15	2.0	21	7	6	5	97			
5	12	19	20	26	28	9	7	6	127			
10	14	22	23	30	32	11	. 9	7	147			
20	16	24	26	34	36	12	10	8	167			
50	19	28	30	39	42	14	11	9	191			
100	20	31	33	43	46	15	12	10	210			
200	22	34	36	47	50	16	13	11	228			

POTENTIAL SITE : SEKRANG-1 CATCHMENT AREA : 508(SQ.KM)

CATCHPIE							(1	Unit:mm	<b>i)</b>				
RETURN		DURATION (HRS)											
PERIOD (YEARS)	3	6	9	12	15	18	21	24	TOTAL				
2	9	14	14	19	20	7	5	4	93				
5	14	21	22	29	31	10	8	7	144				
10	17	26	28	36	39	13	10	8	177				
20	20	31	33	43	46	15	12	10	209				
50	24	37	39	51	55	18	15	12	250				
100	27	41	44	58	61	20	16	13	282				
200	30	46	49	64	68	23	18	15	313				

POTENTIAL SITE : SEKRANG-2 CATCHMENT AREA : 360(SQ.KM)

(Unit:mun)

RETURI PERTOI	-	· .	DURATION (HRS)										
(YEARS)	3	6	9	12	15	18	21	24	TOTAL				
2		9	14	15	19	20	7	5	4	94			
5		14	21	23	30	32	10	8	7	145			
10	÷ ,	17	26	28	37	39	13	10	8	179			
20		20	31	33	43	46	15	12	10	211			
50		25	37	39	52	55	18	15	12	253			
100	÷4.,	28	42	44	58	62	20	17	13	285			
200	1 E.	31	46	49	65	69 ^{(*}	23	18	15	316			

T - 21

# TABLE 9.12 DESIGN RAINFALL AT THE POTENTIAL SITES (2/4)

POTENTIAL SITE : KAPIT-1 CATCHMENT AREA : 101(SQ.KM)

(Unit:mm)

 $\begin{array}{l} \left\{ e_{1}, e_{2}, e_{3} \right\} & \left\{ e_{1}, e_{3} \right\} \\ \left\{ e_{2}, e_{3}, e_{3}, e_{3} \right\} & \left\{ e_{3}, e_{3} \right\} \\ \left\{ e_{2}, e_{3}, e_{3}, e_{3} \right\} & \left\{ e_{3}, e_{3} \right\} \\ \left\{ e_{3}, e_{3} \right\} & \left\{ e_{3}, e_{3} \right\} \\ \left\{ e_{3}, e_{3} \right\} & \left\{ e_{3}, e_{3} \right\} \\ \left\{ e_{3}, e_{3} \right\} & \left\{ e_{3}, e_{3} \right\} \\ \left\{ e_{3}, e_{3} \right\} & \left\{ e_{3}, e_{3} \right\} \\ \left\{ e_{3}, e_{3} \right\} & \left\{ e_{3}, e_{3} \right\} \\ \left\{ e_{3}, e_{3} \right\} & \left\{ e_{3}, e_{3} \right\} \\ \left\{ e_{3}, e_{3} \right\} \\ \left\{ e_{3}, e_{3} \right\} & \left\{ e_{3}, e_{3} \right\} \\ \left\{ e_{3}$ 

.

RETURN PERIOD (YEARS)		TOTAL							
	3	6	9	12	15	18	21	24	IUINI
2	10	15	15	20	22	7	6	5	99
5	12	18	19	26	27	9	7	6	125
10	14	21	22	29	31	10	8	7	141
20	15	23	25	32	34	11	9	7.	157
50	17	26	28	37	39	13	10	8	179
100	19	29	30	40	42	14	11	9	194
200	20	31	33	43	46	15	12	10	209

POTENTIAL SITE : KAPIT-2 CATCHMENT AREA : 220(SQ.KM)

121 EVIA #/		nm)											
RETURN		DURATION (HRS)											
PERIOD (YEARS)	3	6	9	12	15	18	21	24	- TOTAL				
2	9	13	14	18	20	6	5	4	. 90				
5	13	19	20	27	28	9	8	6	131				
10	15	23	25	32	34.	11	9.	7	158				
20	18	27	29	38	40	13	11	9	184				
50	21	32	34	45	48	16	13	10	218				
100	24	36	38	50	53	17	14	11	243				
200	26	39	42	55	58	19	16	13	268				

POTENTIAL SITE : IBAU CATCHMENT AREA : 163(SQ.KM)

(Unit:mm)

· . ·

RETURN	÷.	DURATION (HRS)												
PERIOD (YEARS)	3.	6	9	. 12 .	15	18	21	24	TOTAL					
2	7	11	12	16	17	5	4	4	76					
5	10	15	16	21	23	8	6	5	105					
10	12	18	19	25	27	9	· · 7	6	124					
20	14	21	22	29	31	10	8	7	142					
50	16	24	26	34	36	12	10	8 -	164					
100	18	27	28	37	40	13	110	9 -	182					
200	19	29	31	41	43	14	12	9.	200					

T -- 22

POTENTIAL SITE : BANGKIT CATCHMENT AREA : 167(SQ.KM)

1	• •	
tun	lt:	nm)

RETURN		DURATION (HRS)										
PERIOD (YEARS)	3	6	9	12	15	18	21	24	TOTAL			
2	9	13	14	19	20	7	5	4	91			
5	13	19	21	27	29	10	8	6	132			
10	15	23	25	33	35	11	- 9	8	160			
20	18	27	29	38	41	13	11	9	186			
50	21	32	34	45	48	16	13	10	220			
100	24	36	38	50	53	18	14	12	245			
200	26	40	42	56	59	19	16	13	271			

POTENTIAL SITE : AYAT CATCHMENT AREA : 59(SQ.KM)

(Unit:mm)

RETURN			D	JRATIC	ON (HRS	3)			Mortha
PERIOD (YEARS)	3	6	9	12	15	18	21	24	TOTAI
2	9	14	15	19	20	7	5	4	93
5	13	20	21	28	29	10	8	6	135
10	16	24	25	33	36	12	9	8	163
20	18	28	30	39	41	14	11	9	190
50	22	33	35	46	49	16	13	11	225
100	24	37	39	51	55	18	15	12	250
200	27	41	43	57	60	20	16	13	276

#### POTENTIAL SITE : MEDAMIT-2 CATCHMENT AREA : 186(SQ.KM)

(Unit:mm)

RETURN	· · · · · · · · · · · · · · · · · · ·		D	JRATIO	ON (HRS	5)			TYMPAT
PERIOD (YEARS)	3	6	9	12	15	18	21	24	TOTAL
2	12	18	19	25	27	9	7	6	123
5	15	22	23	31	33	11	9	7	150
10	16	25	26	34	37	12	10	8	168
20	18	27	29	38	41	13	11	9	186
50	20	31	32	43	45	15	12	10	208
100	22	33	35	46	49	16	13	11	225
200	23	36	38	50	53	17	14	11	242

T - 23

POTENTIAL SITE : PASIA CATCHMENT AREA : 177(SQ.KM)

(Unit:mm)

RETURN		TOTAL							
PERIOD	3	6	9	12	15	18	21	24	
	7	10	11	14	15	5	4	3	68
5	9	13	14	18	19	6	5.	4	88
10	10	15	16	21	22	7	6	5	102
20	11	17	18	24	25	8	7	5	115
50	13	19	20	27	28	9	8	6	131
100	14	21	22	29	31	10	8	7	143
200	15	23	24	32	34	11	9	7	155

POTENTIAL SITE : MUKOH CATCHMENT AREA : 292(SQ.KM)

.

(Unit:mm)

			÷		· .		((	Jnicin	un)
RETURN		ي ڪري ڪري جي	α	JRATIC	N (HRS	;)	**************************************		- TOTAL
PERIOD (YEARS)	3	6	9	12	15	18	21	24	
2	9	13	14	18	19	6	5	4	89
5	13	19	20	27	28	9	7	6	129
10	15	23	24	32	34	11	9	7	156
20	18	27	28	37	40	13	11	9	182
50	21	32	34	44	47	16	13	10	216
100	23	35	37	49	52	17	14	11	240
200	26	39	41	54	58	19	15	12	265

POTENTIAL SITE (LOAD CENTER)	CATCHMENT AREA (sg.km)	RETURN PERIOD (years)	FLOOD VOLUME (MOM)	PEAK DISCHARGE (cms)	SPECIFIC DISCHARGE (cms/sq.km
<del>المن المن العن العن العن العن العن العن العن الع</del>	and and any state of the state	2	3.4	101	0.6
		5	6.1	160	0.9
PASIA		10	8.1	201	1.1
	177	20	10.1	239	1.4
(LIMBANG)		50	12.6	287	1.6
· ·	. •	100	14.6	323	1.8
		200	16.6	358	2.0
	•	2	12.0	277	1.5
· · · · ·		. 5	16.6	361	1.9
MEDAMIT-2		10	19.8	417	2.2
	186	20	23.1	473	2.5
(LIMBANG)		50	27.1	542	2.9
		100	30.2	595	3.2
و المراجع الم		200	33.3	648	3.5
· · · · · · ·	<b>.</b> .	2	49.5	1,040	0.8
·		5	80.3	1,554	1.2
KANOWIT		10	102.3	1,899	1.4
	1,331	20	124.7	2,243	1.7
(SARIKEI)		50	152.2	2,656	2.0
•		100	173.9	2,984	2.3
		200	194.6	3,294	2.5
		2	18.4	413	0.8
N. J.		5	<b>40.</b> 0	784	1.5
SEKRANG-1		10	55.1	1,026	2.0
· · · · · · · · · · ·	508	20	70.0	1,261	2.5
(SRI AMAN)		50	89.1	1,562	3.1
÷ .		100	103.9	1,797	3.5
		200	118.4	2,023	4.0
· · · · · ·		2	13.8	324	0.9
		5	29.6	608	1.7
SEKRANG-2		10	41.0	798	2.2
	360	20	52.0	977	2.7
(SRI AMAN)		50	66.3	1,212	3.4
		100	77.3	1,390	3.9
		200	87.9	1,563	4.3

T -- 25

#### to SUM

POTENTIAL SITE (LOAD CENTER)	CATCHMENT AREA (sq.km)	RETURN PERIOD (years)	FLOOD VOLUME (MCM)	PEAK DISCHARGE (cms)	SPECIFIC DISCHARGE (cms/sq.km
an a		2	4.5	121	1.2
		5	6.8	169	1.7
KAPIT-1		10	8.4	199	2.0
	101	20	9.9	228	2.3
(KAPIT)		50	12.2	269	2.7
		100	13.7	297	2.9
· · · · · · · · · · · · · · · · · · ·		200	15.2	324	3.2
		2	8.0	210	1.0
		5	15.9	363	1.7
KAPIT-2		10	21.5	464	2.1
	220	20	27.2	561	2.6
(KAPIT)		50	34.6	688	. 3.1
•		100	40.0	781	3,6
		200	45.5	874	4.0
<del>، سال کرد این کرد کرد کرد می بند این کرد کرد کرد کرد کرد کرد.</del> ۱۹۹۰ - ۲۰ ۱۹۹۰ - ۲۰		2	4.1	113	0.7
		5	7.9	192	1.2
IBAU	•	10	10.6	244	1,5
	163	20	13.3	293	1.8
(KAPIT)		50	16.7	353	2.2
(		100	19.6	403	2.5
		200	22.5	451	2.8
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		2	6.3	177	1,1
		5	12.4	302	1.8
BANGKIT		10	16.9	388	2.3
LE INDICE L	167	20	21.3	467	2.8
(KAPIT)	<b>L</b> U1	50	27.0	571	3.4
(ICH II)		100	31.3	647	3,9
		200	35.6	727	4.4
ه <del>حكم</del> الهيدالية مستحكمة الدام الوتيرة إجراع العند المالة العيد الين المالة الميسانين والمالة اليسمي	ہ ہور اور کی نہیں کے اسا کی ہی جور ہور ہیں ہیں۔	2	2.4	71	1.2
		5	4.6	120	2.0
AYAT		10	6.3	120	2.6
	59	20	7.9	185	3.1
(KAPIT)	J7	50	10.1	226	3.8
(ivere t t )		100	11.6	255	4.3
		200	13.2	285	4.8
، کند می شود این است کندیوی می مید میداند. این می جود میداند.	و الجوافي في في عند الله اليو حيد الله اليو اليو الي اليد الله و الجوافي الي الي الي الي الي الي الي الي الي ال	2	10.3	273	0.9
		2 5	20.3	469	1.6
MURINU		5 10	20.3	601	2.1
MUKOH	292	20	35.1	705	2.4
(KADTT)	676	20 50	44.8	895	3.1
(KAPIT)		100	51.7	1,012	3.5
		200	58.9	1,135	3.9

T -26

PROBABLE MAXIMUM PRECIPITATION

(Unit : mm)

nevertiel Othe	Catchment Area	PMP				
Potential Site	(sq. km)	l-day	2-day	3-day	5-day	
Pasia	177	384	531	706	885	
Medamit-2	186	541	686	761	906	
Kapit-1	101	512	768	935	1,128	
Kapit-2	220	427	585	657	878	
Ibau	163	542	646	700	880	
Bangkit	167	431	592	664	888	
Ayat	59	440	604	678	907	
Mukoh	292	422	579	649	868	
Kanowit	1,331	496	524	558	700	
Sekrang-1	508	495	501	538	730	
Sekrang-2	360	495	501	538	730	

#### TABLE 9.18 DESIGN HYETOGRAPH OF PROBABLE MAXIMUM PRECIPITATION

	· · ·				(Unit : m
		h			
Potential Site	lst-day	2nd-day	3rd-day	4th-day	5th-day
Pasia	90	175	384	147	90
Medamit-2	73	145	541	75	73
Kapit-l	97	256	512	167	97
Kapit-2	110	158	427	110	72
Ibau	90	104	542	90	54
Bangkit	112	161	431	112	72
Ayat	115	164	440	115	74
Mukoh	110	157	422	110	70
Kanowit	34	71	496	71	28
Sekrang-1	37	96	495	96	6
Sekrang-2	37	96	495	96	6

Т — 27

#### TABLE 11.1 PRINCIPAL FEATURES OF MAJOR STRUCTURES

2.	Development type	RES	DEC		· .			
			RES	RES	RUN	RES	RUN	RUN with
			•	· . ·		· ·	· · · ·	pondage
i	Installed capy.(MM	i) 11.8	21.3	25.1	1.94	4.2	12.4	4.49
• 1	Max. discharge (cn	us) 44.8	37.4	102.8	7.4	13.2	5.3	7.8
. 1	Dam		1. 1				·	
,	Туре	Rock-			concret	fill	concrete weir	concret
	thright Int	fill 54	fill 93	fill 55	7		6	21
	Height (m) Crest length (m)		369		60		40	102
	Spillway	· .						
	Type	chuteway	flow	flow	weir	flow	Overflow weir	Overflo weir
	Design flood (cms	cl 2,430	nuteway 1,880	chutewa 3,200	ay 1,012	chuteway 1,050	323	595
. 1	-15-	Pressure tunnel	ssure		ssure	ssure	Non-Pre- ssure tunnel	ssure
	length (m) Numbers Diameter (m)	300 1 4.4	400 1	200 1	1,660	300 1	3,800 1 1.8	4,400 1
7, 1	Penstock		40	4.40	40		050	130
	Length (m)		40 1	140	40 1	50 1	950 1	130
	Numbers Diameter (m)	1 3.1	•	4.7	1.5	1.7		1.7
3 <b>.</b> 1	Nos. of generator	2	2	2	2	2	2	2
<b>)</b> [	Transmission line Length (km)	30	45	65	25 ^(*)	27	110	60
). 1	Access road Length (km)	16	35	40	6	6	20	. <b>1</b> .

Note: RES; Reservoir type development

T - 28

Turbine Type	Turbine Output (kW)	Effective Head (m)	Ns (m-kW)
Verical Shaft Francis Turbine	2,000-20,000	30-300	60-300
Horizontal Shaft Francis Turbine	200-5,000	15-200	60-240
Kaplan Turbine	1,000-20,000	10-70	250-800
Tubular Turbine	200-5,000	3-20	400-1,000
Pelton Turbine	200-20,000	more than 100	8-28
Cross-Flow Turbin	ie 50-1,000	5-100	45-180
	·····	· · · · · · · · · · · · · · · · · · ·	, ,
			. %
		· · ·	

#### TABLE 11.2 APPLICATION RANGE OF TURBINES

 COMPARISION OF	(11 h 10/10 d) 10/10	AT A TOTAL & MAC IN	5 TT-	TANK I CAN A	CONTRACTOR A CONTRACTOR
 FTMOADICHIM CH	SVM HUNDERS	CHNERATEN A			L'EMERATIN
CORDINIOION OF	DIRTINGTON		u	LINDOCTTON.	OTTEN AND AND AND AND AND AND AND AND AND AN

Item	Synchronous Generator	Induction Generator
Capacity	Suitable for a large capacity generator.	Suitable for a small- capacity generator.
Speed	Although high-speed large- capcity generators of this type are difficult to manu- facture, there are no other problems with regard to speed.	creases, resulting in a
Exciter	An exciter is required for supplying a direct current to field windings.	No exciter is required because an exciting current run through armeture windings from the power system.
Independent Operation	Possible	Impossible. Power cannot be generated unless an an exicting current is supplied from the power system.
Koltage Adjustment	Possible	Impossible. Voltage is always at the same level as the electric system.
Power Factor Control	Possible. The power factors of both leading and lagging can be adjusted. Reactive power also can be adjusted.	Impossible. The generator can only be operated with the leading power factor which is primarily deter- mined by load. When necessary to improve the power factor, a con- denser is required.
Parallel connection with Electric Power System	Control is complicated because parallel connection requires adjustment of voltage, freq- uency and phase.	Control is simple because parallel connection is made by merely approxi- mating generator speed to synchronous speed.
Impact on Electric Power System at Time of Parallel Connection	Almost none	Excess current runs because of forced parallel connection. It is essary to consider fully the effect of a voltage drop in the electric system.

- continued -

Item	Synchronous Generator	Induction Generator
Rotor construc- tion	Complicated because field pole and exciter are necessary.	Simple and sturdy because of squirrel cago rotor.
Maintenance	Need maintenance for field exicting equipment and control system.	Maintenance is easy because the construction is simple and no excitor is required.
Cost	Higher than induction generator.	Low cost, but low speed machines are expensive.

.

a posta de la seconda de la Posta de la seconda de la se Posta de la seconda de la se

T -- 31

#### ESTIMATED CONSTRUCTION COST OF 7 SELECTED SCHEMES TABLE 14.1

(For Optimized Development Scale at Each Site)

,

		n an george The second second	na n		(Unit	: M\$ mi	llion)
Item	SRI A SEK-1	MAN SEK-2	SARIKEI K'WIT	MUKOH	KAPIT-2		
Installed Capacity			25.1		4,2		4.6
Construction Cost :				· ·	•		···
1. Civil Works	a 10 ⁻¹	45 02	21 40	1 16	4.65	2 05	2 00
- Preparatory works	9.18	100 10	143.79	7 75	30.08	19.64	19.32
- Main work Sub-total	DI.22	115.12	165.28	8 91	35.63	22.59	22.22
Sub-total	70.40	113+14	103.20	0, 51		<i>4.1.</i> 6 <i>7</i>	
2. Generating Equipment	12.54	12.58	21.30	3.74	5.88	6.22	5.34
3. Transmission Line	4.80	7.20	10.40	1.80	1.94	26.40	9.60
4. Access Road	5.12	13.83	12.80	2.38	2.38	9.60	0.86
Sub-total of 1 to 4	<b>92.</b> 86	148.73	209.78	16.83	45.83	64.81	38.02
5. Land Acquisition	0.08	0.75	4.80	0	0	0	0
6. Engineering and Administration	9.29	14.87	20.98	1.68	4.58	6.48	3.80
7. Contingency	15.33	24,65	35.33	2.78	7.56	10.69	6.28
	117.56 117.6	189.0 =	270.89 271.9 =	21.29 21.3	57.97 = 58.0 =	81.98 86.0 =	48.10 48.1

Note: (1) Estimate at mid 1986 price, excluding price contingency. (2) See Appendix VII for breakdowned detail. (3) * Run-of-river scheme without pondage.

