3-3 Procurement of Lecturing Staff

It is as important to secure lectures as the allocation of funds for the operating costs. This is one of the key factors for the effective operation of the Center. Basically, the lecturers should be secured from people concerned in the coal industries, the official world and academic circles by the OEA. But as a temporal measure, several foreign experts will be required in the various fields of mining since most local engineers are technically immatured. It is then necessary that the OEA should prepare several local staff capable of acting as counterparts to the foreign experts in discussing and determining both curriculum and training methods in detail prior to the opening of the Center. It is also desirable that these local counterparts should go to foreign countries to observe and study mine operation and training programs provided for both engineers and workers overseas.

After the opening of the Center, both the local counterparts and the foreign experts shall cooperate together in giving lectures and seminars. During this period, technology and educational methods will be transferred to the local counterparts. If after a few years when the operation of the training center is well on its way, these counterparts become the lecturers whereby the foreign experts will no longer be needed (Figure 3-3-1). The number of foreign experts and local counterparts as well as the level of their expertise required for the center are shown below.

These local counterparts will take charge in organizing each specific course. In case that additional specialists are required to teach in other fields, the local counterparts shall be responsible for the recruitment of specialists from other private organizations.

Local Counterpart (Section Specialist) Foreign Expert (Geologist) Geologist (Safety Engineer) Safety Engineer /Mine Operations Mining Engineer Planning 1 (Maintenance) Mechanical Engineer **Electrical Enginer** Coal Utilization Chemist Coal Preparation Chemistry & Analysis

Further, local counterparts shall be full-time employees of the center. For the foreign experts, it is recommended that a mining engineer who is also the chief of foreign experts shall reside for 2 to 3 years while the other foreign experts will be dispatched only for a few months a year according to the curriculum. The relationship between the curricula and the dispatch schedule of foreign experts is shown in Figure $3-3-2 \sim 3$.

Figure 3-3-2 CURRICULUM AND LECTURERS FOR THE CENTER (1990)

	WEEK	1 2	3	4 5	6	7 8	9	10	1 12	13	14	15 1	6 17	18	19	20	21 2	22 2	3 2	25	26	27	28	29	30 3	31 3	328	3 3	4 :	35 3	36 3	37 3	8 3	9 4	0 4	1 4	12 4	3 4	14 4	15 4	16 4	47	48	49	50	51	52	2	
	GEOLOGY AND GEOLOGICAL SURVEY																								I																								
FOR	GEOLOGY AND DRILLING																\prod					<u> </u>																								L			
RAMS FC GINEERS	SAFETY AND RESCUE																					 :===					_			\perp					_	<u> </u>	_			_	_					L			
PROGRAMS ENGINEE	MINING ENGINEERING				Ш																					L							1			1		1									_		
) RO	EQUIPMENT MAINTENANCE & ENGINEERING																	\perp										┙											_	\perp			_				L		
	COAL QUALITY AND UTILIZATION																										\perp						1										<u></u>			_			
8	SAFETY, RESCUE AND FIRST AID													1:		\prod										I			\prod							I		I			===						L]	
PROGRAMS FOR WORKERS	MINE DEVELOPMENT																上			1																			1		1				L				
GRAMS VORKE	COAL WINNING													Ш			\perp			<u> </u>							\perp							\perp					\perp	\perp						<u> </u>	L		
VOGE	MAINTENANCE OF MINE EQUIPMENT		L						\perp	Ш			<u> </u>			\perp				L									_		1			-	L											L			
PR	MAINTENANCE OF GENERATING SETS								_								\perp			L										1		\perp			L						1	_			L				
γ	GEOLOGIST																												brack						I						\int								
EXPERIS	SAFETY ENGINEER						Ц						\perp							<u> </u>								_	_							7			==						Ĺ	L	L		
EXE	MINING ENGINEER						 												7	<u></u>			F = 4						_									<u> </u>		_						1]	
CN	MECHANICAL ENGINEER							\perp				s 1	\perp				_					Ш				_										<u> </u>									L	L		_	
FOREIGN	ELECTRICAL ENGINEER												\perp							1									<u> </u>						<u> </u>	1		1	1				_		_				
Ĕ.	CHEMIST																	Ŀ										1							\perp	E				=_			` 	_			L		
ý	GEOLOGIST							$oxed{\Box}$										\prod	L					T	floor				I	I			\prod	Ţ				I	I		I						<u> </u>]	
to ARTS	SAFETY ENGINEER							\bot					_								1								-											_		_				<u> </u>]	
FILIPINO NTERPAI	MINING ENGINEER		_													 				· —																								_	_	· · ·	·-	1	
FILIPINO COUNTERPA	MECHANICAL/ELECTRICAL ENGINEER						\prod																													 	 -	_ _			<u> </u>		<u>_</u> _			_]	
သ	CHEMIST																		_	·						_,_												_L								<u> </u>	 	1	
NO.	of trainees (engineers)					$\prod_{i=1}^{n}$								15	15	15 1	5 1	5 18	5	15	30	30	30	1	5 l	5 1	5 1	5 1	5 1	5	Ţ	5 1	5 1	5 1 5	2 15	5	1	5 i	5 1	5 1	15	15	15					T	90
NO.	OF TRAINEES (WORKERS)													25	25		2	5 2	5 25	25			25	25 2	5 2	5		2	5 2	25 2	5		2	5 25	5		7	25 2	7	十	25 2	· •						1	75
тот	al no. of trainees	П	T						T	П		1	$\int_{-\infty}^{\infty}$	40	40	15 1	5 4	0 40	25	40	30	30	55	25 4	0 4	0 1	5 1	5 4	0 4	0 2	5 1	5 1	5 4	0 40) [18	5	Į,	0 4	10 1	15 4	10 4	40	15					2	65

^{*} START OF THE TRAINING PROGRAMS AT THE CENTER

Figure 3-3-3 CURRICULUM AND LECTURERS FOR THE CENTER (1991 ~ 1992)

Part		·1····		_	-	,																, ,			·			γ	Ţ,			·						, ,	,		-,-			~
	WEEK	1	2 3	4 5	6	7 8	9	10 1	1 12	13	14	15 1	16 1	7 18	19	20	21	22	23 2	4 2	5 26	27	28	29 3	30 3	1 3	2 33	34	35	36	37 3	8 39	40	41	42	43 4	4 48	46	47	48	19 5	0 51	1 52	<u> </u>
	GEOLOGY AND GEOLOGICAL SURVEY								1							П			T						1	Τ																	Τ	1
30R	GEOLOGY AND DRILLING	Π					П					F						1	T	1		П				T		Π	П			T					<u> </u>					T	T]
MS J	SAFETY AND RESCUE								I																							T					\mathbf{L}							
PROGRAMS FOR ENGINEERS	MINING ENGINEERING													- T																														
PRO E	EQUIPMENT MAINTENANCE & ENGINEERING														1			-																										
	COAL QUALITY AND UTILIZATION																																									L		
<u>e</u>	SAFETY, RESCUE AND FIRST AID																									I													\Box					1
S FC	MINE DEVELOPMENT								1												L																L						L	
PROGRAMS FOR WORKERS	COAL WINNING								L				<u> </u>		_										\perp	1	L	ļ	Ш					— —		1							\perp]
NOG!	MAINTENANCE OF MINE EQUIPMENT			Ш			Ц						\bot							1	_						1_									\perp		-			\perp	1		
4	MAINTENANCE OF GENERATING SETS																				1							_					L				Ţ							
တ္	GEOLOGIST			· · · ·					·	· ·	E										L					Ţ						\perp			٠,		\perp							
EXPERTS	SAFETY ENGINEER			 							_]			Ŀ		<u>.</u>			_			` 					<u>τ</u>					1_	Ш	\perp		L						1	
	MINING ENGINEER								T-						_							— ·	^				-	·			_	_											7]
FOREIGN	MECHANICAL ENGINEER			\sqcup					<u> </u>		\perp		1	igstyle		F-1					-			_	\perp	_	_					\perp			_		=			\bot	\perp	1	<u> </u>	
ORE	ELECTRICAL ENGINEER								_		\perp	_				—— ——				Ţ-	_		\exists				<u> </u>	<u> </u>						Ш	_					1	1			
	CHEMIST												\perp							<u> </u>					\perp			L			1		<u> </u>				 =					L		
13	GEOLOGIST			· - ·						·	<u> </u>		_ <u>_</u> _			— - F = 7								-		- -	7	-				<u> </u>	-					! 				7	-	1
FILIPINO	SAFETY ENGINEER				7		F-T	_	T	——	===		_	7=	7=7			=	_	7	-	—					+-								=			— —	===		_]
FILIPINO	MININIG ENGINEER			- -		- -	<u> </u>		_				-	-		F		==		-	-	F			7=	- -		_			·	_	+	===	-	=	=					-	-	1
H	MECHANICAL/ELECTRICAL ENGINEER		=	}	1	— -			-	— —			-	7		—— ———					-	— —	_		===	1		_	-				 -	— ==			=	<u></u> -		_	_	-	-	1
5	CHEMIST		==	FE	1			==	-		==			=			= 7						_				-	=	=		=						<u>=</u>						<u> </u>	_
NO.	OF TRAINEES (ENGINEERS)			15 1	5 15	15 15	15	16	15	15	15	3	0 30	30	30	15	15	1	5 15	15	15	15		5 1	5 16	15	_	15	15	15	15	5 1		15	15	5 3	0 30	30	15					135
NO.	OF TRAINEES (WORKERS)		4	25 2	5	25	25	25 25		25	25	2	5 25	25	25		25 2	25 2	5	25	25		25 2	25	25	25	25	25			25 2	25	25	25	25 2	5	25	25	25					275
тот	AL NO. OF TRAINEES	\coprod		40 4	0 15	15 40	40	25 40	15	40	10	5	5 55	55	55	15	10 2	5 4	0 15	40	40	15	25	10 1	5 40	10	25	40	15	15	46 4	10 14	25	40	40	10 3	0 55	55	40					410

3-4 Location and Layout of the Training Center

3-4-1 Selection of the Training Center Site

(1) Main Training Center (Area: 2 ha)

As a result of our site survey, the three sites considered as prospective locations for the construction of the main training center are;

- a. University of the Philippines lot, Talisay (11 km from Cebu).
- b. Cebu provincial lot in Lahug Airport area
- c. Uling Lot in PNOC-CC Uling mine. (Lowest portion of the property)

The conditions of both lots are shown in the following Table 3-4-1.

Table 3-4-1 Comparison Table of Three Proposed Sites

	Description	Talisay lot	Lahug lot	Uling lot
1	Land Owner	University of the Philippines (UP)	Cebu Provincial Government	PNOC-CC
2	Available Area	8 ha	ω	1,5 ha
3	Present Condition	Coconut Plantation	Airport	Old muck dumped area
4	Future Develop- ment Plan	Training center for UP	Sports center & National governmen- tal center (plan is not fixed)	None
5	Topography	Flat	Flat	Gently inclined flat terrace
6	Accessibility	Good	Good	Not good (30 km from Cebu city)
7	Availability of Utilities	Good	Good	Electricity: good Water: well or spring
8	Spoil Condition	Hard loam at surface	Hard loam at surface	Filled with shale and sandstone in the
	Competition and Market Magning of the Competition	Stable	Stable	valley. Unstable
9	Living Conditions	Good	Good	Not recommendable

The lot data given in the above table can be supplemented by the following details:

