gauging facilities will be administered by the Communications Section of the Center.

7.8 Project Evaluation

The establishment of the proposed flood forecasting system which is essential to any comprehensive flood control project is expected to have appreciable mitigation effects on flood damage, together with other economic and social impacts. The beneficial effects will be realized ultimately when the flood control project is completed.

(1) Mitigation of Flood Damage

As mentioned in Chapter 6, the most direct effect of establishing the Step 1 Flood Forecasting System is the mitigation of flood damage to (a) immovable properties such as buildings, roads, railways, river structures and facilities, and agricultural crops; (b) movable properties such as livestock and household effects; (c) business activities of people and business firms; and, (d) traffic on highways and railways.

In the Step 2 system with updated facilities, flood predictions are transmitted to agencies concerned more rapidly than in the case of the Step 1 system. Therefore, the reduction effects on damage are expected to be more than those of the Step 1 system.

(2) Other Impacts

Besides the above direct effects, the system is expected to produce the following favorable effects:

(a) The proposed telecommunication system can be utilized for common administration and communication among the RID Head Office, its regional offices, and other related agencies during non-flood time. This will greatly facilitate execution of normal work activites.

- 236 -

- (b) Eradication of people's apprehension on the occurrence of surprise floods, since it is possible to save inhabitants by the prompt transmission of information.
- (c) Stimulative effect to the economic development of regions concerned due to the investment on facilities.
- (d) Increase in employment opportunity for people through the implementation of construction works.

In addition, the following system and organization will be achieved through the operation of the Step 2 system:

- (a) Establishment of the long-term flood forecasting system through the accumulation of hydrological and hydraulic data which cover a wide range and a long period; and
- (b) Realization of a substantial organization with experts for flood forecasting.

ANNUAL PEAK DISCHARGE AND ANNUAL DISCHARGE VOLUME SIMULATED THROUGH VARIED POINT RAINFALL GAUGING NETWORK (STEP 2) Table 7-1(1/3).

Discharge Volume (106m³) 6,185 5,939 5,499 5,013 5,551 5,547 5,285 6,829 6,771 6,797 6,967 6,967 6,167 6,156 6,214 4,939 5,041 Annua1 Objective Basin: Upper Reaches from Bhumibol Dam (C.A. = 20,031 km²) /1 Annual Peak Discharge (m³/s) (Date) 6 6 20220 8888 Oct. l,267 l,327 l,337 1,431 1,431 1,662 1,547 1,587 1,627 1,635 1,805 l,574 l,593 1,577 1,670 1,652 1,709 Number of Stations Rainfall 16 16 17 13 13 6 1 13 12 14 13 20 II Gauging Network (km²/station) than 1800 than 1800 than 1800 Density of Case of Observation and Simulation Rainfall 200 1200 1400 1400 1600 1000 1600 1000 1200 1400 1600 1000 L L 1 more more more Simulation 5 Simulation 4 4 ŝ ŝ Simulation 2 4 Simulation 1 Simulation 1 Simulation 1 Observation Observation Observation simulation Simulation Simulation Simulation Simulation Simulation Simulation Simulation Simulation Case No. 0090055 Year 1978 1980 1983

- 238 -

Covering the sub-basin of Code No. BS-1.

1

Note:

	Case	of Observation	and Simulation	Objective Nakhon Sav	Objective Basin: Upper Nakhon Sawan (C.A. = 58,	er Reaches from 58,721 km ²) $\underline{/1}$	
Year		Case No.	Density of Rainfall Gauging Network (km ² /station)	Number of Rainfall Stations	Annual Peak (m ³ /s)	Discharge (Date)	Annual Discharge Volume (106m ³)
1978	(1)	Observation			3.540		6
	(2)	Simulation 1	1000	59	3,579	•	4 0 0 0
	(E)	simulation 2	1200	49	3,514	•	2 m 2 m
	(†)	Simulation 3	1400	42	3,378		, 1 1 1
	(2)	Simulation 4	1600	37	3,390		່ທີ ເຈີ
	(9)	Simulation 5	more than 1800	33	3,268	Oct. 08	29,780
1980	(1)	Observation	I	ł	~ ~ ~		ĉ
	(2)	Simulation 1	1000	57	$\sim \infty$		2 F 2 F
	(3)	Simulation 2	1200	67	ന	، ه رز ز	, r
	(4)	Simulation 3	1400	40	4,434	LL (200
	(2)	Simulation 4	1600	38	ŝ		80
	(9)	Simulation 5	more than 1800	34	ŝ		31,663
1983	(1)	Observation	ľ	I	2,290	Oct. 23	3.94
	(2)	Simulation 1	1000	58	2,324		4.83
	(E)	Simulation 2	1200	48	2,332		5.08
	(†)	Simulation 3	1400	42	2,229		4.96
	(2)	Simulation 4	1600	37	2,304	Oct. 24	25,612
	9	Simulation 5	more than 1800	32	2.372		, 21 6

9 and 10.

4, 5, 6, 7, 8,

Covering the sub-basins of Code Nos. BS-2, 3,

Note: /1

Table 7-1(2/3). ANNUAL PEAK DISCHARGE AND ANNUAL DISCHARGE VOLUME SIMULATED THROUGH VARIED POINT RAINFALL GAUGING NETWORK (STEP 2)

	Case	cc/c/i=/ and and end	Si .	mulation	THROUGH VARIED POINT RAINFALL GAUGING NETWORK (STEP 2) THROUGH VARIED POINT RAINFALL GAUGING NETWORK (STEP 2) Objective Basin: Pasak River U from Saraburi (S.9) (C.A. = 8,1	GING NETWORK (STEP 2 tive Basin: Pasak R Saraburi (S.9) (C.A.	ak River Upper Reaches C.A. = 8,124 km ²) <u>/1</u>	Reaches
Year		Case No.	Den Rai Gau (km	Density of Rainfall Gauging Network (km ² /station)	Number of Rainfall Stations	Annual Peak (m ³ /s)	<pre>< Discharge (Date)</pre>	Annual Discharge Volume (10 ⁶ m ³)
1978	(2) (2) (2) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3	Observation Simulation 1 Simulation 2 Simulation 3 Simulation 4 Simulation 5	поre	- 1000 1200 1400 1600 than 1800	110100	3,206 3,272 3,305 3,309	Oct. 03 	5,186 5,318 6,023 6,239
1980	(2)	Observation Simulation 1 Simulation 2 Simulation 3 Simulation 4 Simulation 5	поте	- 1000 1200 1400 1600 than 1800		No Notable	Flood	
1983	666636E	Observation Simulation 1 Simulation 2 Simulation 3 Simulation 4 Simulation 5	ноч	- 1000 1200 1400 1600 than 1800		No Notable	Flood	

Note: /1 Covering the sub-basin of Code No. BS-14.

Installation	Code	Diana Desta	Loca	ation
Priority	No.	River Basin	Latitude	Longitude
1	R-1.1	Sakae Krang	15°54	99°28'
1	R-1.2	11	15°47'	99°41'
1	R-1.3	1 11	15°38	99°321
1	R-1.4	п	15°28†	99°34'
1	R-1.5	Chao Phraya	15°20'	100°32'
1	R-1.6	Pasak	15°28'	101°04'
1	R-1.7	11	15°13'	101°16'
1	R-1.8	n	15°04'	101°04'
1	R-1.9	31	14°51'	100°59'
1	R-1.10	11	14°37'	101°11'
			140501	A. 0.0 T.
2	R-2.1	Ping	16°52'	99°07'
2	R-2.2	11	16°46'	98°551
2	R-2.3	11	16°20'	99°16'
2	R-2.4	11	16°12'	99°43'
2	R-2.5		16°03'	99°51'
2	R-2.6		15°56'	99°59'
2	R-2.7	Yom	16°49'	99°48'
2	R-2.8	11	16°39'	99°35'
2	R-2.9		16°27'	99°53'
2	R-2.10	Nan	16°52'	100°45'
2	R-2.11		16°50'	100°31'
2	R-2.12	17	16°42'	100°36'
2	R-2.13	17	16°25'	100°33'
2	R-2.14		16°12'	100°25'
2	R-2.15	Nan	16°10'	100°33'
2	R-2.16	11	16°11'	100°51'
2	R-2.17	11	15°51'	100°35'
2	R-2.18		15°38†	100°29'
2	R-2.19		15°35'	100°39'
2	R-2.20	Pasak	16°25'	101°09'
2	R-2.21	3 T 51	15°59'	101°03'
2	R-2.22	tT	15°59'	101°14'
			L	

Table 7-2(1/2). INVENTORY OF POINT RAINFALL GAUGING STATIONS (STEP 2)

Installation	Code		Loca	tion
Priority	No.	River Basin	Latitude	Longitude
۵.7%), , , , , , , , , , , , , , , , , , ,		ar an		
3	R-3.1	Wang	- 18°17'	99°30'
3	R-3.2	11	18°07'	99°31'
3	R-3.3	11	.17°52'	99°20'
3	R-3.4	Yam	18°23'	100°22'
3	R-3.5	12	18°08'	100°08'
3	R-3.6	11	18°04'	99°50'
3	R-3.7	¥9	17°53'	99°36'
3	R-3.8	11	17°19'	99°33'
3	R-3.9	11	17°00'	99°34'
3	R-3.10	Nan	17°37'	100°05'
3	R-3.11	11	17°28'	100°07'
3	R-3.12	11	17°13'	100°21'
3	R-3.13	11	17°17'	100°33'
3 3	R-3.14	11	17°05'	100°50'
4	R-4.1	Ping	18°50'	98°58'
4	R-4.2	TE .	18°51'	99°17'
4	R-4.3	5 D	18°50'	98°44'
4	R-4.4	17 N N	18°42'	99°02'
4	R-4.5	TR	18°29'	98°21'
4	R-4.6	2 9	18°24'	98°40'
4	R-4.7	69	18°27'	99°08'
4	R-4.8		18°17'	98°19'
4	R-4.9	11	18°18'	98°49'
4	R-4.10	11	18°03'	98°38'
4	R-4.11	11	17°47'	98°21'
4	R-4.12	11	17°48'	98°57'
4	R-4.13	11	17°39'	98°46'
4	R-4.14	n	17°22'	98°29'
4	R-4.15	Nan	18°44'	101°01'
4	R-4.16	п	18°34'	100°45'
4	R-4.17	π	18°23'	100°51'
4	R-4.18	11	18°19'	100°43'
4	R-4.19	n	18°02'	101°01'
	•	P		

Table 7-2(2/2). INVENTORY OF POINT RAINFALL GAUGING STATIONS (STEP 2)

Table 7-3. INVENTRY OF POINT RAINFALL AND WATER LEVEL GAUGING STATIONS (STEP 2)

	Station		Loca	tion	Existing <u>/1</u> Gauging	Existing River
Installation Priority	Code No.	River System	Latitude	Longitude	Station Located Nearby	Structure Located Nearby
1	W/R-1.1	Chao Phraya	15°40'	100°06'	- C2 (RID)	
1	W/R-1.2	Sakae Krang	15°29'	99°56'	-	
1	W/R-1.3	Pasak	16°46'	101°14'	Wichian Buri (MD)	-
1	W/R-1.4	n	14°33'	100°45'	-	Upper Rama VI Dam Site
2	W/R-2.1	Ping	17°12'	99°06'	W4A (RID)	-
2	W/R-2.2	18	16°28'	99°31'	P7A (RID)	-
2	W/R-2.3	Yom	16°30'	100°12'	Y17 (RID)	-
2	W/R-2.4	Nan	16°49'	100°15'	N5A (RID)	• *
2	W/R-2.5	0	16°12'	100°25'	N10A (RID)	wa ¹
2	W/R-2.6	Pasak	16°46'	101°14'	Lom Sak (MD)	479
3	W/R-3.1	Wang	18°31'	99°37'	W10A (RID)	Lower Kiu Lom Dam Site
3	W/R-3.2	18	17°38'	99°14'	W3A (RID)	-
3	W/R-3.3	Yom	18°35'	100°09'	¥20 (RID)	
3	W/R-3.4	14	- 17°35'	99°43'	¥14 (RID)	. m
3	W/R-3.5	18	17°00'	99°49'	Y4 (RID)	
3	W/R-3.6	Nan	17°44'	100°32'	N12A (RID)	Lower Sirikit Dam Site
3	W/R-3.7	11	17°01'	100°11'	N27A (RID)	Upper Naresuan Dam Site
4	W/R-4,1	Ping	18°47'	99°00'	P1 (RID)	
4	W/R-4.2	Nan	18°46'	100°46'	NI	-

Note: $\frac{1}{1}$ The name in parenthesis means the office controlling the existing water level gauging station.

Table 7-4(1/2). POINT RAINFALL GAUGING STATIONS APPLIED TO BASIN RUNOFF PREDICTION MODEL (STEP 2)

-	ctive sin	А	pplied Gauging Station	l
Basin Code No₊	River System	Station Code No. /Location	Station Code No. /Location	Station Code No. /Location
BS-1	Ping	W/R-4.1/Chiang Mai R-4.3/Mae Rim R-4.6/Chom Thong R-4.9/Hot R-4.12/Li	R-4.1/Samoeng R-4.4/Sarapi R-4.7/Mae Tha R-4.10/Ban Aen R-4.13/Ban Ko	R-4.2/Sam Kamphaeng R-4.5/Mae Chaem R-4.8/Huai Mae Ka R-4.11/Omkoi R-4.14/Ban San Mamuang
BS-2	Wang	W/R-3.1/Kiu Lom Dam R-3.3/Sop Prap	R-3.1/Lampang W/R-3.2/Thoen	R-3.2/Mae Tha
BS-3	Ping	W/R-2.1/Wang Khrai R-2.3/Khlong Lan	R-2.1/Tak W/R-2.2/Kamphaeng Phet	R-2.2/Doi Musae
BS-4	Ping	W/R-2.2/Kamphaeng Phet R-2.6/Banphot Phisai	R-2.4/Khlong Khlung W/R-1.1/Nakhon Sawan	R-2.5/Ban Pang Wai
BS-5	Yom	W/R-3.3/Ngao Sak R-3.6/Long	R−3.4/Rong Kwang R−3.7/Wang Chin	R-3.5/Phrae W/R-3.4/Si Satchanalai
BS-6	Yom	W/R-3.4/Si Satchanalai W/R-3.5/Sukhotai	R-3.8/Thung Saliam	R-3.9/Ban Dan Lan Hoi
BS-7	Nan	W/R-4.2/Nan R-4.17/Na Noi W-R-3.6/Tha Pla	R-4.15/Mae Charim R-4.18/Yan Sarang	R-4.16/Sa R-4.19/Nam Pat
BS-8	Nan	W/R-3.6/Tha Pla R-3.12/Ban Nong Bon W/R-3.7/Naresuan Dam	R-3.10/Uttaradit R-3.13/Chattrakan W/R-2.4/Phitsanulok	R-3.11/Thron R-3.14 Nakhon Thai
BS-9	Nan	W/R-2.4/Phitsanulok R-2.12/Nan Khek	R-2.10/Khao Krayang R-2.13/Wang Saiphum	R-2.11/Wang Nok Aen

Table 7-4(2/2). POINT RAINFALL GAUGING STATIONS APPLIED TO BASIN RUNOFF PREDICTION MODEL (STEP 2)

-	ective sin		Applied Gauging Station	1
Basin Code No.	River Systen	Station Code No. /Location	Station Code No. /Location	Station Code No. /Location
BS-10	Nan/ Yom	R-2.7/Khirimat R-2.13/Wang Saiphum R-2.16/Chon Daen R-2.19/Phaisali	R-2.8/Phran Kratai R-2.14/Bang Mun Nak R-2.17/Nong Bua W/R-2.3/Sam Ngam	R-2.9/Sai Ngam R-2.15/Thap Khio R-2.18/Thatako W/R-2.5/Taphan Hin
BS-11	Sakae Krang	R-1.1/Ban Pang Makha R-1.4/Lan Sak	R-1.2/Ban San Chao W/R-1.2/Uthai Thani	R-1.3/Khlong Pho
BS12	Tha Pla Pi	R-1.5/Ban Mi		
BS-13	Pasak	W/R-2.6/Lom Sak R-2.22/Ban Wang Thadi	R-2.20/Phetchabun W/R-1.2/Wichian Buri	R-2.21/Nong Phai
BS-14	Pasak	W/R-1.3/Wichian Buri R-1.8/Chai Badam W/R-1.4/Rama VI Dam	R-1.6/Kok Saat R-1.9/Phatthana Nikhom	R−1.7/Ban Tha Ruak R−1.10/Kham Takhian

ī.

