Ⅳ-5 収穫予想表

IV-5-1 収穫予想表の作成方法

 $\Pi-2-6$ で単木の樹高,胸高直径,胸高断面積,幹材積の成長量の予想を行ったので、収穫予想表の作成に当たってこれを使用する。ここではha当りの木数密度について検討を行う。

〈相対幹距の計算〉

現実の密度分布については $\Pi-2-6-3$ で述べた通りであるが、(図 $\Pi-18$ 、 $\Pi 19$)、密度管理が収穫予想で重要な因子となるため、さらに基本的な検討を行う。現状の相対幹距指数を計算してみる。この指数は、ha当りの平均立木間距離と平均 樹高の比を表わしたもので、次の式で計算される。

$$Sr = {100^7 \over H N}$$
 $Sr: 相対幹距$ $H: 平均樹高 (m)$ $N: ha当り立木本数(本数密度)$

図IV -3 と図IV -4 は、ユーカリ類とマツ類の平均樹高と本数密度の分布で、ユーカリ類では、S $r=11.00\sim16.92$ 、マツ類ではS $r=12.60\sim24.86の範囲にある。一般的に<math>10\sim20$ にあると言われる。この現状の分布から健全な成長状態にするべく描いた相対幹距曲線が図IV -5 及びIV -6 である。

〈本数密度の計算〉

前述の図から立木本数を計算したものが表N-5-1と表N-5-2である。これらの数値を図にしたものが図N-8, N-9, N-10である。ポプラ類は、ユーカリ類の 3×3 mを近似させた。

Ⅳ-5-2 収穫予想表

 $\Pi-2-6$ で予想した単木の成長量に前述の木数密度を掛けha当りの収穫予想値を計算したものが、表N-5-3、N-5-4 及びN-5-5 である。

Ⅳ-5-3 他の調査データとの比較

単木についての樹高,胸高直径,幹材積の成長予想曲線に先に行われた紙・パルプ 調査のデータを加えて比較してみた。(図IV-10から図IV-18)。その結果は,いずれの曲線でも I 等地(I), II 等地(II)の曲線の範囲内にあり, 2 つの調査結果は近似していると判断される。

Ⅳ-5-4 諸外国の成長量の例

平均成長量は林令や植栽本数により異なるが、収集した資料により比較してみると 次のとおりである。

(Eucalyptus)

国	BRAZIL	BRAZIL	PNG	URUGUAY	(今回調査)
地 域	エスピリット・サント	サンパウロ	ホスキンス	地 位(1)	地位(Ⅱ)
平均成長量 (m³/ha•年)	28~32~37	25	15 ~ 30	24	21 ~ 23
伐期令 (年)	6	6	6 ~ 7	10	12 ~ 14
樹種	grandis	grandis	deglupta	grandis saligna	grandis saligna

(Pinus)

国	パラグアイ	チリ	ウルグアイ	(今回調査)
地域	エンカルナシオン	コンセプション	地 位(I)	地 位(II)
平均成長量 (m³/ha•年)	22	24	20	15
伐期令 (年)	25	25	25	25
樹種	taeda	ragiata	taeda Elliottii	taeda Elliottii

表W-5-1 ha当りの立木本数の計算(Eucalyptus)

型		7	→	量	扫	Ξ.
	相对体距	平均樹丽	以木木数	相対幹距	印西海阿	以 大 大 大 大 数
		H (m)	N (/ha)	S r (m)	H (m)	N (/ha)
	59.5	5.6	106	78.0	ა ი	1,342
	28.0	12.7	791	35.0	8.4	1,157
	18.5	20.4	702	23.0	13.5	1,037
	15.5	25.6	635	17.5	18.7	934
 	14, 0	29.1	603	14.5	23.0	668
	13.0	32.0	578	13.0	26, 5	843
	12.3	34, 3	562	12.2	29,2	788
	11.8	36.0	554	12.1	31.4	693
	11.5	37.5	538	12.0	33.0	638

表IV-5-2 ha当りの立木本数の計算(Pinus)

	地位	I		母	44	П
#	相对弊距	吊拉香酒	口不不数	理 数 数 型	计	以不
	Sr(m)	H (m)	N (/ha)	S r (m)	(ш) н	N (/ha)
. 2	107. 4	2.9	1,031	131.5	2.1	1,311
Þ	54.1	6.0	949	73.0	4.1	1,116
9	35. 1	19.8	881	50.0	6.4	977
80	28. 4	12, 3	820	39.0	18.5	910
10	24.5	14.6	782	33.0	10.4	849
12	22. 1	16.5	752	28.6	12.3	808
14	20.3	18.2	733	25.5	14.1	774
16	18.8	19, 8	722	23.2	15.8	744
1.8	17.6	21.2	718	21, 4	17.4	721
20	16.9	22. 2	715	20.0	18.9	700
22	16.0	23, 5	712	18,8	20.4	680
24	15.4	24. 4	710	17.7	21,7	678
25	15.1	24.9	707	17.2	22. 4	674

2.3 m² 28.1 38.4 44.7 30.9 23.6 23.6 24.5 連年成長壘· 0.7 15.2 15.2 15.2 15.2 15.3 16.4 16.4 17.5 18.0 1 4.5m²
24.3
76.4
153.1
242.5
304.3
362.1
409.4
458.3 逶 1.3 11.8 42.7 97.5 174.3 255.1 331.0 391.4 高 Ż 绺 該 901 701 702 603 562 562 562 564 1:342 1.342 1.157 1.037 899 899 843 788 H ¥ 恣 2,7 7,0 7,0 7,5 9,6 8,2 4,8 12,0 0. 2 1. 2 1. 2 1. 2 3. 5 1. 0. 7 1. 0. 7 1. 5. 8 1. 15. 8 28. 1 28. 1 Σ K 棥 퉦 0.12 0.11 0.01 0.05 0.05 0.03 0.03 0.03 놔 0.14 0.10 0.10 0.04 0.06 0.06 0.06 0.08 * 燅 ₩ 粱 Ē 185 103 35 57 57 55 55 1110 88 99 16 88 99 16 16 87 ¥ ŒZ 平均板板鐵 ~E 0.7 2.9 6.9 6.9 11.7 17.1 20.4 22.5 22.5 22.7 駁 嬱 る 献 サ (安なこ) 通年成長職 8 8 8 1 1 1 0 8 6 8 数IV-5-3 4.5m²
23.7
73.7
746.1
294.7
354.0
404.5 癥 1.3 11.6 41.5 93.4 170.8 244.4 315.2 353.3 ¥ 芝 烾 粉陷断固数 ~E : 1.6 5.0 9.6 9.6 9.6 22.1 14.9 30.9 30.9 1.1 3.0 5.8 5.8 10.4 15.7 15.7 220.3 22.9 22.1 女 数 1, 342 1, 157 1, 037 934 899 843 788 693 693 901 791 702 635 603 578 554 558 눼. ĸ 摳 5.6 20.4 25.6 29.1 32.0 34.3 36.0 37.5 ক ; চ 墅 壺 谻 28. 3.6 8.3 113.5 113.5 21.6 24.1 25.9 27.3 画

2.3 6.1 19.1 19.1 19.1 19.1 25.4 25.5 25.5 0.7 0.7 2.9 7.1 11.2 2.9

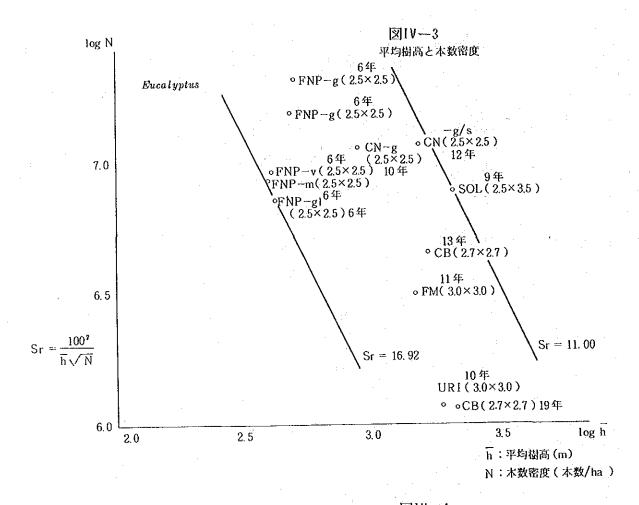
21. 3 23. 6 24. 5

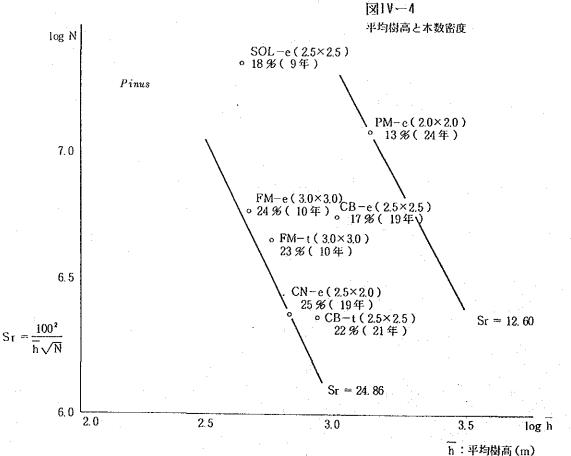
坏垃 成 版 縣

+ inite

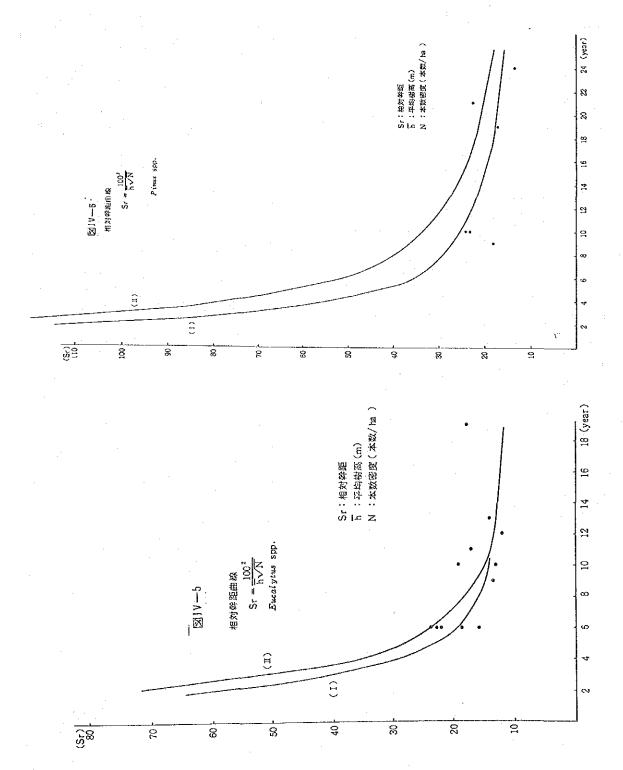
₫Œ

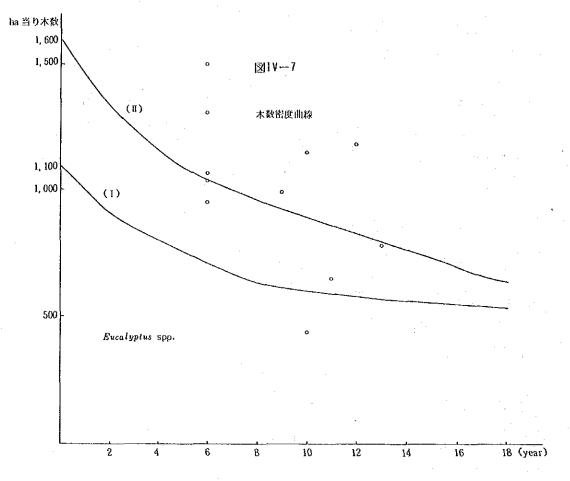
"B

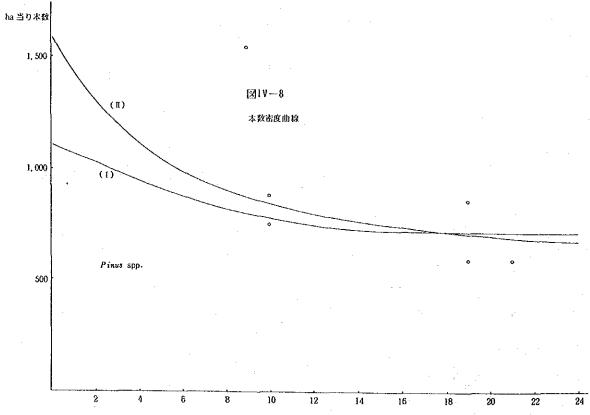

計 超 盛

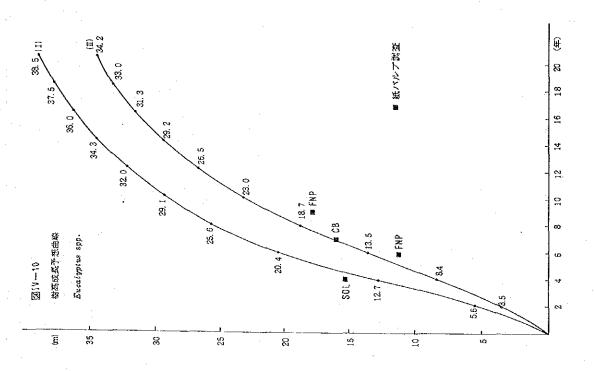

林鮨

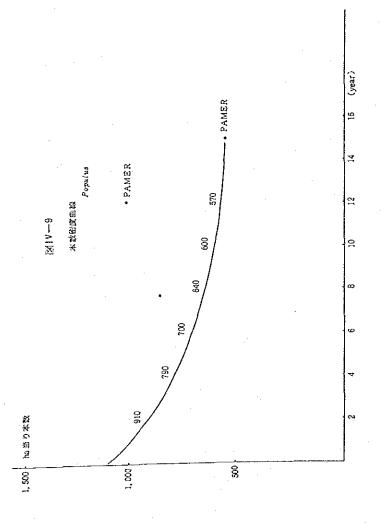
五行

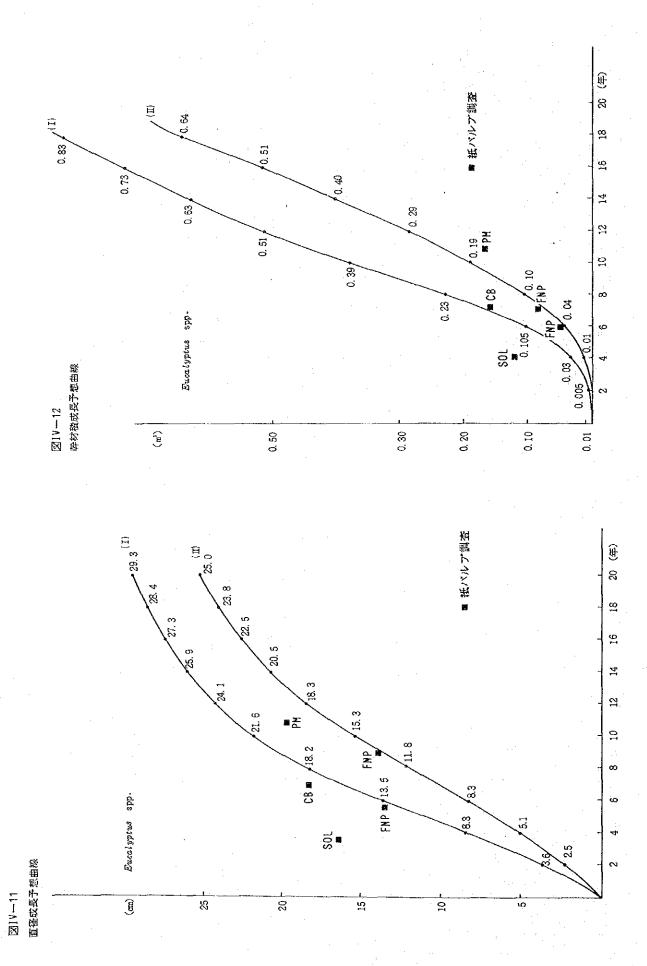

ha 当	+ n	14 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	十二次以降	2.1 m	4.8	0 6	13.8	16.9	19.3	19.8	19.6	19.6	20.1	19.8	19.6	19.6	0.1	20	က်	0.	7.9	10.4	12.0	13.4	14.4	15.1	15.2	15.3	·
	√u	建 山	6十三人名	2.1 ㎡	7.6	17, 5	28.0	29. 4	31. 4	22.5	18.7	19.5	24.3	16.9	16.9	10.1		ເດ	4.9	13.0	16.3	22. 7	21.4	23.5	22.2	21.3	16.7	16.1	
	(E	第 4 4	2	4. 1m³	19.3	54.2	110.2	1.69.1	231.8	276.9	314.4	353.4	402.0	435.8	469.7	489.9	0.1	11.2	20.9	46.8	79.5	124.9	167.6	214.5	258.9	301.4	334.7	367.0	
	褂	*	<u> </u>	1.031	1,031	949	881	820	782	752	733	722	718	715	712	710	1311	1311	1116	977	910	849	808	774	744	721	700	680	
	 	13	Ž	E.	0.3	1.4	3.7	4,9	6.2	rų o	4.0	1.5	1.8	1.6	1.0	1.8		0.0	1.4	1.3	3.0	3.7	0 0	6.2	6.4	7.5	8.4	0	_
(, S , n	*	完美	¥ 7		0.08	0.07	0.07	0,05	0.04	0.03	0.01	0.00	0.01	0.00	0, 00	0.00		0, 15	0.13	0, 07	0.07	0.05	0.04	0.04	0.03	0.03	0.03	0.00	
Н д Э	逼	*	\$		82	68	61	38	es.	19	11	ന	4	က	CV1	က		195	140	67	61	41	35	53	23	21	20	2	
协		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		2.1 m	4.7	80	13, 3	16.4	18.8	19.4	19.4	19.6	20.02	19. 7	19, 5	19.5	0.1	2.8	හ හ	5, 7	7.6	10.1	11.6	13.0	14.0	14.7	14.8	15.3	
改数が (及なし)		11 11 11 11 11 11 11 11 11 11 11 11 11		2.1 m	7, 4	16.9	26,8	28.8	30.7	22. 7	19.6	20.8	24. 1	17.0	17.2	9.7	0.1	ე,	4.2	13.0	15.5	22. 4	20.6	23.0	22.0	20.8	16.2	19.9	
表IV-5-4	*	#	Ž ġ	4.1m²	19.0	52.8	106.5	164.1	225.6	271.1	310.3	352.0	400.2	434.2	468.7	488.1	0.1	11.2	19.5	45.5	76. 4	121.2	162.4	208.4	252.4	293.9	326.3	366.0	
	*	<u> </u>	ingress barrelless	0.8 m	4.5	12.2	21.9	28.2	32.6	34.9	37.1	39. 4	41.6	43.2	45.3	45.4	0.4	23	ري. دي	9 6	12.8	16.8	21.4	24.7	27.7	29.8	30.9	32. 3	
	111		₹ •	1.031	949	881	820	782	152	733	722	718	715	712	710	707	1.311	1.116	977	910	849	808	774	744	721	7.00	680	678	
		型	壺	2.9 m	6.0		12.3	14.6	16.5	18.2	19.8	21.2	22. 2	23.5	24.4	24.9	2.1	4.7	6.4	တိ	10.4	12.3	14.1	15.8	17.4	18.9	20.4	21.7	
		立.	爾克西區	2.2 cm	7.6	13.3	17.6	20.3	22.9	24.4	25, 5	26.3	27.2	27.8	28.4	28.6	1.9	4.2	7.7	10.9	13.8	16.2	18.3	20.0	21.5	22. 7	23, 5	24. 1	
		釜	1	2	7	ဖ		10	12	7	16	138	20	22	24	25	2	4	©	∞	10	12.	14	16	18	82	22	24	
		拉位							-	;	: ,	<i>*</i> ·	<u>-</u>	<u>. </u>						<u>. </u>	:		Ħ	• 	-		•	•	

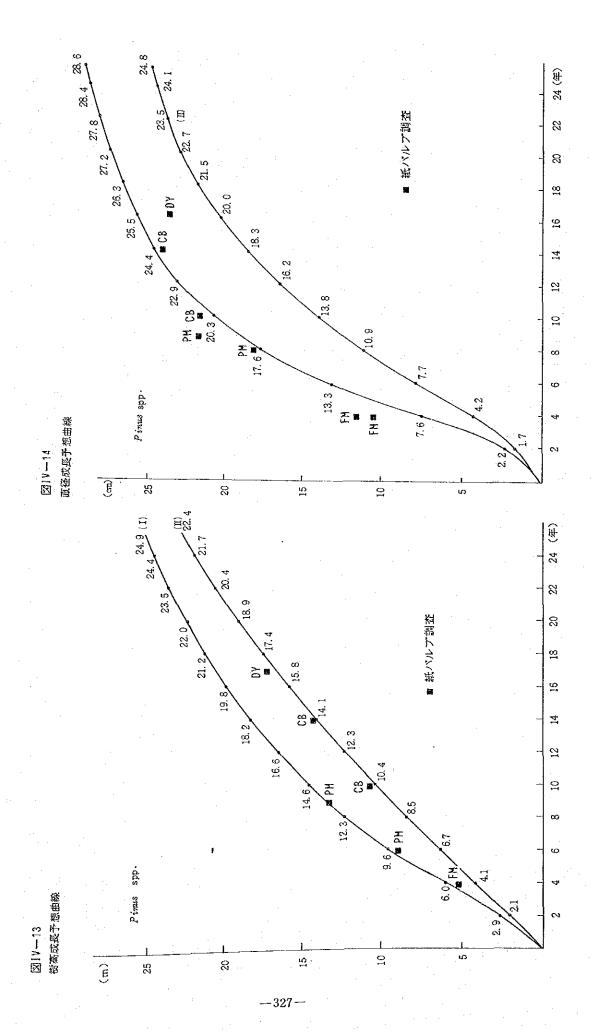

品割り	15-22	经有手印载	十二次次建	2.3 m	6, 1	8.99	12.8	15.6	14.9
	4 11	机机管	一一人なな場	2.3 B	<u>ග</u>	17.2	22.0	26. 7	11.0
	iji.	‡	404 OU 814	4.6m³	24.3	58.7	102.7	156.1	178.2
	111	į.	*	610	910	790	700	640	900
	*	‡ ‡	Ę.	e.	0.6	2.7	8.4	6.1	32.5
	林	4 11 11%	₹ 1		0.13	0.11	0.09	0.06	0, 22
	(<u>m</u>	10%			120	90	99	40	130
		17 March 18	74-77 XX XX XX	2.3 m³	G	. G	12.2	15.0	12.1
		10 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日		2.3 m	10.7	22.6	37.6	56, 2	44.8
	*		Z .	4.6ml	23.7	56.0	97.9	150.0	145,7
	长	*** **** *****************************	मुख्यु तथा छ। प्राप्त क्षेत्र	1.8 📆	4.3	8.4	11.5	13.2	15.0
	Ħ	* +	₹ %	910	790	700	640	9009	470
		む	樹	7.2 m	12.5	16.2	19.2	21.7	23.4
		타	胸高直径	4.8 cm	 00	12.4	15.3	17.8	20.1
		茶		23	4	ဖ	œ	01	12
		五分子				. +	→ .		