T-32

·		I PT OUL CONSTANT P
TABLE 14.2	EVALUATION OF PROJECT - CASI	I FLOW SCHEDOLE

System : Limbang Project : Medamit-2 with Pondage (4.5 MW) Case: Basic Fuel price MS0.12/kWh

-1	,										1.1																	
Description	Unit	1986	87	88	89	1990	91	92	93	94	95	96	97	98	99	2000	01	02	03	04	2005	06	07	80	09	2010	2011-33 Average	2033
Demand, peak power (NW)	MW	2.3	2.5	2.7	2.9	3.2	3.6	4.0	4.3	4.6	5.0	5.3	5.7	6.1	6.5	7.0	7.4	7.8	8.3	8.8	9.3	9.9	10.4	11.1	ų <b>.</b> 7	12.4	29.3	46.3
, energy (Gin)	Gin	11.8	12.7	13.8	15.0	16.5	18.2	20.1	21.7	23.3	25.0	26.7	28.6	30.5	32.6	34.9	37.0	39.1	41.4	43.9	46.4	49.2	52.1	55.1	58.4	<b>61.8</b>	145.9	230.
Annual load factor	8	59	58	58	59	59			58	58	87	58	57	56	56	57	57	57	57	57	57	57	57		57		57	57
Reserve capacity	MW		1.0	1.0	4.0	1.0	1.0	1.0	1.0	1.0	i.0	1.1	1.1	1.2	1.3	1.4	1.5	1.6	1.7	1.8	1.9	2.0	2.1	2.2	2.3	2.5	5.9	
Required total capacity	NW	3.3	3.5							5.6													12.5	13.3	14.0	14.9	35.2	
Diesel retirement	MW	2.11						-0.67		-1.06		-0.2					-1.05			-0.6		-1.0		-1.0				
. Power addition, hydro , diesel	MW MW			0.6		1.0		1.0		2.25			2.25				1.0		2.0			3.0		2.0		1.0		
System capacity (L.O. units)	MW "	3.6	3.6	4.2	4.2	5,2	5.2	5.5	5.5	6.7 (4.4)	6.7 (4.4)	6.5 (4.2)	3.7 (4.2)	8.7 (4.2)	8.7 (4.2)		9.7 }(5.2)	9.7 (5.2)	11.7 (7.2)	11.1 (6.6)	11.1 (6.6)	13.1 (8.6)	13.1 (8.6)	14.1 (9.6	14.1 (9.6)	15.1 (10.6)	35.2 (30.7)	
Installation cost, hydro , diesel	M\$ x mil	1 0.48	1.44	0.80	2.40			24.80	12.92	!	0.80	2.40			0.80	2.40	1.60	4.80		2.40	7.20	1.60	4.80	0.8	2.40			
Power generation, hydro , diesel	Gwh Gwh	11.8	12.7	13.8	15.0	16,5	18.2	20.1	21.7	17.5 5.8						29.2 5.7	30.0 7.0	30.7 8.4	31.5 9.9	32.3 11.6	32.7 13.5		34.1 8.0				35.9 110.0	
	M\$ x mil							÷							0.40	0.4	0 0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.4	0.40	0.40	0.40	
	M\$ x mil:	1 ^ 35	0.35	0.40	0.40	0.50	0.50	0.53	0.53	0.42	0.42 0.04	0.40 0.04	0.40	9.40 0.02	0.40 0.02		0 0.50 3 0.04	0.50	0.69 0.05	0.63	0.63	0.83 0.08	0.83 0.09	0.92 0.11	0.92 0.12	1.02 0.14	2.95 0.57	
fuel (HSD) fuel (IO)	1) 2)									0.72							1 0.87	1.05	1.24	1.45	1.68	1.93	2.25	2.52	2.87	3.26	13.72	
. Total cost (hydro + diesel)	M\$ x mil	1 2.36	3.44	2.99	4.75	3,45	15.46	27.94	16.27	1.54	2.49	4.22	: 1.13	1.24	2.14	3.9	4 3.41	6.79	2,38	4.94	9.98	4.84	8.37	4.75	6.71	4.82	17.64	

Present Worth (M\$ x mill): Discount rate (%) Net present value B/C Ratio

-----

Rate of Return : 10.8%

____

10.0 +2.30 1.04

T -- 33

#### TABLE 14.3

System : Limbang Project : Pasia (12.4 MW) Case: Basic = Fuel price M\$0.12/kWh

Description	Unit	1986	87	88	89	1990	91	92	93	94	95	96	97	98	99	2000	01	02	03	04	2005	06	07	08	09	2010	2011-33 Average	203
1. Demand, peak power (MW)	MW	2.3	2.5	2.7	2.9	3.2	3.6	4.0	4.3	4.6	5.0	5.3	5.7	6.1	6.5	7.0	7.4	7.8	8.3	8.8	9.3	9.9	10.4	11.1	11.7	12.4	29.3	46.
2. , energy (Gwh)	Gin	11.8	12.7	13.8	15.0	16.5	18.2	20.1	21.7	23.3	25.0	26.7	28.6	30.5	32.6	34.9	37.0	39.1	41.4	43.9	46.4	49.2	52.1	55.1	58.4	61.8	145.9	230.
3. Annual load factor	· 8	59	58	58	59	59	58	57	58	58	57	58	57	57	57	57	57	57	57	57	57	57	57	57	57	57	57	57
4. Reserve capacity	MW													•													5,9	
5. Required total capacity	MW	3.3	3.5	3.7	3,9	4.2	4.6	5.0	5.3	5.6	6.0	6.4	6.8	7.3	7.8	8.4	8.9	9.4	10.0	10.6	11.2	11.9	12.5	13.3	14.0	14.9	35.2	
6. Diesel retirement	MW							-0.67	5	-1.06		-0.2	-0.6				-1.05			-0.6		-1.0		-1.0				
7. Power addition, hydro , diesel	nw Mw			0.6		1.0		1.0		6.2	•						2.3				3.0			3.0		1.0		
8. System capacity	м	3.6	3.6	4.2	4.2	5.2	5.2	5.5	5.5	10.6	10.6	10.4	9.8	9.8	9.8	9.8	11.1	11.1	11.1	10.5	13.5	12.5	12.5	14.5	14.5	15.5	35.2	
9. Installation cost, hydro ,diesel	MS x mil		1.44	0.80	2.40		15.64 2.40	39.0	23.4						1.0	3.0			2.40	7.20		2.40	7.20	0.80	2.40		-	
0. Power generation, hydro , diesel	GWh GWh	11.8	12.7	13.8	15.0	16.5	18.2	20.1			25.0 0	26.7 0	28.6 0	30.5 C	32.4 0.2	34.4 0.5	37.0 0			43.7 0.2		48.9 0.3	51.8 0.3	54.6 0.5	57.86 0.6	61.0 0.8	98.8 47.1	
1. Hydro CM cost	M\$ x mill	L								0.62	0.62	0.62	0.62	0.62	0.62	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65	
2. Diesel CM cost, fixed variable fuel	M\$ x mill "	0.06	0.35 0.07 1.58		0.08	0.50 0.09 2.06		0.10	0.11		0.42 0 0	0.40 0 0	0.35 0 0	9.35 0 0	0.35 0 0.02	0.35 0 0.06	0	0	0.	0	0	0	0.38 0 0.04	0	0.58 0 0.07	0.67 0 0.10	2.55 0.24 5.88	
3. Total cost (hydro + diesel)	M\$ x mill	2.36	3.44	2.99	4.75	3.45	20.86	42.14	24.04	1.04	1.04	1.04	0.97	0.97	1.99	4.06	0.90	0.91	3.31	8.06	1.15	3.47	8.27	2.09	3.70	1.42	9.29	

Present Worth (M\$ x mill):		Rate of Return :	9.8%	· .					
Discount rate (%)	10.0								
Net present value B/C Ratio	-1.14							· · ·	
byc Racio	0.99				•				

EVALUATION OF PROJECT - CASH FLOW SCHEDULE

Description	U	hit	1986	87	88	89	1990	91	92	93	94	95	96	97	98	99	2000	01	02	03	04	2005	06	07	08	09	2010	2011-33 Average	203
1. Demand, peak power (	1W)	ми	2.3	2.5	2.7	2.9	3.2	3.6	4.0	4.3	4.6	5.0	5.3	5.7	6.1	6.5	7.0	7.4	7.8	8.3	8.8	9.3	9.9	10.4	11.1	11.7	12.4	29.3	46.
2. , energy (	Wh) G	Wh	11.8	12.7	13.8	15.0	16.5	18.2	20.1	21.7	23.3	25.0	26.7	28.6	30.5	32.6	34.9	37.0	39.1	41.4	43.9	46.4	49.2	52.1	55.1	58.4	61.8	145.9	230.
3. Annual load factor		8	59	58	58	59	59	58 ·	57	58	58	57	57	57	57	57	57	57	57	57	57	57	57	57	57	57	57	0.57	0.
4. Reserve capacity	1	MW	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.1	1.1	1.2	1.3	1.4	1.5	1.6	1.7	1.8	1.9	2.0	2.1	2.2	2.3	2.5	5.9	
5. Required total capac	ty i	MŴ	3.3	3.5	3.7	3.9	4.2	4.6	5.0	5.3	5.6	6.0	6.4	5.8	7.3	7.8	8.4	8.9	9.4	10.0	10.6	11.2	11.9	12.5	13.3	14.0	14.9	35,2	
6. Diesel retirement	1	MW							0.67	5	-1.06		-0.2	-0.6				-1.05	i		-0.6		-1.0		-1.0		-2.0	1	
7. Power addition, hydro, diese		MEN MEN		-	0.6		1.0		1.0		2.0		2.0			1.0		2.0		2.0		2.0		3.0		3.0			
8. System capacity	ŀ	าพ	3.6	3.6	4.2	4.2	5.2	5.2	5.5	5.5	6.4	6.4	8.2	7.6	7.6	8.6	8.6	9.5	9.5	11.5	10.9	12.9	11.9	14.9	13.9	16.9	14.9	35.2	
9. Installation cost, hy ,die		x mil		1.44	0.80	2.40	0.80	2.40	1.60	4.80	1.60	4.80		0.80	2.40	1.60	4.80	1.60	4.80	1.60	4.80	2.40	7.20	2.40	7.20		- '		
0. Power generation, hyd , die		34h 34h	11.8	12.7	13.8	15.0	16.5	18.2	20.1	21.7	23.3	25.0	26.7	28.6	3015	32.6	34.9	37.0	39.1	41.4	43,9	46.4	49.2	52.1	55.1	58.4	61.8	145.9	
1. Hydro CM cost	M\$	x mil	L.																								÷		
2. Diesel OM cost, fixed varia fuel		x mili u u		0.07	0.07	0.08	0.09	0.09	0.10	0.11	0.12		0.14	0,15	0.16	0.17	0.18	0.19	0.20	0.22	0.23	0.24	0.26	1.43 0.27 6.50	0.29	0,30	1.43 0.32 7.71	3.38 0.76 18.21	
3. Total cost (all diesel)	мс	x mill	2.36	3.44	2.99	4.75	3.45	5.26	4.74	8.15	5 24	8 66	4.26	5 25	7 10	5. 67	10 17	7 39	10.79	8-09	11.56	9.67	14.74	10.60	15.70	9.21	9.46	22.35	

TABLE 14.4 EVALUATION OF PROJECT - CASH FLOW SCHEDULE

T - 35

Descripti	 00	Unit	1986	87	88	89	1990	91	92	93	94	95	96	97	98	99	2000	01	02	03	04	2005	06	. 07	08	09	2010	2011-33 Average	2033
· · · · · · · · · · · · · · · · · · ·		MW	1 27	1.34	1.40	1.47	1.55	1.63	1.71	1.80	1.89	1.98	2.08	2.18	2.29	2.40	2.52 .	2.65	2.78	2.92	3,06	3.21	3.38	3.55	3.73	3.91	4.11	8.39	12.60
I. Demand, peak pow																	11.0											37.0	55.9
2. energy	(Gwh)	GWh		5.9				50	50	50			50	50	50	50	50	50	50	50	50	50	50	50			50	ı 50	50
. Annual load fact	or	8	50	50	50	50	••						-				-	0 C	0.6	0.6	06	0.64	0.68	0.71	0.75	0.78	0.82	1.68	
. Reserve capacity		<i>72</i> 4															0.6											10.07	
. Required total c	apacity	MH	1_87	1.94	2.0	2.07	2.15	2.23	2.31	2.40	2.49	2.58	2.68	2.78	2.89	3.00	3.12	3.25			3.00			4.20	4.40	4.05	4.75	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
. Diesel retiremen	t	MIN		-0.075	-0.288	<b>)</b> .						-0.2	-0.2	-0.2	-0.2			-1.2		~0.3		-0.4							
. Power addition,	hydro diesel	MH MH		+0.3							1.0					1.0		+1.0		+1.0			+1.0						
. System capacity		ми	2.36	2.59	2.3	2.7	2.7	2.7	2.7	2.7	3.7	3.5	3.3	-3.1	2.9	3.9	3.9	3.7	3.7	4.4	4.4	4.0	5.0	5.0	. 5.0	5.0	5.0	10.1	
. Installation cos		M\$ x mill		0.32	0.96			3.78	9,45	5.67			•	0.60	1.80	0.80	2.40	0.80	2.40		0.80	2.4				•			
. Power generation	-	Gan Gan	5.6	5.9	6.1	6.4	6.8	7.1	7.5	7.9	7.0 1.3	7.1 1.6	7.4 1.7	7.6 2.0	7.7 2.3	10.2 .03	10.6 0.4	11.0 0.6	11.3 0.8	11.8 1.0	12.1 1.3	12.5 1.6	12.9 1.9	12.9 12.2	13.3 2.0	14.1 3.0	14.5 3.5	16.9 20.1 -	
	-	MS x mil															0.17	0.17	0.17	0.17	0,17	0.17	0.1	7 0.17	0.17	0.17	0.17	0.17	
. Hydro CM cost . Diesel CM cost,		M\$ x mill	t 0.23		0.22	0.26	0.36	0.36	0.36 0.04	0.36	0.26	0.24	0.22	0.20	0.18	0.18	0.18 0	0.16	0.16	0.23	0.23	0.19	0.2	9 0.29	0.2		0.29	0.78 0.10	
	variable fuel (HSD) (LO)	म इन् स		0.03 1.04 0.09													0.05	^	0	0	0	0	0	0	Q .	0	V	0 2.66	
. Total cost (hydro + diese	1)	M\$ x mil	L 2.33	1.73	2.37	1,45	1.76	5.46	11.21	7.51	0.65	0.69	0.69	1.32	2.54	1.20	2.82	1.21	2.84	0.54	1.38	2.98	0.7	2 0.76	0.81	0.88	0.94	3.71	

Present	Worth (MS x mill):	
	Discount rate (%)	10.0
	Net present value	+0.99
	B/C Ratio	1.04

TABLE 14.5

.

EVALUATION OF PROJECT - CASH FLOW SCHEDULE

Т--36

Description	Unit	198	6 8	37	88	89	1990	· 91	92	93	94	95	96	97	98	99	2000	01	02	03	04	2005	06	07	08	09	2010	2011-33 Average	2033
. Demand, peak power (MW)	MW	1.2	7 1.	.34	1.40	1.47	1.55	1.63	1.71	1,80	1.89	1.98	2.08	2.18	2.29	2.40	2.52	2.65	2.78	2.92	3.06	3.21	3.38	3.55	3.73	3.91	4.11	8.39	12.66
. , energy (Gwh)	Gvh	5.6	5.	.9	6.1	6.4	6.8	7.1	7.5	7.9	8.3	8.7	9.1	9.6	10.0	10.5	11.0	11.6	12.1	12.8	13.4	14.1	14.8	15.5	16.3	17.1	18.0	37.0	55.9
. Annual load factor	8	50	50	5	60	50	50	50	50	50	50	50	-50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50
. Reserve capacity	MW	0.6	0.	6	0.6	0.6	0.	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.64	0.68	0.71	0.75	0.78	0.82	1.68	
. Required total capacity	MW	1.8	71.	.94	2.0	2.07	2.15	2.23	2.31	2.4	2.49	2.58	2.6	8 2.78	2.89	3.0	3.12	3.25	3.38	3.52	3.66	3.85	4.06	4.26	4.48	4.69	4.93	10.07	
. Diesel retirement	MW		-0.	075 -	0.288							-0.2	-0.2	-0.2	-0.2			-1.2		-0.3		-0.4					-1.0	-	
• Power addition, hydro , diesel	MW MW		+0.	3		+0.4						+1.0				+1.0		+1.0		+1.0			1.0				+1.0	-	
. System capacity (H.S.D units) (L.O units)	MA		6 2. 6 2. 0.	3		2.7 2.0 0.7	2.7 2.0 0.7	2.7 2.0 0.7	2.7 2.0 0.7	2.7 2.0 0.7	2.7 2.0 0.7	3.5 1.8 1.7	3.3 1.6 1.7	3.1 1.4 · 1.7	1.2	3.9 1.2 2.7	3.9 1.2 2.7	3.7 0 3.7	3.7 0 3.7	0	4.4 0 4.4	0	5.0 0 5.0	5.0 0 5.0	5.0 0 5.0	5.0 0 5.0	5.0 0 5.0	10.1 0 10.1	
. Installation cost, hydro ,diesel	М\$ х л "		0.3	2 0.	.96					0.80	2.40	•		0,80	2.40	0.80	2.40	0.80	2.40		0.80	2.4			0.80	2.40		-	
. Power generation, hydro , diesel	Gwh Gwh	5.6	5.9	9 (	6.1	6.4	6.8	7.1	7.5	7.9	8.3	8.7	9.1	9.6	10.0	10.5	11.0	11.6	12.1	12.8	13.4	14.1	14.8	15.5	16.3	17.1	18.0	37.0	
Hydro OM cost	M\$ × π	d11																										-	
Diesel OM cost, fixed variable fuel (HSD) (LO)	11	ill 0.23 0.03 1.11 0	0.0	03 ( 04 1	0.03 1.07	0.03	0.04 1.13	0.04 1.04	0.04	0.36 0.04 1.17 0.27	0.04	0.05 0.89	0.05	0.05	0.05	0.05	0.06	0.06 0	0.06 0	0.07 0	0.07 0	0.07 0	0.48. 0.08 0 1.95	0.08 0	0.08 0	0.48 0.09 0 2.26	0.48 0.09 0 2.38	0.97 0.19 0 4.90	
Total cost (all diesel)	M\$ x m	ill 2.33	: 1.7	73 2	2.37	1.45	1.76	1.68	1.76	2.64	4.30	1.84	1.87	2.71	4.34	2.83	4.51	2.75	4.42	2.18	3.06	4.71	2.51	2,61	3.52	5.23	2.95	6.06	

EVALUATION OF PROJECT - CASH FLOW SCHEDULE

System : Kapit Project : ALL DIESEL Case: Basic = Fuel price MS0.12/kWh

TABLE 14.6

T - 37

TABLE 14.7 SUMMARY OF SENSITIVITY TESTS

10.8 *б*•**б** 8.7 12.1 13.7 9.7 15.3 £ € Medamit-2 1.03 0.95 0.99 +24.30 1.19 +5.84 1.08 +13.97 1.14 -0.96 0.99 B/C (000, **S**W) -0-51 -4.80 +2.3 9.0 8 6 ن. د. 8. . 10.8 12.7 14.5 H. Pasta 5/ 65°0 B/C -4.67 0.94 0.87 +4.68 1.06 +22.70 1.24 -6.56 0.92 +46 94 1 46 (000, <del>S</del>W) M<u>S</u>N ~12.81 8.8 12.0 15.5 10.8 10-0 13.8 9.7 ЖЭ. Net present value representing saving in thermal costs Average of 1985-86 price 1.31 1.04 1.00 1.20 0.98 С/<del>П</del> 0.94 1.09 A tentative rate assumed for increase of oil price Mukoh NEV (MS 000) +0.05 66*0+ -0.45 -1.83 +2.43 +6.36 +11.21 As esti-mated As esti-mated As esti-As esti-As esti-Hydro Cost -20% As esti (M\$2,560/ mated kW) mated +208 -108 mated As esti-mated As esti-mated (M\$3,200/KW) As esti-mated As esti-mated As esti-mated As esti-Diesel 0 Set mated p.a. <u>3</u>/ . 1986 Basic Esculation 3.86% 4/ SESO record p.a. 0 0 0 0 0 Fuel Price 2 Price as at Mar. 86 (Mé 34.3/lit) (Md 40/lit) Basic Sensitivity at Mar. 86 Price as As esti-As esti-mated 2/ As esti-As esti-As estimated mated matel Prige Jean 410 2 2 2 Note: Gase Test 7 A4 띪 ପ୍ Z 兩

