To achieve the above purposes, the following conditions are taken into account for the formulation of the Step 2 gauging system:

- To propose the most appropriate gauging measures in consideration of the latest models of gauging equipment;
- (2) To propose the appropriate number and coverage of the hydrological gauging stations, the selection of which is made purely from the viewpoint of hydrological significance in location for flood simulation works and not necessarily related to the availability of existing gauging facilities; and
- (3) To arrange the order of priority in the installation of gauging stations so as to propose the stepwise development plan in line with the staged extension programs of the target area (refer to Sector 1 of Supporting Report, Planning Condition).
- 6.1 Objectives of Gauging

Rainfall and water level are the essential items required in the calculations for the proposed flood prediction model. The objectives of gauging are as described below.

6.1.1 Objectives of Rainfall Gauge

The coverage of the Step 1 gauging network is limited within the lower reaches from the Bhumibol and Sirikit dams assuming that the discharge released from the dams are given to the flood prediction model as boundary conditions, while the Step 2 gauging network is expanded to the catchment areas of the two dams. Depending on the expansion of gauging coverage, a longer flood prediction time becomes possible for the downstream target areas. It is further expected that more effective use for potential flood control function is given to the dam operation in accordance with the real-time flood forecasting information so as to reduce the flood peak discharges in the target areas.

Consequently, the Step 2 gauging network covers the rainfall gauging area of about 100,000 km2, while the Step 1 gauging network covers the area of about 63,600 km2.

6.1.2 Objectives of Water Level Gauge

In addition to the items proposed in the Step 1 Flood Forecasting System, the gauging items related to the existing major river structures are newly proposed in the Step 2 Flood Forecasting System as described hereinafter.

Since the runoff discharge in the dam catchment area is included as an object of flood prediction, it is newly proposed to gauge the reservoir water level at the Bhumibol and the Sirikit dams and also to gauge the stream flow discharges along Ping and Nan rivers in the upper reaches from the dams. The proposed gauging items will provide the boundary conditions in terms of the runoff discharges observed in the upstream and to monitor the inflow discharges to the dam reservoirs.

It is further proposed to monitor the water level at existing regulators in the major canals which are related to the operation of the Chao Phraya Dam. In accordance with the gauging information, the results of flood prediction will reflect immediately to the integrated control for inflow and outflow discharges of these regulators, as well as the Chao Phraya Dam.

6.2 Gauging Measure

6.2.1 Rainfall Gauge Measure

Gauging measures are roughly classified into two types, that is, the point rainfall gauge type and the radar gauge type.

The point rainfall gauge type has been commonly applied, and this type is employed in the Step 1 gauging system. As described in Section 5, it was verified that large flood discharges of more than 3,000 m³/s can be accurately simulated

at Nakhon Sawan on the basis of the point rainfall data with the rather sparse gauging density of about 1,000 km2 per station (refer to Table 2-8). This may be attributed to the wide hyetal region and the long flood traveling time. On the other hand, the reliability of point rainfall data with the said density tends to be low, simulating the runoff discharges of less than 2,000 m3/s at Nakhon Sawan. It is conjectured from the past rainfall records that the flood discharges not exceeding 2,000 m3/s at Nakhon Sawan are caused mostly from the rainfall areas of less than 50 km2. Thereby, it is virtually difficult to estimate the accurate areal average rainfall from the point rainfall gauges.

The radar gauge type is recently being developed with the advance of computer systems which can process a large amount of data scanned by the radar into the actual rainfall volume. The major advantages of radar are that one radar gauge has the potential to measure areal rainfall directly within a radius of about 120 km regardless of the size of the rainfall area. Radar gauging is, however, performed subject to the real-time calibration using the point rainfall gauge for the reason that the relationship between "the actual rainfall rate" and "the radar reflecting energy" is varied depending on the rainfall drop size, the intensity of precipitation, etc. Further, a rather long training period will be required to acquire the meteo-hydrological knowledge concerned in the operation of radar rainfall gauge. Facilities for one radar gauge system will also require an enormous cost.

In accordance with the above evaluation, it is recommended to apply both the point rainfall gauge and the radar gauge measures for the Step 2 hydrological gauging system, subject to the following conditions:

(1) The point rainfall gauging network shall be primarily established prior to the radar gauge network. The equipment of point rainfall gauge is herein assumed to be the tipping bucket type which is generally applied to the online data transmission system.

- (2) Succeedingly, the radar gauge network shall be installed to supplement the accuracy of areal annual rainfall estimation, subject to the real-time calibration of point rainfall gauge.
- 6.2.2 Water Level Gauge Measure

It is desirable to select the appropriate gauging equipment for each gauging point among the various alternative types such as the float type, the pressure type and the lead switch type taking account of each river channel condition. However, the selection subject to the confirmation of the whole channel conditions in the Chao Phraya River Basin is virtually difficult during this study stage. Further, the alternative equipment types have neither an excessive difference in their installation and equipment costs nor an extreme change of the gauging data transmission network.

Due to the above conditions, the equipment for water level gauge is assumed equally to all gauging points as the float type which enables the most flexible installation for various river channel conditions.

6.3 Location and Number of Gauging Station

6.3.1 Rainfall Gauging Station

Rainfall gauging stations are to be installed in the proposed 14 subbasins where the basin runoff discharges are predicted through the simulation model (refer to Fig. 2-14). As stated before, it is recommended to establish the point rainfall gauge network, and afterwards the radar gauge network. The gauging stations for each network are selected as described hereinafter.

