3.3 Sedimentation and Water Quality

3.3.1 Sedimentation

Measurements on sedimentation were carried out three (3) times on June 23, 1987. However, such data are still insufficient for the derivation of the relationship between discharge and sediment volume.

The sediment volume at the intake site is estimated on the basis of the surface denudation rate taking the study results of Batang Ai and Bakun Hydroelectric Projects into considerations.

The denudation rates for the above projects are 1.0 mm per annum for the former and 0.5 mm per annum for the latter. Those correspond to annual sediment deposit volume of 1.25 million m^3 and 7.60 million m^3 , respectively.

The denudation rate of 1.0 mm per annum is adopted for the intake site, namely, the annual sediment volume flowing through the intake is estimated at 0.19 million m^3 .

3.3.2 Water quality

Water quality of the Limbang River was analysed by the Agricultural Department in April 1974. A typical example of the chemical composition in fresh water is given in Table III-17. Furthermore, water quality tests are also carried out in this study.

3.4 Right of Way in Water Use

There is no habitant in the Medamit River basin upstream from the Medamit-2 site. Uppermost location of habitants is about 8.5 km downstream from the intake site, where people utilize river water for their drinking. Mandatory release of 0.5 m³/sec would be required for ensuring their drinking water, if water of the Medamit River is diverted to the Limbang River for power generation. Furthermore, the Medamit River is not used for the transport of logged timber.

Table III - 1 List of Meteorological Gauging Station

	<u></u>		_ · · · · · · · · · · ·				
No	Name of Station	Lat		ation Long		Altitude (a.m.s.l.)	
1	Kuching aerodrome	01°	29'N	110°	20 E	21.7	1954-1986
2	Sibu aerodrome	02°	20 N	111°	50 E	7.5	1968-1986
3	Bintulu aerodrome	03°	12 N	113°	02 E	3.1	1968-1986
4	Miri aerodrome	04°	20 N	113°	59'E	17.0	1968-1986

Table III - 2 Annual Rainfall Depth at Representative Stations

(Unit:mm)

	Rainfall	Gauging Static	n
Year	Kuching	Kapit	Ukong
1950	3,951		
1951	3,873		
1952	4,404		•
1953	4,220		-
1954 1955	3,884 4,677		
1956	3,529	3,405	
1957	3,861	3,004	
1958	3,722	3,000	÷
1959	3,553	3,808	
1960	3,872	4,025	
1961	4,160	4,022	
1962	4,516	3,237	
1963	4,909	3,767	4,402
1964	4,792	3,535	4,374
1965 1966	3,329 3,696	3,659 4,529	4,362 3,804
1967	3,654	3,630	4,201
1968	4,441	3,706	5,150
1969	4,277	3,672	3,729
1970	4,262	4,714	3,592
1971	4,988	4,353	3,609
1972	3,099	3,178	3,801
1973	4,521	4,571	4,327
1974	3,325	3,479	4,395
1975	4,520	3,574	4,022
1976 1977	3,770 5,296	3,151 2,870	3,268 3,549
1978	4,236	3,558	3,533
1979	4,365	3,901	3,839
1980	4,651	4,633	4,519
1981	3,869	3,224	3,668
1982	3,327	4,473	3,252
1983	4,118	4,021	3,616
1984	4,488	4,170	4,469
1985	3,772	3,500	3,424
1986	4,264	3.530	3,122
Maximum	5,296	4,714	5,150
Minimum	3,099	2,870	3,122
Average	4,104	3,739	3,903

Table III - 3 Monthly Rainfall Depth at Lubok Lalang

		-	٠. ا						-	:			
YEAR	JAN	FEB	MAR	APR	MAY	NOC	JUL	AUG	SEP	OCT	NON	DEC	ANNUAL
1963	846.7	ဗို ဗိ	67.	88	90	38	79.	62.	8	82.	76.	56.	576.
Ø	86.	82.	0.	07.	09	41.	85.	70.	94.	29.	32.	87.	789.
Φ	94	85.	90	74.	91	53.	34.	.60	87.	64.	70.	70.	781.
φ	28.	64	50	69	9	96	98	41.	64.	8	64	61	423
Q	28.	70.	0.4	54.	37.	87.	87.	21.	05	51.	24.	****	677.
Q	08	ហ	10.	55.	Q	84.	07.	90	88	65.	04.	47.	286.
S	25.	84.	60	99	Q	27.	08.	41.	36.	23.	43	14.	375.
197	52.	42.	87	60	~~	9.	63.	.96	71	46	43	93	287.
~	9.	ij	78.	38	22	54.	14.	65.	36.	0.4	11	37.	298.
197	56.	99	43.	44	α	1,	13.	41	21.	01.	96	 	422.
197	95	-	48	70.	0.4	91.	76.	26.	51.	63.	82.	36	758.
Ļ	87.	77.	28	74.	4	95.	94.	73.	97	41	87	98	802.
~	60	59	89	89	~	42.	75.	95.	36.	42.	12.	55.	563.
	07.	53.	68	88	Ś	96	50.	07.	07.	87.	84	74.	080
~	40.	65.	44	97	9	02.	.00	44.	51.	93.	66.	88	260.
1	34.	25.	87.	80.	Q	54.	82.	78.	45.	<u>.</u>	92.	89	250.
~	14.	73.	34.	03.	9	69	05.	46.	89	70.	13.	5	827.
သ	ίΩ •	79.	45	62.	9	05.	17.	38.	98	08.	38.	36	804.
∞	66	47.	33	-	~	84.	77.	ب ښ	52.	90	52	46	295
က	27.	<u>1</u> 3,	73.	81.	Q	58.	87.	05.	28.	35	43.	9	231.
က	90	53.	47,	91.	9	45.	30.	39.	90	20.	43.	67.	108.
တ		465.1	353.4	454.2	629.5	326.4	304.3	243.4	327.2	557.7	381.4	303.9	4990.0
တ	16.	4	95.	65	$^{\circ}$.•	27.	02.	22.	77.	34.	95.	751.
က	22.	ထံ	89	ý	4	Ġ	63.	04.	81.	25.	51.	72.	048.
AVE.	446.8	302.5	333.0	376.8	403.4	330.3	307.7	317.8	358.1	440.7	443.8	426.2	4487.0
1				1		: : : :	 	,] 		1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1

			Table III	+ -	Generated	Daily	Discharge	at Intake Site		in 1984		4	i
DAY	Ņ	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCI		DEC
	•	: •	9		a			•		4			7
	2		7			9	(M)						ý
	ij	•	2			5	8	ω		œ	**		2
	4	13.0	20.1	က ထ	ω 	16.8	25.6	7.8	6°9	7.3	58	7.5	
	rŲ.	•	4		• •	Ö	∞		•	•		٠	
	v	Ľ	: C		Ц	σ	c				c		
		•) V	•	• 1	کار	·α	• • •	٠	9	•	•	٠	• o o
	• 00	• ·	· o	• •) L	•	•	• c	•	· c	1 α	•	
) U	• ·	י זע	• 1	• טונ	1 4	• - σ	• ~	•	• • (c	• • u	• } •-	• • σ
Ţ.		20.0	16.7	• • •		23.7) M	10	o u	ν α α		າ ທ - ທ - ຕ	n v 4
<u>.</u>	?	•	•	•	• >	,	•	•	9	•	•	•	•
+-	-	4	•		ý	2	'n	*		m	7	φ.	00
_	2	0		•	တ	T()	4	0	•	4	0	ထ	
<u>.</u>	m	S	•	o	ς.	4	_	o		2	~	-	_
•	.	0,	0		ω.	ဖွ	6	0		9		• •	5
* :	r.	36.2	17.4	7.7	23.6	18,4	83.2	180	5.4	1.00	ω 	4.	ູ້ທຸ
									•				+
	9	28.2	12.7	<u></u>		17.6	37.5	11.8		2	•		26.6
 -			্ ব্য	ω		ċ	7	•		4.	. •		ហ
* -		4	: • 			V	4.	о О	5.3	ი • თ	7.8	7.6	<u>'</u>
		<u>,</u>	m M	တ	₽.	.	0			င်	•	•	~
		7	v)	ហ	9		•	2		φ		·	4
			ı		,			,				1	
7	: 	O) I	ເກີຍ ໝໍ	24.1 20.0	ر ر	ထ (တူ)	ου (, 8 8 8	S)	16.0	თ :	15.3	10.4
		•	2	_	.	φ·		•	•	•	თ. !	4	0
		23	0	·	თ.	٠	٠	•	N.		•	·	•
		Ċ,	m	•	ຕໍ	o.	•	m m	00	•	œ		•
		'n	ហ	m	Ġ	ċ	٠	0)	, N		7		•
		4	7	. •	ζ,	ιυ •	•		. 2		ις.		
		_	ς,			4.				٠	£	IJ.	*
		4	18.2		ა 4	ري	ന	6	φ,	7.1	0	17.9	•
		S	~			•	•	•	9	•	, 	£	
		33,3		9°0	8	62.2		8.1	6.0	•	14.6	'n	8.0
m		*		•		თ		•	•		o ·		•
Aver	age	LO.		14.1	180	21.4	19.2	12.4	10.9	14.2	22.5	14.4	13.7
ANNUAL	AL AVERA	핌	17.4	cms									

	DEC	\sim	27.1	*	٠ <u>.</u>	•	Ų	٠	٨,	w.	•	0.5		• - c	n (٠	•			•	- σ	, o			•	•	•	9	٠, .	٠	٠	•	•		•	13.9	
į.	NON C	۱C	21.5	색		•			•	٠		ου -		• 1 c) v	٠	J,	٠	-	• '	•	, m	•		•	•		6		10	•	- C # 0	y (•		13.8	
1985	OCE		12.8	ထံ		o,	*		,	N •	m	•		•	n 0		٠	٠		•	•	0.0		C	• ·	• •	i i	10.9			• • u	• γα	• o c	00 00 00 00 00 00)	16.8	
Site in 1	SEP	o)	12.4	•	•	. •		ວ ເ ກຸ່ນ	٠			•	1	•	ว น •	٠		•		•	•	. 0	•			• . • (*)	_	20.8	r	•	• o c		• (λ) •		0.0	
Intake S	AUG	•	5. 5.	•	. •			, r	•		•	•		•) († <	٠	٠				•	. ₽ ¹		,	•			7.1		4 L	•	•	• •	42.5	•	9 9	
a	JUL	•	4.8	•	•	. *		- [٠,		•	•		•	~ r	•	•	•		• •	•	7.00	•	ď	.	• •	į (Λ.	اد س س		•		•	٠	o n	4	7.7	
ly Disch	CON	υ.	16.4	.	ക	•	v) c	,	•		•		•	יר היר					•	•	9			•	• •	•	्ठ. •		•	٠	n 0	•	•		8.7	
rated Daily Discharge	MAY		7.4		•				• 1	٠	*	m		, ,	90	·	4	2	~	, a	, C	17.8	(بر)	7		, c		14.2	4-	- o	• . Эц	• •	•	ر - مر د م	5	23.7	
5 Genera	APR		9.2	ė	•	ထိ	σ	- c	<u>.</u>	·	7	ហ	,	•	, r		٠	•	Ľ	• •	• 4	. o			•	• 1		7.8		•	٠	η σ	• .	•		13. 0	•
- III	MAR	•	5.6		•	•		· [•		٠	•			י טי טי	• 7 (•			•		່ ຕ າ ທ) LC	SO	ı ır	36.1	ų	•	n «	1 C	4	- r	•	13.3 cms	
Table	FEB		6.7	•	•			ተ ሰ •	٠	٠		•			9 ~	•	•	•		•		ທ ທ	•		8	a , i	• (5.2		0 11	ø.	•				5.9	
:	JAN	6.4	6.3				. 0	9 C	• - (m M	4			•	, L	,	٠	•		•	٠	m	•		• =	•	œ	7.4		o r	•		٠	7.0	• .	12.5 AVERAGE =	
	DAY	,	,7	m	4	Ŋ	¥	1 0	~ (œ		0 10	· ·	- r	- t	ሳ. ፣	- 4'	~~	(-2	- * -		بر ب ب						25						0 4 0 4		Average ANNUAL AV	

(v a c	DEC	•	დ ი		•	m	- 1	, w	•			•	•		6.3			ģ	•	9,6			٠	•	0 (0	•	٠		•	٠	5.7	•	7.8
(Unit		ထ	30.5	9	œ	4	- 7	, o				,	ြက်		σ	7.8		•		7.1	1.0				· 5 · 6	•	•	7.1	<u>ი</u>	•	4.		4 00
1986	OCT	•	11.6	ဖွဲ့	•	7	m	34.2	4	∠‡ι •	e m	0	35	ဖ	42.3		•	پ		8.2	•	r	• • o	• n o	14.4	σı.	•	<u>ი</u>	œ	۲.	31.0	ത് _	27.4
Site in	SEP		11.0	ທໍ	•		•	, v		٠	7.	œ	~		~	•		•		6,5	•		•	•	2 0			7.6		S)	·-	•	0.0
t Intake	AUG	. •	10.7	<u>.</u>	•	•		, LO		•	•	•			6.5		Ŋ	ω •		14.4	2		•	•	8	•	•	•	٠	٠	 		10.2
charge at	JUL		5.7		•	ŧ	•	5.2	•		•				4.6	•		. •		4.5	•		•	5	4.0	•		•	•	•	8.		ທ ຜູ້
aily Dis	JUN	7	19.7	<u>.</u>	٠,,	2	2	13.7	0	•	•	ເດ	Ŋ	o	36.7	2,	2	2	•	13,3	•		•	•		7.3		6.7	•	•	•		17.2
nerated Daily Discharge	MAY	œ	34.6	Ö	Ŋ	ထ်	m	100	m	9	7	4,		ထ	7.9	•				7.5	•		•	• ,	. " . "	•	•	•			00	• .	
- 6 Gen	APR		<u>~</u>	7	•	4	ග	16.2	4	ന		4.	ထ	တ	35.0	2	. •	0	•	ຕື	•		*	•	י לי		•	0.8	•				
rable III	MAR		5.7	•	. •		•	n N		•	•				6.7			'n	~	23.1	7	c	• 1 C	• 5 o	12.2	0	•	φ.	3	ဖ	17.3		13.2 cms
Ta	FEB	3 . •	7.9	•		•		9		•	•	,				•	•	٠	•	6.1	•		•	۰	ຸກຸ		φ	11.3					7.5
	JAN	•	6.3	•	•	•		ູ້ທ	•	•	•	•			5.4			•	•	7.0	•		n u	• 0 C	4 1 2 8	9		9	J.	က်	25.7	• O	AVERAGE =
	DAY		2	m	4	ស	vo	1~	ω	Q	1.0		7	<u>6</u>	77	1 2	9 [-21			19					200	2.5 5.5					30		Average ANNUAL AV
				, ž																						٠.							