T — 38

SESCO's pricing schdule With regulating pondage

# Table 14.8 SALIENT FEATURES OF MUKOH DEVELOPMENT (? ALTERNATIVE PLANS)

Demand Scenario: Kapit + Timber Industries

Description	• .	Case-1	Case-2
Type of development	,	ROR	ROR with pondage
	(m 3/s) (m 3/s) (m)	7.4 7.4 31.5	7.4 14.8 36.1
Full supply level Min. operating level Average operating level Failwater level	(m) (m) (m) (m)	80.0 80.0 45.0	67.2 80.7 85.0 45.0
Dam/weir height Headrace, length diameter Penstock, length diameter	(m) (m) (m) (m)	5 1,660 2.0 40 1.5	15.2 1,660 2.7 40 2.2
Installed capacity Dependable output	(MW) (MW)	1.94 1.94	4.45 4.45
Annual energy - Primary - Secondary Total	(GWh)	16.7 0 16.7	19.1 17.5 36.6
Fransmission line - Length - Voltage (kV) x circu	(km) t	25 33 × 1	25 33 x 1
Construction cost	(M\$ mill)	21.3	37.1

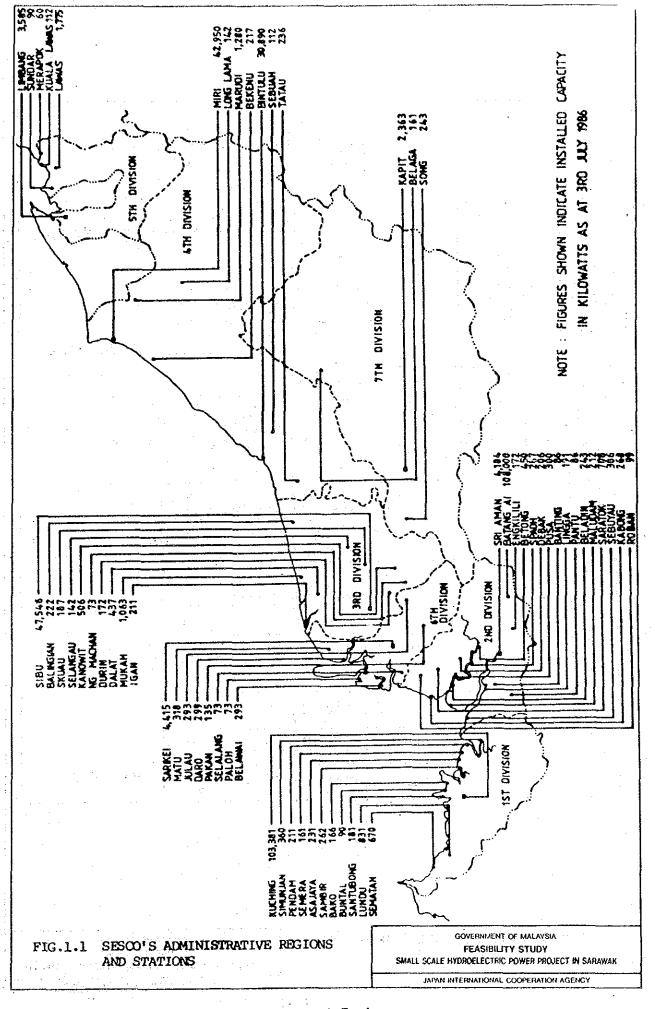
т — 39

Item	MUKOH	PASIA	MEDAMIT-2
Type of development	Rm-of-river	Run-of-river	Run-of-river
Topography	Banks at proposed dam (weir) site are steep and	Dansite shows a steep V- shape topography. River	River at damsite show meanders. The width is
· ·	high allowing construction	width is 20 m and the	some 15 m; with exposed
1	of a high dam. River	gradient some 1/20. River-	rocks on both banks. River
	width is 15 m, with exposed rocks. River	bed deposit is thin (1-2 m).	deposit is presumably this
	deposit seems nil. No	Powerhouse area is also steep.	(2 m). Powerhouse topo graphy is gentle. No topo
· · · · ·	difficulty, except for		graphical difficulty is
	relatively large	••••	foreseeen.
	excavation at powerhouse		
	site due to steep topography thereat.		
Geology	Damsite is in the zone of	Whole area fall in graywacke	Damsite consists o
<b></b>	hard graywacke and power-	zone. Generally hard and	graywacke (left bank) and
	house in hard slate.	massive. Overburden is	shale, generally hard
	Overburden on both banks	almost nil. Depth of	Powerhouse is in limeston
•	is very thin. No geological problem	weathering of rocks appears to be thin. No specific	area. Overburden depth is 1 to 2 m left bank, but 5 m
	effecting the scheme is	problem foreseen.	on right bank. A 5 m thick
	foreseen.		fractures zone is observed
			along limstone shale boun
			<ul> <li>dary which crosses the penstock line, but seem</li> </ul>
×			not to constitute
1	· · · · · · · · · · · · · · · · · · ·	5	critical constraint to the
			schene.
Source of	Sand/gravel deposit is	Sand/gravel is scare in the	Sufficient quantity i
Aggregates	scare in the vicinity of	river reaches along the	available in river deposit
	project area. To be tran-	site, but some found along	along Sungai Medamit an
	sported from distant	the Batang Trusan.	Limbang.
	sources, 15-20 km away, or otherwise produced from	Presumably some to be transported from far	
	excavated rocks.	deposits.	
Access	Existing logging road	A new logging road is under	Existing logging roads pass
, <b>x</b> -c-10	passes at 1.5 km from the	construction to put into	nearby the site. A ne
	site could be reached by	operation in end 1987. Upon	access road than 1 km. Th
,	providing a new road of 4	its completion, access to	existing road is unde
	km in length. In general,	Lawas is to be made	active operation and in
	accessibility is fair.	possible. Construction of a new access road of 20 km	<ul> <li>fair to good condition</li> <li>Access condition is good.</li> </ul>
		in steep area would be	100000 CONTLECT 10 3000.
		necessary to reach the	
		site.	
_ · • • •			
Transmission	Transmission line length	Total line length will be	Line length is about 60 km
Line	is 25 km to Kapit. The line passes through hilly	some 110 km. Of which, 20 km passes in primary rain	<ul> <li>to Limbang, passing mostly in undulating flat areas</li> </ul>
	areas. The vegetation is	forest, crossing mountains	Vegatation is relatively
	relatively thick. In	of over 1,000 m in altitude.	thick. Access to the line
	general, the line route	until it reaches the upper	route is possible from the
	will be accessible from	reach of the Medamit where	existing public and
	the existing logging roads.	the existing logging road	public and logging roads.
		exists. Difficulty is fore -seen in this section, both	
	· · · ·	in line construction and	
4		future maintenance.	ч. С
Land Acquisition	Impounding by pondage	Impounding only in the	Impounding only in the
and Resettlement	limited only in the exist-	present river course. No	present river course. No
	ing river course. No	resettlement of housings.	resettlement of housing.
	resettlement of housings		-
	is required.		
Downstream	No adverse effect,	No adverse effect.	No adverse effect.
water Use			

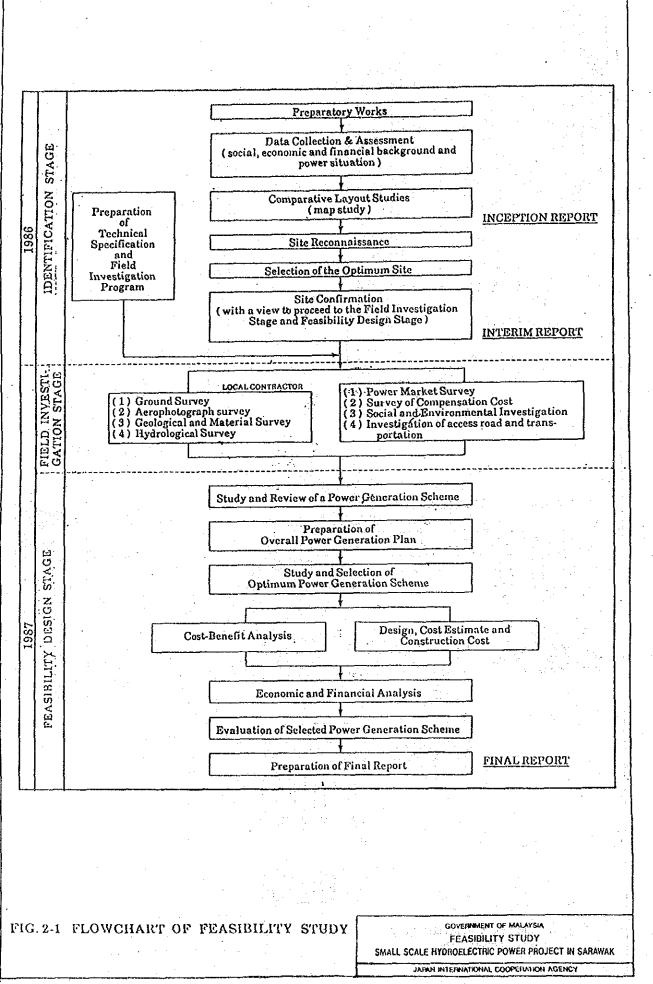
and the second second second

#### TABLE 14.9 TECHNICAL FEATURES OF THREE CANDIDATE SITES

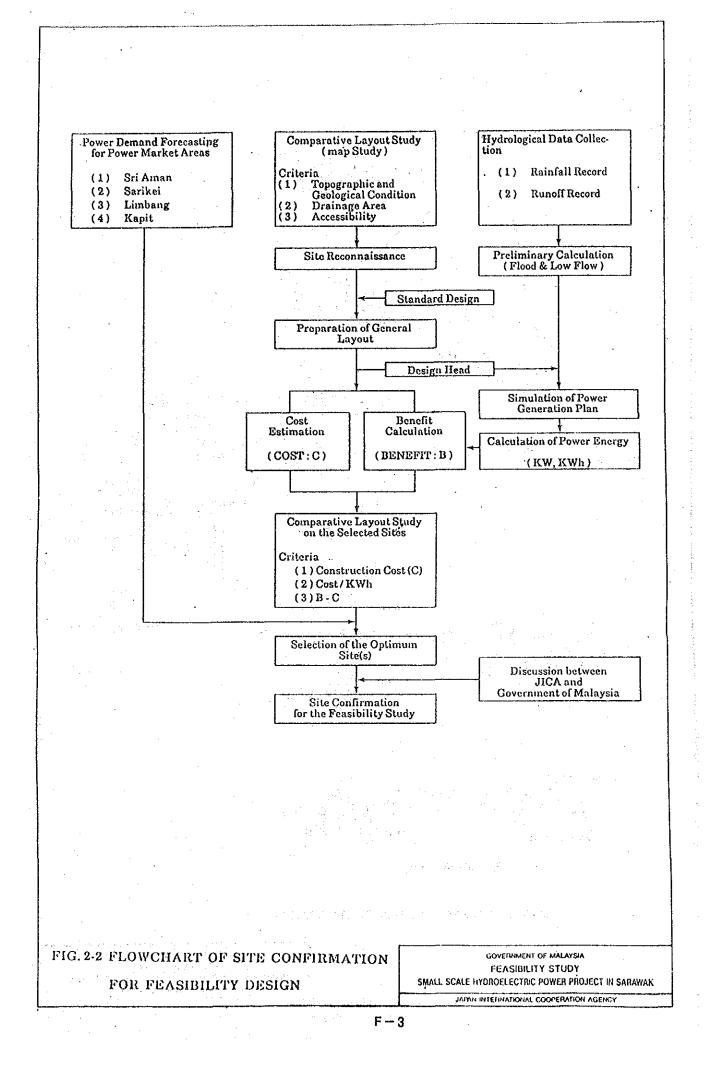
Note : See Appendix III - Summary of Field Reconnaissance for further detailed descriptions.

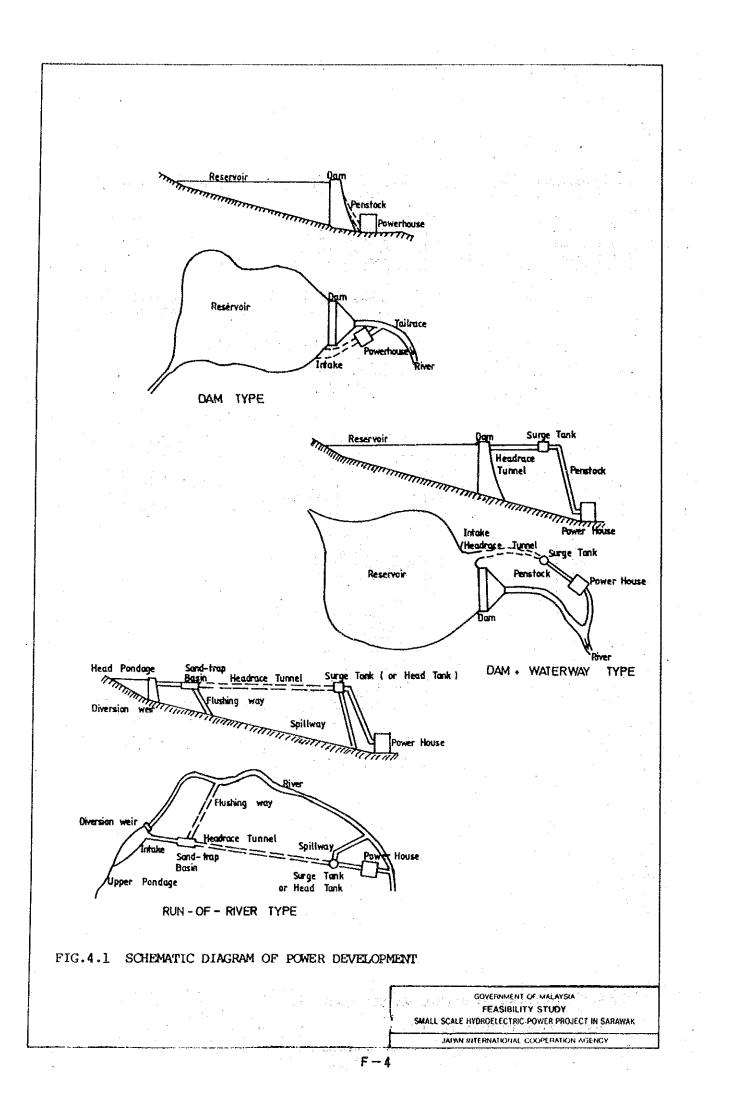

[≥] ″ Т −40

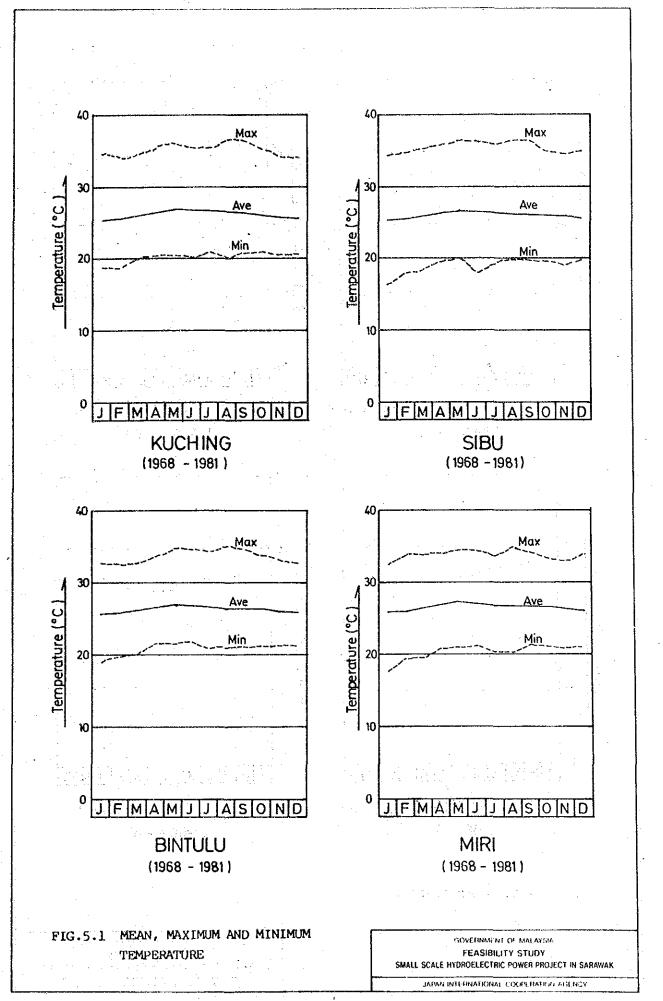
Description	Lupar	Kanowit	Katibas	Belah	Limbang
Load centre	Sri Aman	Sarikei	Kapit	Kapit	Limbang
Catchment area (km)	2,220	2,530	3,150	12,150	2,820
Average runoff (m ³ /s)	220	250	290	1,300	190
Estimated firm discharge (m ³ /s) Plant discharge(m ³ /s)	115 230	65 130	100 200	490 980	60 120
Power head (m)	3	3	3	3	3
Installed capacity (MW) Dependable output (MW)	5.7 2.9	3.2 1.6	5.0 2.5	24.5 12.2	3.0 1.5
Annual energy (GWh) - Primary - Secondary Total	24.7 19.8 44.5	13.9 11.1 25.0	21.5 17.2 38.7	84.1	12.9 10.3 23.2
Weir - Height (m) - Length (m) - Pile foundation	7 70	7 50	7 50	9 150	7 100
depth (m)	15	10	5	10	15
Access road (km)	1	5	60	20	4
Transmissioin line - Voltage (kV) - Length (km)	33 35	33 47	33 50	66 18	33 33
Construction cost (million M\$)	67.0	49.5	72.0	330.0	56.0


## Table 14.10 Main Features of Proposed Schemes for Low Head Plan

T -- 41


.



