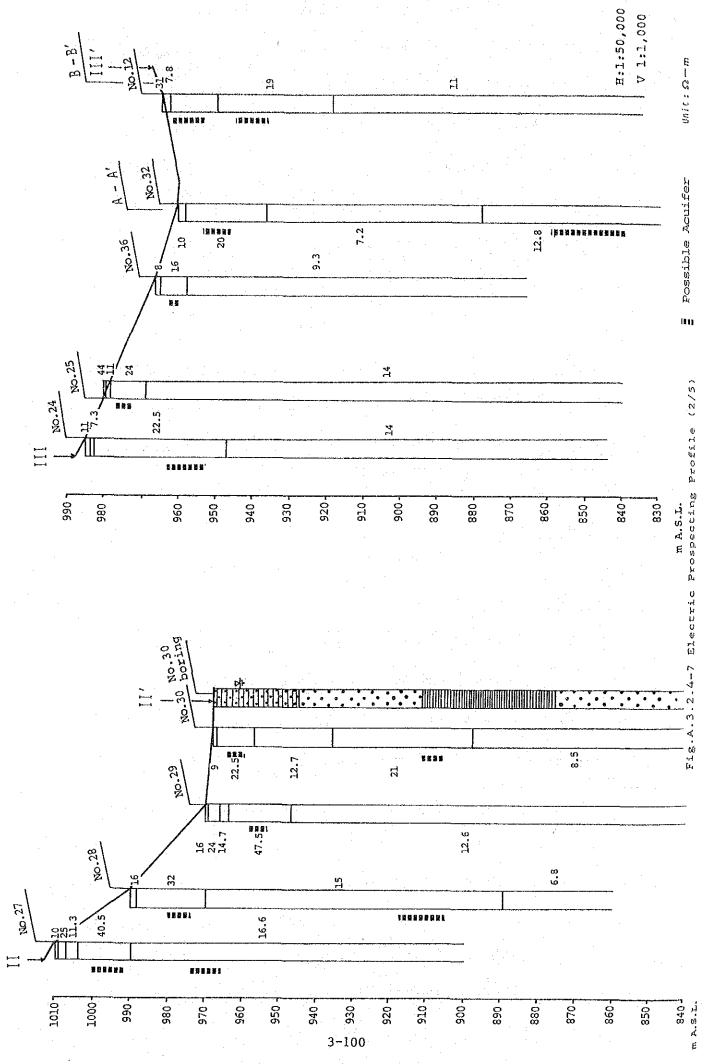
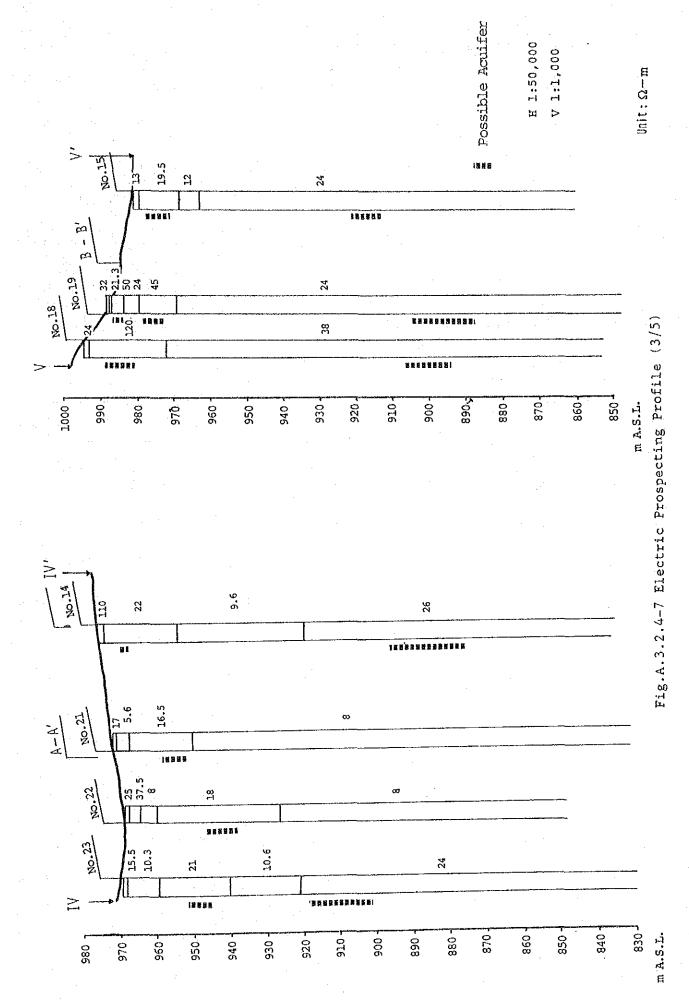
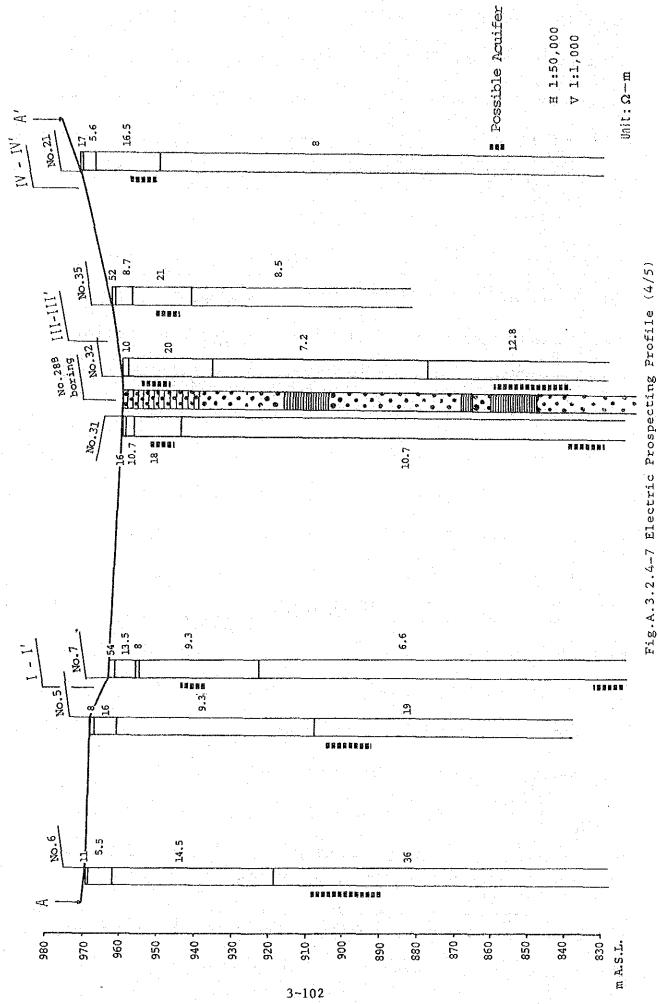
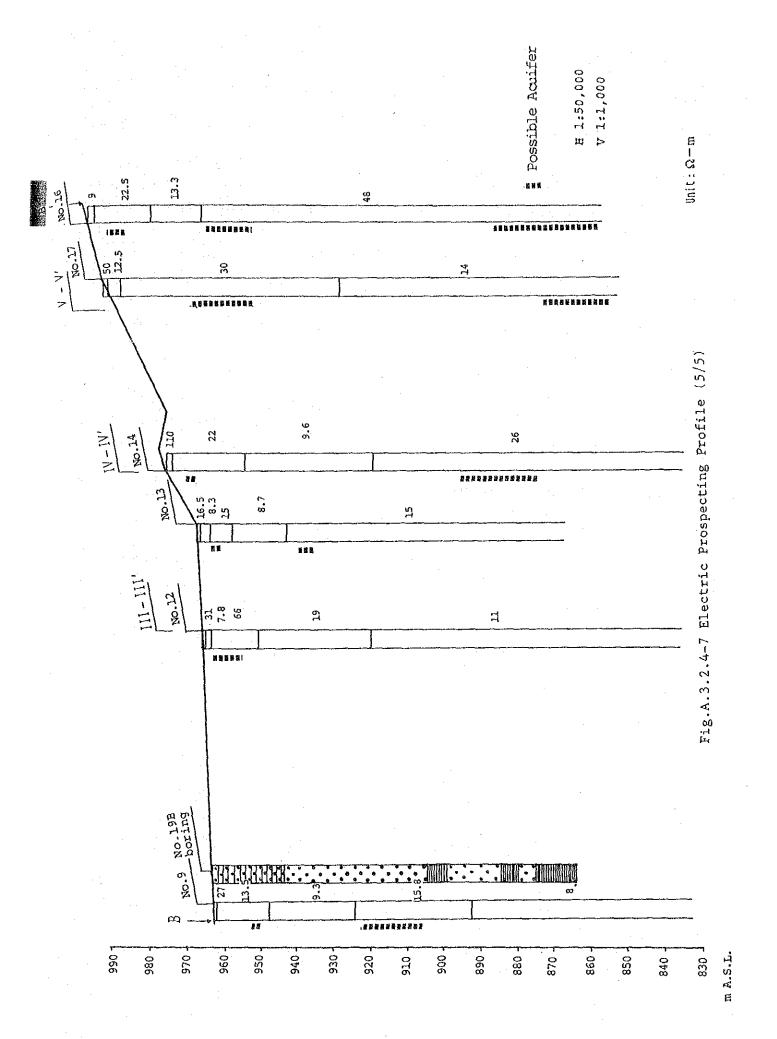

Electric F. S.	Curve Measuring Point No.33 1 1 </th
Blectric Solution Bisitivity Solution Solution Solution Solution Solution	$\frac{1}{2} + \frac{1}{2} + \frac{1}$


10 10 10 10 10 10 10 10 10 10	
Electric	
Resistivity	
 ρ $(\Omega + n)$ v_0 ρ ρ ρ ρ ρ ρ ρ ρ	
 Blectric Resistivity	
Fig.A.3.2.4-6 ρ -a Curve (18/21)	
3-95	







(3) Pumping test

For the purpose of determining the hydrogeological coefficient of aquifers, the pumping test was performed at a well selected from each of Mojarritas sector and San Pedro sector, both of which are major ground water development areas. The pumping test employed 2 methods: one is the Jacob's method, which pumps a certain volume of water from a single well continuously until the water level is stabilized, to measure changes in water levels during pumping, and the other is the recovery method, which observes the recovery condition of the level in a well after stopping to pump water.

Table A.3.2.4-lto3 summarizes observation data of the pumping test, and Fig A.3.2.4-8 to 10 is the analysis diagram. The analysis result is obtained in the following equation, as shown below. Symbols used in the equation have meanings stated below.

- Q : Pumping Discharge (m³/sec)
- r : Well Radius (m)
- T : Transmissivity (m^2/h)

K : Permeability Coefficient

S : Storage Coefficient

t : Measured Time

t': Time after Stop of Pumping (sec)

t : Basal Time obtained from Figure (sec)

- s: Drawdown (m)
- h: Screen Length (m)

a. Mojarritas Sector (No. 19B well)

2

i. Jacob's Method

$$Q = 1.65 \times 10^{-1} \text{ m}^{2}/\text{sec}$$

$$s = 41.5 \text{ m}$$

$$r = 0.10 \text{ m}$$

$$t_{0} = 22 \text{ sec}$$

$$h = 64 \text{ m}$$

$$T = \frac{2.3Q}{4 \text{ s}} = \frac{0.183Q}{\text{s}}$$

$$-2$$

 $= \frac{0.183 \times 1.65 \times 10^{-2}}{41.5} = 7.28 \times 10^{-5} (m^2/sec)$

$$S = \frac{2.25T \text{ to}}{r^2}$$

= $\frac{2.25 \times 7.28 \times 10^{-5} \times 22}{0.1^2}$ = 3.6 x 10⁻¹
K = $\frac{T}{h}$ $\frac{7.28 \times 10^{-5}}{64}$ = 1.14 x 10⁻⁶ m/sec

ii. Recovery Method

$$T = \frac{0.183Q}{\Delta S^{1}}$$

= $\frac{0.183 \times 1.65 \times 10^{-2}}{7}$ = 4.3 x 10⁻⁴(m²/sec)
K = $\frac{T}{\Delta h}$ = $\frac{4.3 \times 10^{-4}}{64}$ = 6.72 x 10⁻⁶ m/sec

With respect to the permeability coefficient thus obtained, both Jacob's method and recovery methods, show values in almost the same order. Generally, fine sand, silt, and silty sand have the same permeability and order, and show somewhat worse value of transmissivity than the gravel layer or sandy gravel layer. The value of the storage coefficient is considerably greater than values (0.005 to 0.00005) in the pressured aquifer and approximates to values (0.05 to 0.4) in the no-pressure aquifer. Therefore, it is probable that the aquifer targeted by the well is a no-pressure aquifer.

b. San Pedro Sector (No. 29 well) i. Jacob's Method $Q = 1.5 \times 10^{-2} \text{ m}^3/\text{sec}$ $\Delta S = 2.2 \text{ m}$ r = 0.10 m $t_0 = 3.6 \text{ sec}$ h = 65.5 mm

$$T = \frac{0.183Q}{S}$$
$$= \frac{0.183 \times 1.5 \times 10^{-2}}{2.2} = 1.2 \times 10^{-3} \text{ (m}^2/\text{sec})$$

$$S = \frac{2.25T \text{ to}}{r^2}$$

= $\frac{2.25 \times 1.2 \times 10^{-3} \times 3.6}{0.1^2}$ = 9.7 x 10⁻¹
$$K = \frac{T}{Ab} = \frac{1.2 \times 10^{-3}}{65.5} = 1.8 \times 10^{-5} \text{ (m/sec)}$$

This test well exhibited instantaneous water level recovery and prevented the test by the recovery method. The permeability coefficient obtained here is in the same order as that of medium- and fine-sand, and silty sand.