Point Rainfall Gauging Station

The necessary density of rainfall gauge point was primarily examined through simulations of rainfall discharges in 1978, 1980 and 1983. The simulation was made on the basis of the rainfall data and with their gauge densities varying from 1,000 km2 to 1,800 km2 per gauging station in the upper reaches of (1) Nakhon Sawan, (2) the Bhumibol Dam, and (3) Saraburi (Sta. S9 in the Pasak River Basin) (refer to Fig. 2-33). As the results of simulation, a substantial difference is detected in the observed and simulated discharge hydrographs when the rainfall gauging density is assumed to be more sparse than 1,200 km2 per station, as shown in Fig. 2-34. The difference is further clarified by the comparison of either the annual peak discharges or the annual discharge volumes, as shown in Table 2-25.

Due to the above verification, the installation density of gauging station is proposed to be about $1,200 \text{ km}^2$ per station. Further, the location of gauging stations are arranged so as to be equally distributed in the respective subbasin, and also to be nearby the existing gauging stations as far as possible taking into account of the continuity of the gauging period. The exceptional manner of arrangement for gauging stations is, however, applied to the Tha Pla Pi Subbasin (Basin Code No. B-12), where the installation density of about 2,000 km² per station is available since the basin runoff discharges are simulated to scarcely contribute to the stream flow of the Chao Phraya River.

Based on the aforesaid arrangement, 84 rainfall gauging stations are selected to the Step 2 hydrological gauging network. The location and inventory of these gauging stations are as shown in Fig. 2-35 and Tables 2-26 and 2-27, respectively.

Among the selected gauging stations, 19 stations are to be used in common with the water level gauging stations, and another 65 stations are used purely for rainfall gauging. The estimation of basin average rainfall is made on the basis of the gauging stations classified in Table 2-28.

Radar Gauge Station

Among the 14 subbasins regarded as objects of the Basin Runoff Prediction Model, 6 subbasins (Basin Code Nos. BS-4, 9, 10, 11 and 12) are adjacent to the downstream target points (refer to Fig. 2-14). The 6 subbasins are located in the lower reaches of Ping, Yom, Nan, Pasak and Sakae Krang river basins, and specially characterized as below:

- (1) Rainfall prediction for the subbasins is required to perform flood prediction of the target areas due to the short time difference between the occurrence of rainfall in the subbasin and the occurrence of the corresponding runoff discharges at the target points. The time difference is assumed to be less than 3 days in the proposed flood prediction model. Thereby, the radar gauge is useful to overview the movement of rainfall areas and to predict the time series trend of the rainfall intensity and hyetal region.
- (2) Rainfall in the subbasins contributes to the runoff discharges at the target points more sensitively than the rainfall in the other upper subbasins. In this connection, it is desirable to apply the radar gauge so as to catch even the small scale rainfall which is not practically gauged by the point rainfall gauge station.

Due to the above characteristics, two radar gauge stations are proposed to cover the aforesaid 6 subbasins subject to the available coverage of one radar gauge station to be about 120 km in radius (refer to Fig. 2-36). The radar stations are to be located approximately in latitude 14°40'N and longitude 100°30'E (south of Lop Buri), and in latitude 16°15'N and longitude 100°15'E (near Taphan Hin).

6.3.2 Water Level Gauging Station

The water level gauging points were selected due to the following necessities of their gauging data:

- To monitor and calibrate the discharge and water level calculated through flood prediction model;
- (2) To input the boundary conditions in terms of runoff discharges observed in the upper reaches;
- (3) To accommodate the basic data for the tidal prediction in the Gulf of Thailand; and
- (4) To monitor the inflow and outflow discharge of major canals at existing regulators.

Correspondingly, 45 water level gauging stations including one tidal gauging station were selected. The inventory and location of the selected gauging stations are shown in Tables 2-27 and 2-29 and Fig. 2-25, respectively. The selected gauging stations are further classified according to gauging purpose (refer to Tables 2-30, 2-31 and 2-32).

Among the water level gauging stations for the Step 2 system, 27 gauging stations are selected at the same locations as those of the Step 1 system for the reason of continuity of cumulative gauging data to be stored, as well as the hydrological significance in location for the calculation of flood prediction.

In addition to the above, the following gauging stations are newly proposed in the Step 2 system:

(1) Four (4) gauging stations in the upper reaches from the Bhumibol and the Sirikit dams, two of which are to gauge the water level of dam reservoirs and the other two, which are located at Chai Mai and Nan, to gauge the upstream runoff discharges; and

- (2) Twelve (12) gauging stations in the lower reaches from the Chai Nat Dam, to gauge the water level of Chai Nat-Pasak Canal, Chai Nat-Ayutthaya Canal, Noi River and Suphan River so as to monitor the inflow and outflow discharge at major regulators (refer to Table 2-32).
- 6.4 Installation Priority of Gauging Stations

The installation priority of gauging stations was primarily conceived in accordance with the staged extension programs of the target areas and the expected flood prediction time (refer to Sector 1 of Supporting Report, Planning Condition). The priorities were further adjusted from the viewpoints of installation volumes.