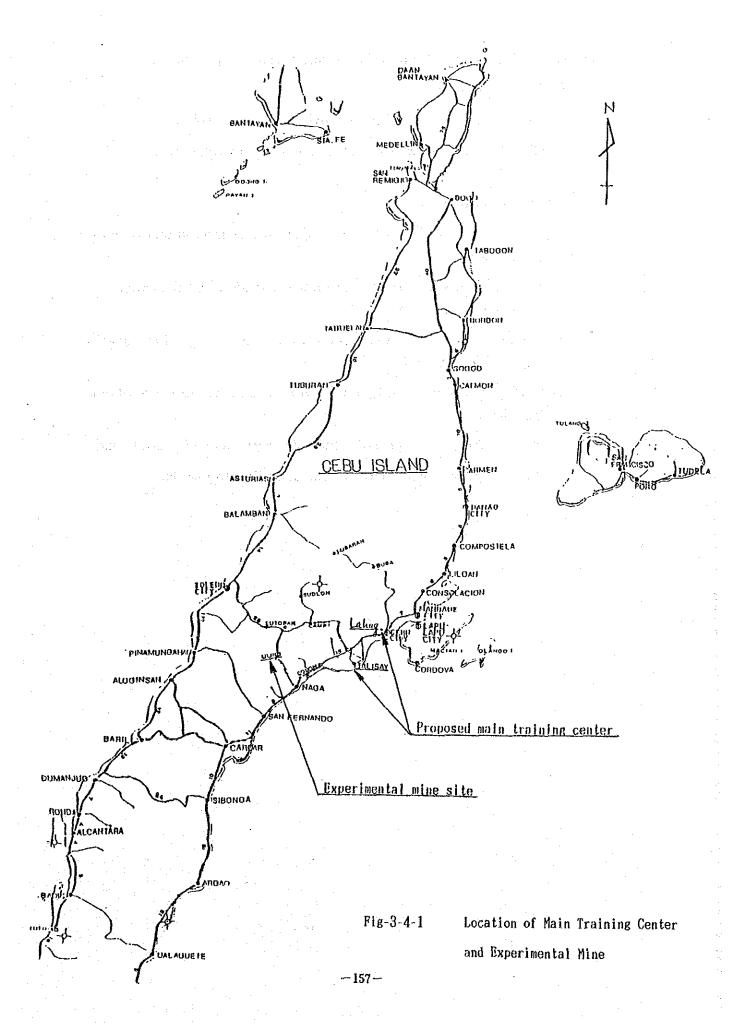
a) Talisay lot:

- * Talisay lot is located in the south of Talisay town, approximately 11 km from Cebu city, with about 20 km to go to the Uling experimental mine site.
- * As the UP lot is about 8 ha wide, the required area of 2 ha for construction of the main training center is sufficient.
- * It is necessary to negotiate with the UP concerning the use of land and other related matters, such as cooperation with the UP.

b) Lahug lot:

- * Lahug lot is in the old airport of Cebu where the main portion is currently still used as a runway for light planes and the marginal area is occupied by illegal houses.
- * The future plan by the Cebu provincial government is to utilize this land as a sports center and for government offices as soon as the certification procedures for the present registration of every lot are completed. Therefore, the use of this land might be delayed for several years.

c) Uling lot:


* Uling lot, located in the PNOC compound of the Uling mine site, is only 1.5 ha and consists of old dumped muck of clayey rocks. It is too narrow and costly for the main center to be built here and because of the possible danger of land slides or slope failure.

If the Lahug lot is selected for the center, the construction schedule will be greatly delayed. On the other hand, the Uling lot is too risky or costly in terms of soil stabilization.

As a result, the UP lot at Talisay would be the best choice at the moment, although a sort of cooperation with the UP would be required in the future. The decision has to be made by the OEA after negotiation with each land owner.

(2) Experimental mine

The experimental mine is scheduled to be located in the PNOC-CC Uling mine after the negotiations between OEA and PNOC on June 22, 1988. The exact location will be decided by PNOC-CC according to the request by OEA. The location of the Uling mine is shown in Figure 3-4-1.

3-4-2 Layout of the Training Center and Conceptual Design Requirements

(1) Main Training center

The arrangement of the facilities is shown in Figure 3-4-2.

Scope of work for the center shall consist of the following items.

a. Site Preparation

Site preparation work shall be carried out before the commencement of building work.

- 1) Filling work shall be in accordance with detailed drawings to be developed in the future.
- 2) All obstructions above and below grade, including debris, shall be removed from the site.
- 3) Surface of grading shall be within a vertical tolerance ± 10 cm of final level.
- 4) Fill soil shall be compacted to 90% of the Proctor compaction test.
- 5) Slope shall be protected by sodding and retaining walls.

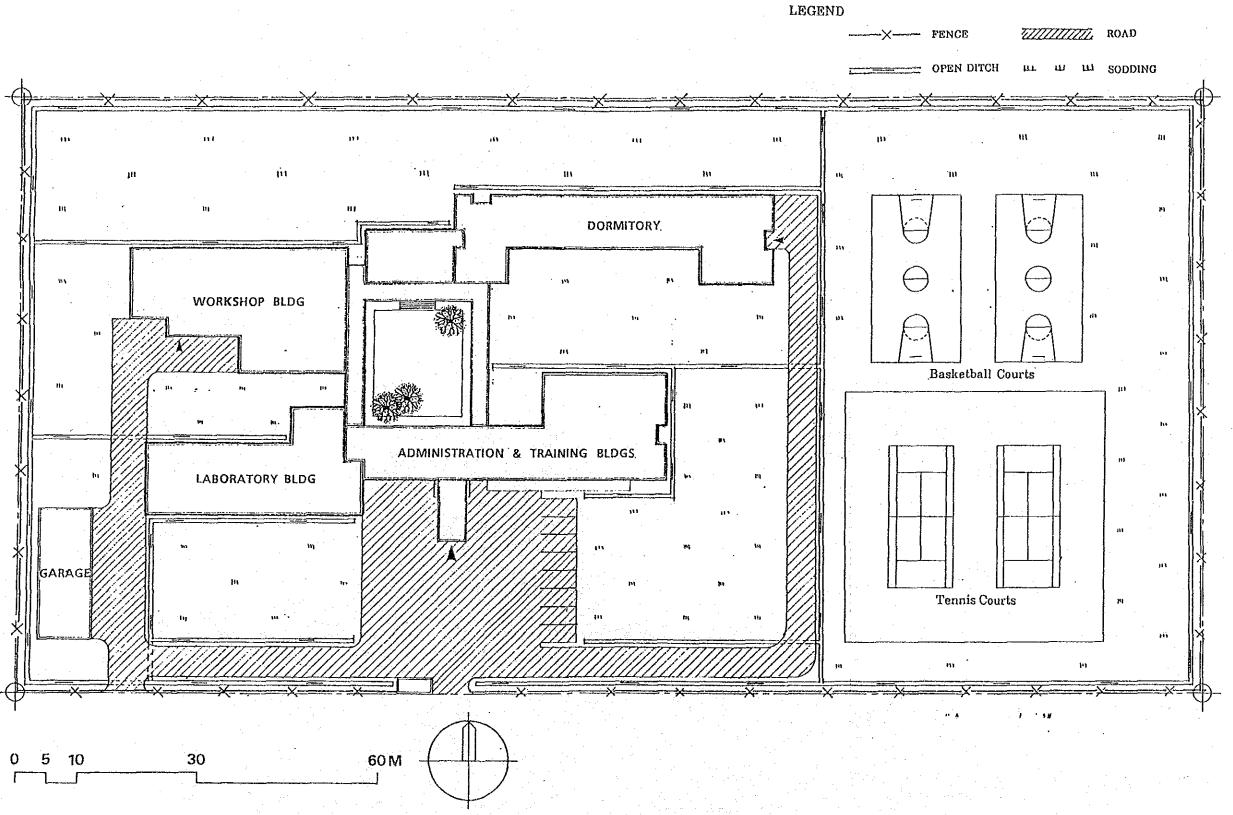


Figure 3-4-2 LAYOUT OF COAL MINING TECHNOLOGY DEVELOPMENT CENTER

SITE PLAN

b. Buildings and Building Equipment

b-1 Design Base for Buildings

- 1) Buildings shall be of tropicalized construction to suit the local climate characterized by high temperature and high humidity. From May to October, i.e., in the rainy season, heavy rainfall and strong winds prevail.
 - Average rainfall is 1500 mm/year, more than the national average.
- 2) Buildings shall be designed to suit the curriculum prepared in the master plan for coal mining technology development.
- 3) Buildings and related facilities shall have built-in flexibility for later expansion of, and changes to the lecture programs for future training.
 - The location of structural equipment shall be flexible for the training facilities.
- 4) Training center shall be operated at low cost by saving measures such as the maximum use of natural lighting and natural ventilation in the buildings.
- 5) Training center shall be designed on the principle of environmental protection and anti-polution control in Cebu.

b-2 Buildings (refer to Figures 3-4-3 and -4)

1) Administration and Training Building
Floor area shall be 950 m² including an entra

Floor area shall be 950 m² including an entrance lobby, a director's room, an assistant director's room, five single expert rooms, one large expert room, a committee room, an administration office, three lecture rooms, a library and two toilets.

2) Laboratory Building

Floor area shall be 420 m², including a coal analysis room, a sample preparation room, a computer room, a laboratory for coal utilization, a storage, and office.

3) WorkShop Building

Floor area shall be 700 m², two workshops, a mine safety engineering room, a rescue training room, a mine machinery training room, and a first-aid training room, and two toilets are included in the building.

4) Dormitory

Floor area shall be 990 m² (max capacity to accommodate 48 persons), including six single bed rooms (I), five bed rooms for two persons (II), eight bed rooms for four persons (III), four toilets, two shower rooms, a dining room, a living room and a storage.

5) Others

Car port shall be 100 m² including an electric room and a guard house.

b-3 Construction materials

Construction materials shall be selected based on the results of the survey concerning factors such as local climatic conditions, required functions, local construction conditions, construction costs, and maintenance costs.

1) Structural materials

Main structural members shall be reinforced concrete. Ready mixed concrete are available in Cebu for large construction but the concrete for small scale construction will be made at the site. Reinforcing bar shall be of high quality materials available in the city market.

2) Foundation

The foundations for the buildings shall be designed so that the reinforced concrete structures with a spread footing can be adequately supported on firm load-bearing soil. This is according to the building construction experience in the Philippines, although no sounding has been conducted to obtain soil data.

3) Concrete

Compressive strength of structural concrete shall not be less than 180 kg/cm².

4) Reinforcing bar

Reinforcing bar shall be the deformed bar:

160 mm equal or larger, Yield point > 3000 kg/cm²

5) Floor

For the flooring of the Administration and Training Building and Dormitory, plastic tile manufactured in Manila shall be applied. For the corridor and entrance hall usually being damped with water, mortar aggregate exposed finish shall be applied.

For the flooring of the workshop and laboratory buildings, mortar with steel trowel finish for contaminating with chemicals and easy maintenance shall be applied.

6) Exterior wall

For the exterior wall, spray tile coating for high weather durability shall be applied.

7) Interior wall

Interior wall shall be brick masonry and painting on mortar steel trowel finish.

8) Ceiling and corridor

For the main ceiling, light weight steel furring and for the corridor, wooden furring shall be applied.

9) Fittings

Exterior fittings shall be aluminum door and window produced in the Philippines.

10) Roof

Roof shall be the colored galvanized steel sheet roof.

11) Finishing materials

For finishing materials, locally available material with easy finishing, maintenance, and high durability shall be applied.

b-4 Heating, Ventilating & Air Conditioning (H.V.A.C.)

A window type cooling system shall be applied for air conditioning in order to carry out easier maintenance compared with a central H.V.A.C. system.

b-5 Sanitary facilities

Sanitary facilities shall be western style toilet, lavatory, slope sinks, etc.

Large-size sewer pipes shall be used for easier maintenance.

b-6 Kitchen equipment

The kitchen will be equipped with sinks, working tables, a pan rack, a gas range, an ice maker, refrigerator with freezer and dust table.

b-7 Lighting

- 1) Lighting shall be fluorescent strip lighting.
- 2) Emergency lighting shall be provided at least one set in each room, except for stores and toilets.
- 3) Lighting shall have more intense illumination, and five-pin emergency plug receptacles have to be furnished in the laboratory building.

c. Road and Pavement

Construction road and pavement for parking area shall be in accordance with the following:

- 1) Pavement shall consist of prepared subgrade, base course and paving by asphalt mixture.
- 2) Base course for asphalt paving shall consist of graded gravel mixture with uniform gravels of 50 mm maximum size and shall not be less than 250 mm thick after compaction. The base course shall be installed in two layers of 125 mm compacted thickness each. Compaction shall be adequate.
- 3) Asphalt paving shall be of a single layer finish of 50 mm thick after the compaction and composed of hotmixed bituminous course.

d. Sewer

Sewer requirements shall be in accordance with the following:

- Sanitary sewer shall carry effluents under gravity flow from water closets, urinals and sinks in the buildings to the septic tank.
 Treated overflow from septic tank shall be connected to storm sewer.
- 2) Chemical sewage discharged from laboratory shall be collected in a neutralization pit, and then discharged to storm sewer after treating.
- 3) Storm sewer shall be collected in an open ditch and discharged outside.

e. Sodding

Sodding shall be in the form of locally available grass and trees.

f. Fence and gate

Fence and gate shall be in accordance with the following:

- 1) Fence shall be galvanized chain link of 2.1 m high, consisting of 1.8 m fabric topped with three strands of barbed wire.
- 2) Gate shall be steel made, hung on at least two steel hinges to pivot through 180 degrees.

g. Lighting

The site shall be reasonably illuminated at night.