Table III - 7 Frequency Analysis of Rainfall Depth

					٠			(Uni	t:mm)
STC		:		Rì	ETURN	PERIOD	(YEAR)		
	ATION YS)	*	2	5	10	20	50	100	200
A.	Gumb	el	method	l					• •
	.1	•	72	94	108	122	139	152	165
	2	:	100	130	149		192	210	229
	3	:	122	164	192	219	253	279	305
	5	:	161	211	245	277	319	350	381
B.	Iwai	me	ethod			: . : .			
	1	:	73	94	108	122	139	152	165
	2	:		130	149		192	210	229
	3 5	:	124	154	171	187	207	220	234
	5	:	163	110	223	245	272	292	312
C.	Log-	Pea	arson T	ype-I	II met	thod		, ·	
	1		72	91	103	115	130	142	154
	2	:	98	123	141		184	205	227
	3	:	116	147	173		251	293	342
·	5	•	154	193	225	259	312	356	407
						•			

Table III - 8 Heavy Rainfall Data at Kuching

NIA.			Pe	ri	od	~ ~ ~ ~ .		Amount
No]	From		~ ~ .		То		(mm)
(1)	Jan.	8,	1971	-	Jan.	9,	1971	355
(2)	Jun.	22,	1972	-	Jun.	23,	1972	247
(3)	Dec.	24,	1973	·_	Dec.	25,	1973	198
(4)	Dec.	28,	1975	-	Dec.	29,	1975	193

Table III - 9 Ratio of Every 3-hour Rainfall Depth to 1-day Rainfall Depth

9.7 24.4 40.0	9.7 14.7 15.6
40.0	15.6
	-
60.5	20.5
82.3	21.8
89.5	7.2
95.3	5.8
100.0	4.7
	82.3 89.5 95.3

Table III - 10 Design Rainfall

(Unit:mm) RETURN DURATION (HRS) PERIOD (YEARS) 9 .

Table III - 11 Loss Rate adopted in Malaysia

Project	Location	Catchment Area (sg.km)	Loss Rate (mm/hr)
		try was you thin him has help him has the the day the day the too too too too an an an ar	1 198 198 198 to hip tro on the Co An to An
Klang Gates Dam	P. Malaysia	74	5.1
Jor Dam	tt	123	7.2
Batang Ai	Sarawak	1,200	3.0
Pergau Dam	P. Malaysia	1,290	2.5
Temengor Dam	**	3,400	2.5
Kenyir Dam	tt .	4,580	2.5
Bakun	Sarawak	14,750	4.0

Table III - 12 Probable Peak Discharge and Flood Volume

CATCHMENT AREA (km²)	RETURN PERIOD (years)	FLOOD VOLUME (10 ⁶ m)	PEAK DISCHARGE (m ³ /sec)	SPECIFIC DISCHARGE (m ³ /sec/km ²)
	2	12.0	277	1.5
	5	16.6	361	1.9
	10	19.8	417	2.2
186	20	23.1	473	2.5
	50	27.1	542	2.9
	100	30.2	595	3.2
	200	33.3	648	3.5

Table III - 13 Annual Maximum Peak Discharge at Nanga Medamit

Year	Peak Discharge (m³/sec)	Specific Discharge (m ³ /sec/km ²)
1966	771	0.274
1967	909	0.324
1968	922	0.328
1969	869.	0.309
1970	926	0.330
1971	1,204	0.428
1972	858	0.305
1973	1,047	0.373
1974	1,028	0.366
1975	1,059	0.377
1976	1.035	0.368
1977	1,520	0.541
1978	782	0.278
1979	955	0.340
1980	788	0.280
1981	877	0.312
1982	745	0.265
1983	771	0.274
1984	879	0.313

Note: Catchment area at Nanga Medamit is 2,810 km2.

Table III-14 Frequency Analysis for Annual Maximum Peak Discharge at Nanga Medamit

		- 71	
(IIni	f- =	m ^ປ ຸ	/sec)

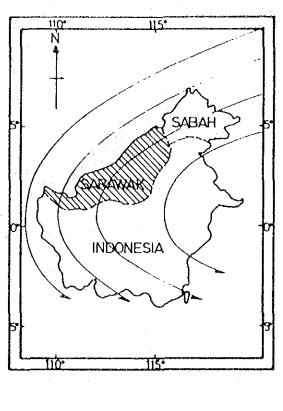
Return	Method			Adopted
Period (years)	Gumbel	Iwai	LP TypeIII	adopted
200	1,756	1,733	1,775	1,760
100	1,638	1,605	1,620	1,640
50	1,519	1,482	1,477	1,520
20	1,361	1,325	1,300	1,360
10	1,238	1,209	1,176	1,240
5	1,111	1,093	1,057	1,110
2	918	930	898	920
			•	

Table III - 15 Probable Flood Volume at Nanga Medamit

(Unit:10⁶m³)

Duration			Return I	Period (years)		
(days)	2	5	10	20	50	100	200
1	68,9	87.5	93.5	99.2	106.6	112.2	115.4
2	126.0	159.3	169.5	179.4	192.0	201.7	207.0
3	175.2	220.8	234.6	247.8	264.6	277.6	284.9
5	252.3	319.7	340.9	360.7	387.1	406.5	417.7
7	325.8	411.9	437.9	463.3	495.3	520.1	534.0
10	419.0	522.7	550.4	594.4	611.7	637.6	652.3
15	536.5	679.1	723.2	765.9	820.4	860.5	883.9

Table III - 16 Probable Peak Discharge at Powerhouse Site


Return Period (years)	Nanga Medamit			Powerhouse Site	
	Q	q	~ C	Q'	Qadopt
200	1,760	0.625	18.013	1,492	1,500
100	1,640	0.582	16.785	1,391	1,400
50	1,520	0.540	15.557	1,289	1,300
20	1,360	0.483	13.919	1,153	1,150
10	1,240	0.440	12.691	1,051	1,050
5	1,110	0.394	11.360	941	940
2	920	0.327	9.416	780	780
			•		

Note:

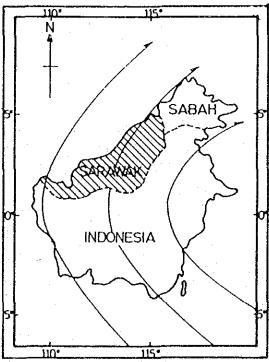
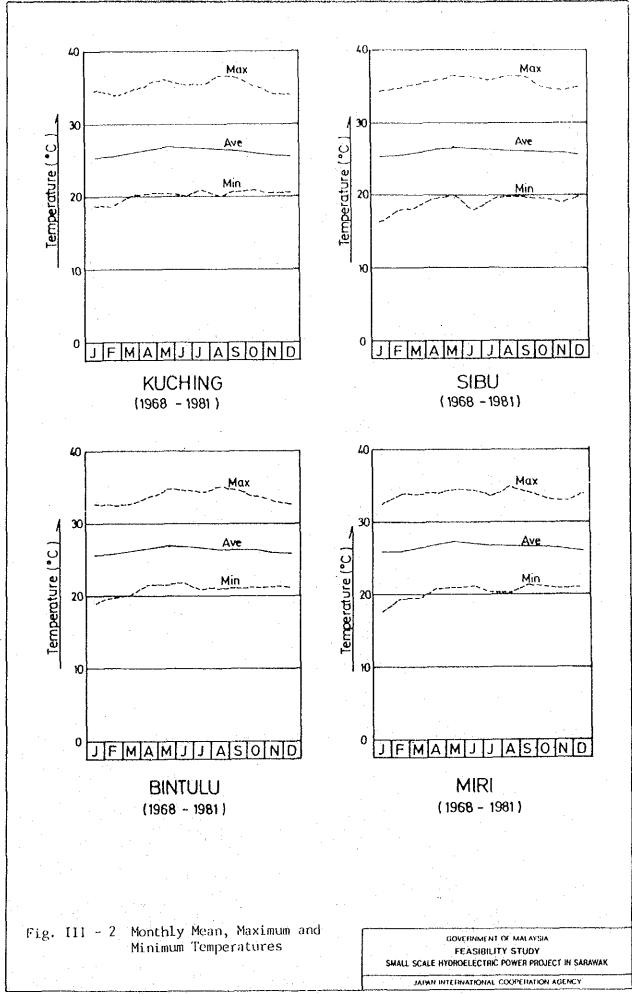
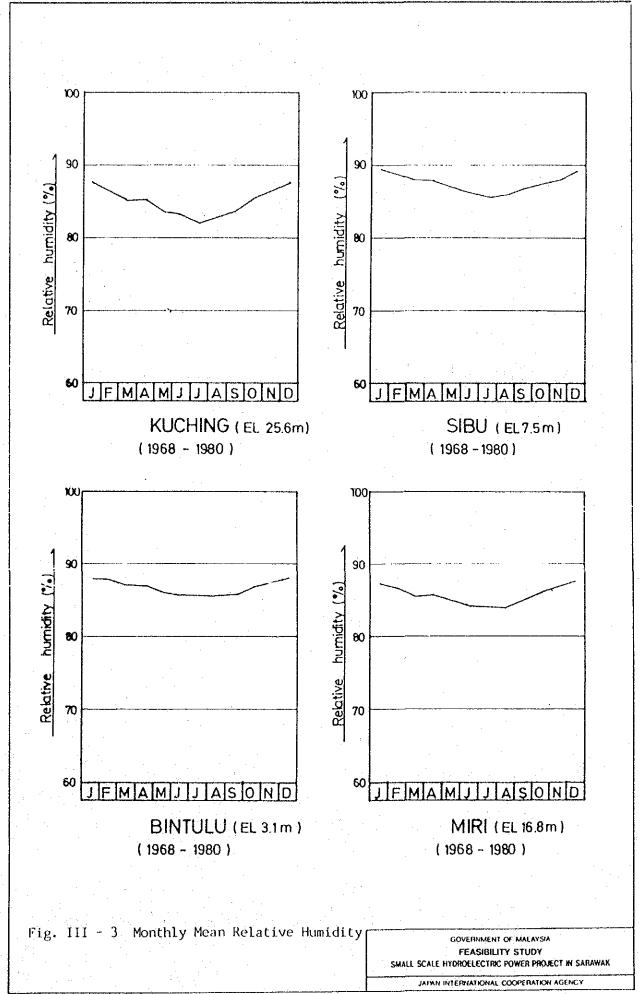

Q: probable peak discharge (m³/sec) q: specific discharge (m³/sec/km²) C: coefficient at Creager's equation Q': probable peak discharge (m³/sec) Qadopt: adopted value (m³/sec)