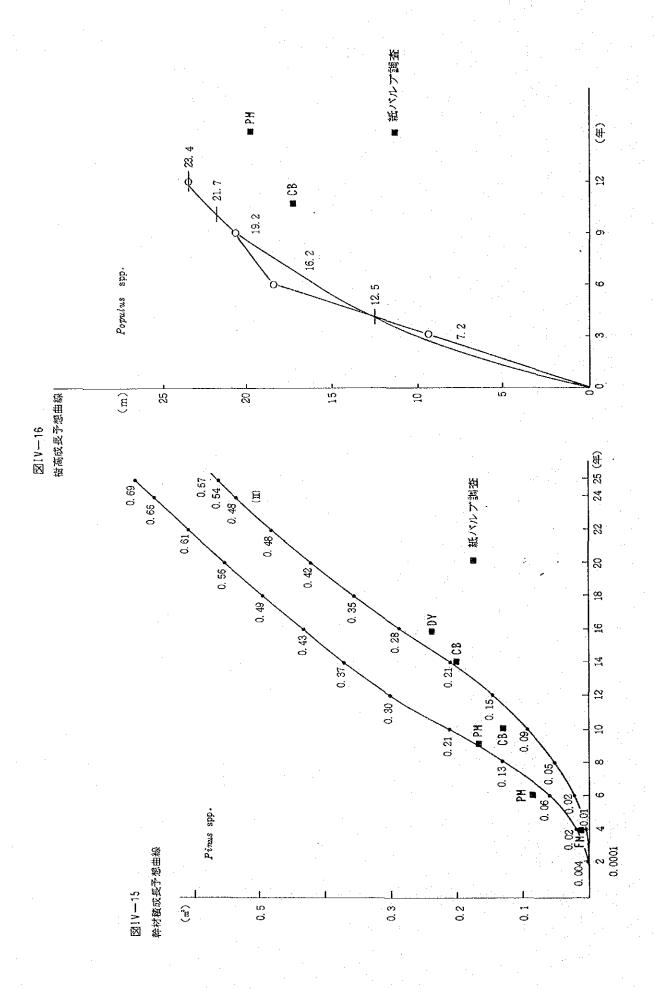


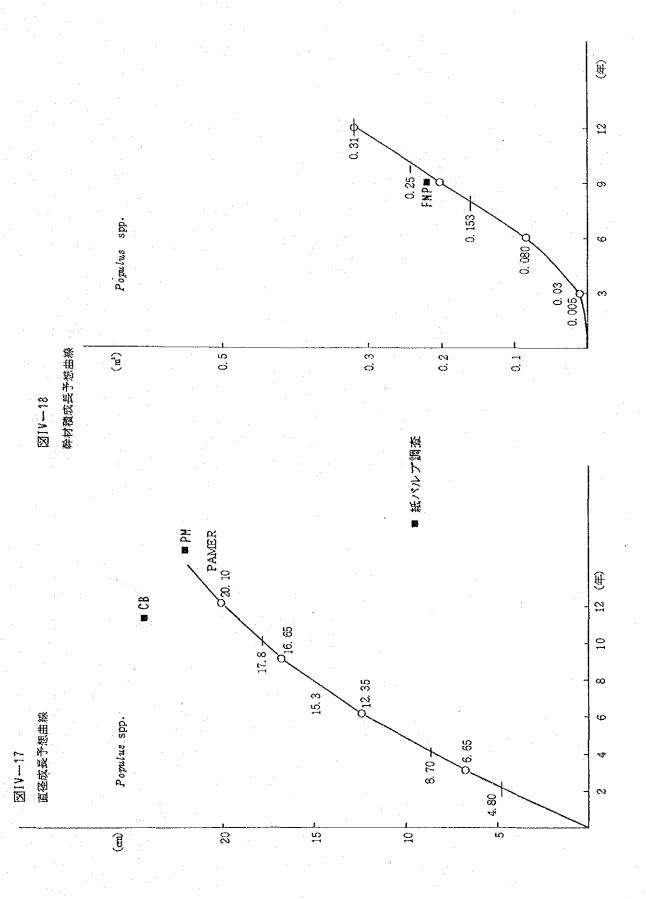


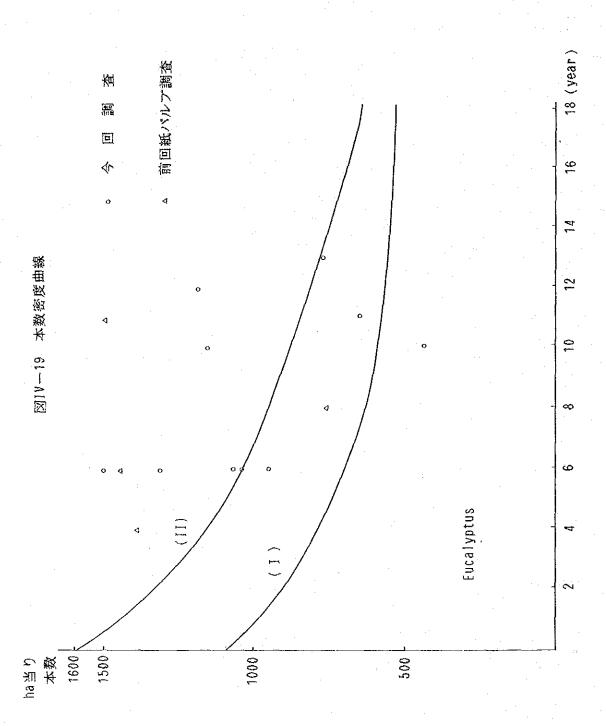

N:木数密度(木数/ha)











Ⅳ-6 森林施業法

造林奨励地域第7, 第8, 第9地域における収益林の森林施業法をそれぞれの経済 的社会的条件に応じて作成する。

N-6-1 第7地域

本地域は、土壌条件が林木の生長に良く林業経営に適しているが、マーケット・アクセスが悪いという特徴がある。

木材の主要マーケットMONTEVIDEO, PAYSANDU へはそれぞれ 500km, 450kmの遠距離にありパルプ材等の低品質材ではほとんどが運賃に食われてしまう現状にある。

しかしながら、MONTEVIDEO、PAYSANDU, RIO NECRO の各県及びBRAZILのRIO CRANDE DO SUL 州を結ぶ鉄道はウルグアイの幹線であり付加価値の高い優良材の生産を指向すれば将来林業地帯として発展する可能性は大きい。

以上の見地から収穫量増大、優良材生産による立木販売価格の上昇ならびに造林、 伐出費の低減を指標としてマツ類の長伐期皆伐用材林施業及びユーカリ類の中林作業 を実施する。

a. マツ類皆伐用材林施業

集約な枝打ち間伐等の保育作業により、節の少ない大径の合板用材、建材、家具向 けの製材用材等付加価値の高い優良材の生産を行う。

枝打ちは2~3番玉までの優良材の生産を目途に行う。

(i) 樹種

Pinus Elliottii, P. taeda

(ii) 作業種

皆伐用材林施業

植付	1600本		
枝打	第1回4~6年	800本	樹高の40%
	第2回11~13年	600本	樹高の50%
間伐	7~9年	33%	٠.
	15~17年	33%	
主伐	25年		. 1

(iii) 伐期令

25年

経済的に有利な伐期平均成長量最大に達する林齢及び直径成長を勘案して25年とした。

(iv) その他

タクアレンボ・グランデ川,及びタクアレンボ・チコ川上流で鉄道に近い地利級 の良い土地に造林し,極力運材コストの低減をはかる。

b. ユーカリ類中林作業

この施業は、上木により大径の合板用材、製材用材、電柱等の優良材を生産し下木 によりパルプ用材、燃材の小径材を生産する。

(i) 樹種 Eucalyptus grandis, E. saligna

(ii)作業種

中林作業

植付 1,600本

第一回主伐(10年)

ha当り保残木を 100~150 本残し伐採

(萌芽更新)

第二回主伐(20年)

第1回主伐により萌芽更新したなかから第2回保

(萌芽更新)

残木を選定。第1回保残木の伐期を30年とする場

合は第2回の保残木選定は行わない。

第三回主伐(30年)

(iii) 伐期船

主伐 10年

(保残木は20~30年)

下木については、経済的に有利な伐期平均成長量最大に達する直前の林齢とした。

(iv) その他

砂質土壌は、燐酸供給量が少ないので、短伐期のユーカリ類については、植付年、萌芽更新年に施肥を行う作業体系の実験を行う必要がある。

Ⅳ-6-2 第7地域

本地域の木材の生産力は比較的高いが、マーケット・アクセスが悪くインフラストラクチャーが未整備であり、過疎地域で労働力も少なく、経済的な木材生産は他地域に比べ困難である。

しかしながら、この地域はウルグアイの重要河川であるネグロ川の本流及び支流の流域にあり、土壌侵食・流亡、水源かん養、洪水防止等森林の公益的機能発揮を要求されるところである。

したがって、本地域については、主として土壌侵食、流亡を防止することを目的とし、防風林、家畜避難林、産業用材林等を兼ねた森林を牧野に造成する。(30年間で当地域の面積の10%の造林を目標とする。)

(i) 樹種

Pinus Elliottii

Eucaylptus grandis, E. saligna,

E. tereticornis, E. Botryoides, E. rostorata,

なお、土壌のエロージョンの著しいところでは、その防止を目的として植栽する 下木の樹種につき検討する。

(ii) 作業種

常に森林を保持するよう択伐システムを採用する。

(iii) 伐期齢

原則として長伐期とし市場の動向等を考慮し適宜選択する。

Ⅳ-6-3 第9地域

第9地域は、木材生産力は第7地区に比してやや劣るが、広大な林業適地がPAYSAN DU県を中心に広がると共に工業の立地条件が極めて良好でありかつ輸出を中心とするマーケットを有している。

したがって、将来立地が期待される紙パルプを中心とし、製材、合板、フアイバーボード、パーテイクルボード、製函、木材防腐工場等からなる総合的な木材産業に対して、産業用原木及び工業用燃材を大量かつ安定的に供給することを目的として、中的な大規模造林地を造成する。

a. マツ類皆伐用材林施業

第7地域と同じ

b. ユーカリ類皆伐用材林施業

パルプ用材の大量生産を主目的とし、短伐期施業を行う。

一部の地利の悪い地域では、合板、製材用材、電柱用材の生産も兼ねた中林作業を 行う。

(i) 樹種

Eucalyptus grandis, E. saligna

パルプ収率が高く霜害に強い E. globulus ssp. maidenii及びE. viminalisの導入を今後検討する必要がある。

(ii) 作業種

皆伐林作業

植付 1,600本 第一回主伐(10年) (萌芽更新)

第二回主伐(20年)

(萌芽更新)

第三回主伐(30年)

(iii) 伐期齢

経済的に有利な伐期平均成長量最大の前の林齢とする。

地位 1

10年

地位 II

12年

Ⅳ-6-4 保護林の施業法

ここでは、森林の公益機能を期待するための森林の造成法について述べる。林種の 分類からみると、保護林 (Protector) であり、その期待する機能は、土壌侵食防止、 水源かん養、洪水調節、風致休養などである。

森林の公益機能を期待する施業では、家畜の林内放牧は原則として禁止することが 望ましい。

(a) 水源かん養林, 洪水調節林

水源かん養と洪水調節の両機能を発揮させるためには、浸透性と保水性に富む土 壊層と、基底流量を確保できるような、表層土壌構造を持たせるための森林の造成 が必要である。

水源かん養の面からみてのぞましい森林とは、その地方の降雨条件によっても異なるが、一般的には降水遮断能、蒸散能ができるだけ低いこと、林地浸透能や土壌 貯水能が高いことが必要である。

また、洪水調節面からみてのぞましい森林とは、降雨遮断能(樹冠のほか下層植生、落葉地被物も含む)蒸散能、林地浸透能の高いものであって、これらの働きによって直接流出量を制御しなければならない。

次に、これらの森林の配備位置は、水源かん養のためには、標高の高い、河川の 上流域に存在することが効果的であり、また洪水調節のためには、直接流出のもと になる表面流出や中間流出の多く発生する部分や、洪水が到達し被害を与える下流 の保全価値の高い局所などとなっている。

このような森林を造成する具体的な場所、規模等については、現地に於る流域管理に関する基礎的な資料を得たうえでなければ決定することができない。そのために必要な研究体勢の整備が必要となる。

(b) 風致林

URUGUAY では、すでに海岸地帯の P. pinaster の造林により、海岸の保全と風致をかねた森林の造成に成功しており、第8地域では、この域内に存在する湖水周辺

の森林造成が重要である。

その配備は湖水の汀線から、300~500mの幅で帯状に森林を造成する。この森林を配備することによって、上部地帯からの土砂の流入防止と、同時に湖水を含めた全体の景観を維持し、国民休養の場を提供する。

(c) 河畔林の造成

全般的には、国内の多くの河川には、天然林が河畔林として残存して、土砂の流失、河岸の崩壊などの防止に効果をあげている。しかし、8地域の湖水および砂丘地帯の河川の周辺には、河畔林の発達が悪く、すでに増水などによる侵食地、崩壊箇所を随所にみることができる。このようなところには早急に森林を造成し、これらの被害を防止しなければならない。そのためにブラジルでは次のような基準が法制化されている。

河川またはあらゆる流水の沿岸では

- ① 幅が10m以下の河川の場合は、最低5mの幅の森林を両岸に保存する。
- ② 対岸までの距離が10~200m迄の河川の場合は、河幅の半分に等しい幅の森 林を両岸に保存する。
- ③ 幅200mを越える全ての河川の場合は、100m幅の森林を両岸に保存する。 となっており、森林およびその他の植生を含めて保安林とみなし永久に保存することになっている。

(d) 樹 種

これらの保護林の早期造成のためには、

Pinus spp. Eucalyptus saligna, E. tereticonis, E. camaldulensis が効果的であるが、これらの単純一斉林では効果が少ないので、下木の植栽樹種について検討する必要がある。

(e) 施業法

公益機能を期待する森林の施業法は、基本的に共通部分が多いので、一括して述べることにする。

林型は単純一斉をさけ、多樹種の混交による多層林とする。要するに天然林に近 い林型とする。

林況は、下層植生を豊富にして、地被物を厚く堆積させるようにつとめる。その ためには、上層林冠の過密をさけ、太陽光を下層にも達するようにするとともに、 下層や林縁部に、さきにあげた樹種のなかから低木類を選んで、従属種とするのが よい。

更新はできるだけ帯状または小面積の皆伐方式とし、萌芽などによる天然更新の 施業をとることが望ましい。 伐期は、林地浸透能や土壌貯水能を増強させるような根量の多い、根域の深い樹種を選びながら、腐朽根跡や地中生物の活動孔を多くするように、林床の攪乱をさけるために、長伐期施業とする。

以上述べたことは、各種公益機能林としての一般的な方法を述べたものであり、 ウルグアイでの実験、観測の結果でないので、現地での林地と草地の水土保全機能 の比較、草地牧野内の保全林の配備法などについて適応試験を行う必要がある。

また、今回の調査では、林型で単純一斉林である場合には、その森林の樹種が、 Pinus spp. でも Bucalyptus spp. であっても、僅かな傾斜地で土壌侵食が起きている現象を随所にみることができた。前述の林型と施業法との関連で、今後の検討が望まれる。

Ⅳ-7 造林樹種の造林及び利用特性

N-7-1 マツ類

Pinus spp. で現在造林されているのは P. Biliotlii と P. taeda の2種である。

表IV-7-1 Pinus spp. の造林利用特性

	学 名 記 載	Pinus Elliottii	Pinus taeda
	自 生 地 域	アメリカ東南部フロリダ州メキシ コ湾岸	アメリカ東南部ニュージャージー州 よりテキサス州まで、テネシー州よ りフロリダ州まで分布する。
٠	降 雨 型	年間一定降雨量型	年間一定降雨量型
	年 降 雨 量	1, 100mm ∼1, 650mm	920mm~1,550mm
•	乾季	なし	は、なり、 し
	温 度	最高平均気温 26℃~28℃ 最低平均気温 9℃~17℃	最高平均気温 24℃~26℃ 最低平均気温 2℃~15℃
	樹 高		20~30~55 mm
	種 の 特 徴	常緑高木、葉は長く、多くは3葉	常緑高木、樹形は広円錐形 樹皮は灰色又は常黄色―赤褐色 葉は3葉で細長、強剛鮮緑色 長さ12~15~25cm
	材質	材は辺材は淡黄白色,心材は黄褐 色	材は辺材は黄色か白色,心材は褐色 比重0.57 平均繊維長3.10mm
* .	木 材 利 用	建築用、合板、パルプ、紙	建築材, 車輌用材, 枕木, 箱材, 合板, パルプ, 紙
	造林の将来性	用材、パルプ材としての用途も確立し、また長伐期大径材の生産により合板としての需要もある。造林法は定着し、とくに大きな病虫害もないのでウルグアイでは有望樹種である。	上記のように多用途の需要があり, その面では有望でかつ造林法も確立 している。ただ, ウルグアイでは虫 害の多発の危険性があるので保育に 注意が必要。
	発 芽 率	45~70%	50~60%
	粒数	30粒/gr	35粒/gr
· .	気 候 適 応 性	亜熱帯から暖帯の温暖な気候,年 平均気温は18℃から22℃の範囲, 年降雨量は1,300㎜ぐらいが最適	暖帯から温帯高温部の気候で,年平 均気温は13℃から20℃の範囲。年降 雨量は1,000㎜以上が最適
	土壤適応性	適潤で通気性のよい砂土または砂 壌土がよい。植土又は重植土は透 水性悪く根の生長を阻害する。	適潤性土壌、湿気ある砂質地を好み ときには湿砂地、沼沢地などにも生 育している。
	伐 期	木材の用途によって異なるが胸高 直径30㎝を目途にすると、25年ぐ らいが適当である。	Elliotlii と同じ理由により25年を 適当とする。
	栄養体生殖	さし木, つぎ木, とり木などによ る増殖が可能である。	さし木、つぎ木により増殖できる。
:	年平均生長量	樹 高 144 cm 直 径 2.64 cm	樹 高 179cm 直 径 3.04cm
	材 積 表	原産地アメリカで整備されている	アメリカで整備されている
	病 虫 害	ゾウムシ類の被害も発生する。	穿孔性害虫の被害が発生することあ り。