	Note	Dravdovns (0)	Water Level (m)	Time t (Sec)	ed	Measured Time	
	Pumping Discharge	0	10.67	0	15	:	12
	$1.65 \times 10^{-2} \text{m}^3$ /Sec		. '	•			
		18.59	29.26	60	16	:	
		30.48	41.15	120	7	:	
		38.40	49.07	180	8	:	
		41.15	51.82	240	9	:	
		46.94	57.61	300	.0	:	
1 1		50.29	60.96	360	.1	:	
	· ·	53.03	63.70	420	.2	:	
		54,56	65.23	480	3	:	
		57.30	67.97	540	4	:	
		60.04	70.71	600	5	:	
		62.18	72.85	900	20	:	
		61.57	72.24	1.500	0	:	
		61.57	72.24	2.100	0	:	
		66.44	77.11	2.700	i0	: .	
		67.97	78.64	3.300	00	:	13
	· · ·	67.97	78.64	3,900	0	:	
	·	67.97	78.64	4.500	20	: .	
		67.97	78.64	5.100	80	:	
		67.97	78.64	5.700	10	:	
		67.97	78.64	6,300	50	:	
		67.97	78.64	6,900	00	:	14
		67.97	78.64	8.700	30	:	
		67.97	78.64	10.500)0	:	15
		67,97	78.64	11.700	20	:	

Table A.3.2.4-1 Continuous Pumping Test at Deep

Moasu Time	ire	d	Time t (Sec)	Tine	t' t∕t'	Water Level (ø)	Dravdova s (cm)	s Note
15	;	20	11.700	0		78.84	67.97	Pumping Stop
	;	21	11.760	60	196	51.82	41.15	
•	:	22	11.820	120	98.5	29.26	18.59	
·	:	23	11.880	180	66	20.73	10.06	
	:	24	11.940	240	49.75	16.75	6.09	
	:	25	12.000	300	40	15.85	5.18	
	:	26	12.060	360	33.5	15.24	4.57	
	;	27	12.120	420	28.86	14.63	3.96	
	:	28	12.180	480	25.38	14.63	3.96	
	:	29	12.240	540	22.67	14.63	3.96	
	:	30	12,300	600	20.5	13.73	3.05	
	:	32	12,420	720	17.25	13.11	2.44	•
	:	34	12.540	840	14.93	13.11	2.44	
	:	36	12.660	980	13.19	11.58	0.91	
	:	38	12.780	1,080	11.83	10.67	0	

Table A.3.2.4-2 Recovery Test at Deep Well (No. 19B) in Mojaritas Sector

Table A.3.2.4-3 Continuous Pumping Test at Deep Well

(No. 29) in San Pedro Sector

Keasured Tige	Tine t (Sec)	Yater Level (ø)	Drawdown s (m)	Note
8 : 40	0	14.33		Puoping Discharge
: 41	60	17.39	3.60	$1.5 \times 10^{-2} \text{m}^3$ /Sec
: 42	120	17.66	3.33	
: 43	180	17.98	3.65	
: 44	240	18.27	3.94	
: 45	300	18.44	4.11	
: 47	420	18.77	4.44	
: 49	540	19.03	4.70	
: 51	660	19.21	4.88	
: 54	840	19.45	5,12	
: 57	1.020	19.63	5,31	
9 : 00	1.200	19.83	5,50	
: 10	1,800	20.18	5.85	
: 20	2.400	20.47	6.14	
: 30	3.000	20.64	6.31	
: 40	3.600	20.85	6.52	
: 50	4.200	20.95	6.62	
10 : 00	4.800	20.98	6.65	
: 30	6.600	21.03	6.70	
11 : 00	8.400	21.07	6.74	
: 30	10.200	21.14	6.81	
12 : 00	12.000	21.16	6.83	
13 : 00	15,600	20.83	6.50	

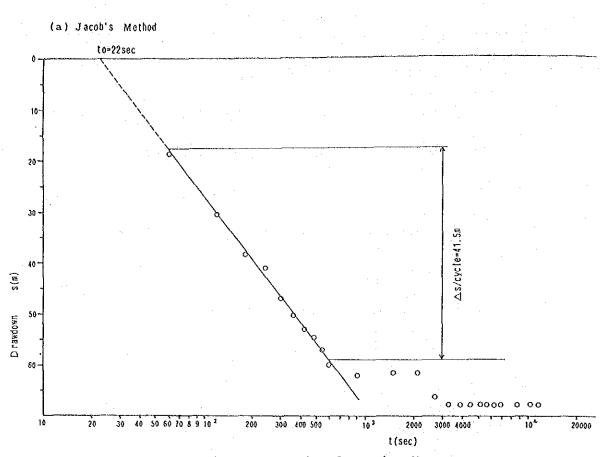
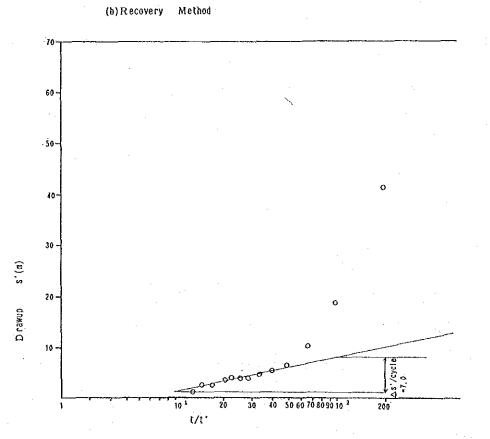
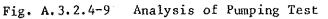
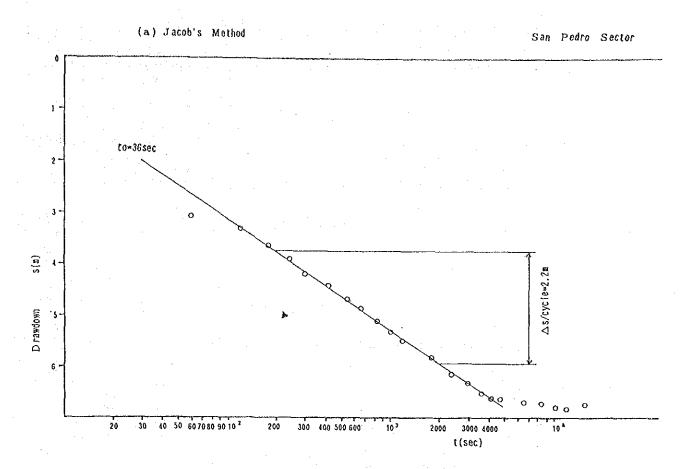
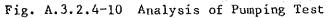






Fig. A.3.2.4-8 Analysis of Pumping Test

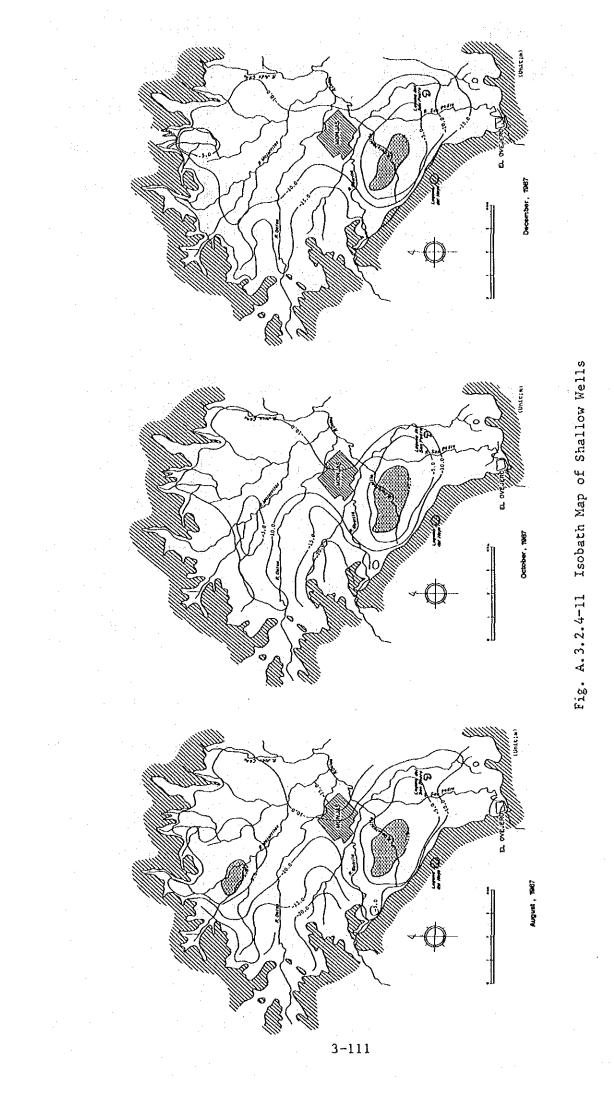
4) Groundwater Flow Condition

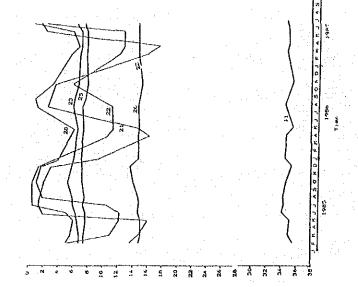
Using the groundwater table of 113 wells measured August, October and December 1987, a regional groundwater table map is drawn to understand the groundwater flow (Fig. A.3.2.4-11).

The groundwater tables generally show higher than GL-20m in the area and higher than GL-10m in the plain area. The areas with groundwater table being higher than GL-1m are identified in two sectors. The areas with higher than GL-0.5m very closely coincide with unusable land with clay soild.

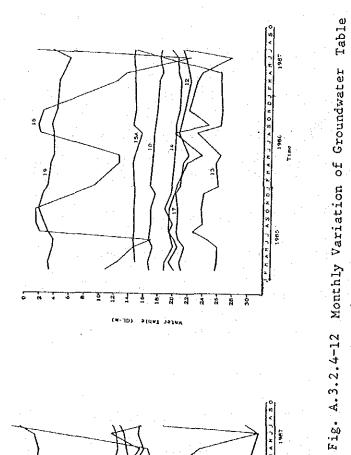
The groundwater table gradually deepen toward hills and mountain areas from plain area. But the table rises up near of volcanic impermeable layers.

In the areas of existing main river courses and piedment, the hydraulic gradient is steep (1/3 - 1/240), but in the plain area it becomes gentle (1/125 - 1/600). The change of the gradient is relatively abrupt in the boundaries between piedment and plain area. The changing zones roughly coincide with changes in geological components, granulometry of detrieval materials and ground slope.

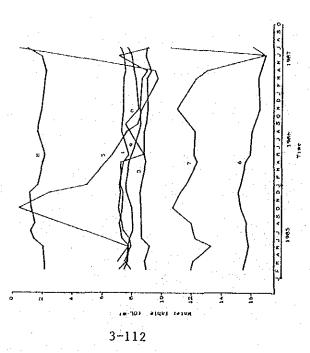

In Fig. A.3.2.4-12 is presented the monthly variation of groundwater tables between February 1985 and July 1987. In general speaking, the annual variation of tables has not been detected, but the sectorial monthly fluctuation can be classified into 3 types as follow:


- (a) Area with increment of groundwater table during the rainy season;
- (b) Area with increment of groundwater table during the dry season; and
- (c) Area with stable groundwater table all the year round.

The area (a) coincide with surrounding limits between mountains and piedments, terraces, and surrounding areas of deep wells and principal river courses. The area (b) is detected in the central part of the basin. The area (c) is distributed in hill, sub-basin of the tributaries and surrounding area of type (b).


On the basis of the above analysis, the variation of groundwater tables can be interpreted as following manner: The supply from rainfall presents the rapid elevation of groundwater tables during rainy season, but the rapid drawdown during dry season. On the other hand, the elevation of groundwater tables is found during dry season in the central part of the basin due to slow appearance of the effect produced by the rainfall of wet season.

According to the hearing, the stable groundwater levels of deeps wells do not show clear variation all the year round and delay some minutes to recover the groundwater level before pumping.



of Shallow Wells

5) Ground water quality

In 1985 DIRYA analyzed 25 samples of ground water from shallow wells in the study area. In the present study 3 samples from deep wells in Mojarritas Sector and San Pedro Sector were analyzed. Table A.3.2.4-4 shows the analysis result. The analysis result is also shown in the form of Trilinear Diagram and Classification of Irrigation Water (Fig. A.3.2.4-13, 14).

6) Utilization of ground water

Utilization of ground water in the study area may be classified into irrigation water and household water. Irrigation water is obtained from deep wells while household water from shallow wells. In the study area Monjas Sector and Los Terrones-Llano Grande Sector are thoroughly provided with water supply. The former depends for the water source on a spring near Agua Tibia while the latter on neighbor small rivers.

This subparagraph describes utilization of ground water from deep wells. Utilization of ground water in each Sector stated above is as outlined below (Table A.3.2.4-5).

	Number of Well	Irrigation Area (ha)	Total Pumping Discharge (m ³)
Mojarritas Sector	22 (20) (*1)	260	Approximately 4.0 MCM
San Pedro Sector	4 (4) (*1)	68	Approximately 0.9 MCM
Other Sector	11 (7) (*1)	120 (136)	Approximately 1.5 MCM
Total	37 (31) (*1)	448 (464) (*2)	6.5 МСМ

Table A.3.2.4-5 Summary of Groundwater Utilization

*1 Number of working wells

*2 Including non-steady utilization

Table	A.3.2.4-4	Groundwater	Quality
-------	-----------	-------------	---------

	. •				•		••	-			(Sampli	ng Date:	January,	1985)
No. of Well	1	2	3	6	8	9	13	17.	19	20	21	22	23	26
рH	8. t3	7.46	7.08	7.03	7.12	7.44	7.30	7.62	7.45	7.20	6.83	7.12	7.39	7.4
EC(ms/cm at 25° c)	314	549	276	235	128	275	571	301	432	203	103	314	605	447
SS(001)	266	438	244	216	170	226	294	274	484	162	228	216	404	260
Ca ⁺⁺	0.96	1.60	0, 96	1.17	0.32	0.96	1.07	0, 96	0,96	0.96	0.53	1.49	2.13	1.1
M g **	0.89	1.49	0.69	0.79	0.50	1, 10	1.71	0.69	0.69	0.69	0.29	1.19	2.19	3.4
Nat	1.55	1.95	1,40	0.43	0.40	0.83	1.40	1.40	2.15	0.43	0.23	0.60	1.40	0.9
к*	0.22	0.34	0.13	0.09	0.11	0.13	0.13	0. 19	0.38	0.14	0. 10	0.06	0.33	0.2
C 0 3	0.76	0.00	0.51	0.00	0.00	0.51	0.86	0.46	0.30	0.00	0.00	0.51	0.96	0.7
Hco ₃ -	3, 16	2.41	2.42	2.17	1.40	2.62	3.40	2.55	2.06	1.98	1, 17	2.64	4.29	3.2
C1	0.20	2.16	4.49	0.01	0, 15	0.25	0, 12	0.21	0.99	0.29	0.06	0.35	0.73	0.0
Sot	0, 13	0.15	0, 10	0.00	0.00	0.02	0.03	0.12	0.34	0.33	0. 16	0.15	0.13	0.0
Na%	42.82	36, 25	44.03	17.34	30.08	22.03	32.48	43.21	51.44	19.37	20.00	17.96	23.14	16.3
SAR	1.61	1.57	1.54	0.43	0,62	1,62	1.19	4.54	2.15	0.43	0.36	0.52	0.95	0.6
Na, Co, RES	2.07	0.00	1.28	0.21	0.58	1.07	1.48	1.36	0.71	0.33	0.35	0.47	0.93	0.0

(Sampling Date:Harch, 1985)

(Sampling Date:December, 1987)

No. of Well	2	5	7	13	14	16	21	22	24	25	28	23*	258*	29*
Hq	7.00	7.34	7.00	8.08	7.10	6. 10	7.60	7.10	6.60	6.90	7.57	6, 65	6, 79	6.50
EC(ms/cm at 25° c)	548	412	393	308	367	70	141	340	209	255	268	392	401	189
SS(ppm)	418	264	342	244	314	_	190	230	360	216	212	312	330	194
Ca**	1.83	2.37	1.83	0.97	1.51	0.11	0,65	1.83	0.75	1.08	0.97	1.56	1.68	0.92
Mg++	1.08	1.06	1.08	0.69	1.09	0.20	0.28	0.87	0.29	0.69	0.80	i , 10	1.02	0.41
Na ⁺	1.90	0.73	0.62	1.15	1.40	0.24	0.27	0.61	0.83	0.63	0.63	1.55	1.40	0.44
К.+	0,35	0.07	0.16	0.10	0.14	0.16	0.12	0.07	0.23	0.19	0, 17	0.28	0.22	0.14
Coj	0,21	0.28	0.29	0.00	1.20	0.00	0.00	0.62	0.00	0.37	0.32	0,00	0.00	0.00
Hcoj	1.98	3.48	1.71	2.61	2,60	0, 68	1.17	1.96	1.24	2.28	2.24	4.05	4.09	1.44
CI-	1, 38	0.32	0.54	0.30	0,06	0, 06	0.02	0.46	0.02	0.02	0.06	0.06	0.14	0.14
So.	0.06	0.35	0, 10	0.14	0.00	0.00	0.00	0.14	0.30	0.00	0.03			-
Na%	36,82	17.26	16.80	39.52	33.82	33.80	20,45	18.05	39.52	24.32	24.51	34.52	32.41	23.04
SAR	1.58	0,56	0.51	1.26	1.23	0,61	0.39	0.53	1.15	0.67	0.67	1.34	1.20	0.54
Nai Co, RES	0	0.33	0	0.95	1.20	0.37	0.25	0	0.20	0.88	0.79	1, 39	1.39	0.11

. Note:NaX = Na/Na+Ca+Hg, SAR = Na/ (Ca+Hg)/2 * = Deep Well

(Source:DIRYA and Study Team)