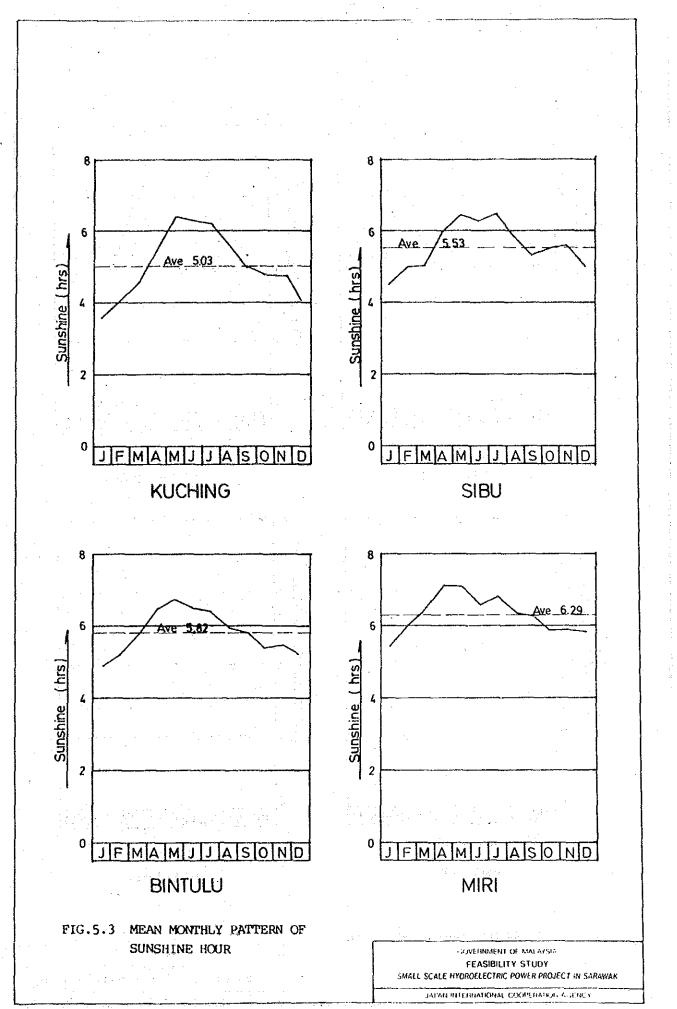


· F-1



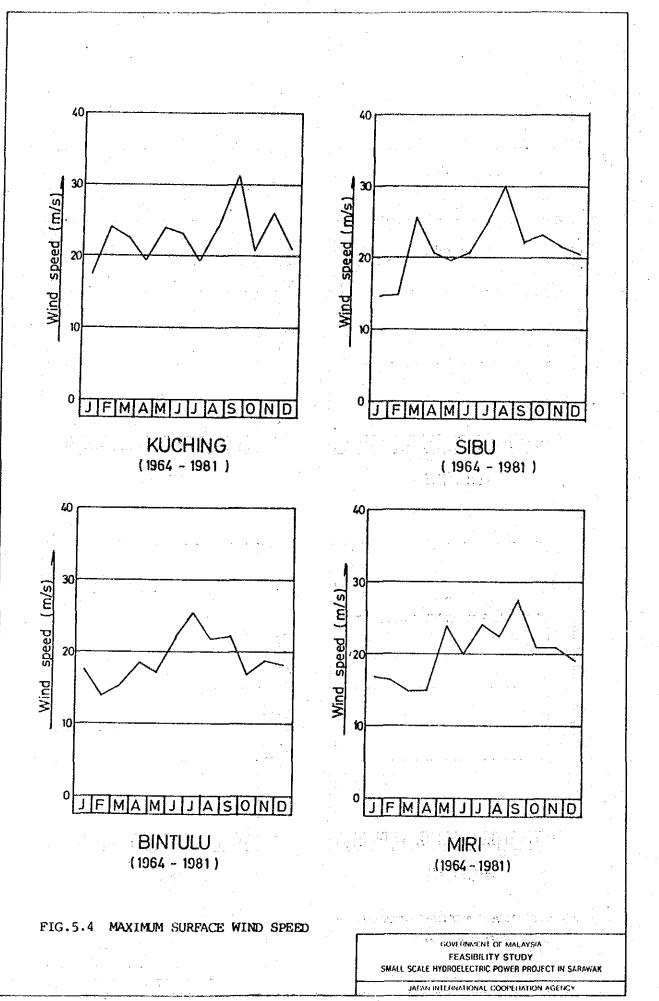
F-2



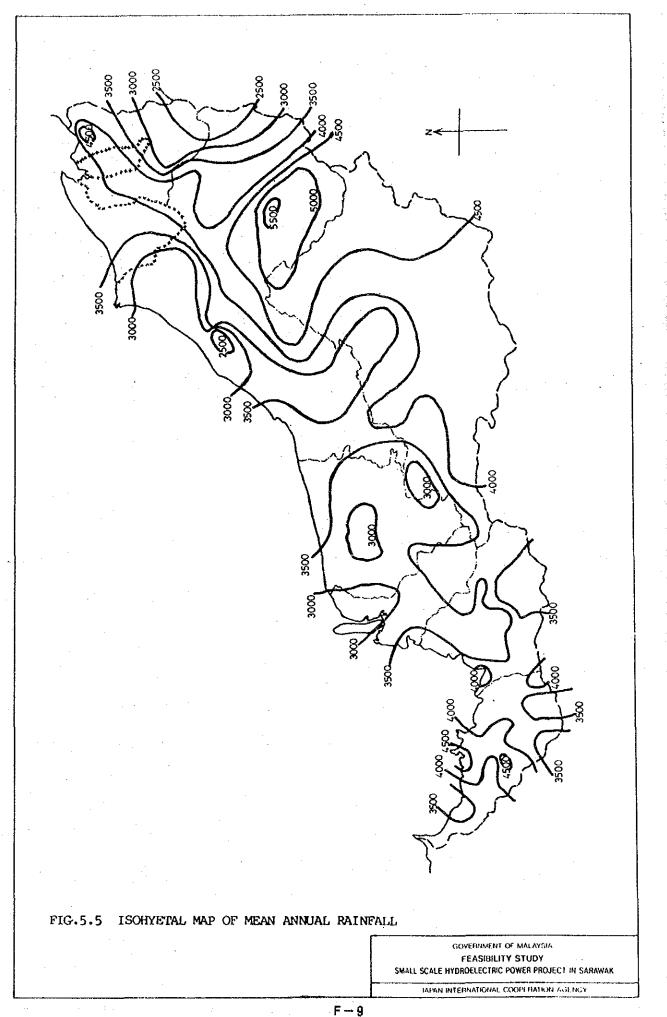


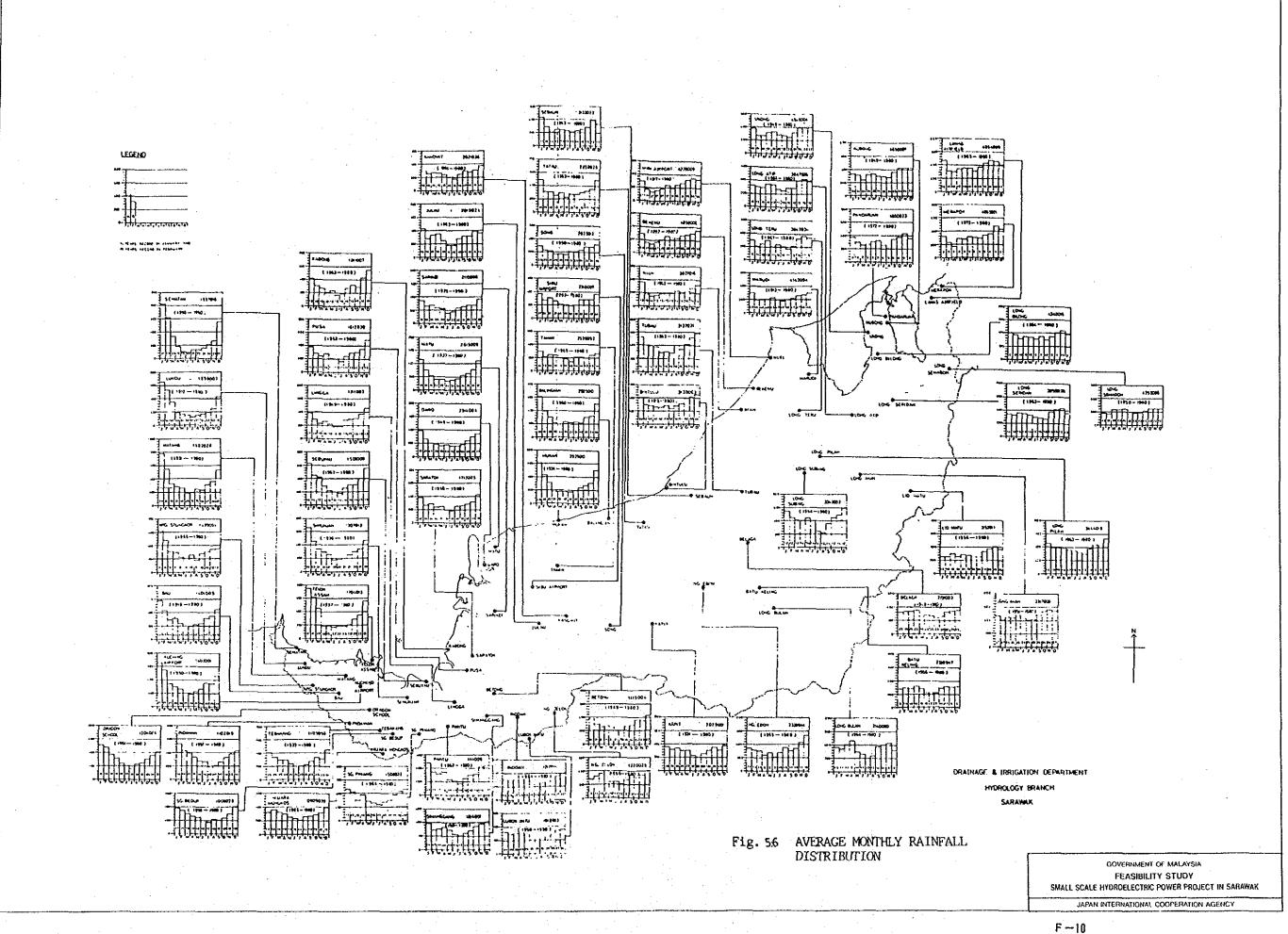


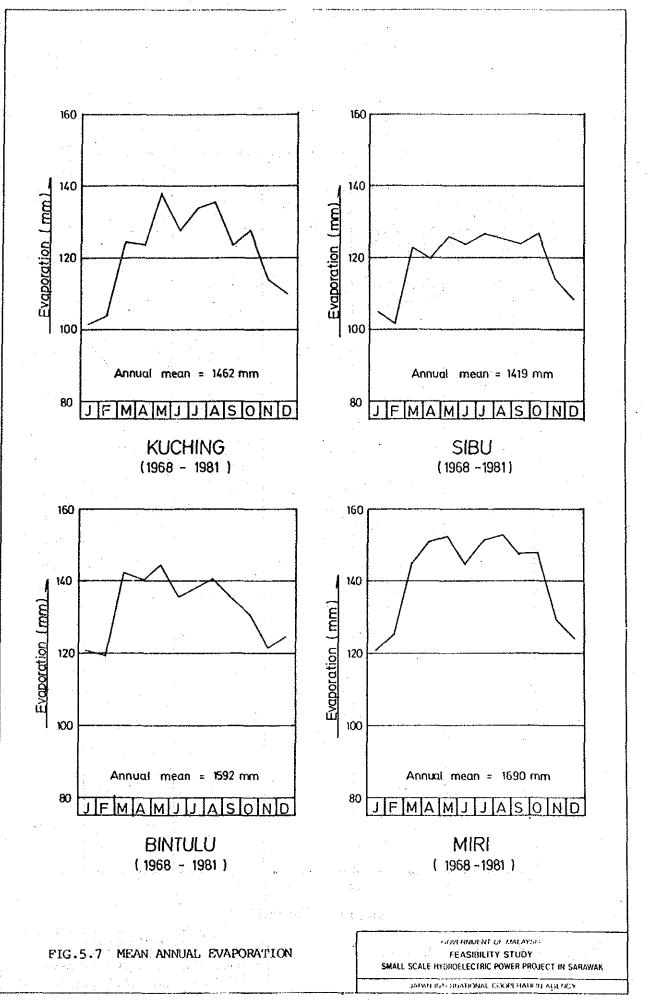

-F-5



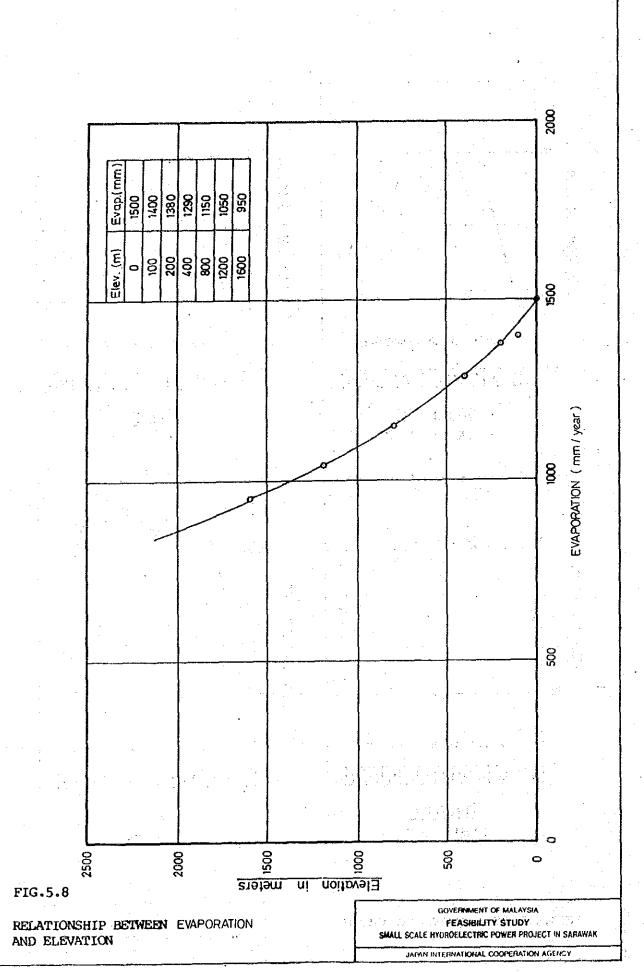

F -- 6


÷



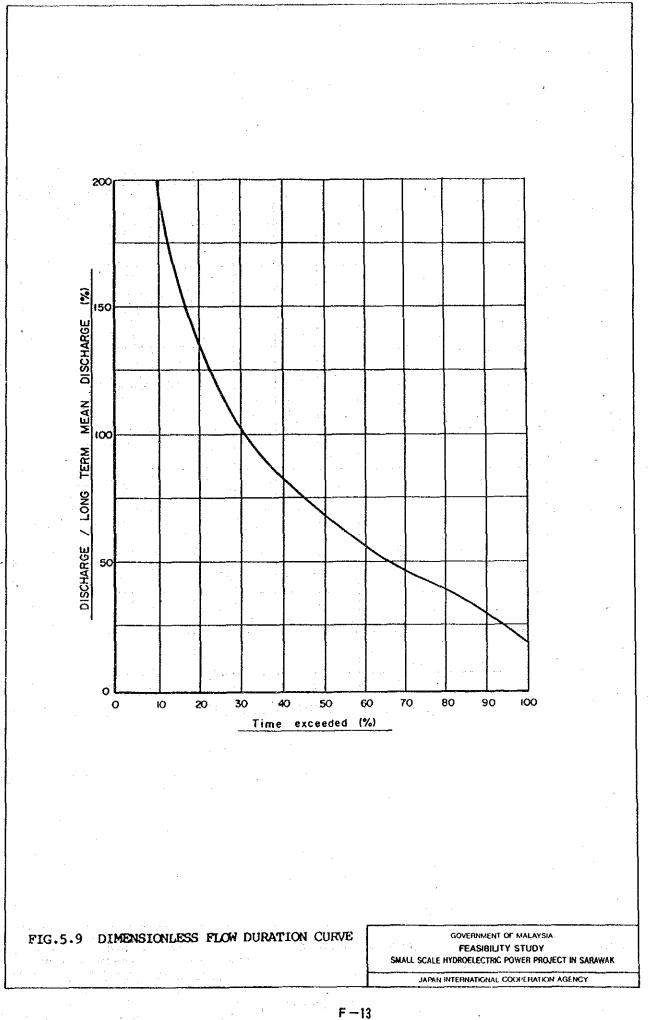


F-7

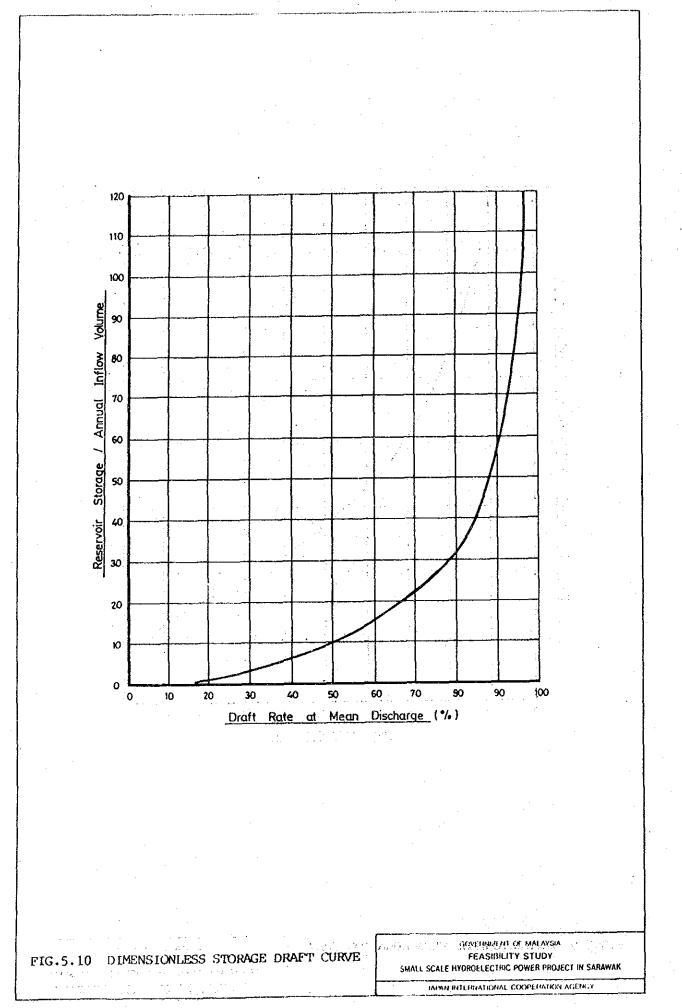



F - 8

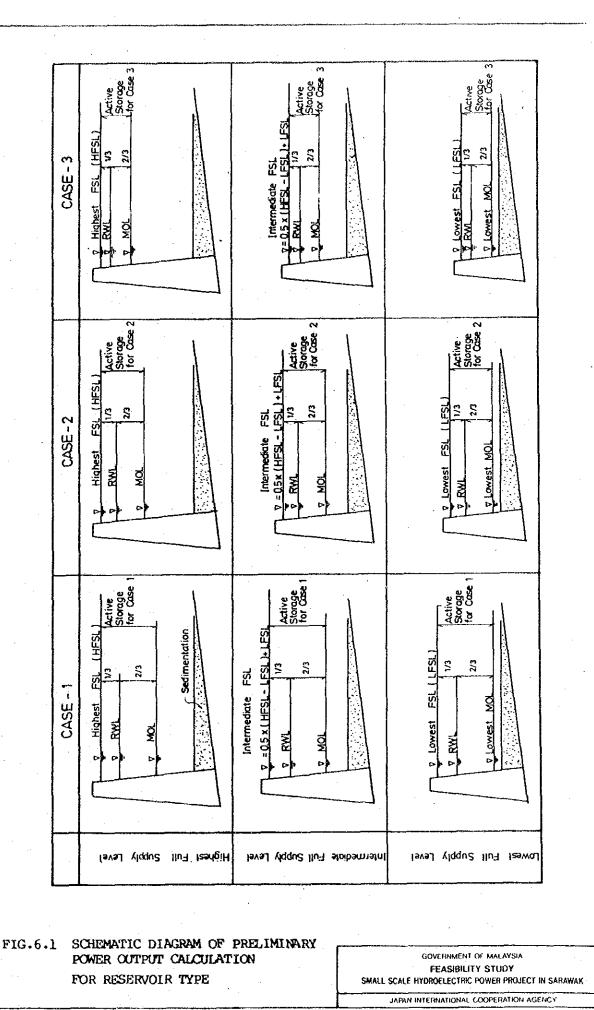




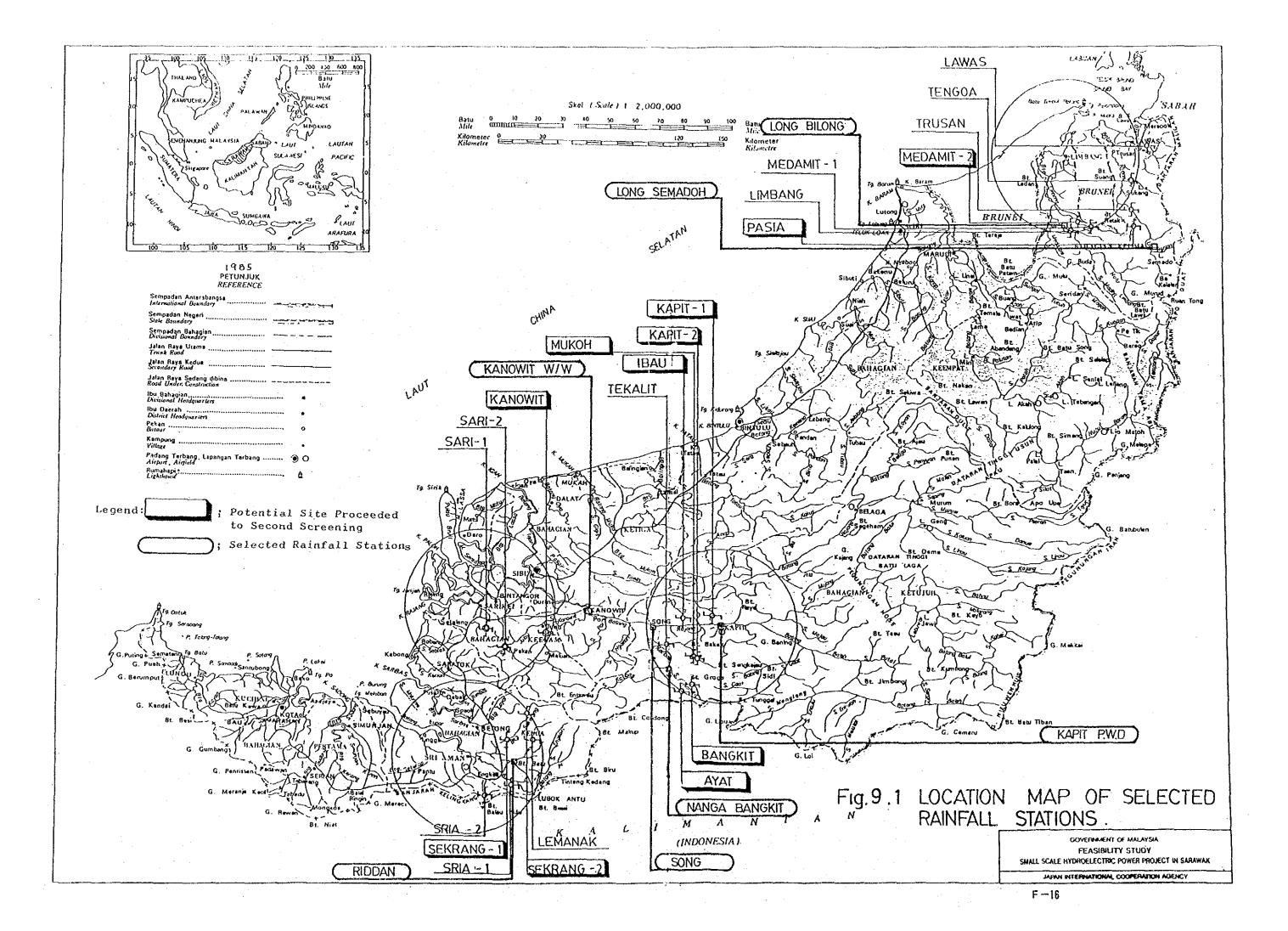




ç




F →12

, ·





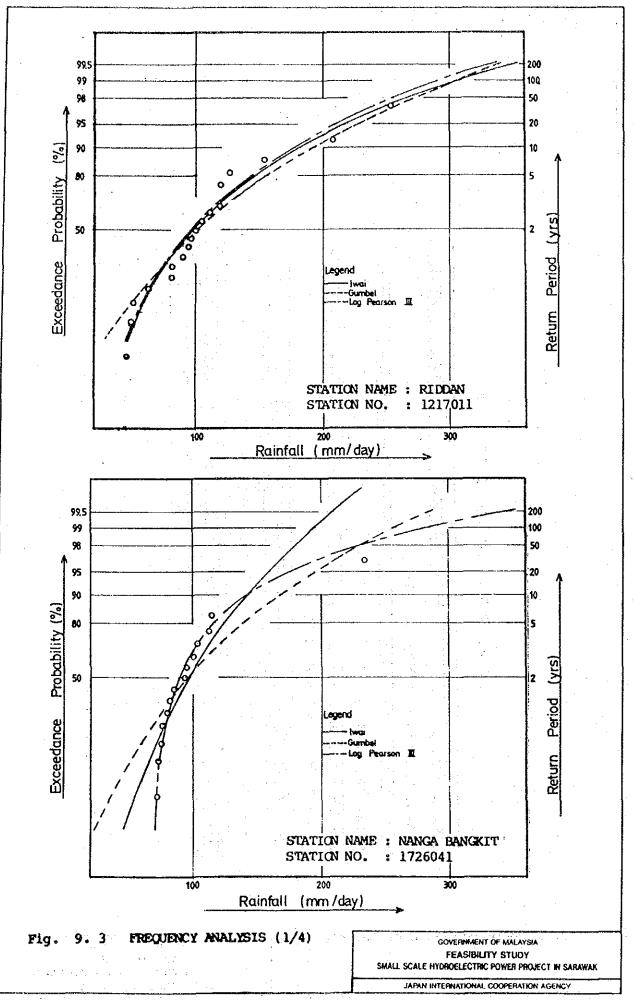

' F -- 14

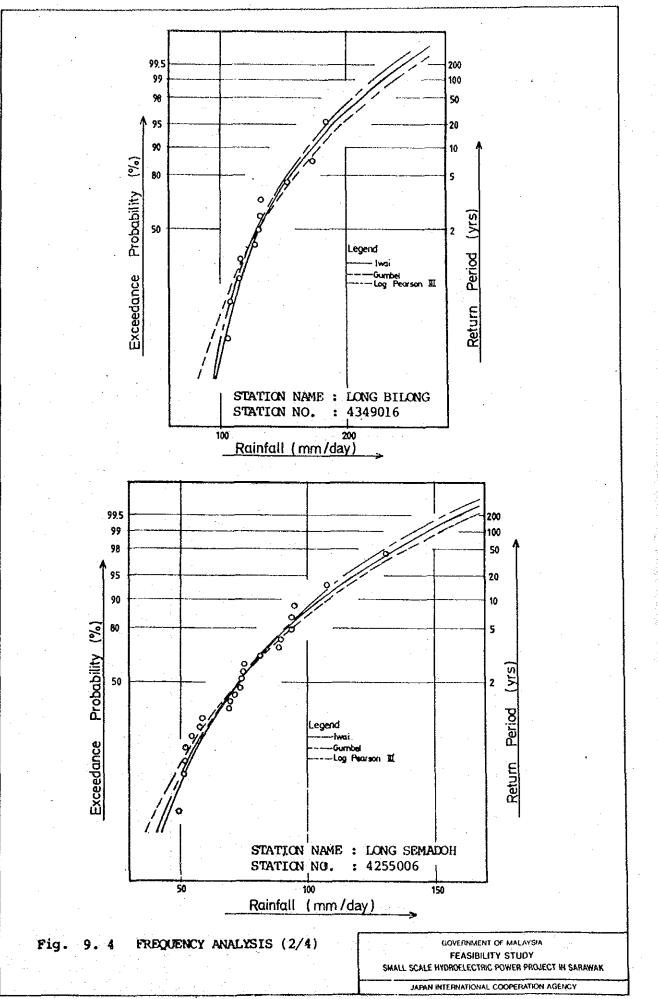


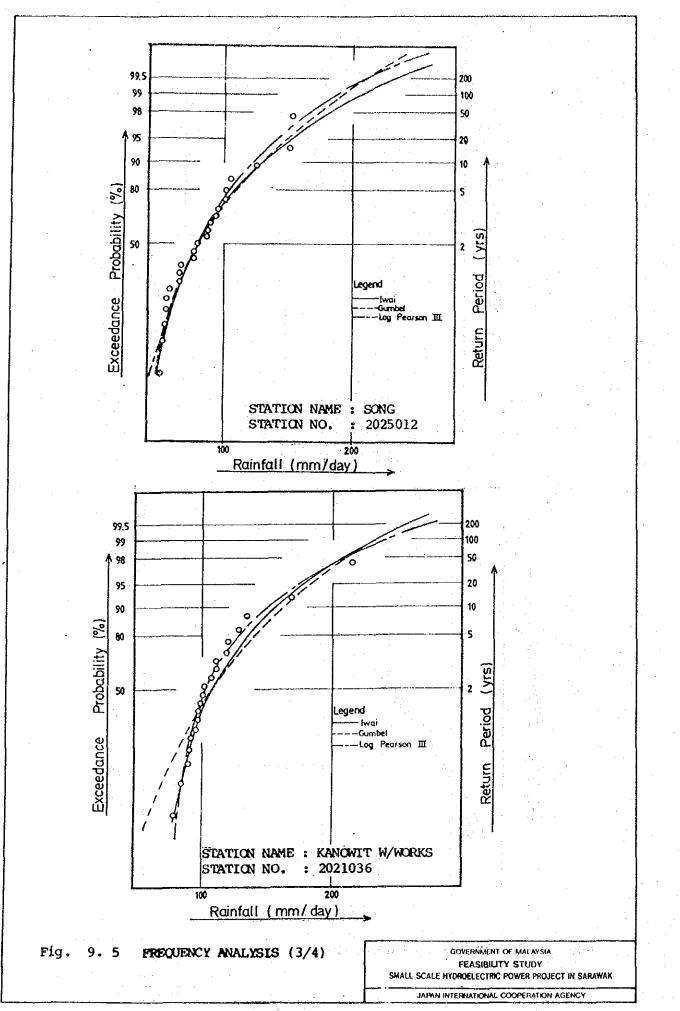
. '**t** __1