Vー7-2 ユーカリ類

ユーカリ類のうち、とくにウルグアイに於て、今後とも有望と思われる4 樹種について造林ならびに利用上の特性を表N-7-2 にかかげた。

表IV-7-2 Buacalyptus spp. の造林・利用特性

Vo. 1

f				<u> </u>	 	T	T
ľ		学	名	E. grandis	8. saligna	E. globulus	E. globulus ssp.
記	戴			B. gi anu i s	D. 30115114	ssp.globulus	maidenii
オー	スト	ラリ	ア名	Flooded gum	<u> i </u>	Tasmania blue gum	Maiden's gum
自	生	地	域	オーストラリア東部中 央沿岸地方 ニューサウスウエール ス州北部沿岸地方 クイーンズランド州南 部沿岸地方	オーストラリア東部中 央沿岸地方 ニューサウスウエール ス州北部沿岸地方 クイーンズランド州南 部沿岸地方	オーストラリア,タス マニア島	オーストラリア東部の ニューサウスウエール ス州, ならびにビクト リア州北東部
水	乘	分	布	南緯26度~32度	南緯23度~35度	南緯38.5度~43.5度	南緯34度~39度
垂	直	分	布	0〜 300m. ただし Queens landの北部地方 では 750〜1200mに達 することがある。	0~ 300m, 水平分布 の北限地帯ではさらに 上限が上がる。	0 ∼330m	230~915m
降	Ī	Si .	型	夏季降雨型	夏季降雨型	冬季降雨型	冬季降雨型
年	降	雨	量	1,000∼1.750mm	635~765am	500~1,500mm	750~1, 500mm
乾			季	3ヶ月程度	3ヶ月	3ヶ月以上	3ヶ月以上
温			度	最高平均温度 29℃~32℃ 最低平均気温 5℃~6℃	最高平均温度 30℃~33℃ 最低平均温度 1℃~-7℃	最高平均温度 18℃~23℃ 最低平均温度 4℃	最高平均温度 21℃~25℃ 最低平均温度 5℃
樹			高	45∼55m	40~50m	45~55m. まれに80m	60~70m
樹	£	ŧ	型	淡灰色の繊維状樹皮	灰白色の繊維状樹皮で むける傾向にある。	灰青色で荒い、根元付 近の樹皮は耐久性があ り脱落しない。	樹皮の表面はなめらか 細長く樹皮がはげる。
幼			葉	互生, 細長く鎌形を呈 する。	互生. わずかに鎌形	対生. 座葉	対性,座葉、長方形で 横長卵型
胶			葉	互生, 擠円形, わずか に鎌形	楕円形、わずかに鎌形	互生で葉柄あり、鎌形 皮針形、円形などあり 下垂する。	
木	材	利	用	薪,木炭,パルプ,紙, 家屋の建設材,その他 一般用材	薪、木炭、パルプ、紙	軽構造材: 杭, 箱, パルプ, 繊維板原料, 合板. 重構造材: 橋, 杭, 枕木, 車両	globulusにほぼ同じ利 用法
造物	休 の	将来	性	すでに広範囲にわたっ て植栽されている。大 規模一斉造林が世界中 で定着し、急速に進展 しつつある。B. grand- isと B. salignaの混交 大規模造林がブラジル で実施されている。	造林樹種としては、一般用材のほか、エネルギー代替の薪材としての利用のため効果がある。	造林樹種として有望である。広くパルプ原料として利用するためオーストラリア以外で,世界中に大規模に植栽された最初の樹種(家畜が葉を食用としない。)	造林樹種としては、B. nitensと同様有望である。ブラジルではB.gl obulus ssp. globulus より良好である。

r		· .			No. 2
	学 名	E. grandis	E. saligna	E. globulus	E. globulus ssp.
ļ	記載		v. sa i igua	ssp. globulus	maidenii
	外国の成績	南アフリカ:27万5千 ha (1885~1973) アンゴラ, ジンバブエ, 東アフリカ, インデ (ケララ州), ブラジル, アルゼンチン, ウルガイ ロルガイは南アフリカからGENOTYPEを導入した。 (霜に対する耐候性高い)		1973年までに世界中で 80万ha以上植栽された。 ポルトガル:約24万ha スペイン:約20万ha で世界各国に導入され た年 ポルトガルー1829, チ リー1823, 南アフリカ -1828, ウルガイー18 50, U.S.A1853, ペ ルーー1860, インドー 1843, 南インドー1863	No.1 イタリア, スペイン イン No.2 ブルンデイ, タンザニア, ケニア, 南アフリカ
	拉数/gr	632粒		70粒	
	造林の可能性と 特	造林初期に下刈をすれば、樹冠が厚くなる。(ウガンダ・クアズルの例) 植栽後4~5年で開花し種子が入手できる。萌芽は一般的に良好であるが、10年以上経過した造林地では萌芽は 困難となる。(ウガンダ)	造林上の特性,取扱いなどはB.grandis に類似する。	侵食防止に広く植栽されており、根張りが良い。	
	気 候 適 応 性	湿潤な亜熱帯。 年降雨量 800m以上が 必要,1000m以上が最 適。高温多湿条件では 病虫害が発生する。イ ンドでは降雨量 800~ 2000mに植栽		真夏月の最高平均気温 18~23℃ 真冬月の最低平均気温 4℃。 霜日数0~5日。 年降雨量 500~1500mm	最高平均気温21~25℃ 最低平均気温 5℃ 霜日数 20~ 120日
	土壤適応性	土層が深ければ砂質土 壌でも良い。比較的幅 広い土壌適性を示す。 排水のよい深層土壌が 良好な生長を示す。	透水性が良く, 軟質で 層の厚い土壌。	広範囲な土壌適性が認められている。 土層が浅く,排水の悪い塩基性の高い土壌には不適応を示す。	土壌適性は広いが岩石 の多い浅い土壌, 硬い 粘度質土壌は不適。
	植栽後の評価	一般的に全世界の熱帯 亜熱帯地域で評価が高 い,ブラジルではE.gr andis に類似している E.saligna が60万ha以 上植栽されている。	E. grandis に類似する。	花が華美であり、庭園樹としての評価が高い。 (樹形がよく、緑灰色に青味がかかった葉が観賞用に良好)	
	輪 伐 期	ウガンダ:8年周期 ブラジル:6〜10年が 一般的(萌芽更新成功) ザンビア:8年周期 (工業用造林)2年 目と5年目に間伐		ポルトガル,スペイン パルプ材,燃材: 8~12年 用材,杭木等: 10~15年 U.S.A. (カリフォルニア) エチオピア 燃 材:5~7年 ペルー 燃材,杭木:8年	
Ĺ					

year about	I n	: n + •	E. globulus	E. globulus ssp.
記載	E. grandis	B. saligna	ssp. globulus	maidenii
自然交雑	B. grandis×E. saligna (自然交配、人工交配 等) B. grandis×E. tereti- cornis、(ルアンダ、 ジンバヴエ、ザンビ ア)材質は両親の中間 であるが、耐乾性は B. grandis より高い。			
栄養体生殖	つぎ木は不適合を示す。 さし木については技術 開発ずみ。			
生長特性	良好な立地に植栽すれば生長量が一番良く、 当初の10年間の樹高生 長は2~3 m/年である。		深層砂質壌土で一番林 木生長が良い。	
年平均成長量	オーストラリア: 22㎡/年/ha アルゼンチン: 50㎡/年/ha (14年目) ウガンダ: 14~25㎡/年/ha (サバンナ) 17~45㎡/年/ha (森林帯) 南アフリカ: 25~35㎡/年/ha ジンバブエ: 7~30㎡/年/ha (Rainfed) ザンビア: 28㎡/年/ha (Copperbelt)		インド(植栽後10年目) 立地 総材積 実材積 年/ha SC-1 52.6㎡ 32.9㎡ SC-2 38.2㎡ 23.9㎡ SC-3 24.1㎡ 15.1㎡	
材積 表	ブラジルでは立地別, 植栽間隔別の材積表が ある。 南アフリカ, ザンビア, ウガンダは収穫未完成。 実材積21㎡/年/ha (普通林) 32㎡/年/ ha (萌芽林)			

V-7-3 ポプラ類

ポプラ類は種類も多く、また交配もしやすいので雑種が多い。分布はヨーロッパ~ アジア、北米大陸の南北にわたっている。さし木で容易に増殖できることから、古く から大陸間の交流も盛んであった。

ウルグアイには、アメリカクロポプラ(Populus deltoides)が導入されたとされているが、現在造林されている品種は、これとヨーロッパクロポプラ(P. nigra)の交雑種である。この交雑種は、ユウロアメリカナポプラ(P. x euroamericana)と言われ、多くの雑種がある。そのなかからP. x euoramericana I -214 とA. 63/51, A. 74D が造林の対象樹種となっている。

したがって、ここではP.x euroamericanaについてその造林・利用特性を述べることにする。

(a) 自生地域

P. deltoidesはアメリカの五大湖沿岸、ミシシッピー川、セントローレンス河の各流域、メキシコ湾岸諸州と中央東部に広く分布し、またP. nigraはヨーロッパ全域、アルジエリア、モロッコ、中央アジアとなっている。

(b) 降雨型, 年降雨量

年降雨量の最低は600~800mmで夏季降雨型が望ましい。

(c) 樹 高

最も肥沃な土地で、よく管理された造林地では、32~38mの樹高になる。

(d) 種の特徴

生長が早く、比較的耐病性がある。

(e) 材 質

白色軽軟材で、比重は0.45~0.47、繊維長は0.9~1.3mmである。

(f) 木材利用

燃材,一般用材,パルプ,合板,包装材料,マッチ軸木などに利用され、また立木では、緑蔭樹,風致林などとして利用される。なお胸高直径別の用途の割合は表IV-7-3のとおりである。

表IV-7-3 ポプラ林の胸高直径(地上1.3m)別の用途割合

単位:%

胸高直径 (cm)	ベニヤ用	製材用	パルプ用	燃材	計
$\begin{array}{c} 20 \ \sim \ 25 \\ 26 \ \sim \ 30 \\ 31 \ \sim \ 35 \\ 36 \ \sim \ 40 \\ 41 \ \sim \ 45 \\ 46 \ \sim \ 50 \end{array}$	0 18. 5 12. 0 46. 0 47. 0 46. 0	37. 5 57. 5 43. 0 40. 0 40. 0 40. 0	60. 0 20. 5 13. 5 12. 5 11. 5 12. 5	2. 5 3. 5 1. 5 1. 5 1. 5	100. 0 100. 0 100. 0 100. 0 100. 0 100. 0

(g) 造林の将来性

すでに世界各国で広範に植栽され、とくに生長が早いことからパルプ材としての 需要が見込まれる。

(h) 気候適応性

適潤な暖帯,温帯で年最低降雨量600mm以上が必要で、1,000mm以上が最適である。 しかしあまりに高温多湿では病虫害にかかり易いことがある。また寒温帯では凍害 により枯死することがある。

(i) 土壌適応性

適潤で通気性、排水性が良く、肥沃で深い土壌が要求される。土性は砂壌土〜壌土が良く、洪積土も良い。地下水位は60~160cmの範囲にあり、pllは6~8の微アルカリが最適である。pll4.5では石灰を施用するなど、土壌改良が必要になる。養分要求量が大きいので、肥沃な石灰含量の大きい土壌も好ましい。

(j) 病 虫 害

ポプラ類の病虫害は葉、幹、根などに多く発生するが、とくに病害では、マルゾニナ菌による落葉病、湿地に多く発生する木材腐朽菌による心腐れ、虫害では、カミキリムシ類など穿孔性害虫に注意する必要がある。

(k) 伐 期

経営目的によって異なるが、一般的には、胸高直径が10年生で20cm、15年先で28 cm, 20年生で39cmとなるので、これを目安とする。

(1) 自然交雜

ヨーロッパに導入された P. del toides がそのところの P. nigra と自然交雑によってできた品種から選抜によって優良個体を固定したクローンである。

(m) 栄養体生殖

自然交雑による雑種から選抜されたものは、さし木によって増殖されたものであ り、この技術は確立されている。

(n) 生長特性

最も肥沃な土地で、集約な間伐など良く管理された造林地での樹高生長は、最初の20年間の平均は1.4m/年、20~25年で1.3m, 25~30年で1.2m/年となっている。(5 m×5 m 400本/ha)

IV-8 造林作業体系と作業基準

Ⅳ-8-1 造林作業体系

計画作成の基本方針(IV-2)で述べたとおり、第7、第9地域においては、産業 用材の生産を目的として人工林の集中化、大規模化をはかり、下記のような集約な造 林作業体系により造林コストの低減、収穫量の増大、良質材の生産を行うこととする。

(1) 適正品種の選抜育成 (表1V-8-1)

多収穫品種,パルプ適正品種,病虫害抵抗性品種等の選抜育成を行うとともに, 採種園,採穗園を造成し、これら優良品種の種子及びクローンの普及をはかる。

林木育種は早急に推進をはかるべき事業であるが、米国では<u>Pinus Elliottii</u>について一世代で17%の収穫量の増加という育種効果が期待できるとしており、又ブラジルではユーカリ類について大きな育種効果を上げている。

(2) 育苗作業体系(表IV-8-2)

大規模苗畑を造成し、主要な作業である苗床作り、ポット土壌詰、薬剤散布、灌 水等の機械化をはかる。

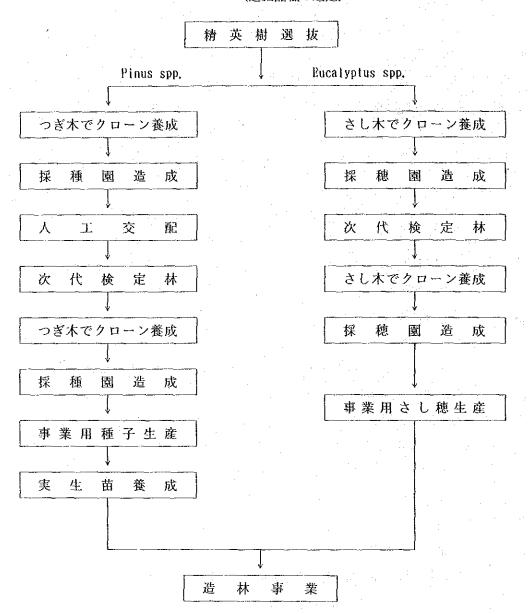
(3) 植栽作業体系(表N-8-3)

平坦な砂質土壌の牧野での造林が主体であり、極力工程の単純化をはかるとともに、作業の機械化を行うこととし、例えば印付、植穴掘、苗木の運搬と配布、植付を同時に行う機械(ブラジルで使用されている。)等の導入と改良をはかる。

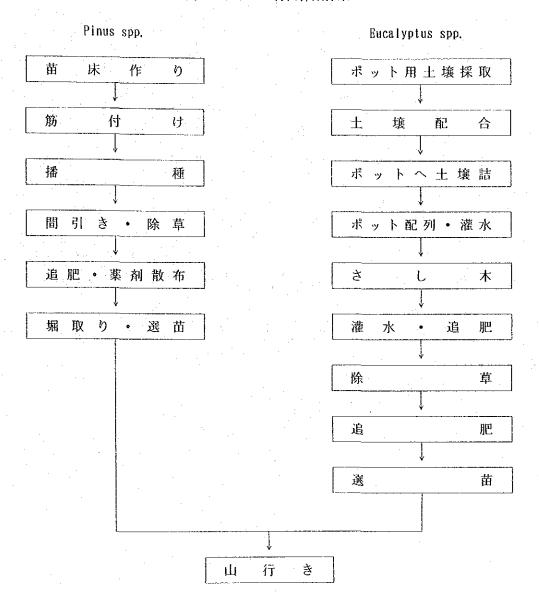
(4) 保育作業 (表Ⅳ-8-4)

マツ類については、枝打ち、間伐等保育作業の集約化をはかる。 ユーカリ類については萌芽整理の集約化をはかる。

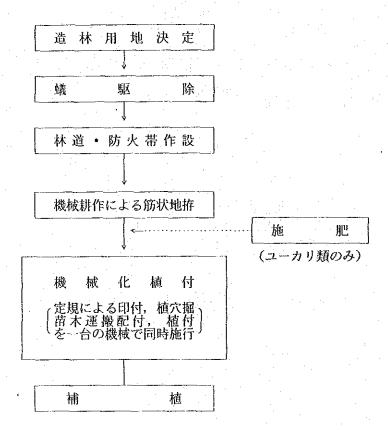
(5) 施 肥

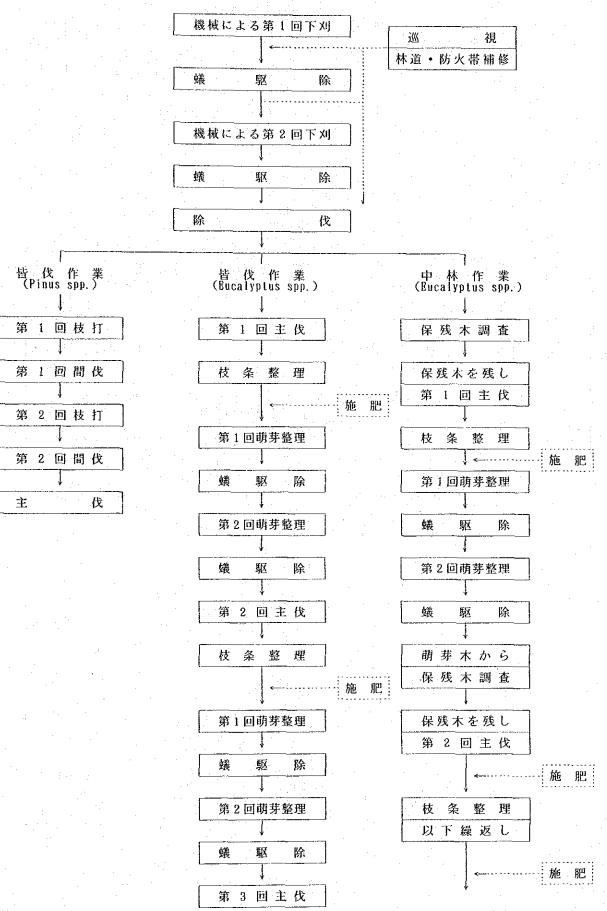

第7, 第9地域は、砂質土壌で燐酸等の土壌養分が少ないことから短伐期のユーカリ類については植付時、萌芽更新時に施肥を行い、成長量の増大、伐期の短縮をはかることを検討する必要がある。

以上が、造林作業体系の概要であるが、ブラジルでは造林予定地に前生樹が多く植付 け前の地拵えに経費がかかり、造林コストが割高になるのに対し、ウルグアイでは前 生樹が少く植付後の下草も少いので、地拵え植付、下刈のプロセスが単純化され効率 もかなり高い。


Ⅳ-8-2 作業基準

IV-8-1の作業体系の個別の作業の基準を表IV-8-5~表IV-8-8 に示す。 造林地の大規模化、集中化により各種作業につき極力機械化を進める。


表IV-8-1 種子管理作業体系 (適正品種の選定)


表Ⅳ-8-2 育苗作業体系

表IV-8-3 植栽作業体系(各樹種共通)

表IV-8-4 保育作業体系

表IV 8-5 種子管理作業基準

(各樹種共通)

作	类	種	作	業	名	作業内容	使用機器等
種	子管	理	精英	樹	Œ i	造林地で林緑や道路ぞいを除いた林内で、周囲木と比較して挌段に大きい個体。その個体が、周囲のどの林木より材積が30%以上大きいこと。クローネ幅が大きいこと、技が細く枯れ上りやすいこと。幹に曲りその他の欠点がないこと。病虫害の被害のないこと。相当量の種子をつけていること。などを基準に選抜する。	人力
		₽	inus spp.				·
			つぎ木で	クロ	ーン養り	精英樹から採取したつぎ穂を使用して、あら かじめ用意した台木につぎ木する。手法は従 来の基準による。	人力
			採種	倒	造质	管理、保護に便利な場所で、土壌が深く肥沃なところ、病虫害のおそれのないところなどで、同じ属の樹種の林分から 500m以上隔離されていること。クローンの数は最小で9クローン以上を必要とする。 800本/ha植栽とし、各クローンが均等に混植されること。	人 力
			人工		交 1	で 次代検定のため、クローン間の交配を人工的 に行う。	人力
			次代	検	定す	人工交配によって得られた種子から苗木を養成し、次伐検定林を造成する。	人 力 一部機械
			つぎ木で	クロ	ーン養卵	次代検定林から、さらに優秀な個体を選び、 つぎ穂を採取してつぎ木苗を養成する。	人力
			採種	園	造 5	養成された苗木を使用して、事業用採種園を 造成する。採種園の条件は前と同じ。	人 力 一部機械
٠.			事業用	種	子生的	匿 各クローン間の自然交配により生産された種子を使用して事業用の苗木を養成する。	
		8	ucalyptus	spp.			
	<u>·</u>		さし木で	クロ	ーン養ほ	な 精英樹から採取したさし穂を使用して、ビニ ールハウス内でさし木苗を養成する。	人 カ ピニールハウス
		٠	採 穂	閩	造品	管理・保護に便利なところ、土壌が肥沃で病	人 力 一部機械
			次代	検	定す	採穂園から採取したさし穂により、さし木苗 を養成し、次代検定林を造成する。	
			さし木で	<i>1</i> a	ーン養用	及 次代検定林のなかからさらに優秀な個体を選	人 カ ピニーを R ウス
			採穂	閖	造 1	及 養成されたさし木苗により、前と同じ要領で、 事業用の採穂園を造成する。	
			事業用	àL	- 穂生;	館 健全な枝を選びさし穂を採取し、事業用さし 木苗を生産する。	人 カ ビニーありりス

表IV 8 - 6 育 苗 作 楽 基 準 (1) Pinus spp.