Through the aforesaid conditions, the installation priorities are divided into five stages as below (refer to Table 2-23 and Fig. 2-35).

- (1) As the first priority, it is proposed to install 37 gauging stations in the lower reaches from Nakhon Sawan along the main channel of the Chao Phraya River and in the lower reaches from Wichian Buri along the Pasak River (refer to the first priority stations in Fig. 2-35). These gauging stations will enable short term prediction (prediction time = 3 days) for the target areas except Nakhon Sawan.
- (2) As the second priority, it is proposed to install 29 gauging stations in the lower reaches of Ping, Yom and Nan rivers and the upper reaches of Pasak River (refer to the second priority stations in Fig. 2-35). The gauging stations will enable short term prediction for Nakhon Sawan as well as 6-day prediction for other target areas.
- (3) As the third priority, 21 gauging stations are to be installed in the upper reaches of Ping, Yom and Nan rivers, except the catchment areas of the Bhumibol and

Sirikit dams (refer to the third priority stations in Provided that the dominant rainfall area Fig. 2-35). covers the installation areas, the flood prediction will be done about 6 days in advance for Nakhon Sawan and more than 6 days in advance for other target areas.

(4) As the fourth priority, 23 gauging stations are to be installed in the catchment areas of the Bhumibol and Sirikit dams. Thereby, flood prediction will enable a longer flood prediction time and also a certain flood mitigation effect for the respective target areas * <u>1</u> 1 through the effective use of flood control functions attached to the Bhumibol and Sirikit dams (refer to the fourth priority stations in Fig. 2-35).

- (5)As the fifth priority, two radar stations are to be installed so as to facilitate the rainfall prediction measures and improve the accuracy of areal rainfall estimation (refer to Fig. 2-36).
- 6:5 Manner of Flood Prediction

and the second second

- 4

Flood prediction at the respective prediction points is carried out through different combinations of flood prediction models by using the real-time gauged data. Thereby, the results of flood prediction are calculated in terms of either the daily average or the hourly average water levels/ discharges more than three days in advance for the respective prediction points. The calculations are to be done every six hours on the basis of the gauged data newly collected on the real-time basis so as to update the results of prediction (refer to Sector 1 of Supporting Report, Planning Condition). The details of the contents of flood prediction are described hereinafter.

, we get the transformed spectrum of the spectrum spectr

Prediction of Daily Average Water Level and Discharge

Predictions are made for the target areas except Bangkok on the basis of real-time gauged data collected from the gauging stations in the upper reaches from Bang Sai. The gauged data continuously and automatically input to the data are processing unit, so that they are successively processed to the runoff discharges as well as areal average rainfall and stored by the data memory unit. The gauged data thus processed and stored are used for the calculation of flood prediction which is made every six hours through the combination of the Basin Runoff Prediction Model, the Channel Routing Model, and the Flood Plain Routing Model. Correspondingly, both water level and runoff discharge are predicted in terms of daily average values subject to the renewal of prediction results at every 6-hour interval.

Prediction of Hourly Average Water Level

The results of prediction are provided for the Bangkok Metropolitan area which is located along the estuary and strongly influenced by tidal fluctuation. The calculation for prediction is made every six hours through the Unsteady Flow Prediction Model by using the following initial condition and boundary conditions.

- (1) The water level gauge data are collected on the realtime basis from the five (5) gauging stations located along the estuary from the river mouth up to Bang Sai. The collected water level gauge data are processed into the water level profile for tidal compartment which is used as the initial condition for the time before the start of model calculation.
- (2) The upstream boundary conditions for the model calculation are given in terms of daily average runoff discharges predicted at Bang Sai.
- (3) The hourly average tidal levels are predicted through the Harmonic Analysis, using the real-time gauged data

of tidal levels at the river mouth. The results of prediction are used as the downstream boundary conditions of the Unsteady Flow Prediction Model.

6.6 Effectiveness of Flood Prediction

The effectiveness of flood prediction was examined through simulations using the hydrological gauging data recorded in 1978, 1980 and 1983 at the gauging stations located nearby the gauging points to be selected for the Step 2 Flood Forecasting System. The simulation was carried out subject to the 3 and 6-day advanced predictions.

The 3-day prediction corresponds to the short term prediction primarily required of the Step 2 Flood Forecasting System. The prediction time longer than 6 days was not examined in this study, since such longer prediction time essentially requires rainfall prediction, the practical measure of which could not be developed during this study period, especially for the upstream prediction points such as Nakhon Sawan and Chai Nat. It is, however, noted that the advanced prediction time is possibly extended up to about 10 days for the prediction at Bangkok situated as the lowest prediction point due to the long flood lag time (refer to Table 2-24).

see place of the second states and the second states of the second state

1. A.

The results of simulation are shown in Tables 2-34 to 2-35 and Figs. 2-37 to 2-38. Compared with the results of flood prediction in the Step 1 Flood Forecasting System (refer to Tables 2-22 to 2-23 and Figs. 2-31 to 2-32), appreciable improvements were recognized for the Step 2 Flood Forecasting System, especially in the results of prediction at Nakhon Sawan and Bangkok. The details are described hereinafter.