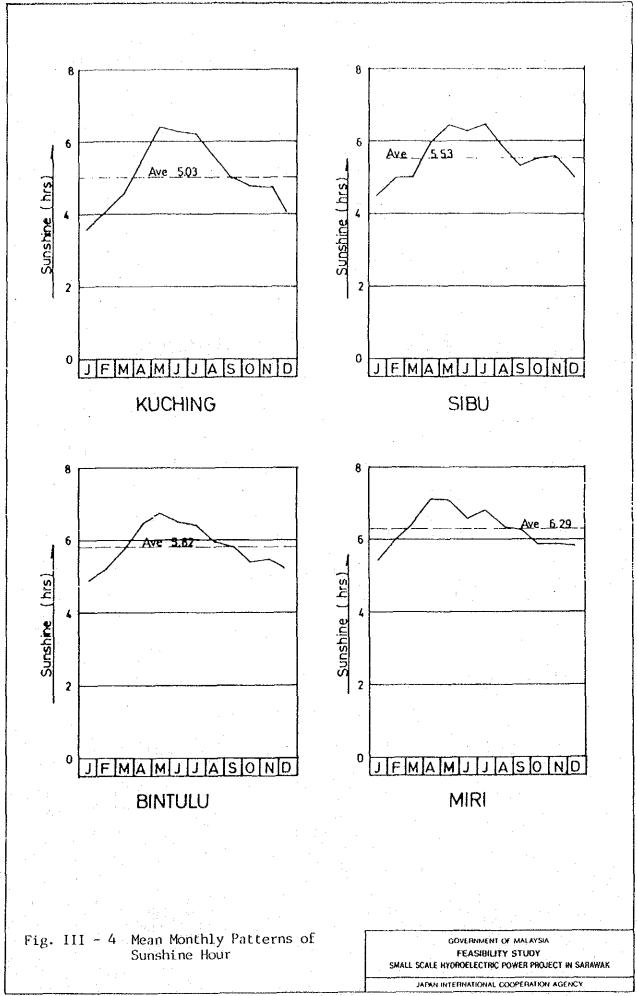
Table III-17 Typical Composition of Fresh Water in Limbang River

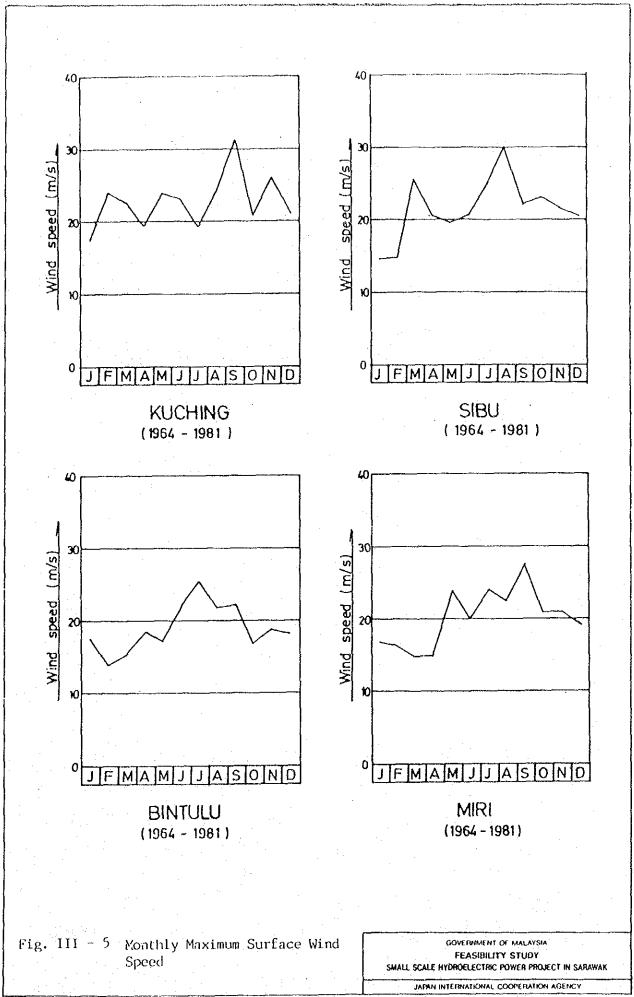
	Description	Unit	Value
	PH		7.2
	Conductivity	pemkos/cm	. 35
	Cl	mqq	1.0
	so ₄	mqq	10.0
	Ca	meg/l	0.10
	Mg	11	0.20
	Na	II	0.14
•	K	n	0.01
		* * * * * * * * * * * * * * * * * * * *	