Table 7-5(1/2).	INVENTORY	\mathbf{OF}	WATER	LEVEL	GAUGING	STATIONS
	(STEP 2)					

Priority Code No. System Latitude Longitude Station Located Nearby Structure Located Nearby 1 W-1.1 Chao Phraya 15°09' 100°11' C13 (RID) Chao Phraya Dam 1 W-1.2 " 14°53' 100°24' C3 (RID) - 1 W-1.3 Lop Buri 14°47' 100°36' L2A (RID) - 1 W-1.4 Chao Phraya 14°35' 100°27' C7A (RID) - 1 W-1.5 " 14°11' 100°35' S5 (RID) - 1 W-1.6 " 14°11' 100°30' C29 (RID) - 1 W-1.7 " 13°53' 100°29' C4 (RID) - 1 W-1.8 " 13°44' 100°30' C12 (RID) - 1 W-1.10 " 13°32' 100°34' Phra Chul (PAT) - 1 W-1.11 C-P Canal 15°09' 100°25' - Chongkae Regulator	Installation	Station	River	Loca	tion	Existing <u>/1</u> Gauging	Existing River
1 W-1.2 " 14°53' 100°24' C3 (RID) - 1 W-1.3 Lop Buri 14°47' 100°36' L2A (RID) - 1 W-1.4 Chao Phraya 14°47' 100°36' L2A (RID) - 1 W-1.4 Chao Phraya 14°35' 100°27' C7A (RID) - 1 W-1.5 " 14°21' 100°30' C29 (RID) - 1 W-1.6 " 14°11' 100°30' C29 (RID) - 1 W-1.7 " 13°53' 100°29' C22 (RID) - 1 W-1.8 " 13°47' 100°30' C12 (RID) - 1 W-1.8 " 13°44' 100°29' C4 (RID) - 1 W-1.10 " 13°32' 100°34' Phrachul - 1 W-1.11 C-P Canal 15°20' 100°06' - Manorom Regulator 1 W-1.12 " 15°09' 100°25' - Chongkae Regulator 1 W-1.13	Priority	1		Latitude	Longitude	Located	
1 W-1.2 IA '33 100 '24 OS (KB) IA '33 1 W-1.3 Lop Buri 14°35' 100°36' L2A (RID) - 1 W-1.4 Chao Phraya 14°35' 100°27' C7A (RID) - 1 W-1.5 " 14°21' 100°35' S5 (RID) - 1 W-1.6 " 14°11' 100°30' C29 (RID) - 1 W-1.6 " 14°11' 100°30' C29 (RID) - 1 W-1.6 " 13°53' 100°29' C22 (RID) - 1 W-1.7 " 13°53' 100°29' C4 (RID) - 1 W-1.9 " 13°44' 100°29' C4 (RID) - 1 W-1.10 " 13°32' 100°04' - Manorom Regulator 1 W-1.11 C-P Canal 15°20' 100°06' - Magoulator 1 W-1.12 " 15°09' 100°25' - Chongkae Regulator 1 W-1.14 " <	1	W1.1	Chao Phraya	15°09'	100°11'	C13 (RID)	
1 W-1.4 Chao Phraya $14^{\circ}35'$ $100^{\circ}27'$ C7A (RID) - 1 W-1.5 " $14^{\circ}21'$ $100^{\circ}35'$ S5 (RID) - 1 W-1.6 " $14^{\circ}11'$ $100^{\circ}30'$ C29 (RID) - 1 W-1.6 " $14^{\circ}11'$ $100^{\circ}30'$ C29 (RID) - 1 W-1.7 " $13^{\circ}53'$ $100^{\circ}29'$ C22 (RID) - 1 W-1.8 " $13^{\circ}47'$ $100^{\circ}30'$ C12 (RID) - 1 W-1.9 " $13^{\circ}44'$ $100^{\circ}29'$ C4 (RID) - 1 W-1.9 " $13^{\circ}32'$ $100^{\circ}34'$ Phra Chul - 1 W-1.10 " $13^{\circ}32'$ $100^{\circ}06'$ - Manorom Regulator 1 W-1.11 C-P Cana1 $15^{\circ}20'$ $100^{\circ}25'$ - Chongkae Regulator 1 W-1.12 " $15^{\circ}09'$ $100^{\circ}36'$ - Kake Kathie Regulator 1 W-1.13 " $14^{\circ}54'$ 1	1	W-1.2	11	14°53'	100°24'	C3 (RID)	-
1W-1.5" $14^{\circ}21^{\circ}$ $100^{\circ}35^{\circ}$ S5 (RID)-1N-1.6" $14^{\circ}11^{\circ}$ $100^{\circ}30^{\circ}$ C29 (RID)-1W-1.7" $13^{\circ}53^{\circ}$ $100^{\circ}29^{\circ}$ C22 (RID)-1W-1.8" $13^{\circ}47^{\circ}$ $100^{\circ}30^{\circ}$ C12 (RID)-1W-1.9" $13^{\circ}44^{\circ}$ $100^{\circ}29^{\circ}$ C4 (RID)-1W-1.9" $13^{\circ}32^{\circ}$ $100^{\circ}34^{\circ}$ Phra Chul (PAT)-1W-1.10" $13^{\circ}32^{\circ}$ $100^{\circ}06^{\circ}$ -Manorom Regulator1W-1.11C-P Canal /2 $15^{\circ}20^{\circ}$ $100^{\circ}25^{\circ}$ -Chongkae Regulator1W-1.12" $14^{\circ}54^{\circ}$ $100^{\circ}36^{\circ}$ -Kake Kathie Regulator1W-1.13" $14^{\circ}54^{\circ}$ $100^{\circ}45^{\circ}$ -Reong Rang Regulator1W-1.15C-A Canal /3 $15^{\circ}10^{\circ}$ $100^{\circ}10^{\circ}$ -Maharaj Regulator1W-1.16Noi $15^{\circ}10^{\circ}$ $100^{\circ}09^{\circ}$ -Boronmathad	1	W-1.3	Lop Buri	14°47'	100°36'	L2A (RID)	
1W-1.6" $14^{\circ}11'$ $100^{\circ}30'$ $C29$ (RID)-1W-1.7" $13^{\circ}53'$ $100^{\circ}29'$ $C22$ (RID)-1W-1.8" $13^{\circ}47'$ $100^{\circ}30'$ $C12$ (RID)-1W-1.9" $13^{\circ}44'$ $100^{\circ}29'$ $C4$ (RID)-1W-1.10" $13^{\circ}32'$ $100^{\circ}34'$ Phra Chul (PAT)-1W-1.11C-P Canal $15^{\circ}20'$ $100^{\circ}06'$ -Manorom Regulator1W-1.12" $15^{\circ}09'$ $100^{\circ}25'$ -Chongkae Regulator1W-1.13" $14^{\circ}54'$ $100^{\circ}36'$ -Kake Kathio Regulator1W-1.14" $14^{\circ}38'$ $100^{\circ}45'$ -Reong Rang Regulator1W-1.15C-A Canal $15^{\circ}10'$ $100^{\circ}09'$ -Boronmathad	1	W-1.4	Chao Phraya	14°35'	100°27'	C7A (RID)	-
1 $W^{-1}.0^{-1}$ $W^{-1}.0^{-1}$ $W^{-1}.0^{-1}$ $W^{-1}.0^{-1}$ $W^{-1}.0^{-1}$ $W^{-1}.8^{-1}$ $13^{\circ}53^{\prime}$ $100^{\circ}29^{\prime}$ $C22$ (RID) $-$ 1 $W^{-1}.8^{-1}$ $13^{\circ}47^{\prime}$ $100^{\circ}30^{\prime}$ $C12$ (RID) $-$ 1 $W^{-1}.9^{-1}$ $13^{\circ}44^{\prime}$ $100^{\circ}29^{\prime}$ $C4$ (RID) $-$ 1 $W^{-1}.0^{-1}$ $W^{-1}.10^{-1}$ $13^{\circ}32^{\prime}$ $100^{\circ}34^{\prime}$ Phra Chul $-$ 1 $W^{-1}.10^{-1}$ C^{-P} Canal $15^{\circ}20^{\prime}$ $100^{\circ}06^{\prime}$ $-$ Manorom 1 $W^{-1}.11^{-1}$ C^{-P} Canal $15^{\circ}09^{\prime}$ $100^{\circ}25^{\prime}$ $-$ Manorom 1 $W^{-1}.12^{-1}$ $W^{-1}.13^{-1}$ $14^{\circ}54^{\prime}$ $100^{\circ}25^{\prime}$ $-$ Chongkae 1 $W^{-1}.13^{-1}$ $W^{-1}.13^{-1}$ $14^{\circ}54^{\prime}$ $100^{\circ}36^{\prime}$ $-$ Reong Rang 1 $W^{-1}.14^{-1}$ $W^{-1}.15^{-1}$ C^{-A} Canal $15^{\circ}10^{\prime}$ $100^{\circ}10^{\prime}$ $-$ Maharaj 1 $W^{-1}.16^{-1}$ $15^{\circ}10^{\prime}$ $100^{\circ}09$	1	W-1.5	H .	14°21'	100°35'	S5 (RID)	**
1W-1.8" $13^{\circ}47^{\circ}$ $100^{\circ}30^{\circ}$ C12 (RID)-1W-1.9" $13^{\circ}44^{\circ}$ $100^{\circ}29^{\circ}$ C4 (RID)-1W-1.10" $13^{\circ}32^{\circ}$ $100^{\circ}34^{\circ}$ Phra Chul (PAT)-1W-1.11C-P Canal /2 $15^{\circ}20^{\circ}$ $100^{\circ}06^{\circ}$ -Manorom Regulator1W-1.12" $15^{\circ}20^{\circ}$ $100^{\circ}06^{\circ}$ -Manorom Regulator1W-1.12" $15^{\circ}09^{\circ}$ $100^{\circ}25^{\circ}$ -Chongkae Regulator1W-1.13" $14^{\circ}54^{\circ}$ $100^{\circ}36^{\circ}$ -Kake Kathie Regulator1W-1.14" $14^{\circ}38^{\circ}$ $100^{\circ}45^{\circ}$ -Reong Rang Regulator1W-1.15C-A Canal /3 $15^{\circ}10^{\circ}$ $100^{\circ}09^{\circ}$ -Borommathad	1	W-1.6	11	14°11'	100°30'	C29 (RID)	-
1 W-1.0 " 13°44' 100°30' O12 (KD)' 1 W-1.9 " 13°44' 100°29' C4 (RID) - 1 W-1.10 " 13°32' 100°34' Phra Chul (PAT) - 1 W-1.11 C-P Canal 15°20' 100°06' - Manorom Regulator 1 W-1.12 " 15°09' 100°25' - Chongkae Regulator 1 W-1.13 " 14°54' 100°36' - Kake Kathie Regulator 1 W-1.14 " 14°38' 100°45' - Reong Rang Regulator 1 W-1.15 C-A Canal 15°10' 100°10' - Maharaj Regulator 1 W-1.16 Noi 15°10' 100°09' - Boronmathat	: 1 -	₩-1.7	0	13°53'	100°29'	C22 (RID)	-
1W-1.10" $13^{\circ}32'$ $100^{\circ}34'$ Phra Chul (PAT)-1W-1.11C-P Canal $15^{\circ}20'$ $100^{\circ}06'$ -Manorom Regulator1W-1.12" $15^{\circ}09'$ $100^{\circ}25'$ -Chongkae Regulator1W-1.13" $14^{\circ}54'$ $100^{\circ}36'$ -Kake Kathie Regulator1W-1.14" $14^{\circ}38'$ $100^{\circ}45'$ -Reong Rang Regulator1W-1.15C-A Canal $15^{\circ}10'$ $100^{\circ}10'$ -Maharaj Regulator1W-1.16Noi $15^{\circ}10'$ $100^{\circ}09'$ -Boronmathat	•	W-1.8	tt. All All All All All All All All All All	13°47'	100°30'	C12 (RID)	
1 $W^{-1.10}$ $15^{\circ} 52^{\circ}$ $100^{\circ} 54^{\circ}$ $111^{\circ} a$ ond (PAT) 1 $W^{-1.11}$ C^{-P} Canal $15^{\circ} 20^{\circ}$ $100^{\circ} 06^{\circ}$ $-$ Manorom Regulator 1 $W^{-1.12}$ " $15^{\circ} 09^{\circ}$ $100^{\circ} 25^{\circ}$ $-$ Chongkae Regulator 1 $W^{-1.13}$ " $14^{\circ} 54^{\circ}$ $100^{\circ} 36^{\circ}$ $-$ Kake Kathie Regulator 1 $W^{-1.14}$ " $14^{\circ} 54^{\circ}$ $100^{\circ} 45^{\circ}$ $-$ Reong Rang Regulator 1 $W^{-1.14}$ " $14^{\circ} 38^{\circ}$ $100^{\circ} 45^{\circ}$ $-$ Reong Rang Regulator 1 $W^{-1.15}$ C^{-A} Canal $15^{\circ} 10^{\circ}$ $100^{\circ} 09^{\circ}$ $-$ Maharaj Regulator 1 $W^{-1.16}$ Noi $15^{\circ} 10^{\circ}$ $100^{\circ} 09^{\circ}$ $-$ Boronmathat	1	W-1.9	11	13°44'	100°29'	C4 (RID)	-
1 $W-1.12$ $\frac{/2}{}$ $15^{\circ}09'$ $100^{\circ}25'$ $-$ Regulator1 $W-1.12$ " $14^{\circ}54'$ $100^{\circ}36'$ $-$ Kake Kathie Regulator1 $W-1.13$ " $14^{\circ}54'$ $100^{\circ}36'$ $-$ Kake Kathie Regulator1 $W-1.14$ " $14^{\circ}38'$ $100^{\circ}45'$ $-$ Reong Rang Regulator1 $W-1.15$ $C-A$ Canal $15^{\circ}10'$ $100^{\circ}10'$ $-$ Maharaj 	1	W-1.10	. 11	13°32'	100°34'		
1 W-1.13 " $14^{\circ}54'$ $100^{\circ}36'$ - Regulator 1 W-1.14 " $14^{\circ}54'$ $100^{\circ}45'$ - Reong Rang Regulator 1 W-1.15 C-A Canal $15^{\circ}10'$ $100^{\circ}10'$ - Maharaj Regulator 1 W-1.16 Noi $15^{\circ}10'$ $100^{\circ}09'$ - Boronmathat	1	W-1.11		15°20'	100°06'	-	
1W-1.14"14°38' $100°45'$ -Regulator1W-1.15C-A Canal $\underline{/3}$ 15°10' $100°10'$ -Maharaj Regulator1W-1.16Noi15°10' $100°09'$ -Boronmathat	1	W-1.12	. 11	15°09'	100°25'		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	₩ -1.1 3	11	14°54'	100°36'	-	Kake Kathien Regulätor
$\frac{1}{1} \qquad \qquad \frac{1}{100} \qquad \qquad \frac{1}{10} \qquad \qquad \frac{1}$	1	W-1.14	11 17 - 19 - 19 - 19 - 19 - 19 - 19 - 19 -	14°38'	100°45'		
	1	W-1.15		15°10'	100°10'	-	
A A A A A A A A A A A A A A A A A A A	1	W-1.16	Noi	15°10'	100°09'	-	Borommathat Regulator
1 W-1.17 " 14°56' 100°17' - Chanasatr Regulator	1	W-1.17	81	14°56'	100°17'	-	j

Note: 1 The name in parenthesis means the office controlling the existing water level gauging station.

- /2 Chai Nat - Pasak Canal.
- <u>/3</u> Chai Nat - Ayutthaya Canal.

	L		A		Land and the second	:
Installation	Station	River	Loca	tion	Existing <u>/l</u> Gauging	Existing River
Priority	Code	System			Station	Structure
recorder	No.	bystem	Latitude	Longitude	Located	Located
And the second					Nearby	Nearby
1	W-1.18	Noi	14°45'	100°25'	-	Yang Manee Regulator
1	W-1.19	11	14°26'	100°23'		Pakhar Regulator
1	W-1.20	Suphan	15°13'	100°04'	1159	Phonlathep Regulator
1	W-1.21	ŧ	15°03'	100°01'		Thabote Regulator
1	₩-1.22	11	14°46'	100°06'		Samchook Regulator
1	W-1.23	Ħ	14°32'	100°08'	- ·	Phophya Regulator
2	W-2.1	Ping	17°14'	99°00'	P12 (RID)	Lower Bhumibol Dam Site
4	W-4.1	11	17°15'	98°50'	-	Upper Bhumibol Dam Site
4	W-4.2	Nan	17°46'	100°33'	-	Upper Sirikit Dam Site
			and the second se	The second se	And a second s	the second se

Table 7-5(2/2). INVENTORY OF WATER LEVEL GAUGING STATIONS (STEP 2)

Note: $\frac{1}{1}$ The name in parenthesis means the office controlling the existing water level gauging station.