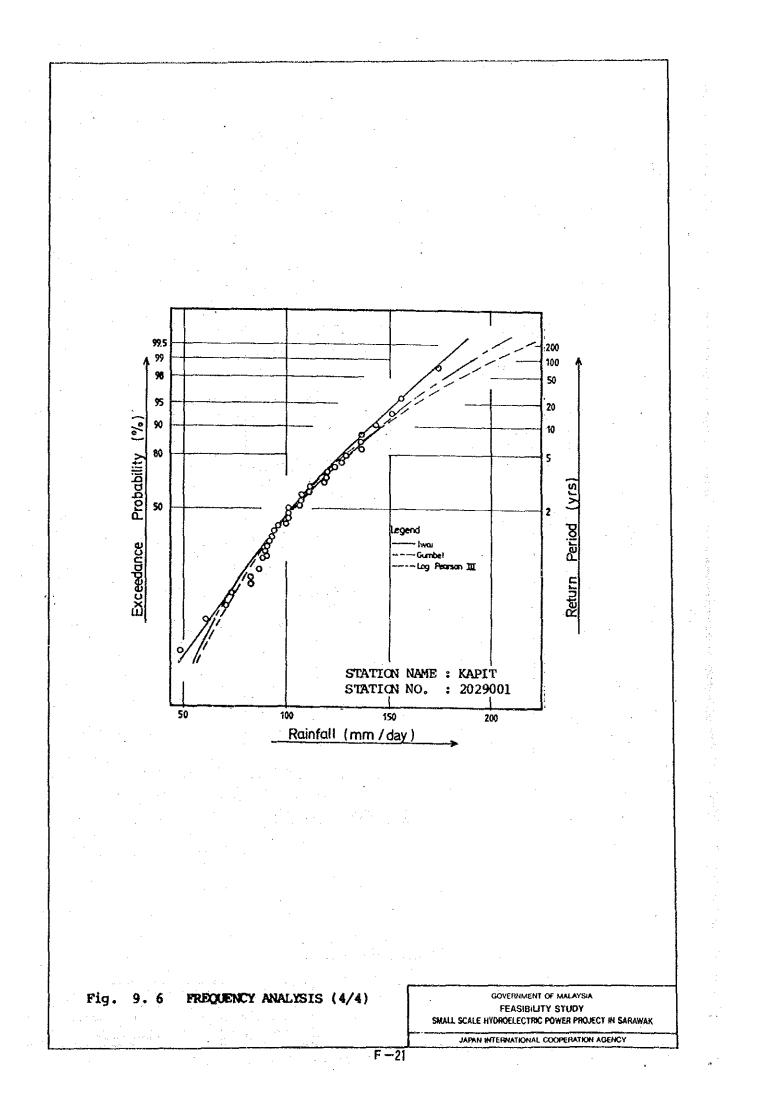


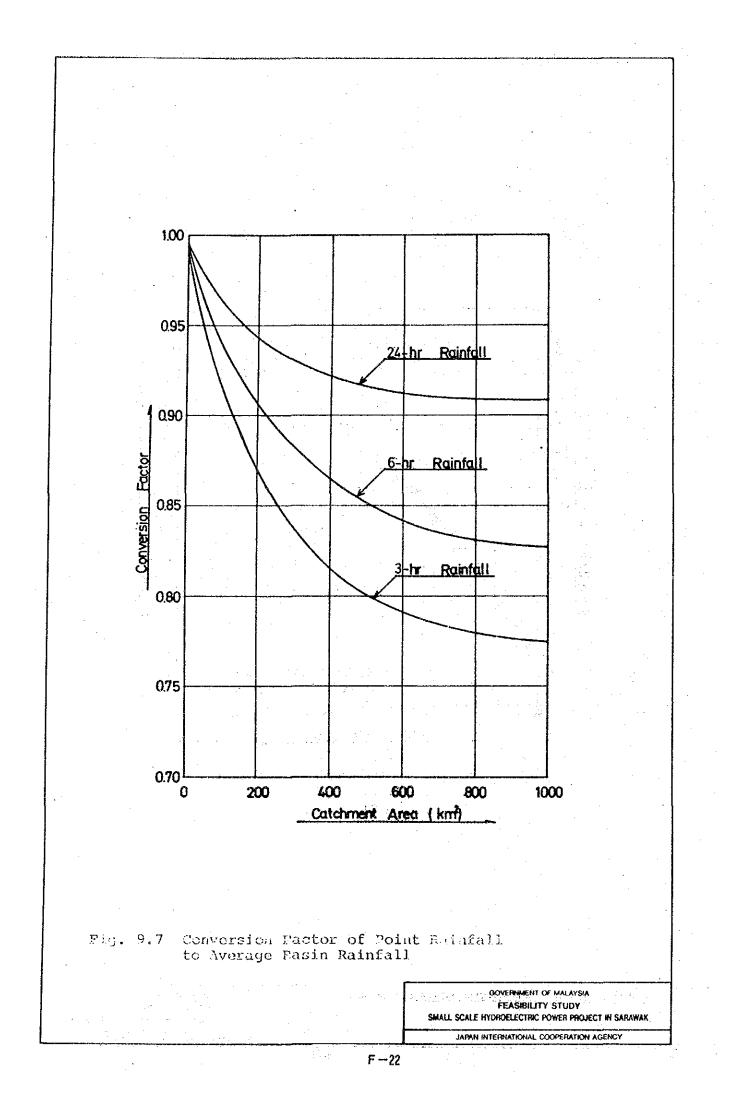
	RAINFALL STATION AND PERIOD OF RECORDS       STATION     STATION     STATION       STATION     STATION     TYPE       NO.     NAME     TYPE       NO.     NAME     TYPE       Lat     Long     STATION       SEKRANG-1, SEKRANG-2     POTENTIAL       STATION     RIDDAN	KANOMIT POTENTIAL SITE 2021035   kanomit w/w   R.S.   2*06 N 112*08*E	01 KAPIT PWD RS Z 01'N In2'SS'E
Fig. 9.2 Reco	orded Period of		GOVERNMENT OF MALAYSIA FEASIBILITY STUDY ALL SCALE HYOROELECTRIC POWER PROJECT IN SARAIWAK

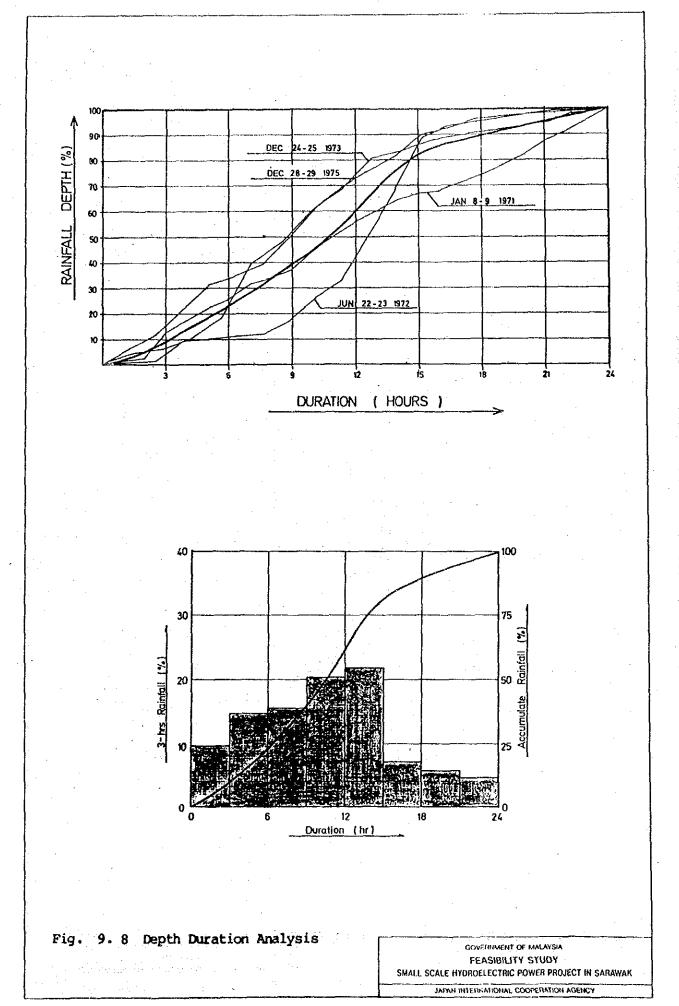

•


F-17

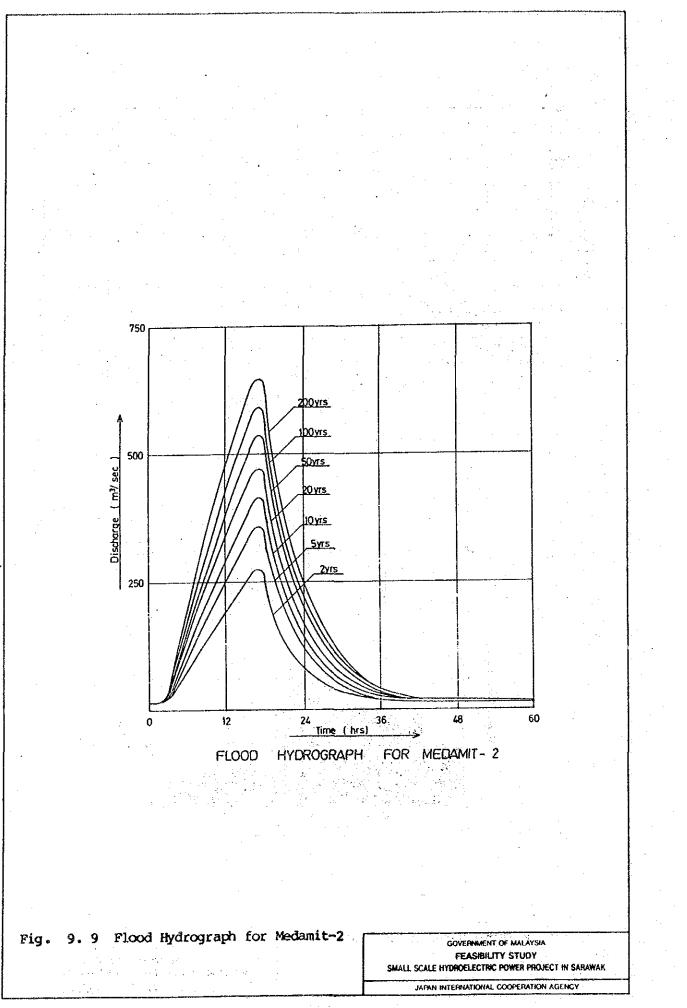

.....