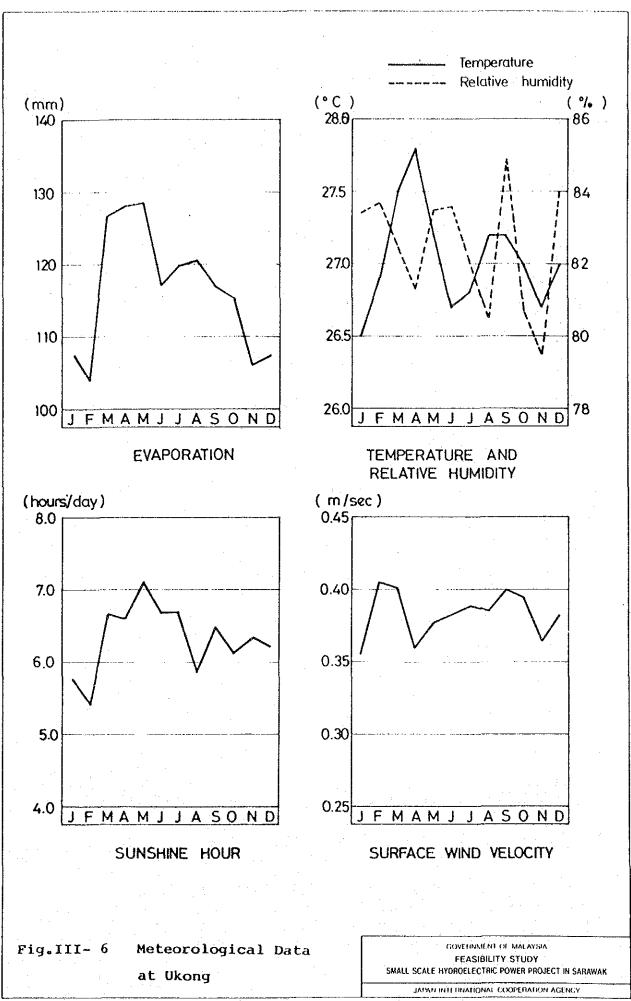
Rainy Season

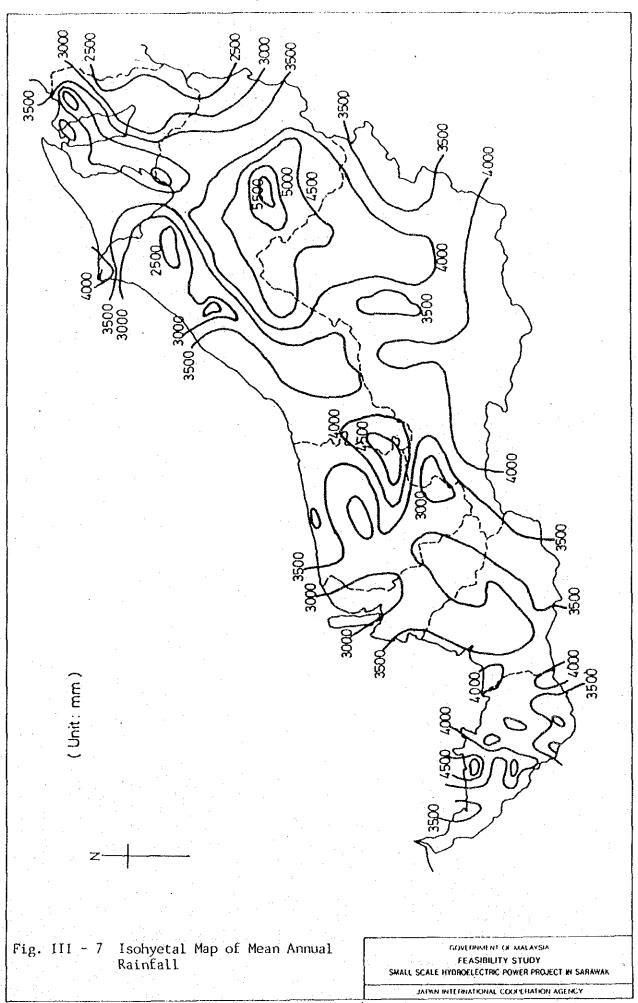


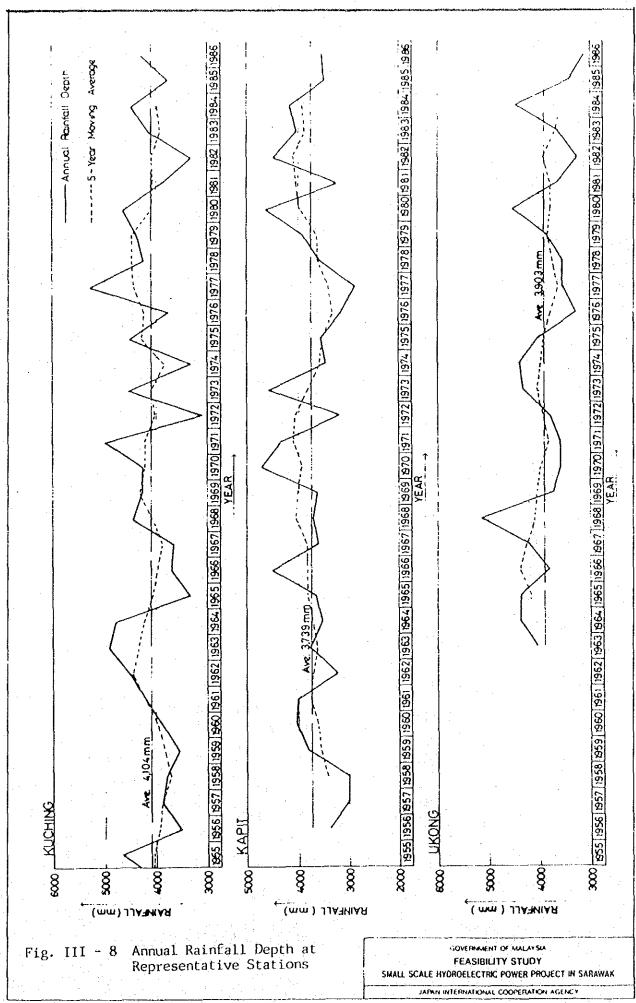

Dry Season

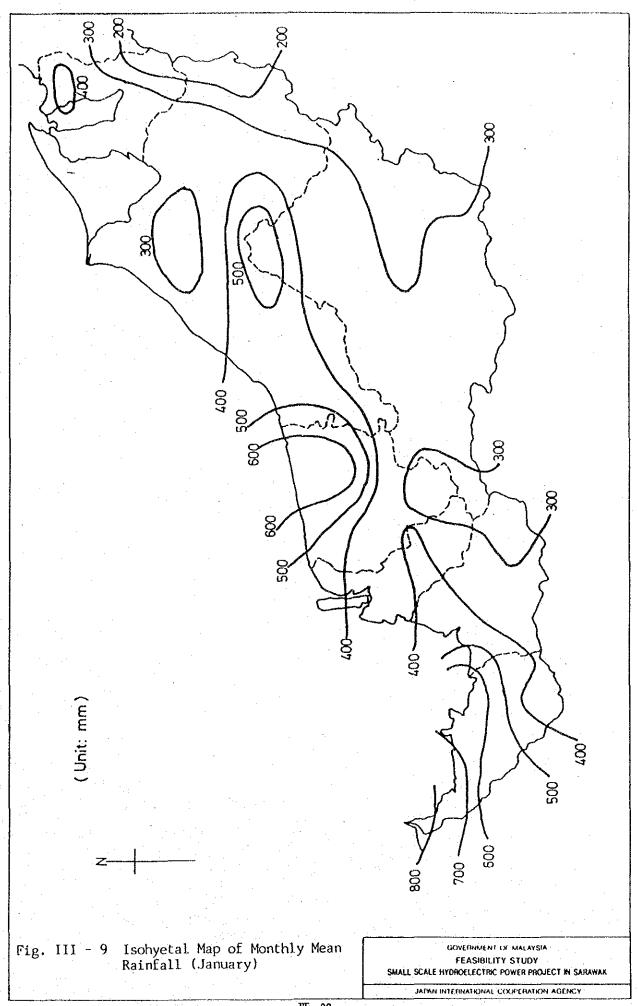

Fig. III - 1 Prevailing Patterns of Monsoons

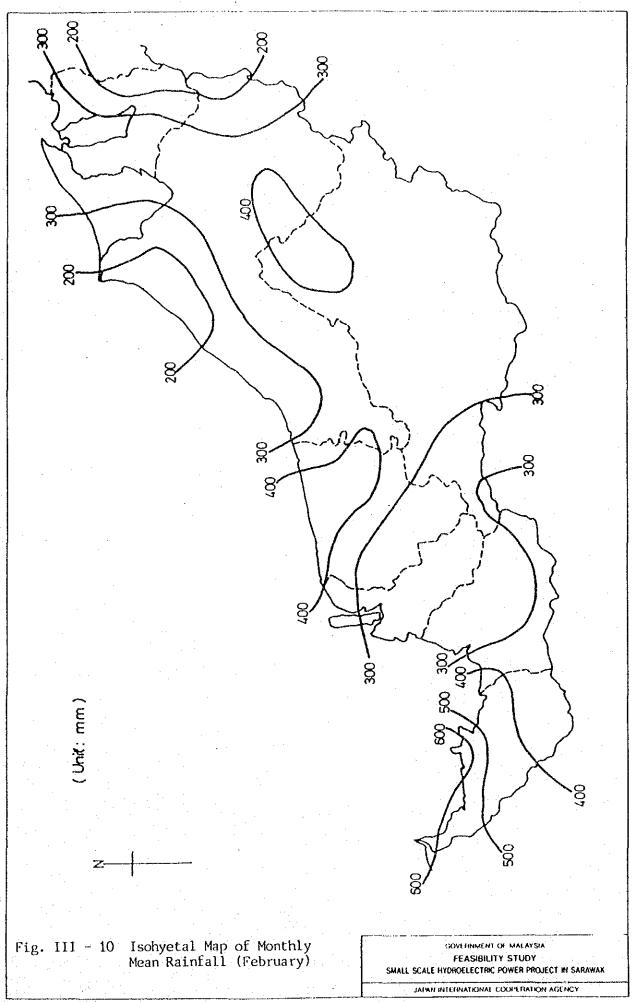

GOVERNMENT OF MALAYSIA
FEASIBILITY STUDY
SMALL SCALE HYDROELECTRIC POWER PROJECT IN SARAWAK

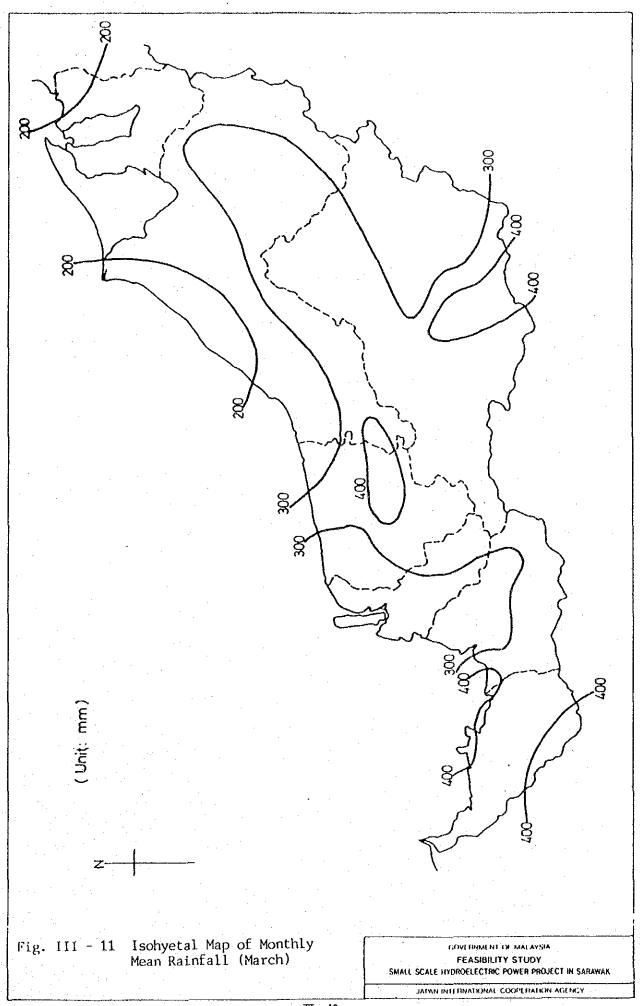

JAPAN INTERNATIONAL COOPERATION AGENCY

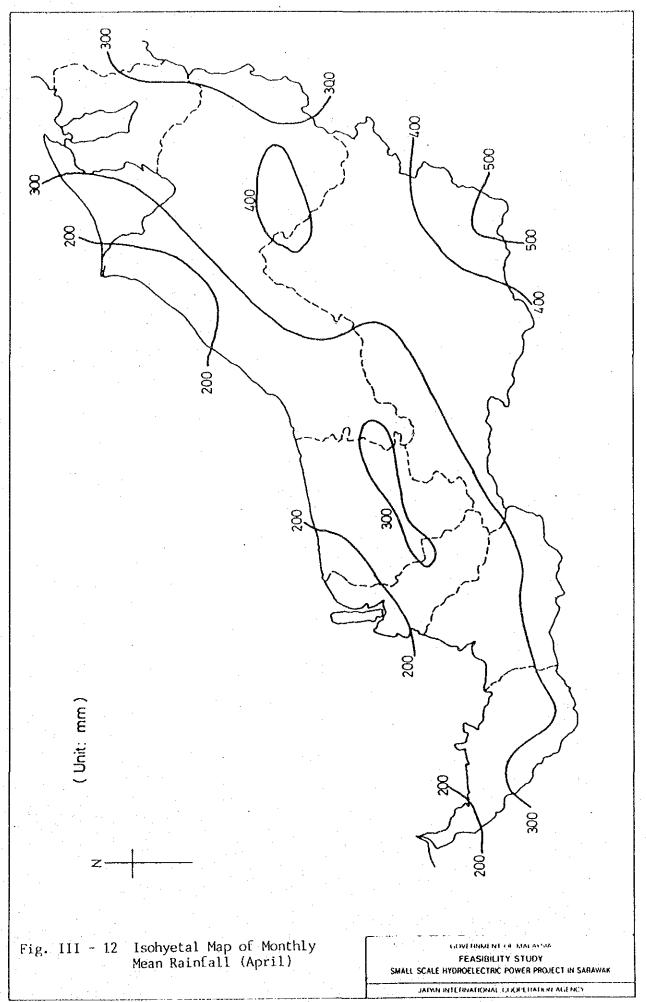


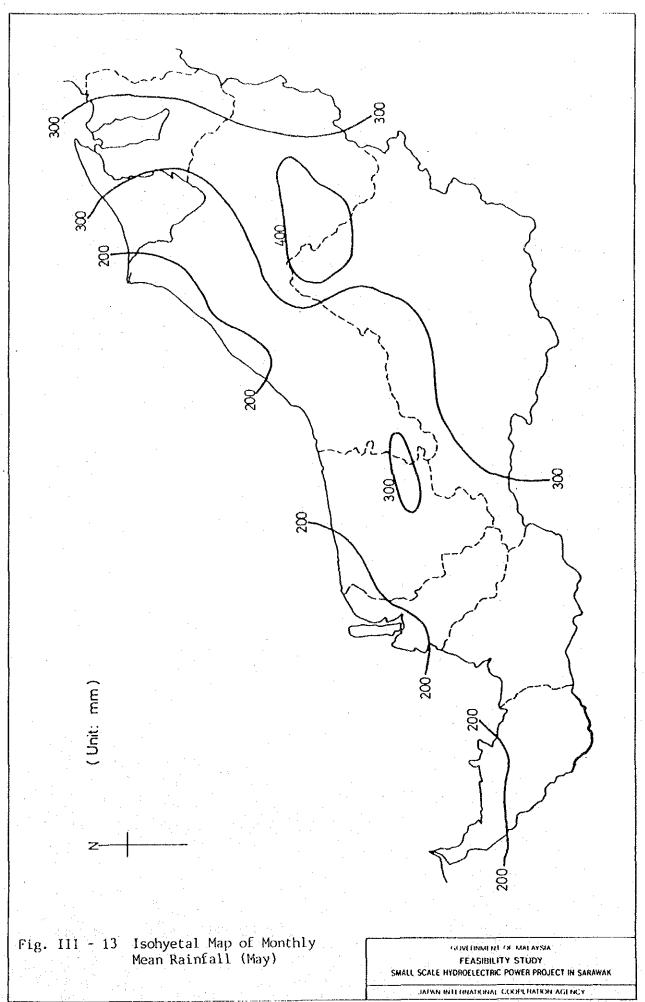