6.6.1

Accuracy of Daily Average Discharge Prediction in the Upper Reaches from Bang Sai

The flood discharge hydrographs are predicted at Nakhon Sawan, Chai Nat and Ang Thong where the observed discharge records are available. The prediction was made through the combination of the Basin Runoff Prediction Model, the Channel Routing Model and the Flood Plain Routing Model. The results of prediction are shown in Figs. 2-37 to 2-38 and Table 2-34, and evaluated below.

Prediction for Nakhon Sawan

The results of both 3 and 6-day predictions well coincide with the observed hydrographs in the portion of more than $3,000 \text{ m}^3/\text{s}$ which is in dangerous condition of overbanking and regarded as the primary object of prediction. However, it is rather difficult to predict the runoff discharges of less than $2,000 \text{ m}^3/\text{s}$, especially 6 days in advance. The difficulty is attributed to the errors of areal average rainfall estimated from the point rainfall gauge for the small hyetal regions.

Prediction for Lower Chai Nat Dam

As in the prediction for Nakhon Sawan, the results of 3 and 6-day predictions well coincide with the observed discharges, when the runoff discharges are over 2,000 m³/s.

Prediction for Ang Thong

Compared with the prediction results for Nakhon Sawan and Chai Nat, the difference between the observed and predicted discharges is rather large. One of the causes is the reliability of observed discharges at Ang Thong where the period of field discharge measurement is quite limited. Accordingly, it is necessary to accumulate a sufficient data of field discharge measurement and make further verifications on the model's effectiveness.

6.6.2 Accuracy of Hourly Average Water Level Prediction for Tidal Compartment

> The one-day maximum water levels were predicted through the Unsteady Flow Prediction Model for several points along the estuary and compared with the observed water levels shown in Table 2-35. In this prediction, the following premises are given:

- (1) The dates for prediction are set on the days when the annual maximum discharges were observed at Bang Sai in 1978, 1980 and 1983.
- (2) The upstream boundary conditions are given from the daily average discharges predicted at Bang Sai either 3 days or 6 days in advance. Thereby, the Step 2 Flood Forecasting System enables improvement of the accuracy of boundary conditions due to the increment of gauging points in the upper reaches from Bang Sai.
- The downstream boundary conditions are given from the (3) hourly average tidal levels at Fort Phra Chul which are predicted through the Harmonic Analysis. Due to the real-time and online data collection system, the Step 2 Flood Forecasting System enables updating of the results of tidal prediction at short intervals so as to increase Table 2-36 shows the results of 6-day their accuracy. advanced tidal level prediction to be made subject to everyday updating of results which is assumed to be practical in the Step 2 Flood Forecasting System. The said results of prediction well coincide with the observed values compared with the other results of prediction which were made subject to the updating of results at one year interval (refer to Table 2-16).

In accordance with the aforesaid improvement, the Step 2 Flood Forecasting System improves the results of water level prediction for tidal compartment. As shown in Table 2-35, the 3-day prediction is derived to make the errors of less than 20 cm for all prediction points. As for the 6-day prediction, the errors are also within 20 cm, except in the prediction at Memorial Bridge on October 31, 1983 where the error of 30 cm was calculated.

.

TABLES

Year	Discharge /1 Observation	Peak	Date of Peak
iear	Point	Discharge (m ³ /s)	Discharge
; ;	<u>ਗ਼੶੶ਫ਼੶ਸ਼ੑੑੑੑ੶ਗ਼੶ਫ਼੶ਲ਼ੑੑਫ਼ਸ਼ੑਖ਼ਖ਼ਖ਼ਗ਼ਗ਼ੑਗ਼ਗ਼ਖ਼ਗ਼ਗ਼ੑਗ਼ੑਗ਼ਗ਼ੑਗ਼ੑਗ਼ੑਗ਼ੑਗ਼ੑਗ਼ੑਗ਼ੑਗ਼ੑਗ਼ੑਗ਼ੑਗ਼ੑਗ਼</u>	and and a second sec	and a second
1978	C2	3,540	07 OCT
• .	C13	3,740	11 OCT
1979	C2	1,390	02 OCT
	C13	1,158	02 OCT
1980	C2	4,320	10 OCT
	C13	3,795	13 OCT
1981	C2	1,663	18 AUG
	C13	1,282	13 AUG
1982	C2	1,596	09 OCT
	C13	932	06 OCT
1983	C2	2,290	23 OCT
۰.	C13	3,290	25 OCT
1984	C2	1,249	27 OCT
	C13	584	24 OCT
1985	C2	2,137	28 OCT
	C13	2,066	26 OCT

Table 2-1. ANNUAL MAXIMUM DISCHARGES ON CHAO PHRAYA RIVER (OBJECT YEARS: 1978 TO 1985)

,

. .

Note: <u>/</u>1 Refer to Fig. 2-5 for the location of observation points C2 and C13. These observation points have the respective drainage areas of 110,569 km² and 120,693 km².