		Pinus spp.	
作 業 種	作業名	作 業 内 容	使用機器等
苗 畑	苗 床 作 り	全面耕耘された苗畑に、幅1.0~1.2m、歩道幅30cmの苗床を、ホイルトラクターに床作機を付けて、播種床を作る。 このとき基肥としてN.P.K.(15,15,15)を施す。	まくルトラクタ 床 作 も
	筋 付 け	1本の床に7本の筋を等間隔に長辺方向に筋 を付ける。	人力
	点播	赤く着色された種子を、筋に添って、方形に 4~5粒を方形に点播する。	人力
	間引き・除草	1点に1本づつ優良苗を残し、他は雑草とと もに除去する。	人力
	追肥・薬剤散布	苗木の高さ5cmぐらいのとき、尿素肥料をひとつまみづつ苗木の近くに散布する。また、 役菌剤、殺虫剤を状況に応じ散布する。	人力
	掘 取 • 選 苗	苗木堀取機をホイルトラクターに付けて, 直 根を切りながら掘起し, 生長不良, 形状不良 苗を除去する。	ホイルトラクタ 掘 取 オ
	山 行 き	50本1把として仮植、後に4,000本1箱とし、 底に水を入れ山行きとする従来の手法による。	人力
-	ポット用土壌採取	ポット用土として、床土、黒色土を採集し、 被覆材料を準備する。	人力
	土壤配合	土壌混合機に、床土、黒色土、肥料を入れ, 混合しポット用土を作る。	小型ミキサー
	ポットへ土壌詰	土詰機により、個々のポットの用土を入れる。 ポットの大きさは径 9~10cm、長さ11~15cm、 ポリエチレン製。	土 詰 ‡
	ポット配列・灌水	土壌を詰込んだポットを、幅 1 ~ 1.2m、長さ25~50mの苗床に配列する。配列後スプリンクラーでポットが充分湿るまで灌水する。	人力スプリンクラ
	さし木	発根促進剤 (ホルモン) をさし穂に使用し, ビニールハウス内でさし木を実施する。	人力
	灌水 • 追 肥	ポットの乾燥の状況により、必要に応じ適宜 灌水する。また、苗木の生長に応じ、追肥 する。この時の苗木の大きさは5~6 cm (4 ~5ヶ月経過)	スプリンクラ 人 力
	除草	随時雑草を除去する。	人力
	追 肥	苗木の生長に応じ、必要なら再度実施する。	人力
	選 苗	生長不良、形質不良苗木を除去する。	人力
	山行き	幅30cm×長40cmの箱に、50~60ポットを入れ、 山行きの準備をする。	人力

表Ⅳ8-7 植栽作業基準

(各樹種共通)

作	業	種	作	業	名	作 業 内 容	使用機器等
植		栽	(造材	用地分	快定)		
			蟻	躯	除	造林予定地内を巡視し、蟻駆除を行う。実施 の要領は従来どおりとするが、特に巣の発見 には乗馬による巡視も効果的である。	人力・馬
			林道•	防火带	持作設	造林予定地の周辺、林班界に防火帯として幅 30mの無立木地帯を作設する。林道は幅10m とし、作業道を兼ねて、防火帯中央に作設す る。	人 ナ ブルドーザー グレーター
			耕		耘	地況によっては、列間 3 m として、 2 m の幅 の筋状耕耘もある。 (2/3耕耘)	まイルトラクタ・ + プラウ
			植		付	前章で紹介したブラジル式植栽機により実施する。列間(車輪幅)は3mとするが、苗間はha当りの植栽本数により変動する。またそれにより植穴掘り用の車輪の突起の間隔を調節する。 この機械の使用により、従来の工程のうち、植穴の印付、植穴掘、苗木の小運搬、配付、植付などを同時にこの機械により実施することができる。	*イルトラクタ +植栽総 (の式 プランタ ー人 人
٠			補	·	植	植付本数の10%以上枯れた場合に実施する。	人力
					!		
					,		
					. !		
		1					
		į			!		:
					. !		
		•			;		
					:		Line
	-						
			:	• .			
					٠		

表Ⅳ8-8 保育作業基準

1. 第1回下刈から除伐まで各樹種共通とする。

作	業	種	作	業	名	作 業 内 容	使用機器等
保		育	第 1	П	下刈	植栽当年は、苗木が活着した後に、他の雑草 木の繁茂状態を見ながら、必要に応じ下刈を 行う。下刈はホイルトラクターにハローを付 けて列間の除草を行うが、苗間は人力により 行う。	*イルトラクター +ハロー 人 力
			蟻	駆	除	蟻駆除の専任者により、巣を発見したらアオ ドリン5%、MIREX(粒状)などにより駆除 する。	人 力 薬 剤
			第 2	<u>a</u>	下刈	植栽の翌年の下刈りの実施は、雑草木の繁茂 の状況と、植栽木の生長との相関で判断する。 実施の方法は、前年と同じ。	まイルトラクター ナハロー 人 力
			蟻	駆	除	前回と同様に行う。	人力・薬剤
			除		伐	目的樹種以外の林木、および植栽木で形質の 著しく悪いものを除去する。	人 カ チェンソー

2. 除伐以後の Pinus spp. 皆伐作業

作	業	種	作	業	名	作 業 内 容	使用機器等
保		育	第 1	回	枝 打	林齢4~6年,樹高が5mに達した時に,形 質の良い 800本につき,樹高の40%まで枝打。	人力
			第 1	<u>[i]</u>	間 伐	林齢7~9年のとき、保育を兼ねた間伐を実施する。本数は33%を目安とする。	チェンソー
			第 2	0	枝打	林齢11~13年のとき,さきに枝打ちしたもの のなかから,さらに形質の良いもの 600本を 選び枝打ちを行う。	人力
			第 2	П	間(伐	第2回間伐,林齢15~17年のとき,第1回目 の枝打ちだけ実施した 200本を含めて,さら に33%の間伐を行う。	チェンソー
(1	戈 採	()	(主		伐)	伐期25年,主伐	チェンソー

3. 除伐以後の Eucalyptus spp. 皆伐作業

作業種	作業名	4 作業內容	使用機器等
(伐 採)	(主 伐)	林齢10年で第1回主伐。	チェンソー
保育	枝 条 整	理 主伐木の枝条、未木を伐根の周辺から取除き 株列間に筋状に集積する。	人力
	第1回萌芽整	主伐の親株からは、多数の萌芽がみられているので、そのなかから、形質の良いもの3~4本を残し、他の萌芽を除去する。	人力

3. 除伐以後の Bucalyptus spp. 皆伐作業

作	業	種	作	業名	作 業 内 容	使用	機器等
保		育	嬟	駆 [余 蟻駆除は前回に同じ。	人	カ
			第 2 回	萌芽整〕	主伐の翌年に第2回目の萌芽整理を行う。形質が良く樹高の高い優占木を1~2本残し、他を除去する。	人	カ
(伐	Ì Þ	采)	(主	伐)	林齢10年で第2回主伐を行う。 このあとさらに萌芽更新を1回繰返した後、 親株を更新するため、新たに苗木の植栽を行 う。	チェ	ンソー

4. 除伐以後の Bucalyptus spp. の中林作業

保 残 木 調 査 主伐の前に、中林作業として保残すべきの調査を行う。保残木は形質・生長とも好なものをha当り100~150本残す。 (伐 採) (保 残 木 を 残 し) 林齢10年で、保残木以外の林木を皆伐する。 株齢10年で、保残木以外の林木を皆伐する。 な条整理、蟻駆除、萌芽整理等の保育に例と同じ。 保 残 木 調 査 から、次の保残木とすべき林木を調査す最初の保残木を30年伐期齢とした場合にの調査は不必要となる。 第2回目の保残木を残し、最初の保残木を残し、最初の保残木を残し、前芽更新木を伐採収穫する。		使用格	美器等
保育保育 検条整理, 蟻駆除, 萌芽整理等の保育に例と同じ。 第1回主伐により成林した萌芽更新木の から、次の保残木とすべき林木を調査す最初の保残木を30年伐期齢とした場合にの調査は不必要となる。 (伐 採) (保残木を残し、最初の保残木を残し、			
例と同じ。 第1回主伐により成林した萌芽更新木のから、次の保残木とすべき林木を調査す最初の保残木を30年伐期齢とした場合にの調査は不必要となる。 (伐 採) /保 残 木 を 残 し、 第2回目の保残木を残し、最初の保残木	る。	チェン	/ソー
保 残 木 調 査 から、次の保残木とすべき林木を調査す 最初の保残木を30年伐期齢とした場合に の調査は不必要となる。 (伐 採) /保 残 木 を 残 し、 第 2 回目の保残木を残し、最初の保残木	t他の		
	る。	Λ.	カ
	٤,	チェン	/ソー
			:
			·
			٠.
			:
	:		

Ⅳ-8-3 造林の経済性の検討

Ⅲ-2-4-7で現行の造林作業体系による造林コスト及び立木原価について分析をしたが、ここでは前章で述べた新しい造林作業体系及び作業基準によった場合の造林コスト、立木生産原価を算出し収穫量及び立木販売価格との関連で造林の経済性を検討する。

(1) 造林コスト

新しい造林作業体系では、苗木配布、植穴堀、植付けを同時に行うブラジルで開発されたトラクタのアタッチナントを使用することとした。これにより植付前の地拵えのためのPloughing、苗木配布、植穴堀及び植付けの行程は著しく向上するため、全体としてha当り造林コストは現行方式と較ベユーカリ類については13.5 IUS、マツ類については、1.79US安くなった。

表-IV-8-9「造林の経済性(総括表)」の①造林コストの欄は、ウルグアイの新造林作業体系によるマツ類とユーカリ類の造林コスト及びブラジルのユーカリ類の造林コストはブラジルのサンパウロ及びエスピリット・サント州のそれに比して安くなっている。しかしながらブラジルの造林コストには 180~210 ドルの施肥に要するコストを含んでおり、ウルグアイの施肥を含む造林コストと対比するとブラジルは伐期も短いこともありそれ程割高ではない。

なお造林コストは、マツ類については25年の伐期までの経費であり、ユーカリ類については3伐期(ウルグアイの場合10年×3伐期=30、ブラジルの場合け6年×3伐期=18年)までの経費である。

(2) 伐期令,伐期平均成長量,及び収穫量は表-IV-8-9の②,③,④に示されるとおりであり、ブラジルのユーカリ類はウルグアイのそれに比して伐期令は短く、伐期平均成長量が高い。

これは、ブラジルでは、気候、土地条件にもよるが、施肥技術、品種改良等が進んでいるためである。

なお、ウルグアイの伐期平均成長量と収穫量は、今回の調査で作成した収穫予想表の 数値を用いた。又、ユーカリ類の施肥を行う造林作業体系の場合は施肥効果についての 実験データがないので無施肥の場合と同一の数値を用いた。

(3) 立木販売価格

現在の工場渡し原木価格より運賃、伐出費を差し引いて算出した。良質材が少ないた め、比較的低価格である。

(4) 立木生産原価

土地代,造林コスト、収穫量より前価計算の利子率を12%として立木の㎡当り生産原価を計算すると、表中の⑥のとおりであり、マツ類はユーカリ類より4~7ドル高くな

っている。ウルグアイのユーカリ類の生産原価をブラジルのそれと比較すると無施肥の 場合、 I 等地においては収穫量はやや低いが造林コストが安いため立木生産原価も安く なっているが、 II 等地の場合はブラジルの生産原価より高くなっている。

次に、立木生産原価を⑤の立木販売価格と比較すると、マツ類、ユーカリ類共にマーケットに近いPAYSANDUの1等地のみが採算に合うことを示している。

(5) 内部収益率

土地代, 造林コスト, 収穫量及び立木販売価格より内部収益率を算出すると表中の⑦ のとおりであり, ユーカリ類の方がマツ類より1~2%高くなっている。

国際金利水準は現在約9%であるので、価格変動予備費等を考慮した金利は11~12%程度と考えられる。

これを基準とすると、マツ類、ユーカリ類共にPAYSANDUの I 等地を除き不採算となる。 (ただし、ユーカリ類は採算点に近い。)

このことは現時点の造林コスト、収穫量、立木販売価格を前提とした場合、造林は経済的に不採算な場合が多く、造林者に対する政府の補助金や減税による助成措置が必要であることを示唆している。

将来,造林マニュアルの改善,品種改良等による収穫量の増加と造林コストの低減, 良質材生産,伐出費の低減,立木の利用率の向上等による立木販売価格の上昇があれば 内部収益率は向上すると考えられる。

樹種別,造林作業体系別に造林コストと収穫量(又は立木販売価格)の変数として内部収益率の変化を示したのが、表-1V-8-10、表-1V-8-11、表-1V-8-12及び図1V-19~図1V-23である。

採算収益率を11~12%として各樹種の採算性を検討すると、造林コストの低減、収穫量の増大等があってもマツ類、ユーカリ類共にRIVERAのII等地はなかなか採算にのり難いことがわかる。

いづれにしろ、内部収益の変化を示す数値は、今後造林、伐出コスト等の低減や収穫 量、立木販売価格、利用率等の向上の目標値を与えてくれるものである。

(6) 損益分岐点

㎡当りの立木生産原価と立木販売価格を対比し造林コスト又は収穫量を変数として損益分岐点を求めると図-IV-24、図-IV-25のとおりであり、ここでもRIVERAのII等地の場合は採算にのり難いことを示している。

表IV-8-9 造林の経済性(総括表)

٠.										· · · · · · · · · · · · · · · · · · ·						
					·				+							
					<u></u>		 			-						
	17619-6-424 1-49 (No. 2)	608 965	1,573	9		i i		27.7			o	0		·		
	178996-956 1-44-(No.1.)	644 440	1, 084		66,-00	70		261~291			0	9				
	サンパウローカリ	525 403	928	9	c r	3					0.1	9				
	ウルグアイ ユーカリ(施肥)	298	952	10	24. 2	17.4	242	174	о 10	က ထ	7.5	10.4	g. G		13.1	9.9
	ウ ル グ ア イ ユーカリ (無施肥)	227 515	742	10	24.2	17.4	242	174	5, 9	89 C)	6.4	8 8	11.0	69 69	14.6	11.3
	ウルグアイマッツ	212 328	540	25	19.6	15.4	490	386	7,0	10.8	10.4	16, 8	10.3	7.7	12.8	60.
	単位	;; =	, š	- 讲	m² /h3	• ₩		m ha		"E	ž	"# * \		2	۴	
	\$	有保口質	+		和集 [粉田	報 日 日	日等地	RIVERA	PAYSANDU	44年	おり	I	II II	1	PAYSANDU
	凶	日がはなり		@ 依 現	\$ @	不多多种的效应	Ħ	※	9 1		+ •			e de la companya de l	ませ Xich	

注 1. 伎期平均成長量と収穫職は全幹材骸である。 2. 立木生雄原価・内部収益率の鄭出に当たって、立木利用等は、マツ類80%、ユーカリ類85%とした。

表 1-8-10 マツ類造林の経済性

		The state of the s	· ·				\ 	MATERIAL STATE OF THE STATE OF					:		
<u>-</u>							······································		20% down	13.0	21.0	ထ	6.4	11.2	
									(40% up	7.4	12.0	12.8	9.7	15.6	
								「豆樹麻又は、	on %02	5 8.7	14.0	11.6	8.8	14.3	
·					~			は本コスト	(20% up	12.5	20.1	9,6	7.5	12.0	
								(塩林コスト)	20% down	8.3	13.4	И.2	8.4	13.8	-
ウルグアイマッシャ	212	540	25	19.6	15.4	490	388	7.8	10.6	10.4	16.8	10.3	7.7	12.8	.:
—————————————————————————————————————	<u>.</u>) eq.	枡		÷	ļ	- 148 - 148	12 12			"E		8		·
\$	A	1		44日	(1) (1) (2) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4	4 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	報 日	RIVERA	格 PAYSANDU	日 40年	日 田	T		DAVOAR	DAMOINI
M	日の商林コスト		②佚類	# *	平均改成金	⊕ Ē	<u>×</u>	* ©	阪売角格	+ (9)	上 中 田 殿 庭 旬			THE COLUMN	

1,573 12819-1-975 2-29 (No.2) 17507-757 644 440 1,084 9 $7.3 \sim 8.3$ $168 \sim 192$ 28~32 525 403 928 7 2 တ 32 123 121 サンパウ 11.2 8.0 12.4 6.1 , 20% down 無施肥の強林作業体米) 14.3 11.1 14.6 6.4 18.1 읔 40% . 0 . 12.8 5.4 7.4 16.4 13. 1 | 女後疑又は | 立水価格 | 20% up | ユーカリ数酒杯の絡路性(その1. <u>;</u>-0.0 6.9 13.5 10.3 10.7 、治林コスト、 ģ 20% 60,00 12.5 12.2 15.8 ... r. G 遊林コスト」 20% down 级1-8-11 හ හ 24.2 227 515 742 17.4 242 G, 4 8.9 11.0 14.6 11.3 10 174 7 1177 コーカリ Ð aff / F n, ha e de la companya de l 7. F Ę 单位 ₩ % * PAYSANDU II 暈 묏 뒷 PAYSANDU 팔) 宝 掣 RIVERA RIVERA セ 紅 聯 Įį. 舒 i) 檘 Ü \$ direction of the second 瀬 保 7 大阪光宙路 次 期 平均成绩应 庿 内部权益器 造林コスト 避原 至 圏 K X (S) (A) 日出 ᄨ (J) **©** Θ <u>@</u> 4

00 00

608 985

37

222

表 1 - 8 - 12 ユーカリ類造林の経済性(その2. 施肥を含む造林作業体系)

		:	:						
				11,00					
						i i			
1784-474 1-14 (No. 2)	608 965	I.573	9	37	222		8.2		
エスピリット・サント ユーカリ (No.1)	644	1,084	9	28~32	168~192		7.3 ~8.3		
サンパウロコーカリ	525	928	9	25	150		7.2		
						, 20% up	6. % 5. 7.	11.3	14.9
						収穫殿文は 江木面格 10% up	ထ က	10.4	14.0
ウルグアイユーカリ	298	952	10	24.2	242	တ က တ က	7.5	വ വ	13.1
母均	<u>-</u>	ha	井	الة (ا	H ₂	· 定	造、	8	
#	植祭文	1		日 日 田 田 田	(株)	RIVERA PAYSANDU	金 等 日 日 日	I RIVERA II	I PAYSANDU II
M	(D) (B) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)		②伐 期	◎ 次 類 平均成長魔	④ 克 酸	(5) (5) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4	(9) 以 木 生酪原面	© ************************************	子 知 子 記 子 記 子 に る こ に る こ る こ る こ る こ る こ る こ る こ る こ

表IV-8-13 マン類立木生離原価(地位1等地)

ر در در	nd_cost (US\$)	Planting cost (US\$/ha)	Total (US\$/ha)	Expecting y-volume (m/ha)	Coeffici't of d-value (12%/year)	Disc'ted value (US\$/ha)	Disc'ted y-volume (m/ha)	Remaning land valu (US\$/ha)	
Ω.	120	o Timerine in	4	55. 20		0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	000000000000000000000000000000000000000		
		10101-010101	2000-0000	122.40	1827 1827 1827 1956 11956 1191 1961	√000~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	00000000		
		0,010,01		214, 40	00000000000000000000000000000000000000	44000000	00000000	14.71	:
***************************************	0 11 0	540 53	790.53	392.00	0373	0014	$\circ \circ \mid \alpha$	17. 7.	
	0 0) i			ì	į	- 1
1800	LU /ゆのコン	(10.41

Discount Rate: 12% Land cost:US\$200/ha/0.8=US\$250/ha Number of planted trees:1600 seedlings/ha Expecting yield volume:69×0.80=55.20㎡(8y),153×.80=122.40㎡(16y),268×0.80=214.4㎡(25y)

表IV-8-14 マツ類立木生産原価(地位工等地)

75 75
•

Discount Rate: 12% Land cost:US\$200/ha/0.8=US\$250/ha Number of planted trees:1600 seedlings/ha Expecting yield volume:27×0.80=21.60m(8y),100×.80=80.00m²(16y),259×0.80=207.20 (25y)

表IV-8-15 ユーカリ類立木生産原価(地位1等地)

			6.42
Remaning land valu (US\$/ha)	8.34	8.34	
Disc'ted y-volume (m'/ha)		94.62	-
Disc'ted value (US\$/ha)	7.80 6.80 8.80 8.80 8.80 8.80 8.80 8.80 8	615.81	-
Coeffici t of d-value (12%/year)	1.00000 0.71198 0.00000 0.00000 0.00000 0.00000 0.00000 0.000000		
Expecting y-volume (m²/ha)	206.13	618.38	
Totai (US\$/ha)	60 - 199	992.05	
Planting cost (US\$/ha)	28 29.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	742,05	
Land cost (US\$)	250	250	cost (US\$/ m³)
Year	0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -	Total	Stumpage

Discount Rate: 12% Land cost:US\$200/ha/0.8=US\$250/ha Number of planted trees:1600 seedlings/ha Expecting yield volume:242.5 × 0.85=206.125 m²

表IV-8-16 ユーカリ類立木生産原価(地位II等地)

			,
			8, 93
Remaning land valu (US\$/ha)	8. 46.	8.34	
ره ۵			
Disc'te y-volum (m'/ha	00000000000000000000000000000000000000	68, 01	
Disc'ted value (US\$/ha)	7.80 7.80 6.80 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00	615.81	
Coeffici't of d-value (12%/year)	10000000000000000000000000000000000000		
Expecting y-volume (m//ha)	148. 16 148. 16 148. 16	444.47	
Total (US\$/ha)	+ 6	992.05	
Planting cost (US\$/ha)	ក្រុង ស្រួន ស្រួន ស្ត ស្រួន ស្រី ស្រី ស្រី ស្រី ស្រី ស្រី ស្រី ស្រី	742.05	
and cost (US\$)	250	250	(US\$/m³)
Year La	0-084-0000-000-000-000-000-000-000-000-0	Total	Stumpage cost

Discount Rate: 12% Land cost:US\$200/ha/0.8=US\$250/ha Number of planted trees:1600 seedlings/ha Expecting yield volume:174.3 × 0.85=148.155 m

表IV-8-17 ユーカリ類 (サンパウロ) 立木原価計算表

Discounted value of planted Eucalyptus (Sao Paulo -Brazil)

Year	Land cost	□ <	Total	i.i.	effici.	isc	1 6	กลุกเก	
	(881)	cost (US\$/ha)	(US\$/ha)	y-volume (m/ha)	of d-value (12%/year)	value (US\$/ha)	y-volume (m/ha)	and v (US\$/	
010	250	525. 40.94	775, 31 49, 94		1,00000	775.31	000		
N 60 ∠		vicio	oioio		-1-0		000		
ນ ດນ ຯ) C) — C	127.50	, , ,	. co c	7 0 0 0 0 0 0		
⊃ (~ ∞	-	:0i0	- 67 67 - 67 67		~. ~.	2∞-	200		
ගෙදු		ંજાંજ	· α α			Θ-	0000		
) († 1) — (;; c	127.50		100	36.65		
		4.07 0.00	4.0 0.00			သတ	000		
4.6		25.83	12.8			യന	000		
16		∞	i⊘i o∞			,	0.00		
17			∹.	127.50		G	18.57	36.41	
Total	250	927, 99	1, 177, 99	382, 50		951.99	127.57	36,41	
Stumpage	cost (US\$/ m³)								7,18

Discount Rate: 12% Land cost:US\$200/ha/0.8=US\$250/ha Number of planted trees:1667 seedlings/ha Expecting yield volume:150×0.85=127.50 m

表IV-8-18 ユーカリ類(エスピリット・サント・その1-1)立木原価計算表

Discounted value of planted Bucalyptus

			7.28
Remaning land valu (US\$/ha)	24, 94	24.94	
Disc'ted y-volume (m³/ha)	99999999999999999999999999999999999999	130, 17	
Disc'ted value (US\$/ha)	200 400 6 6 7 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	973.09	
Coeffici t of d-value (12%/year)	0.000000000000000000000000000000000000		
Expecting y-volume (m/ha)	163.20 163.20 163.20	489.60	
Total (US\$/ha)	444 444,6001 80 80 80 90 90 90 90 90 90 90 90 90 90 90 90 90	1298,92	
Planting cost (US\$/ha)	448821 81 448821 80 4488000 9.1.2,444.8,12,444.8,000 0.1.2,444.4,000 0.1.2,444	1084.09	
Land cost (US\$)	214, 83	214.83	ost (US\$/m³)
Year		Total	Stumpage c