(2) Experimental Mine and Training Facility.

Location of Experimental Mine and Training Facility is shown on Fig. 3-4-5, scope of work are as follows.

a. Site preparation

Site preparation shall be as described in section 3-4-2(1) a.

b. Building and Building Equipment

b-1 Design Base for Buildings

Design Base for Buildings shall be as described in section 3-4-2(1) b-1.

b-2 Buildings

Buildings for training facility is shown in Figure 3-4-6.

1) Main Building

Floor area shall be 270 m² including office room, rescue room, safety tool room, resting room, shower room, toilet, store, etc.

2) Canteen

Floor area shall be 90 m² including kitchen.

3) Work Shop

Floor area shall be 140 m² including air compressor room for operation of experimental mine, workshop, store and garage.

b-3 Construction materials

Construction materials shall be as described in section 4-3-2(1) b-3

b-4 Ventilation and Airconditioning

Ventilation and air conditioning shall be as described in section 4-3-2 (1) b-4

b-5 Sanitary facilities

Sanitary facilities shall be as described in section 4-3-2(1) b-5

b-6 Kitchen furniture

Kitchen Furniture shall be as described in section 4-3-2(1) b-6

b-7 Lighting

Lighting shall be as described in section 4-3-2(1) b-7.

c. Road and paving

Road shall have gravel paving as described in section 3-4-2 (1) C 2). base course for asphalt paving.

d. Sewer

Sewer shall be as described in section 4-3-2(1) d.

e. Sodding

Sodding shall be as described in section 4-3-2(1) e.

f. Experimental mine

The general layout of the experimental mine is shown in Figure 3-4-7. Basic requirements of Mine Structure in the Experimental Mine shall be in accordance with the following:

- 1) The mine shall be designed basically with a couple of central inclined shafts and several level roadways.
- 2) Two coal faces of one 15 m long for slanted and the other 21 m long semi-mechanized shall be set up.

- 3) One of these two inclined shafts, approximately 100 m long, shall be for air intake, transportation of mine cars and manpower. The other one shall be for air exhaust.
- 4) A storage bin will be required at the intersection of the inclined shafts and the level roadway. Scraper conveyors shall be installed in level roadways, and mine cars shall be used in the inclined shafts for transportation.

Total length of those mine roadways shall be approximately 700 m.

g. Lighting

Lighting shall be as described in section 4-3-2(1) g.

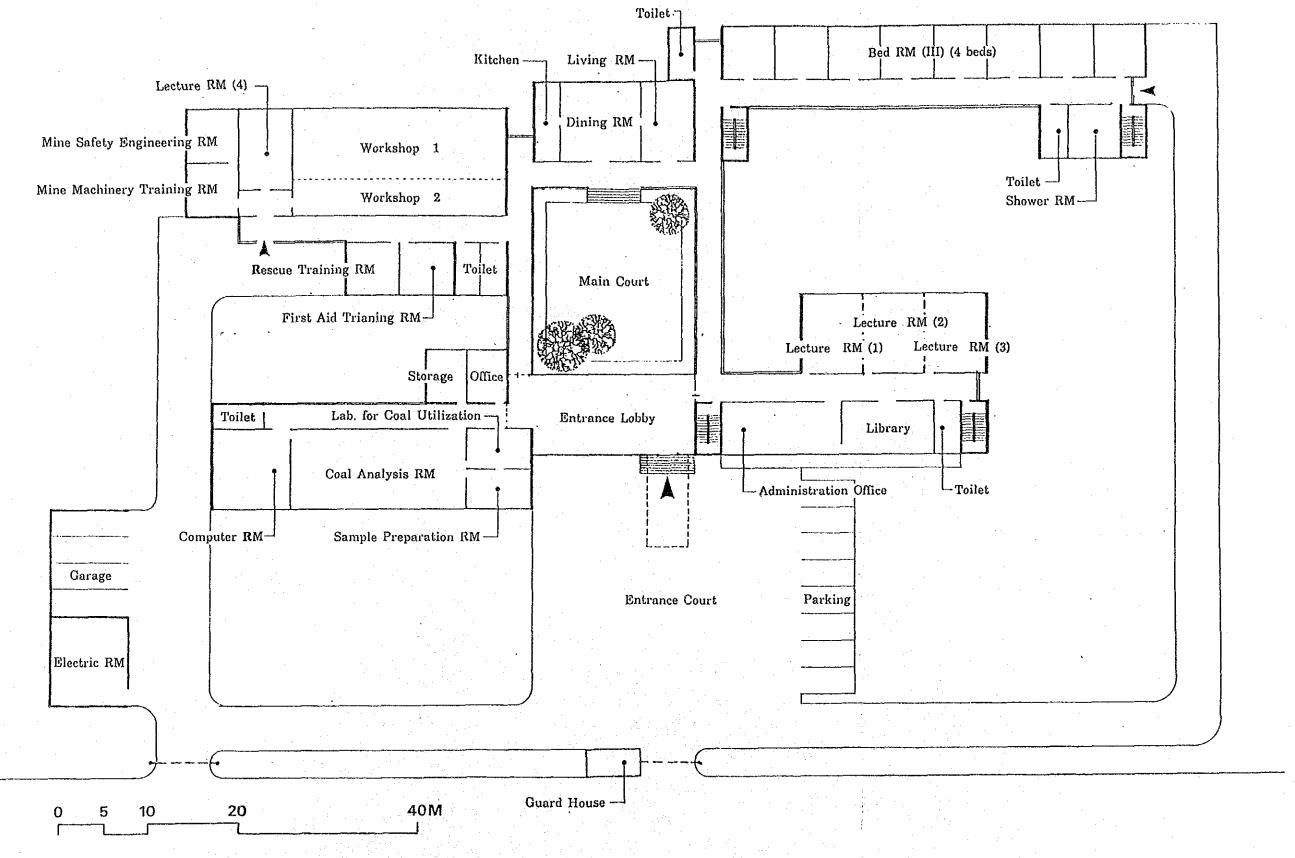


Figure 3-4-3 Layout of Buildings (1st Floor)

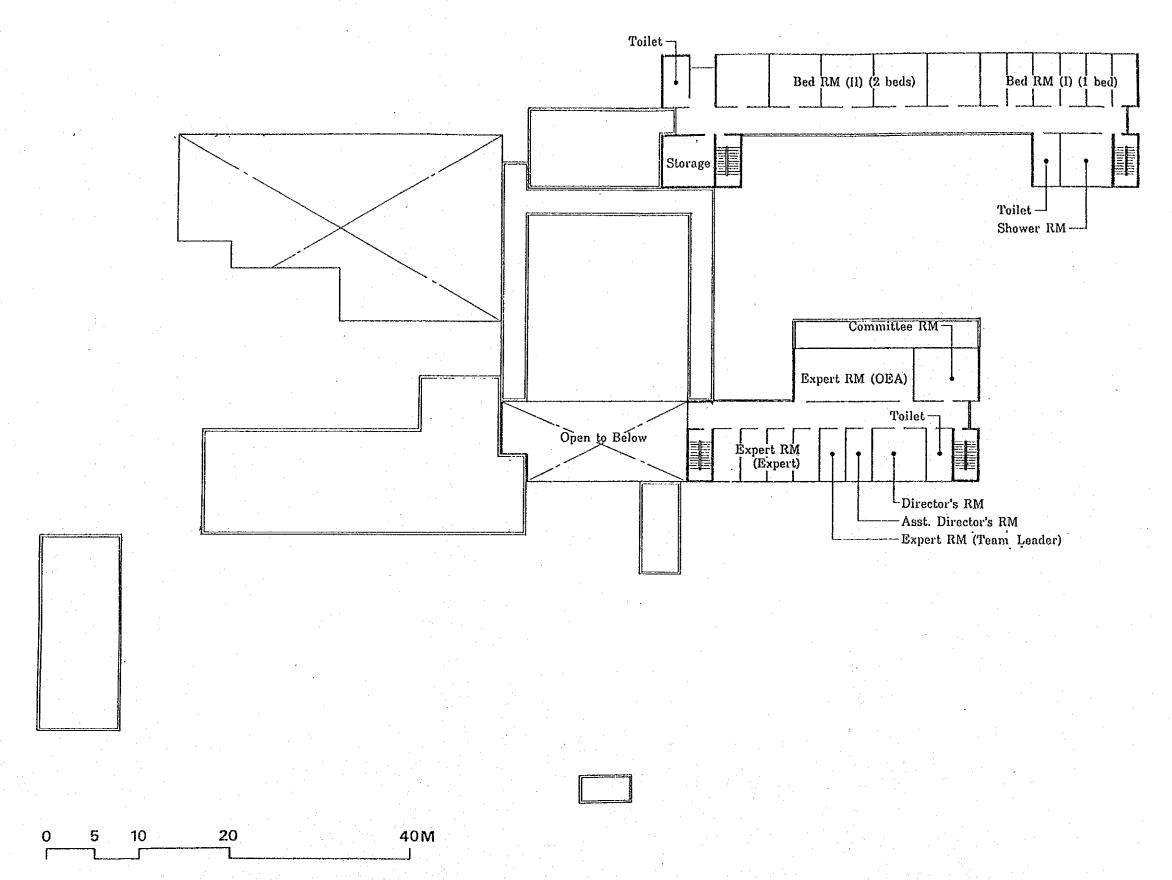


Figure 3-4-4 Layout of Buildings (2nd Floor)

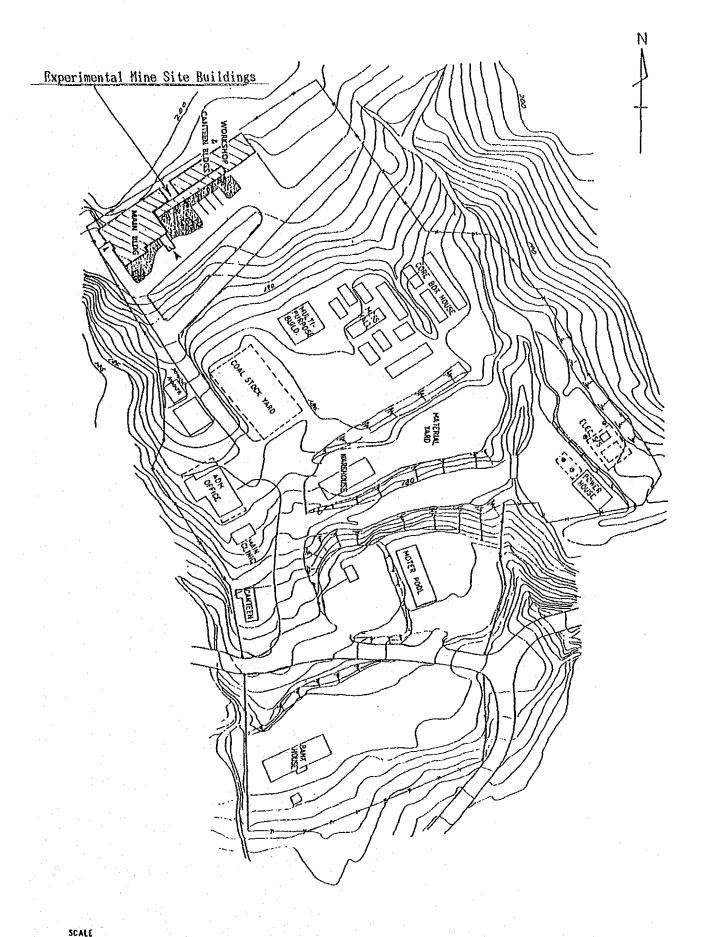
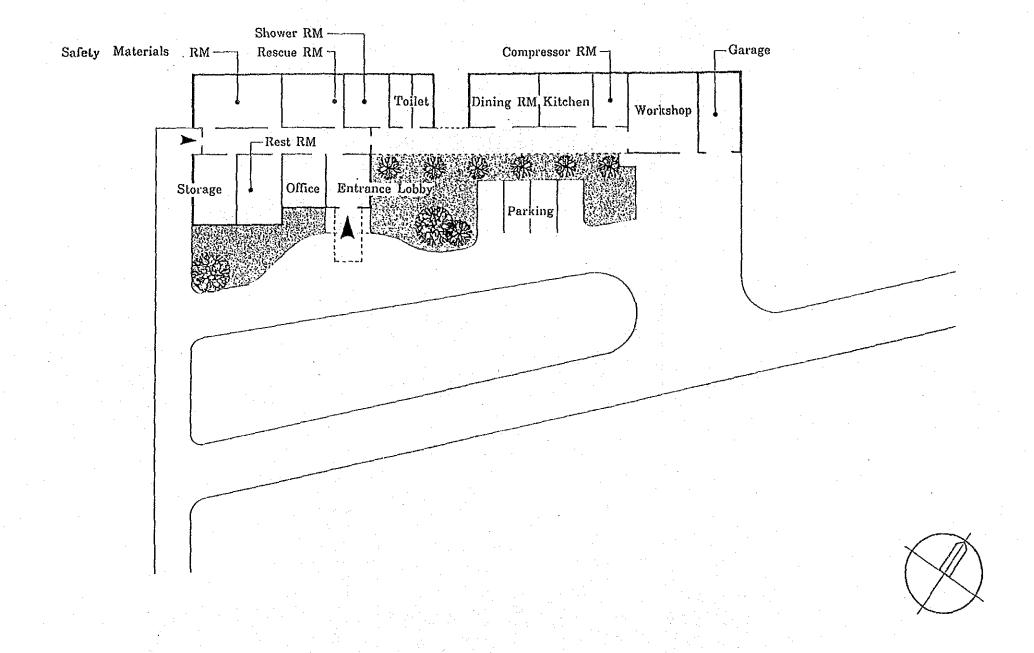