Т

PingDischargeW/R-2.2HWangDischargeW/R-3.2DWangDischargeW/R-3.2DYomDischargeW/R-2.1WYomDischargeW/R-3.4SYomDischargeW/R-3.5SYomDischargeW/R-2.3SYomDischargeW/R-2.3SNanDischargeW/R-2.4HNanDischargeW/R-2.5SSakae KrangDischargeW/R-1.2SPasakDischargeW/R-1.3WPasakDischarge/Water LevelW/R-1.1HChao PhrayaDischarge/Water LevelW-1.2SLop BuriDischarge/Water LevelW-1.3HChao PhrayaDischarge/Water LevelW-1.3HChao PhrayaDischarge/Water LevelW-1.4HChao PhrayaDischarge/Water LevelW-1.6HChao PhrayaDischarge/Water LevelW-1.6HChao PhrayaDischarge/Water LevelW-1.6H	Location
PingDischargeW/R-2.2HWangDischargeW/R-3.2DWangDischargeW/R-3.2DYomDischargeW/R-2.1WYomDischargeW/R-3.4SYomDischargeW/R-3.5SYomDischargeW/R-2.3SNanDischargeW/R-2.3SNanDischargeW/R-2.4HNanDischargeW/R-2.5SSakae KrangDischargeW/R-1.2SPasakDischargeW/R-1.3WPasakDischarge/Water LevelW/R-1.1HChao PhrayaDischarge/Water LevelW-1.2SLop BuriDischarge/Water LevelW-1.3HChao PhrayaDischarge/Water LevelW-1.3HChao PhrayaDischarge/Water LevelW-1.4HChao PhrayaDischarge/Water LevelW-1.6HChao PhrayaDischarge/Water LevelW-1.6HChao PhrayaDischarge/Water LevelW-1.6H	
PingDischargeW/R-2.2HWangDischargeW/R-3.2DWangDischargeW/R-3.2DYomDischargeW/R-2.1WYomDischargeW/R-3.4SYomDischargeW/R-3.5SYomDischargeW/R-2.3SNanDischargeW/R-2.3SNanDischargeW/R-2.4HNanDischargeW/R-2.5SSakae KrangDischargeW/R-1.2SPasakDischargeW/R-1.3WPasakDischarge/Water LevelW/R-1.1HChao PhrayaDischarge/Water LevelW-1.2SLop BuriDischarge/Water LevelW-1.3HChao PhrayaDischarge/Water LevelW-1.3HChao PhrayaDischarge/Water LevelW-1.4HChao PhrayaDischarge/Water LevelW-1.6HChao PhrayaDischarge/Water LevelW-1.6HChao PhrayaDischarge/Water LevelW-1.6H	
WangDischargeW/R-3.2W/R-3.2WangDischargeW/R-2.1W/R-2.1YomDischargeW/R-3.4SYomDischargeW/R-3.5SYomDischargeW/R-2.3SYomDischargeW/R-2.3SYomDischargeW/R-2.4SNanDischargeW/R-2.5SNanDischargeW/R-2.5SSakae KrangDischargeW/R-1.2SPasakDischargeW/R-1.3WChao PhrayaDischarge/Water LevelW/R-1.1SChao PhrayaDischarge/Water LevelW-1.2SLop EuriDischarge/Water LevelW-1.3SChao PhrayaDischarge/Water LevelW-1.4AChao PhrayaDischarge/Water LevelW-1.6SChao PhrayaDischarge/Water LevelW-1.6SChao PhrayaDischarge/Water LevelW-1.6S	Upper Bhumibol Dam
WangDischargeW/R-2.1WYomDischargeW/R-3.4SYomDischargeW/R-3.5SYomDischargeW/R-2.3SYomDischargeW/R-2.3SNanDischargeW/R-2.4UNanDischargeW/R-2.4UNanDischargeW/R-2.5DSakae KrangDischargeW/R-1.2DPasakDischargeW/R-1.3WPasakDischargeW/R-1.4UChao PhrayaDischarge/Water LevelW/R-1.1Chao PhrayaDischarge/Water LevelW-1.2Lop BuriDischarge/Water LevelW-1.3Chao PhrayaDischarge/Water LevelW-1.4Chao PhrayaDischarge/Water LevelW-1.6Chao PhrayaDischarge/Water LevelW-1.6Chao PhrayaDischarge/Water LevelW-1.5Chao PhrayaDischarge/Water LevelW-1.6Chao PhrayaDischarge/Water LevelW-1.6	Kamphaeng Phet (P7A)
YomDischargeW/R-3.4SYomDischargeW/R-3.5SYomDischargeW/R-2.3SNanDischargeW-4.2UNanDischargeW/R-2.4UNanDischargeW/R-2.4UNanDischargeW/R-2.5UNanDischargeW/R-1.2USakae KrangDischargeW/R-1.3UPasakDischargeW/R-1.4UChao PhrayaDischarge/Water LevelW/R-1.1Chao PhrayaDischarge/Water LevelW-1.2Lop BuriDischarge/Water LevelW-1.3Chao PhrayaDischarge/Water LevelW-1.4Chao PhrayaDischarge/Water LevelW-1.5Chao PhrayaDischarge/Water LevelW-1.6Chao PhrayaDischarge/Water LevelW-1.5Chao PhrayaDischarge/Water LevelW-1.5Chao PhrayaDischarge/Water LevelW-1.6Chao PhrayaDischarge/Water LevelW-1.6Chao PhrayaWater LevelW-1.7	Thoen (W3A)
YomDischargeW/R-3.5SYomDischargeW/R-2.3SNanDischargeW-4.2UNanDischargeW/R-3.7NNanDischargeW/R-2.4NNanDischargeW/R-2.5NNanDischargeW/R-1.2NSakae KrangDischargeW/R-1.3NPasakDischargeW/R-1.3NChao PhrayaDischarge/Water LevelW/R-1.1NChao PhrayaDischarge/Water LevelW-1.1NChao PhrayaDischarge/Water LevelW-1.3NChao PhrayaDischarge/Water LevelW-1.3NChao PhrayaDischarge/Water LevelW-1.4NChao PhrayaDischarge/Water LevelW-1.4NChao PhrayaDischarge/Water LevelW-1.4NChao PhrayaDischarge/Water LevelW-1.6NChao PhrayaDischarge/Water LevelW-1.6NChao PhrayaWater LevelW-1.7N	Wang Khrai (W4A)
YomDischargeW/R-2.3SNanDischargeW-4.2UNanDischargeW/R-3.7HNanDischargeW/R-2.4HNanDischargeW/R-2.5HNanDischargeW/R-1.2HSakae KrangDischargeW/R-1.3HPasakDischargeW/R-1.4HChao PhrayaDischarge/Water LevelW/R-1.1HChao PhrayaDischarge/Water LevelW-1.1HChao PhrayaDischarge/Water LevelW-1.2HChao PhrayaDischarge/Water LevelW-1.3HChao PhrayaDischarge/Water LevelW-1.4HChao PhrayaDischarge/Water LevelW-1.4HChao PhrayaDischarge/Water LevelW-1.5HChao PhrayaDischarge/Water LevelW-1.5HChao PhrayaDischarge/Water LevelW-1.6HChao PhrayaWater LevelW-1.7H	Si Satchanalai (Y14)
NanDischargeW-4.2UNanDischargeW/R-3.7MNanDischargeW/R-2.4MNanDischargeW/R-2.5MSakae KrangDischargeW/R-1.2MPasakDischargeW/R-1.3MPasakDischargeW/R-1.4MChao PhrayaDischarge/Water LevelW/R-1.1MChao PhrayaDischarge/Water LevelW-1.1MChao PhrayaDischarge/Water LevelW-1.2MChao PhrayaDischarge/Water LevelW-1.3MChao PhrayaDischarge/Water LevelW-1.3MChao PhrayaDischarge/Water LevelW-1.4MChao PhrayaDischarge/Water LevelW-1.6MChao PhrayaDischarge/Water LevelW-1.5MChao PhrayaDischarge/Water LevelW-1.6MChao PhrayaDischarge/Water LevelW-1.6MChao PhrayaDischarge/Water LevelW-1.7M	Sukhotai (Y4)
NanDischargeW/R-3.7HNanDischargeW/R-2.4HNanDischargeW/R-2.5HSakae KrangDischargeW/R-1.2HPasakDischargeW/R-1.3HPasakDischargeW/R-1.4HChao PhrayaDischarge/Water LevelW/R-1.1HChao PhrayaDischarge/Water LevelW-1.1HChao PhrayaDischarge/Water LevelW-1.2HChao PhrayaDischarge/Water LevelW-1.3HChao PhrayaDischarge/Water LevelW-1.3HChao PhrayaDischarge/Water LevelW-1.4HChao PhrayaDischarge/Water LevelW-1.6HChao PhrayaDischarge/Water LevelW-1.6HChao PhrayaDischarge/Water LevelW-1.6HChao PhrayaDischarge/Water LevelW-1.6H	Sam Ngan (Y17)
NanDischargeW/R-2.4HNanDischargeW/R-2.5DischargeSakae KrangDischargeW/R-1.2DischargePasakDischargeW/R-1.3W/R-1.3PasakDischargeW/R-1.4UChao PhrayaDischarge/Water LevelW/R-1.1Chao PhrayaDischarge/Water LevelW-1.1Chao PhrayaDischarge/Water LevelW-1.2Lop BuriDischarge/Water LevelW-1.3Chao PhrayaDischarge/Water LevelW-1.4Chao PhrayaDischarge/Water LevelW-1.4Chao PhrayaDischarge/Water LevelW-1.6Chao PhrayaDischarge/Water LevelW-1.6Chao PhrayaWater LevelW-1.7	Upper Sirikit Dam
NanDischargeW/R-2.5MSakae KrangDischargeW/R-1.2MPasakDischargeW/R-1.3WPasakDischargeW/R-1.4MChao PhrayaDischarge/Water LevelW/R-1.1Chao PhrayaDischarge/Water LevelW-1.1Chao PhrayaDischarge/Water LevelW-1.2Lop BuriDischarge/Water LevelW-1.3Chao PhrayaDischarge/Water LevelW-1.4Chao PhrayaDischarge/Water LevelW-1.6Chao PhrayaDischarge/Water LevelW-1.5Chao PhrayaDischarge/Water LevelW-1.6Chao PhrayaWater LevelW-1.7	Lower Naresuan Dam (N27A)
Sakae KrangDischargeW/R-1.2W/R-1.2PasakDischargeW/R-1.3W/R-1.3PasakDischargeW/R-1.4WChao PhrayaDischarge/Water LevelW/R-1.1Chao PhrayaDischarge/Water LevelW-1.1Chao PhrayaDischarge/Water LevelW-1.2Lop BuriDischarge/Water LevelW-1.3Chao PhrayaDischarge/Water LevelW-1.4Chao PhrayaDischarge/Water LevelW-1.6Chao PhrayaDischarge/Water LevelW-1.5Chao PhrayaDischarge/Water LevelW-1.6Chao PhrayaWater LevelW-1.7	Phitsanulok (N5A)
PasakDischargeW/R-1.3WPasakDischargeW/R-1.4WChao PhrayaDischarge/Water LevelW/R-1.1MChao PhrayaDischarge/Water LevelW-1.1MChao PhrayaDischarge/Water LevelW-1.2MChao PhrayaDischarge/Water LevelW-1.3MLop BuriDischarge/Water LevelW-1.3MChao PhrayaDischarge/Water LevelW-1.4MChao PhrayaDischarge/Water LevelW-1.6MChao PhrayaDischarge/Water LevelW-1.6MChao PhrayaWater LevelW-1.7M	Thaphan Hin (N1OA)
PasakDischargeW/R-1.4UChao PhrayaDischarge/Water LevelW/R-1.1MChao PhrayaDischarge/Water LevelW-1.1MChao PhrayaDischarge/Water LevelW-1.2SLop BuriDischarge/Water LevelW-1.3MChao PhrayaDischarge/Water LevelW-1.4MChao PhrayaDischarge/Water LevelW-1.4MChao PhrayaDischarge/Water LevelW-1.6MChao PhrayaDischarge/Water LevelW-1.6MChao PhrayaWater LevelW-1.7M	Thap Than (Ct8)
Chao PhrayaDischarge/Water LevelW/R-1.1IChao PhrayaDischarge/Water LevelW-1.1IChao PhrayaDischarge/Water LevelW-1.2SLop BuriDischarge/Water LevelW-1.3IChao PhrayaDischarge/Water LevelW-1.4HChao PhrayaDischarge/Water LevelW-1.4HChao PhrayaDischarge/Water LevelW-1.6IChao PhrayaDischarge/Water LevelW-1.6IChao PhrayaWater LevelW-1.6I	Wichian Buri
Chao PhrayaDischarge/Water LevelW-1.1IChao PhrayaDischarge/Water LevelW-1.2SLop BuriDischarge/Water LevelW-1.3IChao PhrayaDischarge/Water LevelW-1.4HChao PhrayaDischarge/Water LevelW-1.5HChao PhrayaDischarge/Water LevelW-1.6IChao PhrayaWater LevelW-1.6IChao PhrayaWater LevelW-1.6I	Upper Rama VI Dam
Chao Phraya Lop BuriDischarge/Water Level Discharge/Water LevelW-1.2 W-1.3SChao PhrayaDischarge/Water Level Discharge/Water LevelW-1.4 W-1.4AChao PhrayaDischarge/Water Level Discharge/Water LevelW-1.6 W-1.6AChao PhrayaWater LevelW-1.6AChao PhrayaWater LevelW-1.6A	Nakhon Sawan (C2)
Lop BuriDischarge/Water LevelW-1.3IChao PhrayaDischarge/Water LevelW-1.4MChao PhrayaDischarge/Water LevelW-1.5MChao PhrayaDischarge/Water LevelW-1.6IChao PhrayaWater LevelW-1.6I	Lower Chao Phraya Dam (C13)
ChaoPhrayaDischarge/WaterLevelW-1.4HChaoPhrayaDischarge/WaterLevelW-1.5HChaoPhrayaDischarge/WaterLevelW-1.6HChaoPhrayaWaterLevelW-1.7H	Sing Buri (C3)
Chao PhrayaDischarge/Water LevelW-1.5HChao PhrayaDischarge/Water LevelW-1.6HChao PhrayaWater LevelW-1.7H	Lop Buri (L2A)
ChaoPhrayaDischarge/Water LevelW-1.5HChaoPhrayaDischarge/Water LevelW-1.6HChaoPhrayaWater LevelW-1.7H	Angthong (C7A)
Chao PhrayaDischarge/Water LevelW-1.6Discharge/Water LevelChao PhrayaWater LevelW-1.7Discharge/Water Level	Ayutthaya
Chao Phraya Water Level W-1.7	Bang Sai (C29)
	Pakred (C22)
Chao Phraya Water Level W-1.8 I	RID Bangkok Office (Cl2)
* • •	Memorial Bridge
	Fort Phra Chul (Gulf)

Table 7-6. WATER LEVEL GAUGING STATIONS TO MONITOR AND CALIBRATE THE RIVER STREAM FLOW DISCHARGE (STEP 2)

Note: $\underline{/1}$ The observed water level is also used to predict the tidal level in the Gulf of Thailand.

.

Table 7-7. WATER LEVEL GAUGING STATIONS TO MONITOR THE CHANNEL FLOW DISCHARGE AT EXISTING REGULATOR (STEP 2)

Name of Channel	Name of Regulator	Station Code No.
Chai Nat-Pasak Canal	Manorom	W-1.11
Chai Nat-Pasak Canal	Chongkae	W-1.12
Chai Nat-Pasak Canal	Kake Kathiom	W-1.13
Chai Nat-Pasak Canal	Reong Rang	W-1.14
Chai Nat-Ayutthaya Canal	Maharaj	W-1.15
Noi River	Demonstration	TT 1 16
	Borommathat	W-1.16
Noi River	Chanasatr	W-1.17
Noi River	Yang Manee	W-1.18
Noi River	Pakhai	W-1.19
Suphan River	Phonlathep	₩-1.20
Suphan River	Thabote	W-1.21
Suphan River	Samchook	W-1.22
Suphan River	Phophya	W-1.23

Table 7-8. WATER LEVEL GAUGING STATIONS TO INPUT THE OBSERVED DISCHARGE AS BOUNDARY CONDITION (STEP 2)

Item o	f Prediction	Appli	ed Gauging	Station
Prediction Time	Target Point	River System	Station Code No.	Location
Short	Bangkok Metropolis	(1) Chao Phraya	W-1.6	Bang Sai (C29)
Short	Ayutthaya	(1) Chao Phraya	W-1.1	Lower Chao Phraya Dam (C13)
		(2) Pasak	W/R-1.3	Wichian Buri
Short	Chai Nat, Sing Buri, Lop Buri and Angthong	(1) Chao Phraya	W/R-1.1	Nakhon Sawan (C2)
Short	Nakhon Sawan	(1) Ping	W/R-2.2	Kamphaeng Phet (P7A)
		(2) Yom	W/R-2.3	Sam Ngam (Y17)
		(3) Nan	W/R-2.4	Phitsanulok (N5A)
Long	All Target Points	(1) Ping	₩-2.1	Lower Bhumibol Dam (P12)
:		(2) Wang	W/R-3.1	Lower Kiu Lom Dam (W10A)
- -		(3) Yom	W/R-3.3	Ngao Sak (Y2O)
		(4) Nan	W/R-3.6	Lower Sirikit Dam (N12A)
÷		(5) Pasak	W/R-2.6	Lom Sak
		(6) Ping	W/R-4.1	Chiang Mai (Pl) <u>/l</u>
· · · · ·		(7) Nan	W/R-4.2	Nan (N.1) <u>/1</u>

Note: $\frac{1}{1}$ Subject to flood prediction for upper reaches from Bhumibol and Sirikit dams.

- 250 -

Table 7-9.	INSTALLATION	PRIORTTY	OF	CALIGING	STATIONS	(STEP	23
Table 7-9.	THOTUTION	TUTOUTTI	OT.	GUOGTNG	011110100	(orm	2.5

		Coverage of Gauging		Number of Ga	uging Station	
Priority	Gauging Purpose	Network to be Expanded	Water Level Gauging Station	Water Level/ Rainfall Gauging Station	Rainfall Gauging Station	Radar Gauging Station
1,	(1) Short Term Prediction for target areas except Nakhon Sawan	 Chao Phraya River Basin upto Nakhon Sawan (Sta. C2) including Sake Krang River Basin Pasak River Basin upto Wichian Buri 	23	4	10	0
2.	 Long Term Prediction for target areas except Nakhon Sawan Short Term Prediction for Nakhon Sawan 	 Ping River Basin upto Bhumibol Dam (Stas. P12 and W4A) Yom River Basin upto Sam Ngam (Sta. Y17) Nan River Basin upto Phitsanulok (Sta. N5A) Pasak River Basin upto Lop Buri 	1	6	22	0
3,	(1) Long Term Prediction for all target areas	 Wang River Basin upto Chae Nom (Sta. WIOA) Yom River Basin upto Ngao Sak (Sta. Y2O) Nan River Basin upto Sirikit Dam (Sta. NI2A) 	0	7	14	0
4.	 (1) Long Term Prediction for all target areas (2) Flood mitigation effect for respective target areas through effective use of potential flood control functions attached to Bhumibol and Sirikit Dam. 	 Catchment area of Bhumibol Dam upto Chiang Mai (Sta. Pl) Catchment area of Sirikit Dam upto Nan (Sta. Nl) 	2	2	19	0
5.	 Facilitating the rainfall prediction measures Improving the accuracy of areal average rainfall estimated from the point rainfall gauging data 	 Most of Pasak and Sakae Krang River Lower reaches of Fing, Yom and Nan River Basin 	0	0	0	2

Note: "Short Term Prediction" is proposed to be done 3 days in advance, while "Long Term Prediction" is to be done 6 to 10 days in advance.

Table 7-10. NUMBER OF CHANNELS FOR THE TRUNK LINE (STEP 2)

Section		No. of	Channels		
11.19 <u>0</u>	Data <u>/1</u> Transmission	Tel/FAX	Telephone	Radar	Total
FFC - Rl	1	1	***	**	2
FFC - R2	1	1	e		2
FFC - R3	1	1	-	2	4
FFC - R7	1	1	1		3
FFC - R8	1	1 ·	1	2.	5

Note: <u>/1</u> Sections R1, R2 and R3 are used for telemetering transmission to FFC only. Sections R7 and R8 are used for telemetering transmission to FFC and mutual data communication.