Discount Rate: 12% Number of planted trees:1667 seedlings/ha Expecting yield volume:192×0.85=163.20 m

表TV-8-19 ユーカリ類(エスピリット・サント・その1-2)立木原価計算表

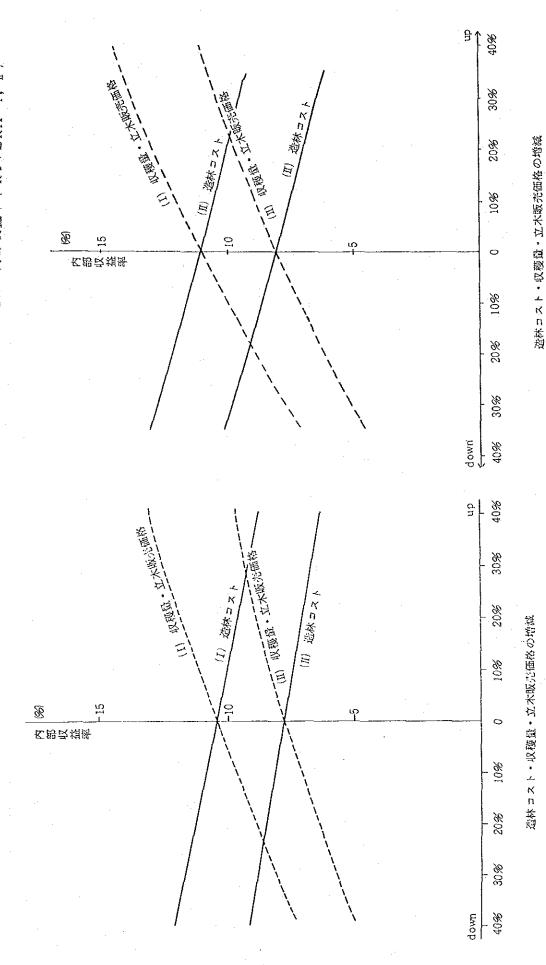
Discounted value of planted Eucalyptus

			8.32
Remaning land valu (US\$/ha)	24.94	24.94	
Disc ted y-volume (m/ha)	6,00,00,00,00,00,00,00,00,00,00,00,00,00	113.90	
Disc'ted value (US\$/ha)	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	973.09	
Coeffici to of d-value (12%/year)	0.000000000000000000000000000000000000		
Expecting y-volume (m/ha)	142.8 142.8 8 8	428.4	
Total (US\$/ha)	244 4.446.001 6.00	1298.92	:
Planting cost (US\$/ha)	448821 801 448821 801 448830 80190 41180 801914 4 4 8 1122 4 4 4 8 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1084.09	
Land cost (US\$)	214.83	214.83	cost (US\$/m²)
Year	0-0004600-800-0004600-800-00000000000000	Total	Stumpage c

Discount Rate: 12%

Number of planted trees:1667 seedlings/ha Expecting yield volume:168 × 0,85=142,80 m

表Ⅳ-8-21 ユーカリ類(エスピリット・サント・その2)立木生産原価計算表


Discounted value of planted Bucalyptus

		:	8.17
Remaning land valu (US\$/ha)	24.94	24.94	
Disc'ted y-volume (m/ha)	99999988999999999999999999999999999999	150,51	
Disc'ted value (US\$/ha)	2011 4.4.7.831 4.6.9.9.8.9.1.1.8.7.7.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9	1254.72	
Coeffici't of d-value (12%/year)	0.000000000000000000000000000000000000		
Expecting y-volume (m/ha)	188. 70 188. 70 188. 70	566.10	
Total (US\$/ha)	2.882. 4.84. 4.69.	1788.23	
Planting cost (US\$/ha)	621- 001- 801- 801- 801- 801- 801- 801- 80	1573.40	
Land cost (US\$)	214.83	214.83	ost (US\$/m)
Year	0-100000000000000000000000000000000000	Total	Stumpage c

Discount Rate: 12% Planting cost for 1st year=US\$531+387×20%(Replant)=608.4 Harvesting Volume=37/y×6y×85%=188.7 m³

 \square IV -19

21 ユーカリ造林の内部収益率 (RIVERA-1, II

--- 367 **-**--

<u> B</u>

内部収益率

8

20% 10% 0 10% 20%

治林コスト・収穫数・1六米販売価格の増減

8 %

30%

down 40%

gp 804

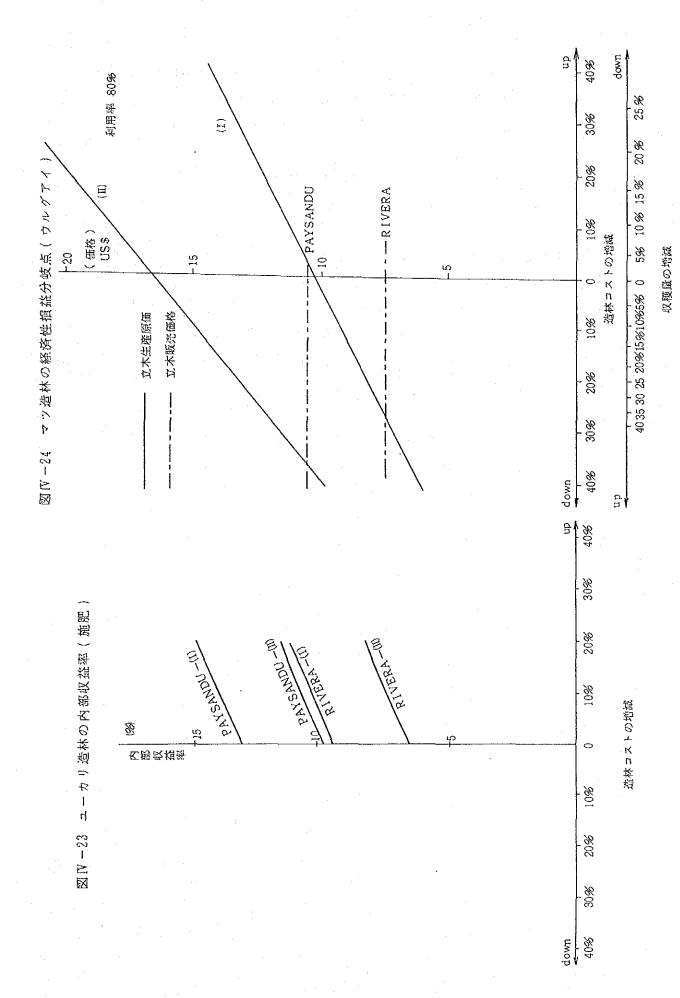
30%

20%

10%

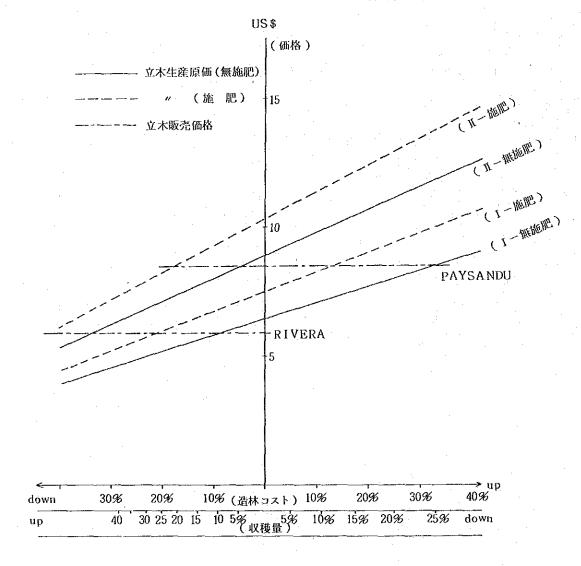
10%

% 8


30%

down

(日) 海林コスト


(1) 海拔コスト

-369-

図Ⅳ-25 ユーカリ造林の経済性損益分岐点(ウルグアイ)

Ⅳ-9 長期造林計画

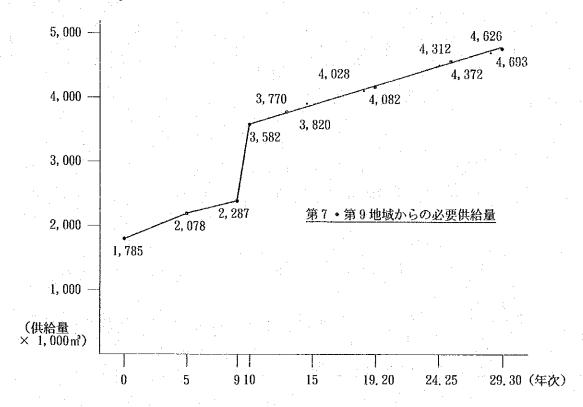
Ⅳ-9-1 計画作成の方針

- (1) IV-4-3-2で述べた、ウルグアイにおける将来の木材需要見通し(表-IV-4-10)に対応して、木材を保続的に供給し得る人工林蓄積を造成すること、及び土壌侵食・流亡・洪水の防止等の国土保全を目的として、30年間の長期造林計画を作成する。
- (2) 主要造林樹種はマツ類、ユーカリ類とするが、次の理由により、ユーカリ類の造林を優先する。
- (i) 木材需要は、計画期間の初期10年間に急速に増加し、その後は増加が鈍化することが予測されるので、初期に伐期の短いユーカリ類の造林を集中する必要がある。
- (ii) 木材需要は、用途別にはパルプ用材、特にユーカリ類の晒クラフトパルプ用の原木 並びに燃材の大中な需要増加が予測される。
- (iii) ウルグアイの人工林, 特に産業用材林の蓄積growing stock が極めて少ない現状にあり、その造成を早急にはかる必要があるので、生長が早く短伐期のユーカリ類の造林を先行する必要がある。
- (iv) ユーカリ類は、マツ類に比して経済的に見て資本回収期間が短く、内部収益率も高い。
- (3) 伐期の長いマツ類は、ユーカリ類による蓄積造成後に需要動向を見ながら造林を行う。
- (4) 目的別地域別の造林計画は、次のとおりとする。
- (i) 産業用材及び工業用燃材生産 …… 第7, 第9土壌地域, 特に第9土壌地域 において集中的に行う。
- (ii) 燃 材 ……………… 第2土壌地域その他において行う。
- (iii) 国土保全を目的とする保護林造成 …… 第07及び第8土壌地域において集中的に 行う。
- (5) 第07及び第8土壌地域に造成される保護林からの木材生産は当該計画期間中は考えない。
- (6) 天然林は禁伐とし木材生産は行わない。

Ⅳ-9-2 必要造林面積算出の手順

- (1) 県別土壌区分別面積の把握。
- (2) 第7・第9土壌地域における現存人工林の樹種別面積の把握。
- (3) 第7・第9土壌地域の地域別樹種別人工林目標面積の設定。
- (4) 計画期間は30年間とし、当初10年間は各年、残りの20年間は5年毎に計画を作成する。
- (5) 総需要量のうちの国内需要量に占る燃材需要は80%とし、その50%は第2土壌地域その他において供給する。
- (6) 上記以外の木材需要については、基本的には第7及び第9土壌地域から供給する。
- (7) 造林奨励地域の第8地域は、先に述べた理由により主に保護林の造林を行い、木材生産のための造林は小規模に行う。本地域は地域面積の約10%の39千haを行うこととする。
- (8) 第07土壌地域の人工保護林並びに天然林からの木材供給は、本計画期間については考えない

IV-9-3 県別土壌地域別の面積(表-IV-3-1)


第7土壌地域の多い県はRIVERA及びTACUAREMBO, 第8土壌地域のそれはTACUAREMBOの 南部, DURAZNO およびCERRO LARGO, 第9土壌地域のそれはPAYSANDU, RIO NEGRO 及 びSORIANOの各県である。

産業用材林の造林は、第7、第9土壌地域の多い各県において集中的に行う。

Ⅳ-9-4 第7。第9土壌地域の長期造林計画

Ⅳ-9-4-1 第7 第9土壌地域からの必要供給量

W-9-2の算出手順に従い第7・第9土壌地域からの必要供給量は算出すると次のとおりである。

V-9-4-2 第7・第9土壌地域の現存人工林面積

表-IV-9-1

(1,000ha)

.	地 域	ユーカリ類	マッ類	計	地域全面積
	第7地域 9	21. 2 33. 1	7. 0 10. 0	28, 2 43, 1	433 715
	計	54. 3	17. 0	71.3	1, 148

第7土壌地域は、RIVERA、TACUAREMBOの各県、第9土壌地域はPAYSANDU、RIO NEGRO、 SORIANO の各県とした。

|V-9-4-3 第7 ■ 第9土壌地域における地域別樹種別人工林面積の目標

30年後の第7, 第9土壌地域における必要供給量は, 4.693千㎡であるが, この数値 を両地域の伐期平均生長量(17.12㎡/ha・年)で除すと 271千haとなる。

この数値を樹種別の木材需要,地域別の市場性等を考慮して,地域別,樹種別に割り ふり,30年後の人工林目標面積を次のとおり設定した。 表IV-9-2

第7, 第9地域における地域別樹種別人工林面積の目標

1,000ha

地	域	7	地	域	9	地	域		āł	777
樹	種	Е	P	小計	Е	Р	小計	Е	P	小計
拡大造現存林	林分	7 21	36 7	43 28	127 33	30 10	157 43	134 54	66 17	200 71
캶		28	43	71	160	40	200	188	83	271
地域全面	積	-	433			715			1, 148	

E: ユーカリ P: マツ類

IV-9-4-4 第7⋅第9土壌地域の長期造林計画(表IV-9-3,表IV-9-4)

N−9−4−3の地域別樹種別人工林面積の目標と、各分期ごとの必要供給量に基づ き30年間にわたる必要造林面積を算出した。

伐期はユーカリ類10年、マツ類25年とし、早期の資源充実を目的としたユーカリ類の 造林を先行させ、マツ類は毎年 2.800ha造林を行うこととした。

第7・第9土壌地域合計で年間造林面積は再造林を含めおおよそ21千ha~28千haとな る。

Ⅳ-9-4-5 第7 第9土壌地域における人工林面積,成長量,収穫量の推移

(表N-9-5)

各分期における必要供給量に基づき各年の必要造林面積を算出しそれを集積したため、 30年後の人工林面積はIV-9-4-3で述べた人工林目標面積より53千ha超加した。

計画期間 0 年の人工林面積,蓄積,連年成長量は,それぞれ71千ha,9,675 千㎡, 1,956 千㎡であったが、30年後にはそれぞれ面積 324千ha, 蓄積35,511千㎡, 連年成長 量 6,545千㎡となる。

又,30年後の森林構成は,表-9-6のとおりで地域別面積は第7地域85.7于ha,第 9地域 238.6千ha, 樹種構成はユーカリ類78%, マツ類22%となる。

Ⅳ-9-5 第7, 第9土壌地域以外の長期造林計画

Ⅳ-9-5-1 第8土壌地域の造林計画(表Ⅳ-9-3)

地域面積 (TACUAREMBO, DURAZNO, CERRO LARGO県の合計) の約10%の39千haを30年間 に均等に(1,300ha/年) 造林することとした。

Ⅳ-9-5-2 第07土壌地域の造林計画(表Ⅳ-9-3)

第07地域の総面積86千haのうち30千haの現存人工林を差し引いた56千haを30年間に均 等に(1,900ha/年) 造林することとした。

IV-9-5-3 第2地域その他の造林計画 (表IV-9-3)

燃材需要の50% (総需要のうちの国内需要の40%に相当する)を第2地域その他から

供給する。そのうち、0年(1986年)以降の燃料需要の増加分は第2地域における拡大 造林により供給することとする。

IV-9-6 全国造林計画

IV-9-6-1 全国造林面積 (表IV-9-3)

IV-9-4-4, IV-9-5-1, IV-9-5-2及びIV-9-5-3 の造林計画を合計すると、表IV-9-3 の合計欄のとおりとなり、当初10年間における全国の年間造林面積は再造林を含めおおよそ33千ha~38千haとなる。

IV-9-6-2 必要労働量 (表IV-9-7)

全国及び第7,9地域の必要労働量は別表のとおりであり,0年~9年間について見ると,全国で年間529千人日~951千人日であり,年間労働日数を200日とすると,年間2,600人~4,800人の雇用となる。

Ⅳ-9-6-3 必要造林費 (表IV-9-7)

各分期(五年間)ごとのおおよその造林費は,再造林を含め全国で40,066千ドル〜59,964千ドルである。年平均約8,000千ドル〜12,000千ドルである。

IV-9-6-4 必要苗木本数 (表IV-9-7)

必要苗木本数はユーカリ類、マツ類別に表IV-9-7に示される。

Ⅳ-9-6-5 全国の30年後の人工林面積(表Ⅳ-9-8)

30年後の全国の人工林面積は、表N-9-8 のとおりであり、現在の人工林面積 200 千haが拡大造林により 420千ha増加して 620千haとなる。 表W-9-3 4年次另一,地区X5J4对和6月近古林常于间(卷》括5段)

1,204.9 420.0 38.0 58.0 755, 9 1067.9 29.0 108.0 137.0 784.9 465, 4 198, 0 29.0 55.0 84.0 194.4 253.0 747.4 24.0 15.0 18.0 38.0 280.5 72.0 362. 5 312.0 663.4 **<**0 214.3 16.9 192.3 24.9 14.0 12%.0 . 5 6.5 3.0 ເດ ος (C) 65, 4 69.5 175.4 14.0 8.0 22.0 189.4 14.0 129.8 4.0 4. 110.0 115.8 હ જ 3.0 14.0 9, 5 58, 6 10.9 69, 5 224, 7 161.3 40.4 201.7 20.0 164.3 50, 4 22, 5 125, 2 33.5 139.2 2.5 3,0 <u>ဖ</u> 3.0 102.7 20-24 129.0 52.5 12, 9. 65.4 155, 5 31.9 20.0 58, 5 51.9 103.0115.0 3.0 11.0 14.0 106.0 23.0 2.5 . 10 3.0 , 5 210.4 187.4 <u>ဂ</u> တ 12.0 ಣ ಈ 11.6 58.6 197.3 31.6 20.0 4.0 2,5 6,5 3.0 6.5 9.5 47.0 142.7 174.3 3.0 145, 7 51.6 13.0 11.0 14.0 98.7 24.0 122.7 95.7 108.7 3.0 10 - 14358.2 60, 0 တ လ 13.0 13.0 19.0 67.0 32.5 99.5 121.0 312.2 127.0 231.2 54.0 6.0 22.0 28.0 226.7 0 8.0 191, 1 144.7 166.7 198.7 0.6 40.0 46.0 24.0 0.5 11.0 38.2 8 57 21.2 0.6 . 8 6.0 18.0 0.8 1.3 0,6 . 3 6.3 6.7 12, 1 21.5 33.8 0.6 4.0 12, 7 25.5 2.2 9. ιο Δ 6 20.9 0.9 23.7 0.5 : 3 6 37.6 20.9 0.6 24.9 0,6 2.2 0.8 0.6 ... 6.7 4.0 10.7 4.0 5,4 15.5 17.7 4,6 12.7 12, 1 0.6 5.4 9.0 0.3 1.9 10,5 20. 4 32. 5 12,7 20.8 2.2 1.3 6,7 4.0 6.0 0.8 0,6 17.4 23.4 12. | 4.6 37.5 19.9 9.0 ເດ ເດ 14.9 20.3 2,2 6.0 17.1 23.1 1.3 ..3 6.1 6.7 10.3 12.7 23.9 9,0 0.6 3.6 0,6 4.0 4,6 5.4 Ø 38. 19.3 0.6 5 14.6 20.0 18.8 22, 8 9 .3 10.0 12, 7 23, 3 5.4 2,2 6.0 6 -6.7 က က 0.6 4.6 ın, 38. 14.3 2.2 16.5 22.5 0.5 12. 1 18. 8 30. 9 0.8 1,3 0.6 8 9.0 5.4 6.0 6.7 တ လ 4.0 4.6 12, 7 22.8 35. 12.1 14.0 19, 4 9.0 16.2 22, 2 0.5 1.3 . . . 2.2 6.0 0,8 .3 1.9 5, 7 2.9 9.8 0,6 22, 3 0,6 35.0 4.0 4.6 12, 7 0,8 5,4 13, 7 19, 1 0.6 8 8 15, 9 21.9 £3: 34.5 12, 1 29.9 í. 6 12.7 21,8 9.0 0,6 .3 6.1 6,7 r oi 9,4 9.0 4.0 62 8.9 0.6 21. 7 0.8 34.1 13, 5 . 8 % 5.7 1.3 0.6 6.1 6. G. 65 63 17,4 29, 5 12.7 5.4 6.0 1.3 8, 7 12, 1 0.6 4.0 21, 4 13. 2 18. 6 0.6 2.2 2.8 6.0 15, 4 0.8 0.3 33.6 12.1 16, 9 20.9 د. 0.6 1.3 6.7 29.0 12.7 9.0 0 4.0 5.4 再选林 × 於大路林 机大路林 再选林 北大道本 茶袋 加大路林 毒 机大油茶 有大路本 类规 的大招茶 † 克大路林 有大益林 **类型油** ≾ 知旭 搜 > ₹ 2-: < ÷. 拼 (÷ <u>-</u>-5 4-# 庶 17 ட் ď ᇤ ₽. . ن ը: ы Б œ. 균 4 (1) , † £Ц 葑 蛍 ∢n 53 再発林・空中語本・ 匑 3 œ 01 6 ઝ 翠 座

表N-9-4。在次55056本部上面(0.4年次一14年次)