Table 2-2. TRANSITION OF FLOOD PEAK DISCHARGE ALONG PING, WANG, YOM AND NAN RIVERS

er Time (m) Time (m)	tem tion (km) (km) (km) (m)					
K ^{Mang} W10 355 140 27 SEP 5 NO FLOOD NO FLOOD NO FLOOD W1A 315 150 27 SEP 5 NO FLOOD NO FLOO NO FLOO NO FLOO NO FLOO NO FLOO	W10 355 140 27 SEP W1A 315 150 27 SEP W3A 212 460 27 SEP W4A 132 340 27 SEP W4A 132 340 27 SEP W4A 132 340 27 SEP W2A 132 340 28 SEP P2A 65 550 30 SEP P2A 0 1,180 02 OT Y1 112 800 25 SEP Y1 112 800 25 SEP Y1 112 800 25 SEP Y1 128 1,200 26 SEP Y17 -197 490 CONSTANT_ N12A 211 300 26 SEP N12A 128 630 24 SEP N5 0 1,340 08 OCT N7 -76 1,340 08 OCT	Qmax (m ³ /s)		1	Date	Time Differ rence
	g/Wang W10 355 140 27 SEP W1A 315 150 27 SEP W3A 212 460 27 SEP W4A 132 340 28 SEP W4A 132 340 28 SEP W2A 132 340 28 SEP Y2A 65 550 30 SEP Y1 112 800 25 SEP Y14 0 1,180 02 SEP Y3A -24 1,130 26 SEP Y3A -24 1,130 26 SEP Y4 -92 1,200 26 SEP Y3A -45 1,200 26 SEP Y4 -92 1,200 26 SEP Y4 -92 1,200 26 SEP Y4 -197 490 CONSTANT/2 SEP N26 128 630 24 SEP N5 128 630 2					10(27)
WIA 315 150 27 SEP 5 NO FLOOD NO FLOOD PIA 112 460 27 SEP 5 160 03 OCT 1 180 19 OCT PIA 122 3460 27 SEP 5 160 04 OCT 0 1,440 20 OCT PIA 0 1,180 02 OCT 0 910 04 OCT 0 1,440 20 OCT PIA 0 1,180 02 OCT 0 910 04 OCT 0 1,440 20 OCT PIA 0 1,180 02 OCT 0 04 OCT 0 1,440 20 OCT PIA 0 1,000 25 SEP 1 730 08 SEP 0 477 06 OCT YI4 0 1,130 26 SEP 0 2,170 08 SEP 0 477 06 OCT YI4 0 1,200 26 SEP 0 2,170 08 SEP 0 477 06 OCT	WIA 315 150 27 SEP W3A 212 460 27 SEP W4A 132 340 28 SEP P2A 65 550 30 SEP P7A 0 1,180 02 0CT Y1 112 800 25 SEP Y14 0 1,000 26 SEP Y6 -24 1,130 26 SEP Y6 -45 1,200 26 SEP Y17 -197 490 CONSTANT/2 N33 222 100 24 SEP N26 128 630 24 SEP N26 128 630 24 SEP N26 1,340 08 0CT N10A -112 1,440 08 0CT	NO FLOOD		NO FLOO	Q	
WAA 212 460 27 SEP 5 160 03 OCT 1 180 19 OCT WAA 132 340 28 SEP 4 200 04 OCT 0 200 20 OCT 200 20 OCT 20 21 20 20 21 20 21 20 2	W3A 212 460 27 SEP W4A 132 340 28 SEP P2A 65 550 30 SEP P7A 0 1,180 02 05 55 P7A 0 1,180 02 05 55 30 SEP P7A 112 800 25 SEP 112 800 25 SEP Y1 112 800 25 SEP 1,130 26 SEP Y3 -24 1,130 26 SEP 1,200 26 SEP Y4 -92 1,200 26 SEP 470 27 SEP Y3 -197 490 CONSTANT/2 SEP N/2 SEP N12A 211 300 24 SEP N/2 SEP N5A -76 1,210 25 SEP N/2 SEP N10A -112 1,440 08 OCT S6 SEP N10A -112 1,440 0	NO FLOOD		NO FLOO	10	
W4A 132 340 28 64 0 0.1 0.0 <th0.0< th=""> <th0.0< th=""> <th0.0< th=""></th0.0<></th0.0<></th0.0<>	W4A 132 340 28 SEP P2A 65 550 30 SEP P7A 0 1,180 02 07 P20 195 340 25 SEP P1 112 800 25 SEP Y1 112 800 25 SEP Y14 0 1,000 26 SEP Y3 -24 1,130 26 SEP Y4 -92 1,200 26 SEP Y3 -45 1,200 26 SEP Y3 -470 26 SEP Y/2 Y3 -197 490 CONSTANT/2 SEP N12 211 300 26 SEP N26 128 630 24 SEP N5A 0 1,210 25 SEP N7 -76 1,340 08 OCT N10A -112 1,440 08 OCT	160	03 OCT	180	Ő	p
P2A 65 550 30 SEP 2 410 04 OCT 0 1,440 20 OCT P7A 0 1,180 02 OCT 0 910 04 OCT 0 1,440 20 OCT Y10 112 800 25 SEP 1 610 05 SEP 332 09 OCT Y14 0 102 25 SEP 1 730 08 SEP 0 474 06 OCT Y34 -24 1,120 26 SEP 0 2,130 08 SEP 0 477 06 OCT Y34 -24 1,200 26 SEP 0 1,240 08 SEP 0 477 06 OCT Y34 -92 470 2730 08 SEP 0 472 06 OCT Y34 -197 490 CONSTANT/2 730 CONSTANT/2 NOT REPORTED Y17 -197 490 CONSTANT/2 730 CONSTANT/2 NOT REPORTED Y33 2222 100	P2A 65 550 30 SEP P7A 0 1,180 02 07 Y1 112 800 25 SEP Y1 112 800 25 SEP Y1 112 800 25 SEP Y1 0 1,180 02 SEP Y3 -24 1,130 26 SEP Y3 -45 1,200 26 SEP Y4 -92 1,200 26 SEP Y3 -197 490 CONSTANT/2 SEP N13 222 100 24 SEP N26 128 630 24 SEP N5A 0 1,210 26 SEP N7 -76 1,210 26 SEP N10A -112 1,440 08 OCT	280	OCT	200		• 0