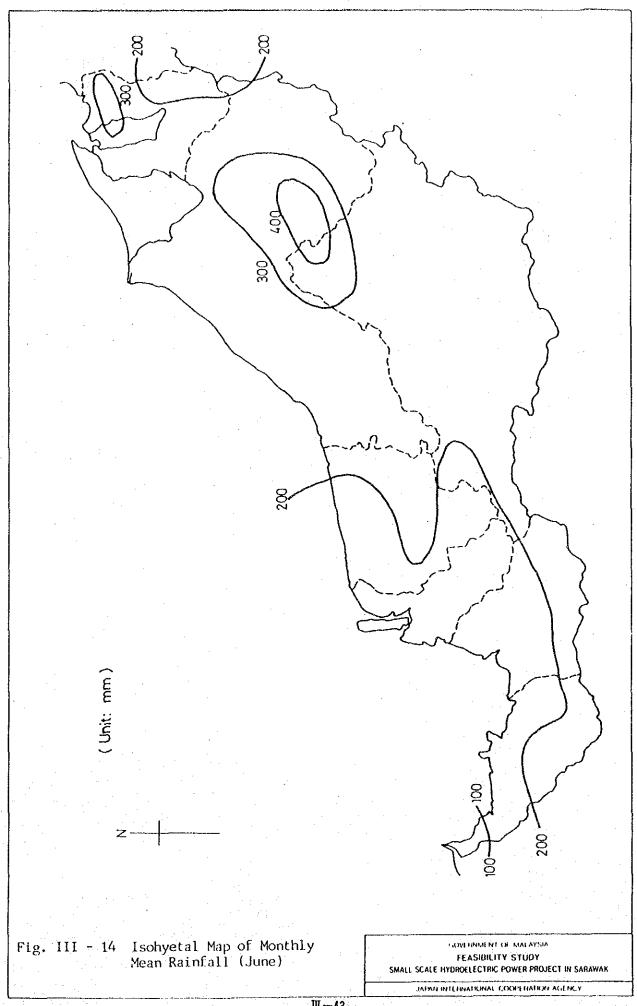




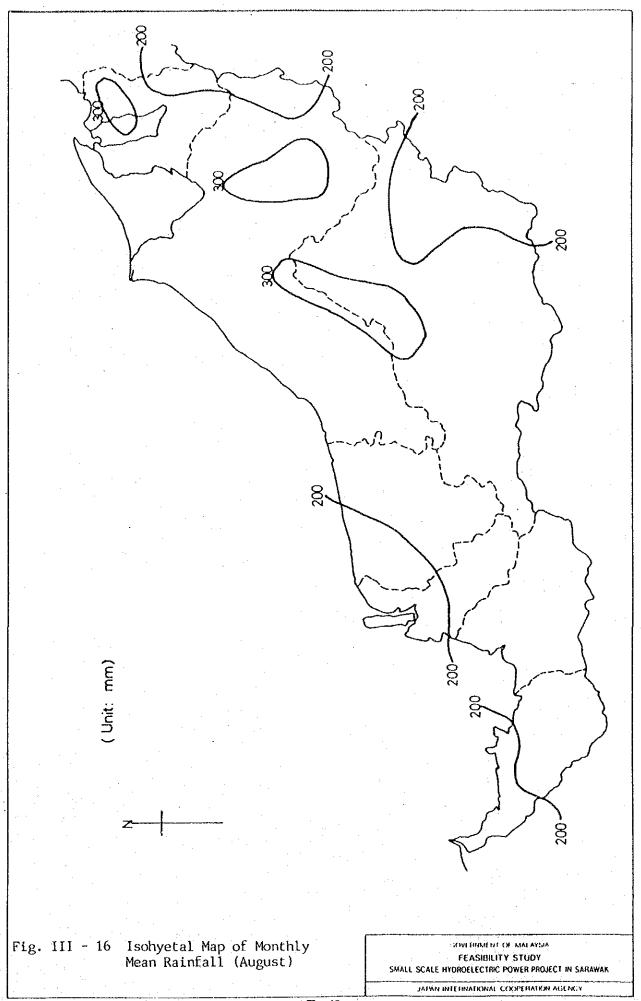


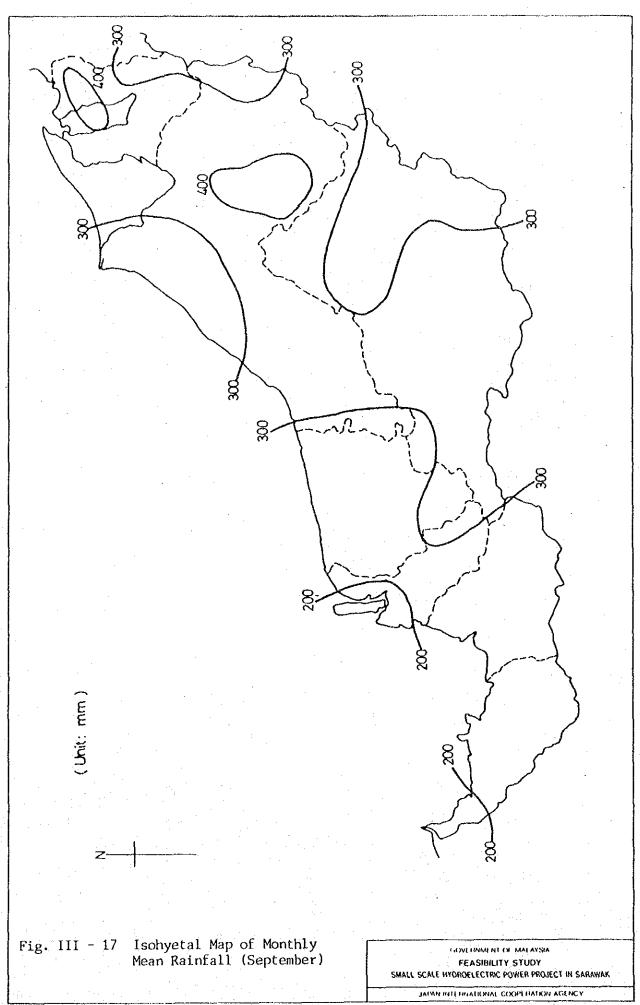


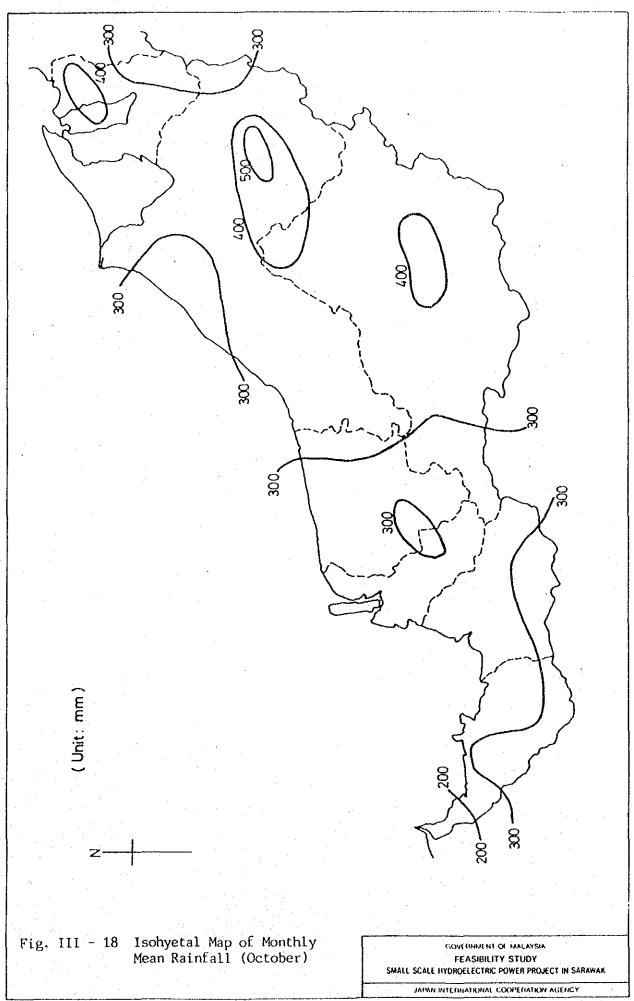


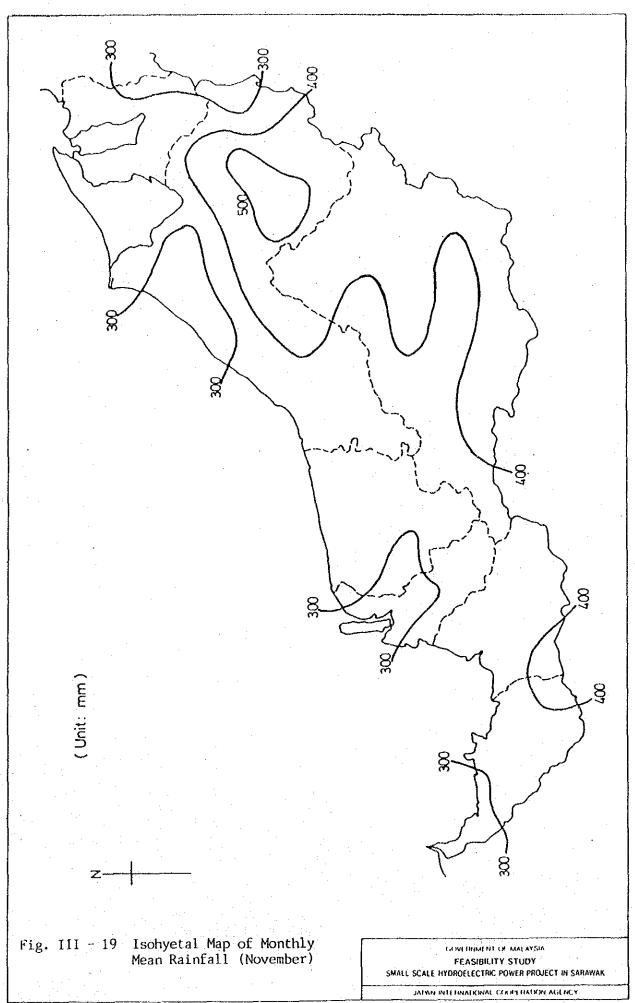


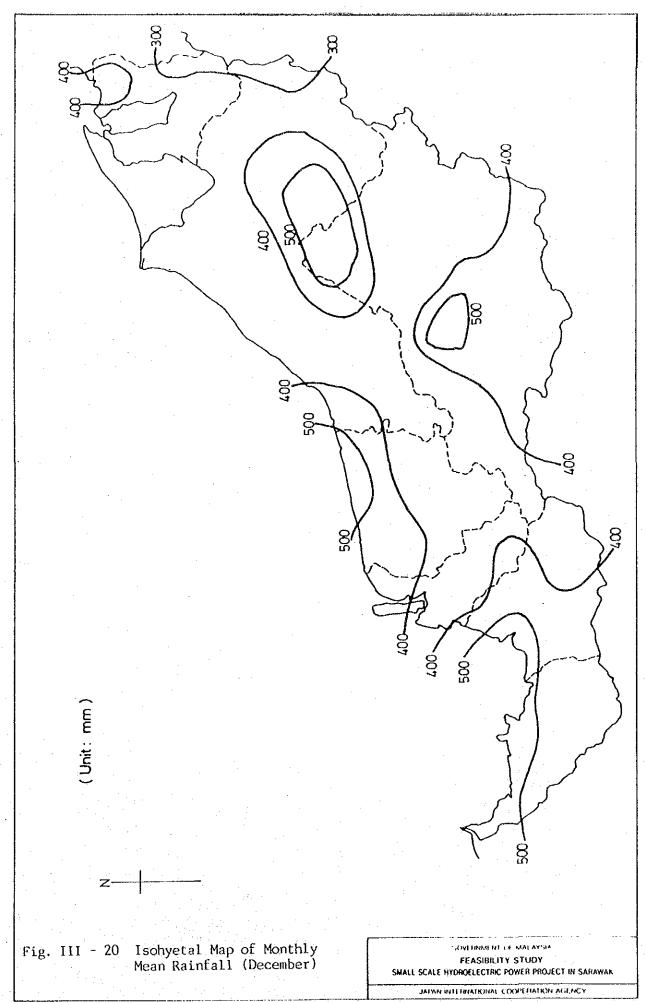


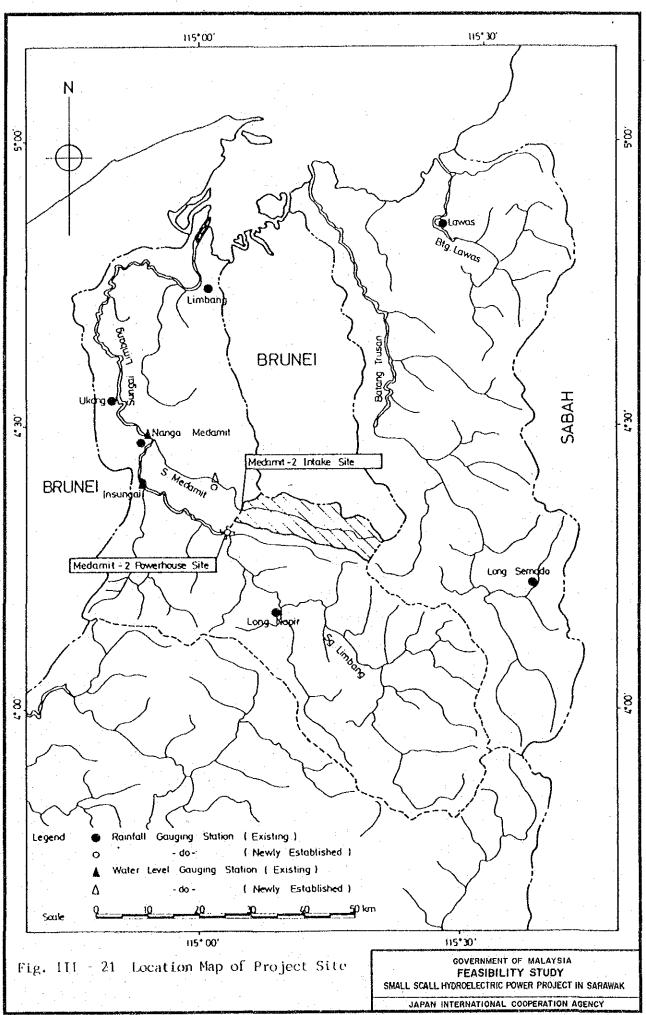












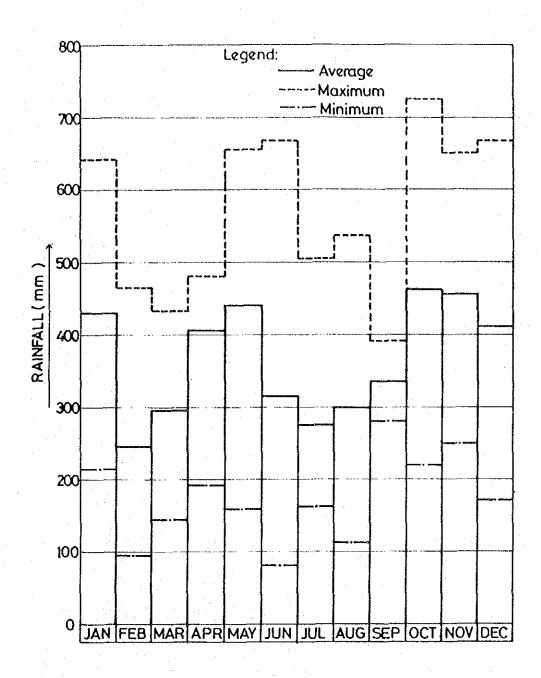
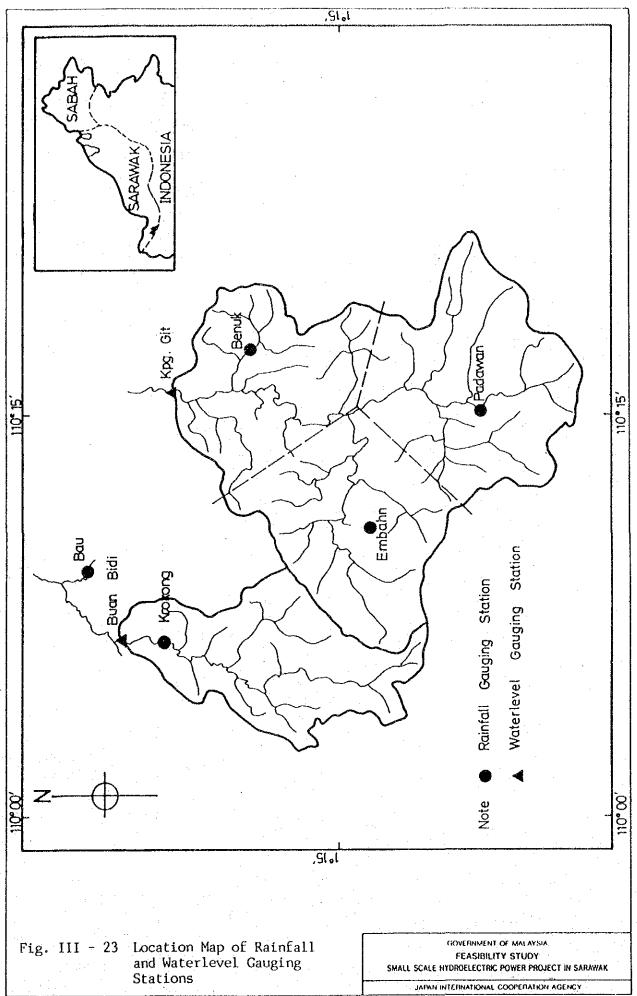
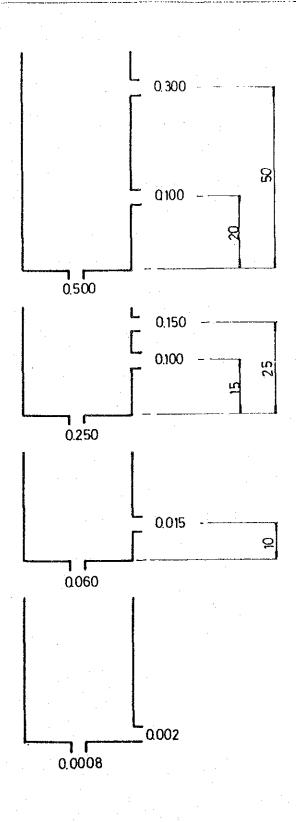
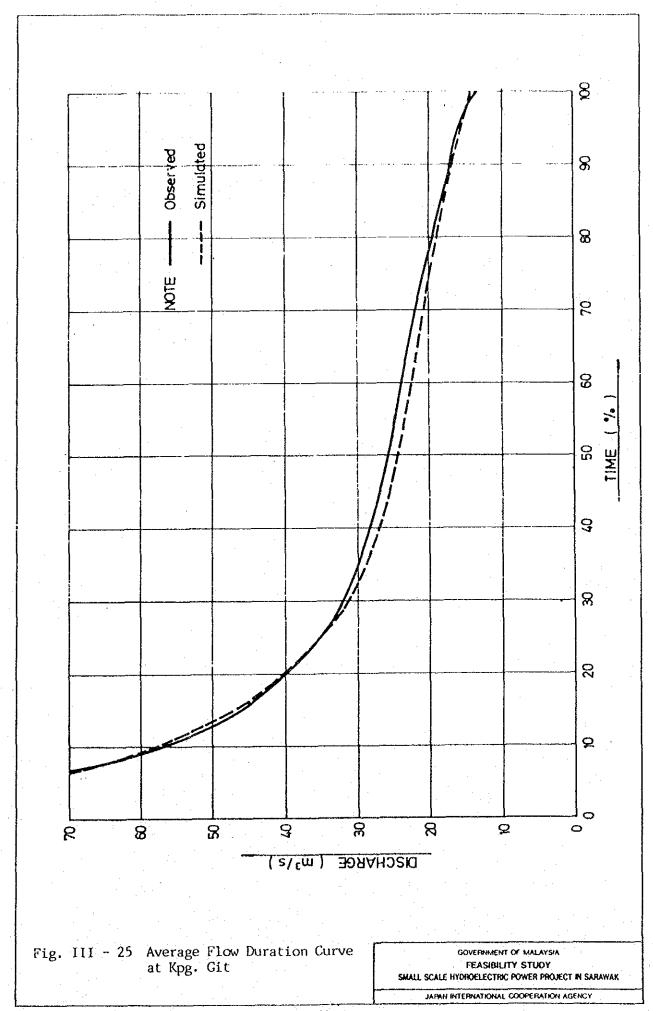
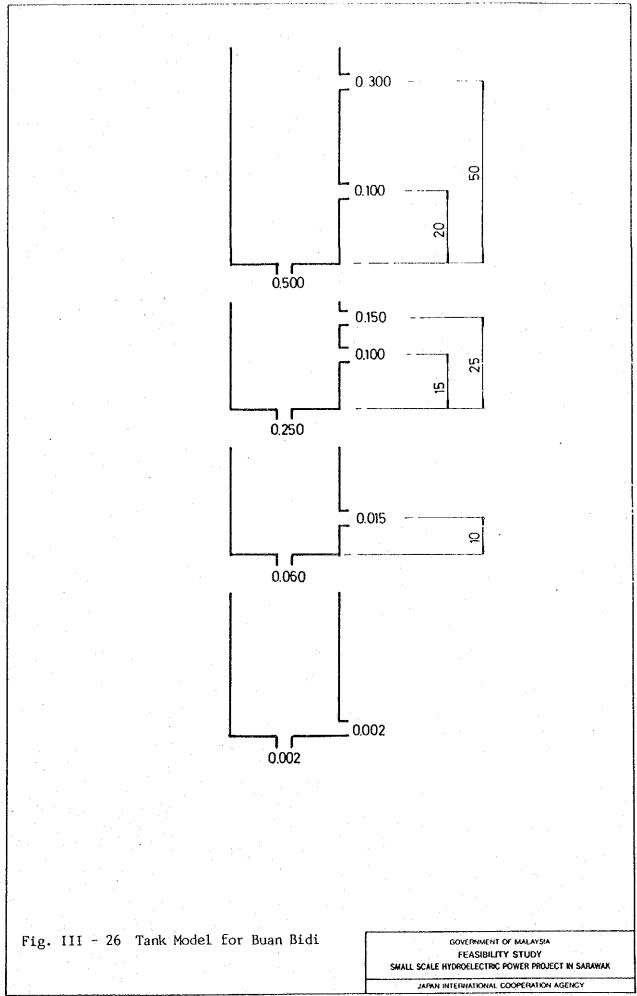