- A B B B B B B B B B B B B B B B B B B		(1,000ha)	13 14	2.1 2.1	1.7	3.8 3.9	(2.9)	0.2 0.2	1.2	1.4 . 1.4	17.3 17.6	1.0 1.0	18.3 18.5	(182.7)	0.4	1.0 1.0	1.4 1.4		19.4 19.7	2.7 2.8	22, 1 22, 5	0.6 0.6	2.2 2.2	2.8		0.8	0.5 0.5	0.6 0.6	1.3 1.3	8.6 9.8	2.4 2.4	9.6 9.8	3.8 3.8	
Harack			13	2.1	1.6			0.2	1.2	1.4	17.0	1.0	18.0		0.4	1.0	1.4		19.1		21.7					0.8			1.3			9.4	3.7	
15. 1. 1. 1. 1. 1. 1. 1.			=	2.1	1,5	3.6			1.2	1.4	 16,8	1.0	17.8		0,4	1,0	1.4		18.9		21.4	0.6				0.8	0.5		1.3					į
15. 15.			0.0	2, 1	1.4			0.2	1.2	1.4	16.5	1.0	17.5		0.4	1.0	1.4		18.6	2.1	23.0					0.8		0.6	1.3			9.0	3.6	
(5. 1) (1.5	18th (X)		6	2.1	1	2.1			1.2	1.4	3.3	15.8	1 18, 1		0.4	0.1	1.4		5.4	15.8	21.2	9.0				0.8	0.5	0.6	1.3		4.3	6.7	5.7	
19 19 19 19 19 19 19 19			8	2.1	.	2.1		0,2	1.2	1.4	3.3	15.5	15.8		0,4	0 1	1.4		5.4	15.3	20, 9	 0,6				0.8		0.6	. 1.3	6.7	4.0		5.4	
# 3 年 次 0 1 2 3 4 5 5 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1			7	2.1	1	2.1		0,2		1.4		15.2	18.5		0.4	0.1	1.		5.4	15, 2	20,6	9 '0							1.3			6.7		
			9 :	2.1	1	2.1			1.2	1.4	3.3	14.9			0.4	1.0	1.4		5.4	14.9	20.3	 9,0				0.8	0.5	0.6	1,3	6.7	3.6		5.0	
	7		ı:	2.1	-	2, 1		0.2	1.2	1.4	3.3	14.6	17.9		0.4	1.0	1.4		5.1	14.6	20, 0	9.0	2.2	2.8	·	8 0		9,0	1, 3				1.7	
	28		4	2.1	1	2,1		0.2	1.2	1.4	3.3	14.3	17.6		0.4	1.0	1.4		5,4	14.3	19.4	0.6				0.8	0, 5	0.6	1,3	6.7	23.1	6,7	4.5	
				2.1	ì	2.1		0.2	1.2	1.4	3.3	14.0	17.3		0.4	1.0	1.4		5.4	14.0	19,4					0,8	0, 5	0.6	1.3	6.7	2.9	6.7	4,3	
B 稲 年 次 0 市 海 林 2.1 市 海 林 0.2 中 本 3 1 1.4 日 本 3 1 1.4 市 本 1 16.5 1 市 本 1 16.5 1 市 本 1 16.5 1 市 本 1 16.5 1 市 本 4 1.2 1 市 本 4 1.2 1 市 本 4 1.2 2 市 本 4 1.3 2 1 市 本 4 1.3 2 1 市 立 本 6 6 1 1 3 2 1 市 立 本 6 6 1 1 3 2 1 下 本 1 1 1 2 8 1 1 市 立 本 6 6 1 1 3 2 1 下 本 1 1 2 8 1 1 3 2 1 下 本 1 1 2 8 1 1 3 2 1 下 本 1 1 2 8 1 1 3 2 1 下 本 1 1 2 8 1 1 3 3 1 1 3 3 1 1 3 3 1 1 3 3 1 1 3 1 3 1 3 1 3 1 1 3 1 1 3 1 3 1 1 3 1 1 3 1 3 1	I		2	2, 1	***	63		0.2	1.2	1.4	3.3	13.7	17.0		0.4	1.0	1.4		5.4		19.1	0.6				0.8		9.0	1.3				4.1	
				2.1	-	2, 1		0.2	1 2	1.4	 3.3	13.5	16.8		0.4	1.0	1.4		5.4	13.5	18.9	0.6				0.8		0.6	 65	8.7		6.7	8,8	
<u>整</u> で				_																							0,5	6, 6	e			L.		
多 的				可语本	东大路林			再选林	位大造林		再选林	拡大遺体			再选体	哲大語奏			三路林	点人母林		再品格	拉人造林			有大治女	//	*	,,	再选本	东人沿林	再治林	北大道林	-
			鞷		<u>[</u>	; —			0	· 	 	<u>(</u>	i 				. <u>.</u>	·			-i					ដ	ď	<u>ਦ</u>	~	۳.	_	ļ		

4年2次月1964本43上间(154月2次—294月2次)

(1,000ha)	28	2.5		2.5		1.4	1	1.4		20, 1	1.4	21.5		1.4	1	1.4		22.6	1.4	24.0		2.8	1	2.8	0.8	0,5-	0.6	1.3	13.6	0.3	13.6	1.7	15.3	
	28	2.5		2.5		1.4		1.4		19.8	1.3	21. 1		1.4	1	1.1		22.3	e	23.6		2.8	1	2.8.	 0.8	0.5	0.6	1.3	13.4	0.5	13.4	1.9	15.3	
りつい	27	2.5		2.5		1.4]	1.4		19.5	1.2	20.7		1.4		1.4		22, 0	1.2	23.2		2.8	1	2.8	8.0	0,5	9.0	1.3	13.1	9.0	13.1	2.2	15.3	
	26	2.5		2.5		1.4		1.4		19.2	1.0	20.2		1.4		1. 4	_	21.7	0.1	22.7		2.8		2.8	9.0	0.5	9.0	1.3	12.8	1.1	12.8	2.5	15.3	
	25	2.5		2.5		1.4		1.4		18.9	6.0	19.8		1.4	1	1.4		21.4	6.0	22.3		2.8	1	2.8	0.8	0.5	0.6		12.5	1,4	12.5	2.8	15.3	
	54	2.5	2.5	5.0	-	0.2	1.2	1.4		18.6	2.0	20.6		0.4	1.0	1,4		21.13	4.5	25, 6		0.6	2 6	2.8	8.0	0.5	0.6	1.3	12.2	1.7	12.2	3.1	15.3	
	23	2.5	2.5	5, 0		0.2	1.2	1.4		18.3	2,0	20.3		0.4	1.0	1.4.		8.02	4.5	25.3		9.0	2.2	2.8	0.8	0.5	0.6	1.3	12.0	6.1	12.0	3.3	15.3	
	22	2.5	2.5	5.0		0.2	1.2	1.4		18.0	2,0	20.0		0.4	1.0	1.1		20.5	4.5	25.0		0.6	2.2	2.8	0.8	0.5	0.8	1.3	11.7	2.2	11.7	3.6	15.3	
	21	2.5	2.5	5.0		0.2	1, 2	1.4		17.8	2.0	19.8		0.4	1.0	1.4		20.3	4.5	24.8		0.6	2.2	2.8	9.0	0.5	9.0	1.3	11.5	2.4	11.5	3.8	15.3	
	20	2 2	2.5	5.0		0.2	1.2	1.4		17.5	2.0.	18.5		0.4	1:0	1.4		20.0	4.5	24.5		0.6	2.2	2,8	0.8	0.5	0.6	1.3	11.2	2.7	11.2	4.1	15.3	
	19	2.1	1.4	3.5		0.2	1.2	1.4		18.1	1.0	20, 1		0.4	1.0	1.1		21.2	2.1	23.6		0.6	2.2	2.8	0.8	0.5	0.6	L.3	11:0	2.6	11.0	4.0	15.0	
	18	9. 1	1.4	3.5		0.2	1.2	1.4		18.8	1.0	19.8		0.4	1.0	1.4		20.9	2,4	23.3	,	0,6	2.2	2.8	0.8	0.5	0,6	1.3	10.7	2.7	10.7	4.1	14.8	
	17	2.1	1.4	3,5		0.2	1.2	1.4	·	18.5	0.1	19.5		0,4	1.0	1,4		20.6	2.4	23.0		0.6	2.2	2.8	0.8	0.5	0.6	1.3	10,5	2.6	10, 5	4.0	14.5	
	91	2.1	1.4	3.5		0.2	1, 2	1.4		18.2	1.0	19.2		0,4	1.0	1.4		20.3	2.4	22,7		0.6	2,2	2.8	0.8	0,5	0.6	1.3	10.3	2.5	10.3	3.9	14.2	
	13	2, 1	1.4	3,5		0.2	1.2	1.4		17, 9	1:0	18,9		0.4	1.0	1.4	_	20.0	2.4	22.4		0.6	2.2	2.8	 0.8	0.5	9.0	1.3	10.0	2.5	10.0	3.9	13.9	
	舟	再造体	拡大造体	提 小		再选林	拡大造体	小 准		再份条	拡大遊林	小 計		举 短位	放大路林	华		明治条	拡大遊林	小 計		再造林	极大路棒	十	拡大造林			"	再造林	拡大造体	再遊林	拡大造林	小	
.	亞		ū				٥				[z								<u>.</u>				٥		ы	C.	ωi	d.	Ε.	មា		ŒΪ		
	哥冈			_		-							9	0						⟨1			1		a		2.0	5	61	その他	0 02 0	8 C. K	ト 々 ら 島 ≒	

※1/-8-5 年7,9世也以における西陸・李松・坦年成民處推移談

	件	段本 1900年 第	7.6	390	991	8	961	189	137	132	708	174		468	297	765	27	111	172	1.16	117	909	37.1			5/15			•	
•	超過		0	2 3.	1.							2.			ಬ್	က	_						4.			9		İ		
29	排	1000m	180	5, 542	5, 722	28	771	1, 781	2,474	4,075	9, 183	14, 905		1,082	12, 555	13, 637	61	. 550	1,402	2,143	2,813	6, 969	20, 606		·	35, 511		5, 525	5,114	4,626
	阳数	1000ha	12.5	36,2	48.7	7.0	7.0	7.0	7.0	9.0	37.0	85.2		103.3	00.3	203.6	7.0	7.0	7.0	7.0	7.0	35.0	238. 6			324.3				
	Est (現以 1900年 第	105	910	1,015	8	196	188	137	152	708	. 723		454	3, 208	3, 662	27	144	172	146	117	909	268			5, 991			 i	
22	話	1000m²	360	. 628	3, 988	88	177	1, 781	2,474	4,075	. 83	13,171		1,049	216	265	. 19	550	1,402	143	813	696	234 4.	·		405 5		5,400	4,029	4,312
	短點	1000ha 10	25.0	23.7 3.	48.7 3	7.0	7.0	7.0 1	7.0 2	9.0 4	37.0 9,			2	97.6 12.	7.8 13,	7.0	7.10	7.0 1,	7.0 2,	7.0 2,	.0 6,	. 8 20,		<u>.</u>	. 5 33,		က်	. 4,	4
-	帝		74 2	718	792 4	8	96	681	. 131	51		19 85.		2 100.		0 197	77 72				33 7	2 35.	2 232.	:		1. 318.				
		· · 1900年 · 1900年	-:			_		18	· .		607	1,399		442	2,968	3,410	2	144	172	146		525	3, 932			5, 331			1.	
13	海	1000m	252	2,863	3,115	82	771	1,781	2,474	1,358	6,466	9,581		1,021	11,302	12, 323	19	550	1,402	2,143	804	4.960	17,283			26, 864		4, 521	4,034	4,028
	沿	1000ha	17.5	18.7	36.2	7.0	7.0	7.0	7.0	3,0	31.0	67.2		97.5	90.3	187.8	7.0	7.0	7.0	7.0	2.0	30.0	217.8			349.9				
	## ##	以大道 1000円	78	411	489	8	196	189	33	34	492	186		409	3,043	3, 452	27	144	172	42	33	418	3,870			4,851				
14	部	1000m²	266	1, 638	1, 904	82.	17.1	1,781	707	906	. 247	151		944	.590	.534	19	920	. 402	612	804	, 129	963			114	i	906	3, 768	3, 820
	短機	1000ha 10	18.5	10.7	29, 2	7.0	7.0	7.0	2.0	2.0	25.0 4,	54.2 8,		90.2	92.6	82.8 12	7.0	7.0	7.0	2, 0	2.0	5.0 3,	7:8 15,			2.0 22		۸,	ÇĞ.	3
	年間		44 1	411	455 2	34	961	54	36	17	340 - 2	795. 5		6 611	803 9	222 18	22	144	18	12	33	295 25.	7 207.			2 262				
		1000m								:		12.			6,	ස ්							3,5			4,31				
G	器	1000m²	151	1,638	1,789	82	177	509	707	453	2, 522	4,311		896	.10,676	11,644	19	550	401	612	804	2,428	14,072			18, 383		4.215	1,236	2, 326
	明	1000ha	10.5	10.7	21,2	7,0	7.0	2.0	2.0	1.0	19.0	40,2		92, 5	85, 3	177.8	7.0	7.0	2.0	2,0	2.0	20.0	197, 8	į		238.0				
	高 6	1000円 1000円	44	411	455	34	96	54	20	17	181	989		386	38	524	22	#	.49	45	33	192	716			1,352				
~	緻	00 m²	151	1, 638	1, 789	82	220	509	353	453	719'	3, 406		892	926	. 418	19	157	401	612	804	2.035	3, 453			9, 859		, 469	, 236	2, 117
	路路	1000ha 10	10.5	10.7	21.2	7.0	2.0	2.0	0.1	0.1	13.0	34.2 3		85.2	16.6	8 10	7.0	2.0	2.0	2.0	2.0	15.0 2	116.8 3	:		0.1				24
L	Ata 酒		17	999	877	10	.99	27	20	11	1 30 1	307		61	957	976	ж ж	41	49	42	33	173				56 [5]				
	-	1000m												14			1						1,149		·	5 1,956		G.	20	ıc
0	施	1000m³	28	2, 633	2,691	23	220	254	353	153	1,303	3,994			3,646	3,690	17	121	401	612	₩80M	166'1	189 'C	~	_	9,675		1,469	1,236	1,785
	固	1000ha	4.0	17.2	21.2	2.0	2 0	1.0	1.0	1.0	7 0	28, 2		4.2	28.9	33.1	2.0	2,0	2.0	2.0	2.0	10.0	43.1			71.3				
	令殺		-	=	小站	1	11	Ħ	Λl	>	45th			_	=	*=		=	=	Ŋ	٨	1.1				<u>. </u>		外	É	益
	-			 i			ـــــا			نـــــا		₩.			ـــــــــــــــــــــــــــــــــــــ	f		I				٠, , ,	÷		1	년 矣 _		次积	作液	奈
_	豪								_			L	<u> </u>				l						l		ŧ.	((¥	×	l 1
	是是					-	Ť	Į.	<u> </u>	¥			<u> </u>	<u> </u>					₹						Ŀ	-		歌	국	ঠ

表IV-9-6 第7, 9 地域の30年後の森林構成 (1,000ha)

N	%		
H	57 100	85 100	78 100 100
(1)			
紫	\triangle 6.0 \triangle 14.7	43.6 △5.0 38.6	$\begin{array}{c} 64.3 \\ \triangle 11.0 \\ 53.3 \end{array}$
計画面積	48.7 37.0 85.7	203, 6 35, 0 238, 6	252.3 72.0 324.3
岡樹	28.0) 43.0) 71.0)	160.0) 40.0) 200.0)	188.0) 83.0) 271.0)
四蘇	247	(16) 18
樹種	い。	E P 小計	足が記す
類	各域	地域	1172
型	#T 1-	9 坤	- រដោធ

注 目標面積は,表IV-9-2の面積

MM − 9 − 1 分散光敏磁・描序観・分彫細木体

80 -					被小	表IN-97	冷歇化	· 型	集知・ 永	多語水	A 数						
								枡			长						
		0	1	2	3	4	5	9	7	8	6	6 - 0	10-14	15-19	20-24	25 – 29	和
必要労働量	全国	529	658	969	721	747	780	807	834	923	951	7,644	5, 652	6, 269	6,713	6,827	33, 105
(1,000人目)	7 · 9 地区	279	358	888	397	412	432	447	463	517	532	4, 221	3, 539	3,881	4,106	4, 113	19,855
												•					
	加大海林	4,698	5, 471	5,758	5, 998	6,242	6,535	6, 808	7.064	7, 682	7, 963	64, 219	20,809	20, 296	22,051	13, 768	141, 143
高 茶 図		1.954	2,355	2, 464	2,530	2, 596	2, 669	2, 735	2, 801	2, 921	2,987	26,012	30, 120	35, 424	37,913	43, 564	173,033
(08 \$ 1,000)	+	6,652	7,826	8, 222	8, 528	8, 838	9, 204	9, 543	9.865	10,603	10,950	90, 231	50, 929	55, 720	59, 964	57, 332	314, 176
	7 • 9 地区	4,416	5,112	5, 352	5,540	5, 734	5, 960	6, 157	6,335	6, 807	7,008	58, 441	30, 421	32, 740	36,227	33, 687	191, 516
*	Ei Ei	29, 744	30, 624	31, 328	32, 208	33, 088	33, 968	35, 024	35,904	38, 784	37,840	336, 512	55,616	56, 144	71, 104	29. 744	549, 120
* #		8, 096	8,096	8, 096	8, 096	8, 096	8, 096	8, 096	8,096	8,098	8, 096	80, 960	40, 480	40,480	40,480	38, 720	241, 120
2 poor+	7・9 臣	23, 232	23, 760	24, 112	24,640	25, 168	25, 696	26, 244	26, 752	27, 280	27, 808	254,672	22, 880	21, 120	39, 600	10, 208	348.480
(4,000,11)	地区 P.	4,928	4,928	4, 928	4, 928	4, 928	4, 928	4,928	4, 928	4, 928	4, 928	49, 280	24, 640	24.640	24,640	24,640	147,840

表Ⅳ-9-8 全国の30年後の人工林面積

(1,000ha)

[
地 域	現存人工林面積	拡大造林面積 (再造林面積)	30年後の人工林面積
7, 9	71 (10ha以上)	253 (494)	324
8	8 (10ha以上)	39 (0)	47
07	30	56 (0)	86
2 その他	91	72 (291)	163
計	200	420 (785)	620

- 注1. 現存人工林面積のうち、第7、9地域及び第8地域のものは面積規模10ha以上の人工林であり、これら地域における10ha未満の人工林は「その他」に含まれる。
 - 2. 造林面積欄の()内の再造林面積は外数であり, () 外は純粋の拡大造林面積である。

Ⅳ-10 木材利用のガイド・ライン

樹種別径級別木材利用のガイド・ライン、木材規格、木材炭化、木材ガス化木材の糖化・発酵について述べる。

|V-10-1|

樹種別径級別木材利用のガイド・ラインの作成

ウルグアイにおいてすでに利用されている樹種について、樹種別用途の現状についてはⅢ-5-2の木材利用において取りまとめたが、現在のところ植付けして年が浅くまだ利用できるところまで生長していない樹種をも含めて、木材の効率的総合利用の見地から、樹種別径級別木材利用のガイド・ラインを作ると次の通りである。

表IV-10-1 木材利用基準

① 赤ユーカリ類 (Eucalyptus tereticornis, E. camaldulensis)

Ф 35cm以上 : 合板

Φ 35-25cm : 製材 (建材,家具,床)

Φ 25-20cm : 製材 (牧栅)

Φ 20-15cm : 牧柱

Φ 15-10cm : 木炭

Φ 8cm以上 : 燃材

② ローズユーカリ類 (E. grandis, E. saligna)

Φ 30cm以上 : 合板

Φ 30—25cm : 製材 (建材,家具)

Φ 25-20cm : 製材 (牧棚)

Φ 20-15cm : 製材 (箱), 牧柱

Φ 15-10cm : 木炭

Φ 8cm以上 : 燃材

Φ 15cm以上 : 電柱 足場丸太

③ 白ユーカリ類 (E. globulus, E. globulus ssp. maidenii, E. viminalis)

Φ 30cm以上 : 合板

Φ 30-25cm : 製材 (建材, 家具)

Φ 25-20cm : 製材 (牧棚)

Φ 20-15cm : 製材 (箱), 牧柱

Φ 15-10cm : 木炭

Φ 8cm以上: パルプ,燃材

Φ 8-25cm ファイバー・ボード

④ マツ類 (Pinus taeda, P. Elliottii)

Φ 30cm以上 : 合板

Φ 30-25cm : 製材 (建材, 家具, セメント枠)

Φ 25-20cm : 製材 (パレット用)

Φ 20-15cm : 箱

Φ 8cm以上 : パルプ

⑤ Pinus pinaster

Φ 30 cm以上 : 合板

Φ 30-25cm : 製材 (建材, 家具)

Φ 25--18cm : 製材 (セメント枠)

⑥ ポプラ類

Ф 30cm以上: 合板

Φ 30-20cm : 製材 (建材, 家具)

Φ 20--15cm : 製材 (箱)

Φ 8cm以上 : パルプ

Φ 8-18cm : パーテイクル・ボード

⑦ ヤナギ類

Φ 20cm以上 : 製材 (建材, 家具)

Φ 20-15cm : 製材 (箱)

Φ 8-18cm : パーテイクル・ボード

⑧ センダン(Paraiso)

Φ15°"以上:製材(建材,家具,床材)

⑨ イトスギ(Cipres)

Φ20°"以上:製材(建材, 家具)

⑩ トネリコ(Fresnos)

Φ20°m以上:製材(建材,家具)

さらに用途別に特に留意すべき点を挙げると次の通りである。

工業用燃材

- ① 工業用燃材はユーカリ類で含水率30%(湿量基準)以下とする。
- ② 直接燃焼用燃材の標準寸法

丸太:長さ 1.2™, 直径0.25™

丸太:長さ 1.8m, 直径0.15m (レンガ工場)

ピース:長さ 0.4", 直径0.15"

チップ:30mm×40mm

③ ガス化燃焼用燃材の標準寸法

丸太:長さ 0.4m, 直径0.15m

ピース:長さ 0.4m, 直径0.15m

④ ユーカリ類の水分と発熱量の関係

 水分(%)
 発熱量(Kca1/Kg)