F7A 0 1,180 02 OCT 0 910 04 0CT 0 1,440 20 00 Y1 112 800 25 SEP 1 610 05 SEP 337 09 0CT Y1 112 800 25 SEP 1 730 08 SEP 0 317 09 0CT Y6 -24 1,200 26 SEP 0 2,170 08 SEP 0 447 06 0CT Y6 -24 1,2130 26 SEP 0 2,170 08 SEP 0 447 06 0CT Y17 -197 490 27 1 1,240 08 SEP 0 477 06 0CT Y17 -197 490 CONSTANT/2 730 08 07 472 06 0CT N12 -197 490 CONSTANT/2 730	P7A 0 1,180 02 0CT Y1 112 340 25 SEP Y1 112 800 25 SEP Y6 -24 1,130 26 SEP Y3A -45 1,200 26 SEP Y3A -45 1,200 26 SEP Y4 -92 1,200 26 SEP Y3 -197 490 27 SEP Y17 -197 490 27 SEP N12A 211 300 24 SEP N12A 128 630 24 SEP N5A -76 1,440 08 OT N10A -112 1,440 08 OT	410	OCT	600		o c
Y20195340255EP1610055EP3332090CTY14112800255EP1730085EP0317090CTY6 -24 1,130265EP02,170085EP0448060CTY6 -45 1,130265EP02,130085EP0477060CTY17 -92 1,120265EP02,130085EP0477060CTY17 -92 1,200265EP02,130085EP0477060CTY17 -92 1,200265EP01,240085EP0477060CTY17 -197 490275EP11,240085EP0477060CTY17 -197 490275EP1730CONSTANT/2730005EP1607755N12A211300275EP11,080075EP2180040CTN12A21130026255EP11,110055EP1300060CTN12A2111,210255EP11,120255EP1300060CTN13A -124 1,4400807	Y20 195 340 25 SEP Y1 112 800 25 SEP Y14 0 1,000 26 SEP Y66 -24 1,130 26 SEP Y3A -45 1,200 26 SEP Y17 -197 490 27 SEP N33 222 100 24 SEP N12A 211 300 24 SEP N26 128 630 24 SEP N26 1,340 08 OCT N10A -112 1,440 08 OCT	016	OCT	n		0
Y20195340255EF1610055EF3332090CTY1112800255EF1730085EF0448060CTY6 -24 1,130265EF02,170088EF0477060CTY1 -92 1,200265EF02,170088EF0477060CTY17 -197 49027268EF01,240088EF0477060CTY17 -197 4902727730088EF0477060CTY17 -197 4902727730088EF0472060CTY17 -197 4902727730088EF0472060CTY17 -197 4902727730CONSTANT/2NOT REPORTEDNOT REPORTEDN12A211300268EF11,710088EF1300060CTN26128630242607862200040CTN12A2111,440080611,710088EF11,710060CTN561,340080611,520268EF11,40007070704 <td< td=""><td>Y20 195 340 25 SEP Y14 0 1,000 25 SEP Y66 -24 1,130 26 SEP Y3A -24 1,130 26 SEP Y4 -92 4,70 26 SEP Y17 -197 490 27 SEP N12A 211 300 24 SEP N12A 211 300 24 SEP N26 1,340 08 OCT N10A -112 1,440 08 OCT</td><td>ی بند اس کا کا</td><td>ه به زب کا سا کا در پر پر با با اس کا در او و</td><td></td><td></td><td></td></td<>	Y20 195 340 25 SEP Y14 0 1,000 25 SEP Y66 -24 1,130 26 SEP Y3A -24 1,130 26 SEP Y4 -92 4,70 26 SEP Y17 -197 490 27 SEP N12A 211 300 24 SEP N12A 211 300 24 SEP N26 1,340 08 OCT N10A -112 1,440 08 OCT	ی بند اس کا	ه به زب کا سا کا در پر پر با با اس کا در او و			