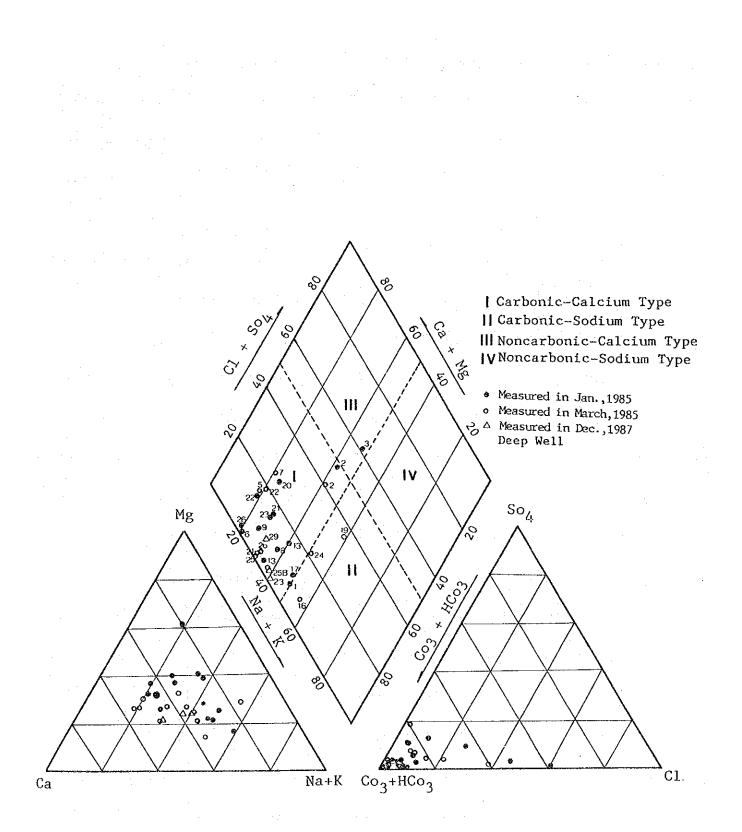
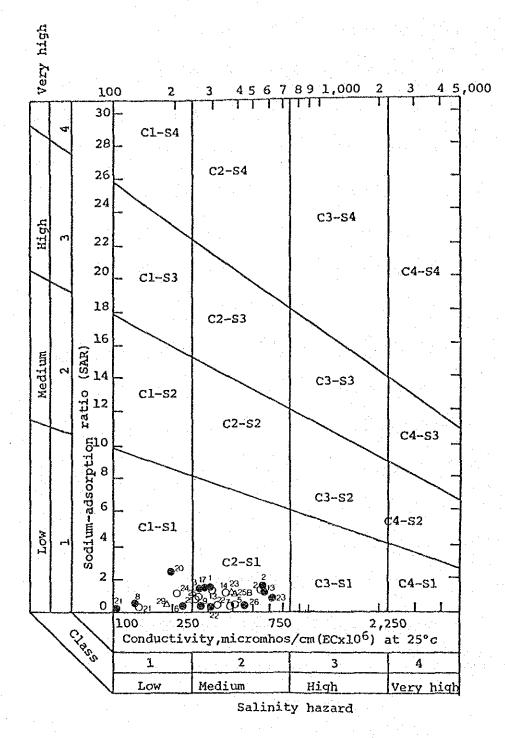



Fig. A.3.2.4-13 Trilinear Diagram

Source : USAD Salinity Lab. Handbook 60 Fig. A.3.2.4-14 Classification for Irrigation Water

· . .

Table A.3.2.4-6 shows electric charges and pumping output estimated on the basis of fact-finding hearing study on water utilization performed in the above 3 sectors. Table A.3.2.4-7 shows fixed cost (such as well digging cost and pump expenses) and variable charge (electric charges) relevant to ground water development in October, 1987.

	Mojarritas Sector	San Pedro Sector	Other Sector
No. of well	21 B	29	9
Irrigated Area (ha)	21	9.8	. 14
Irrigtated Period	Nov./Apr. (everyday)	Nov./Mar. (time/2days)	Dic Mar (every day)
Irrigated Hour	181/days×16hr/d=2.896 hrs	106/days×14hr/d=1.484 hrs	121days ×19hrs/d =2.299 hr
	(=10.425.600sec)	(=5.342.400sec)	(=8.276.400sec)
Puap Pover	11.2k¥	11.2k¥	7.5KV
Consumed Electricity	32.435 kWh	16.620k¥h	17.243kWh
Basic Charge	Q 2.96×11.2k¥=	Q 2.96×11.2k¥=	Q 2.96×7.5k¥ =
	Q 33.15	Q 33.15	Q 22.2
Consumption Charge	Q 0.134 ×100kWh×11.2+	.Q 0.134 ×100kWh×11.2+	Q 0.134 ×100kWh×7.5 +
	Q 0.128 ×100kWh×11.2+	Q 0.128 ×100kWh×11.2+	Q 0.128 ×100kWh×7.5 +
	$Q 0.108 \times 32.235$ kWh =	Q 0.108 ×16.420kWh =	Q 0.108 ×17.043kWh =
	Q 3.774.82	Q 2.066.80	Q 2.037.14
Sub Total	Q 3.807.97	Q 2.099.95	Q 2.059.34
Combustible Adjustment			
(10%) + 1 VA (7%)	Q 647.35	Q 356.99	Q 350.09
Grand - Total	Q 4.455.32	Q 2.456.94	Q 2.409.43
Electric Charge			
per ha	Q 221.16	Q 250.71	Q 172.10
Pumping Discharge	15.80 /S ×10.425.600 sec	17.50 /S ×5.342.400sec	5.00 /S ×8.276.400scc

Table A.3.2.4-6 Deep Well Groundwater Utilization

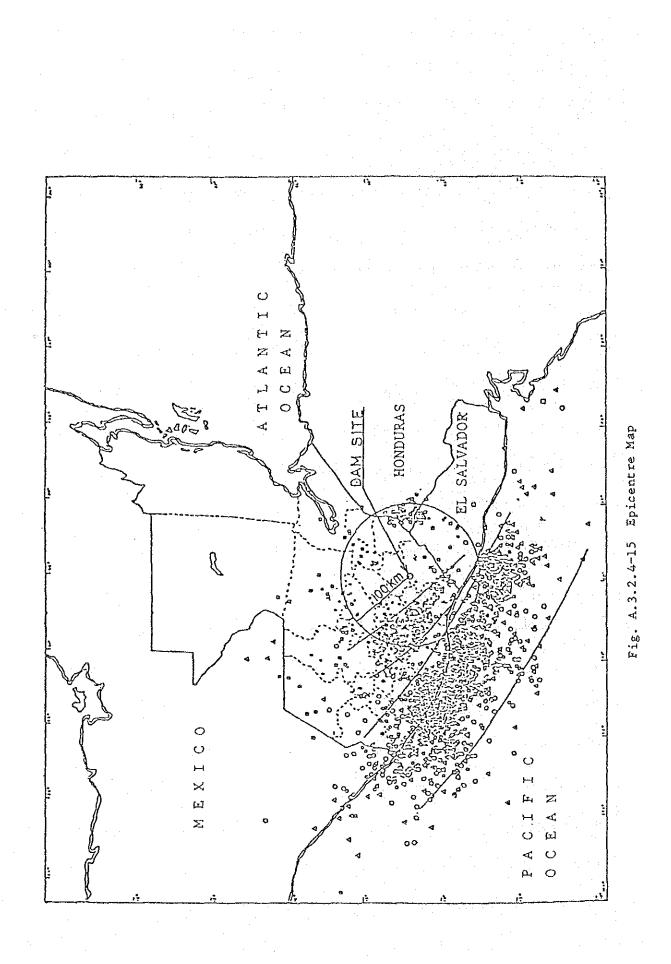
(Source : Field Survey)

Item	Unit price (Q)	Quantity	Price (Q)	Note
Preparation Work		Unit	2,500	Transportation, installation of machine & equipment
Boring	200	70 m	14,000	10"
Well Facility		Unit	29,000	Tube, casing, screen, etc.
Well Prospecting Test		Unit	1,700	Pumping test, electric prospecting (SP).
Pump		Unit	11,000	Subwergible pump, 11 kW, including installation cost.
Electric Facilities			10,000	Cable (300 m), transformer, including installation cost
Conducting pipe	14	250 m	3,500	4", VU pipe
Electric Charge		31,680 KWh	4,350	16 hr/day x 180 days
Annual Instal- ment Rate		(i=5%), 0.11 e period: 2)%)
Annual Pumping Discharge	800 m ³	/day x 180 d	ays = 14	44,000 m ³

Table A.3.2.4-7 Actual Cost for Groundwater Development

The following calculation shows groundwater cost necessary for obtaining a pump discharge per unit; an example is taken from this well to be developed.

Case of annual interest of 5%


Groundwater cost =
$$\frac{(2.5+14.0+29.0+1.7+11.0+10.0+3.5)\times 10^{3}\times 0.0802+4350}{144.0\times 10^{3}}$$

= 0.07 Q/m³
Groundwater cost =
$$\frac{(2.5+14.0+29.0+1.7+11.0+10.0+3.5)\times 10^{3}\times 0.1175+4350}{144.0\times 10^{3}}$$

= 0.09 Q/m³

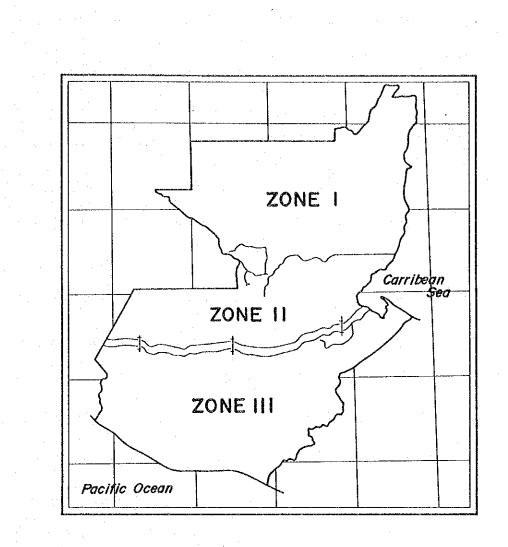

(3) Seismology

Table A.3.2.4-8 Seismographical Record (1978 to 1982)

Cordinate of dam site Latitude 14°50' Longitude 90°00'

No .		Date	Epicen Latitude	and the second descent second descent second descent second descent second descent second descent second descen	Magnitude	Distance from dam site	Acceleration
1	Jul	29,'78	14.613	90.903	5,1	119	1.98
2	Ju1	29,'78	14.762	90.008	3.1	35	2.30
3	Jan	12,'79	14.067	91.532	6.0	194	3.06
4	Jan	15,'79	13.373	89.980	4.9	126	1.18
5	Jan	22,'79	13.539	90.166	4.7	113	1.17
6	Sep	10,'79	14.017	90.651	4.7	1.05	1.59
7	Sep	23,'79	14.150	90.289	4.0	63	2.24
8.	Sep	27, 79	14.223	90.268	3,5	57	1.10
9	0ct	9,179	14.128	90.262	5.0	63	15.33
10	Nov	11,'79	14.203	90.265	4.3	58	5.47
11	Feb	11,'80	14.153	90.205	4.1	56	4.07
2	Mar	6,'80	14.507	89.540	3.1	32	2.67
13	Apr	21,'80	15.108	89.456	4.3	79	1.98
14	May	7,'80	14.996	89.611	3.6	60	1.10
L5	Sep	18,'80	13.479	89.874	4.9	1.30	1.92
L6 .	Feb	21,'81	14.382	89.416	3.5	48	2.01
.7	Apr	4,'81	15.162	89.729	4.4	75	3.08
L8	Apr	7,'81	14.672	90.044	3.2	30	3,92
9	Jun	8,'81	14.401	89.798	4.0	12	38,43
20	Aug	12,'81	14.614	89.884	4.1	14	38.02
21	Aug	20,'81	14.330	89.884	4.1	26	13.09
22	Aug	29,'81	14.330	89.884	3.8	21	26.13
23	Nov	14,'81	14,340	89.769	3.4	19	13.09
24	Jan	4,'82	14.185	89.696	4.2	38	11.42
25	Jan	9,'82	14.329	90.016	3.1	27	3,97
26	Jun	19,'82	13.215	89.666	6.3	144	17,26
27	Sep	29, '82	14.351	89.158	5.0	56	9,31

ZONE I: Minor Damage

ZONE 11: Moderate Damage

ZONE III: Major Damage

Use Group 1: Essential facilities necessary for life care and safety. Use Group 2: Ordinary commercial, residential public assembly and industrial structures (those that are not included in Use Groups 1 and 3).

Use Group 3: Facilities which are relatively nonessential for public safety.

Fig. A.3.2.4-16 Schematic Intensity Map

3.2.5 Soils and Land Classification

(1) Soils

1) Soil characteristecs

Soil of Monjas basin has so far been surveyed in anticipation of development and promotion of the area. In 1972 DIRYA, ministry of Agriculture, Cattle and Food Resources, played a main role in a large-scale soil survey. More particularly, the profile survey was conducted at about 58 test pits newly dug, followed by detailed physical and chemical analysis of soils sampled from the test pits. In 1987 additional soil survey followed that 15 test pits were provided in the main area for the purpose of soil classification.

A huge amount of survey data were collected and used for land classification, and the land classification map with a scale of 1/20,000 was completed. However, a soil map is not yet available.

At this point, soils in the area are classified as shown below on the basis of the existing survey result and the present survey.

In terms of the soil order, soils are roughly divided into 3 categories : Vertisol, Inceptisol, and Alfisol. Vertisol is color : subdivided into 2 categories according to soil Cromusterts with color intensity of 1.5 or more and Pellusterts with less than 1.5. In terms of the sub-order, Inceptisol is subdivided into Tropepts and Ochrepts with less organic content, both of which are widely distributed in the tropical and sub-tropical zones. In terms of the great-group, Inceptisol is subdivided into Durustalf and Ustropepte ; the farmer contains Duripan in its layer within 1 meter from the ground level while the latter no Duripan. In terms of the subdivided into Rhodustalfs with great-group, Alfisol is Duripan in its layer within 1 meter from the ground level and Haplustalfs with no Duripan.

The present survey provided 16 test pits in the Study area to observe the soil profile and sample test soil (Fig. A.3.2.5-1, and 2). Table A.3.2.5-1 shows a relationship between the soil order and soil color.

2) Physical properties of soil

Table A.3.2.5-2 shows the result of analyzing soil in each layer for physical properties. Fig. A.3.2.5-4 illustrates distribution of clay content for each soil layer.

Vertisol has clay content progressively increased as the cultivated surface layer lowers to the lower layer. Some Vertisol contains clay that accounts for more than 70% of the whole soil. On the other hand, Inceptisol and Alfisol generally contain, less clay content (Fig. A.3.2.5-4).

Fig. A.3.2.5-5 shows available moisture for each soil order, which is obtained as a difference between the above mentioned field capacity and the moisture content at the wilting point.

Vertisol with high clay content tends to have high available moisture content, while Inceptisol and Alfisol tend to have less moisture content.

Fig. A.3.2.5-6 shows bulk density by soil order.

Most soils have the apparent specific gravity distributed within a range from 1.1 to 1.5. Many soils show slightly higher values in the lower layes with less humus content, but a difference between soils is unknown.

3) Chemical properties of soil

Table A.3.2.5-3 shows the analysis result of chemical properties of soil. Fig. A.3.2.5-7 shows a change in humus content depending on soil layers for each soil.

Surface soil has high humus content while lower layer soil less. However, a difference of humus content among soil orders is unknown.

Vertisol has not so high humus content as suggested by its black soil color.

Fig. A.3.5.2-8 shows a change in the pH by soil order. Most soils show pH of 5.0 - 6.0 in the cultivated layer. Vertisol and Alfisol tend to show high values in the lower layer.