 40
 2,400

 30
 2,900

4, 396

パルプ用原木

0

- ① 晒クラフト・パルプ(BKP) 用原木:現在<u>Eucalyptus globulus</u> (比重0.51) が使されているが<u>Eucalyptus globulus ssp. maidenii</u> (比重0.56) が成木に達したならば、パルプ収率向上のため後者に切り替える。
- ② 末晒クラフト・パルプ (UKP)用原木: Pinus taeda ならびにP. Biliottii
- ③ セミケミカル・パルプ (SCP)用原木:ポプラ類
- ④ メカニカル・パルプ (MP) 用原木: Pinus taeda ならびにP. Elliottii

パルプ用原木

- ① パーティクル・ボード用原木の長さ:2.2 "
- ② ファイバー・ボード用原木の長さ:最大55cm
- ③ 合板ロータリの幅: 1.7 ", 2.4 ", ならびに 2.6 "

製材用原木の長さ

① コンクリート型枠用: 3.3m

② 建材・家具用 : 2.4^m

③ パレット用 : 2.2 **

原木輸送距離の限界

① 製材用 : 100Km

② 合板 : 300Km

③ パーティクル・ボード用 : 300Km

④ フアイバー・ボード用 : 100Km

⑤ パルプ用 : 150Km

⑥ 燃材用 : 75Km

Ⅳ-10-2 木材製品規格の検討

ウルグアイには規格委員会があって木材製品規格の制定にあたっているが現在のところ牧柱、牧棚の規格があるだけで製材品にも、合板、パーティクル・ボードについても未だ検討中とのことである。特にウルグアイ・アルゼンチン通商経済協定の発足により製材品がアルゼンチンに向け輸出される模様である。この場合製品規格を制定して品質管理を厳格に行わないとクレームの発生をうみ輸出ができなくなる恐れがある。そのためには特に製材品の寸法、含水率等の品質を管理し、品質を保証するために国で定めた製品規格が是非必要である。製品規格を定めるためには必要な試験機が民間の会社にないので、森林局内部に設置するか又は現在輸出品の検査を担当しているウルグアイ技術研究所とプロジェクト・チームを作って木材製品特に輸出用製材品の規格を早急に制定する必要がある。

Ⅳ-10-3 木材炭化

木炭の燃材分野におけるシェヤーの大きさは全エネルギーの 0.1%で堆積製炭法で行われており、品質も低い、このため森林局ではユーカリを原料とする木炭製造について詳しい研究を行い、その結果を発表する一方、ウルグアイ労働大学林業学校と協力し、築窯製炭法の普及に努めている。ブラジルのようにユーカリ類からの木炭が製鉄工場で炭素源として使用されるような大きな市場がないため、生産技術においても、品質においても立ち遅れていることは理解できるが、今一段の努力と向上が要望される。なお木炭の工業ならびに家庭を含む全消費量は約9,0001といわれている。

Ⅳ-10-4 木材ガス化によるメタノール製造

木材のエネルギーとしての利用状況において、木材ガス化の方式には次の3種がある ことを述べた。

- (1) 空気によるガス化
- (2) 酸素によるガス化
- (3) 間接加熱によるガス化

(1)は木炭の直接燃焼に比べ、過剰空気率が小さく、燃焼効率がよいため、ウルグアイでもすでに工場のボイラー用として少なくとも10工場以上で使用されており、今後ますます普及する形勢にある。このように木材をガス化すると同時に燃焼する場合は空気によるガス化が最も簡単で適切な方法である。従ってこの分野での説明はこれ以上を要しない。

次に、木材をガス化し、これからメタノールを製造する場合について、上記3種のガス化方式について比較してみよう。

メタノールなどの液体燃料を目的とした中位発熱量ガスを製造する場合,空気によるガス化は生成ガス中に大量の窒素(40-60%)が混入するので不適当である。

次に、酸素を用いる場合には、中位発熱量ガスの製造は可能であるが、高価な酸素製造プラントが必要で経済的でない。

これに対し間接が熱による方式(二塔式流動層炉)は酸素製造プラントを用いないで、中位発熱量ガスを製造することができる上に、この方法ではメタノール合成用ガスとして適した組成のガスを製造することが可能である。即ちメタノールを合成するためには、分解ガスからえられるCOとHの混合ガスを触媒の存在で次式によって反応を進めることになる。

$CO+2H \rightarrow CHOH(xgJ-w)$

これから分るようにCOに対し 2 倍のH が必要であるが、えられた分解ガスではCOの方がH より多く、両者を適切な割合にするためH を補給することが必要で、このため、分解ガス中に含まれるCH、を次式に従ってH の比率を修正するか、メタンまたは天然ガスを投入して分解しH 量を増加させる等いろいろの方法が検討されている。

CH +H $0 \rightarrow 3H +C0$

いずれにしても、この点がメタノール合成を左右する開発技術の一つである。ガス化方式とガスの組成については前述の表Ⅲ-5-13を参照されたい。

この点に着目しEC諸国では間接加熱方式によるガス化炉の開発がさかんに行われている。 次に、ブラジルのサンパウロ・エネルギー会社(CBSP)では、木材から直接合成ガスを生産しうる技術は未だ確立されていないので、先ずユーカリ類を木炭に変え、これから合成ガスを製造しメタノールを製造することを検討し発表している。これは、表一

IV-10-2 に示す通りで、2,000t/日メタノールを生産するために <math>7,200mのユーカリ類が必要であると述べている。

以上のように木材をガス化し、これからメタノールを商業的に生産するためにはさらに 技術の開発が必要である。

表-IV-10-2 ユーカリ類からメタノールを生産する材料バランス

投入財 : 木材 (Eucalyptus)	7, 200㎡/日
又は 木炭 電力 水	2,240 t/日 60MW 2.8㎡/秒
生産物: メタノール	2,000 t∕⊞
副産物: 灰 突 窒素 炭酸ガス	1.44 t/時 15,000 N㎡/時=9.4t/時 66,400 N㎡/時=130.4t/時

(出所) CESP(Compenhie Energitice eu Saopoule)

次に、我が国のバイオマス研究グループによって試算された木材ガス化によるメタノ ール生産システムについて紹介する。

[二塔式流動層法により生産システム]

- (1) システムの概念設計
 - ① 生産規模:メタノール1,000t/日
 - ② 原木:カリビヤ松8,000t/日(水分50%)
 - ③ 行程:
 - i チップ受け入れ
 - ii チップ乾燥(水分30%)
 - iii 熱分解ガス化(二塔式流動層炉)
 - iv ガス改質(サイクリック式)
 - v 塩素分除去
 - vi 硫黄分除去
 - vii 二酸化炭素調整
 - vii メタノール合成
 - ix メタノール精製
 - ④プラント建設場所:特定せず
- (2) 設備建設費

① 熱分解ガス化設備 : 288億円

② 改質設備 : 91億円

③ ガス精製設備 : 37億円

④ メタノール合成設備 : 145億円

⑤ 付帯設備 : ____124億円

合 計 685億円

(3) 製造原価試算条件

① 年間稼働率 : 8,000 時間/年

② プロジェクトライフ : 15年

③ 木材価格 : X円/t(水分50%)

④ 電力 : 3円/KWH

⑤ 直接労務費 : 中進国における労務費

⑥ 資本回収費 : (利子付き減価焼却費)

① 設備費 : 1981年日本国内ベース

⑧ 利子率 : 8.6 %

9 資本回収期間 : 15年

⑩ 保全費 : 設備費の3%/年

⑪ 税・保険費 : 設備費の3%/年

⑩ インフレーション : 考慮せず

(4) メタソール製造原価

① 直接費 円/t

i 木材原料費 : 7.84X

ii 薬品費 : 2,518

iii ユーティリティ費: 6,262

iv 労務費 : 872

② 間接費

i 資本回収費 : 24,866

ii 保全費 : 6,160

iii 税・保険費 : 6,160

メタノール製造原価 46,838+7.84X

因みに、現在 1 us 8 約 160円であり、また約 160ペソ (ウルグアイ) でもあるので、 円とペソは等価であると仮定する。またウルグアイにおける木材価格を2,000 ペソ/tと 仮定すると、

メタノール製造原価=46,838+7.84×2,000 =46,838+15,680 =62,518ペソ/t

メタノール製造原価62,518ペソ/tは約390us\$/tである。米国のメタノール輸出価格はFO B 約150us\$/tであるので米国からウルグアイまでの海上運賃を50us\$/t とすればCIF MO-NTEVIDEOで約200us\$となり、これと木材ガス化によるメタノール製造原価約390us\$を比較すると、非常に高いことが分る。

上記の二塔流動層炉による木材の熱分解ガスの組成は

H : 19,4mol%

co : 35.5mo1%

CO₂ : 23. 0mo1%

炭化水素 : 19.1mo1%

N : 2.9mo1%

で、多量の炭化水素を含み、H 量がCO量に比べてメタノール合成ガスとして非常に少

ないため、ガス改質設備を必要とし、設備費が高くなっている。この点を改善するため 同研究グループは触媒ガス化法について基礎的実験を行い、下記に述べるようにメタノ ール生産に適した組成の合成ガスの製造の可能性を認めた。

[触媒ガス化法による合成ガスの製造実験]

(1) 実験条件

反応炉

流動床炉

触媒

Ni/Ai O

分解温度

700°C

(2) 生成ガス組成

Н

56.9mo1%

co

25. 3mo1%

CO₂

17.3mo1%

CH

0.3mo1%

本法を二塔式流動法に比較すると次の通りである。

- ① 含有する炭化水素が極めて少量である。
- ② H がCOの 2 倍以上(モル比)である。 従って、次のような利点が考えられる。
- ① ガス改質工程が不要となる。
- ② 木材のガス化率が高くなるので原料木材量が少なくなる。

これらのことによってメタノール製造原価を相当低減することができる。しかし、まだ 基礎的実験段階にあるので、実用的に装置の開発に関する多くの技術的問題が残っている が、木材ガス化によるメタノール製造原価の低下に寄与する大きな課題であるので、今後 の進展状況に注目しなけれならない。

Ⅳ-10-5 糖化・発酵によるエタノール製造

石油価格の高騰に伴って、燃料用エタノールが農作物から発酵法で生産され実用化されている。その原料はサトウキビ、糖蜜などの糖質とトウモロコシ、いも類などのデンプン質に限られている。しかし、木材などの繊維素からのエタノール生産とまだ経済ベースの技術に達していない。

セルローズ系資源からエタノールを製造するためには、まず糖化を行わなければならない。木材の糖化については古くから酸糖化法が知られているが、これは強酸、高温、高圧が必要で装置的にかなり厳しい条件が要求されるだけでなく、生成したグルコーズの過分解がおこり、微生物の生育阻害物質や糖化に利用できない物質が生成するなど糖化液を発酵原料とするには不利な点が多い。

そこで、近年セルローズ系物質を酵素糖化しようという試みが研究されている。しかし、このためには、セルローズの結晶性を下げ、リグニンを除くなどの前処理が必要である。さらに酵素糖化法は酸素糖化法に比べて反応が遅く大量の酵素を必要とする欠点があり、今後実用化のためには、さらに強力な酵素生産菌の発見、酵素生産菌株の改良育種、培養条件の検討などによる力価の向上などが重要な課題である。また、セルローズの酵素糖化液の中にはセルローズなどのセロオリゴ糖が含まれる場合が多いが、これらの糖は一般に微生物によって糖化されにくく、単糖生成力の優れたセルラーゼ系が望まれる。その他、ヘミセルローズ分解には強力なヘミセルラーゼ系の存在もかかせない。このようにセルローズ系資源を経済的に酵素糖化するには今後解決されなければならない多くの問題がある。

今後の問題点を整理すると次の通りである

- ① 有効でかつ経済的な前処理法の開発
- ② セルラーゼ系酵素の活性化
- ③ 糖化方法の開発
- ④ 糖化液の利用 発酵性面の検索, 育種改良

等であり、現在はまだ基礎的ならびにベンチ・スケールによる研究開発段階である。

日本においても1980年からバイオマス研究グループが組織され、セルローズ資源(稲わら、麦わら、バガス、木材チップ等)から燃料用アルコールを製造するトータル・システムを開発するため、前処理、セルラーゼ生産、酵素糖化、発酵、分離、回収および廃液処理などの要素技術の研究が行われている。

(1) 前処理

- ① 稲わらやバガスには機械的粉砕ーアルカリ処理が最も効果的である。
- ② 木材については広葉樹に電子千照射ーアルカリ処理, 針葉樹には電子線照射 塩素処理 ーアルカリ処理が有効である。

(2) 酵素生産

Trichoderma reeseiの菌株改良により優良変異株をえた。

(3) 糖化

連続反応器,高温度糖化法,糖分濃縮法ならびに酵素回収プロセスを検討し有用な知 見をえた。

(4) 発酵

フラッシュ発酵に固定加酵母技術を組合わせ安定してエタノールが連続生産できることを認めた。

(5) 分離・濃縮

省エネルギー的なエタノールの脱水法と浸透膜法を検討し、エタノールと水の分離特性のよい膜について知見をえた。

(6) 廃液処理

アルコール蒸留廃液を生物処理が有効であることが分かった。

順次開発される要素技術を組み合わせ、効率のよいエタノール生産トータル・システムを目ざして、1983年から4年間でセルローズ分解発酵総合ベンチプラント(能力:原料 720kg/日, エタノール 200ℓ/日生産)の建設が進められている。

Ⅳ-11 木材産業の改善策

ウルグアイにおける木材産業を近代化し、輸入代替ないし輸出産業として育成するためには、下記事項が必須条件と考えられる。

- (a) 造林奨励地域,特に第7および第9地域に原木供給のための人工林を集中的に造成し、第9地域を中心として紙パルプ,製材,合板,ファイバー・ボード,パーティクル・ボード,製函,防腐処理工場等を総合的に立地させ育成する。
- (b) 木材産業の設置は、人工林資源の造成状況に会わせて徐々に行う。
- (c) 輸出産品のマーケティング・リサーチ、木材規格の制定、加工技術の開発と訓練を積 極的に進める。
- (d) インフラストラクチャー(港湾,幹線道路,鉄道)の整備,エネルギーの確保,機械類,化学薬品等の原材料の調達の効果な指導をはかる。
- (e) a~dに必要な木材工業の設立,造林,インフラストラクチャー整備,機械類等の調達に必要な資金額と金融に関する計画を作成する必要がある。

Ⅳ-11-1 製材

ウルグアイにおける製材工場は略々人口の分布に応じて全国的に分散している。これは製材工場がその地域で必要とする製品、即ち牧柱、牧棚、建材、家具、箱等を生産する地域産業であることを意味している。しかし、この他にRIVERAならびにPAYSANDUにはその地域の原木を製材し、製品の大部分を輸出あるいはMONTEVIDEOに輸送し販売する大規模製材工場がある。そのなかには、Caja Bancaria やFYMNSAのように自社で造林し、原木から製品まで一貫生産を行っているものもあり、これらは近年発生した新しいタイプの製材工場である。このようにウルグアイには地域的製材工場と大規模製材工場の2つのタイプがあることを先ず指摘しておきたい。

(1) 品質の保証

製品品質の保証は生産者と消費者の信頼関係を確立し、両者の利益につながる最も重要な課題である。製材品については次のことを実施する必要がある。

(a) 製材品規格

製材品の規格については調査したところ、現在牧柱、牧棚については規格が制定されているが、その他については検討中である。

特に板、角材の寸法、含水率、強度、寸法安定度等は建材、家具、セメント型枠、パレット、箱等用途に応じて規格を制定する必要がある。

(b) 規格表示

規格を制定してもそれが実際に実施され、生産者と消費者との信頼関係を確立するためには、製品規格に合格していることを示すラベルの使用が必要で、このための規格標

示制度が検討されなければならない。

(c) 指定工場制

製材工場における品質管理状況を公的な基準でチェックし、製品の品質が規格に合格 し、規格標示が適正に行われている製材工場を優秀製材工場として指定し、その信用を たかめるのみならず、その助成にあたっては何らかの便宜を与えることを検討する。

(2) 大規模製材工場の育成

前述のように近年発生した大規模製材工場が原木生産ー製材ー輸送ー販売にわたる総合化を指向した合理的事業体系であり、この育成を図る必要がある。このタイプの製材工場は、製材品の輸出を行う場合大きな役割りを果すことになるだろう。

(3) 需要の開拓

製材品の住宅ならびに工業製品における需要開拓のため、新製品の開発、宣伝、技術 指導等の面で政府の助成が必要であろう。

(4) 輸出体制の整備

CAUCE によりアルゼンチンへの製材品の輸出の可能性もたかまっており、品質の向上、コストの合理化と併行して、輸出規格の制定と輸出検査による品質保証体制を整備することを急がねばならない。

Ⅳ-11-2 パネル産業

ウルグアイの合板工業は原木面において制約があって、他の発展途上国にみられるように輸出産業に成長する可能性は極めて小さい。

一方、パーティクル・ボードならびにファイバー・ボードも国内需要を充当する規格のもので、合板を含めウルグアイのパネル産業は国内産業である。しかし、Na 9 地域における総合的木材産業の一環として近代的工場を設置し、輸出を指向するため以下のことが必要である。

(1) 品質の保証

合板、パーティクル・ボードおよびファイバー・ボードにおいては各社それぞれに品質分類に近い品質規格しかない。従って、製材品と同様、国家的品質規格と品質標示が必要である。指定工場制については関係の工場数も少なく必要はないと思われる。

(2) 原木の確保

合板、パーティクル・ボードならびにファイバー・ボードの各工場がMONTEVIDEOに集中しており、可能な限り原木を経済的に購入する必要がある。このためには、原木品質、原木輸送距離ならびに輸送方法が大きな問題となる。特に大径木が必要な合板工場にとってこの点が重要である。このためには、合板、パーティクル・ボード、ファイバー・ボード工場は、パネル工業会として、造林業者、輸送業者ならびに政府関係当局とパネ

ル用原木確保計画を長期的見通しの上に立って作成する必要がある。

(3) 需要の開拓

国内市場における需要の開拓のため、合板、パーティクル・ボードならびにファイバー・ボードにおいてそれぞれに各用途に適した製品の開発のため、二次加工業者との連携が必要である。このための企画運営はパネル工業会が政府関係当局の後援のもとに行うことが望ましい。

Ⅳ-11-3 紙パルプ産業

先に述べたようにウルグアイは新聞用紙、晒ならびに未晒の針葉樹パルプ(NBKP, NUKP) と一部の特種紙を除き、大部分の紙・板紙およびパルプを国内で生産するようになった。一方、上質印刷筆記用紙の生産の約半分が輸出され、段ボール原紙の略々半分が輸出品の梱包材料として使用されている。このことは、ウルグアイの紙パルプ産業が輸入代替期を脱し、輸出産業にまで成長したことを示している。このような歴史的段階においてとるべき方策について述べる。

(1) 輸出の促進

輸出を促進すべき製品は、上質印刷筆記用紙と段ボール原紙および晒クラフト・パルプである。

(a) 上質印刷筆記用紙は、年間約 8,000t アルゼンチンを中心に輸出されている。印刷筆 記用紙の生産工場がBUENOS AIRESに極めて近い位置にある上に、小ロットの輸出にも小まめに対応した結果であって、今後とも情報機器の発達によって要求される品質が確保 されるならば、輸出はさらに増加することが期待される。

(b) 段ボール原紙

輸出梱包材料が木箱から段ボールに転換されたため、急激に段ボール原紙の需要が増加した。しかし、現在ウルグアイの段ボール箱が耐水性が低いため、柑橘類の輸出には全面的に使用されているが、肉、魚の輸出にはまだ一部しか使用されていない。このため、耐水性段ボール箱の開発が急がれている。従ってこの点が解決されれば、段ボール原紙の需要はさらに拡大されよう。

(2) 輸入の代替

ウルグアイの輸入している新聞用紙と針葉樹晒クラフトパルプNBKPならびに末晒クラフトパルプNUKPの輸入代替の可能性について考えてみると次の通りである。

(a) 新聞用紙

年間約10,000t を輸入しているが、これは商業的生産規模に達しないので、将来も輸入されることになるだろう。

(b) NBKP

年間約4,000tを輸入しているが、新聞用紙同様商業的生産規模に達しないので、将来 とも輸入されるだろう。

(3) NUKP

国内でNUKPは生産されているが、その不足分を年間約 3,000t 輸入されている。これは段ボール原紙の原料であって将来国内で生産される可能性がある。

(3) 輸出向けパルプ・プロジェクト

世界市場において将来とも印刷筆記用紙の原料である晒クラフト・パルプ(BKP) は大きい需要がある。なかでも、ユーカリ類からのLBKPが極めて優位性を有することは前述の通りである。ウルグアイ政府の要請によりJICAが行った輸出向けのパルプ工場建設可能性調査の結果は次の通りである。

- (1) ウルグアイは輸出向けパルプ工場に必要な港湾、道路、鉄道等のインフラストラクチャーが整備されており、水資源にも恵まれている。
- (2) 現存する森林資源は少ないけれども、造林樹種としてパルプ用材に適するユーカリ類とマツ類の早成樹種があり、その上立地条件のよい場所に広大な造林適地がある。
- (3) 製品においてはマツ類からのNBKP, ユーカリ類からのLBKPを各50%生産する場合とユーカリ類からのLBKPを 100%生産する場合を比較すると,ユーカリ類からのLBKP 100% の方がはるかに財務的に有利である。
- (4) このためには年間約 1,200,000㎡のユーカリ類の原木が必要であり、約60,000haの造林が行われねばならない。
- (5) パルプ工場立地としてはFRAY BENTOS が最も有利である。
- (6) 生産されるパルプの全量を輸出することにより、ウルグアイの総輸出額の約9%を増加できる。

この調査結果に対しウルグアイ政府は強い関心を示しており、同国にとって極めて重要な意義を持つプロジェクトであるので引き続き熱心に検討すべき課題である。

IV-12 森林の経済的機能評価

Ⅳ-12-1 木材供給機能

本造林計画の実施により木材生産量は年 3,000千㎡より30年後には約 2.3倍の 7,000千㎡へと約 4,000千㎡増加する。

この生産量の増加は、森林所有者の所得を形成するのみでなく、運輸関係にも需要を 産みだすとともに、木材関連産業の振興にもつながる。

運輸部門では、国鉄の利用度が極めて低く遊休化に近い状態である。この造林計画は、木材の輸送について運賃の安い鉄道の利用を前提にしいてる。このため、造林の拡大にともなう経済効果として、運賃を含んだ工場土場における丸太販売額を用いて評価することとする。