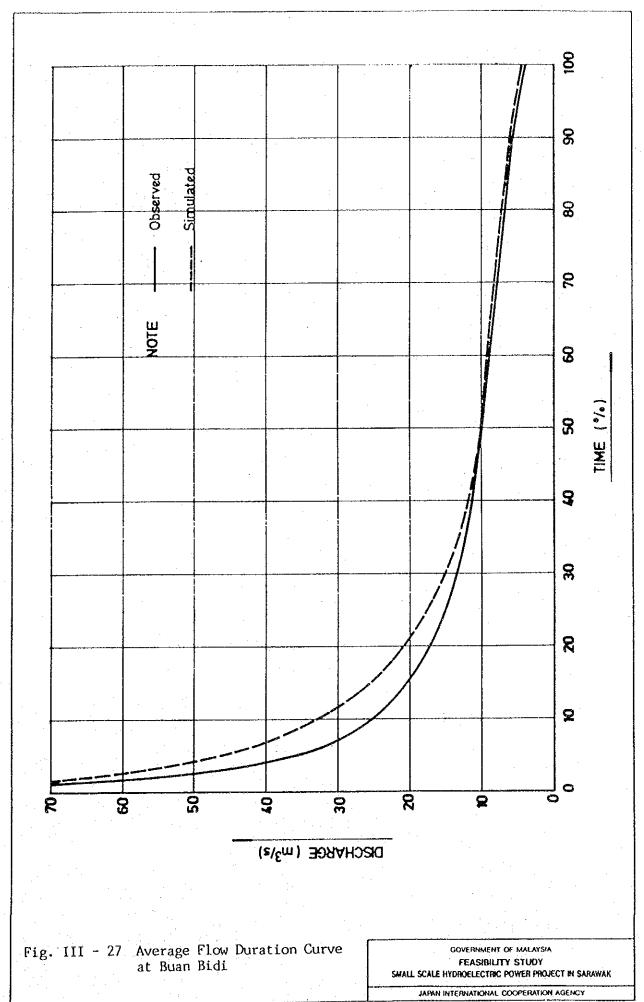



Fig. III - 22 Monthly Mean, Maximum and Minimum Rainfall Depth at Lubok Lalang

GOVERNMENT OF MALAYSIA
FEASIBILITY STUDY
SMALL SCALE HYDROELECTRIC POWER PROJECT IN SARAWAK


Fig. III - 24 Tank Model for Kpg. Git

GOVERNMENT OF MALAYSIA
FEASHBILITY STUDY
SMALL SCALE HYDROELECTRIC POWER PROJECT IN SARAWAK

JAPAN INTERNATIONAL COOPERATION AGENCY

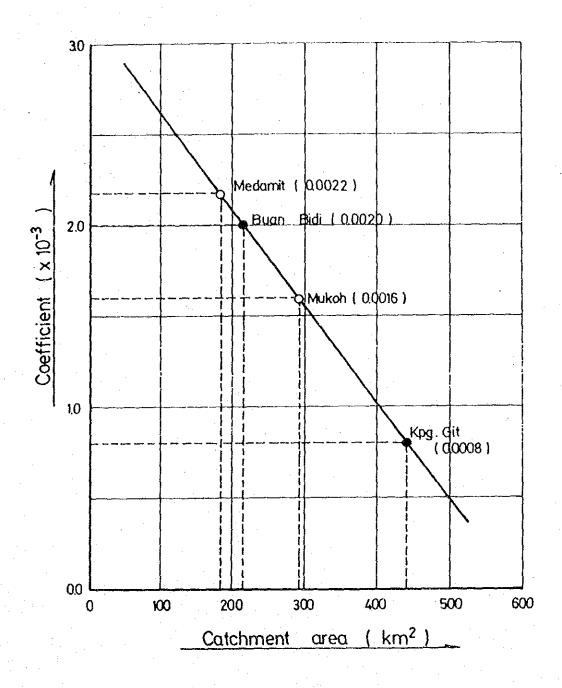
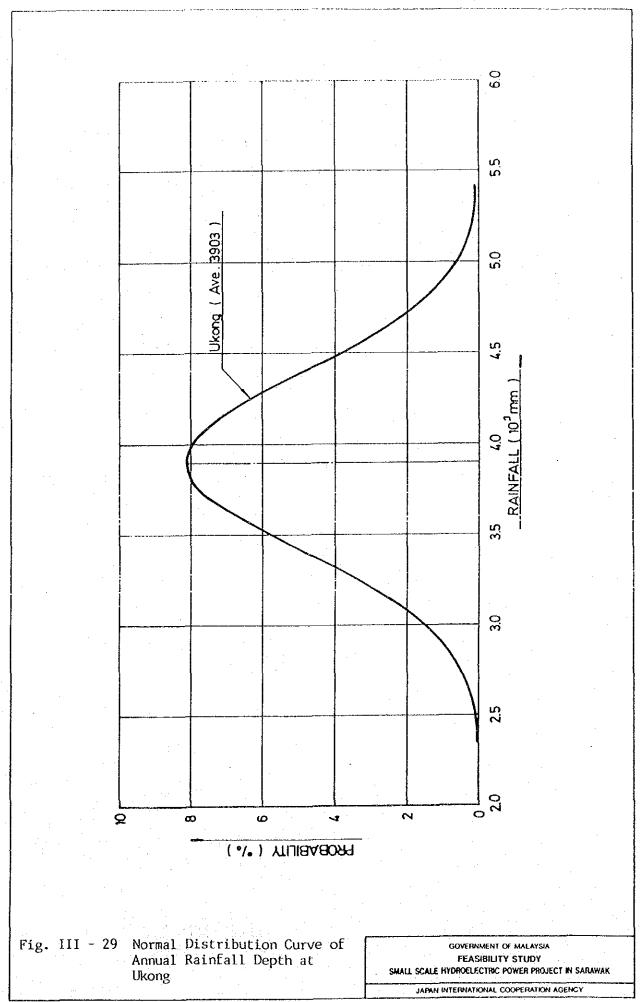
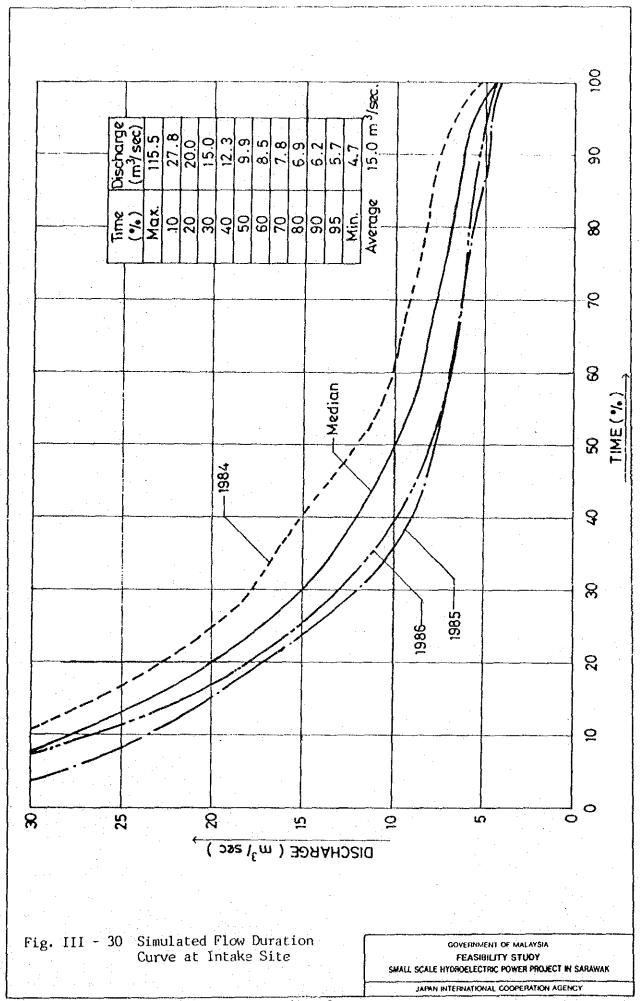
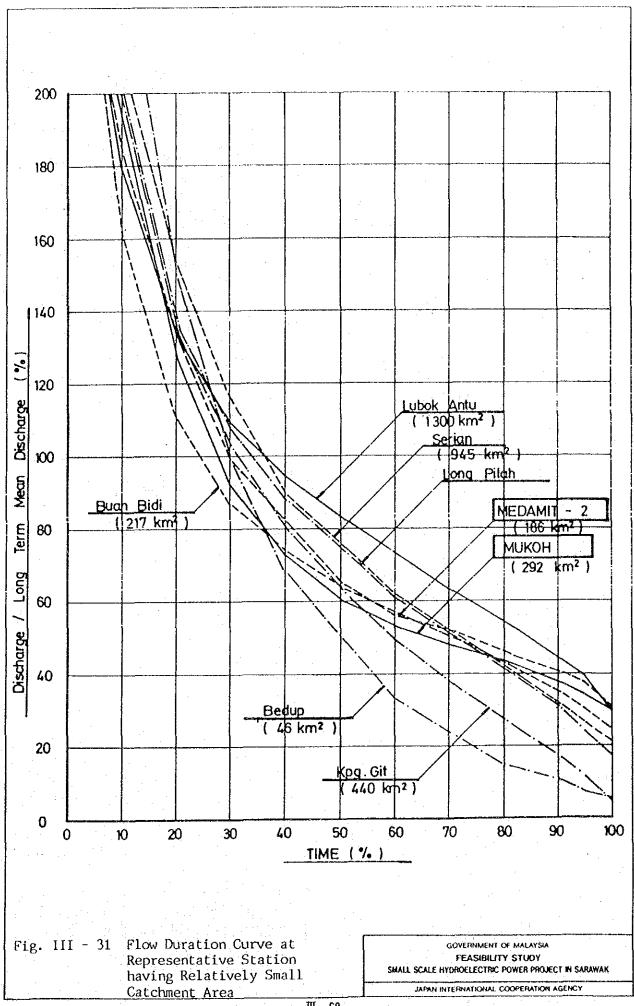