Figure 3-4-5 Location of Experimental Mine Site Buildings

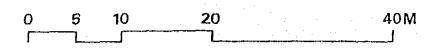


Figure 3-4-6 MINE SITE SURFACE FACILITIES

GROUND FLOOR PLAN

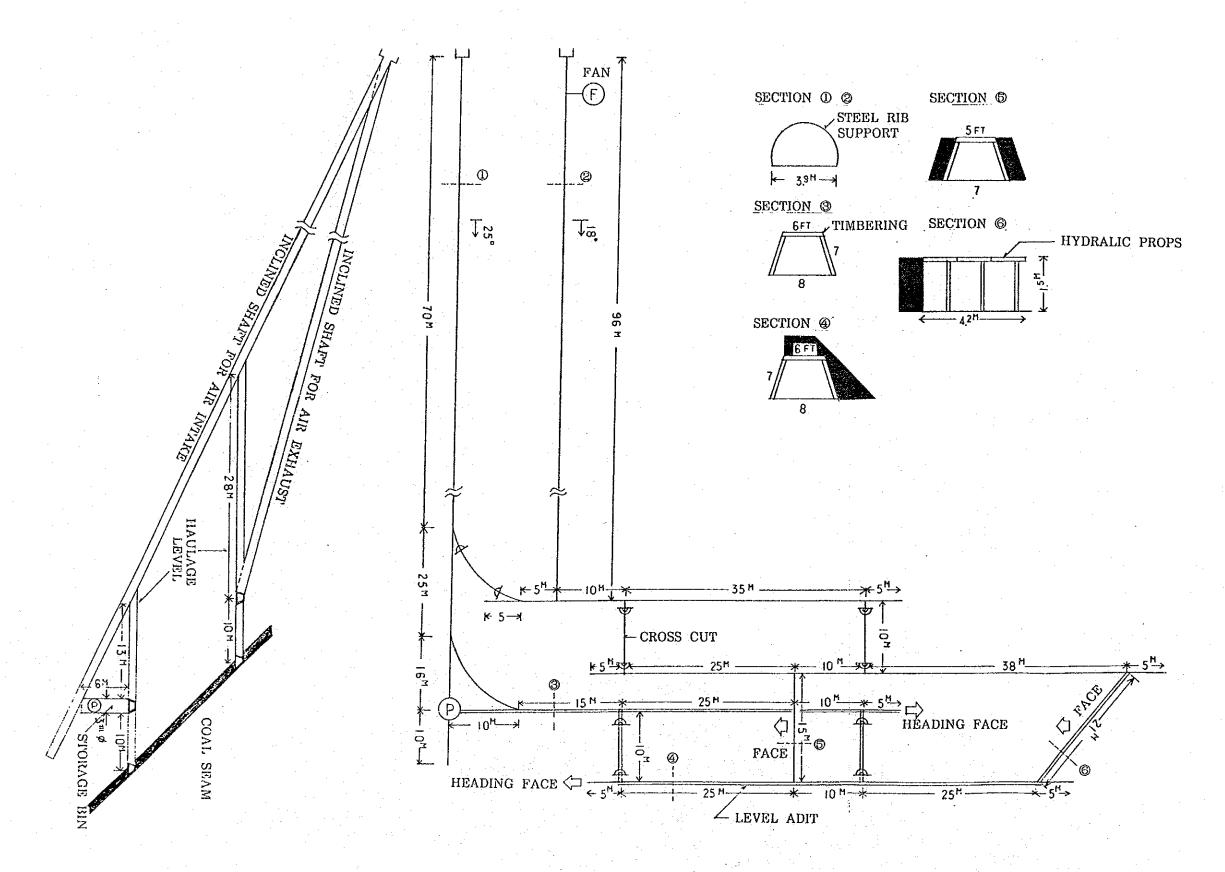


Figure 3-4-7 General Layout of the Experimental Mine

3-4-3 Utility Facilities

(1) Electricity Facilities

Electic power shall be supplied from a transformer set within the site boundary through switch-gears.

Watt-hour and Power Factor Meters shall be provided and connected for reading the value on each incoming feeder.

The necessary lighting and driving power shall be supplied from a terminal box.

The two substation capacities are as follows:

a. Main Training Center (220 V)

Building	110 KVA
Training Facilities	150 KVA
Total	260 KVA

b. Experimental Mine Site (440/220 V)

Building	60	KVA	
Training Facilities	250	KVA	_
Total	310	KVA	

A diesel-generator shall be provided for emergency back-up power in case of power failure.

- 1) The diesel-generator shall be a skid-mounted self-contained unit generating 440/220 V, 60 Hz, 3-phase electrity.
- 2) The diesel engine shall be a multi-cylinder four stroke type which may be naturally aspirated or turbo-charged with or without intercooling.
- 3) The diesel-generator set shall be supplied for emergency lighting, battery charging, safety equipment, etc.

 Immediately after a power failure, the diesel-generator shall start automatically.
- 4) The diesel-generator rating is 220 V, 75 KVA at Main Training center and 440 V, 125 KVA at Experimental Mine which is provided a stepdown transformer 440 V to 220 V.

(2) Water Supply Facility

Potable water shall be supplied within the site. The potable water shall be distributed from a Head Tank. The potable water supply is derived from Cebu's main water system for the Main Training Center.

In the Experimental Mine Site, water from a well shall be used with suitable softening treatment.

The Head Tank shall be as follows:

	Total	5 m ³
b.	Experimental Mine Site	$2\mathrm{m}^3$
a.	Main Training Center	$3\mathrm{m}^3$

(3) Telephone system and Radio communication system

The telephone system and radio communication system between main training center and experimental mine shall be as described in section 3-5.

3-5 Equipment List for the Training Center

The criteria for the determination of equipment specifications will be as follows,

- 1) It will be neccessary to use equipment in the execution of the training curriculum.
- 2) With regards to the future mining conditions, deep-mine operation and mechanization of mining systems should be considered.
- 3) All electric motors shall be of the explosion-proof type suitable for underground mine use, and centralized supervisory and control systems shall be used.
- 4) All equipment shall be designed for simple operation and easy maintenance.
- 5) For electrical emergencies, two generators shall be installed as standby, one with a 75 KVA capacity in the training Center and another 125 KVA generator in the Uling coal mine. In the Uling coal mine, the standby generator will be used for driving the ventilation fans, pumps and detector sensors of the mine safety system.
- 6) For the communications system, telephones and FM mobile two-way radios will be used.
- 7) The coal analysis apparatus shall include, an X-ray fluorescence spectrometer to be delivered in the second stage, and other apparatus to be mounted in the first stage.
- 8) Price is estimated on a CIF basis delivered domicile, plus installation and training fees, as requested.
- 9) Equipment list is classified into two groups, A (training center) and B (Uling coal mine). Based on the curriculum, delivery time for equipment is classified into two stages, i.e., first and second stage.

The second stage will commence one year after the first stage.

The cost estimate for equipment is given in the following table.

Cost Estimate for Equipment

(million)

	First stage		Second stage		Total	
	US\$	Pesos	US\$	Pesos	US\$	Pesos
Main Center Experimental Mine	2.115 2.605	1.682	0.933		3.088 2.605	1.682
Total	4.760	1.682	0.933	_	5.693	1.682

A. Main Training Center

	Item	Equipment Name	Main Specification	1st schedule	2nd schedule
Teaching material	1. Geology Explora-	· Drilling equipment	LY-38 18.5 kw 1 unit	0	bonocato
:	tion	· Measuring apparatus	Transit, Level Vial etc.	0	
		· Logging System	T500 Digital Logging System 1 unit		0
	2. Safety	· Portable Methanometer	CH ₄ , Model 28 15 sets	0	
		· Personal CO Monitor	CO Model CO-82 15 sets	0	
		· Portable Anemometer	Type SF-15 15 sets	0	
		· Oxygen Breathing	Type Mark-10 Duration of continuous use 2 hours	0	
		Apparatus · Others	CO mask, Minesem	0	
	3. Mechani- cal and	· Power Pack	EHP-3K 10 1 unit	0	1
	Electrical	· Armoured Conveyor	300 type×10m 15 kw 1 unit	0 .	
		· Air Hoist	AH-36A 5kg/cm ² 42 m/min 1 unit	0	
		· Pump	Electric Pump Worthington Pump	0	
3		Local Fan	TL-5 160m³/min explosive- proof	0	
: :-		· Experimental Facilities	Pump Test, Ventilation Test	0	
		Electric Experimental Apparatus	Recorder Tester etc.	0	
:	4. Coal Analysis	· Sampling apparatus	Scoop, Riffle sampler Sieve shaker	0	
		Crusher	Jaw crusher (Brown crusher)	0	
		Proximate analysis apparatus	Moisture oven, Ash furnace, volatile matter furnace	0	

	Item	Equipment Name	Main Specification	1st schedule	2nd schedul
Teaching material		Ultimate analysis apparatus	Nitrogen analyser, Carbon & Hydrogen analyser	0	
·	: '	Calorie measuring apparatus unit	Calorimeter	0	12 1 (* 15
		· X-ray Spectrometer	Rigaku System 3070		0
		- Computer	PC9801	0	
		· Other analysis apparatus	F.S.I Testing Device, Drop shatter Tester etc.	0	
		· Test machine	Jig, Dense medium Separator, Flotation	0	
		Others	machine Exhaust Fan, Duct, Table	0	
	5. Burning Test	Coal Combustion equipment	etc.		0
	6. Others	· Model	Washing plant, U/G mine	0	
		· Drawing instrument	Drafter, Drawing Utensils etc.	0	
		· Computer	IBM CAD System	0	
Fixture	1. Equip- ment of	· Compressor	55 KW 7 kg/cm ² 9.0 m ³ /min	0	
:	Building Construc-	· Generator	75 KVA 220V	0	
:	tion	· Communication equipment	UHF 50W within 50 km		
		· Telephone equipment	Exchange 50 lines, Telephone	0	
: : :		· Audio/Visual	Audio Visual System, Slide Projector, Overhead Projector	0	
		- Water Supply System	Pump, Tank		
	2. Workshop	· Traveling Crane	3 tons Electric trolley	0	
	Equip- ment	· Machine Tool	Lathe, Grinder, Drilling machine	0	
•		NA.	-177-		

.