4,000千㎡の増加分のうち約3割をパルプ材,約7割を燃材とし、それぞれの工場渡し価格を乗ずると約50億ペソとなる。

これらの木材は、さらに関連産業により消費されることとなる。木材生産量はおよそ 2.3倍の増加が見込まれている。このうち燃材の弾性値は経済成長とともに低下し、産業用材のそれよりは低くなる。この結果、産業用材に対する需要は、2.4倍以上の増加が予想される。

1984年における木材・木製品、紙パルプ産業の粗付加価値はそれぞれ

木材•木製品

62227万ペソ

家具

15274万ペソ

紙パルプ

278004万ペソ

であり、あわせて約35億6千万ペソである。これが少なく見積もっても 2.4倍で増加 するとすれば、85億4千万ペソの粗付加価値を産出する。

Ⅳ-12-2 雇用機会の創設

この造林計画により造林部門だけで最初の10年間に年 529千人日~ 951千人日の雇用が発生する。これは1人が年間 200日従業するとすれば、2,600 ~ 4,800人に相当する。これらの雇用は、就業機会の減少している地方におけるものであるため、国民経済的に大きな意味を持つ。

このほかに II 章の工業統計によれば、現時点で木製品部門で 1,900人、紙パルプ部門で 3,000人が従事している。原材料としての木材の消費量が大きくなった場合には資本集約的になり、労働力のウェイトは低下するが、年率 1%で労働生産性が向上すると仮定すると 1.8倍の雇用増を生み出すとみられる。

Ⅳ-12-3 林業以外の土地産業との経済効果比較

ウルグアイの土地利用の大部分を占める粗放な放牧は土地生産性が極めて低い。1972 年から1984/1985年の平均を見てもヘクタールあたり 702ペソにしか達しない。また変 動が非常に大きいため、経営規模の小さい経営などでは、離農の原因ともなる。

次に、畑作部門の小麦の土地生産性は、ha当り収穫量15,683ペソに対して生産費が10,394ペソかかり、所得は5,289ペソとなっている。

造林事業の場合,木材供給の増加により価格が低下しないとすれば、地位が高く12%の金利でも採算に合う造林地では、haあたり約2,000ペソの純収入がある。ただし、これは長期の平均であり、造林事業の当初には資金負担が非常に大きく、純収入はマイナスが続くことに注意しなければならない。

Ⅳ-13 森林の公益的機能評価

Ⅳ-13-1 水資源確保機能

サルトグランデダムの建設に伴うダム周辺地域の造林計画によると,森林のうち保護 林の役割として以下のものが示されている。

まづ、表面流を減少させ、浸透量を増やし、また水量を平準化する機能を強めることにより洪水のリスクを減らし、乾期の水量を増加させる機能である。

石灰質の土壌では、その根系により土壌を厚くする。森林は、他の植生に較べ地層を 破砕して土壌を形成する能力が高い。

これに加えて、風を弱め温度変化を緩和する働きもある。ウルグアイでは、風食による砂丘の侵食が大きく、この対策は重要である。

最も良好な浸透は、人手の入っていない天然林に見られる。表層土と林床が重要なためである。

浸透量は森林の密度が増えるにしたがって、増加する。

人工林の浸透能は、林齢の上昇と共に増加する。米国でも天然林のそれについて同様 の結果が得られている。

ネグロ川流域の三つのダムによりウルグアイは、1億2千万ドル分の石油に相当する電力を生産している。電力は、利用可能な落差と水量による。自然の流量は変動が大きい。ネグロ川水系の場合、平均は17.2K㎡であるが、記録に残る最大流出量は47.8K㎡に達する。

発電等の利用を考えた場合、この流量がなるべく平準化されて有効放流の割合を増やし、無効放流を減少させることが望ましい。ガブリエルテラでは、有効放流の割合は52%である。

流出量を平準化させるためには、表面流出を減少させ、地下水として流下する流量を 増やすことが必要である。この機能は、集水域の土壌の浸透能によるところが大きい。 ウルグアイでは森林におけるこの方面の調査は行われていない。日本の事例では、地被 状態により浸透能は以下のように変化する。

地被状態	最終浸透能(mm/hr)	
17年生カラマツ林地	54 - 94	
10年生カラマツ林地	20 - 36	
クローバ畑	$23 \! - \! 67$	
裡 协畑	18-39	

これによれば浸透能は良好な林地と裸地では35-55mm/hr 程度の差があることが判る。 さらに、降雨パターンを勘案して地下水として貯留される量は日本における調査によ れば、 600-3000㎡/ haの分布をする。ここで1000㎡/ haの貯留量の改善があるとする と約25万haの計画造林面積では2億5千万㎡/ haの貯留量となる。

この貯留量は、現在のネグロ河水系の利用されている流量の3%に当たるものである。 これは先ほどの石油に換算すると 360万ドルに当たるものである。

Ⅳ-13-2 土砂流出防止機能

前節のサルトグランデダムに関する調査においては、森林は表面流を減少させ、浸透 量を増加させることから、エロージョンを抑える機能を持つとして、土壌タイプ別に具 体的な造林計画を樹立している。

ウルグアイでは、エロージョンの激しい地域や荒廃地の割合の高い地域がある。これ らの地域では、対エロージョンの機能を考慮した施業が重要である。

この機能を発揮させるために、樹種毎の特性が調査されている。これによると、マツ類は、一般的に樹冠遮断の作用が強いがその中では、Pinus radiata がPinus Elliottii よりもその作用が強いとしている。

ユーカリ類の水によるエロージョンを抑止する作用は、マツ類程ではない。その腐植 の量がすくなく、樹幹や林冠の間隔からの雨滴や表面流に対する保護が弱いからである。

ユーカリ類の森林は、地表近くの根が露出することによりエロージョンを抑止することがある。

又、ユーカリ類の森林は、マツ類の森林より火災の危険を少なくする。

土壌の流出は大きく分けると二つの影響をもたらす。一つは農地の生産性を低下させ 農業所得を減ずることである。もうひとつは、流出した土砂が河床や人造湖に堆積して 治水上の問題を引き起こすとともに、利用可能な発電などのための利水量を減らすこと である。

ウルグアイでは地力の低下は大きな問題となっているが、この原因は農法に帰らせられることが多く、森林と比較されることはほとんど無い。ただ天然林の土壌保全の能力の高いことはよく知られている。

治水上の影響は、災害の統計が無いため数量的に把握できない。ダムによる利水に対する影響は、堆砂量により推計することが出来る。

リンコンデルボネテダムは16年間で1億4千万㎡の堆砂があった。これは年あたりダム容量の 0.1%に当たるものである。これをさきほどと同様の石油換算によれば1万ドルとなるが、流域面積に対して、植林面積が少ないため、その効果は更に小さいものとなる。地形の関係から、侵食、流送量は少ないためと考えられる。

Ⅳ-13-3 自然環境造成機能

ウルグアイは牧畜の国であり、天然林はその多くが河沿いに存在している。水資源は そこに由来している。それ以外には、岩石だらけの山地や、牧場、耕作地に散在してい る。

ウルグアイに残っている天然林は、計量化は困難であるが、多くの機能を持っている。 動物相の避難場所となったり、土壌を豊にし、雑草の草原が際限なく広がることへの防 壁となり、また家畜の風避けとなっている。

そもそもこれらの森林は、ウルグアイの牧畜の進展と共に次々と伐採されてきた。と くに代替燃料の供給が急減した第二次大戦や近年のオイルショックにおいても燃料の供 給に貢献している。

これらの森林を保護するためには、保留地や保護地の計画立案並びに設置、伐採の規制最少径級や更新方法の決定、在来樹種による更新、在来樹種と外来樹種との混植などの検討が必要である。

又, 天然林への伐採の圧力を減少させるための, 早生樹種による人工林の造成が必要である。

人工林に対する研究や普及体制に較べて天然林に対するそれは十分とは言えないが、 森林面積のすくないウルグアイにより天然林にたいする施業法の研究は重要である。

IV-13-4 農業牧畜業への貢献機能

森林の農業に対する役割のうち大きいものは、牧畜のための、風避け、日除けの森林 と、もう一つは、牧場の棚の材料の提供である。

この国の牧畜は、全体として非常に粗放なものであり、繁殖も自然任せのものが多い。 ウルグアイでは、冬季に南から非常に冷たい風が吹く。このため時により、幼齢の羊 が凍死することがある。また低温により体力を消耗することから、生産される羊毛の量 も減るとともに、体重が減少し出荷の時期が1年遅れるため、牧畜の経営上大きな問題 点である。

この対策として、放牧経営では、北方に向かって開いたUまたはV字型の森林を造成している。典型的なものでは、3列の低木層の後ろ側に、5列の高木層が植栽される。全体の大きさは、100mX100m 程度である。

一方、日除け林は、夏の日光を避けるために設営される。北からの乾燥した風のため もあり、家畜は、日陰を必要とするが、天然林がすくないウルグアイでは、人工的に造 成する必要がある。

日除け林は、広さが4分の1ha程度でありこれが牧場 250haにつき一箇所必要とされている。

これらの森林は家畜を保護すると同時に、農家に牧棚の材料や燃料を提供する。

ウルグアイは全国的に放牧に供せられている土地が多いが、その全てに堅固な牧棚を 設定することが、法律に定められている。この牧棚には直径10-15cmのユーカリ類の丸 太を利用する。

森林局の推計によれば、1,600 万haの農地面積に対して、20万kmの牧棚が必要となる。 牧棚は10数mおきの支柱とそのあいだの角材より構成されている。支柱の耐用年数を40 年、角材のそれを20年とすると、年当り約30,000㎡の消費量となる。

Ⅳ-14 造林推進体制の整備

IV-14-1 造林計画の実施

造林奨励地域は、農牧畜の生産性が低く、肉牛、羊の粗放な放牧が行われているが、 土地所有は大規模所有者のほか、植民局より土地分譲を受け入植した農牧畜家等中小 の土地所有者が多数存在している。

一方,土地の移動については、農牧生産力が低く過疎地であるため、土地の価格はha当り 250ドルと比較的安い。

このような地域の造林の担い手として、次の三者が考えられる。

- a. 大土地所有者による造林(大規模)
- b. 紙パルプ会社等会社法人による造林(大規模)
- c. 中小農牧畜家による造林 (農畜林複合経営)

政府は生産力の低い北部地帯において、中小農家を保護育成する施策をとってきた。 今後大土地所有者、会社法人による大規模造林の推進をはかると同時に、中小農家に よる造林の推進をはかる必要がある。

隣国のアルゼンチンでは、会社等による造林のみでは造林面積の拡大が期待できないとして、1977年より中小の造林者に対する助成としてTax Credits Systemによる減税措置を実施している。

又、ブラジルでもREPEMIR PROGRAM により同様の助成を行っている。

なお, 造林者は山火事の防止, 苗木の生産購入等の生産活動を協同して行う必要が あることから, 今後森林組合の設立について検討する必要がある。

Ⅳ-14-2 税制金融等の助成策

- (1) 南米諸国においては造林のIncentivo として多くの国が不動産税、相続税、譲渡税、 土地税等の免税を行っているが、比較的土地生産力が低く農牧に適さない土地の価格 は安いことなどもあって、大きな助成効果がないといわれており、造林を推進するた めにはさらに効果のあるIncentivo の導入が要請される。効果的なIncentivo として 南米諸国で行われているものは、次のとおりである。
 - (i) 所得納税額からの造林投資額の控除 (Tax Credits System)
 - (ii) 補助金

(iii)融資

これらの強力なIncentivo については、ウルグアイ、ブラジル、アルゼンチンでは、Tax Credits System、チリでは補助金の助成が行われている。ウルグアイでは1975年よりTax Credits Systemによる助成が行われたものの、残念ながら1979年に中止されたため、造林面積が激減した経緯がある。

ちなみに、チリではラジアタマツPinus radiataの人工林面積 967千haのうち1974

- ~1983年間に造林されたものが 644千haであり、ブラジルについては、5,572千haの 人工林面積のうち 2,273千haは1979~1984年間に造林さたものである。
- (2) ウルグアイでは、現在改正森林法案が国会に提出され審議中であるが、木材生産の 増加及び国土保全の見地から造林事業を国家利益とし、減税制度と補助金制度の二つ の効果的なIncentivoが提案されている。

本マスタープランの造林計画を推進するためには、次の理由から上記二つの効果的 な助成制度の確立が強くのぞまれる。

- (i) 林業は、林木の特性から生産期間が長く資本の回収も他の産業に比して長期間となるなど投資に困難性があるので、少なくとも毎年一定の収穫量(成長量)を保 続的に生産し得る蓄積growing stockが造成されるまでは、収益林についても効 果的なIncentivoが必要である。
- (ii) ウルグアイにおける現在の造林コスト及び収穫量では、内部収益率は、マーケット・アクセスの良いPAYSANOU県の地位 I 等地以外は不採算であり、林木育種、造林マニュアルの改良等によるコストの低減又は収穫量の増大により、内部収益率が向上するまでは効果的なIncentivoが必要である。
- (iii) 水源かん養、土壌保全等公益的機能の発揮を主目的とし、成林後も伐採規制を受ける保護林については、その公共性から見て収益林より高率のIncentivoを与える必要があると考えられる。
- (3) 上記二つの助成制度の運用に当たっては、下記事項について具体的な検討を行うことがのぞましい。
- (i) 第2土壌地域は、燃材供給のための造林が緊急に必要であり、造林奨励地域に指 定する。
- (ii) 第8土壌地域は、国土保全を主目的として造林を行うものであるので、保護林と 同一の助成措置を行う。
- (iii) 保護林の造林に対しては、収益林より高率の助成を行う。
- (iv) 地域別(第7, 第9地域別), 地位別(I等地, II等地別), 樹種別(マツ類, ユーカリ類, ポプラ・ヤナギ類別, 例えばマツ類はユーカリ類に比し伐期も長く内部収益率も低い。) に助成率及び予算配布に差をつける。
- (v) 助成対象経費
 - ① 苗木生産費
 - ② 植付費及び保育費
 - ③ 採種園,採穂園造成費
 - ④ 試験研究費(機械器具の開発改良を含む)

(4) 国家造林計画とIncentive

現在審議中のウルグアイの森林法改正案では、5ヶ年の国家造林計画を作成し、それにもとづいて毎年年次計画を作成することとなっている。

南米諸国では、いづれの国も造林計画を実現するため、Incentivoを運用しており、ブラジルでは減税された資金を政府に集めそれを造林計画の地域、樹種別プライオリティにより分配しており、近年中南部の造林がほぼ成熟したこともあって、東北部への資金の配分を多くしている。又、減税額も東北部と西部は25%、その他は17.5%と差をつけている。

アルゼンチンでも同様の運用を行っており、造林計画に基いて地域、樹種別のプラ イオリティを付している。

このように、効果的なIncentivo の運用に当っては、地域別、樹種別のプライオリティはもとより収益林、保護林別、実行体別(会社か中小造林者か)のプライオリティを付することについて検討する必要があると考えられる。

- (5) 木材産業,特に国産材を利用する中小の木材工業については,機械類の輸入税の免税等の措置が従来より行われてきたが,今後中南米においては,機械類及び原材料(化学薬品等)の輸入及びインフラストラクチャーの整備いかんが木材産業の発展の鍵をにぎっているといわれており,第7及び第9地域等における木材産業に対してはその助成措置の強化が望まれる。
- (6) ブラジルでは、Incentivo プロジェクトにおける造林費の1%を試験研究費に使用することが義務づけられており、大学等との共同研究により現場における育種、造林マニュアルの改良等に効果を上げているが、成長量の増大、造林コストの低減は早急に解決を要する課題であるので、この制度の採用について検討する価値があると考えられる。

IV-14-3 第7, 第9地域の林業, 木材産業長期計画の作成

造林奨励地域の第7, 第9地域における造林、伐採、加工工場の建設、インフラストラクチャー(輸送を含む)、水・エネルギー等の整備並びにこれらに必要な投資額と金融に関する長期計画を作成し、各部門の調和ある発展をはかる必要がある。

Ⅳ-14-4 需要予測と市場開拓

木材製品需要に関する国内需要の予測を用途別に行うとともに、中南米及び世界の 木材製品市場の動向を把握する必要がある。

今後、森林資源の増加とともに、紙パルプ、特にLBKPと印刷筆記用紙及び段ボールの海外市場の開発が重要となり、定期的な市場調査、サンプルの送付、販売使節団などによる製品のPRや製品の品等規格化の促進等が必要である。

又、国内市場の開拓についても、木製家具の普及、木造建築マニュアルの研究と普

及など需要開拓のための努力が必要である。

Ⅳ-14-5 木材産業の近代化

ウルグアイでは木材産業の近代化が特におくれている現状にあるので、BUENOS AIRES市場への輸出が考えられる第9地域において木材資源の充実とともに、加工工場の近代化大型化をはかる必要がある。

又、木材製品規格、輸出製品規格の制定を行う必要がある。

Ⅳ-14-6 林木育種事業の推進

林木育種事業は、将来のウルグアイの造林にとって極めて重要であるので、大学、 民間企業を含む関係機関と共同して国により組織的に実施する必要がある。

Ⅳ-14-7 技術開発

技術開発は、マスタープラン実行のキーポイントであり、凡てに先行して行うべき もので、その早急な推進が必要であるが、重点研究項目は次のとおりである。

- a. 森林調査法
- b. 林地生産力調査-林地土壌調査法と林地肥培
- c. 林木育種-導入育種,選抜育種,創成育種
- d. 造林マニュアルの改良
- e. 収穫表の作成
- f. 農畜林複合経営
- g. 山火事防止及び病虫害防除
- h. 保護林の施業法-土壌の保全,水源かん養
- i. 林業用機械器具の開発改良
- j. 木材加工
- k. 材質試験

上記のうち特にb, c, d, jに関する試験研究の推進は緊要である。

試験研究は、大学、他の政府機関及び民間とも共同して行う必要があるが、上記のように広範囲にわたり、かつ緊急を要するので、将来的には森林局に林業研究センターの設立が必要である。

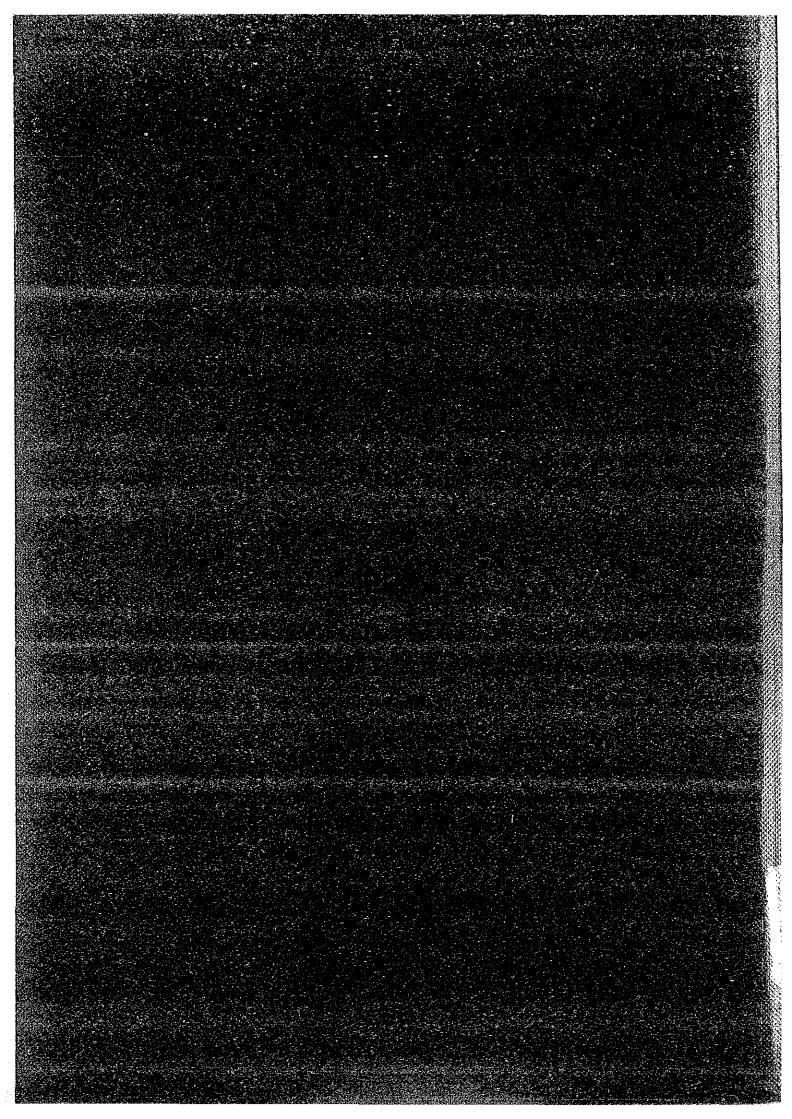
Ⅳ-14-8 技術普及

開発された技術の普及を効果的に行うため、造林奨励地域の第7、8、9地域に技術普及センターを設けることがのぞましい。

技術普及センターにおいては、各種技術の展示林、モデル苗畑、採種園、採穂園、 外国樹種見本園等を設け、効果的な技術の普及指導をはかるとともに、森林局のブランチとして各種技術の現地適用化試験の実施並びに中級技術者の養成のための技術及 び技能訓練を行う。

Ⅳ-14-9 人材養成

主として造林、伐山、製材技術、山火事防止等の分野における中級技術者の養成をは かると同時に、林業技術者の養成をはかる。


Ⅳ-14-10 林業に関する行政機構の強化

下記部門の強化がのぞましい。

- a. 企画,調查部門
- b. 技術普及部門

•		