Figs. A.3.2.5-9, -10, and -11 show content of exchangeable calcium, magnesium and potassium for each soil layer.

These figures indicate that most soils have a little less exchangeable potassium as soil lowers from the surface layer to the lower layer.

Fig. A.3.2.5-13 shows exchangeable sodium content and the ratio of sodium content to exchangeable sodium content of 1 meq or less. Generally, the lower the layer, the higher the sodium content, in many soils.

As to the ratio of exchangeable sodium to the substitute capacity, most soil shows as low a value as 5% or less.

Figs. A.3.2.5-14 and 15 show total cation base content and base saturation for each layer, respectively.

Some soils have slightly less base content in the surface while most soils show high content of 25 meq or more in the lower layer.

Any soil has high base saturation, for example, some Vertisol has base saturation of more than 100% in the lower layer. Presumably, this is because soil is affected by the mottle of calcium carbonate, etc. found in the lower layer.

Surface soil has the base substituting capacity varied in a wide range of 10 - 40 meq. Most soils show high values of 25 - 50 meq in the lower layer. Most of Inceptisol show less CEC.

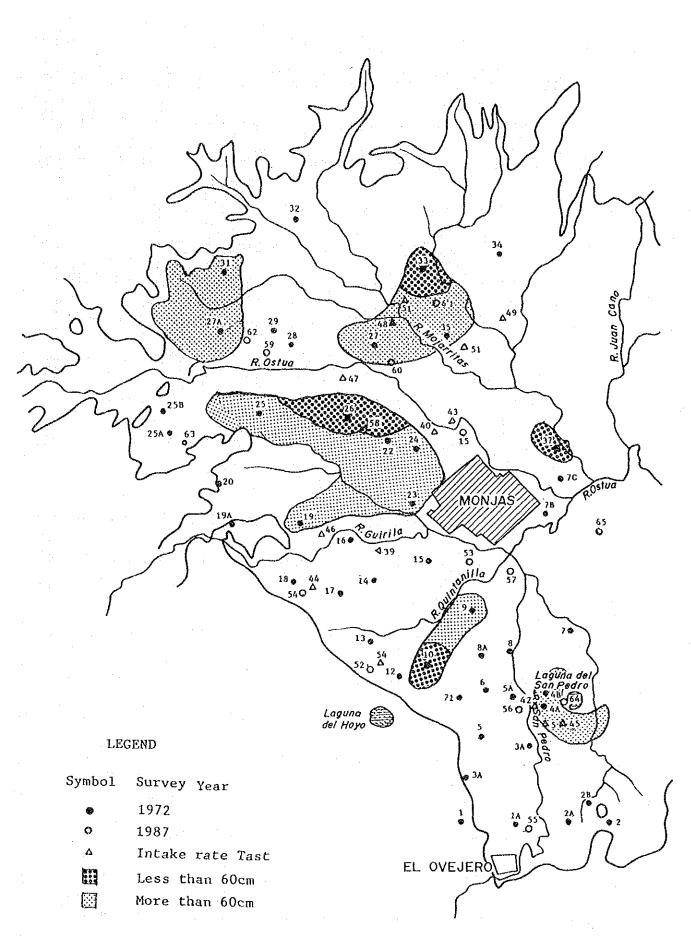


Fig. A.3.2.5-1 Survey Points and Duripan Distribution

DEPTH SOIL ORDER	I HORIZON	II HORIZON	III HORIZON	IV HORTZON	V HORTZON
VERTISOL	7.5yR 2/0 (Black) 7.5yR 3/2	7.5yR 1.7/1 (Black) 7.5yR 4/2	10yR 2/1 (Black) 10yR 4/2	10yR 3/1 (Black Brown) 10yR 5/2	10yR 2/1 (Black)
	(Black Brown) 10yR 2/1 (Black)	(Red Gray) 10yR 2/1 (Black)	(Gray yellow Brown)	(Gray yellow Brown)	
	10yR 3/2 (Btack Brown)	10yR 1.7/1 (Black)			
INCEPTISOL	10yR 3/2 (Black Brown) 7.5yR 2/2	7.5yR 2/2 (Black Brown) 10yR 2/1	7.5yR 3/3 (Dark Brown) 10yR 4/2	10yR 5/2 (Gray yellow Brown)	
	(Black Brown)	(Black) 10yR 3/1 (Black Brown)	(Gray yellow Brown)	7.5yR 5/2 (Gray Brown)	
				7.5yR 3/3 (Dark Brown)	
ALFISOL	7.5yR 3/2 (Black Brown)	5yR 2/3 (Dark Red Brown)	10yR 4/3 (Dark Yellow Brown)	10yR 4/3 (Yellow Brown)	
	7.5yR 3/3 (Dark Brown)	5yR 3/3 (Dark Red Brown)	10yR 4/4 (Brown)	10yR 4/6 (Brown)	

Table A.3.2.5-1 Soil Color

Table A.3.2.5-2 Physical Properties (1)

DLL No	Donth	0 I an	0111	0	Dt at -1	111143	Dulle Dorotte
Pit No.	Depth Com	Clay %	Silt %	Sand %	Field Capacity1/3	Wilting Point 15	Bulk Density
52	0~ 20	53.4	20.3	26.3	44.8	29.2	1.29
01	$20 \sim 45$	69.2	11.6	19.2	59.2	37.4	1.17
	45~ 70	68.1	13.5	18.4	59.9	38.2	1.19
	70~100		10.0	10.4	00.0	00.1	1110
53	0~ 30	51.8	26.8	21.5	43.0	27.8	1.17
	$30\sim56$	67.3	17.3	15.5	55.0	32.7	1.29
	56~ 75	71.8	16.9	11.3	60.2	34.0	1,26
	75~100	76.5	13.8	9.8	62.8	36.0	1.24
38	0~ 12	22.8	43.7	33.5	27.7	14.5	1.15
	12~ 30	65.5	20.8	13.7	54.5	35.2	1.20
	30~ 58	76.3	8.7	15.0	62.3	40.8	1.21
	58~	78.8	9.1	12.1	62.4	44.3	1.20
46	0~ 10	18.4	36.1	35.6	16.1	9.7	1.14
	10~ 28	54.6	19.1	26.3	47.4	27.8	1.22
	28~ 54	51.2	19.7	29.1	41.1	24.8	1.28
	54~ 65	48.0	22.3	29.7	36.8	23.2	1.35
47	0~ 13	39.0	24.0	37.0	31.9	19.8	1.33
	13~ 41	52.5	17.7	29.7	39.5	24.3	1.23
	41~ 62	52.1	17.3	30.7	43.7	25.8	1.18
	62~ 77	49.4	19.4	31.2	41.0	24.7	1.24
40	0~ 10	37.4	26.0	36.6	36.6	23.6	1.30
	10~ 23	55.8	15.5	28.7	45.2	29.3	1.31
	23~ 38	51.3	17.7	31.0	43.2	27.3	1.24
	38~ 53	52.5	21.1	26.4	48.2	31.8	1.28
41	0~ 15	42.3	24.2	33.4	33.8	24.8	1.25
	15~ 26	47.1	26.2	26.8	42.9	29.3	1.16
	$26\sim 43$	47.0	27.2	25.8	42.2	28.9	1.15
	43~ 63	51.9	28.3	19.8	45.1	31.2	1.14
	63~	52.1	27.9	20.1	42.3	29.7	1.13
48	0~ 11	27.1	22.4	50.5	29.0	13.8	1.38
	11~ 26	65.7	9.1	25.3	53.8	31.5	1.14
	26~ 47	61.8	11.1	27.1	51.4	30.1	1.10
	47~ 64	48.4	15.3	36.3	37.9	24.4	1.35
	64~ 73	42.9	17.2	40.0	35.3	22.5	1.38

Table A.3.2.5-2 Physical Properties(2)

							· · · · · · · · · · · · · · · · · · ·
	· .					111.1.1.1	Duth Danster
Pit No.	Depth	Clay	Silt	Sand	Field	Wilting	Bulk Density
	Ca	%	%	%	Capacity1/3		1.05
58	0~ 25	32.3	29.5	38.2	30.0	17.3	1.25
	25~ 52	58.7	17.4	24.0	45.4	26.4	1.31
	52~ 74	55.3	20.4	24.3	45.2	26.3	1.31
	74~ 87	44.8	31.8	33.4	40.4	25.5	1.25
59	0~ 16	40.8	13.8	45.4	30.4	19.3	1.48
	16~ 52	40.7	15.4	43.8	26.6	17.4	1.48
	52~ 71	29.8	20.8	49.2	22.2	13.6	1.44
61	0~ 20	34.8	20.1	41.1	33.3	19.6	1.29
	$20\sim 40$	59.4	22.2	18.4	49.5	30.8	1.31
	40~ 74		-	· ·	57.5	34.5	1.22
	74~100	-			52.5	32.4	1.26
63	0~ 13	23.3	23.2	53.5	21.6	13.0	1.46
	13~ 33	56.6	15.9	27.5	46.0	31.3	1.22
	33~ 60	55.7	19.4	25.0	44.5	29.7	1.21
	60~ 80	51.3	22.0	26.8	42.8	29.2	1.25
65	0~ 16	41.7	40.7	17.6	36.4	21.5	1.12
	16~ 38	53.4	31.8	14.8	37.7	25.7	1.24
	38~ 69	56.5	27.9	15.6	39.3	26.8	1.32
	69~100	70.5	20.3	9.2	54.2	39.2	1.28
51	0~ 11	44.4	26.0	29.7	41.2	27.7	1.45
	11~ 32	53.3	20.9	25.8	44.8	30.3	1.25
	32~ 55	54,9	17.4	27.7	45.9	30.3	1.21
	55~ 76	62.0	18.9	19.1	51.7	37.0	1.17
57	0~ 15	28.1	45.2	26.7	29.0	16.6	1.29
	15~ 43	36.1	41.2	22.7	32.0	20.3	1.22
	43~ 68	42.4	33.2	24.4	40.0	26.1	1.24
	68~ 89	61.7	26.3	11.4	46.6	33.5	1.19
	89~	35.1	38.1	26.8	38.5	21.9	1.12
55	0~ 16	28.6	31.8	39.6	28.8	14.8	1.29
	16~ 42	38.3	28.1	33.6	32.7	19.9	1.23
	42~ 65	32.7	27.6	39.8	27.6	19.2	1.36
	65~ 90	50.0	24.4	25.6	36.3	26.0	1.34
	90~	49.9	24.9	25.2	38.3	26.9	1.35

Table A.3.2.5-2 Physical Properties (3)

Pit No.	Depth	Clay	Silt	Sand	Field	Wilting	Bulk Densit
	Cm	%	%	%	Capacity1/3	Point 15	
56	0~ 20	27.1	34.4	38.5	33.1	18.8	1.20
	20~ 46	37.8	30.7	31.5	35.3	23.5	1.15
	46~ 72	37.0	30.1	32.9	33.1	22.4	1.29
	72~100	36.5	26.3	37.2	33.7	22, 7	1.34
60	0~ 18	30.8	35.2	34.0	25.9	14.0	1.22
	18~ 40	23.9	17.9	58.3	19.9	11.6	1.41
.*	40~ 65	24.5	16.0	59.1	19.6	11.7	1.53
	65~100	42.5	8,9	48.6	29.2	20.0	1.33
62	0~ 18	17.5	23.4	50.0	22.0	13.0	1.25
	18~ 33	23.4	24.4	52.3	26.1	16.6	1.22
	33~ 53	23.9	21.3	54.8	24.8	15.8	1.28
	53~ 72	30.0	22.6	47.4	30.5	18.7	1.21
	72~107	20.8	21.6	57.6	23.8	14.8	1.24
66	0~ 20	31.9	26.6	41.5	28.8	18.3	1.28
	20~ 50	29.3	26.1	44.5	25.3	16.7	1.23
	50~100	23.3	30.8	45.9	22.9	· 13.7	1.27
42	0~ 10	13.0	18.9	68.1	16.0	5.8	1.59
	10~ 17	16.5	18.8	64.7	18.7	10.5	1.52
39	0~ 12	20.6	27.1	52.3	23.6	12.8	1.31
	12~ 26	25.8	28.3	45.9	23.8	13.3	1.42
	26~ 50	28.3	29.8	41.9	23.5	14.3	1.31
	50~ 66	28.4	22.6	49.0	22.3	11.7	1.44
· ·	66~	28.3	19.9	51.8	22.4	15.1	1.44
43	0~ 11	17.6	33.6	48.3	25.7	15.5	1.29
	11~ 22	43.0	25.5	31.5	37.0	25.7	1.27
64	0~ 18	40.3	22.7	37.0	30.1	21.0	1.31
	18~ 55	26.9	26.2	46.9	39.0	25.5	1.08
	55~ 80	20.3	36.0	43.8	40.9	24.1	1.08
	80~100	13.0	29.4	57.5	29.2	15.8	1.29
44	0~ 14	21.2	41.5	37.3	27.4	11.3	1.20
	14~ 21	25.4	39.5	35.1	29.2	12.6	1.15
	21~ 54	46.1	20.8	33.1	28.5	20.6	1.42

		· · · · ·				والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع	
Pit No.	Depth	Clay	Silt	Sand	Field	Wilting	Bulk Donsity
	Cm	%	%	%	Capacity1/3	Point 15	
45	0~ 11	46.1	29.3	24.7	34.7	21.6	1.31
	11~ 17	59,3	24.5	16.2	34.3	26.7	1.24
	17~ 31	35.4	25.0	39.6	39.3	26.6	1.08
	31~ 72	32.9	28.7	38.4	45.0	27.8	1.04
54	0~ 27	26.6	23.8	50.5	24.3	13.4	1.41
	27~ 56	44.4	17.6	37.9	28.6	18.9	1.37
	56~ 83	44.9	23.8	31.3	30.6	18.7	1.34
	83~100	36.3	20.6	43.1	29.0	17.7	1.41

Table A.3.2.5-2 Physical Properties (4)

Table A.3.2.5-3 Chemical Properties (1)

...