X111280025SEP173008SEP03170907Y1401,00026SEP02,17008SEP04770607Y33-451,13026SEP02,13008SEP04770607Y14-921,20026SEP01,24008SEP04770607Y17-19747027SEP01,24008SEP04770607Y17-19747027SEP01,24008SEP04770607Y17-19747027SEP-158010SEP2NOTREPORTEDN13322210024SEP11,08007SEP221800407N12612863024SEP11,71008SEP13000607N26612863024SEP11,71008SEP13000607N57-761,340080607SEP-2660100707N6-1121,4400807-131,4200807070707N6-1121,4400807-131,52026SEP-1471007 <td>Y1 112 800 25 SEP Y14 0 1,000 26 SEP Y6 -24 1,130 26 SEP Y3A -45 1,200 26 SEP Y4 -92 4,70 27 SEP Y17 -197 4,90 27 SEP N33 222 100 24 SEP N12A 211 300 24 SEP N26 128 630 24 SEP N5A -76 1,340 08 OCT N10A -112 1,440 08 OCT</td> <td>610</td> <td>SEP</td> <td>332</td> <td></td> <td>ĩ</td>	Y1 112 800 25 SEP Y14 0 1,000 26 SEP Y6 -24 1,130 26 SEP Y3A -45 1,200 26 SEP Y4 -92 4,70 27 SEP Y17 -197 4,90 27 SEP N33 222 100 24 SEP N12A 211 300 24 SEP N26 128 630 24 SEP N5A -76 1,340 08 OCT N10A -112 1,440 08 OCT	610	SEP	332		ĩ
Y1401,00026SEP02,17008SEP0448060CTY6 -24 1,13026SEP02,13008SEP0477060CTY3A -45 1,20026SEP01,24008SEP0472060CTY17 -197 49027SEP01,24008SEP0472060CTY17 -197 49027SEP01,24008SEP0472060CTY17 -197 490CONSTANT/273020NSTANT/27300007SEP2180040CTN12A21130024SEP11,71008SEP1300060CTN12A21130020SEP11,71008SEP1300060CTN12A12863024SEP11,71008SEP1210070CTN12A1,4400801,5200907SEP2180060CTN12A1,440080CT-131,42011SEP2660100CTN12A1,420152009SEP-14710100CTN10A-1121,430090CT-131,420152607	Y14 0 1,000 26 SEP Y6 -24 1,130 26 SEP Y3A -45 1,200 26 SEP Y4 -92 4,70 27 SEP Y17 -197 490 2018TANT/2 N33 222 100 24 SEP N12A 211 300 24 SEP N26 128 630 24 SEP N5A -76 1,340 08 OCT N10A -112 1,440 08 OCT	730	SEP	317	09 OCT	i ri T
Y6-241,13026 SEP02,13008 SEP047706 OCTY3A-451,20026 SEP01,24008 SEP047206 OCTY4-9247027 SEP-158010 SEP-2NOT REPORTEDY17-197490CONSTANT/2730CONSTANT/2NOT REPORTEDN3322210024 SEP11,08007 SEP218004 OCTN12A21130020 SEP599007 SEP220004 OCTN12A21130020 SEP51,71008 SEP130006 OCTN12A21130020 SEP51,71008 SEP130006 OCTN12A1121,44008 OCT1,52009 SEP07 SEP218004 OCTN10-761,34008 OCT-131,42011 SEP-266010 OCTN10-1121,44008 OCT-131,52023 SEP-1471010 OCTN8-1371,43009 OCT-151,52026 SEP-17NOT REPORTED	Y6 -24 1,130 26 SEP Y3A -45 1,200 26 SEP Y4 -92 470 27 SEP Y17 -197 490 CONSTANT/2 N33 222 100 24 SEP N12A 211 300 24 SEP N26 128 630 24 SEP N5A -76 1,340 08 OCT N10A -112 1,440 08 OCT	2,170	SEP	448	06 OCT	0
Y3A -45 $1,200$ 26 SEP 0 $1,240$ 08 SEP 0 472 06 OCTY4 -92 470 27 SEP -1 580 10 SEP -2 NOT REPORTEDY17 -197 490 $constant/2$ 730 $constant/2$ 730 $constant/2$ 800 04 OCTN133 222 100 24 SEP 1 $1,080$ 07 SEP 2 180 04 OCTN12A 211 300 24 SEP 1 $1,710$ 08 SEP 1 300 06 OCTN26 128 630 24 SEP 1 $1,710$ 08 SEP 1 300 06 OCTN26 128 630 24 SEP 1 $1,710$ 08 SEP 1 300 06 OCTN10 -76 $1,340$ 08 OCT -13 $1,420$ 11 SEP -2 660 10 OCTN10 -112 $1,440$ 08 OCT -13 $1,520$ 23 SEP -14 710 10 OCTN8 -137 $1,430$ 09 OCT -15 $1,520$ 26 SEP -14 710 10 OCT	Y3A -45 1,200 26 SEP Y4 -92 470 27 SEP Y17 -197 490 CONSTANT/2 N33 222 100 24 SEP N12A 211 300 24 SEP N26 128 630 24 SEP N5A 0 1,210 25 SEP N7 -76 1,340 08 OCT N10A -112 1,440 08 OCT	2,130	SEP	477	06 OCT	· c
Y4 -92 470 27 SEP -1 580 10 SEP -2 NOT REPORTED Y17 -197 490 CONSTANT/2 730 CONSTANT/2 NOT REPORTED N33 222 100 24 SEP 1 1,080 07 SEP 2 180 04 OCT N12A 211 300 24 SEP 1 1,710 08 SEP 1 300 06 OCT N26 128 630 24 SEP 1 1,710 08 SEP 1 300 06 OCT N5A 0 1,210 25 SEP 0 1,520 09 SEP 1 300 06 OCT N7 -76 1,340 08 OCT 1,520 23 SEP 0 560 07 OCT N10A -112 1,440 08 OCT 1,520 23 SEP -14 710 10 OCT N8 -137 1,430 09 OCT -15 1,520 26 SEP -17 NOT REPORTED	Y492 470 27 SEP Y17 -197 490 20NSTANT/2 N33 222 100 24 SEP N12A 211 300 24 SEP N26 128 630 24 SEP N5A 0 1,210 25 SEP N7 -76 1,340 08 OCT N10A -112 1,440 08 OCT	1,240	SEP	472		, c