	Iten	n Equipment Nan	ne Main Specification	1st schedule	2nd schedule
Fixture	2. Work Equip ment)-	Electric Welder, Acetylene Welder	0	
		Portable Compressor	7.5 KW 9 kg/cm ² 0.84 m ³ /min	0	
		· Tools		0	
	3. Distri tion Facili		Explosion-proof of Dry type 2.4KV/220V Transformer, Switches, Cables	0	
:	4. Vehic	les · Bus	60 Passengers		0
•		· Small Bus	30 Passengers	0	
		· Land Cruiser		0	
:		· Truck	2 tons Truck with crane	0	
		A Commence		1	

B. Uling Experimental Mine

	ltem	Equipment Name	Main Specification	1st schedule	2nd schedule
Under-	1. Mining, Drilling,	· Hydraulic Prop	Usable Height 2.4 m ~ 15 m 150 sets	O	Solicuute
ground	Loading	· Hinged Iron Bar	1.2 m Long Pin type 150 sets	0	
:		· Pneumatic Pick	CA-7 wt 7 ~ 8 kg, 10	0	
		· Air Auger	For Coal and Soft Rock wt 8 ~ 9 kg, 5	0	
: : :	·	· Leg Hammer	322-D Bit, Rod	0	
	· :	· Shifter			·
		· Mine Car	Steel 1 m ³ 10 units	0	
: :		· Bucket Loader	Side dump loader 612	0	
		· Tools	Air block, lever block	0	
	2. Safety	Safety Measuring Equipment	CH ₄ , CO, Anemometer, Temperature	0	
	3. Machinery Electricity	· Armoured Conveyors	1. 450 m/m W×20 m 30 KW (for face) 1 set 2. 450 m/m W×15 m 15 KW (for gate) 2 sets 3. 450 m/m W×30 m 15 KW (for gate) 2 sets 4. 450 m/m W×40 m 30 KW (for gate) 3 sets 5. 450 m/m W×50 m 30 KW (for gate) 1 set	0	
		· Chain Feeder	1,000W×3,000L, 7.5KW 1 set	0	
	·	· Air Hoist	AH-36A 5 kg/cm ² 42 m/min 4 sets	0	
	·	· Pump	Centrifugal pump, Worthington Pump, Piping, Valve etc. 1 unit	0	
		· Local Fan	TL-5 160 m ³ /min Exprosive- Proof 3 sets	0	

•					
	Item	Equipment Name	Main Specification	1st schedule	2nd schedule
Surface	Fixture Equipment	· Power Pack	EHP-3K50, 37 KW, Strainer 1 unit	0	
		· Electric Winder	45 KW, Rope Speed 50 m/min 100 mL 2 sets	0	
		· Comprssor	55 KW, 7kg/cm ² , 9.0 m ³ /min 2 sets	0	·
		Ventilation Fan	700 m³/min, 100 mmAq 22 KW 1 set	0	
		· Generator	125 KVA, 440V, Automatic 1 set	0	
		· Water Supply System	Pump, Tank 1 set	0	
		· Cap Lamp	Cap lamp 30 sets, Charging facilities, Washing Equipment	0	f .
		· Workshop Equipment	Grinder, Drilling Machine, Welder etc.	0	
	Electric Equipment	- Distributing Facilities	· Explosion-proof of Dry type 2.4KVA/440V Transformer · Switches	0	
#** *** .			· No Fuse Breaker · Cables 30~60 mm ² 900 m		
		· Telephone	Exchange 20 lines, Telephones 20 sets	0	
	Others	Measuring Apparatus		0	
		· Tools		0	

Parameter of the control of the second

3-6 Construction Cost

3-6-1 Estimation Bases

Construction costs have been estimated on the basis of the Guidelines for Price Estimations for Building and Constructions published by JICA March 1985 as well as on the basis of the results of our site survey from April 27 to May 11, 1987.

- (1) Site selection is described in section 3-4-1.
- (2) Local material
 Local materials shall be purchased in Cebu and its vicinity as much as possible, and the cost estimate made is based on the local purchasing survey report prepared by JICA on March 1986.
- (3) Building equipment for sanitary, aircondition and lighting shall be locally purchased with the lowest price to be offered in Cebu.
- (4) Building foundations shall be spread foundations supported on firm loadbearing soil, wherein the cost estimate made is based on the actual unit price obtained from the experience of building constructions in the Philippines, including Cebu, Mindanao, Bohol, Leyte and Luzon.
- (5) Specifications of the building shall be prepared for one international contractor basis (I) and local contractor basis (II), respectively.

The main reasons of the difference between these two cost estimates are as follows;

- a) No foreign consultancy cost for construction supervision is included for the local construction cost.
- b) A large amount of off-specification architechtural and construction materials commonly found in the local market may adversely affect the construction finish, thereby some have to be imported. This would escalate the cost further.

3-6-2 Cost Estimation (Philippine Peso)	(I)	(II)
(1) Estimated costs for Buildings		4 2
a) Main Training Center in Cebu	92,585,400	46,160,700
b) Training Building in Uling Experimental mine site	10,928,600	5,716,500
Total	103,514,000	51,877,200
(2) Site Preparation including related facilities for the Center.		
a) Main Training Center in Cebu	13,450,600	13,450,600
b) Training Building for Experimental mine in Uling	1,681,300	1,681,300
Total	15,131,900	15,131,900
(3) Estimated costs for Experimental Mine		
(excluding mine equipment)	26,901,200	16,813,200
Grand Total $(1)+(2)+(3) =$	145,547,100	83,822,300

in district of the instantial registry of all literatives and extension of the literature of the solution of t

the first of the control of the cont

3-7 Management and Operation Scheme

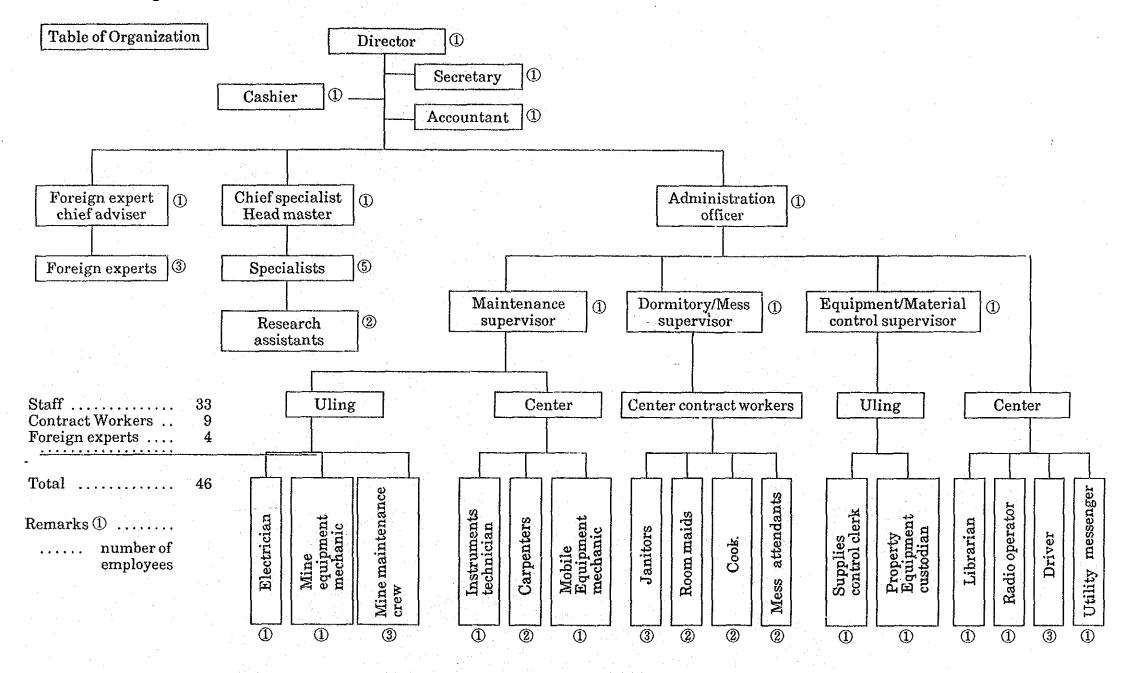
Whether the Center can achieve its expected objectives will depend on the management and operational efficiency in running the Center. It will be vital to ensure the availability of appropriate management schemes and a proper organizational backup for its operation. Therefore qualified personnel responsible for training, management, and maintenance of the Center has to be prepared.

Further, another essential condition is to secure the funding needs to meet the operating costs of the Center. This, therefore necessitates an implementation scheme supported by the government executive authorities, and desirably a chief advisor representing the foreign experts.

1. Government Executive Authorities

The OEA in its capacity as the government executive authority in charge of the coal mining industry, should also assume responsibility for the operation of the Center.

2. Organization


The organizational structure should be as shown in Figure 3-7-1. As stated in 3-3, several foreign experts are desired. The chief advisor representing all foreign experts should be responsible to the Director of the Center and plays an important role in the decision-making process in cooperation with the Director and the Head of the local counterparts. Other foreign experts should hold periodic discussion meetings with their local counterparts on curricular matters and training programs in detail.

The training programs should be carried out in cooperation with both the foreign experts and their local counterparts. This would facilitate the eventual transfer of overseas technology to the Philippines.

3. Personnel

A total staff of 33 will be required for the operation of the Center, excluding the foreign experts, as shown in Figure 3-7-1. In addition, 9 contractual workers will be required. The OEA should secure the necessary staff members prior to the opening of the Center.

Figure 3-7-1 Organizational Structure

4. Maintenance of buildings and facilities

Maintenance and operating manuals for the buildings, facilities and training equipment used both in the Center and the experimental mine should be provided when construction is completed. The personnel concerned should study the documentation in depth and should be fully conversant with the use of all equipment. Further, the Director has to appoint persons to take charge of the buildings, facilities, and equipment.

5. Operation, Management, and Maintenance Costs

Based on this study and the analysis of the collected data, the expenses required for the administration, operation and maintenance of the facilities of the Center are estimated as follows;

(1)	Salaries and wages	P1,806,000
(2)	Supplies and training materials	P 783,000
(3)	Fuels and lubricants	P 347,000
(4)	Power cost	P 791,000
(5)	Security	P 200,000
(6)	Maintenance for mobile and	
	other mechanical equipment	P 748,000
(7)	Building maintenance and fixtures	P 10,000
(8)	Honoraria	P 108,000
(9)	Communication costs	P 10,000
	Total costs per year	P4,803,000

The budget for the operation of the Center should be met, in part, from the fund allocations from coal production to be made available by the OEA and/or private contributions. The OEA forecast of its budgetary availabilities by the year 1990 has been given as follows:

- (1) Fund allocations to be made by the OEA (OEA share)
 - 1.3 million tons/year \times P800/ton \times 0.03 \times 0.16 = P4,992,000
- (2) If by private contributions
 - 1.3 million tons/year \times P4/ton = P5,200,000

3-8 The Center's Operating Cost and Financing

3-8-1 Operating Cost

The operating costs for the Center is shown in Table 3-8-1, and the annual total is expected to be 4.8 million pesos. Of this total, experimental mines account for 27%. In terms of expenditure items, salaries and wages account for 38%, the largest share of the total. The second largest items are; supplies and materials, power, and equipment maintenance, with 16% each.

Table 3-8-2 shows a comparison of expenditures per employee with similar institutions. The operating costs of this Center are larger than that of other institutions. As far as salaries and wages are concerned, there are no significant differences. Of other expense categories, the figures for materials and supplies, power and equipment maintenance costs are all higher than other institutions. This is largely due to the differences in the kinds and numbers of equipment purchased. The differences are caused by the specific character of this Center.

3-8-2 Financing

The OEA shall consider the possibility of allocating a part of the its share (about 3% of the gross sales) or to include in the annual budget of the OEA as the major fund to meet the operating cost of the Center. To this end, it will be necessary to pass a law. The OEA is lobbying with the legislative body to obtain appropriations. In case the above source of fund is not yet available, the OEA is expecting to have a contribution of about 4 pesos per ton from coal companies. Consultation with major members of the Chamber of Coal Mines has led the OEA to believe that they will agree. Some income can be obtained toward the operating fund by providing services such as inspection, but this is looked upon as a supplementary income.

According to a preliminary calculation, approximately 16% of the OEA share will be sufficient to meet the Center's operating costs. (Table 3-8-3.)

						(P	(P 1,000)
6 4 +		Mai e M	C + c + c + c + c + c + c + c + c + c +	Dormitory Moco	tory common	Total	
9		ממווו ככוונכן	Wine Wine	cook finning	ASON HOMBO		%
1. Salaries & Wages		251	336	235	98 48	1,806	38
2. Supplies & Materials		229	406	48	100	783	19
3. Fuels & Lubes		27	17	10	293	347	<u></u>
4. Power		482	270	39	0	791	16
5. Security		100	100	0	0	200	4
6. Equipment Maintenance		295	165	0	288	748	16
7. Buildings & Fixtures Maint.	Maint,	0	0	0	10	10	l
8. Honorarium		0	0	O	108	108	. 2
9. Communication		0	0	0	0	10	I
4.5		1,384	1,294	332	1, 793	4,803	100
10. 10141	%	59	22	7	37	100	

Table 3-8-1 Operating Cost Estimate

* This cost estimate does not include cost required for dispatch of foreign experts.