Pit	Donth	Organic-	וזת	E	xchange.	meq	/100	070	Base	Total	Na
No.	Depth	Matter	: PH	Ca	Mg	K	Na	CEC meq/100	Satura- tion	Base aeg/100	CEC
52	0~ 20	2.9	5.82	17.3	9.0	0.7	0.5	42.6	64.7	27.6	1.17
n Na Ar	20~ 45	1.9	5.90	22.3	11.5	0.3	0.8	38.2	91.3	34.9	2.09
• . • .	45~ 70	·	- 5,96	23.0	11.7	0.3	1.1	49.9	72.2	36.0	2.20
1 A.A.	70~100	· · · · · · ·	-	24.5	12.1	0.2	1.0	44.8	84.3	37.8	2.23
53	0~ 30	3.3	6.19	18.5	7.3	0.9	1.4	34.3	81.7	28.0	5.76
	30~ 56	1.8	6.99	21.7	10.9	0.5	3.1	41.8	86.4	36.1	7.41
	56~ 75	·	7.48	19.7	12.2	0.5	4.3	33.8	> 100	36.6	12.72
14 A.	75~100	·	7.77	20.3	14.3	0.6	6.2	27.4	> 100	41.4	0.72
38	0~ 12	0.5	5.89	3.8	8.3	0.6	0.8	16.0	83.3	13.4	5,00
	12~ 30	1.4	6.83	23.2	9.5	0.5	4.2	46.4	80.9	37.5	9.05
	30~ 58	1.3	7.43	25.5	12.3	0.5	6.0	51.8	85.6	49.8	11.58
	58~	1.0	7.66	28.6	13.9	0.6	6.7	55.4	90.0	49.8	12.09
46	0~ 1.0		5.04	5.0	1.1	0.1	0.4	9.7	68.8	6.7	4.12
	10~ 28		5.44	18.3	4.8	0.2	1.2	33.9	72.4	24.5	3.54
÷	28~ 54		6.10	18.4	4.3	0.2	1.4	30.8	78.7	24.2	4.55
	54~ 65		6.53	13.9	3.3	0.2	1.2	26.5	69.6	18.5	4.53
47	0~13		5.21	13.9	4.1	0.5	0.5	25.2	75.1	19.0	1.98
	13~ 41		5.10	20.1	5.9	0.3	0.8	33.7	80.0	27.0	2.37
	41~ 62		5.71	22.7	6.1	0.3	1.1	36.5	82.5	30.1	3.01
	62~ 77		5.51	23.0	6.5	0.3	1.2	32.1	96.5	31.0	3.74
40	0~ 10	3.5	6.07	13.5	4.9	0.6	0.3	26.0	74.1	19.3	1.15
	10~ 23	1.3	5.59	15.3	6.1	0.4	1.1	38.7	59.0	22.9	2.84
	23~ 38	1.2	6.17	15.8	6.1	0.4	1.2	35.1	66.9	23.4	3.42
•	38~ 53	1.2	6.87	18.1	7.1	0.6	1.7	39.8	69.2	27.5	4.27
41	0~ 15	2.8	5.76	14.6	7.7	0.7	0.2	30.8	75.3	23.2	0.65
	15~ 26	3.8	5.97	17.4	9.4	0.4	0.3	37.7	72.5	27.4	0.80
	26~ 43	2.0	6.06	15.4	9.4	0.3	0.3	36.0	70.7	25.4	0.83
	43~ 63	2.1	6.12	15.8	10.7	0.6	0.3	47.7	57.4	27.4	0.63
· .	63~	1.8	6.17	14.4	10.4	0.6	0.3	44.4	57.9	25.7	0.68
48	0~ 11		5.70	7.8	1.9	0.5	0.5	14.9	72.2	10.7	3.36
	11~ 26		5.95	20.6	5.7	0.5	1.1	37.3	74.9	27.9	2.95
	26~ 47	. · · ·	6.67	21.0	5.5	0.3	1.3	39.1	71.9	28.1	3.32
	47~ 64		6.87	19.3	5.1	0.3	1.5	27.8	94.1	26.1	5.40
	64~ 73		6.23	0.9	0.3	0.2	1.3	23.9	11.0	2.9	5.44

3-131

.

Table A.3.2.5-3 Chemical Properties (2)

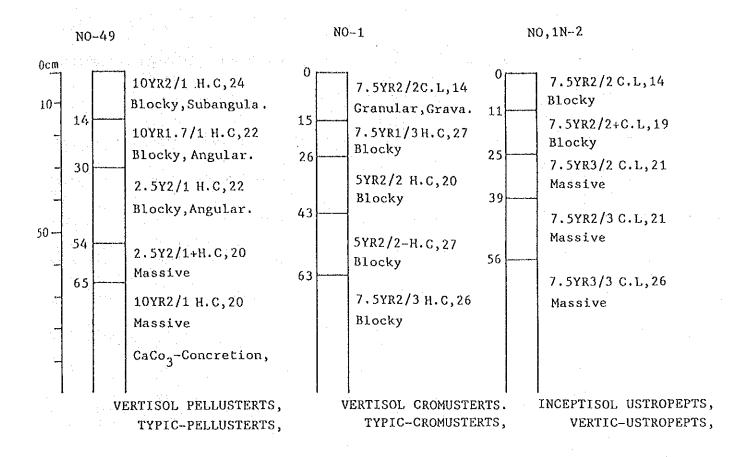

Pit		Organic-		E	xchange.	meq	/100	CEC	Base Satura-	Total Base	Na
No.	Depth	Matter	PH	Ca	Mg	K	Na	meg/100	tion	meq/100	CEC
58	0~ 25	2.3	5.85	10.8	3.0	0.5	0.5	20.3	73.6	14.9	2.46
00	25~ 52	1.3	5.65	22.3	5.4	0.2	1.6	27.9	> 100	29.5	5.73
	52~ 74		5.60	22.3	4.8	0.2	2.0	85.7	82.0	29.3	5.60
	74~ 87		6.55	11.0	4.8	0.3	3.0	34.9	54.6	19.1	8.60
59	0~ 16	1.7	7.17	12.2	2.3	0.2	2.0	19.5	85.4	16.7	10.26
00	16~ 52	1.1	5.88	8.3	2.9	0.2	1.3	19.4	64.9	12.6	6.70
n den ser	$52 \sim 71$	_	4.74	5.3	2.1	0.4	0.6	14.2	58.4	8.3	4.23
61	0~ 20	2.7	5.80	12.3	5.3	0.9	0.8	24.6	78.3	19.2	3.25
01	$20 \sim 40$	1.2	6.25	21.2	10.5	0.6	1.2	42.2	79.3	33.5	2.84
	40~ 74		7.36	32.1	14.9	0.6	1.3	45.8	> 100	49.0	2.84
	74~100		7.72	34.6	14.1	0.6	1.3	44.4	> 100	50.6	2.93
63	0~ 13	1.8	4.87	6.8	2.6	1.4	0.2	14.7	74.5	11.0	1.36
	13~ 33	1.5	5.18	19.3	6.6	3.1	0.9	40.7	73.5	29.9	2.21
	33~ 60	_	5.71	21.0	15.0	3.5	1.3	38.4	> 100	40.8	3.39
•	60~ 80		6.25	24.8	8.8	5.9	2.0	46.7	88.3	41.2	4.28
65	0~ 16	2.8	5.27	12.8	4.3	0.8	0.2	25.4	71.5	18.1	0.79
:	16~ 38	2.1	5.61	16.1	5.3	0.5	0.5	27.4	81.6	22.4	1.82
	38~ 69	-	6.01	15.6	4.8	0.5	0.4	26.6	80.0	21.3	1.50
	69~100	-	6.82	22.1	10.3	0.7	0.5	43.3	77.7	33.6	1.15
51	0~ 11		5.49	20.4	6.7	1.7	0.4	34.4	84.6	29.1	1.14
	11~ 32		5.69	21.2	8.4	1.4	0,5	41.3	76.3	31.5	1.21
	32~ 55		6:27	26.2	10.2	0.9	0.6	39.7	95.2	37.9	1.51
	55~ 76		7.07	26.5	11.3	0.8	1.0	44.1	89.6	39.6	2.27
57	0~ 15	4.7	5.30	10.8	3.1	0.8	0.3	16.4	91.0	14.9	1.83
	15~ 43	2.3	5.58	14.1	3.4	0.5	0.4	24.6	74.7	18.4	1.63
	43~ 68	-	5.59	13.0	3.7	0.3	0.5	47.0	37.4	17.6	1.06
	68~ 89		5.69	19.6	4.5	0.5	0.5	35.5	70.5	25.0	1.41
en e	89~		5.70	12.4	3.5	0.4	0.4	23.1	72.5	16.7	1.73
55	0~ 18	2.3	4.87	7.6	2.2	0.9	0.1	12.4	86.8	10.8	0.81
	16~ 42	2.3	4.57	8.3	2.6	0.3	0.3	23.3	48.8	11.4	1.29
	42~ 65	-	4.71	7.1	1.9	0.3	0.3	18.8	50.8	9.6	1.60
	65~ 90		4.73	9.6	3.9	0.3	0.5	33,0	43.1	14.3	1.52
	90~		4.72	9.6	4.3	0.4	0.5	27.9	52.6	14.7	1.79

Table A, 3, 2, 5-3	Chemical	Properties	(3)
--------------------	----------	------------	-----

Pit	Depth	Organic-	PI	E	xchange,	med/	100	CEC	Base Satura-	Total Base	Na
No.	, optin	Matter		Ca	Mg	K K	Na	weg/100	tion	neq/100	ĆEC
56	0~ 20	3.5	5.35	10.4	2.9	1.4	0.2	19.8	75.5	14.9	1.01
· . :	25~ 46	2.0	4,90	12.3	3.5	0.5	0.3	26.3	63.0	16.6	1.14
	46~ 72		4 99	13.0	3.9	0.4	0.4	25.9	68.2	17.7	1.54
2	72~100		5.26	13.4	3.9	0.4	0.4	24.5	73.6	18.0	1.63
60	0~ 18	2.8	5,80	7.2	2.2	1.3	0.5	14.1	78.4	11.1	3.55
	18~ 40	1.8	4.80	3.7	0.9	0.8	0.5	12.2	47.6	5.8	4.10
	40~ 65		4.42	3.4	0.9	0.6	0.5	12.9	42.0	5.4	3.88
	65~100		4.80	6.4	2.0	0.6	0.6	14.9	63.0	9.4	4.03
62	0~ 18	2.4	5.08	6.3	0.9	0.6	0.2	13.9	57.5	8.0	1.44
	18~ 33	1.8	5.09	9.3	2.2	0.5	0.3	15.2	80.5	12.2	1.97
	33~ 53		5.35	9.9	2.1	0.4	0.4	18.4	69.6	12.8	2.17
	53~ 72		5.44	10.7	3.8	0.5	0.4	19.9	77.2	15.4	2.01
	72~107		5.50	7.6	2.5	0.5	0.3	13.5	81.1	10.9	2.22
66	0~ 20	1.0	5.89	11.2	1.3	1.0	0.4	19.3	71.5	13.8	2.07
	20~ 50	1.0	5.81	11.4	- 1.1	0.7	0.4	19.1	71.1	13.6	2.09
	50~100	-	5.56	11.7	1.2	1.0	0.3	18.3	77.6	14.2	1.64
42	0~ 10	0.5	5.15	3.1	1.5	0.6	0.7	7.5	77.3	5.8	9.33
	10~ 17	0.9	5.26	3.2	1.5	1.2	0.6	9.9	65.1	6.4	6.06
39	0~ 12	2.2	5,20	5,5	1.9	0.8	0.6	9.6	92.0	8.8	6.25
	12~ 26	2.1	4.82	5.2	2.3	0.6	0.6	11.4	75.4	8.6	5.26
	26~ 50	1.3	5.21	6.1	3.2	0.4	0.6	11.1	93.1	10.3	5.40
	50~ 66	1.0	5.24	5.1	2.4	0.3	0.6	11.5	73.6	8.5	5.21
	66~	1.0	5.61	5.0	4.3	0.4	0.7	11.5	90.3	10.4	6.09
43	0~ 11	3.2	5.56	11.7	2.7	0.8	0.6	20.7	75.9	15.7	2.90
	11~ 22	1.9	5.59	17.1	2.9	0.5	1.0	29.3	73.6	21.5	3.41
64	0~ 18	3.0	5,24	8.4	7.9	0.8	0.2	32.1	53.9	-17.3	0.62
	18~ 55	0.8	5,88	9.9	12.5	1.2	0.4	44.4	54.1	24.0	0.90
	55~ 80		6.06	11.3	13.5	0.9	0.4	41.8	62.8	26.1	1.53
	80~100		6.10	9.4	7.2	0.6	0.4	28.3	.62.2	17.6	1.41
44	0~ 14	2.6	5.18	4.0	2.2	0.2	0.6	8.3	83.8	7.0	1.23
	14~ 21	1.8	4.96	4.9	1.8	0.2	0.6	11.1	68.5	7.5	5.45

Pit		Organic-		E	xchange.	med/	100		Base	Total	Na
No.	Depth	Matter	Pil	Ca	Mg	K	Na	CEC ¤eq/100	Satura- tion	Base moq/100	ĆEC
45	0~ 11	3.9	5.19	9.6	7.7	1.2	0.6	45.2	42.2	19.1	1.33
	11~ 17	3.8	5.23	11.0	8.5	0.7	0.6	38.3	54.0	20.7	1.57
	17~ 31	2.1	5,36	10.6	12.3	0.3	0.6	39.4	60.3	23.8	1.52
	31~ 72	0.9	5.54	8.0	11.7	0.3	0.8	78.1	26.7	20.8	1.02
54	0~ 27	2.3	5,30	5.1	1.8	1.3	0.1	8.9	94.2	8.4	1.12
	27~ 56	1.3	4.44	5.2	1.7	0.6	0.2	14.8	52.0	1.7	1.35
	56~ 83 [:]		4.58	6.8	2.4	0.4	0.2	15.0	65.1	9.8	1.33
	83~100		4.70	6.5	2.6	0.4	0.2	16.0	59.8	9.7	1.25

Table A.3.2.5-3 Chemical Properties (4)