Table 7-11. COST COMPARISON OF TELECOMMUNICATION NETWORK (STEP 2)

	Cost Item		Amount (U	s\$ 10 ³)	
Cons	struction Cost	TOT	RID	CAT	PTD
1.	Trunk Line	1,645	10,980	1,781	3,013
	- Sub-station - Terminal Station (TOT, CAT, PTD)	678 813	1,115	678 949	2,723 136
	- Repeater Station (UHF) - Flood Forecasting Center	_ 154	9,407 458	- 154	_ 154
2.	Branch Line	1,524	1,524	1,524	1,524
	- Radar Ganging Station - Repeater Station - Sub-station	171 1,182 <u>171</u>	171 1,182 <u>171</u>	171 1,182 <u>171</u>	171 1,182 <u>171</u>
14 - L	Sub Total	3,169	12,504	3,305	4,537
<u>0&M</u>	Cost for 10 years				
1.	Rental Fee for Line	309	-	5,619	818
2.	Personnel for O&M	682	853	682	768
3.	Maintenance Cost for Materials	540	2,133	564	774
	Sub-Total	1,531	2,986	6,865	2,360
	Grand Total	4,700	15,490	10,170	6,897

Table 7-12(1/2). SPECIFICATIONS OF DATA MANAGEMENT FACILITIES (STEP 2)

.

(1) Engineering Work Station (1.1) CPU : 3 1. Quantity 2. Technical Specifications : To be referred to Table 6-8. (1.2) CRT color graphic display/keyboard : 3 1. Quantity 2. Technical Specifications : To be referred to Table 6-8. (2) Data Storage Equipment (2.1) Hard Disk Drive 1. Quantity : 3 2. Technical Specifications : To be referred to Table 6-8. (2.2) Magnetic Tape Unit : 1 1. Quantity 2. Technical Specifications : To be referred to Table 6-8. (3) Printer • • 1 1. Quantity 2. Technical Specifications : To be referred to Table 6-8. (4) Color Hard Copy 1. Quantity : 1 2. Technical Specifications : To be referred to Table 6-8. (5) Video Projector : 1 1. Quantity 2. Technical Specifications : To be referred to Table 6-8.

Note: Above specifications should be modified in detailed design.

Table 7-12(2/2). SPECIFICATIONS OF DATA MANAGEMENT FACILITIES (STEP 2)

6.8.08.08.04.04.04.04.04.04.04.04.04.04.04.04.04.		₩₽₽₩₽₽₽₩₽₽₩₽₽₩₽₽₩₽₽₽₩₽₽₽₩₽₽₽₩₽₽₽₩₽₽₽₩₽	***	ġ ╸ŎŢ╸ġŗĸġŗĸġĿ ġĨĸġ Ŀ ĸġĿĸĴĿĸĊĿĸĊĿĸŊĸŖĹŦġŀĸŊĿſŶĬſĸĬĿĸŊĿĸġĿĸġĿĸġĿĸġĿĸġĿĸġĿĸġĿĸŎĬŶĬĬĬĬĬĬĬĬĬĬĬĬĬĬĬĬĬĬĬĬĬĬĬĬĬĬĬĬĬĬĬĬĬĬĬ
(6)	Mim	dic Board		
	1.	Quantity		1
	•	- Туре	:	Self-standing with basin map and display panel
		- Display	:	Present date and time, observation time, rainfall data, water level data
(7)	Ele	ectronic Filing System		
	1.	Quantity	:	l set
	2.	Technical Specifications		
	· · .	- Туре	:	l6 bit CPU, 17" display keyboard, mouse, image scanner, optical disk, laser printer
		- Disk Capacity	:	800 MB
		- Resolution	:	Scanner: 400 picture element/inch Printer: 400 picture element/inch
	•	- Print Speed	:	8 page/min
(8)	Vid	leo Tape Recorder		
(8.1)) F	Portable Video Cassette Reco	rde	er
	1.	Quantity	:	1
	2.	Technical Specifications	:	Remote control, editing, picture search
(8.2))	Portable Video Camera		
	1.	Quantity	:	1
	2.	Technical Specifications	:	Zoom, 525 lines 50 fields 2:1 interlaced scanning, 500(H)x582(W picture elements.

Note: Above specifications should be modified in detailed design.

- 254 -

Target Point	Year	Obse	erved	1	licted Before	1	licted Before
torne.		m ³ /s	Date	m ³ /s	Date	m ³ /s	Date
Nakhon Sawan	1978	3,540	Oct. 07	3,527	Oct. 07	3,514	Oct. 08
Chai Nat	1978	3,741	Oct. 11	3,689	Oct. 11	3,709	Oct. 11
Angthong	1978	2,550	Oct. 10	2,966	Oct. 12	2,938	Oct. 12
Nakhon Sawan	1980	4,320	Oct. 09	4,356	Oct. 09	4,373	Oct. 09
Chai Nat	1980	3,795	Oct. 10	3,796	Oct. 10	3,796	Oct. 10
Angthong	1980	3,115	0ct. 15	3,024	Oct. 13	3,011	0ct. 11
Nakhon Sawan	1983	2,290	0ct. 23	- <u>/1</u>	- /1	2,332	Oct. 24
Chai Nat	1983	3,290	Oct. 25	3,097	Oct. 27	3,114	Oct. 27
Angthong	1983	2,482	Oct. 24	2,604	Oct. 26	2,425	Oct. 28

Table 7-13. ANNUAL PEAK DISCHARGE PREDICTED AT TARGET POINT (STEP 2)

Note: <u>/1</u> Prediction was not made because of the missing upstream observed discharge data at Y17.

ц Ц	0110
LEVE	1 1 1
LDAL	л Т,
Ϋ́ Ϋ́	1 m 1 v
AXIMI	Wa.
И ЛТ	Daii.
DAI	р Т
CTED	00 U 0.
PREDI ANCE)	4 4 4
AND I ADV	ي مو
VED S IN	e u u
Table 7-14. DIFFERENCES BETWEEN OBSERVED AND FREDICTED DAILY MAXIMUM TIDAL LEVEL (STEP 2: PREDICTED 6 DAYS IN ADVANCE)	Occurrence of Difference in Daily Mavimum Tidal Laye
TED -	U U
BETW EDIC	
CES PR	
EREN P 2:	
DIFF (STE	
14.	
e 7	
Tabl	

OBSERVED AND PREDICTED DAILY MAXIMUM TIDAL LEVEL 6 DAYS IN ADVANCE)	Occurrence of Difference in Daily Maximum Tidal Leve in One Year	Less than Less than Less than More than 0.2 m 0.3 m 0.4 m 0.5 m 0.5 m (day) (day) (day) (day) (day)	157 175 182 184	168 177 181	325 352 363 365		173 181 184	166 179 182	339 360 366	162 180 182 182 182	16/ 181	329 361 363 363 365 365
Table 7-14. DIFFERENCES BETWEEN (STEP 2: PREDICTED	Average	ce	0.45 0.11 105	0.38 0.10 115	0.45 0.11 120		0.33 0.08 125	··· 0.34 0.09 112	0.34 0.09 237	0.62 0.11 95	0.28 0.09 11/	0.62 0.10 212
Tabl	Subject	Season	1978 Rainy Season	Dry Season	Annual	یا کہ کہ تیک جم سے ایک ایک سے ایک میں ایک کے ایک میں ایک ایک کی کی کی کی کی ایک کی کر ایک کی کر ایک کی کر ایک ک	1980 Rainy Season	Dry Season	Annua1	1983 Rainy Seson	Dry Season	Annual

- 256 -

Observation/	Objective Point	oint	Observed	red	Predicted 3 Davs Befo	cted Before	Predicted 6 Daws Rofe	
Prediction		Distance	Water				er	
Date /1	Location Name	from River Mouth (km)	Level (m. MSL)	Time	Level (m. MSL)	Time	Level (m. MSL)	Time
Oct. 21 1978	Bangkok Port	27	1.73	10:00	1.70	11:00	1.67	11:00
	Satha Pradit	40	1.77	10:00	1.66	11:00	1.60	11:00
	Memorial Bridge	48	1 . 89	10:00	2.07	11:00	2.01	10:00
	RID Samsen	54	2.03	12:00	2.00	11:00	1.94	11:00
	Pakred	70	2.15	12:00	2.09	12:00	1.98	12:00
Oct. 27 1980	Bangkok Port	27	1.77	00:00	1.86	10:00	1.86	10:00
	Satha Pradit	07	ta B	Missing	1.76	10:00	I.75	10:00
	Memorial Bridge	48	1.92	10:00	2.04	10:00	2.02	10:00
	RID Samsen	54	2 . 01	10:00	2 . 05	10:00	2.07	10:00
	Pakred	70	2.21	11:00	2 . 24	12:00	2.27	11:00
Oct. 31 1983	Bangkok Port	27	1.97	15:00	1 • 93	17:00	1.89	17:00
	Satha Pradit	07	1.87	16:00	1,85	18:00	1.74	18:00
	Memorial Bridge	48	I.82	16:00	1.97	16:00	2.13	16:00
•	RID Samsen	54	1.94	17:00	1.97	18:00	1.85	18:00
	Pakred	70	2.05	18:00	1 . 99	20:00	2.00	19:00

Table 7-15. ONE-DAY MAXIMUM WATER LEVEL PREDICTED FOR TIDAL COMPARTMENT (STEP 2)

- 257 -

(

Table 7-16. STAGEWISE CONSTRUCTION OF TELECOMMUNICATION NETWORK (STEP 2)

Phase 1 FFC - R/0 8 (3 ch) R/0 8 - 11 Gauging Stations (1 ch) FFC - FFC - R/0 7 (3 ch) R/0 7 - 21 Gauging Stations (1 ch) FFC - FFC - R/0 3 (2 ch) R/0 7 - 2 Gauging Stations (1 ch) FFC - Phase 2 FFC - R/0 3 (2 ch) R/0 7 - 2 Gauging Stations (1 ch) FFC - Phase 3 FFC - R/0 2 (2 ch) R/0 7 - 2 Gauging Stations (1 ch) FFC - Phase 4 FFC - R/0 1 (2 ch) R/0 3 - 10 Gauging Stations (1 ch) FR0 Phase 4 FFC - R/0 1 (2 ch) R/0 3 - 2 Gauging Stations (1 ch) FA Phase 4 FFC - R/0 1 (2 ch) R/0 2 - 6 Gauging Stations (1 ch) FA Phase 5 FFC - R/0 8 (2 ch) R/0 2 - 6 Gauging Stations (1 ch) FA Phase 5 FFC - R/0 8 (2 ch) R/0 8 - 1 Radar Gauge (2 ch) FC		Phase	Trunk Line	Branch Line Data Collection	Data Dissemination
FFC - R/0 7 (3 ch) R/0 7 - 21 Gauging Stations (1 ch) FFC - FFC - R/0 3 (2 ch) $R/0 7 - 2$ Gauging Stations (1 ch) $FFC -$ Phase 2 $FFC - R/0 3 (2 ch)$ $R/0 7 - 2$ Gauging Stations (1 ch) $FFC -$ Phase 3 $FFC - R/0 2 (2 ch)$ $R/0 3 - 27$ Gauging Stations (1 ch) $R/0 2 - 11$ Gauging Stations (1 ch) Phase 4 $FFC - R/0 2 (2 ch)$ $R/0 2 - 11$ Gauging Stations (1 ch) $R/0 2 - 11$ Gauging Stations (1 ch) Phase 4 $FFC - R/0 1 (2 ch)$ $R/0 2 - 11$ Gauging Stations $R/0 2 - 6$ Gauging Stations Phase 5 $FFC - R/0 3 (2 ch)$ $R/0 2 - 6$ Gauging Stations $(1 ch)$ Phase 5 $FFC - R/0 3 (2 ch)$ $R/0 8 - 1$ Radar Gauge (2 ch) $R/0 3 - 1$ Radar Gauge (2 ch)		Phase 1	FFC - R/0 8 (3 ch)	R/O 8 - 11 Gauging Stations (1 ch)	FFC - BMA (2 ch)
FFC $-$ 5 Gauging Stations (1 ch) FFC - Phase 2 FFC - R/O 3 (2 ch) R/O 7 - 2 Gauging Stations (1 ch) Phase 3 FFC - R/O 2 (2 ch) R/O 3 - 27 Gauging Stations (1 ch) Phase 4 FFC - R/O 1 (2 ch) R/O 2 - 11 Gauging Stations (1 ch) Phase 4 FFC - R/O 1 (2 ch) R/O 2 - 13 Gauging Stations (1 ch) Phase 5 FFC - R/O 1 (2 ch) R/O 2 - 6 Gauging Stations Phase 5 FFC - R/O 8 (2 ch) R/O 2 - 1 Fadar Gauge (2 ch)			FFC - R/O 7 (3 ch)	R/O 7 - 21 Gauging Stations (1 ch)	FFC - LAD (2 ch)
Phase 2 FFC - R/0 3 (2 ch) R/0 7 - 2 Gauging Stations Phase 3 FFC - R/0 2 (2 ch) R/0 3 - 10 Gauging Stations Phase 4 FFC - R/0 1 (2 ch) R/0 3 - 2 Gauging Stations Phase 4 FFC - R/0 1 (2 ch) R/0 3 - 2 Gauging Stations Phase 5 FFC - R/0 3 (2 ch) R/0 3 - 2 Gauging Stations Phase 5 FFC - R/0 3 (2 ch) R/0 3 - 1 Gauging Stations Phase 5 FFC - R/0 3 (2 ch) R/0 3 - 1 Stations Phase 5 FFC - R/0 3 (2 ch) R/0 3 - 1 Radar Gauge (2 ch)				- 5 Gauging	FFC - EGAT (2 ch)
R/0 3 - 27 Gauging Stations (1 ch) Phase 3 FFC - R/0 2 (2 ch) R/0 3 - 10 Gauging Stations (1 ch) Phase 4 FFC - R/0 1 (2 ch) R/0 3 - 2 Gauging Stations Phase 4 FFC - R/0 1 (2 ch) R/0 3 - 2 Gauging Stations Phase 5 FFC - R/0 3 - 2 Gauging Stations Phase 5 FFC - R/0 3 - 15 Gauging Stations Phase 6 1 - 15 Gauging Stations Phase 7 1 - 15 Gauging Stations Phase 7 R/0 1 - 15 Gauging Stations			FFC - R/O 3 (2 ch)	1	
3 FFC - R/0 2 (2 ch) R/0 3 - 10 Gauging Stations 4 FFC - R/0 1 (2 ch) R/0 3 - 2 Gauging Stations 4 FFC - R/0 1 (2 ch) R/0 3 - 2 Gauging Stations 7 R/0 2 - 6 Gauging Stations 8 0 3 - 15 Gauging Stations 7 R/0 1 - 15 Gauging Stations 7 R/0 2 - 1 Radar Gauge				27 Gauging	1
Phase 4 FFC - R/0 1 (2 ch) R/0 3 - 2 Gauging Stations Phase 4 FFC - R/0 1 (2 ch) R/0 3 - 6 Gauging Stations R/0 2 - 6 Gauging Stations R/0 1 - 15 Gauging Stations (1 ch) Phase 5 FFC - R/0 8 (2 ch) FFC - R/0 3 (2 ch) R/0 8 - 1 Radar Gauge (2 ch) FFC - R/0 3 (2 ch) R/0 3 - 1 Radar Gauge (2 ch)	- 258	Phase	FFC - R/0 2 (2 ch)	R/O 3 - 10 Gauging Stations	
 4 FFC - R/O 1 (2 ch) R/O 3 - 2 Gauging Stations R/O 2 - 6 Gauging Stations R/O 1 - 15 Gauging Stations (1 ch) FFC - R/O 8 (2 ch) R/O 8 - 1 Radar Gauge (2 ch) FFC - R/O 3 (2 ch) R/O 3 - 1 Radar Gauge (2 ch) 	3 -			R/O 2 - 11 Gauging Stations (1 ch)	1
R/0 2 - 6 Gauging Stations R/0 1 - 15 Gauging Stations (1 ch) FFC - R/0 8 (2 ch) R/0 8 - 1 Radar Gauge (2 ch) FFC - R/0 3 (2 ch) R/0 3 - 1 Radar Gauge (2 ch)		Phase 4	FFC - R/O 1 (2 ch)	- 2 Gauging	
FFC - R/O 8 (2 ch) R/O 1 - 15 Gauging Stations (1 ch) FFC - R/O 8 (2 ch) R/O 8 - 1 Radar Gauge (2 ch) FFC - R/O 3 (2 ch) R/O 3 - 1 Radar Gauge (2 ch)			·	- 6 Gauging	I
5 FFC - R/O 8 (2 ch) R/O 8 - 1 Radar Gauge (2 ch) FFC - R/O 3 (2 ch) R/O 3 - 1 Radar Gauge (2 ch)				R/O 1 - 15 Gauging Stations (1 ch)	2
ch)		Phase 5	R/0 8 (2	- 1 Radar Gauge	
			FFC - R/O 3 (2 ch)	R/O 3 - 1 Radar Gauge (2 ch)	I

-	Cost Item	Amount (US\$)
1.	Telecommunication Facilities	
	Gauging Station	16,954,700
	Substation	4,544,600
	TOT Terminal Station	813,000
	Flood Forecasting Center Related Agencies	5,291,700 330,000
	Sub-Total	27,934,000
2	Data Management and Dissemination Facilities	i
	Substation	101,000
	Flood Forecasting Center	1,034,800
	Related Agencies	123,900
	Sub-Total	1,259,700
•	Engineering Services	
	Detailed Design	3,134,800
	Construction Supervision	5,634,500
	Development of the System	1,422,000
	Sub-Total	10,191,300
•	Training	600,000
	Total of 1 to 4	39,985,000
•	Physical Contingency	3,998,500
	Total of 1 to 5	43,983,500
•	Price Contingency	11,964,000
	Grand Total	55,947,500