Table 3-8-2 Operating Budget Comparison

)	Pesos / Employee)
	Coal M. T. D.	T. D. Center (1)	OBA	Transportation	Nat, Skills
	Total	Bxcl. Exp. Wine *	Laboratory (2)	Train, Center (3)	Train, Center (4)
Number of Employees	36	28	33	20	89
Salaries & Wages	50, 200	54, 400	47, 150	43, 500	29,700
Other Operating Expenses	83, 200	75, 600	28, 670	20, 200	53, 800
Total	133, 400	130, 000	75, 820	63, 700	83, 500

Note:

- 1. Coal M. T. D. Center: Coal Mining Technology Development Center
- 2. OEA: Salaries & wages are for 1988 (after 1987 raise). Inflation and allowance (50% of annual salaries and wages) are included.
- 3. Transportation Training Center: Based on 1987 budget, but salaries and wages are assumed to be raised by 10% and include honoraria, 15% of basic salaries.
- 4. National Skills Training Center: NSTC has no special allowance.

Table 3-8-3 Proposed Sources of Operating Budget

(Million Pesos)

	From OEA Share (Gross Sales×0,48%)	Private Contributions (P 4,0/T)	Other Services
1990	5. 0	5. 2	(Supplemental)
1995	10.8	12.0	— do —
2000	10.9	14. 4	— do —

Note:

- Coal price is assumed to be 800 P/T in 1990, 753 P/T in 1995 and 630 P/T in 2000.
- 2. Funding for the center operations is about 16% of the OEA share.
- 3. or a Contributions of P 4.0 per ton from coal mining companies.
- 4. Other services which will supplement budget deficit.

APPENDICES

COAL SUPPLY - DEMAND OUTLOOK ('000 tons 10,000 BTU/1b)

		COAL SUPPL	COAL SUPPLY - DEMAND OUTLOOK ('000 tons 10,000 BTU/Ib)	UTLOOK ('000	tons 10,000	BTU/Ib)			APP	APPENDIX	N N
SUPPLY	1988	1989	1990	1991	1992		1993	1995		2000	0
SEMIRARA	630	648	720	720	1,440	1,440	0	2,160 (1	(1,800)	2,592 (2,160)	2,16(
PNOC AREAS	353	327	293	363	402	402	23	402		402	
CEBU	374 (338)	483 (432)	576 (504)	606 (534)	630	(558) 654	4 (582)	825	(689)	1,132 (689)	(68
BATAN	75	130	142	142	142	142	73	142	÷	142	
OTHERS	164	271 (264)	360 (332)	370 (342)	460	(398) 464	4 (402)	719	(525)	2,800 (2,513)	2,513
TOTAL	1,596 (1,560)	1,859 (1,801)	2,091 (1,991)	2,201 (2,101)	3,074 (2,940)	40) 3,102	2 (2,968)	4,248 (3	(3,558)	7,068	(5,906)
DEMAND	Agailte. Mailte.		e de la companya de l								
NPC	1,054	1,063	1,071	1,080	1,941	1,925	'n	2,833		5,034	
CEMENT INDUSTRY	477	813	854	897	942	989	o	1,090		1,392	
ATLAS	275	287	301	318	337	359	o,	413		635	
PHILPHOS	44	40	40	40	40	য	40	40		40	
OTHERS	119	125	134	144	158	173	က	211		340	
TOTAL	2,236	2,328	2,400	2,479	3,418	3,486	Q	4,587		7,441	
SURPLUS/(SHORT	640	4.69	309	278	344	384	4	93		373	

SUMMARY OF RESERVES OF COAL REGIONS As of 30 June 1986 (Million Tons)

	Resource* <u>Potential</u>	<u>Positive</u>	<u>Probable</u>	<u>In-situ</u>	Mineable Reserves
SEMIRARA	550	132.28	29.76	152.12	129.30
CAGAYAN VALLEY	336	68.48	53.18	103.58	88.04
MINDORO	100	3.07	1.40	4.01	2.40
POLILLO-BATAN- CATANDUANES	17	6.49	4.44	9.45	7.70
QUEZON	2	0.09	· · · · · · · · · · · · · · · · · · ·	0.09	0.08
NEGROS	4.5	1.05	1.06	1.75	1.05
NORTHERN CEBU	75	1.48	0.37	1.72	1.03
CENTRAL CEBU	40	2.27	0.15	2.37	1.42
SOUTHERN CEBU	50	3.94	2.38	5.53	3.32
BOHOL	-	0.39	0.74	0.89	0.53
DAVAO	100	0.21		0.21	0.12
SURIGAO	209	30.45	23.38	46.04	34.28
ZAMBOANGA	45	28.92	7.40	33.85	20.31
SAMAR	27	4.50	4.45	7.47	6.35
MASBATE	2.5	0.29		0.29	0.18
TOTAL	1,558.0	283.91	128.71	369.37	296.11

- * Based on Robertson Research International Ltd. 1977 evaluation
- 1. Positive reserves are those sufficiently explored by drilling and/or tunnelling to warrant inclusion in a company's five-year development/production program. Drill holes are generally spaced at not more than 200 meters apart and in highly disturbed areas like Cebu, holes are spaced not more than 100 meters apart.
- 2. Probable reserves are those also explored by drilling and/or tunnelling, but still need confirmatory drilling and/or tunnelling. Drill holes are generally spaced at 200 to 400 meters apart, except in fairly undisturbed areas like Cagayan.
- 3. The mineable reserves are computed by multiplying the total in-situ reserves (positive \pm 2/3 probable) by a mining recovery factor of 60% for underground and 85% for open pit.
- 4. Except for Cagayan, Semirara, part of Samar, and Surigao, all other coal areas are treated as underground coal areas.

APPENDIX 3

OUTLINE OF COAL MINES

	J.D. ALMENDRAS	CEBU COAL	ULING	MANGUERRA	LUVIMIN	CRAVAT (CARBEX)	SEMIRARA
1987 PRODUCTION (MT) (R.O.M)	20,213	30,093	11,910	25,264	51,570	33,512	606,276
1988 PRODUCTION PLAN (MT) (R.O.M)	44,000	40,000	25,000	41,000	100,000	60,000	875,000
WORK FORCE	265	320	191	352	629	357	1,050
PRODUCTIVITY (MT/MAN/SHIFT)	0.25	0.31	0.21	0.24	0.27	0.31	1.92
MINING METHOD	ROOM & PILLAR	ROOM & PILLAR	SHORT WALL	ROOM & PILLAR (TOP SLICING)	SHORT WALL	SHORT WALL OPEN PIT	OPEN PIT
MINE VENTILATION	NATURAL	NATURAL PARTIALLY FORCING	EXHAUSTING FAN	NATURAL	FORCING FAN		_
HAULAGE	HOIST & MINE CAR 0.6 MT/CAR	HOIST & SLED 0.05 MT/SLED	HOIST & MINE CAR 1.3 MT/CAR	HOIST & SKIP 0.6 MT/SKIP	MINE CAR & HAND TRAMMING 0.7 MT/CAR	20 TONNE TRUCK	BELT CONVEYOR
PREPARATION	SIMPLE WASHING			_			
CONSUMER	NPC NAGA, ACMDC, LUDO, APOCEMCO, UNICEMCO	NPC NAGA, APO CEMCO, LUDO, ACMDC	ACMDC,	ACMDC, LUDO	ACMDC, PACIFIC CEMENT	ACMDC, RIZAR CEMENT, SOLID CEMENT, PHINMA, NPC	NPC CALACA, ACMDC
STOCK YARD	DANAO	LAGTANG		DALAGUETE	TALOOT	BATAN	
HAULAGE DISTANCE (MINE~YARD~ CONSUMER)	8 km (M~Y) 51 km (Y~NAGA)	22 km (M~Y) 15 km (Y~NAGA)	17 km (M~NAGA)	18 km (M~Y) 68 km (Y~NAGA)	25 km (M~Y) 52 km (Y~NAGA)	2 km (M~PIER)	200 km (M~CALACA)
HAULAGE METHOD (MINE~YARD~ CONSUMER)	TRUCK	TRUCK	TRUCK	TRUCK & BARGE	TRUCK & BARGE	TRUCK & BARGE	SHIP
WATER DRAINAGE	ELECTRIC PUMP	ELECTRIC PUMP	ELECTRIC PUMP	ELECTRIC PUMP	ELECTRIC PUMP	ELECTRIC PUMP	ELECTRIC PUMP
OPERATING DAYS (DAYS/YEAR) <shifts day=""></shifts>	300 <2>	300 <1>	300 <4>	300 <3>	300 <3>	300 <3>	300 <3>

APPENDIX 4

RESULTS OF GEOLOGICAL INVESTIGATION

Coal Mines	J.D. Almendras Mine	Cebu Coal Mine	PNOC-CC (Uling)	Manguerra	Luvimin	Carbex, Inc.
Items 1. Coal Bearing Formation A. Name B. Age	A. Malubog Formation B. Early Miocene	A. Malubog Formation B. Early Miocene	A. Malubog Formation B. Early Miocene	A. Calagasan Formation B. Early Miocene	A. Calagosan Formation Linut-Od Formation B. Early~Middle Miocene	A. Bilbae Formation B. Middle Miccene
2. Main Coal Seams A. Number of Mineable Coal Seams B. Name C. Thickness	A. 2 seams B. No. 1 seam, No. 2 seam C. No. 1 seam 1.5 m No. 2 seam	A. 2 seams B. Upper seam, Lower seam C. Upper seam 0.3 m Lower seam 0.7~1.2 m	A. 2 seams B. N6, Dona Margarita C. N6 1.0 m (average) Dona Margarita 1.0~1.8 m	A. 2 seams B. Upper seam (seam B) Lower seam (seam C) C. Upper seam 2.0~5.0 m Lower seam 1.5~2.0 m	A. 5 seams B. A seam, B seam (Linut-Od) Bala-As seam, Tong Kot seam, Bayabas seam (Calagasan) C. A seam (1.0 m), B seam (1.0 m) Bala-As seam (1.5 m) Tong kot seam (2.0 m) Bayabas seam (2.0 m)	A. 3 seams B. Upper seam Middle seam Lower seam C. Upper seam Middle seam Lower seam Alom Lower seam Lower seam Alom Lower seam 3.0 m
3. Geological Structure A. Strike & Dip	Western limb of Northeast tranding Syncline A. N40E, 30E	Eastern limb of Southwest plunging Anticline A. N32E, 20 E	Eastern limb of Northeast trending Syncline A. N50E, 45W	Poorly defined structure Northwest trending homoclinal structure A. N26W, 82W	North trending homoclinal sturcture Regionaly defined structure A. N~N45E, 55W	Northeast trending homoclinal structure Regionaly defined structure A. NE, 15~20 W
4. Exploration	No. of drillholes nil Measured survey is conducted by Mining Engineer with Compass	No. of drillholes nil Measured survey is conducted by Mining Engineer of Toledo Office once a month	No. of drillholes	No. of drillholes nil Mining Engineer is in charge of geological work. Surveyor 1	No. of drillholes	No. of drillholes
5. Coal Quality * T.M Total Moisture (%) I.M Inherent Moisture (%) Ash Ash (%) V.M Volatile Matter (%) F.C Fixed Carbon (%) H.V Heating Value (Btu/lb) T.S Total Sulfur (%) H.G.L Hardgrove Grindability Index	No. 1 seam No. 2 seam T.M. 22.69 19.36 I.M. 19.64 17.58 Ash 3.27 7.41 V.M. 42.69 43.34 F.C. 34.40 31.67 H.V. 9,630 9,420 T.S. 0.39 0.31 (air dried basis)	Lower seam T.M. 3.8 I.M. 2,1 Ash 7.3 V.M. 39.8 F.C. 50.8 H.V. 12,920 T.S. 3.38 (air dried basis)	Dona Margarita, N6 T.M. — — I.M. — — Ash 11.1 16 V.M. — — F.C. — — H.V. 9,496 9,368 T.S. 1.01 3.14 (air dried basis) (average)	Upper seam T.M. I.M. 4.3 Ash 11.2 V.M. 46.2 F.C. 38.3 H.V. 11,930 T.S. 0.95 (air dried basis)	Delivered coal to NCC T.M. 8.42 I.M. 3.06 Ash 15.76 V.M. 38.91 F.C. 42.27 H.V. 11,319 T.S. 1.35 H.G.I. 55 (air dried basis)	Middle seam, Lower seam T.M. — 16.03 I.M. 10.14 10.56 Ash 6.81 5.73 V.M. 43.16 42.55 F.C. 39.39 41.16 H.V. 10,826 10,827 T.S. 2.12 0.94 (air dried basis)
6. Reserves	Positive reserves 53,000 t Probable reserves 260,000 t (Company report submitted OEA for 5-year-program from 1987 to 1991) Positive reserves 366,000 t Probable reserves 369,000 t In-situ reserves 612,000 t (OEA (1986))	Coal reserves based on 5-year program 156,000 t Positive reserves 887,620 t Probable reserves 841,500 t (Investigation of JICA (1988))	Mineable reserves NE-1 Mine 216,000 t Cambahi & North Cambahi 324,000 t Total 540,000 t In-situ reserves NE-1 Mine 360,000 t Cambahi 200,000 t North Cambahi 340,000 t Total 900,000 t	Total coal production on 5-year-program 117,000 t (Company report submitted OEA for 5-year-program from 1984 to 1988) Positive reserves 210,000 t (OEA (1986))	Total coal production on 5-year-program 456,032 t (Company report submitted OEA for 5-year-program from 1987 to 1991) Positive reserves 1,586,000 t Probable reserves 2,973,000 t In-situ reserves 2,973,000 t (OEA (1986))	Bilbao open-pit plan Coal production 50,400 t
			(Company report)			Lower seam 80,600 t Sub-total 311,800 t Inferred reseveres Upper seam Middle seam 159,900 t Lower seam Sub-total 159,900 t Total 1,002,900 t (Investigation of JICA (1988))