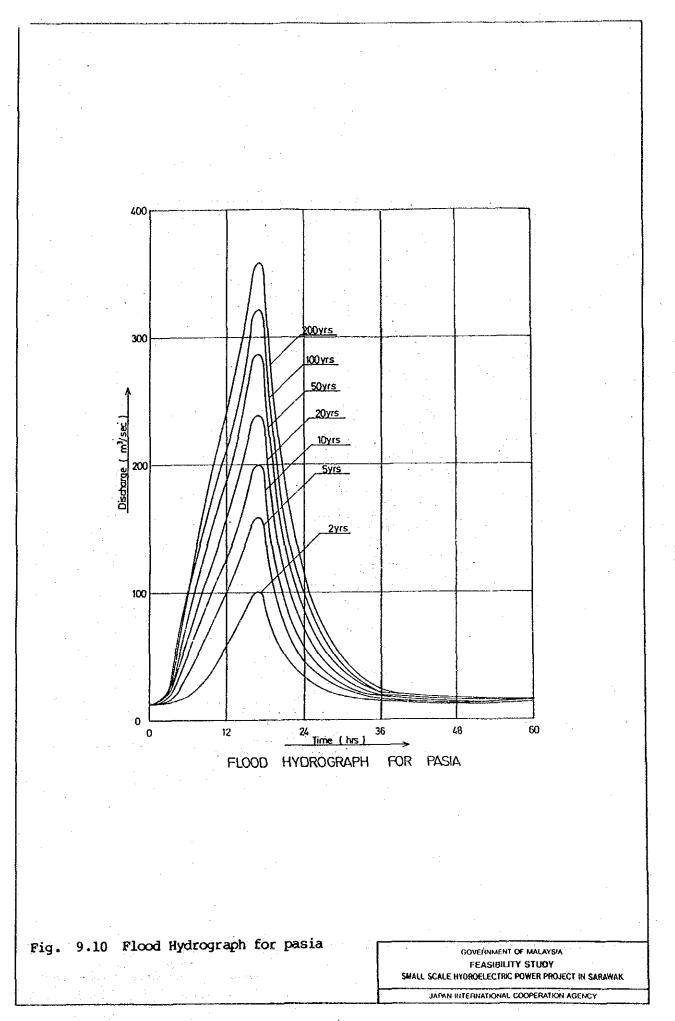

JAPAN INTERNATIONAL COOPERATION AGENCY

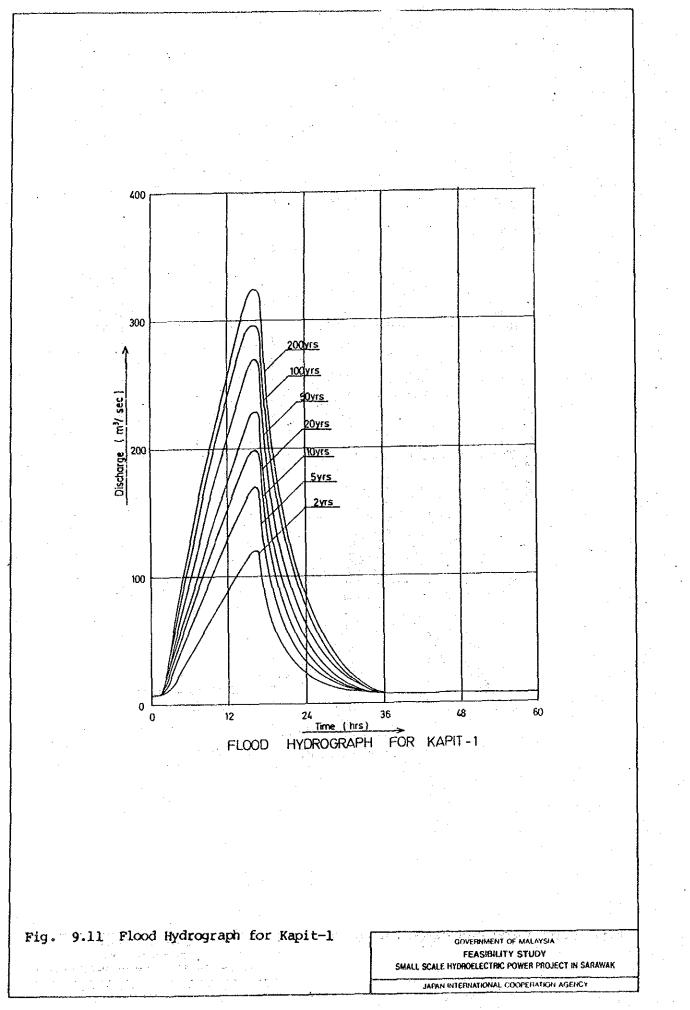

. .