Table 7-17. TOTAL COST OF THE PROPOSED SYSTEM (STEP 2)

· · ·

- 1	Work Item	Total	Detailed Design	Phase 1	Phase 2	Phase 3	Phase 4	Phase 5
	Telecommunication Facilities	. :					- -	-
1. 1. 4. j.	Gauging Station Substation TOT Terminal Station Flood Forecasting Center Related Agencies	16,954,700 4,544,600 813,000 5,291,700 5,291,700		2,495,600 1,136,700 406,500 1,682,700 1,682,700	1,693,400 511,700 135,500 -	1,553,500 511,700 135,500 -	1,451,600 511,700 135,500 -	9,760,600 1,872,800 3,609,000
	Sub-Total	27,934,000	t	6,051,500	2,340,600	2,200,700	2,098,800	15,242,400
5	Data Management and Dissemination Facilities							
· . · ·	Substation Flood Forecasting Center Related Agencies	101,000 1,034,800- 123,900	111	77,000 1,034,800 123,900	8,000	8,000 -	8,000 1	
	Sub-Total	1,259,700	I	1,235,700	8,000	8,000	8,000	1 . '
e.	Engineering Services			-				
	Detailed Design Construction Supervision Development of the System	3,134,800 5,634,500 1,422,000	3,134,800	1,126,900 284,400	- 1,126,900 284,400	- 1,126,900 284,400		- 1,126,900 284,400
	Sub-Total	10,191,300	3,134,800	1,411,300	1,411,300	1,411,300	1,411,300	1,411,300
4.	Training	600,000	I	120,000	120,000	120,000	120,000	120,000
	Total of 1 to 4	39,985,000	3,134,800	8,818,500	3,879,900	3,740,000	3,638,100	16,773,700
ຳ	Physical Contingency	3,998,500	313,500	881,800	388,000	374,000	363,800	1,677,400
	Total of 1 to 5	43,983,500	3,448,300	9,700,300	4,267,900	4,114,000	4,001,900	18,451,100
6	Price Contingency	11,964,000	434,500	1,881,700	981,600	1,098,400	1,220,600	6,347,200
	Grand Total	55,947,500	3,882,800	11.582.000	5.249.500	5 212 400	5,222,500	24.798.300

- 260 -

Cost Item	Amount (US\$)
l. Rental Fee for TOT Line <u>/</u> l	
Line Charge	42,500
Power Charge	3,800
Sub-Total	46,300
2. Operation <u>/</u> 2	
Personnel	180,000
Consumables <u>/</u> 3	25,300
Power Charge	500,000
Miscellaneous	200,000
Sub-Total	905,300
• Maintenance	
Materials, Spare Parts and Unit $\underline{/4}$	
- Telecommunication	558,700
- Data Management	25,300
Vehicles	153,000
Sub-Total	737,000
Grand-Total	1,688,600

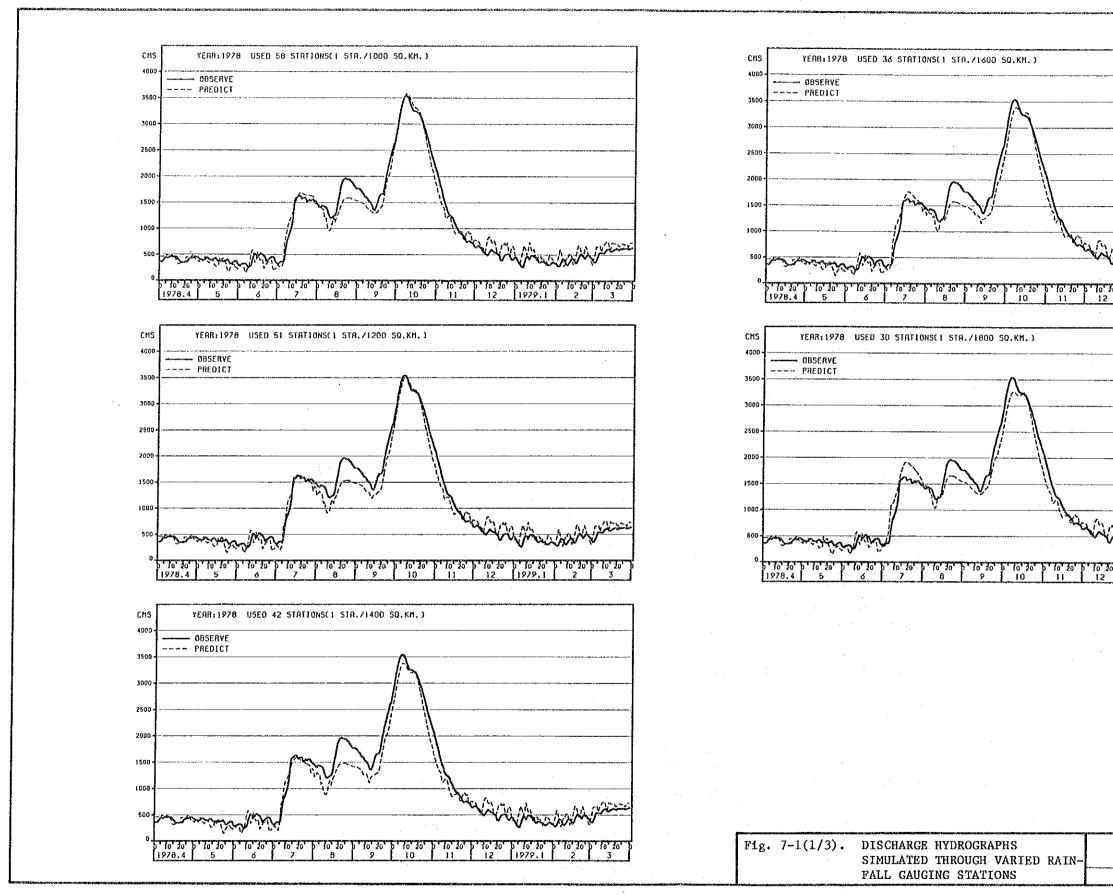
Table 7-19. BREAKDOWN OF ANNUAL OPERATION AND MAINTENANCE COST

/1 Refer to Supporting Report

 $\frac{12}{2}$ Refer to Supporting Report

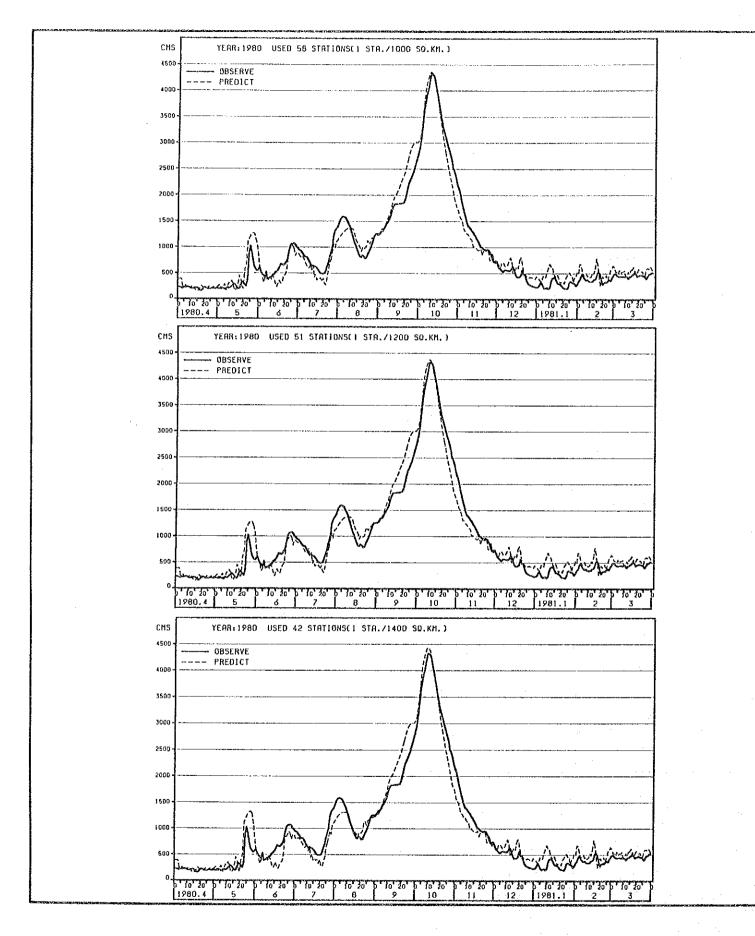
- $/\underline{3}$ Cost for consumable is assumed to be 2% of data management facility cost
- /4 Cost for maintenance is assumed to be 2% of equipment cost

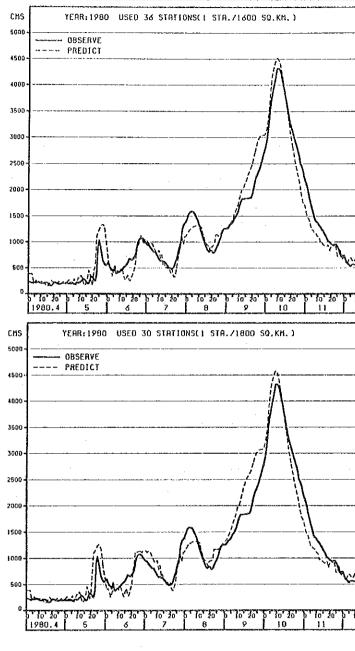
Table	7-20.	MEMP	BERS	OF	THE	ADV	/IS01	RY CO	DMMITTE	3	
		FOR	THE	FL(DOD	FORI	SCAS	TING	CENTER	IN	RID
	1	(STF	SP 2))							


	Posision in RID	Position in Committee	Existing Related Activity
1.	Chairman of Flood Forecasting Center	Chairman	-
2.	Director of Hydrology Division	Member	Hydrological analysis
3.	Director of O&M Division	- do -	Management of water flow control
4.	Director of Communications Division	- do -	Telecommunication service
5.	Director of Data Processing Division	- do -	Data compilation by computer
6.	Director of Project Planning Division	- do -	Monitoring and evaluation of RID's projects for the purpose of adequate future planning
7.	Director of Design Division	- do -	Design of riparian structures for flood protection
8.	Director of Regional Office (Nos. 7 & 8) <u>/1</u>	- do -	Flood fighting for agricultural areas
9.	Chief of Flood Prediction Section	Secretary	

Note: <u>/1</u> Directors of Regional Office shall serve as members upon instructions of the Chairman, in accordance with predicted flood area and scale.

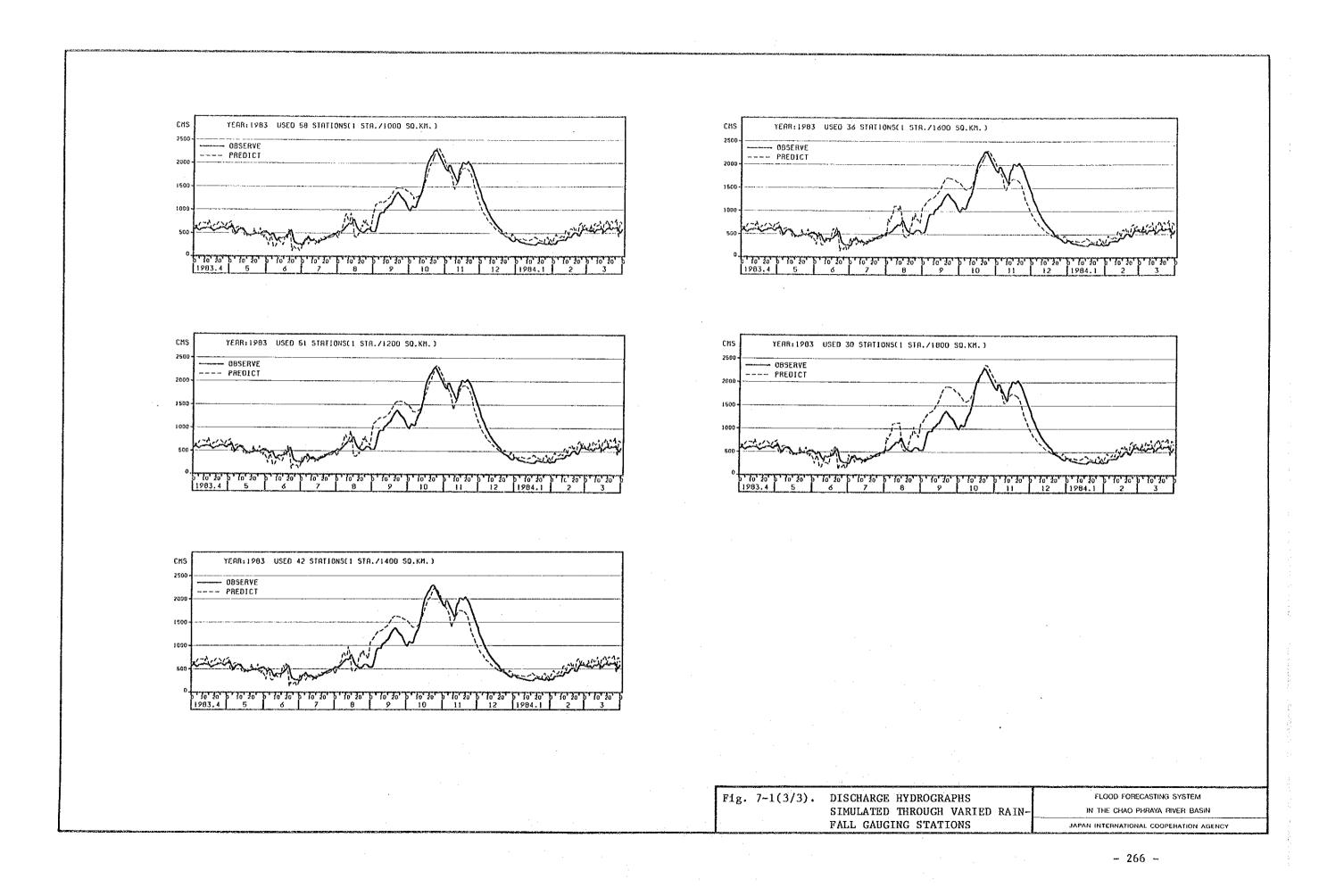
.

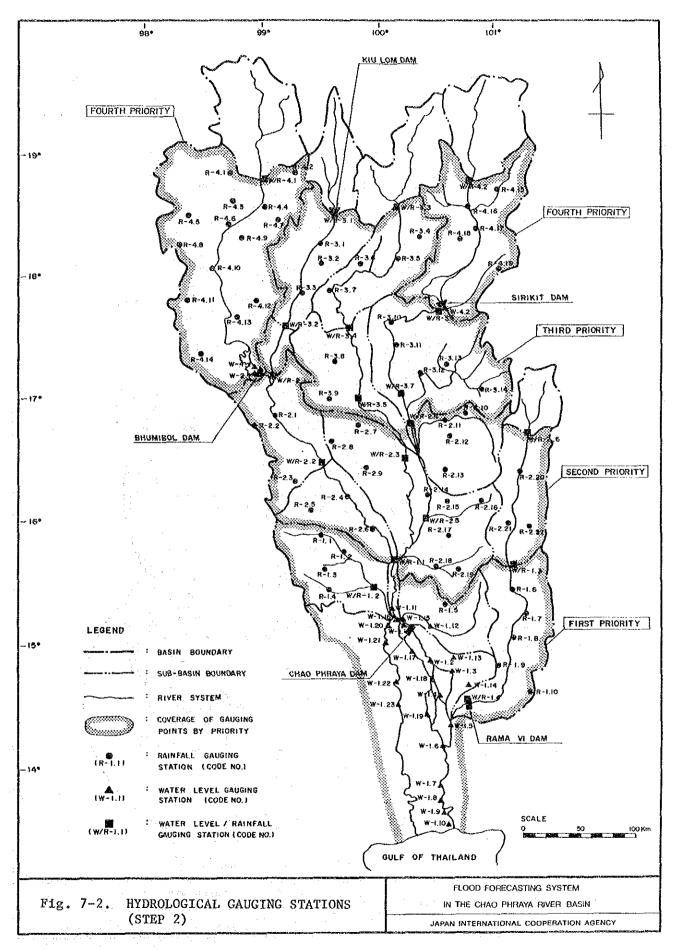

ASSIGNMENT OF REQUIRED ACTIVITIES FOR EXECUTING OFFICES UNDER THE FLOOD FORECASTING CENTER IN RID (STEP 2)				
Required Activity				
Administrative affairs				
Collection of hydro-meteorological				
information; flood prediction; dissemination and public response.				
Maintenance and study of telecommunication system and facilities such as telemetering, radar and gauging facilities in head office and substations.				
Basic data collection, compilation and storage for formulation of flood control includig flood forecasting; maintenance of computers acilities and study of computer system.				


/1 Substations of the Communications Section will be installed in Regional Offices (Nos. 1. 2. 3. 7 and 8) for the Note: in Regional Offices (Nos. 1, 2, 3, 7 and 8) for the inspection of related facilities in the region.