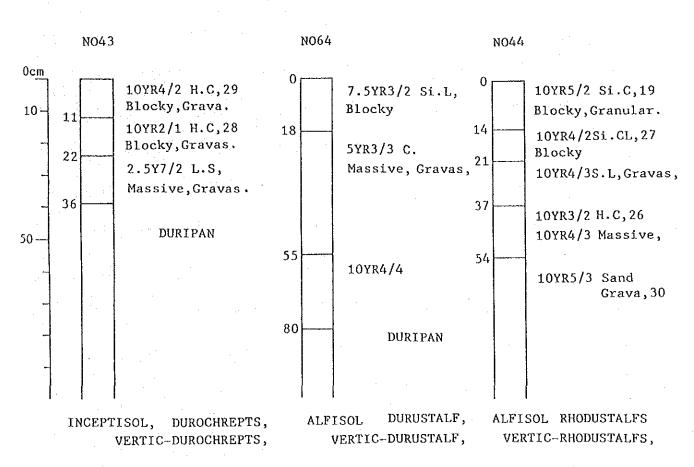


Fig. A.3.2.5-2 Profiles of Representative Soil

Table A.3.2.5-4 Result of Soil Analysis at Point of Intake Rate Test

				1.1			2 M 4 M			
						Soil No	lsture	Organic	19 J.	
No.	Depth	Soil Texture	Clay	Silt	Sand	1/3 ATM	15 ATM	Matter	D.A.	рн
<u> </u>			(%)	(%)	(%)			(%)		
			(3)	(10)	(14)			``	· · · ·	
1	0 10	01	50 10	20.32	26.25	44.83	29.15	2.86	1.2928	\$ 00
1.	0 - 20	Clay	53.43							5.82
	20 - 45	Clay	69.15	11.64	19.21	59.23	37.92		1.1693	5.90
	45 - 70	Clay	68,08	13.50	18.42	59.91	38.17		1.1920	5.96
	70 - 100					1.0	e e e e e			
									and the second second	
2.	0 ~ 16	Clay Loam	28.56	31.81	39.63	28,82	14.83	2.28	1.2858	4.87
	16 - 42	Clay Loam	38.29	28.11	33,60	32.68	19.94	2.30	1,2279	4.57
		Clay Loam	32,68	27.55	39.77	27.58	19.19	_	1.3600	4.71
		Clay	50.02	24.35	25.63	36.30	25,95	. 🛶	1.3350	4 73
	90 - 1	Clay	49.90	24.87	25.23	38.29	26.92	_	1.3451	
		GIAY	49.90	24.07	23.23	20+22	20.92	. – .	1.0401	4.72
3.	0 - 18	Clay	40.34	22.66	37.00	30,14	20.95	3.00	1.3099	5.24
5.	18 - 55	Clay Loam			1 A A A A A A A A A A A A A A A A A A A			0.77		
			26.89	26.21	46.90	39.00	25.46	0.77	1.0798	5.88
	55 - 80	Loam	20.28	35.97	43.75	40.85	24.06	1	1.0824	6.06
	80 - 100	Sandy Loam	13.02	29.44	57.54	29.16	15.82		1.2931	6.10
	o		· · · · · · ·	·		·				
4.	0 - 27	Sandy Clay Loam	26.62	23.84	50.54	24.25	13.38	2.26	1.4166	5.30
	27 - 56	Clay	44.44	17.62	37.94	28.63	18.90	1.29	1.3658	4.44
	56 - 83	Clay	44.91	23.75	31.34	30.55	18,74		1.3385	4.58
	83 - 100	Clay Loam	36.31	20.61	43.08	29.01	17.70		1.4118	4.70
5.	0 - 18	Sandy Loam	17.55	23.42	59.03	22.00	12.97	2,39	1.2508	5.08
	18 - 33	Sandy Clay Loam	23.35	24.39	52.26	26.05	16,58	1.78	1.2190	5.09
	33 53	Sandy Clay Loam	23.92	21.27	54.81	24.81	15.79		1.2755	5.35
	53 - 72	Sandy Clay Loam	30.00	22.59	47.41	30,48	18.71		1.2129	
	72 - 107	Sandy Clay Loam	20.78	21.60	57.62	23,76				5.44
	14 101	buildy offer house	20,70	21,00	57.02	23.70	14,76		1.2439	5.50
6.	0 - 25	Clay Loam	32.28	29,54	38.18	30.04	17.31	2.26	1.2525	5.85
~ .		Clay	58.68	17.36	23,96	45.38	26.36	1.26	1.3136	5.65
	52 - 74	Clay	55.33	20.41	24.26					
						45.24	26.29	-	1.3063	5.60
	74 - 87	Clay	44.83	31.76	33,41	40.37	25.46	-	1.2548	6.55
7.	0 - 15	Clay Loam	20 11	45 17	06 79	20 04	16 62	1 70	1 0017	. F . G .
. 11			28.11	45.17	26.72	29.04	16.63	4.70	1.2917	5.30
		Clay Loam	36.06	41.20	22.74	31,96	20.26	2,31	1,2162	5.58
		Clay	42.39	33.22	24.39	39.95	26.13	-	1.2418	5.59
		Clay	61.74	26.87	11.39	44.63	33.47		1.1889	5.69
	89 - 7	Clay Loam	35.09	38.12	26.79	38.46	21.85	. ·	1.1203	5.70
	· · · ·	1						·		
8.		Clay Loam	34.83	24.08	41.09	33.27	19.57	2.67	1.2861	
		Clay	59,41	22.15	18.44	49.46	30.82	1.24	1.3086	6.25
	40 - 74	-	-			57.48	34.51			7.36
	74 - 100	Clay		· · •••	-	52.45	32.43	••	1.2554	7.72
		· · ·	· · · ·	;				÷ *		-
9.		Loam	22.80	43.71	33.49	27.73	14.47	0.48	1,1467	5.89
	12 - 30	Clay	65.48	20,81	13.71	54.45	35.15	1.40	1,1950	6.83
	30 - 58	Clay	76,33	8.66	15.01	62.34	40.76	1.28	1.2070	7.43
	58 -	Clay	78.75	9.12	12.13	62.41	44.31	0.99	1.2043	7.66
		*					14171	V+27	1+2043	1.00

Q Observation and Sampling; Aug - Dec 1987 D.A; apparent specific gravity ٥

	PROFILE		52	LO	CATION		CAMPAMENT	0	SLOPE	2%
	LAND-US	<u> </u>	NATZ	E TONATO)	SO	IL VER	TISOL PE	ELLUSTERT.	
	TEXTU RE	ORGA- NIC- Mat.	1	, COLOR DRY	GRAVEL	NOTTLING. CONCRE- TION.	STRUCTURE		ROOT	
	SI.C		7.5yR	2/0	NO	NO	BLOCKY		FINE. SNAL	
	LI.Ć		7.5yR	3/0	"	"	"		"	
5	Li.C		10yR 2	/1	"		"		"	
0	LI.C		10yR 3	/2	"	NO	MASSIVE		NO	
1	I .				1					
	PROFILE	——	53	LOX	CATION				SLOPE	1.59
	LAND-US	<u>}</u>		·		SOIL	VERTISOL PE	LLUST.		· · · · · · · · · · · · · · · · · · ·
:	TEXTU- RE	VE	SOIL COL	OR DRY	GRAYEL	MOTTLING. CONCRE- TION.	STRUCTURE	DRY. WET.	ROOT	<u>.</u>
ſ				·,	· .	[<u></u>]	
	C		10yR 2/0	ł	NO	NO	MIDDLE BLOCKY	DRY	FINE. SMALL	
		-[2.5yR 2	/0	"	"	"	,,	"	
0	С									
6	C									

Fig. A.3.2.5-3 Profile of Soils (1)

"

10yR 4/1

75

C

3-137

. #

MASSIVE

HALF

VET

					· · · · · · · · · · · · · · · · · · ·	
PROFILE-NO	38	LOCATION	QUINTAN	ILLA	SLOPE	196
LAND-USE	MATZE		SOIL	VERTISOL CR	OMUST.	

	TEXTU-	ORGA- NIC-	SOIL	COLOR	GRAVEL	MOTTLING. CONCRE-	STRUCTURE	HARD-	DRY.	ROOT
	RE	MAT.	NET.	DRY		TION.		NESS	VET.	
Ca					· .					· · · ·
	LI.C	3	7.5yR	 3/2 	SMALL GRAVEL		SMALL BLOCKY	21	DRY	SMALL Fine
	HC	4	7.5yR	1.7/1	NO		SMALL MIDDLE BLOCKY	20	HALF DRY	FINE SNALL
	HC	4	7.5yR	2/1	"	_	<i>ii</i>	18	HALP Vet	H
										n n Hindrich Hindrich
	HC.	2	7.5yR	 1.7/1 	"		"	24	"	"

PROFILE-NO		40 1	OCATION		¥1VER())	SLO	PE	1%
LAND-USE		MAIZE		SOIL	YERTISOL CI	ROMUST.			
TEXTU-	ORGA-	SOIL COLOR	0041/01	NOTTLING.	OTDUOTHDE	IIARD-	DRY.	DOOT	

	RE	NIC- Hat.	YET.	DRY	GRAVEL	CONCRE- TION.	STRUCTURE	NESS	WET.	ROOT	
								· ·			
0 20	 ·		· · · ·		···		· · · ·		, ,	**** ************	

 HC	4	10yR 3/2	FINE GRAVEL	NO	BLOCKY. SUB ANGULAR	25	HALF DRY	SMALL FINE
 HC	5	10yR 2/3	NO	"	BLOCKY Angular	23	"	SMALL Fine
HC	6	10yR 2/1	ji -	"	MASSIVE	17	HALF Wet	SMALL FINE
HC	3	10yR 2/1 × 1 10yR 5/2	"	"	"	20		

Fig. A.3.2.5-3 Profile of Soils (2)

PROFILE-NO	41		LOCATION	·····	L.	AGUNA	SLOPE	1%
LAND-USE	MAI	ZE			SOIL	VERTISOL CR	ONUST.	

TEXTU- Re	ORGA- NIC- NAT.	SOIL VET.	COLOR	GRAVEL	MOTTLING. CONCRE- TION.	STRUCTURE	HARD- NESS	DRY. Vet.	ROOT	<u>.</u>
		1.00								

GRANULAR

MASSIVE

14

24

HALF

DRY

"

FINE.

SMALL

"

0	Cm					·
		14 CL	4	7.5yR 2/2	SMALL CRAVEL	NO
15		HC	5	7.5yR 1/3	NO	<i>"</i>
26		HC	4	5yR 2/2	"	"
43		·	· · · · ·	· · · · · · · · · · · · · · · · · · ·		·

63

		<u> </u>						<u> </u>	
	HC	4	5yR 2/2	"	"	"	20		"
:"		·							
	IIC	3	5yR 2/2	"	"	"	27	HALF VET	"
	HC	1	2.5yR 2/3	"	· //	"	26	"	

PROFILE-N	0	46	LOC	ATION	F	INCA LOS MA	RIAS	SLO	PE 1	~ 296
LAND-USE		PASTURE	,		S0	IL VE	RTISOL CR	OMUST.		
·	r	· · · · ·	:	r	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	1.	1		
TEXTU- RE	ORGA- NIC- MAT.	SOIL VET	COLOR	GRAVEL	MOTTLING. CONCRE- TION.	STRUCTURE	HARD- NESS	DRY, Wet.	ROOT	

Co	Li.C	1	10yR 3/2	NO	NO	GRANULAR. BLOCKY	33	DRY	FINE. SMALL
	HC	5	7.5yR 1.7/1	"	11	SMALL MIDDLE, BLOCKY, SUB ANGULAR.	34	HALF Vet	'n
	нс	5	10yR 1.7/1	"	"	BLOCKY ANGULAR	32	"	"
	HC	3	10yR 3/1 ×10yR 4/2	FINE. SMALL GRAVEL	Fe.Mn CONCRE- TION	ANGULAR	32	"	

Fig. A.3.2.5-3 Profile of Soils (3)

and the second states of the	a desta de la co					
PROFILE-NO	47	LOCATION	LA	BASA	SLOPE	0~ 1%
LAND-USE	MAIZE		SOL	VERTISOL CR	ONUST,	<u> </u>

•	TEXTU- RE	ORGA- NIC- MAT.	SOIL CO WET,	DLOR DRY	GRAVEL	MOTTLING. CONCRE- TION.	STRUCTURE	HARD- NESS	DRY. WET.	ROOT
Ca	· · · · · · · · · · · · · · · · · · ·	I	<u>.</u>		L	· · · · · · · · · · · · · · · · · · ·				
	Li.C	2	10yR 2/3		_		BLOCKY ANGULAR	19	DRY	NIDDLE Fine
	HC :	2.5	7.5yR 1.	.7/1	-	_	MASSIVE	25	HALF DRY	SMALL FINE
		· · · ·				ан 194				
	lic	3	10yR 1.7/ ×10yR 4/		-		"	21	"	NIDDLE Fine
	HC	2	10yR 5/3 ×10yR 2/	/1	°	-	SHALL BLOCKY	22	"	11

DURIPAN

Pr	ROFILE-N	<u> </u>	48		LOCATIO	IN	LA ESTAN	-1A	SLO	PC	0∼ 1.
L/	ND-USE		MATZE			S01L -	VERTISOL	CROMUST.	•		
		. :		· · ·			•				
	TEXTU-	ORGA- NIC-	SOIL	COLOR	CRANCI	MOTTLING. CONCRE-	STRUCTURE	HARD-	DRY.		
	RE	MAT.	VET.	DRY	GRAVEL	TION.	SINUCIONE	NESS	YET.	ROOT	

0 11		Li.C	2	7.5yR 3/2	_		BLOCKY SUBANGULAR	30	DRY	SMALL Fine
		HC	4	буR 1.7/1		•	SNALL BLOCKY	33	HALF DRY	. 11
26		HC	4	A1 1.5/0			MASSIVE	28	"	11
34		HC	3	7.5yR 1.7/1 ×10yR 6/2	<u></u>	-	"	26	" <u>"</u> "	_
73		HC	1	10yR 4/2 ×10yR 5/8			"	28	"	
•	ļ		· . ·	DURIPAN		н ^и м.	I		1	ł

Fig. A.3.2.5-3 Profile of Soils(4)

5

	·····	·				
PROFILE-NO	49	LOCATION	S	ALANO	SLOPE	0~ 1%
LAND-USE	M	AIZE TONATO	SOIL	VERTISOL CR	OMUST.	

	TEXTU- Re	ORCA- NIC- MAT.	SOIL WET.	COLOR	GRAVEL	MOTTLING. CONCRE- TION.	STRUCTURE	HARD- NESS	DRY, VET.	ROOT
Cm		1	1		· L			I	- L	L
	HC	4	10yR 2/	2		NO	SMALL BLOCKY	24	HALF DRY	SHALL FINE
	HC	- 4	10yR 1.	 7/1 			BLOCKY . ANGULAR	22	"	"
	łic	4	2.5y 2	/1		"	BLOCKY . Angular	22		FINE
	HC	3	2.5y 2	/1		CaCo ₃ CONCRETION	MASSIVE	20	HALF VET	FINE
	IIC	2	^{10yR} 2/	 1 		"	"	20	"	
]	I	I	I Duri P	I YAN	1	j 1		1	1	ł

 PROFILE-NO
 51
 LOCATION
 MOJARRITA
 SLOPE
 p~ 1%

 LAND-USE
 MAIZE KIONEY BEAN
 SOIL
 VERTISOL CROMUST.

1.	TEXTU- Re	OKGA- NIC	SOIL	COLOR	GRAVEL	CONCRE-	STRUCTURE	HARD- NESS	DRY Vet	ROOT	
	NL.	MAT.	ver.	DRY		TION.					

U	COU .	HC	3	10yR 2/2	NO	NO	BLOCKY, ANGULAR	30	HALF Dry	FINE. SMALL
11		HC	4	7.5yR 2/1			SMALL BLOCKY	20	11	-
32		IIC	3	7.5y 2/2	"		BLOCKY. SUB ANGULAR	22	HALF VET	И
55		Li.C	2	5yR 2/2	"	"	SMALL BLOCKY GRANULAR	23	"	"
76		Si.C	2	7.5yR 2/2	"	CONCRE- TION	"	24	"	
	I	1	ι	DURIPAN	1	н	:			

Fig. A.3.2.5-3 Profile of Soils (5)

		ROFILE-N	in T	57	10	CATION				SLOPE	1%
-		AND-USE	····	51		ATTON		SOIL V	ERTISOL	CROMUST.	<u> </u>
. –	L	AND-USE				<u></u>					
-		textu-	S	OIL COL	OR	GRAVEL	MOTTLING. CONCRE-	STRUCTURE	DRY. NET.	ROOT	· ·····
		RE	WET.		DRY		TION.		, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		- -
											· ·
0		Si.C	I	0yR 3/2		NO	ко	NIDDLE BLOCKY	DRY	FINE. MIDDLE	·
15											· ·
* .		C	1	0yR 2/1		"	"	<i>u</i>			· ·
43					· · ·					:	
		С		5yR 2/2) 	"		# 1.1.141	"		•
68		¢	1	0yR 3/1	-						
89							·			· .	
		C	1	.0yR 5/2	2			MASSIVE	HALF VET	_	
])				
	 P	ROFILE-N	0	58	1.00	CATION		AREN NORAJA		SLOPE	1%
		AND-USE		۲ مسجحت	(IDNEY BE/		20		TISOL CR	L.:	
-							I	__		1111	
		TEXTU- RE	ORGA- NIC- MAT.	SOII	COLOR	GRAVEL	MOTTLING. CONCRE- TION,	STRUCTURE	ROOT		
		<u></u>		L	1		1	L	L	,	:
. 0		Si.C		10yR	1/2	NO	NO	MIDDLE BLOCKY	SMALL		
25						· · · · · · · · · · · · · · · · · · ·	 		FINE		
		C		10yR 1	2/1	"		<i>11</i>	"		
52		С		10yR	- 3/1		<i>u</i> .	······································	"		
		1					1	1	4	1	
74	· .	С		10yR				MASSIVE			

AJIDAN Fig. A.3.2.5-3 Profile of Soils (6)

-		PROFILE-NO)	59		LOCATION				SLOPE	1.5%
***	ł	LAND-USE				S	011,	VERTISOL CR	OMUST.		· · · · · · · · · · · · · · · · · · ·
••••		TEXTU- RE	SC Vet.		COL.OR DRY	GRAVEL	MOTTLING. CONCRE- TION.	STRUCTURE	DRY. Vet.	ROOT	
16		C		 	3/2	NO	NO	MIDDLE BLOCKY	DRY	SMALL FINE	
		C	1	 1.5yR	4/2	"	"		"	".	
2		C		yr 4	/2		"	"	"	"	
1			. :								

•						
		······				
PROFILE-NO	61	LOCATION	SAN	JUAN	SLOPE	1%
LAND-USE		AIZE	SOIL	VERTISOL CR	OMUST.	