COAL RESERVES OF INDIVIDUAL CONTRACTORS ('000 Tons)

Reserves Contractors	Positive Reserves	Probable Reserves	In-situ Reserves	Data Sources
SEMIRARA	132,276	29,765	152,120	OEA (1986)
CAGAYAN VALLEY				
· Isabera Consortium	40,045	38,180	65,498	OEA (1986)
· Diamond Coal Mine	339		339	OEA (1986)
· Phil-German Coal Expl. Area	28,100	15,000	38,000	OEA (1986)
MINDORO	i	•		
F.F. Cruz & Co.	3,073	1,401	4,007	OEA (1986), from data of
	·		:	CDC Mining Corp.
POLILLO	81	130	168	OEA (1096) from data of
Tantuco Mining Corp.	91	130	100	OEA (1986), from data of INIMACO
Pil-Cathay	195	300	395	OEA (1986)
BATAN	100	000	0.50	(1500)
· Carbex Inc. (Cravat Coal)	531	312	1,002	from investigation of JICA
· Carpex Inc. (Cravat Coar)	001		1,002	(1988)
ACRI	3,115	727	3,599	OEA (1986)
Project Managers	1,883	2,252	3,384	OEA (1986) from data of
110,000	_,,	_, -	-,- :	Coalfields
· Bicol Coal Devt.	315	1,000	982	OEA (1986)
Al Mining	259	33	281	OEA (1986), from data of
				Pamana Coal Mines
CATANDUANES				
· Catanduanes Coal Devt. Co.	645	_	645	OEA (1986), from data of
				Sam Chok
QUEZON		:		
· Tantuco Coal Mines	93		93	OEA (1986)
NEGROS				
· Tindalo Mining Corp.	1,046	1,055	1,750	OEA (1986)
DAVAO		1	_	
Almendras	208	-	208	OEA (1986)
SURIGAO	. H.			
· Benguet Corp. DMC	5,000		5,000	OEA (1986)
· DMC-CERI	7,470	.	7,470	OEA (1986), from data of Atlas & PNOC-Bislig
· Montenegrin	2,765	_	3,108	OEA (1986)
Piedra Negra	450	87	508	OEA (1986)
SURIGAO	1			
Pauling Ltd.	1,014	·	1,014	OEA (1986)
· JINICO	750	. <i>-</i> 41)	750	OEA (1986)
PNOC-San Miguel	13,000	- eve	13,000	OEA (1986)
ZAMBOANGA	,	* 17		
· Zamboanga Industrial	1,677	348	1,909	OEA (1986), from data of INIMACO
· F.F. Cruz	40	- 1	, . -	from Company report submitted OEA
DMC-CERI	_	_		no information
PNOC-Malangas	16,000	1,000	16,667	OEA (1986)
· PNOC-Lalat	11,240	6,050	15,273	OEA (1986)
· FNOC-Dalat	X1,47XV	0,000		

Reserves	Positive Reserves	Probable Reserves	In-situ Reserves	Data Sources
Contractors	Reserves	iteserves	ItCSCI VCS	
SAMAR		4 000	5.005	OF 4 (109e)
MMIC	1,105	4,320	3,985	OEA (1986)
· IEI	3,400	129	3,486	OEA (1986)
Northern Cebu			070	OF 4 (1000)
· Durano Coal Mine	378		378	OEA (1986)
· Unicemco	141		140	OEA (1986)
· J. D. Almendras	366	369	612	OEA (1986)
Providence Mining	33	-	33	OEA (1986)
 Fortune Exploration Corp. 	135	-	135	OEA (1986)
 Manto Agro-Industrial 	48	_	48	OEA (1986)
· Il Rey' C	265	_	265	OEA (1986)
Phil-Taiwan	-			no information
Adlaon		-	-	no information
· Aznar	239	839	-	from Company report
ing the second of the second o				submitted OEA
CENTRAL CEBU				
ARGONEX	182	-	182	OEA (1986)
· Cebu Alpaco	129	-	129	OEA (1986)
Fortune Coal	288	-	288	OEA (1986), from data of
	l		l .	Bacaltos Mine
Cebu Coal Mine	888	842		from investigation of JICA (1988)
	1 059	2,292	5,606	from Company report
· D.G. Sanchez Coal Mines	1,253	2,292	0,000	submitted OEA
INIMACO	126	_	126	OEA (1986), from data of Fil
· INIMACO	120			Carbon
· JLB	69	154	172	OEA (1986)
EDMAN			2,698	from Company report
				submitted OEA
· PNOC-Uling	540	_	900	from Company report
SOUTHERN CEBU				
Luvimin	1,586	2,080	2,973	OEA (1986)
INIMACO	1,500	300	1,700	OEA (1986), from data of Fil
	1			Carbon
· Manguerra	210		210	OEA (1986)
Kinway	530	-	530	OEA (1986), from data of
				Interport
· IEVI	663	413	1,799	from Company report
		ļ .		submitted OEA
BOHOL				
First Bohol Mining	392	740	886	OEA (1986)
MASBATE	<u> </u>		1 : 1	
· Hercules Mining	292	_	292	OEA (1986)

	<u> </u>	r		 1					<u> </u>
Items Coal Mines	T.M. (%)	I.M. (%)	Ash (%)	V.M. (%)	F.C. (%)	S (%)	H.V. Btu/lb	Class (ASTM)	Remarks
Polillo	8.4	5.8	14.3	35.2	44.7	0.62	10,680	HVB-C	PNOC ('85)
Lagmac (Queson)	0.4	4.7	13.3	42,4	39.7	0.34	10,930	HVB-C	Tantuco ('83)
Cagayan (RP/UK)	51,1	15.3	21.3	36.9	24.7	1.0	6,640	SB-C	RP/UK ('85)
Isabera	38.8	4.7	3.6	36,6	21.0	0.3	6,330	Lig-A	BACNOTAN
Batan E. (CMIC)	21.7	13.5	10.5	42.3	33.7	2.4	8,990	SB-B	ATLAS Rec.
Batan E. (Carbex) (Middle Seam)		10.14	6.81	43.16	39.39	2.12	10,826	нув-с	SGS Far East Ltd.
Batan E. (Carbex) (Lower Seam)	16.03	10.56	5.73	42.55	41.16	0.94	10,827	SB-A	SGS Far East Ltd.
Batan W. (BMC)	_	11.6	4.6	36.3	47.5	1.0	10,730	SB-A	BED
Catanduancs (Ermitanto)	-	3.1	18.8	20.1	57.9	1.4	11,800	MVB	RRI ('77)
Catanduanes (Magnesia)	33.1	-	12.9	34.0	20.1		7,180		RRI ('77)
Masbate (Hercules)	8.7	6.4	10.2	41.9	41.5	1.72	11,120	нув-с	PNOC ('85)
Samar (MMIC- Bagacay)	_	25.1	7.9	35.3	31.8	2.5	8,280	SB-C	MMIC
Samar (Giporlos)	<u> </u>	19.5	20.0	33.1	27.5	2.68	7,320	SB-C	MMIC
Leyte (Peat)	67.0	10.5	54.8	26.8	8.0	-	2,640	Lig-B	RRI ('77)
Mindoro	24.4	16.4	.5.0	41.2	37.4	3.15	8,900	SB-C	RRI ('77)
Mindoro (Bulelacao coal)	28.8	_	4.9	34.7	31.6	2.9	8,010		Bureau of Mine 1955 as received.
Negros E. (Bagonban)	18.9	(9.3)	10.3	33.2	37.7	(3.9)	8,940	SB-C	Melendres
Negros W.	· . –	9.3	15.1	39.8	35.8	4.0	9,500	SB-A	Melendres
Bohol	18.0	11.3	29.6	50.0	9.1	4.26	7,870	SB-A	BCMC
AAM (North)	15.9	11.4	12.3	44.0	32.3	1.96	9,260	SB-A	PNOC Naga
J.D. Almendras (North)	20.7	17,1	12.7	42.3	27.9	0.4	8,550	SB-B	PNOC Naga
19	28.29	13.41	13.13	49.12	24,34	0.93	9,050	SB-B	PNOC Naga ('87)
ll Ray'C (North)	15.2	11.2	12,5	44.5	31.9	1,99	9,270	SB-A	PNOC Naga
DCM Man (North)	11.1	10.4	8.1	42.3	39.1	0.9	10,030	SB-A	PNOC Naga
Aznar (North)	15.4	14.3	9.0	41.3	35.4	1.0	9,840	SB-A	PNOC Naga
Manto (North)	·	11.7	15.7	35.4	37.4	1.23	8,900	SB-A	PCCM .
DG Sanchez (Central) (Suom Seam 1)		6.82	7.11	41.39	44.68	1.85	11,477	нув-с	Company report
" (Luka Seam 2)	-	7.90	5.78	43.51	42.81	3.57	11,622	нув с	tr .
11	7.8	6.8	7.1	41.1	44.7	1.85	11,480	нув-с	PNOC Naga
Angonex (Central)	15.6	13.1	15.3	42.9	28.7	2.01	9,060	SB-A	PNOC Naga
Cebu Coal Mine (Central)	3.8	2.1	7.3	39.8	50.8	3.38	12,920	нvв-в	PNOC Naga
Bacaltos (Central)	19.4	17.5	4.3	40.8	37.4	0.8	9,910	SB-B	PNOC Naga
Luvimin (South)	-	2.7	14.6	44.8	37.9	1.74	11,710	HVB-B	PNOC Naga
39	8.42	3.06	15.76	38.91	42.27	1.35	11,319	HVB-B	NCC ('87)
EDMAN (Upper seam)	-	16.36	7.77	35.63	40.24	2.43	9,100	SB-B	Company report
EDMAN (Lower scain)	_	15,24	5.45	40.19	39.12	2.51	10,046	SB-A	19