-	
All Marchar My When	
0'20' p' fa'2a' p' fa'2a' b' fa'20' b 12 1979.1 2 3	
· · · · · · · · · · · · · · · · · · ·	
Warman and with	
0 ¹ 20 ¹ 5 ¹ 70 ¹ 20 ¹ 5 ¹ 70 ¹ 20 ¹ 5 ¹ 70 ¹ 20 ¹ 5 12 1979.1 2 3	
	:
Flood Forecasting System In the Chao Phraya River Basin	
JAPAN INTERNATIONAL COOPERATION AGENCY	

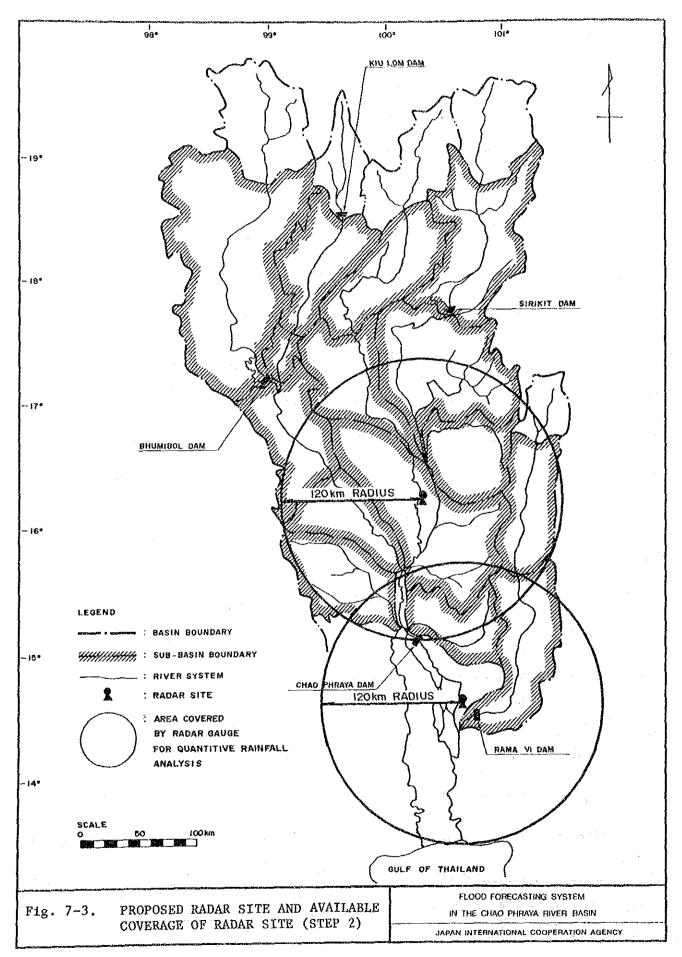
- 264 -

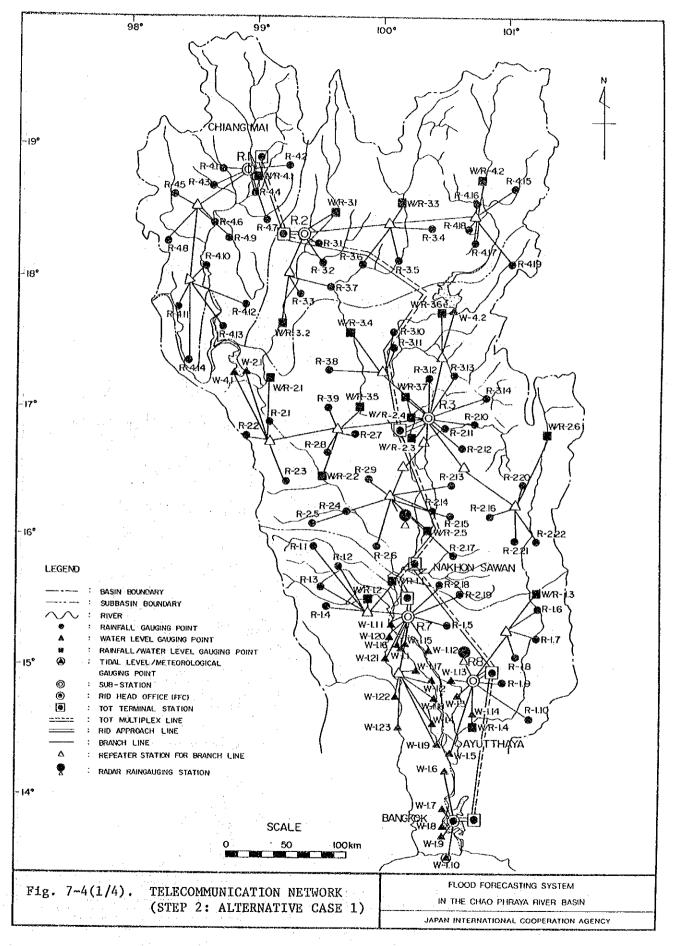


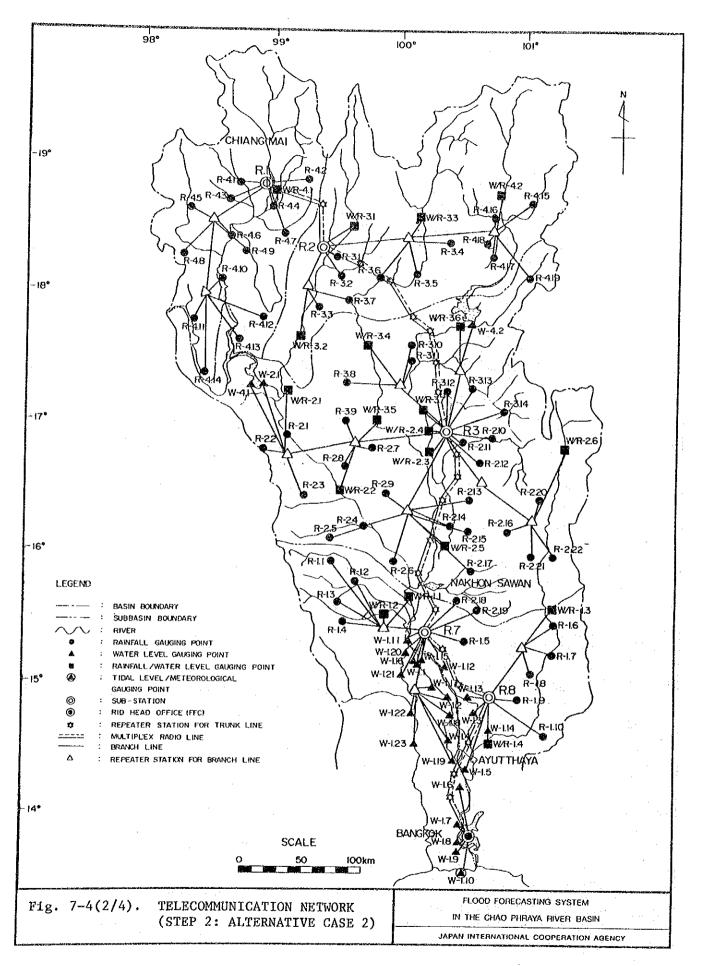


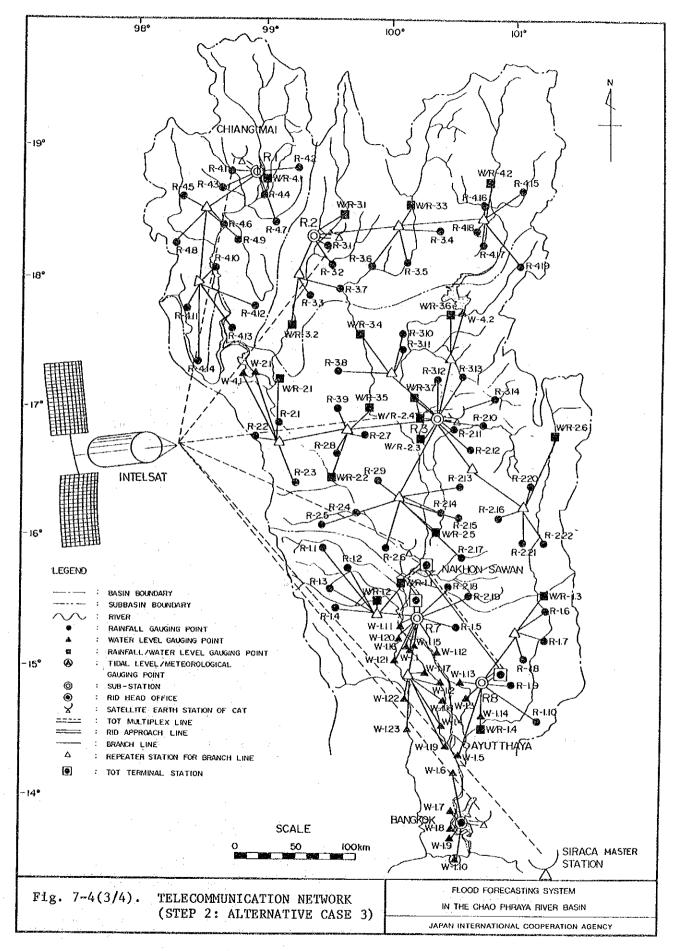
	اشته جبعبهما الأرار			_
-	Fig.	7-1(2/3).	DISCHARGE HYDROGRAPHS	
	2		SIMULATED THROUGH VARIED RAIN-	
			FALL CAUGING STATIONS	

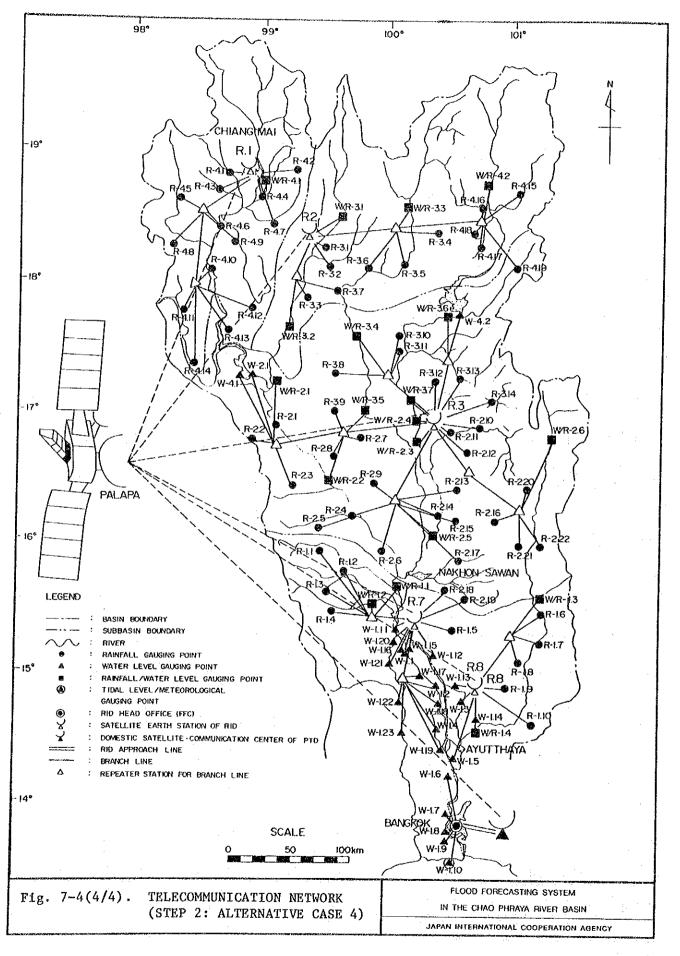
+1. MINTER AND A DESCRIPTION OF PARTY DECEMBER AND PARTY AND A DECEMBER AND A DECEMBER AND A DECEMBER AND A DEC	4
	1
	1
	1
	i
	İ
·····	
44 A. A. A. Andreas	
Marthan Anthen Martha	
VIV THE I	
10 20 b 10 20 b 10 20 b 10 20 b 12 1981.1 2 3	ļ
<u></u>	
	ļ
· · · · · · · · · · · · · · · · · · ·	
	ļ
	ļ
	I
	1
	i
44	
Al Andrews	
the which have and	I
	ļ
10 [°] 20 [°] 5 [°] 10 [°] 20 [°] 5 [°] 10 [°] 20 [°] 5 12 [°] 1981 1 [°] 2 [°] 3	
	ļ
	ļ
any na paositra dia mandritra dia mandritra dia dia dala dia mandritra dia dala dia dia dia dia dia dia dia dia	
FLOOD FORECASTING SYSTEM	1
IN THE CHAO PHRAYA RIVER BASIN	-
JAPAN INTERNATIONAL COOPERATION AGENCY	
₩₽₩₩₽₩₩₽₩₩₽₩₩₽₩₽₩₩₽₩₩₽₩₩₽₩₩₽₩₩₽₩₩₽₩₩₽₩₩	-