Fig. III - 28 Relationship between Catchment Area and Coefficient of Tank Model

GOVERNMENT OF MALAYSIA
FEASIBILITY STUDY
SMALL SCALE HYDROELECTRIC POWER PROJECT IN SARAWAK
JAPAN INTERNATIONAL COOPERATION AGENCY

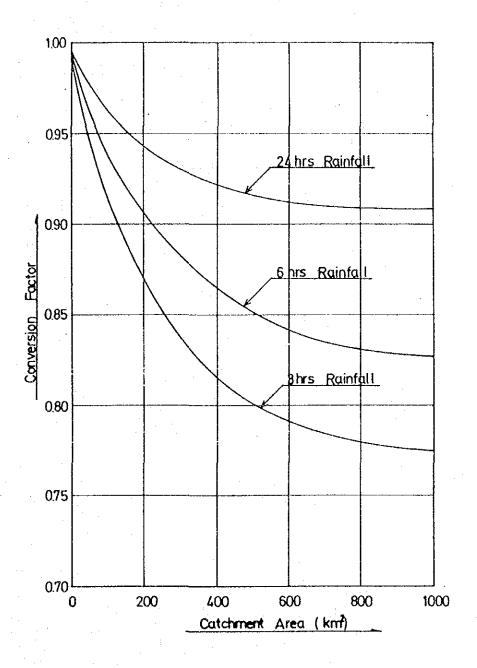
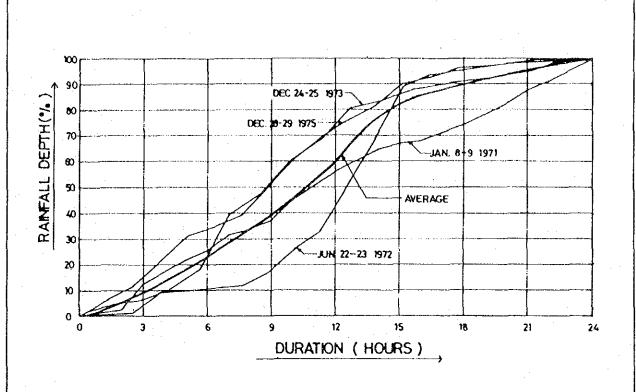



Fig. III - 32 Conversion Factor of Point Rainfall

GOVERNMENT OF MALAYSIA
FEASIBILITY STUDY
SMALL SCALE HYDROELECTRIC POWER PROJECT IN SARAWAK

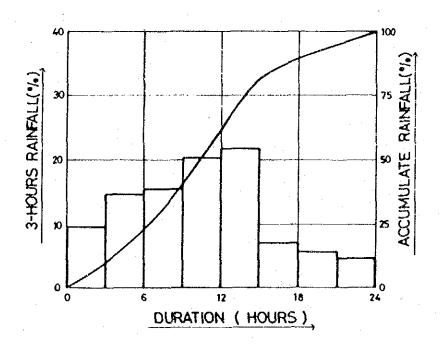
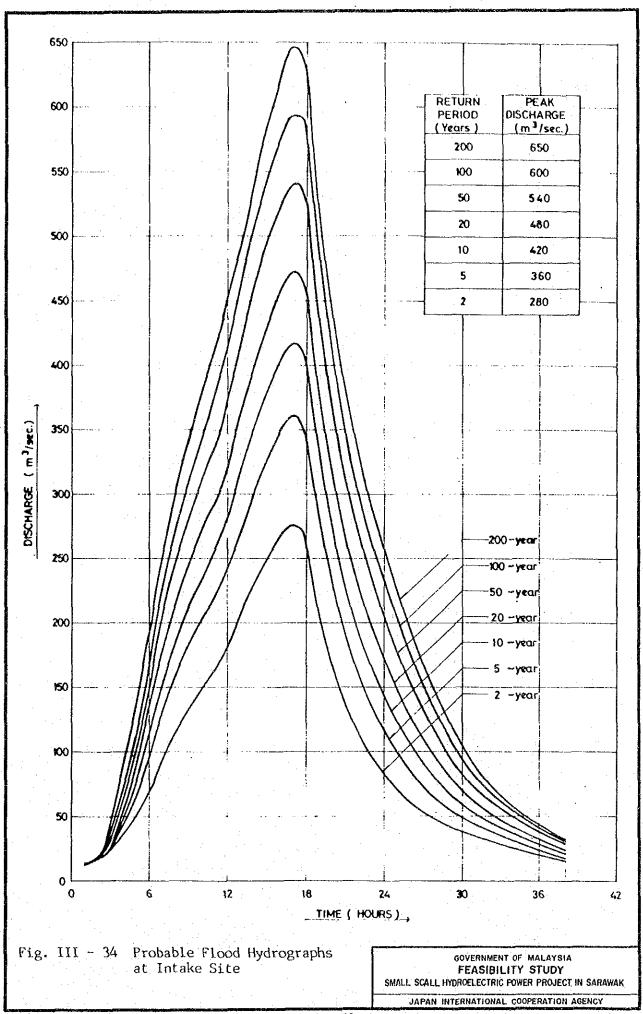
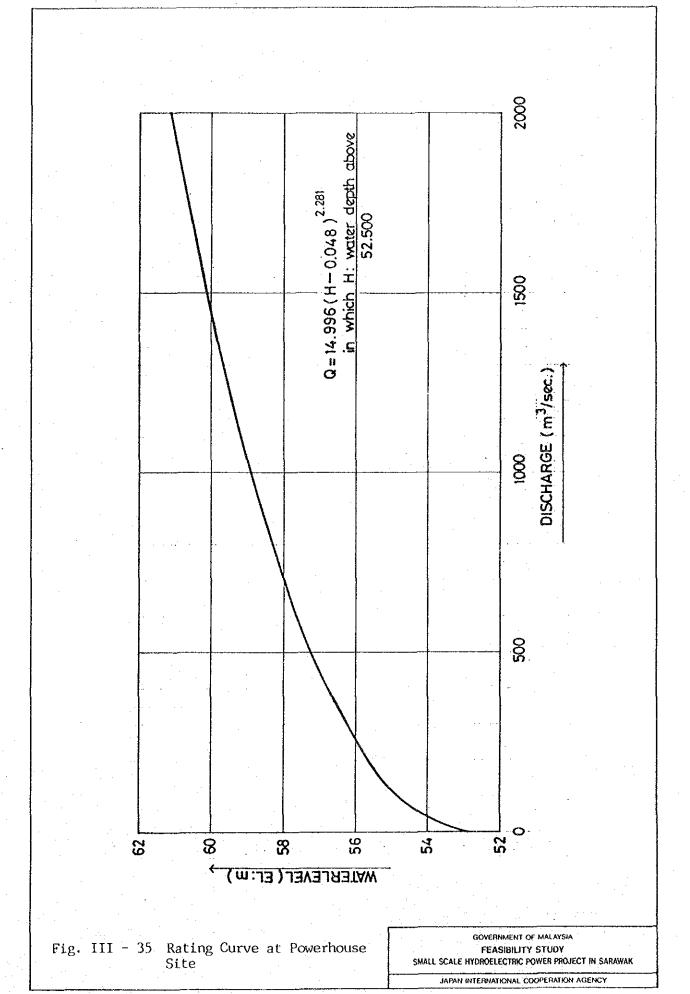
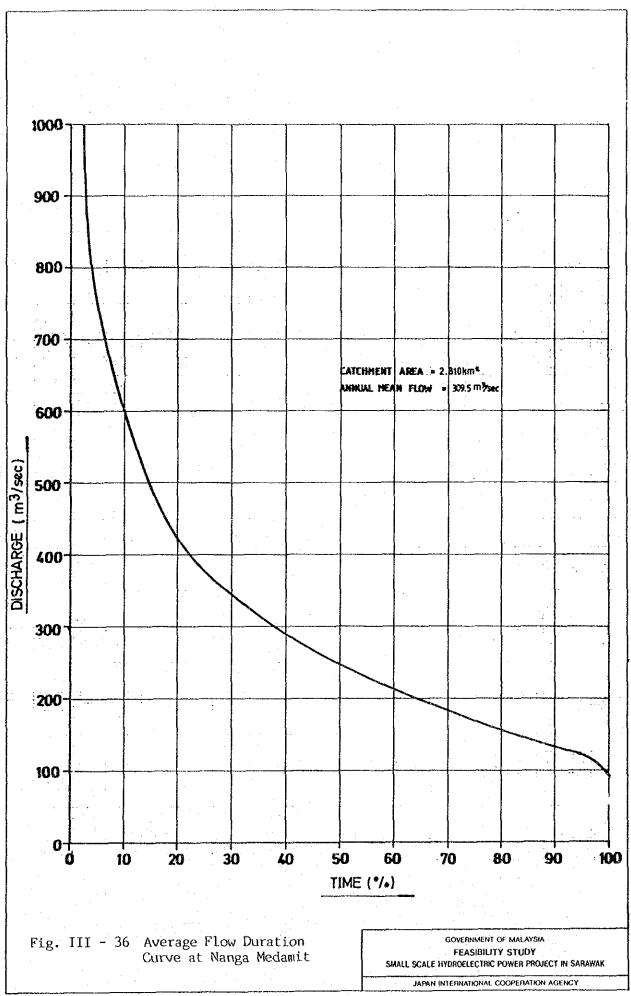
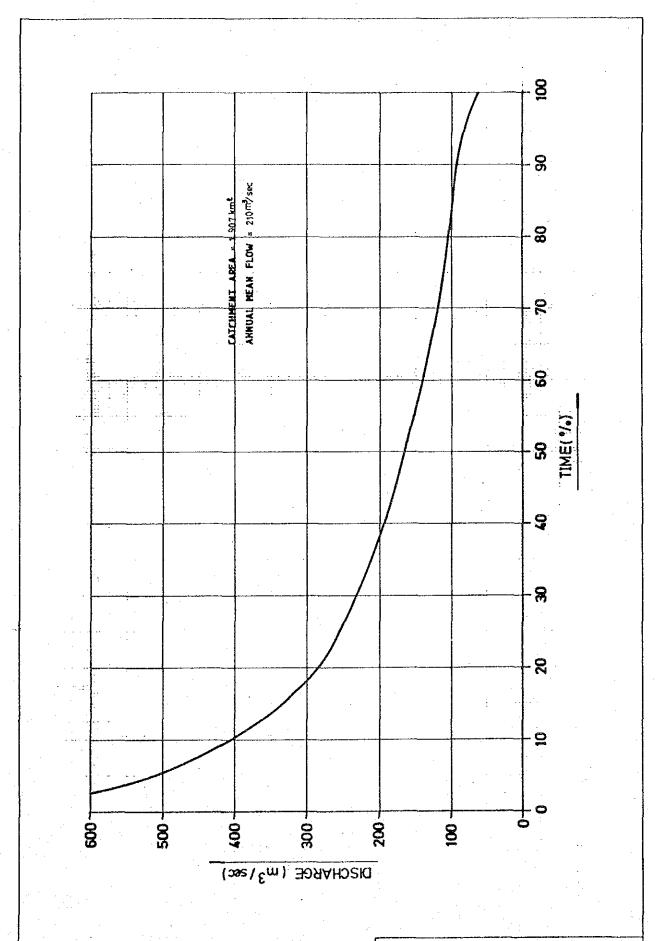
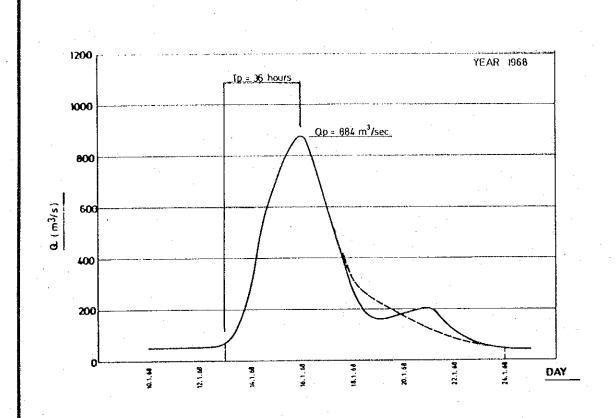