Coal Quality in the Philippines

Items Coal Mines	T.M. (%)	I,M. (%)	Ash (%)	V.M. (%)	F.C. (%)	S (%)	H.V. Btu/lb	Class (ASTM)	Remarks
Pilcarbon (South)	-	5.9	11.3	39.6	43.2	2,5	11,000	нув с	PCCM
Jeston (South)	8.4	6.6	4.3	42.2	46.9	1.0	11,890	HVB-C	PNOC Naga
Manguerra (South)	_	4.3	11.2	46.2	38.3	0.95	11,930	нув-в	PNOC Naga
Semirara (Himaliam)	26.3	19.7	15.1	32.9	32.3	0.7	8,022	SB-C	Dames & Moore
Malangas (ROM)	3.5	1.6	19.2	21.2	58.0	0.6	11,990	MVB	MCC
Malangas (Processed)	4.6	1.6	16.2	23.2	59.1	0.6	12,410	MVB	мсс
Little Baguio (ROM)	5.3	2.2	14.3	33.5	50.0	0.5	12,560	HVB-A	PNOC
Little Baguio (Processed)	4.5	2.0	12.8	31.9	53.3	0.6	12,400	нув-а	PNOC
Lalat (B)	-	2.5	8.0	37.0	52.5	0.5	13,120	HVB-A	PNOC
Lalat (A)	-	2.5	14.0	35.0	48.5	0.4	11,280	HVB∙B	PNOC
Bislig (#k)		12.0	23.3	34.7	30.1	0.8	8,120	SB-A	PNOC
Bislig (#I)	11.	11.3	29.8	31.7	27.1	1.0	7,200	SB-B	PNOC
Bislig (#H)		11.1	24.5	33.7	30.6	0.7	8,080	SB-A	PNOC
Bislig (#HL)		11.0	29.1	32.8	26.4	0.9	6,940	SB-B	PNOC
Bislig (#5)	· · · -	10.3	18.1	36.7	34.9	1,4	9,120	SB A	PNOC
Bislig (#6)	_	9.0	13.7	39.4	38.0	1.2	10,290	HVB-C	PNOC
Piedra Negra		24.44	4.49	35.23	35.84	1.87	8,005	SB-C	Company report
9		16.16	4.22	38.14	41.48	0.48	9,273	SB B	'n
ATLAS PODOCO	17.3	15.8	18.9	44.8	20.5		8,220	SB-B	BED
Tarragona (PNOC L)		12.1	5.9	39.0	43.0	0,94	10,950	нув с	PNOC
Tarragona (PNOC U)	. j. .	25.8	9.8	33.0	31.4	0.64	8,210	SB-B	PNOC
Lianga (Diversified)	14.2	5.4	5.3	47.0	42.3	1.0	11,800	HVB-C	Diversified
San Miguel (PNOC 5)	23.9	18.8	12.5	42.0	24.6	2.1	8,010	SB-C	PNOC

Air dried basis for all analyses except total moisture. Remarks:

Lig

Lignite Sub Bituminous Coal SB

 Low Volatile Bituminous Coal
 Medium Volatile Bituminous Coal LVB MVB High Volatile Bituminous Coal HVB

Philippine Chamber of Coal Mines, Inc. PCCM -

RRI Robertson Research

APPENDIX 7

PROJECTED PHILIPPINE COAL PRODUCTION (1988-2000) ['000 Tons-10,000 BTU/lb]

Year Coal Mines	1988	1989	1990	1991	1992	1993	1995	2000
SEMIRARA (open pit)	630	648	720	720	1,440	1,440	2,160 (1,800)	2,592 (2,160)
PNOC AREAS	1							
Malangas	328	327	293	363	402	402	402	402
Central Cebu (Uling)	25					: . <u></u>	<u></u> -	
Total	353	327	293	363	402	402	402	402
PRIVATE-OWNED AREAS OUTSIDE				.		·		<u> </u>
CEBU						·		
A. Surigao		·	1.5					
· DMC-CERI	65	68	79	79	90	90	122	159
BCI-Diversified (open pit)	27	27	27	27	68	68	112	150
Montenegrin (open pit)	0	18	34	34	34	34	68 (34)	150 (75)
· Piedra Negra (open pit)	4	18	34	34	68 (34)	68 (34)	112 (34)	150 (34)
Sub-Total	96	131	174	174	260 (226)	260 (226)	414 (302)	609 (418)
B. Zamboanga	•							
Zambo	15	30	45 (30)	45 (30)	45 (30)	45 (30)	45 (30)	45 (30)
· F.F. Cruz	8	20 (13)	26 (13)	26 (13)	26 (13)	26 (13)	53 (13)	66 (13)
· DMC-CERI		<u></u>					26	53
Sub-Total	23	50 (43)	71 (43)	71 (43)	71 (43)	71 (43)	124 (69)	164 (96)
C. Batan]	l e.			:		
· ACRI/Batan (open pit)	0	24	36	36	36	36	36	36
· Bicol Coal (open pit)	15	15	15	15	-15	15	15	15
Project Manager, Inc.	,0	31	31	31	31	31	31	31
· Cravat Coal Mines, Inc. (open pit)	60	60	60	60	60	60	60	60
Sub-Total	75	130	142	142	142	142	142	142
D. Polillo							 	
· Pilipino Cathay	14	26	26	26	26	26	40 (26)	40 (26)
· INIMACO							26 (13)	40 (26)
Sub-Total	14	26	26	26	26	26	66 (39)	80 (52)
E. Other Areas	•							
Cagayan	4	13	26	26	26	26	26	40
Catanduanes	0	7	13	17	21	25	33	51
Negros	15	20	20	20	20	20	20	20
- Masbate	12	24	30	36	36	36	36	36
Mindoro			_	_ :		_	_	800
· Isabera								1,000
Sub-Total	31	64	89	99	103	107	115	1,947
Total (Private–Owned Areas outside Cebu)	239	401 (394)	502 (474)	512 (484)	602 (540)	606 (544)	861 (667)	2,942 (2,655)

Year Coal Mines	1988	1989	1990	1991	1992	1993	1995	2000
CEBU								
- Adlaon	12 (6)	18 (9)	24 (12)	24 (12)	24 (12)	24 (12)	24 (12)	24 (12)
· Philippine Taiwan (AMC-Licos)	20	24	36	36	36	36	63	95 (63)
· Argonex	7	12	12	12] 12	12	10	10
- Aznar	12	18	24	24	24	24	23	23
· Cebu Alpaco	12	18	18	18	18	18	15	15
· Cebu Coal	40 (30)	48 (30)	48 (30)	48 (30)	48 (30)	48 (30)	54 (30)	81 (30)
· D.G. Sanchez	9	15	24	30	30	30	42	42
- EDMAN	11	18	24	. 24	24	24	22	22
· Fortune	0	6 .	6	6	6	6	6	6
- IEVI	14	24	24	24	24	24	25	25
· Il Rey'C	12	18	24 (18)	24 (18)	24 (18)	24 (18)	22 (18)	22 (18)
· INIMACO	13	18	24	24	24	24	57	.92 (57)
- J.D. Almendras	44 (24)	48 (24)	48 (24)	48 (24)	48 (24)	48 (24)	54 (24)	81 (24)
Kinway	11	18	24	24	24	24	26	26
· Luvimin	100	108	120	132	144	156	196	262 (196)
· Manguerra	41	48	60	72	84	96	132 (96)	198 (96)
· R.M. Durano	16	24	36 (24)	36 (24)	36 (24)	36 (24)	54 (24)	108 (24)
Total	374 (338)	483 (432)	576 (504)	606 (534)	630 (558)	654 (582)	825 (689)	1,132 (689)
]. •	0.1				
GRAND TOTAL	1,596 (1,560)	1,859 (1,801)	2,091 (1,991)	2,201 (2,101)	3,074 (2,940)	3,102 (2,968)	4,248 (3,558)	7,068 (5,906)

PROJECTED PHILIPPINE COAL PROCUCTION (1988~2000) ['000 Tons-Run of Mine]

APPENDIX 8

Year Coal Mines	Positive Reserves	Total Production (1988~2000)	1988	1989	1990	1991	1992	1993	1995	2000
SEMIRARA (open pit)	132,276	28,375 (25,275)	875	900	1,000	1,000	2,000	2,000	3,000 (2,500)	3,600 (3,000)
PNOC AREAS						ļ' ·		:		i
· Malangas	16,000	4,290	285	284	255	316	350	350	350	350
· Central Cebu (Uling)	540	25	25				-			
Total	16,540	4,315	310	284	255	316	350	350	350	350
PRIVATE-OWNED AREAS OUTSIDE			٠.							
CEBU]		<u></u>	·		
A. Surigao					İ					
· DMC-CERI	7,470	1,612	74.	78	93	93	108	108	150	200
· BCI-Diversified (open pit)	5,000	1,364	∵ 36	36	36	36	90	90	150	200
Montenegrin (open pit)	2,765	899 (574)	0	24	45	45	45	45	90 (45)	200 (100)
· Piedra Negra (open pit)	450	1,340 (525)	6	24	45	45	90	90 (45)	150 (45)	200 (45)
Sub-Total	15,685	5,215 (4,075)	116	162	219	219	333	333 (288)	540 (390)	800 (545)
B. Zamboanga										
· Zambo	1,677	432 (300)	12	24	36 (24)	36 (24)	36 (24	36 (24)	36 (24)	36 (24)
F.F. Cruz	40	445 (151)	7	18 (12)	24 (12)	24 (12)	24 (12)	24 (12)	48 (12)	60 (12)
· DMC-CERI	l	168							24	48
Sub-Total	1,717	1,045 (619)	19	42 (36)	60 (36)	60 (36)	60 (36)	60 (36)	108 (60)	144 (84)
C. Batan		2.5								
· ACRI/Batan (open pit)	3,115	420	0.	24	36	36	36	36	36	36
· Bicol Coal (open pit)	315	234	18	18	18	13	18	18	18	18
· Project Manager, Inc.	1,883	456	24	36	36	36	36	36	36	36
· Cravat Coal Mines, Inc. (open pit)	531	780	60	60	60	60	60	60	60	60
Sub-Total	5,844	1,890	102	138	150	150	150	150	150	150
D. Polillo										
· Pilipino Cathay	195	373 (301)	13	24	24	24	24	24	36 (24)	36 (24)
· INIMACO	81	156 (84)			<u> </u>				24 (12)	36(24)
Sub-Total	276	529 (385)	13	24	24	24	24	24	60 (36)	72 (48)
E. Other Areas										}
· Cagayan	28,100	2,000	_			_		·		2,000
· Catanduanes	645	196	4	12	24	24	24	24	24	36
Negros	1,046	388	0	8	15	20	25	30	40	60
Masbate	292	306	18	24	24	24	24	24	24	24
· Mindoro	3,073	426	12	24	30	36	36	36	36	36
· Isabera	40,045	2,000	_				_	_		2,000
Sub-Total	73,201	5,316	34	68	93	104	109	114	124	4,156
Total (Private-Owned Areas outside Cebu)	96,723	13,995 (12,285)	284	434 (428)	546 (522)	557 (533)	676 (607)	681 (612)	982 (760)	5,322 (4,93)

Year Coal Mines	Positive Reserves	Total Production (1988~2000)	1988	1989	1990	1991	1992	1993	1995	2000
CEBU									·	
· Adlaon	no information	294 (147)	12 (6)	18 (9)	24 (12)	24 (12)	24 (12)	24 (12)	24 (12)	24 (12)
· Philippine Taiwan (AMC-Licos)	no information	614	20	24	36	36	36	36	60	90 (60)
Argonex	182	151	7	12	12	12	12	12	12	12
• Aznar	239	294	12	18	24	24	24	24	24	24
· Cebu Alpaco	129	228	12	18 .	18	18	18	18	18	18
· Cebu Coal	888	718 (390)	40 (30)	48 (30)	48 (30)	48 (30)	48 (30)	48 (30)	60 (30)	90 (30)
D.G. Sanchez	1,253	384	9	15	24	30	30	30	36	36
EDMAN	no information	293	11	18	24	24	24	24	24	24
	(ln-situ 2,698)									
· Fortune	North Cebu 135	72	0	. 6	6	6	6 '	6	6	6
	Central Cebu 288									
· IEVI	663	302	14	24	24	24	24	24	24	24
· II Rey'C	265	294 (228)	12	18	24 (18)	24 (18)	24 (18)	24 (18)	24 (18)	24 (18)
· INIMACO	Central Cebu 126	469 (439)	13	18	24	24	24	24	48	78 (48)
t a second	South Cebu 1,500]		
- J.D. Almendras	366	722 (312)	44 (24)	48 (24)	48 (24)	48 (24)	48 (24)	48 (24)	60 (24)	90 (24)
· Kinway	530	293	11	18	24	24	24	24	24	24
· Luvimin	1,586	2,056 (1,996)	100	108	120	132	144	156	180	240 (180)
Manguerra	210	1,277 (1,073)	41	48	60	72	84	96	120 (96)	180 (96)
- R.M. Durano	378	640 (304)	16	24	36 (24)	36 (24)	36 (24)	36 (24)	60(24)	120 (24)
Total	8,738	9,101 (7,520)	374 (338)	483 (432)	576 (504)	606 (534)	630 (558)	654 (582)	804 (660)	1,104 (660)
GRAND TOTAL	254,277	55,786(49,395)	1,843 (1,807)	2,101 (2,044)	2,377 (2,281)	2,479 (2,383)	3,656 (3,515)	3,685 (3,544)	5,136 (4,270)	10,376 (8,993)

^{* ()} Projected Coal Production reviewed by JICA