- 265 -

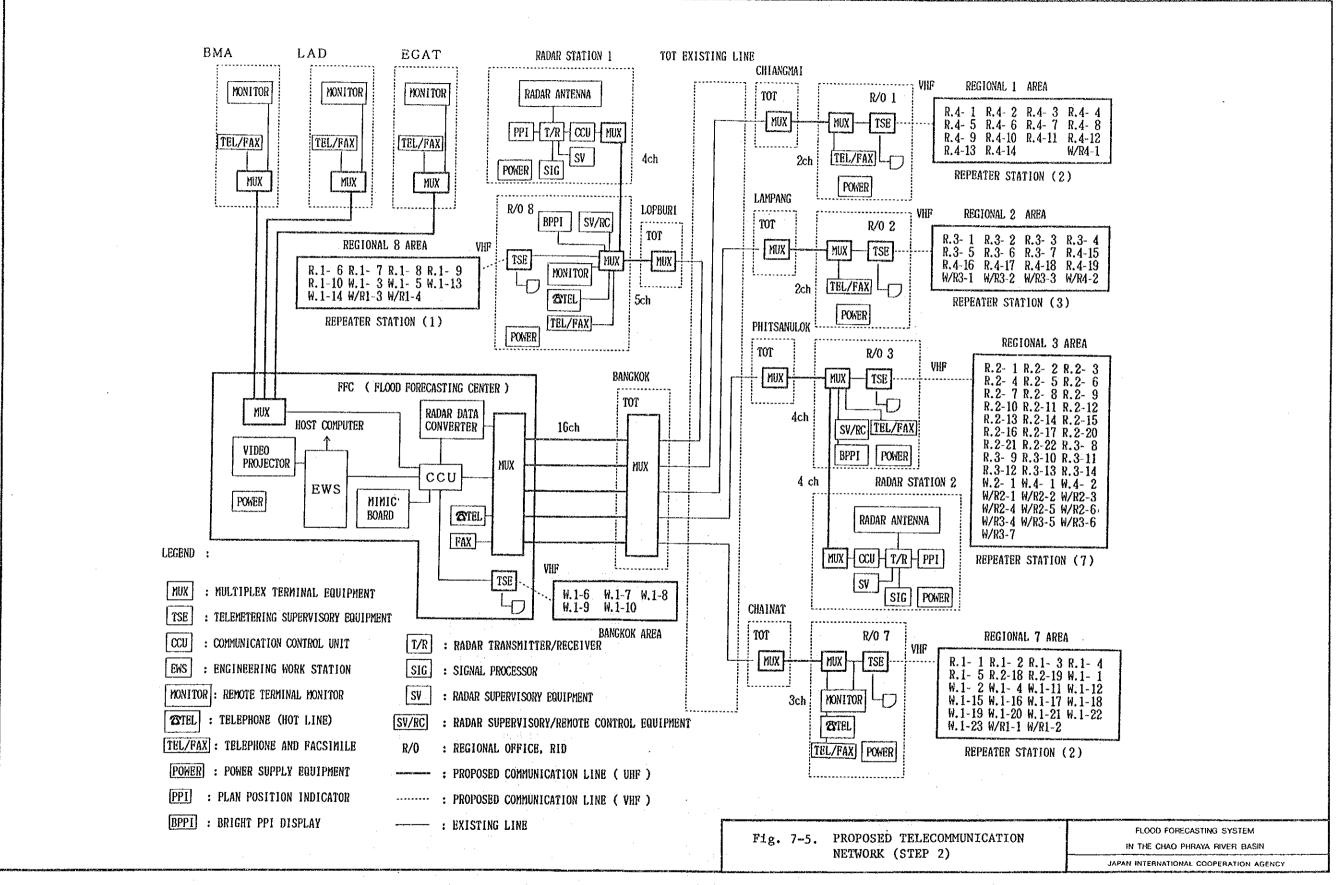


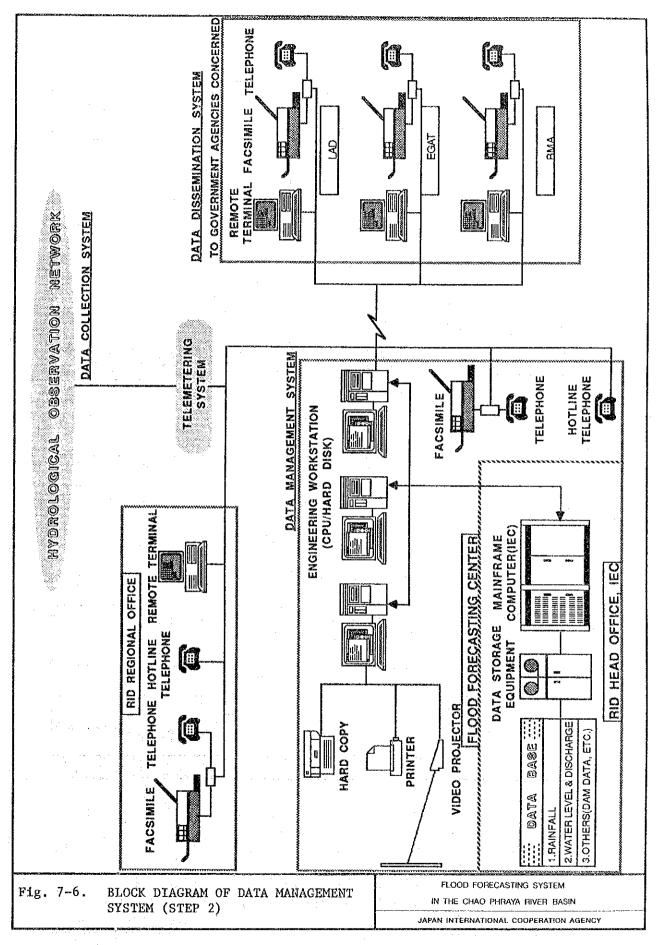

1.11

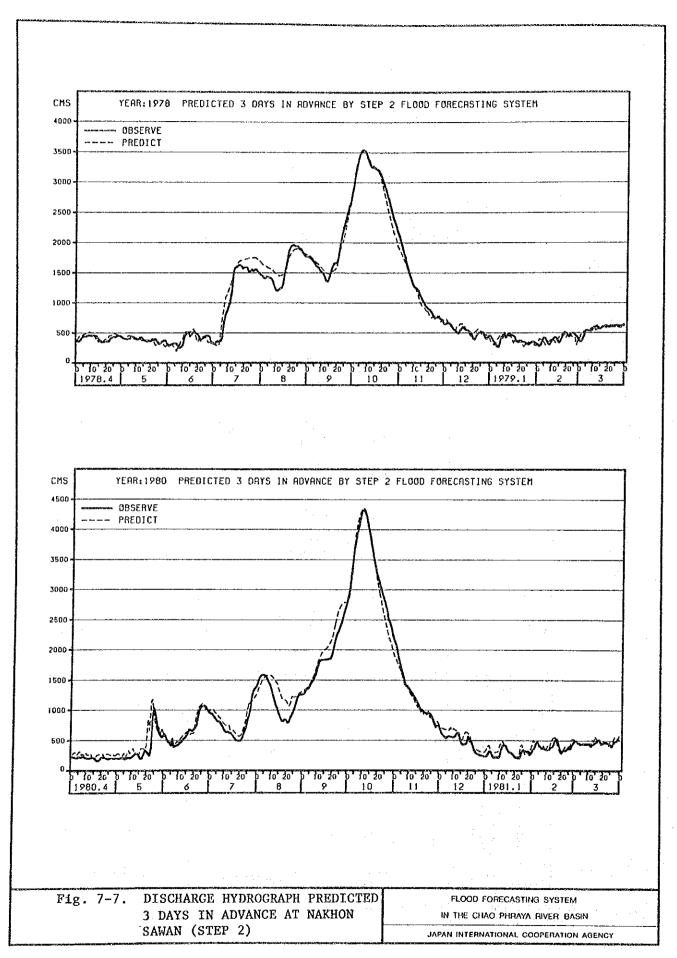

- 267 -

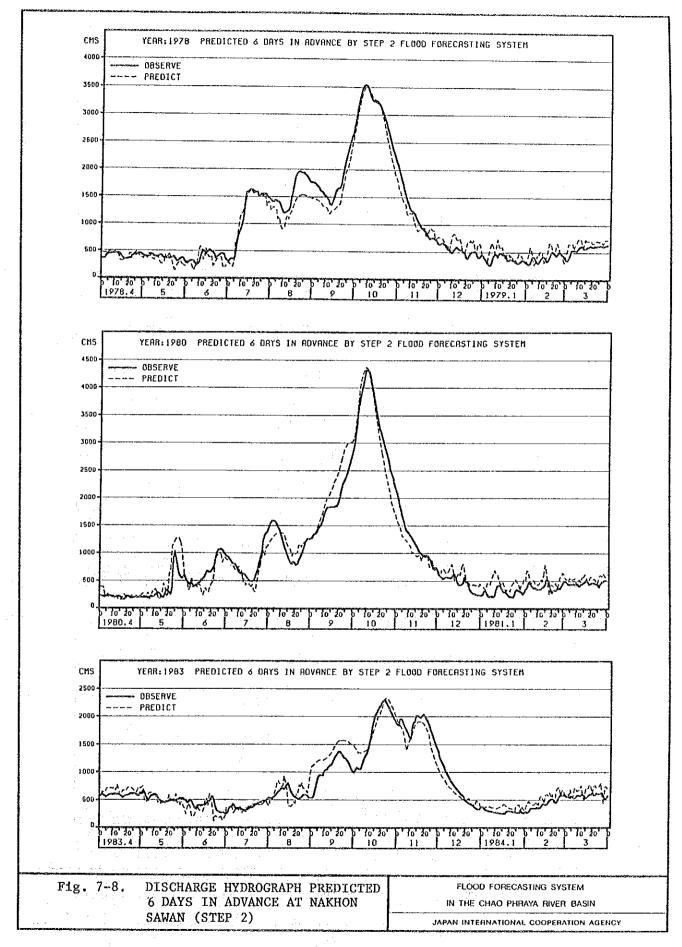


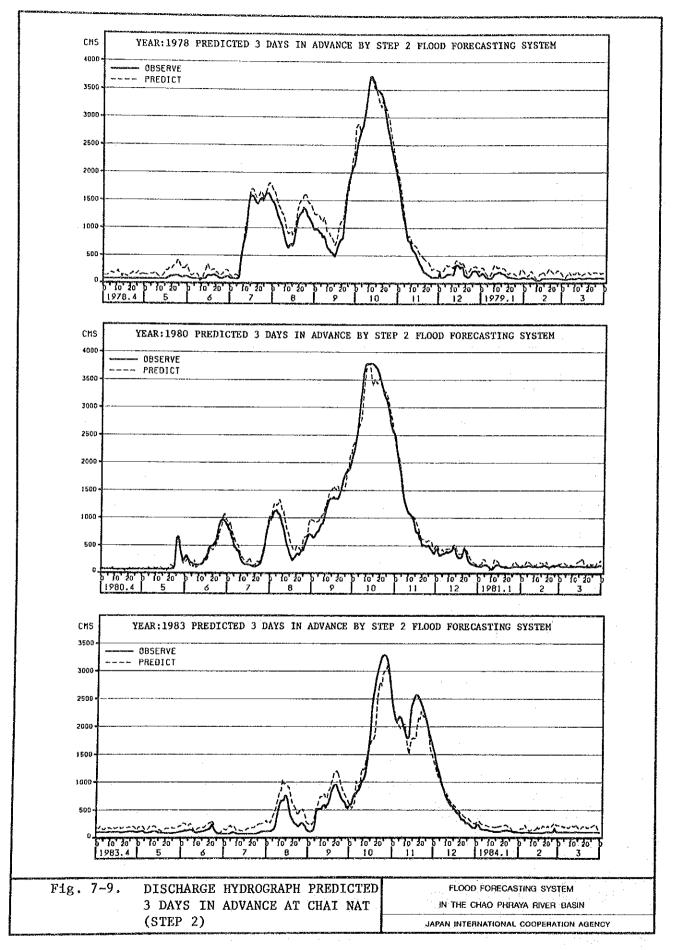
- 269 -

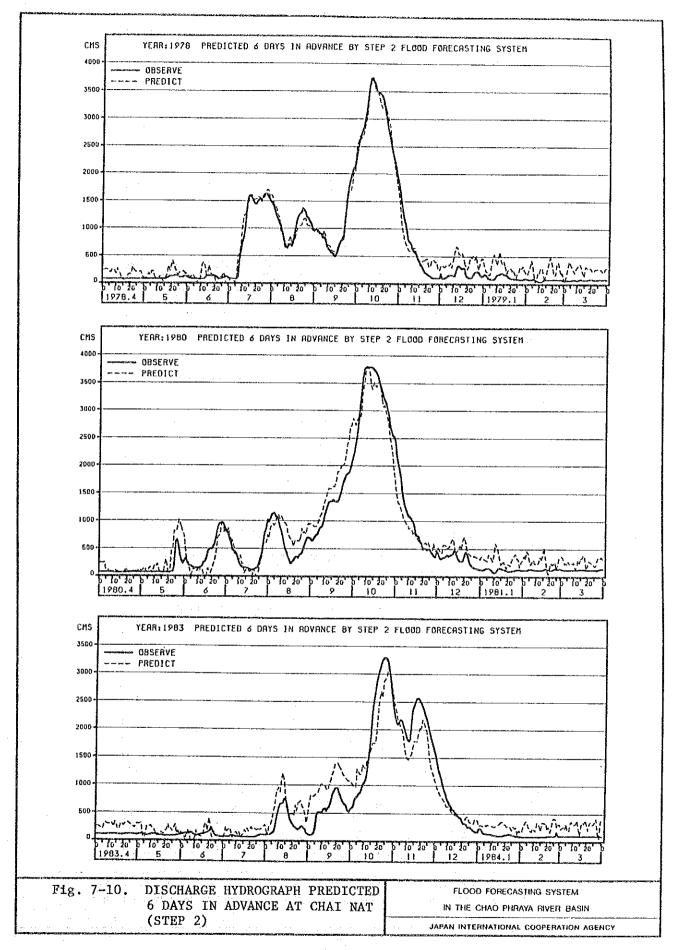


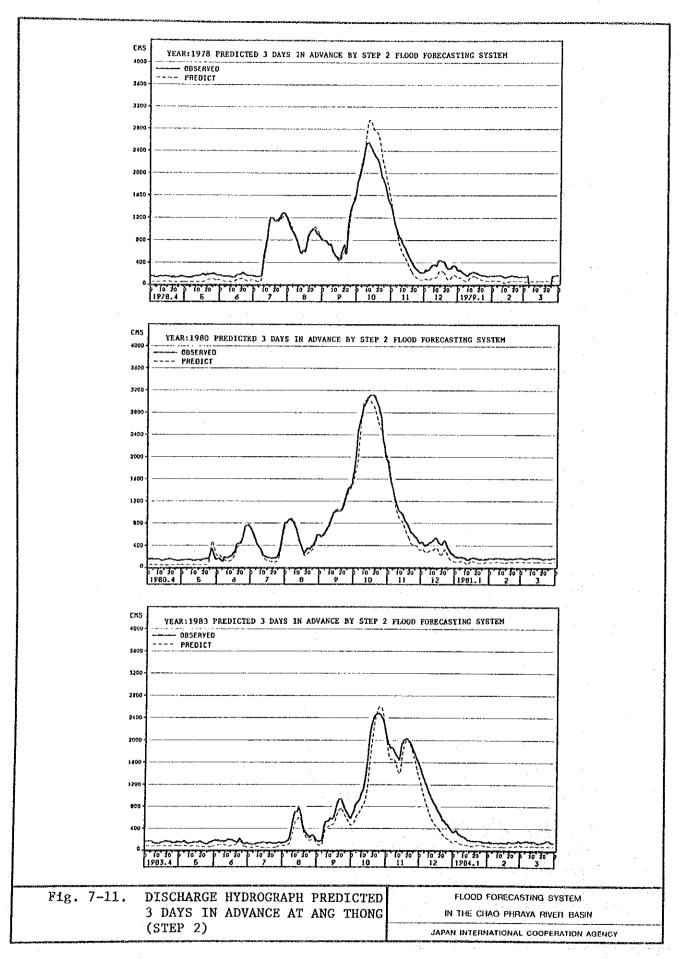

- 271 -

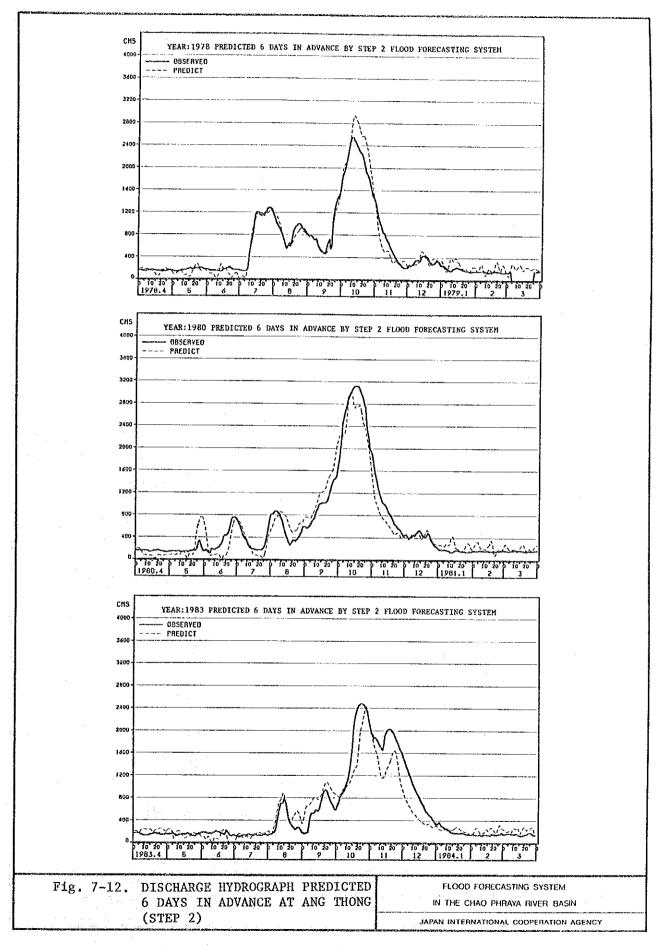

- 272 -

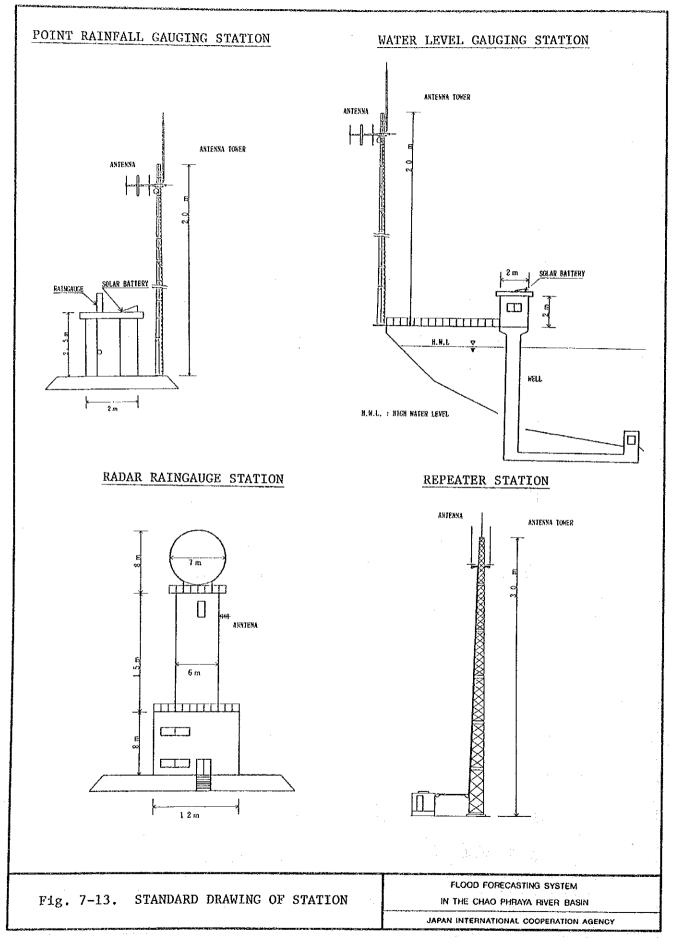


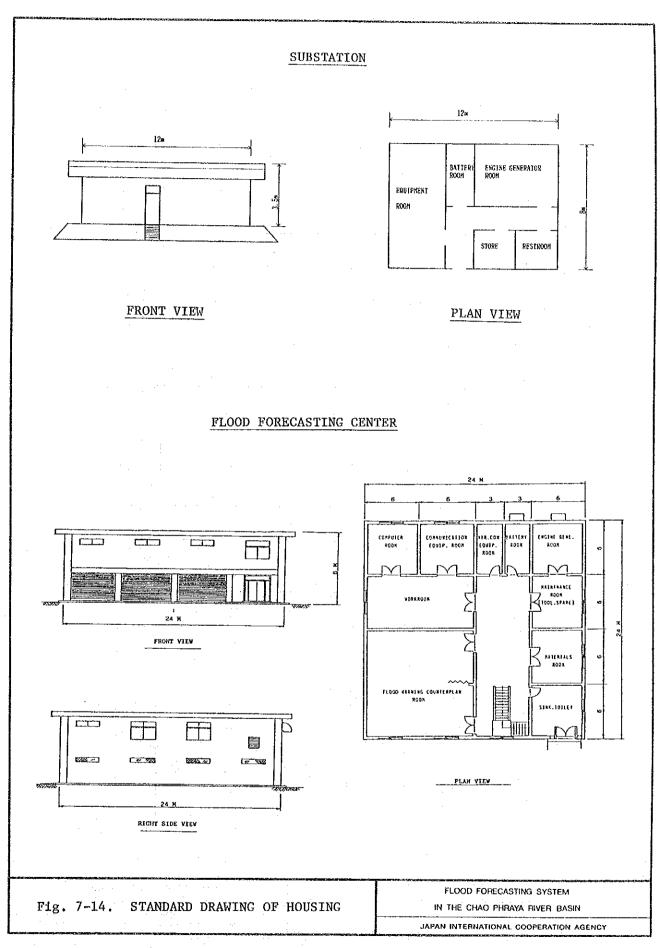

- 273 -

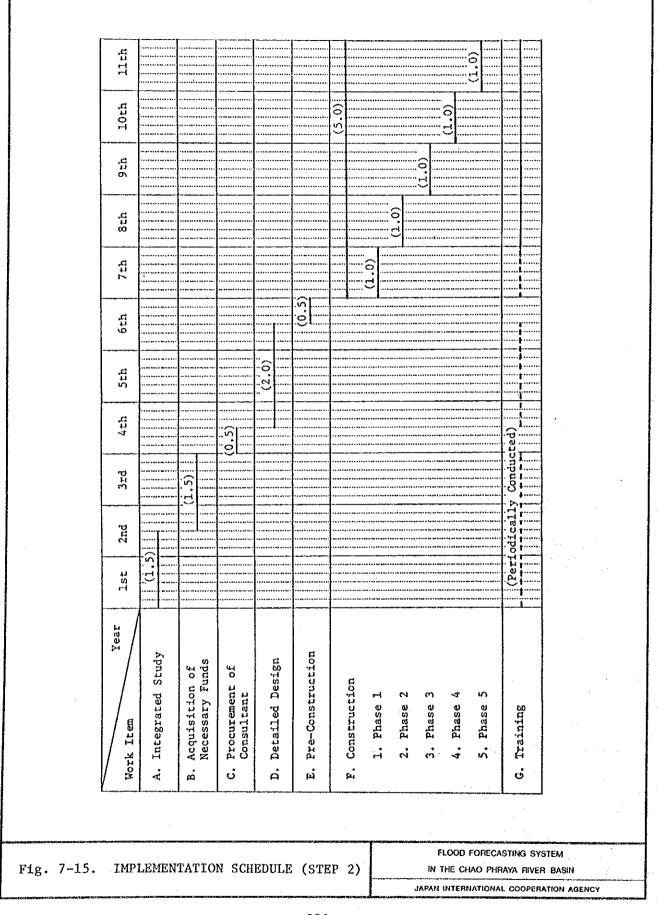



- 274 -









- 281 -

- 282 -

- 283 -

12th llth 10th 9 t.h. 8th (j. 5) (2.0) 7 th 6th (2.0) Sth (8:0) 4 t h 6.5) 3rd 2nd