 					·		 	
TEXTU-	ORGA-	SOIL	COLOR		NOTTLING.			
RE	NIC-	0018		GRAVEL	CONCRE-	STRUCTURE	ROOT	
 NO	MAT.	XCT .	DRY		TION.	+		

		MAT.	YET.	DRY	<u> </u>	TION.			
0	- -		,	•	· · · · · · · · · · · · · · · · · · ·				
	Si.C		10yR 4/	2	NO	NO	BLOCKY		SMALL PINE
20	С		10yR 2/		"	"	"	· · · · · ·	"
40	C		10yR 3/		11				
74									
. –	c		10yR 4/1	l	,,	"			

Fig. A.3.2.5-3 Profile of Soils (7)

LAND-USESOILVERTISOL CRONUST.TEXTU- RESOIL COLOR WET.CRAVELMOTTLING: CONCRE- TION.DRY. WET.ROOTIWET.DRYCRAVELMOTTLING: CONCRE- TION.STRUCTUREDRY. WET.ROOTIVET.DRYMONOMIDDLE BLOCKYDRYSMALLL FINEI3C10yR #/2NONOMIDDLE BLOCKYDRYSMALLL FINEI3C10yR 4/1"""""I3C2.5y 2/0"""""I4C2.5y 2/0"""""I5III""""I3III""""I3IIIIIIII3IIIIIIII4IIIIIIIII5III		PROFILE-N	0 63		OCATION	<u> </u>			SLOPE	39
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						501	L. YER	TISOL CR	ONUST.	· · · · · · · · · · · · · · · · · · ·
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			<u></u>		GRAVEL	CONCRE-	STRUCTURE			
13 C 10yR 4/1 " " " " " 33 C 2.5y 2/0 " " " " " 60 C 2.5y 2/0 " " " " " 60 C 2.5y 4/2 " " MASSIVE HALF -				UKT		[L	l	<u>I</u>	
13 C 10yR 4/1 " " " " " 33 C 2.5y 2/0 " " " " " " 60 C 2.5y 4/2 " " MASSIVE HALF -		С	LOyR	5 ¥/2	NO	NO	1 .	DRY	· ·	
33 C 2.5y 2/0 " " " " " " 60 C 2.5y 4/2 " " MASSIVE HALF -	13						BLOCKY		FINE	
33 C 2.5y 2/0 " " " " " " 60 C 2.5y 4/2 " " MASSIVE HALF -		C	10yR	4/1	"			"	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	·
60 C 2.5y 4/2 " " MASSIVE HALF -	33						· · · · · · · · · · · · · · · · · · ·			
C 2.5y 4/2 " " MASSIVE HALF -	60	C	2.5y	2/0	"	<i>"</i>	"	"	"	
		С	2.59	4/2		"	MASSIVE			. ¹⁴
		C	2.59	4/2	11		MASSIVE			- ¹

PROFILE-NO	65	LOCATION	SA	n pedro	SLOPE	1%
LAND-USE	TABAC	CO, KIDNEY BEAN	SOIL	VERTISOL CRON	IUST.	
					· · · ·	
0204		MOTTI	INC		T	

:		TEXTU- RE	ORGA- NIC- NAT.	SOIL VET.	COLOR DRY	GRAVEL	MOTTLING. CONCRE- TION.	STRUCTURE	ROOT	
() [] (- r		· · · · · ·				· · · · · · · · · · · · · · · · · · ·	 · · · · · ·	i

0		Si.C	10yR 3/1	NO	NO	BLOCKY	FINE. SMALL
18	-	Si.C	10yR 2/2	"	"		
38		C	10yR 4/2		D.RED	MASSIVE	"
69		С	 10yR 5/1		NO	"	

Fig. A.3.2.5-3 Profile of Soils (8) 3-144

PROFILE-NO	39	LOCATION	LAS P	ALMAS	SLOPE	µ~ 2%
LAND-USE	MATZ	Æ	SOIL	INCEPTISOL.	USTROP.	

			TEXTU-	ORGA- NIC-	SOIL	COLOR .	GRAVEL	MOTTLING. CONCRE-	STRUCTURE	HARD-	DRY.	ROOT
			RE	MAT.	VET.	DRY	QUATED	TION.	0110010112	NESS	VET.	1001
. *			· *		•							
	0	- - -	CL	3	10yR 3/	(4 			GRANULAR SMALL	19	DRY	FINE SMALL
	12								BLOCKY			
	26		CL	2	7.5yR	 4/2 	-		BLOCKY	26	HALF DRY	"
			CL	1	7.5yR ×			SMALL MOTTLING		26	".	FINE
· .					7.5yR	4/6 I						
	50		cı	1	10yR 5/ × 7.5yR ×				BLOCKY. SUBANGULAR	24	HALF Vet	
	66	. '			10yR 5/	6	 		 	· ·		
	00		CL.	I	10yR 5/	 2 	-		MASSIVE	23	"	

	Pi	ROFILE-N	0	42	LO	CATION		٥V	EJERO		SLC	PE	1.5%
	L	AND-USE						SOIL	INC	CEPTISOL	USTROP	<u> </u>	
		TEXTU-	ORGA-	0011	COLOR		MOTTLIN	G.		HARD-	DRY,		1
		RE	NIC- MAT.		DRY	GRAVEL	CONCRE- TION:	STRU	CTURE	NESS	WET.	ROOT	
0 20			· · · · · · · · · · · ·	· ·	· · · · · · · · · · · · · · · · · · ·		·				·		7
U .		S.L	2	10yR 4	1/4	SHALL GRAVEL	. —	GRAN	ULAR ,	16	HALF DRY	FINE SMALL	
0	· 	CL	3	5yR 3	 /3 	SMALL Fine Gravel		BLOC	KY	29		11	
7		GRAV		-									-

Fig. A.3.2.5-3 Profile of Soils (9)

	ł	ROFILE-N	0 1	N-1	LOC	ATION		LA LAGU	NA	SL.0	PE I-	~2 %
• •	• • • • • • • • • • • • •	AND-USE		MAIZE				SOIL INC	EPTISOL	USTRO		
· · ·	<u> </u>									· · · · · · · · · · · ·	r	1
		TEXTU RE	ORCA- NIC- Mat	SOIL VET.	COLOR	GRAVEL.	HOTTLING. CONCRE- TION.	STRUCTURE	IIARD- NESS	DRY. Wet.	ROOT	
	~	L	1 141					L	L	1	<u> </u>	!
U ·	<u>Co</u>	CL	4	7.5yR	2/2	NO	NO	BLOCKY SUB ANGULAR	11	DRY	SMALL FINE	
12		CL	4	7.5yR	2/2	"	"	"	15	HALE	"	
24	· ·	LI.C	8.5	7.5y	2/3		"	"	26		"	
									· · · ·		· .	
44		Li.C	2	7 5yR	2/2	"	"	SMALL MIDDLE BLOCKY	25	".	"	
								SUB ANGULAR				
70		LI.C	2	7.5yR	2/2		"	"	21	11	"	

		ROFILE-N		N-2		CATION		FINCA LA E SOIL INC		USTRO		~ 1%
		AND-USE		MAIZE					CEPTISOL	USINU		
		TEXTU-	ORGA- NIC	SOIL	COLOR	GRAVEL	MOTTLING. CONCRE-	STRUCTURE	HARD- NESS	DRY, Wet.	ROOT	
		RE	MAT.	VET.	DRY		TION.	<u> </u>	11200			L
. 0 .	Ca									. 19 		_
· ų		SL	3	7.5yR	1 2/2	SMALL	_	BLOCKY	14	HALP	SMALL	
	·					MIDDLE GRAVEL				YET	FINE	
11		CL	4	7.5yR	2/2	SMAL.	-	MASSIVE	19	"	"]
05			1			FINE GRAVEL						1.1
25		CL	3	7.5y	2/3	"	-	"	21	"		
39	:	CL	2	7.5yR	3/2	NO	_	"	26		NO	
56		CL	1	7.5yR	3/3	"	-	"	26	"		

÷							
					1		
	PROFILE-NO	55	LOCATION	EL (OVEJERO	SLOPE	1.5%
	LAND-USE	MAI	ZE, KIDNEY BEAN	SOIL	INCEPT	ISOL USTROP.	!

-	TEXTU RE	ORCA- NIC- Mat.	COLOR	£.	MOTTLING. CONCRE- TION	STRUCTURE	ROOT		
								•••••	

		L	MAT.	NET.	DRY		TION,		
0									
16		Si.C		10yR 3/	2	NO	NO	NIDDLE BLOCKY	MIDDLE. FINE.
10	- - -	Si.C	-	1.5yR	3/2		"	"	"
42				<u></u>				÷ .	
* 0		C		10yR 4/	3	"	"	BLOCKY	"
65									
00		С		10yR 4/	2	"	RED.BLACK CONCRE- TION	"	"
95									
90		С		7.5yR	5/2		"	MASSIVE	"

		· · · ·					<u> </u>
	PROFILE-NO	56	LOCATION			SLOPE	1%
· .	LAND-USE			SOIL	INCEPTISOL IUST	RO.	

WET, DRY TION,		TEXTU- RE		COLOR	GRAVEL	NOTTLING. CONCRE	STRUCTURE	DRY. WET.	ROOT	
			VET.	DRY	<u> </u>	TION.		L		L

<u>C</u> B	 	······						······	······
	C.L	10yR 3/2		NO	NO	MIDDLE , SUBANGULAR	DRY	FINE	
20	Si.C	10yR 2/1		"	"	NIDDLE, BLOCKY.	"	"	
46	 SI.C	10yR 4/2	·	"	"	"			
72	¢	2.5yR 3/2	· .	"	"	HASSIVE	HALF VET	-	

Fig. A.3.2.5-3 Profile of Soils (11)

3-147

:

				•					· ·	یں۔ بر بر ا	
		PROFILE-N	0 60	1.0	CATION				SLC	OPE	296
		LAND-USE				SOIL	INCEPT	SOL UST	≀0.		
		TEXTU RE	SOIL NET.	COLOR	GRAVEL	NOTTLING. CONCRE- TION.	STRUCTURE	DRY. Vet.	ROOT		
<u>-</u>	1			······		· · · · · · · · · · · · · · · · · · ·		•		·····	* <u>,</u> ********
		C.L	10yR	3/2	NO	NO	NIDDLE . ANGULAR.	DRY	FINE Shall		
18		SI.C	LOYR	3/1			MIDDLE				·
40						·	BLOCKY.		·		
65		Si.C	5yR	3/2	"	"	")) (1) (1)	"		·
		C	5yR	3/4	"	"	MASSIVE	HALF VET	-		
	1										

an the state			-			· · ·
PROFILE-NO	62	LOCATION	AGUA CA	LIENTE	SLOPE	1.5%
LAND-USE	MATZE	PASTURE	SOIL	INCEPTISOL US	TROP.	

	TEXTU- Re	ORGA- NIC- MAT.	SOIL WET,	COLOR	CRAYEL	MOTTLING. CONCRE- TION.	STRUCTURE	DRY. Net.	ROOT	
Cm			· · · ·	 i	·	•	· · · · · · · · ·	• <u> </u>	L.,	

	Li.C	10yR 3/2	ко	NO	SUBANGULAR	DRY	918
18	_						SM
	Li.CL	10yR 3/1		"	"	"	
33							
	Li.C	10yR 2/1	"	"	"	HALF DRY	
50							
53	C	10yR 4/1	"	"	ANGULAR		
				1 - 1 - ¹			
72							
	CL.	10yR 5/2		D.R.B. CONCRETIC	SUBANGULAR		

· F	ROFILE-N	0	66	LOCA	TION				SLOPE	: 1.	5%
1	.AND-USE					SOIL	INCEPT	SOL UST	RO.	•	
· .	<u> </u>	l		·	r	WOTTEL LUO	·	·		T	
7	TEXTU-	<u> </u>	SOIL	COLOR	GRAVEL	MOTTLING. CONCRE-	STRUCTURE	DRY.	ROOT		
	RE		VET.	DRY		TION.		WET.			
<u>Ca</u>									• •		
	C.L	10yR	2/1		NO	NO	MIDDLE. BLOCKY	DRY	FINE		
0		 									
	Si.C	10yR	3/2		ü	· //	"		"	. •	
0	C	10yR	4/2					"			

SLOPE 1% BOELO NALA PADA LOCATION PROFILE-NO 43 SOIL INCEPTISOL DUROCH. LAND-USE ORGA-MOTTLING. HARD-DRY, TEXTU-SOIL COLOR CONCRE-STRUCTURE ROOT NIC-GRAVEL NESS NET. RE TION. MAT. YET. DRY 0 <mark>Ca</mark> Ţ HALF FINE. BLOCKY 10yR 4/2 NO NO 29 3 HC DRY SHALL ANGULAR П SMALL " " " 28 10yR 2/1 11 HC 4 FINE GRAVEL 22 SAND " 0 2.5y 7/2 NO 11 GRAVEL

DURTPAN

T

36

Fig. A.3.2.5-3 Profile of Soils (13)

		PROFILE-N	10	45	LOC	CATION	L	AG, SAN PEDRO)	SLO	PE
	<u> </u>	LAND-USE		l				SOIL	ALFISOL	. DURUS	ſ,
	•										
		TEXTU- RE	ORGA- NIC- NAT.	SOIL	COLOR	GRAYEL	MOTTLING. CONCRE- TION.	STRUCTURE	HARD NESS	DRY. WET.	ROOT
		_ l	<u></u>		1 000	. l	1	.	·	· • · · · · · · · · · · · · · · · · · ·	L
0	Cm	SCL	3	7.5yR	3/3	SMALL GRAVEL	NO	GRANULAR SNALL BLOCKY	18	DRY	SHALL FINE
11		CL	4	7.5yR	2/3	NO	11	SUBANGULAR	25	HALF	"
17		L	2	2.5yR	4/8	"	11 5	"	25	HALF	*¥ FINE
31		CL	l	10yR 4,	/6	"	2.5yR 6/3 MOTTLING	MASSIVE	30		
55		CL	1	lOyR 4/	/4	"	"	"	26		
72				2.5yR	3/6			·		ļ	
l					 	[:	[[
		PROFILE-N	0	64		100	ATION	· · · · · · · · · · · · · · · · · · ·	SLOP	49	
		LAND-USE						SOIL ALE	ISOL DUR	USTALF	
		TEXTU- RE	S Vet .	COIL COLO	OR DRY	GRAVEL	NOTTLING. CONCRE- TION.	STRUCTURE	DRY, WET.	ROOT	
	Ċn							5	: 	· .	
		Si.C		7.5yR 3	/2	NO	NO	HIDDLE BLOCKY	DRY	FINE. SMALL	
l	.8				· · ·	SUB		MASSIVE	HALF		

Fig. A.3.2.5-3 Profile of Soils (14)

"

ŇŌ

10yR 4/4

10yR 3/3

55

80

3-150

DURIPAN

"

'n

"

"

"

"

•					÷\$		
		:					
	PROFILE-NO	44	LOCATION	LAS P	ALMAS	SLOPE	1%
	LAND-USE	MATZE		SOIL	ALFISOL HA	PLUSTALFS.	

÷\$

	TEXTU- Re	ORGA- NIC	SOIL COLOR	— GRAVEL	HOTTLING. CONCRE-	STRUCTURE	HARD- NESS	DRY. VET.	ROOT
	 <u> </u>	MAT.	VET. DRY		TION.				
C 🛛 🗌	 · · · ·		. *						
	Si.C	2	10yR 5/2	NO	NO	SMALL BLOCKY	19	DRY	FINE. SMALL
	SI.CL	2	10yR 4/2			<i>"</i>	27	"	SNALL
	S.GRAYEL	3	10yR 4/3	SUB- Gravel	"			HALF DRY	SMALL
	 CL	3	10yR 3/1 × 10yR 4/3	NO	11	_	26	"	"
	 CL	1	10yR 5/3	MIDDLE. Fine Gravel	"		30		

PROFILE-NO	54	LOCATIO	N	 VACA EN CANAL	SLOPE	1.5%
LAND-USE		_	SOIL	ALFISOL HAPALUSTALF	S.	