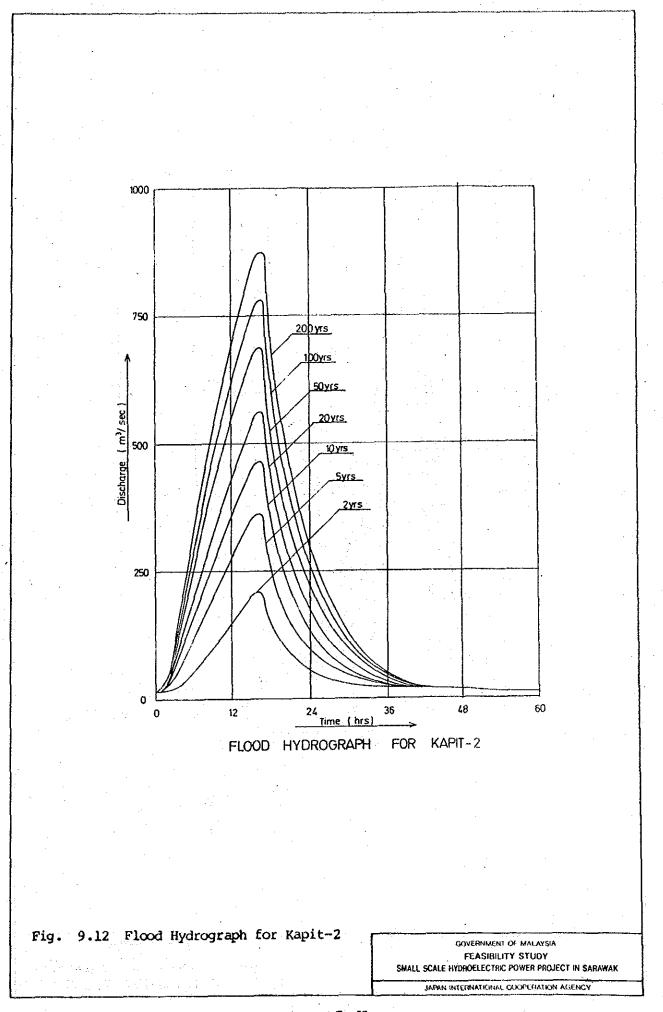


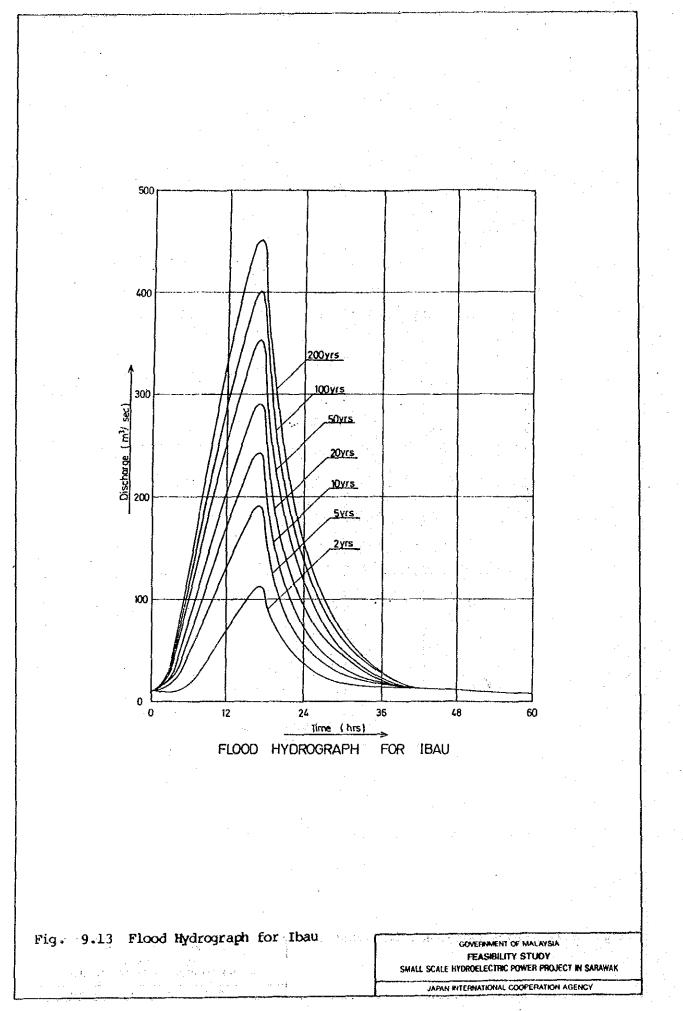



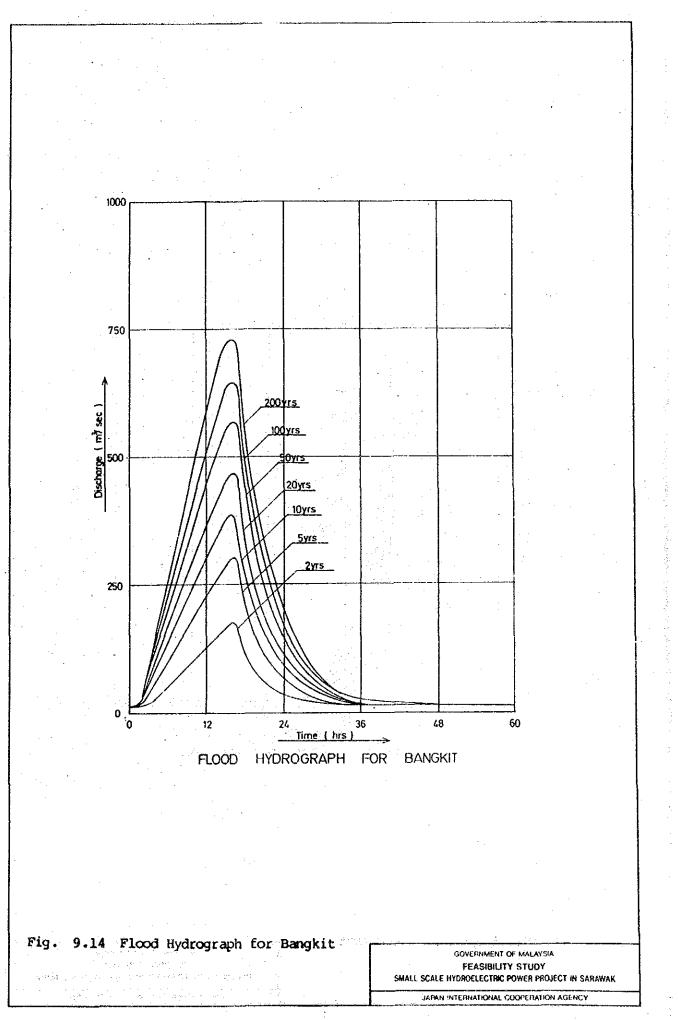




-

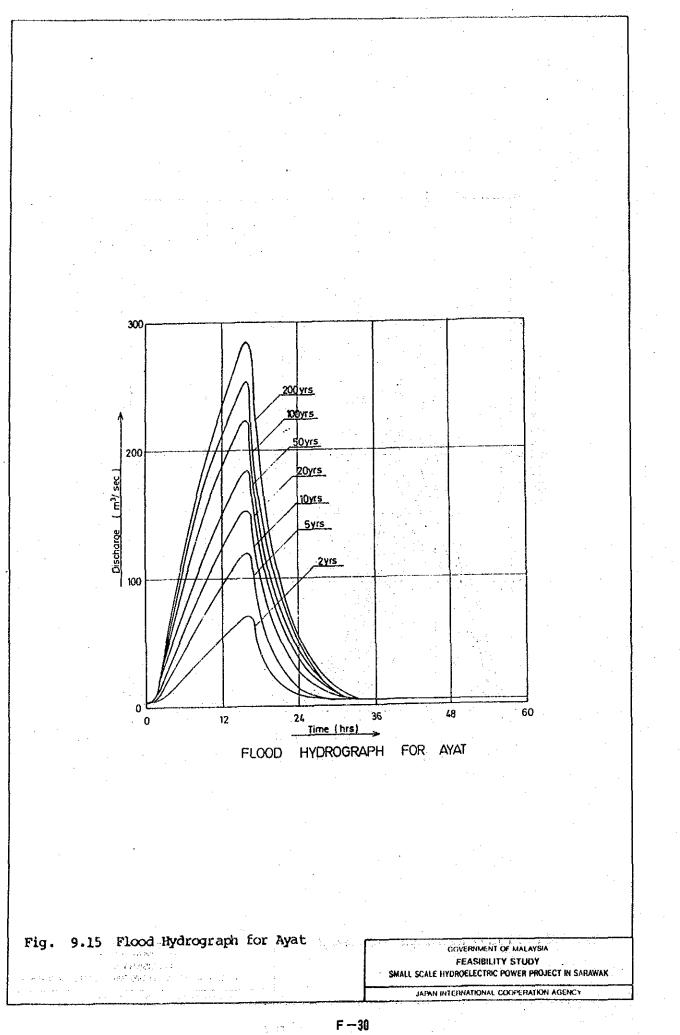




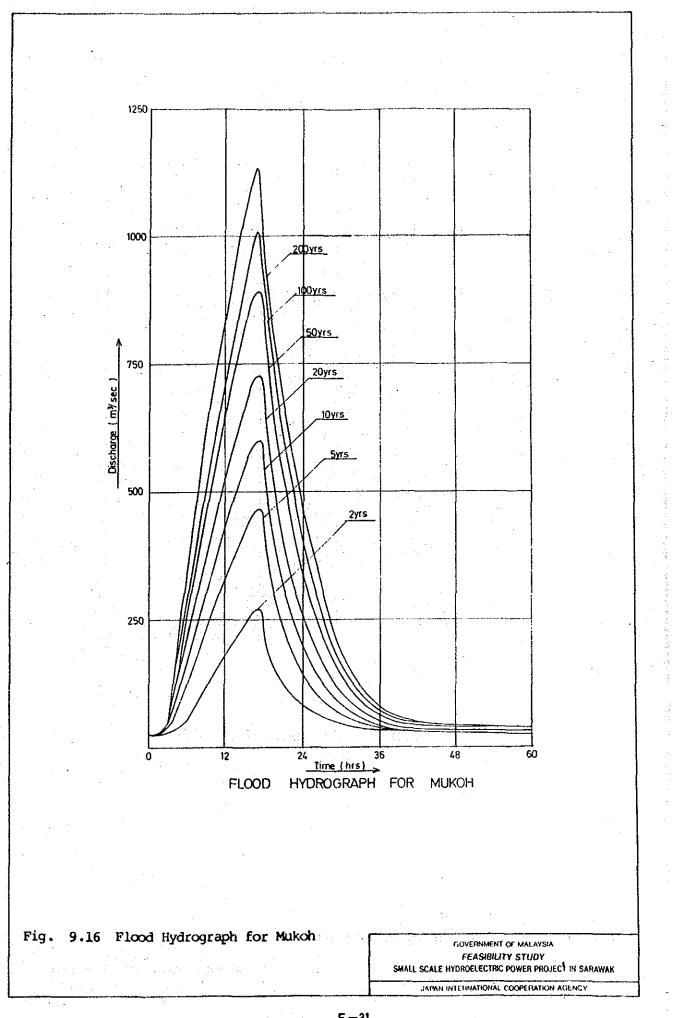


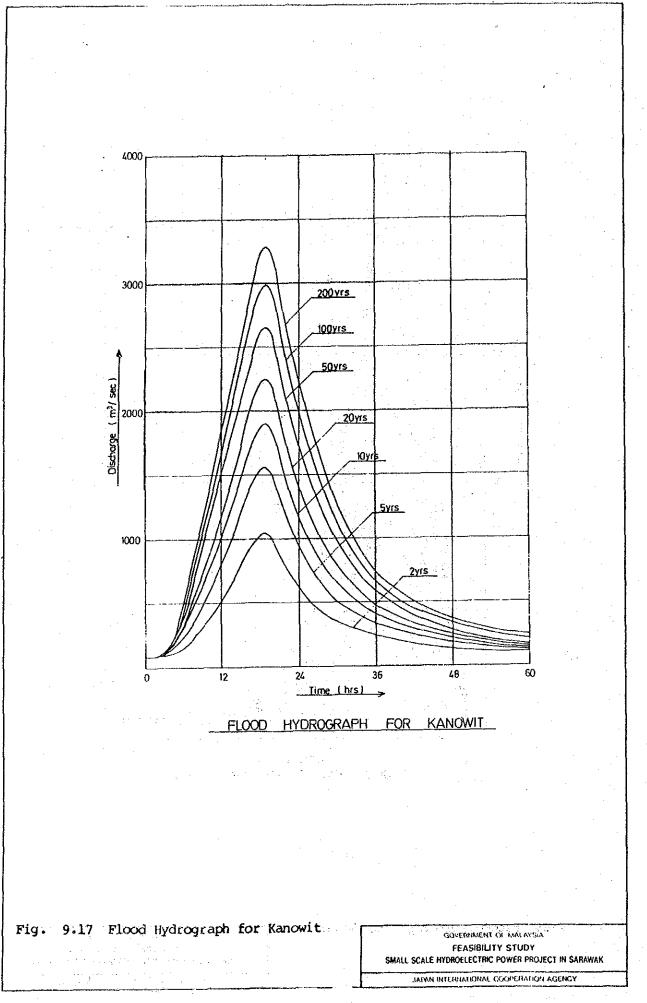


F -- 26



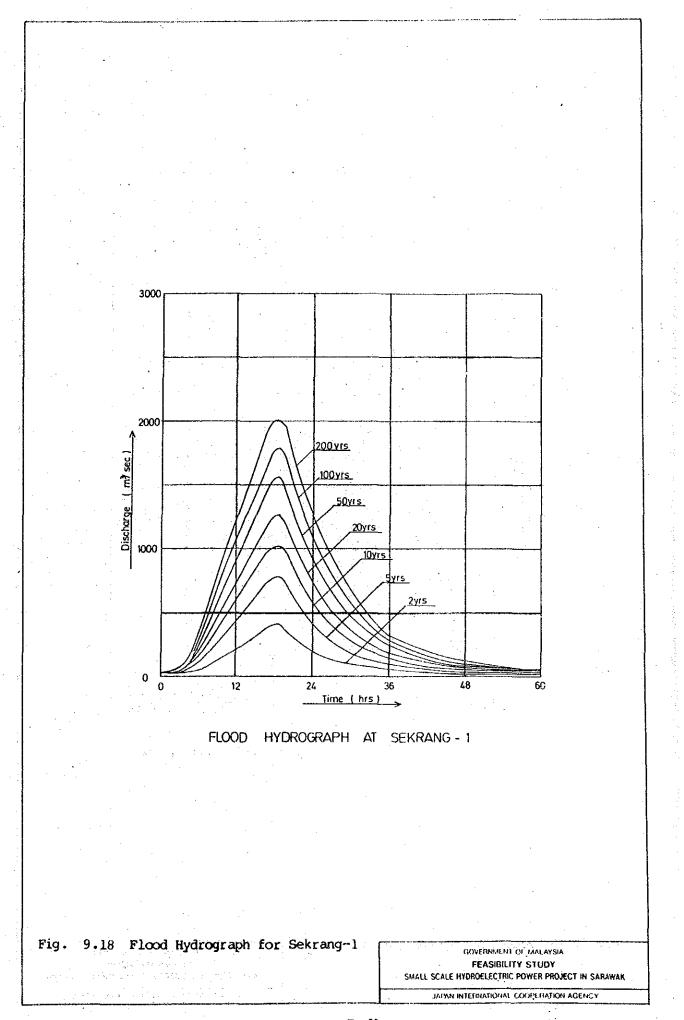

F -27

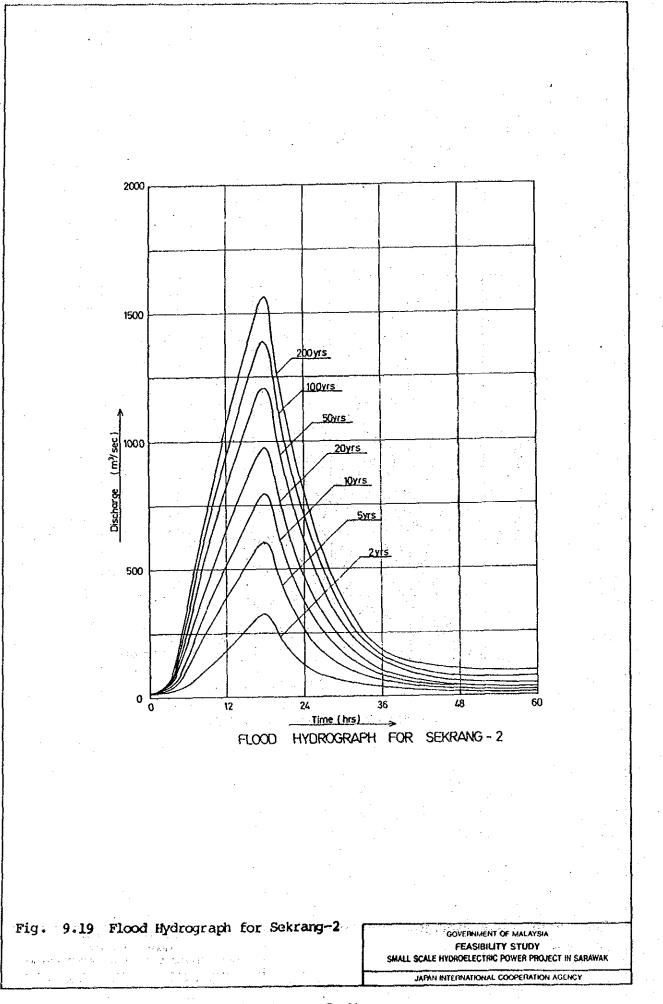



F -- 28

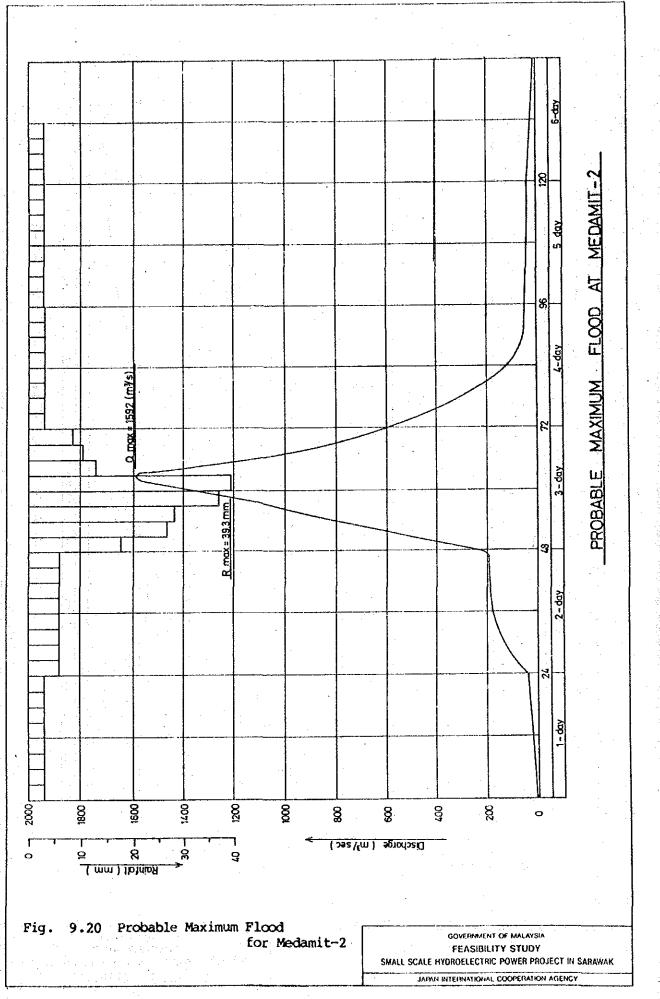



Балар ³ с **F−29** 

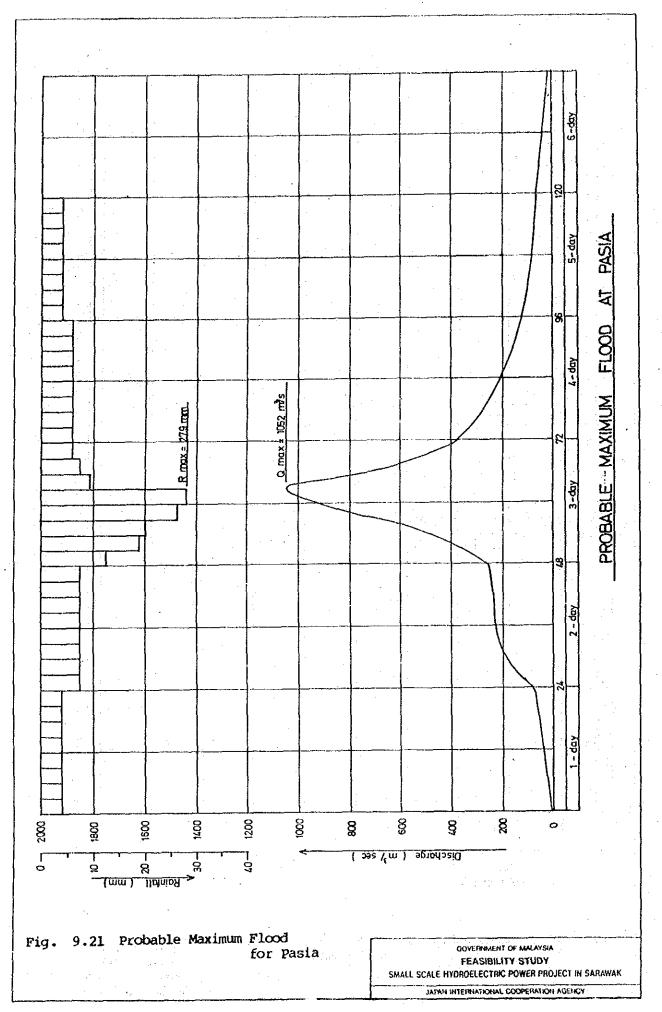


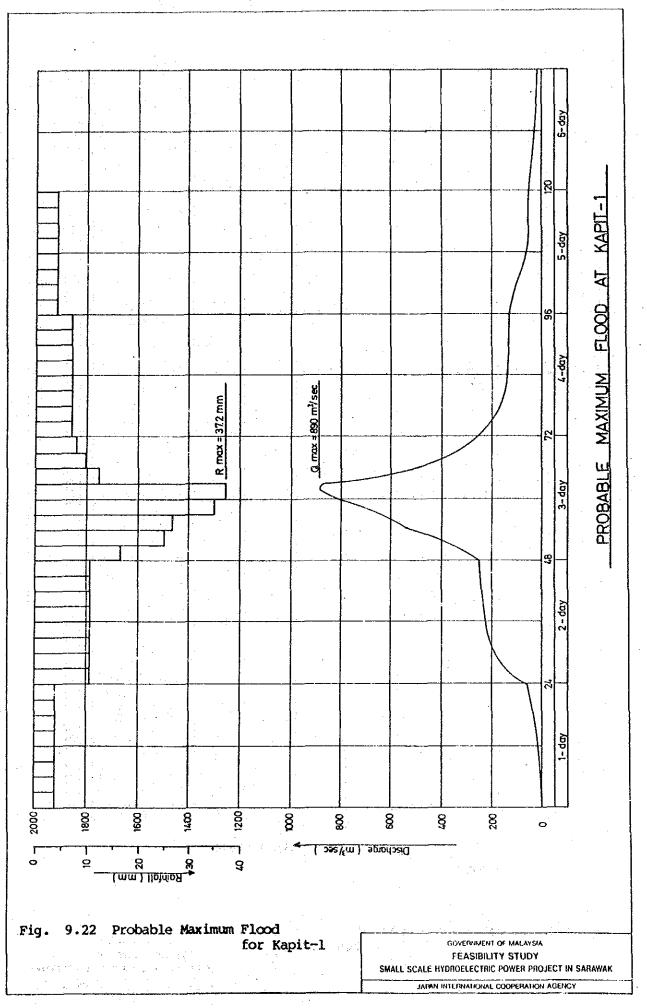


F -- 30



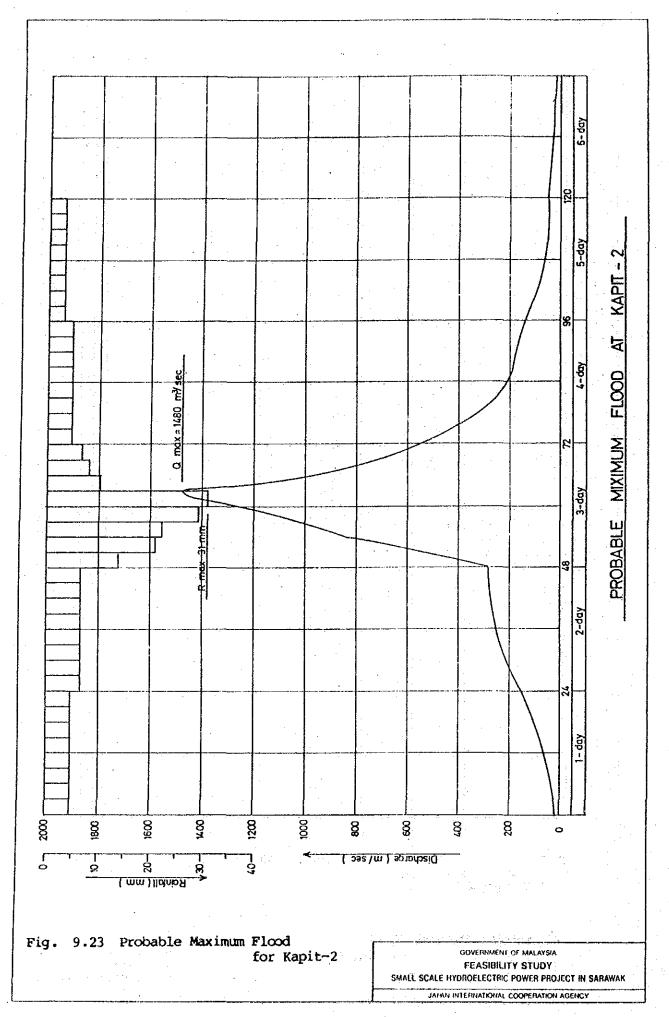


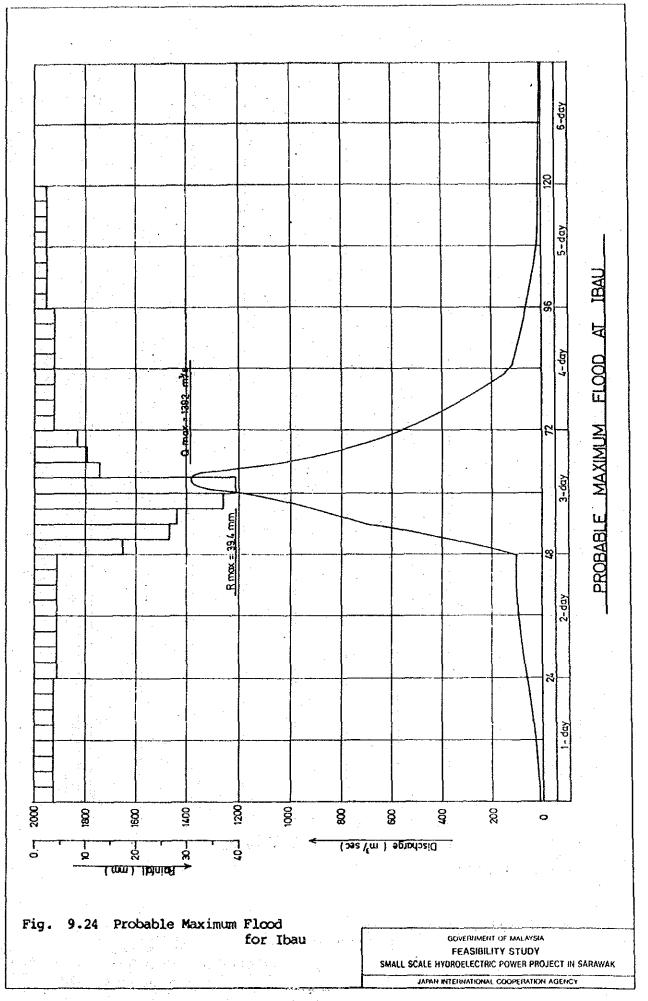