Fig. III - 33 Average Hourly Rainfall Distribution Pattern

GOVERNMENT OF MALAYSIA
FEASIBILITY STUDY
SMALL SCALE HYDROELECTRIC POWER PROJECT IN SARAWAK
JAPAN INTERNATIONAL COOPERATION AGENCY




Fig. III - 37 Average Flow Duration Curve at Powerhouse Site

GOVERNMENT OF MALAYSIA

FEASIBILITY STUDY

SMALL SCALE HYDROELECTRIC POWER PROJECT IN SARAWAK

JAPAN INTERNATIONAL COOPERATION AGENCY

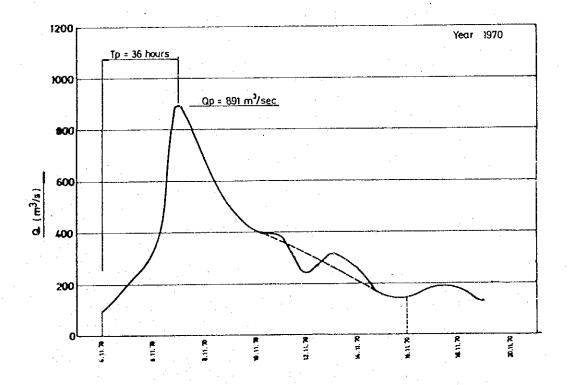
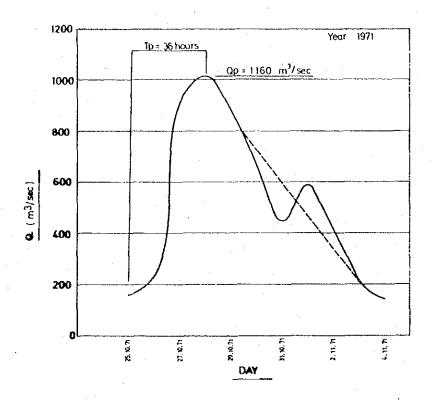



Fig. III - 38 Recorded Flood Hydrograph at Nanga Medamit (1)

GOVERNMENT OF MALAYSIA
FEASIBILITY STUDY
SMALL SCALL HYDROELECTRIC POWER PROJECT IN SARAWAK

JAPAN INTERNATIONAL COOPERATION AGENCY

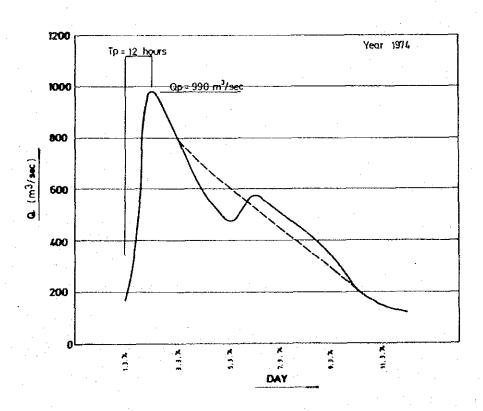
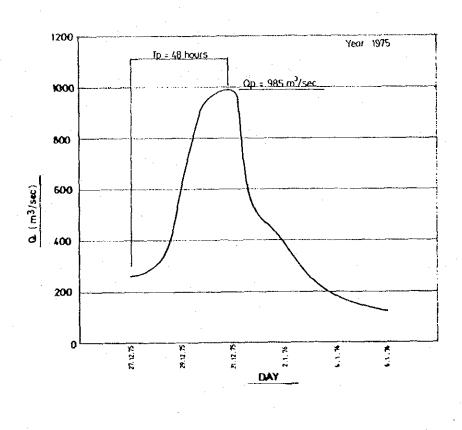



Fig. III - 39 Recorded Flood Hydrograph at Nanga Medamit (2)

GOVERNMENT OF MALAYSIA
FEASIBILITY STUDY
SMALL SCALL HYDROELECTRIC POWER PROJECT IN SARAWAK

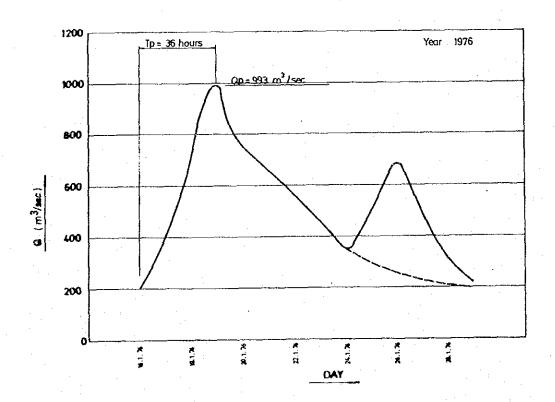
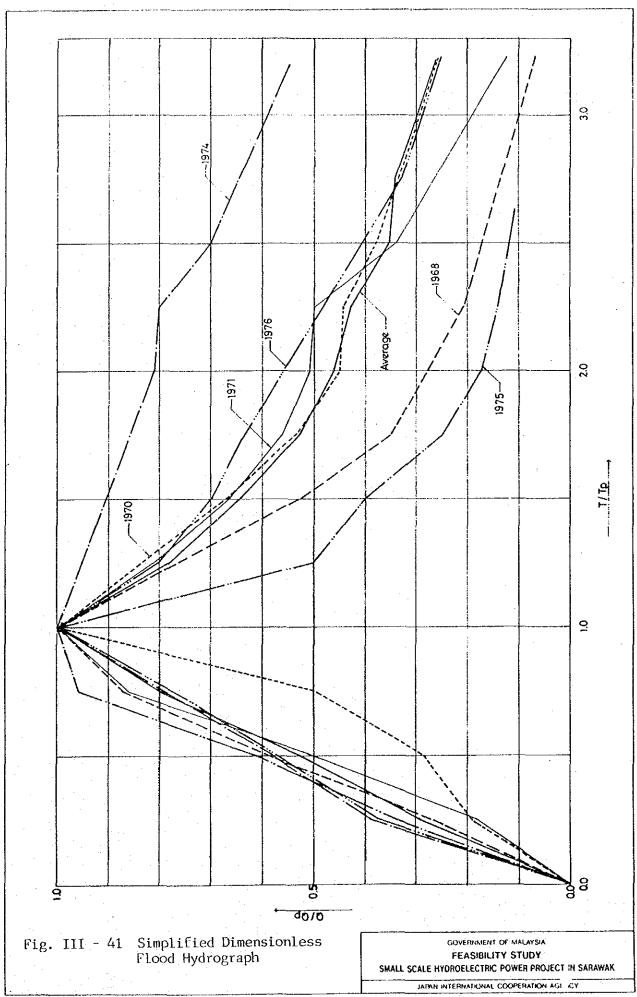
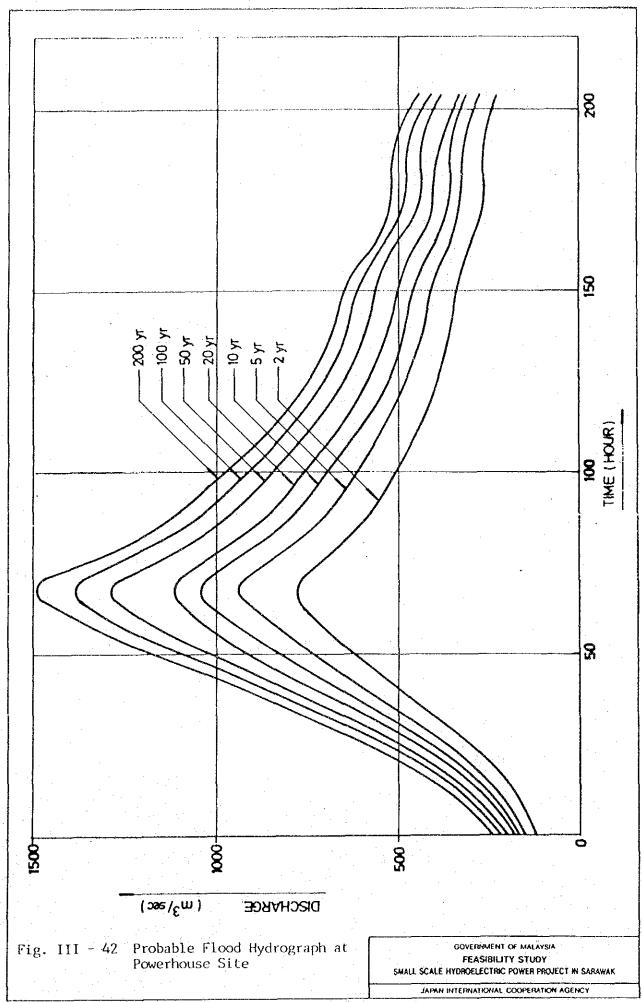
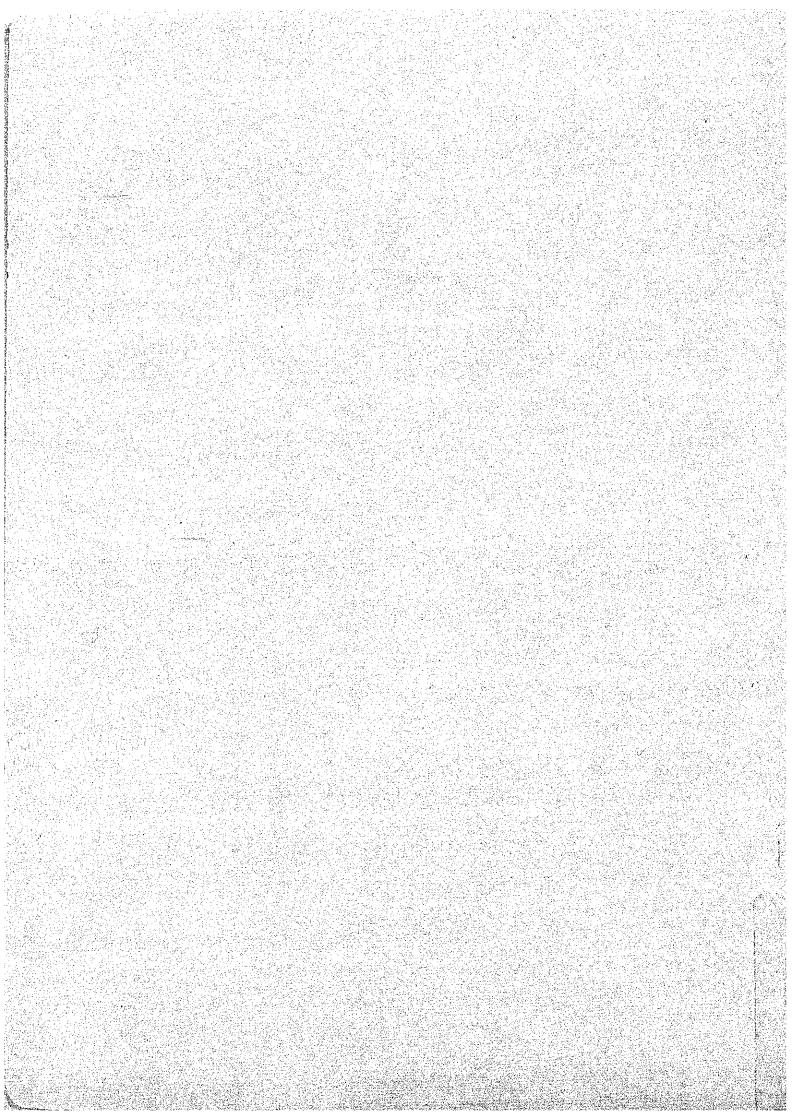





Fig. III - 40 Recorded Flood Hydrograph at Nanga Medamit (3)

GOVERNMENT OF MALAYSIA
FEASIBILITY STUDY
SMALL SCALL HYDROELECTRIC POWER PROJECT IN SARAWAK
JAPAN INTERNATIONAL COOPERATION AGENCY