					•····		
RE RE RE	SOIL COLOR	GRAVEL	MOTTLING. CONCRE- TION.	STRUCTURE	HARD- NESS	ROOT	

- 0	<u>Cu</u>					r					
-		Li.C		7.5yR	3/2	HIDDLE	NO	MIDDLE		SMALL	
						SMALL		BLOCKY		FINE	
						GRAVEL					
27						<u>.</u>					
		C		5yŔ 3/3		"	"	MIDDLE		SMALL	
								BLOCKY		FINE	
56									-		
		LI.C		5yR 4/4		"	RED BLACK	MASSIYE		FINE	
							MOTTLING				
								-			
83			····	:							
		Li.C		5yR 3/		"					

Fig. A.3.2.5-3 Profile of Soils (15)

. J

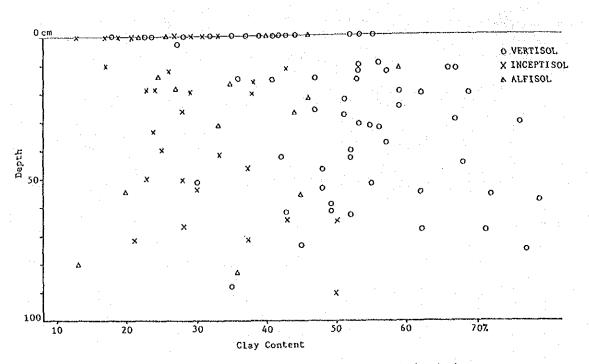
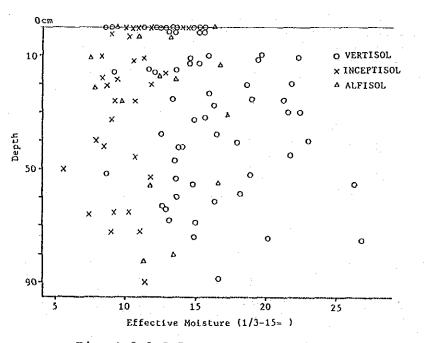
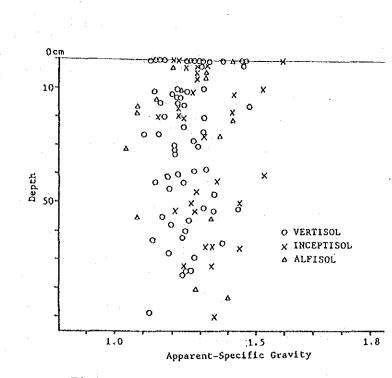
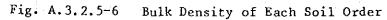
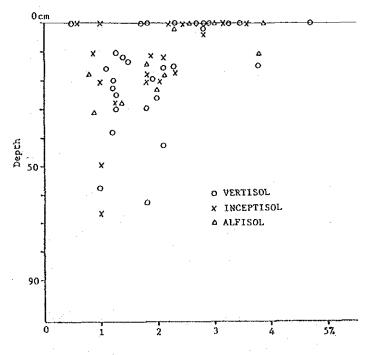
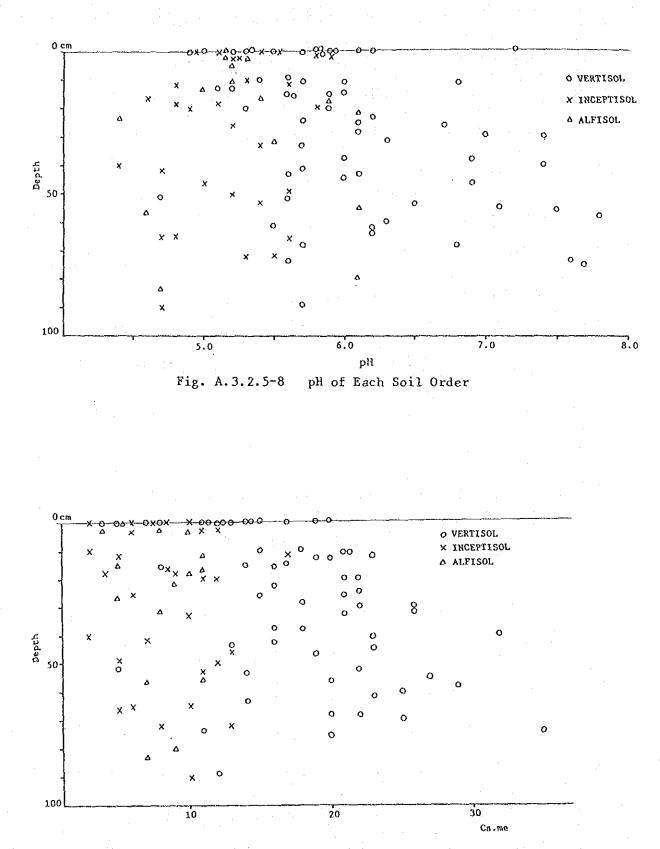
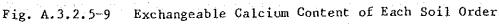


Fig. A.3.2.5-4 Clay Content of Each Soil Order


Fig. A.3.2.5-5 Available Moisture of Each Soil Order



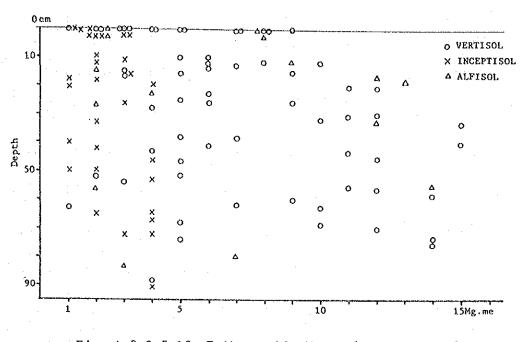
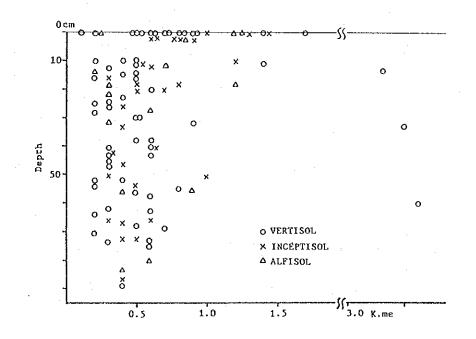
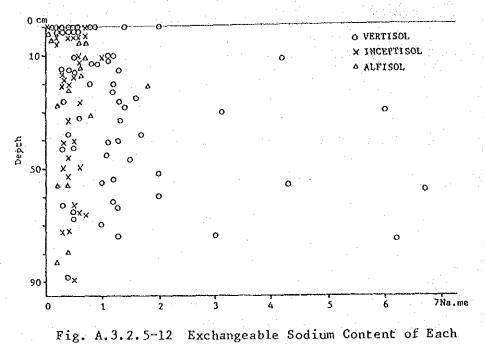
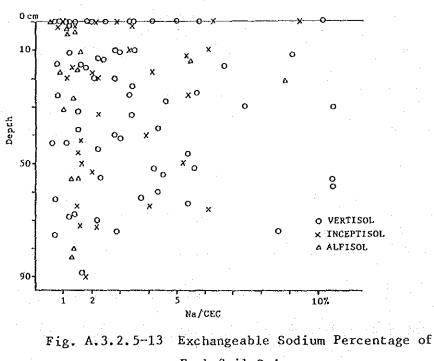
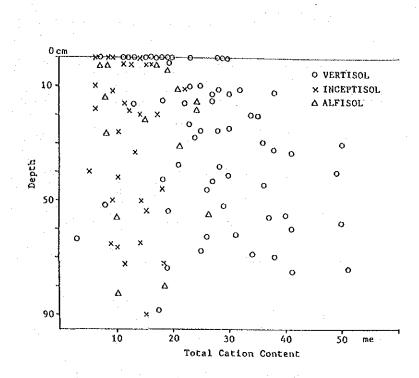
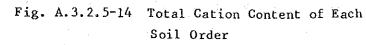
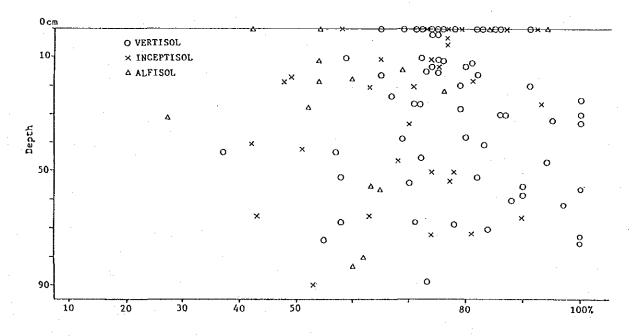


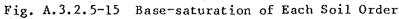
Fig. A.3.2.5-10 Exchangeable Magnesium Content of Each Soil Order

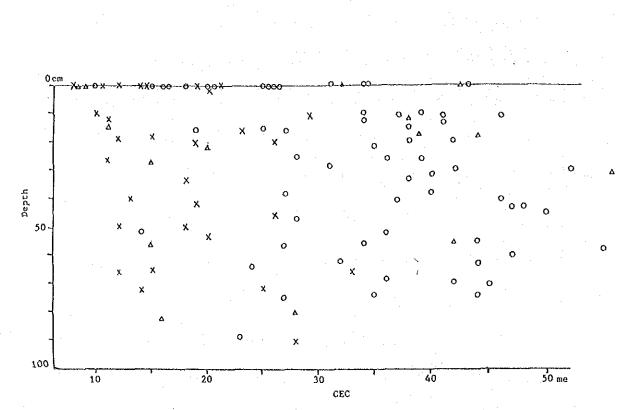




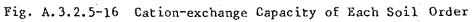

Fig. A.3.2.5-11 Exchangeable Potassium Content of Each Soil Order




Soil Order




Each Soil Order



(2) Land Capability Classification

Soil Characteristics are evaluated according \mathbf{t} he soil to classification, and the class of the land about the possibility of agricultural use, such as cultivation, is determined in the land classification. capability for Criteria are established evaluation of the factors of the land, and capability class is determined synthesizing the results of the evaluation by the criteria.

In Guatemala the soil survey for land capability classification was initiated in 1976 by "Departamento de Cooperacion Tecnica para el Desarrollo de Nacion Unidas (DCTD)" in cooperation with INAFOR and IGN in imitation of the United States. Soil surveys were conducted for a few agricultural areas and land capability maps on the scale of 1 : 500,000 were completed and their acquisition is charged.

In Monjas area factors adopted in the US system : (1) climate, (2) natural characteristics of soil : slope, texture, drainage, depth of solum, organic matter content, erosion, soil parent material, dominant clay minerals and natural fertility, (3) limit of land use, (4) improvement and management of soil, (5) land suitability, etc. were examined and a land capability map on the scale of 1 : 20,000 was completed. Area of the land grouped into capability classes is shown in Table A.3.3.5-1 and their distribution in Fig. 3.3.5-1.

The almost whole area surveyed is grouped into Class I to III. The land of Class III covers widest area, followed by the land of Class II, and every other land covers area smaller than 5 percent of total area.

The land of Class I is very good for regular cultivation and of few or no limitations (slope lower than 2 percent), and here a high production is expected with rational soil management. This land can be managed without difficulty owing to deep solum, moderate texture, water holding, water permeability and good drainage. The land of this class is distributed along the national road from Monjas to El Ovejero and on the planeland along the rivers and cover small area corresponding to 4 percent of total area.

The land of Class II is good for regular cultivation and of a few limitations. Topography is flat to undulating, slope is not steeper than 3 percent, and evidence of slight erosion is observed. The land of this Class needs moderately intensive management. It is distributed in the southern part of the area and covers about 1,400 ha corresponding to about 20 percent of total area.

The land of class III has more limitations as compared with those of Class II. Topography is flat to undulating and slope is not steeper than 6 percent. It has medium fertility, and the increase in its fertility can be expected by the introduction of fertilization and management technology. It is distributed throughout the area and covers 4,700 ha corresponding to about 67 percent of total area. The land of Class IV is sloped lands, liable to erosion and not suited for cultivation. It consists mainly of valley and hill growing shrubs and herbs, and has slope steeper than 6 percent. The soils are sandy to gravelly and solum is shallow due to severe erosion. It is distributed around the San Pedro lake, near mountain in the western part of the area and along the rivers, and covers small area corresponding to about 3 percent of total area.

The special land such as monadnock and volcanic cone where rock outcrops are present is divided as Class W in Guatemala. It is not suitable for agriculture. It is distributed in the east side of El Ovejero and in the western part of the area, occupying very small area.

The soils of the lands of Class III consist mainly of Vertisol and Alfisol, and those of Class II Inceptisol.

According to the above results, more than 90 percent of the Study area are occupied by the land suited for cultivation which is classified as land capability class I to III. Therefore, the growth of agricultural production is expected through completion of irrigation facilities in future. 3.3 Agriculture

3.3.1 Land Use

- 3.3.2 Agricultural Production
 - (1) General Description

Table A.3.3.2-1 Harvested Area of Main Crops

- Table A.3.3.2-2 Production of Main Crops
- (2) Crops and Productions

Table A.3.3.2-3 Cultivated Varieties in the Study Area Table A.3.3.2-4 Yield of Main Crops

Table A.3.3.2-5 Yield of Main Crops in the Study Area

(3) Cropping Pattern

Table A.3.3.2-6 Present Condition of Cultivation in Hoyo Lake Iriigation Project Area

(4) Cultivation Techniques

3.3.3 Livestock Production

Table A.3.3.3-1 Present Cattle Raising

Table A.3.3.3-2 Milk Production

3.3.4

Agricultural Management

- (1)Number of Household and Labour Table A.3.3.4-1 Number of Household and Family
- (2) Cultivated Area by Farm Size

Table A.3.3.4-2 Cultivated Area by Each Farm Size

- (3) Agricultural Labour System
- (4) Agricultural Input Materials Table A.3.3.4-3 Input Materials per Unit Area Table A.3.3.4-4 Total Input Materials Table A.3.3.4-5 Retail Price of Input Materials Table A.3.3.4-6 Total Cost of Input Materials Table A.3.3.4-7 Volume and Cost of Input Materials for Pasture
- (5) Agricultural Labour

Table A.3.3.4-8 Labour Requirement for Cropping Table A.3.3.4-9 Labour Requirement for Pasture Table A.3.3.4-10 Monthly Labour Requirement

(6)	Production Cost and Value								
	Table A.3.3.4-11 Unit Production Cost								
	Table A.3.3.4-12 Present Milk Production								
	Table A.3.3.4-13 Production Cost and Production Value								
	Table A.3.3.4-14 Net Production Value								
3.3.5	Marketing and Processing of Agricultural Products								
(1)									
	Table A.3.3.5-1 Marketing Channel System of								
	Agricultural Products								
	Table A.3.3.5-2 Export of Agricultural Products								
· .	Fig. A.3.3.5-1 Marketing Channel of Agricultural								
	Products								
	Fig. A.3.3.5-2 Price Control by INDECA (1986)								
(2)	Export of Agricultural								
	Table A.3.3.5-3 Amount of Export of Principal								
(D	Agricultural Products								
(3)	Processing of Agricultural Products								
	Fig. A.3.3.5-3 Location Map of Agro-industry and								
	Storage Facilities								
3,3,6	Related Agricultural Institution								
(1)	Supporting Organization								
	Fig. A.3.3.6-1 Division of Region								
	Fig. A.3.3.6-2 Organization of the Ministry of								
	Agriculture, Cattle and Food Resources								
	Fig. A.3.3.6-3 ICTA Operation Flow								
	Fig. A.3.3.6-4 Agricultural Extension Flow								
	Fig. A.3.3.6-5 Organization of DIRYA								
	Fig. A.3.3.6-6 Organization of Hoyo Lake Irrigation								
	Project Office								
. •	Table A.3.3.6-1 Provided Loans for Crops in Monjas								
	Area (1986)								
	Table A.3.3.6-2 Existing Cooperatives in Guatemala								
	(1986)								
	Table A.3.3.6-3 Agricultural Cooperatives in Guatemala								
	Table A.3.3.6-4 Existing Cooperatives in Region VI								
	Table A.3.3.6-5 Interview Survey for Cooperatives in								
	Monjas Area								