F - 32



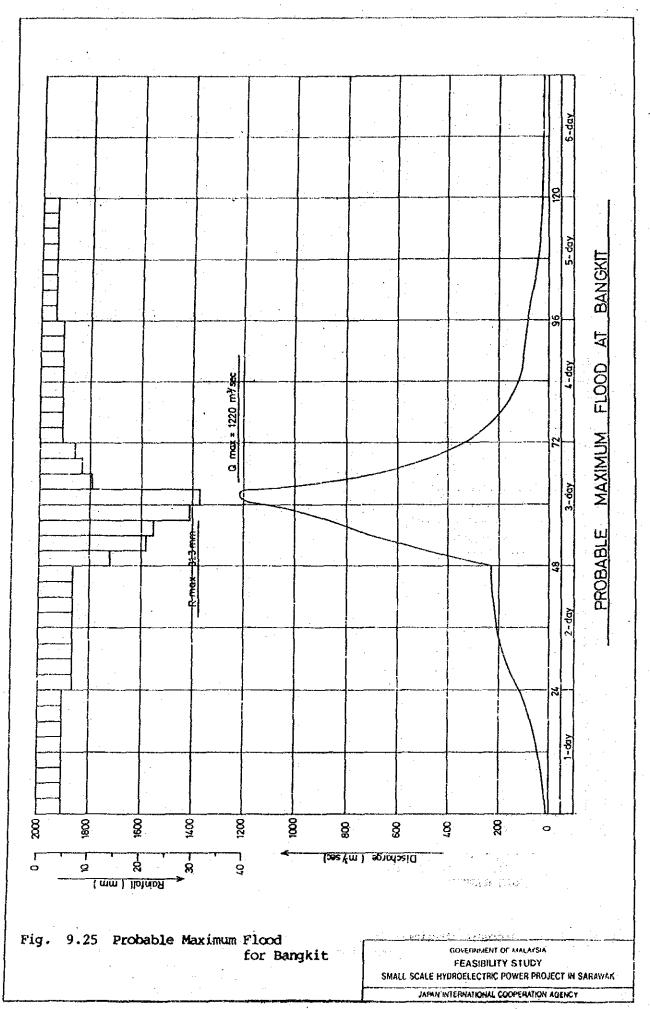

F -- 34





F — 35

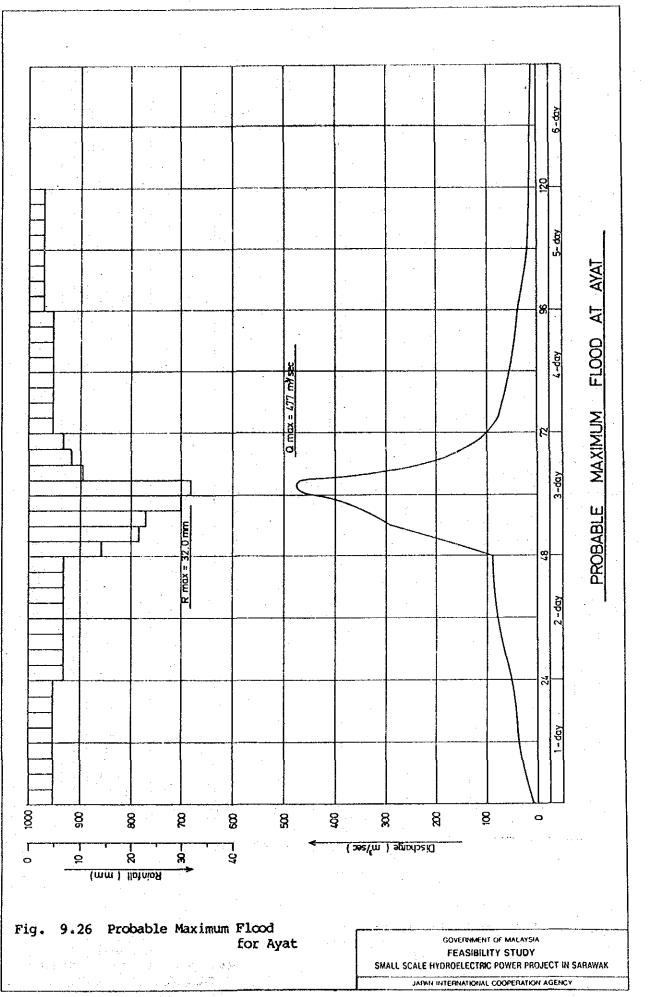




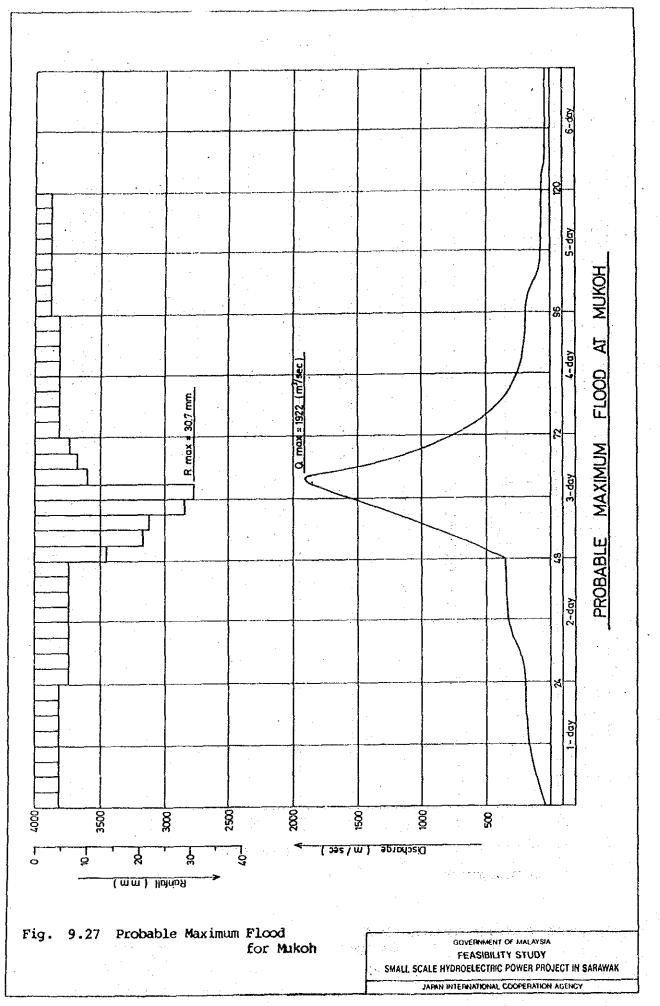

-1

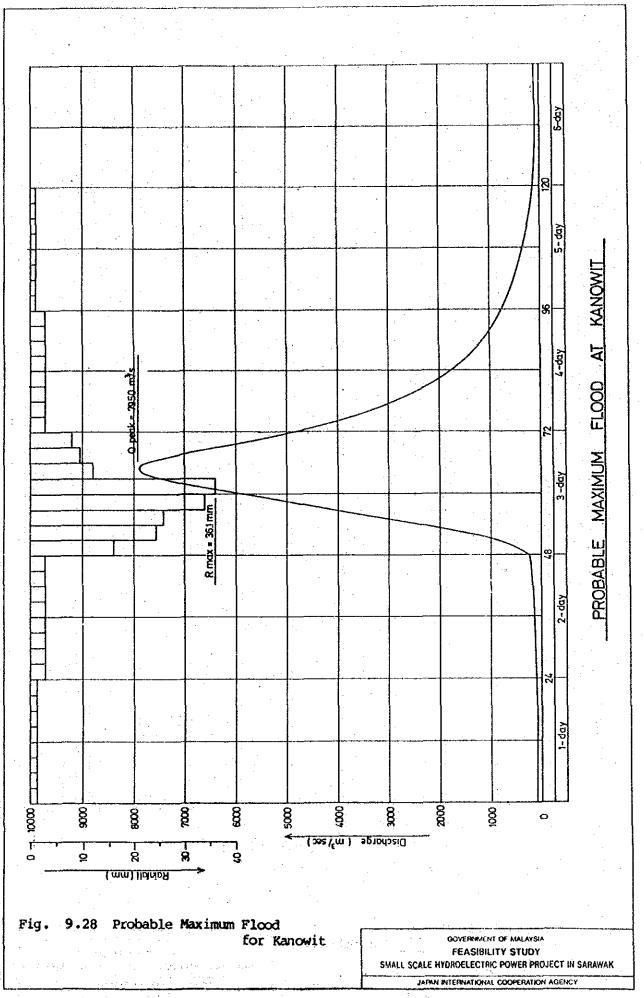


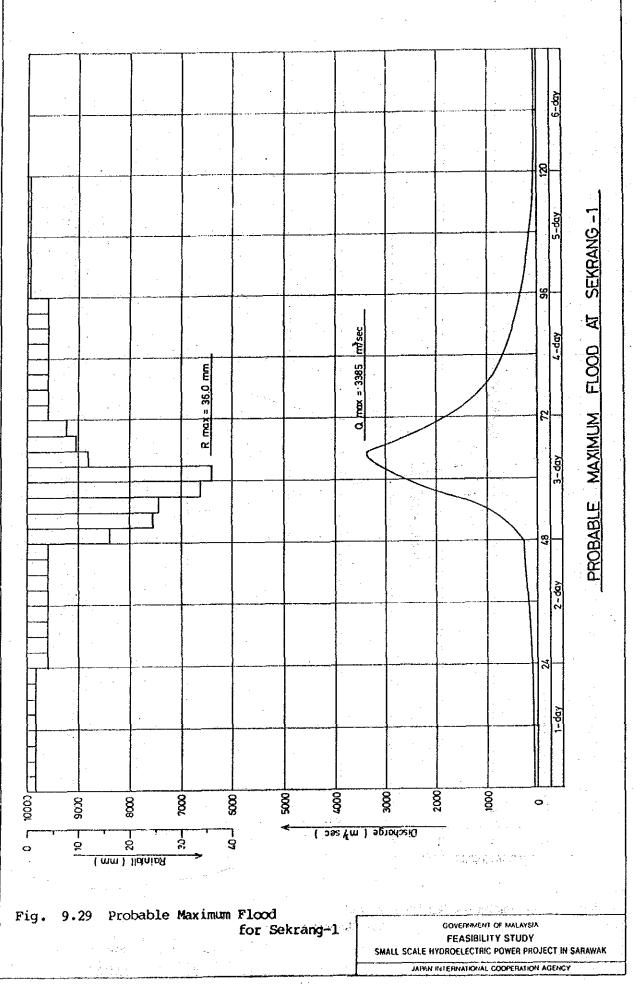


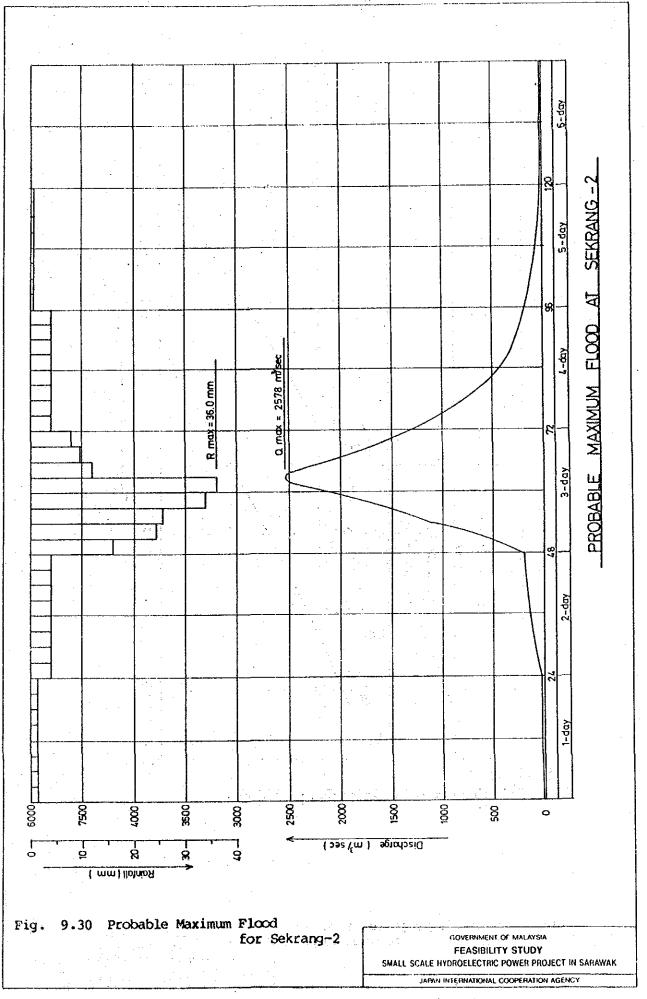

**...**9

- :

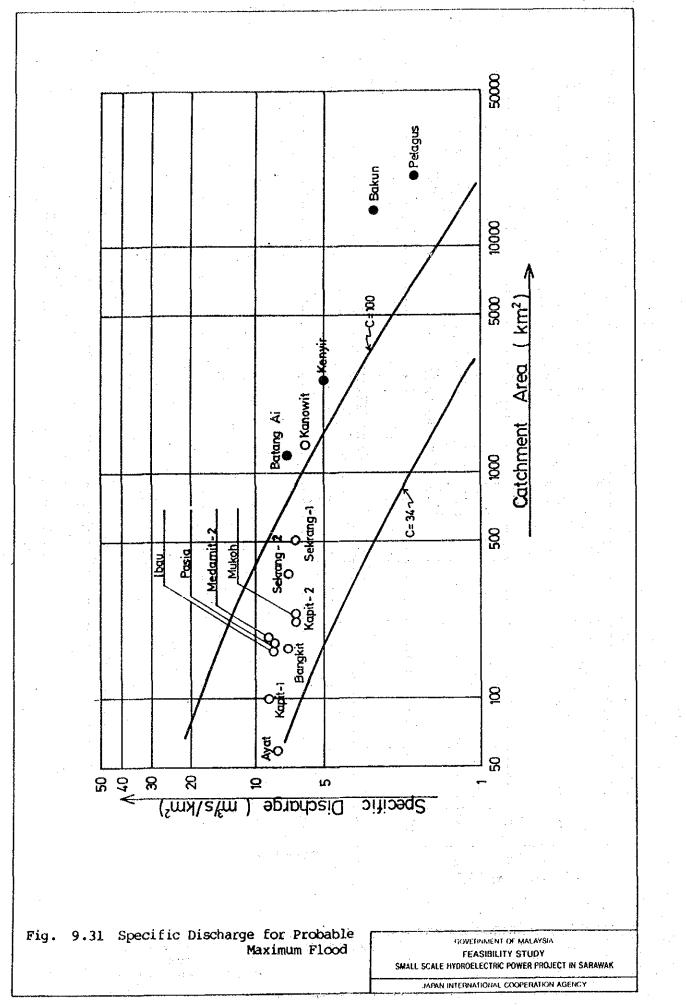




F - 40


.

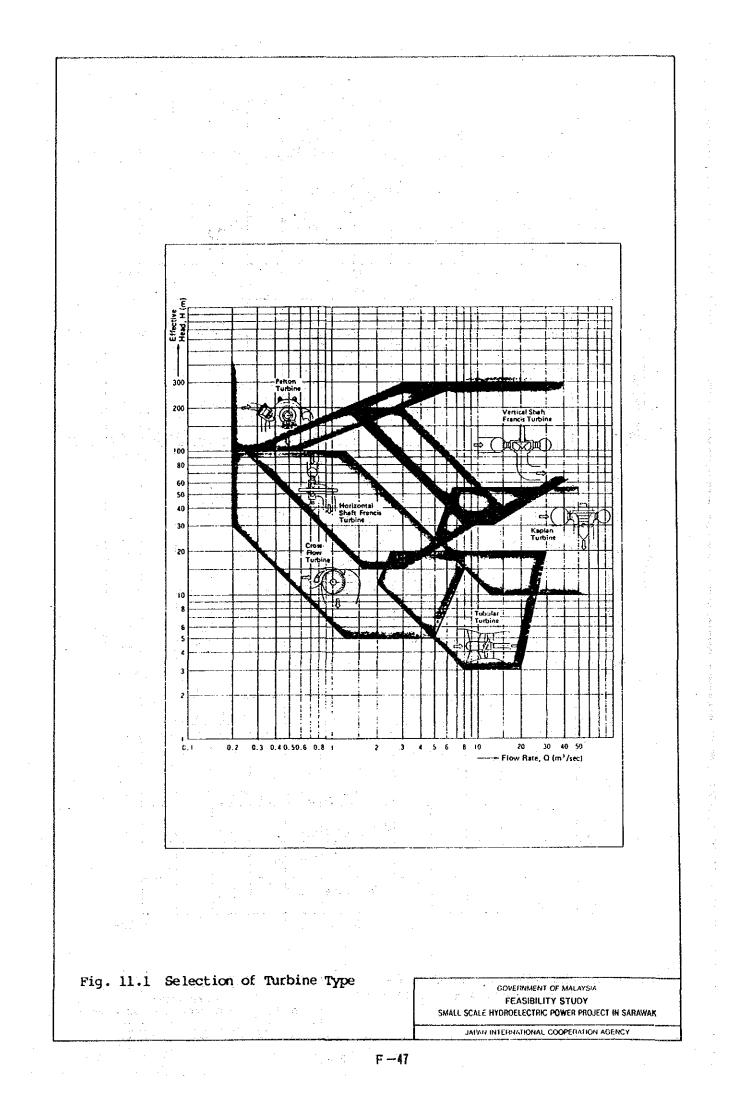


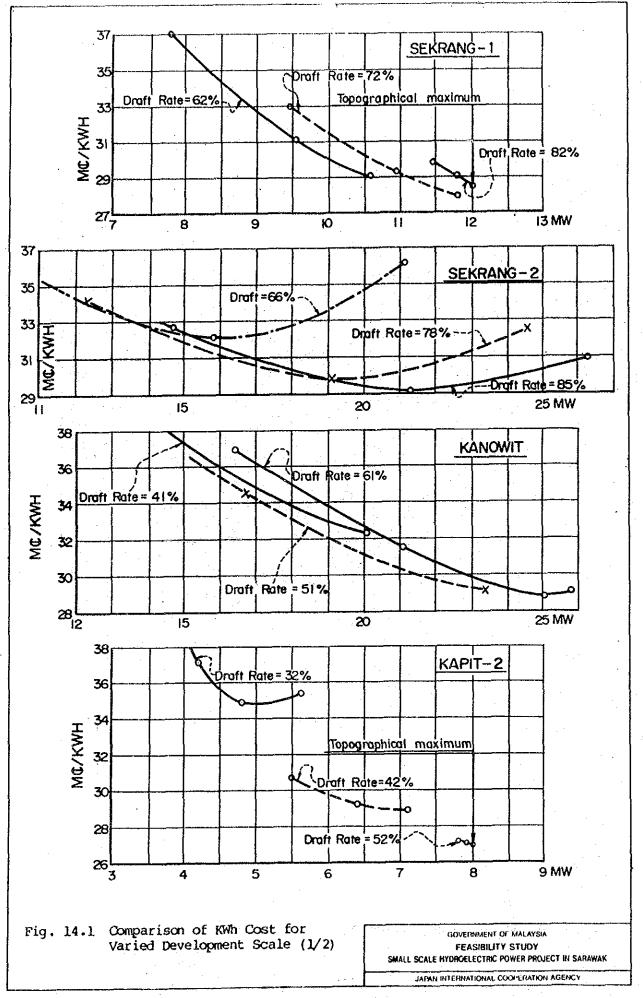

F -- 41

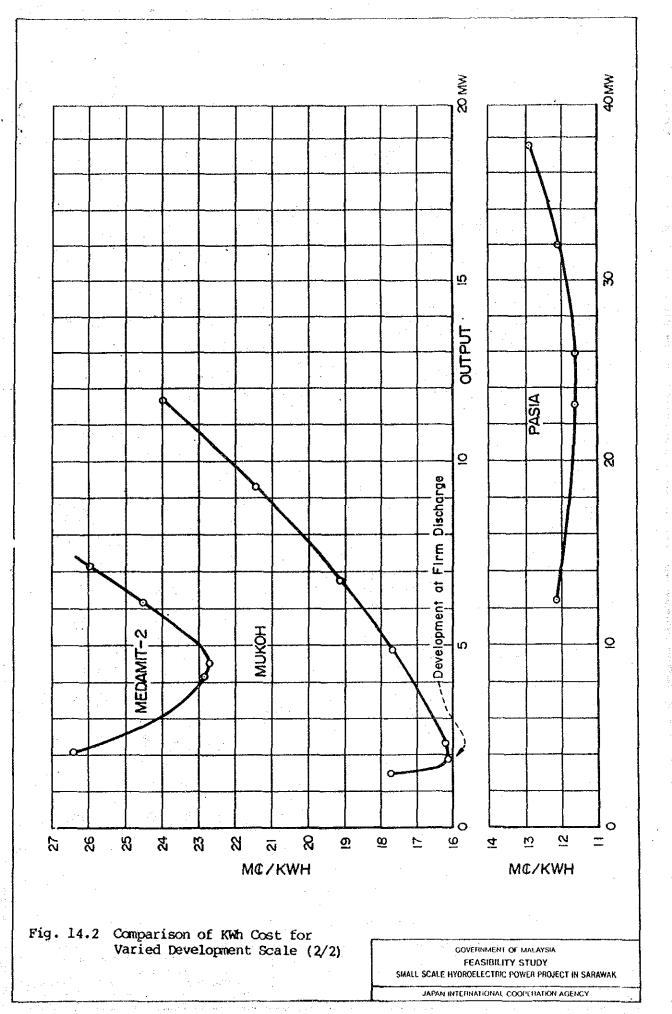


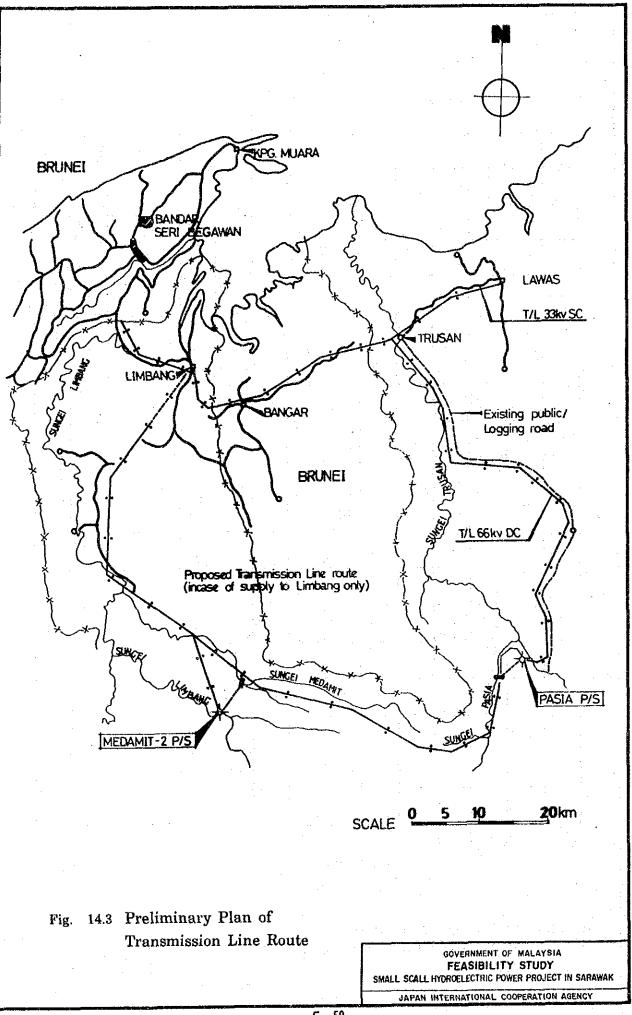


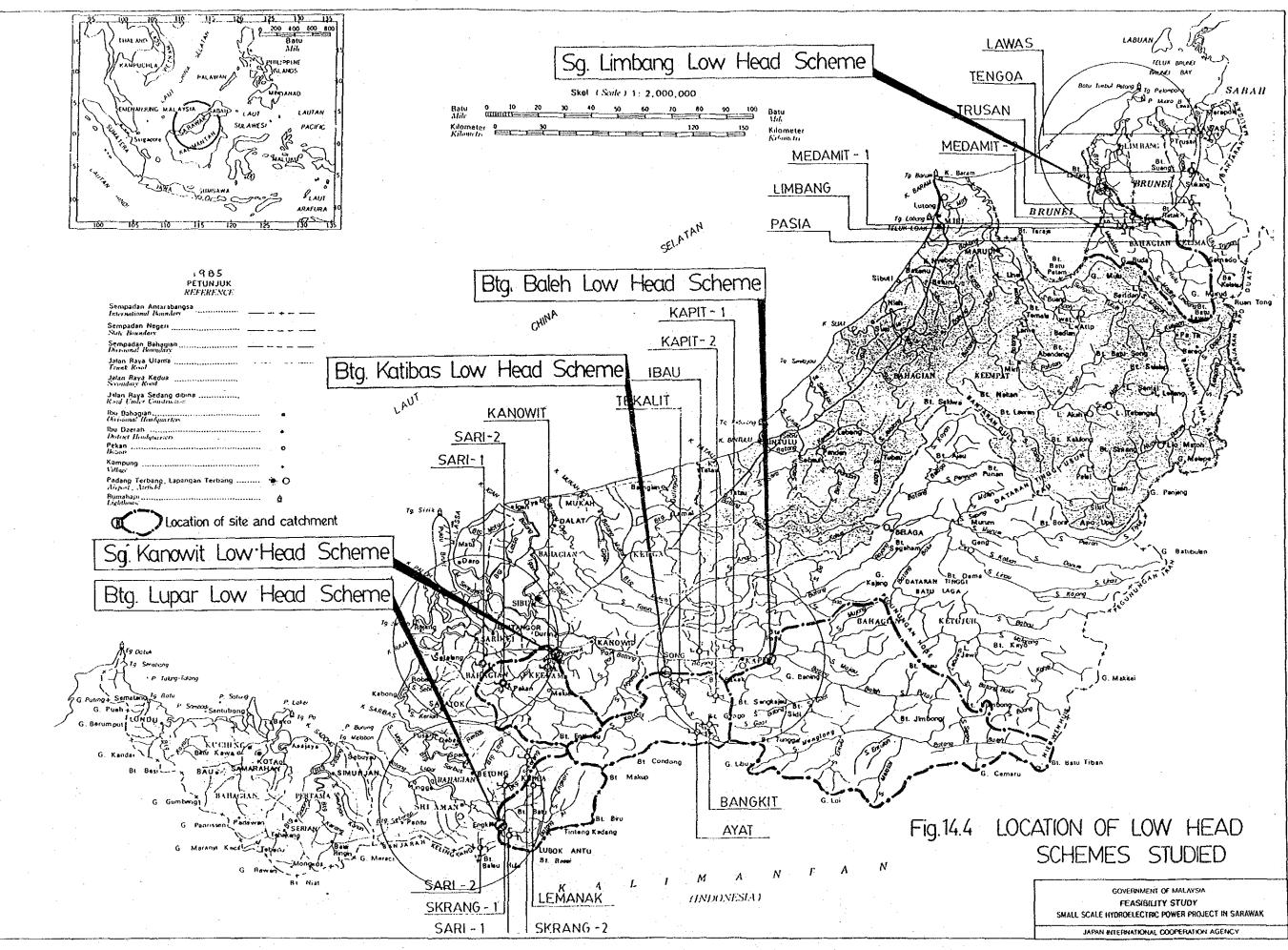




영국관 F-45





je -- **F --46** 


46