2. Transportation to Site 2. Tower Foundation and Erection 1. Housing Station 3. Tower Erection Civil Works . щ

C. Installation/Adjustment

FLOOD FORECASTING SYSTEM IN THE CHAO PHRAYA RIVER BASIN JAPAN INTERNATIONAL COOPERATION AGENCY

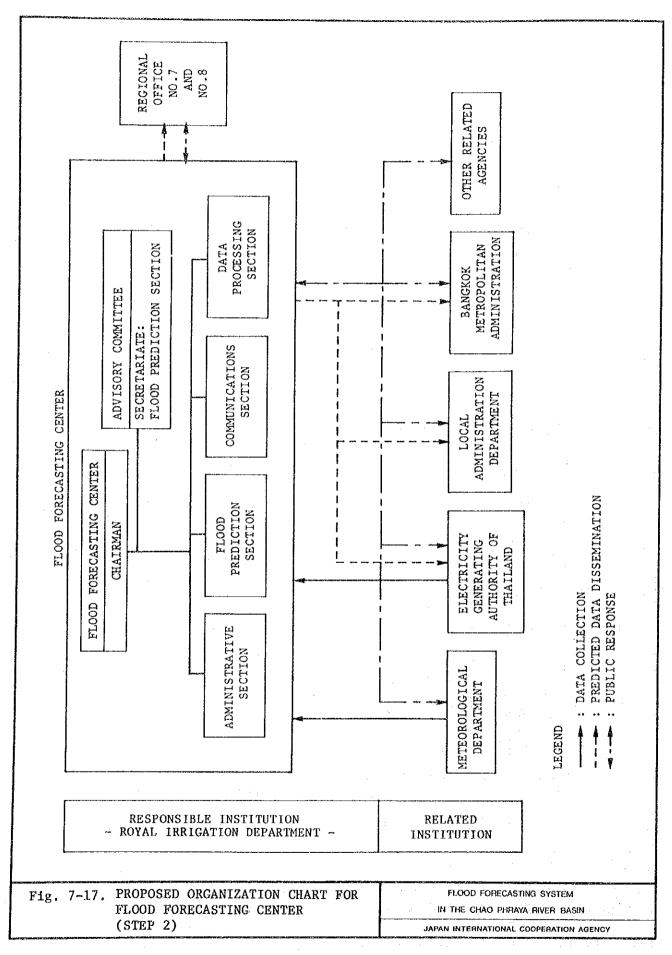
1. Equipment Installation

2. Adjustment

(2.0)

(3.0)

Fig. 7-16. CONSTRUCTION SCHEDULE FOR EACH PHASE


1. Manufacturing of Equipment

A. Procurement of Equipment

lst

Work Item

Month

CHAPTER 8. RECOMMENDATIONS

8.1

In this study, the Step 2 Flood Forecasting System is formulated in a manner of master plan study stage through the installation of updated facilities. Since the study on water management system where some of the facilities will be utilized in common with the flood forecasting system is still under way, adjustment between both studies may be finally necessary. In this connection, it is recommended that further study of this flood forecasting system be commenced as early as possible after the completion of the water management system study.

8.2 To urgently cope with the flooding problems, a flood forecasting system utilizing the existing facilities is formulated as the Step 1 system. This system can directly proceed to the detailed design and construction phase and it requires only one (1) year for its establishment, though its effectiveness is not so high compared with Step 2.

Aside from promoting the study on the Step 2 system, it is recommended that the Step 1 system be executed with the least lapse of time to fulfill the objectives of flood forecasting until the Step 2 system is established.

- The Step 1 system is formulated to promptly realize the flood forecasting system. To upgrade its reliability, it is desirable to introduce in the early stage some of the facilities applied to the Step 2 system such as telemetering system depending on the availability of funds.
- In the formulation of the Step 2 system, the TOT ground communication line has been finally selected through the comparison study on economical and technical aspects, together with the applicability of the satellite line.

The communication system by satellite line has rapidly developed, so that in the future the satellite system may have

8.3

great economical and technical advantages over the ground communication. In this sense, the applicability of the satellite line should be studied further in the future stage.

8.5 The flood prediction model consisting of four basic mathematical models developed in this study showed relatively good results. Since the flood prediction model was developed on the basis of the limited data, further improvement is expected in the next stage.

> For the purpose of improvement, the necessary data should be arranged in advance; especially, the inundation area, depth and duration; the detail topographic map; and the river cross section and profile around the flood retarding area in the upper reaches from Nakhon Sawan. These data are presently insufficient in both quality and quantity and they have to be arranged in the early stage.

- 8.6 The flood forecasting system can cope with the flood damage problem urgently and effectively. To solve the problem substantially, flood control structures should also be provided through the study of a comprehensive flood control plan. In this connection, the formulation of a master plan of flood control project is recommended in parallel with the promotion of the flood forecasting system.
- 8.7 For the smooth promotion of the foregoing flood control and flood forecasting works, it is necessary to strengthen the capability of RID in this field. Therefore, it is recommended that RID should be provided with qualified foreign experts to give advice on such matters.

- 287 -

APPENDIX

0F

THE INCEPTION REPORT FOR THE STUDY

ON

FLOOD FORECASTING SYSTEM

IN.

THE CHAO PHRAYA RIVER BASIN

IN

THE KINGDOM OF THAILAND

BANGKOK, FEBRUARY 19, 1987

Nr. Suha Thanomsingha Director General Royal Irrigation Department Ministry of Agriculture and Cooperatives The Kingdom of Thailand

3

Mr. Katsuhisa Abe Team Leader JICA Study Team for the Study on Flood Forecasting System in the Chao Phraya River Basin

witnessed by

Nr. Aoki Sukehisa

Chairman Advisory Committee for The Study

Joint meeting between the Royal Irrigation Department (RID) and the JICA Study Team (the Team) in the presence of the Advisory Committee was held on February 16, to discuss on the contents of the Inception Report. The Team submitted thirty-five (35) copies of the Inception Report to RID.

After discussion, the contents of the Report work agreed by and between both parties with confirmation of the following items :

(1) Hydrological Observation Network

The flood forecasting system will be formulated in three (3) stages. Among these stages, the first stage flood forecasting system is provided to predict flood discharge at the reference points along the river for the area covering Bangkok Metropolis, and the suburban area. For the purpose, the hydrological observation network will be provided downstream from Nakhon Sawan in main river basin and the other tributaries such as Pasak river, Sakaekrang river, etc.

(2) Data Management System

In this study, the facilities for the data management system is designed on the basis of the data volume necessary for the flood forecasting system.

(3) Dissemination system

RID will select the related agencies to which the flood information should be disseminated ; and will inform the selected agencies to the Team in early stage.

Besides, RID desired the Team to pay attention for the following points in this study :

- To make every endeavour for development of the suitable model so as to satisfy the necessary accuracy for the flood prediction.

- To select the suitable telecommunication network considering the capability of RID for operation and maintenance for telecommunication network.

And, in order to elaborate the flood prediction model, RID kindly offered cooperation in the cross sectional surveying works along the main river and tributaries within the possible extent of RID.

The list of attendants is attached hereto.

.

A--3

LIST OF ATTENDANCE

.

No	NAME	DESIGNATION
1	Mr. Vira Poomvises	Chief Civil Engineer-
2	Dr. Boonyok Vadhanaphuti	Director, Project Planning Div.
3	Mr. Taweochai Mackaman	Director, Hydrology Div.
4	Mr. Sompote Sukhumparnich	Director, Data Processing Div.
5	Mr. Sinøerm Ketudat	Act. Director,
6	Mr. Suthi Songvoravit	Communications Div. Chief, Project Planning
7	Mr. Prasert Milintangul	Div. Chief, Research &
8	Mr. Virat Khao-Uppatum	Applied Hydrology Div. Hydraulic Engineer, O &
		M Div.
9	Mr. Prasong Jitseri	Hydrologist, Hydrology Div.
10	Mr. Narumi Yamada	JICA Expert, Project Planning Div.
11	Mr, Toshiharu Kai	JICA Thailand Office
12	Mr. Sukehisa Aoki	Chairman, JICA Advisory Committee
13	Mr. Seiko Fukuda	JICA Advisory Committee
14	Mr. Fumio Kikuchi	JICA Advisory Committee
15	Mr. Katsuhisa Abe	Leader, JICA Study Team
16	Mr. Yoshiharu Matsumoto	JICA Study Team
17	Mr. Makihiko Otogawa	JICA Study Team
18	Mr. Yutaro Hoshi	JICA Study Team

MINUTES OF MEETING

0 F

THE PROGRESS REPORT FOR THE STUDY

ON

FLOOD FORECASTING SYSTEM

IN

THE CHAO PHRAYA RIVER BASIN

ΙN

THE KINGDOM OF THAILAND

BANGKOK, JUNE 29, 1987

Po

Mr. Vira Poomvises Chief Civil Engineer Royal Irrigation Department Ministry of Agriculture and Cooperatives The Kingdom of Thailand

Mc <u>Katsunish Aba</u> Tead Leader JICA Study Team for the Study on Flood Forecasting System in the Chao Phraya River Basin

Witnessed by

Mr. Jukehisa Aoki Chairman Advisory Committee for the Study

Joint meeting between the Royal Irrigation Department(RIA) and the JICA Study Team (the Team) in the presence of the Advisory Committee was held on June 25, to discuss on the contents of the Progress Report. The Team submitted thirty-five (35) copies of the Progress Report to RID.

After discussion, the contents of the Report were agreed by and between both parties. In the meeting, the followings are specifically discussed:

- The target area shall include urban areas along the Chao Phraya river course such as Sing Buri, Lop Buri and Ang Thong in addition to the areas stipulated in the Progress Report.
- The necessity of hydrological observation stations between Bang Sai and Bangkok Memorial Bridge will be studied to predict the flood discharge precisely,

The list of attendants is attached hereto.

LIST OF ATTENDANCE

NO.	NAME	DESIGNATION
1.	Mr. Vira Poomvises	Chief Civil Engineer
2	Mr. Taweechai Mackaman	Director, Hydrology Div.
. 3	Mr. Sompote Sukhumparnich	Director, Data Processing
		Div.
4	Mr. Prasert Milintangul	Chief, Reserch & Applied
		Hydrology
5	Mr. Prasong Jitseri	Hydrology Div.
6	Mr. Virat Khao-Uppatum	O & M Div.
7	Mr. Theerawat Tangpanich	Project Planning Div.
8	Mr. Putchai Nitakorn	Communication Div.
. 9 .	Mr. Hideo Matsuda	Embassy of Japan
10	Mr. Toshiharu Kai	JICA Thailand Office
11	Mr. Sukehisa Aoki	Chairman, JICA Advisory
		Committee
12	Mr. Fumio Kikuchi	JICA Advisory Committee
13	Mr. Katsuhisa Abe	Team Leader, JICA Study Team
14	Mr. Yoshiharu Matsumoto	JICA Study Team
15	Mr. Yutaro Hoshi	JICA Study Team
16 ·	Mr, Masashi Furutaguchi	JICA Study Team
17	Mr. Yoshinori Ohyama	JICA Study Team
18	Mr. Junji Kamata	JICA Study Team
.19	Mr. Yuzo Mizota	JICA Study Team
20	Mr. Kinichi Ohno	JICA Study Team

.

MINUTES OF MEETING

0 F

THE INTERIM REPORT FOR THE STUDY

ON

FLOOD FORECASTING SYSTEM

IŅ

THE CHAO PHRAYA RIVER BASIN

IN

THE KINGDOM OF THAILAND

BANGKOK, NOVEMBER 30, 1987

Mr. Suha Thanomsingha Director General Royal Irrigation Department Ministry of Agriculture and Cooperatives the Kingdom of Thailand

Mr. Katsuhisa Abe Team Leader JICA Study Team for the Study on Flood Forecasting System in the Chao Phraya River Basin

witnessed by

Mr. Sukehisa Aoki Chairman Advisory committee for the Study

Joint meeting between the Royal Irrigation Department (the RID) and the JICA Study Team (the Team) was held on November 26 in the presence of the Advisory Committee to discuss on the contents of the Interim Report. The JICA Study Team submitted 35 copies of the Interim Report to the RID in accordance with the scope of works.

Through discussion, the contents of the Report were agreed by and between both parties. The major items discussed are enumerated as below:

- The RID revealed his intention to carry the plan of Step 1 Flood Forecasting System into the implementation on the premises of eligible external assistance.
- The RID had a quotation about the possibility for the Team to provide the development works on the detailed computer programming for the Flood Prediction Model within this study period. In this connection, the Team made an explanation that such computer programming works are not within the scope of work but will be performed during the implementation stage.
- In accordance with a request from the RID, a certain modification might be made to the implementation schedule for Step 1 Flood Forecasting System specified in the Interim Report. Details of the modification will be clarified by the RID and discussed with the Team before the Team leaves to Japan.
- In addition to the Interim Report which principally describes the plan of Step 1 Flood Forecasting System, the Team will prepare the material to present the outline of Step 2 Flood Forecasting System and discuss its contents with the RID before the Team leaves to Japan.

The list of attendance is attached hereto:

A--9

LIST OF ATTENDANCE

No	NAME	DESIGNATION
1	Mr. Chareuk Nonthathum	Chief Civil Engineer
2	Mr. Prasert Milintangul	Chief, Research &
		Applied Hydrology Div.
3	Mr. Sinserm Ketudat	Director, Communications
		Div.
4	Mr. Sompote Sukhumparnich	Director, Data
		Processing Div.
5	Mr. Kitla Thepalagleka	Project Planning Div.
6	Mr. Prasong Jitseri	Hydrologist, Hydrology
		Div.
7	Mr. Virat Khao-Uppatum	Hydraulic Engineer,
		O & M div.
8	Mr. Lek Prapasajchavet	O & M Div.
9	Mr. Narumi Yamada	JICA Expert, Project
		Planning Div.
10	Mr. Sukehisa Aoki	Chairman, JICA Advisory
		Committee
11	Mr. Tadahiko Nakao	JICA Advisory Committee
12	Mr. Seiko Fukuda	JICA Advisory Committee
13	Mr. Fumio Kikuchi	JICA Advisory Committee
14	Mr. Katsuhisa Abe	Leader, JICA Study Team
15	Mr. Yoshiharu Matsumoto	JICA Study Team
16	Mr. Makihiko Otogawa	JICA Study Team
17	Mr. Yutaro Hoshi	JICA Study Team
18	Mr. Yoshinori Oyama	JICA Study Team
19	Mr. Hideki Oguchi	JICA Study Team
20	Mr. Kinichi Ohno	JICA Study Team
21	Mr. Yuzo Mizota	JICA Study Team

· ·

.

MINUTES OF MEETING

OF

THE DRAFT FINAL REPORT FOR THE STUDY

ON

FLOOD FORECASTING SYSTEM

IN

THE CHAO PHRAYA RIVER BASIN

IN

THE KINGDOM OF THAILAND

BANGKOK, MARCH 22, 1988.

Mr. Katsuhisa Abe Team Leader JICA Study Team for the Study on Flood Forecasting System in the Chao Phraya River Basin

Witnessed by

asen

Mr. Jumsak Tejasen

Laboratory Division

Engineer

Acting for chief Civil

Director of Research and

Sukehisa acki

Mr. Sukehisa Aoki Chairman Advisory committee for the study

A--11

Joint meeting between the Royal Irrigation Department (RID) and the JICA Study Team (the Team) was held on March 21 in the presence of the Advisory Committee to discuss on the contents of the Draft Final Report. The Team submitted the Draft Final Report consisting of 35 copies of main report and executive summary report and 10 copies of supporting report.

Through discussion, the contents of the Report were agreed by and between both parties. The major items discussed are enumerated as below :

- In response to the question on the long term flood prediction in the step-2 flood forecasting System, the Team explained that the system can be used for longer flood prediction than that described in the Report by the model developed in this Study, though the accuracy of the flood prediction results tends to lower.

- RID revealed the intention to promote the step-1 flood forecasting system including facilities for data collection, data transmission and data management in the manner of the grant aid by Japanese Government.

The list of attendants is attached hereto.

J. Vejase.

S, a,

LIST OF ATTENDANCE

NO	NAME	DESIGNATION
1.	Mr. Chareuk Nonthathum	Chief Civil Engineer
2.	Mr. Taweechai Mackaman	Director, Hydrology Div.
3.	Mr. Sompote Sukhumparnich	Director, Data Processing
		Div.
4.	Mr. Sinserm Ketudat	Director, Communications
		Div.
5.	Mr. Prasert Milintangul	Chief, Research &
		Applied Hydrology Branch
6.	Mr. Kitla Thepalagleka	Project Planning Div.
7.	Mr. Prasong Jitseri	Hydrologist, Hydrology Div.
8.	Mr. Virat Khao-Uppatum	0 & M Div.
9.	Mr. Chatchawan Panyawatinondha	0 & M Div.
10.	Mr. Chairat Kua-Arun	Data Processing Div.
11.	Mr. Narumi Yamada	JICA Expert, Project
		Planning Div.
12.	Mr. Sukehisa Aoki	Chairman, JICA Advisory
		Committee
13.	Mr. Seiko Fukuda	JICA Advisory Committee
14.	Mr. Fumio Kikuchi	JICA
15.	Mr. Katsuhisa Abe	Leader, JICA Study Team
16.	Mr. Yoshiharu Matsumoto	JICA Study Team
17.	Mr. Makihiko Otogawa	JICA Study Team
18.	Mr. Yutaro Hoshi	JICA Study Team
45	∇	

J. Vejase.

8, a,

. .

. .

.