Y17 -197 490 CONSTANT/2 730 CONSTANT/2 NOT REPORTED N33 222 100 24 SEP 1 1,080 07 SEP 2 180 04 OCT N12A 211 300 24 SEP 1 1,710 08 07 SEP 2 200 04 OCT N26 128 630 24 SEP 1 1,710 08 SEP 1 300 06 OCT N26 128 630 24 SEP 1 1,710 08 SEP 1 300 06 OCT N5A 0 1,210 25 SEP 0 1,520 09 SEP 0 07 OCT N7 -76 1,340 08 07 1,420 11 SEP -14 710 10 07 OCT N10A -112 1,430 09 07 07 23 SEP -14 710 10 07 OCT 10 07	Y17 -197 490 CONSTANT/2 N33 222 100 24 SEP N12A 211 300 20 SEP N26 128 630 24 SEP N5A 0 1,210 25 SEP N7 -76 1,340 08 OCT	580	SEP .		ORTED	L
N33 222 100 24 SEP 1 1,080 07 SEP 2 180 04 OCT N12A 211 300 24 SEP 1 1,080 07 SEP 2 180 04 OCT N12A 211 300 20 SEP 5 990 07 SEP 2 200 04 OCT N26 128 630 24 SEP 1 1,710 08 SEP 1 300 06 OCT N5A 0 1,210 25 SEP 0 1,520 09 SEP 1 300 06 OCT N7 -76 1,340 08 OCT 13 1,420 11 SEP -2 660 10 OCT N10A -112 1,440 08 OCT -13 1,520 23 SEP -14 710 10 OCT N8 -137 1,430 09 OCT -15 1,520 26 SEP -14 710 10 OCT	N33 222 100 24 SEP N12A 211 300 24 SEP N26 128 630 24 SEP N5A 0 1,210 25 SEP N7 -76 1,340 08 OCT N10A -112 1,440 08 OCT	730	CONSTANT/2		ORTED	
N33 222 100 24 SEP 1 1,080 07 SEP 2 180 04 OCT N12A 211 300 20 SEP 5 990 07 SEP 2 200 04 OCT N12A 211 300 20 SEP 1 1,710 08 SEP 1 300 04 OCT N5A 0 1,210 25 SEP 1 1,710 08 SEP 1 300 06 OCT N5A 0 1,210 25 SEP 0 1,520 09 SEP 0 560 07 OCT N7 -76 1,340 08 OCT -13 1,420 11 SEP -2 660 10 OCT N10A -112 1,440 08 07 -14 710 10 07 0CT N8 -137 1,430 09 07 26 SEP -14 710 10 07 0CT	N33 222 100 24 SEP N12A 211 300 24 SEP N26 128 630 24 SEP N5A 0 1,210 24 SEP N7 -76 1,340 08 OCT N10A -112 1,440 08 OCT					
211 300 20 SEP 5 990 07 SEP 2 200 04 OCT 128 630 24 SEP 1 1,710 08 SEP 1 300 06 OCT 0 1,210 25 SEP 0 1,520 09 SEP 0 560 07 OCT -76 1,340 08 OCT -13 1,420 11 SEP -2 660 10 OCT -112 1,440 08 OCT -13 1,520 23 SEP -14 710 10 OCT -137 1,430 09 OCT -15 1,520 26 SEP -17 NOT REPORTED	211 300 20 SEP 128 630 24 SEP 0 1,210 25 SEP -76 1,340 08 OCT -112 1,440 08 OCT	1,080		180		(*)
128 630 24 SEP 1 1,710 08 SEP 1 300 06 OCT 0 1,210 25 SEP 0 1,520 09 SEP 0 560 07 OCT -76 1,340 08 OCT -13 1,420 11 SEP -2 660 10 OCT -112 1,440 08 OCT -13 1,520 23 SEP -14 710 10 OCT -137 1,430 09 OCT -15 1,520 26 SEP -17 NOT REPORTED	128 630 24 SEP 0 1,210 25 SEP -76 1,340 08 OCT -112 1,440 08 OCT	066		200		. en
0 1,210 25 SEP 0 1,520 09 SEP 0 560 07 OCT -76 1,340 08 OCT -13 1,420 11 SEP -2 660 10 OCT -112 1,440 08 OCT -13 1,520 23 SEP -14 710 10 OCT -137 1,430 09 OCT -15 1,520 26 SEP -17 NOT REPORTED	0 1,210 25 SEP -76 1,340 08 OCT -112 1,440 08 OCT	1,710	SEP	300		F
-76 1,340 08 OCT -13 1,420 11 SEP -2 660 10 OCT -112 1,440 08 OCT -13 1,520 23 SEP -14 710 10 OCT -137 1,430 09 OCT -15 1,520 26 SEP -17 NOT REPORTED	-76 1,340 08 OCT -112 1,440 08 OCT	1,520	SEP	560		0
-112 1,440 08 OCT -13 1,520 23 SEP -14 710 10 OCT -137 1,430 09 OCT -15 1,520 26 SEP -17 NOT REPORTED	-112 1,440 08 OCT	1,420	SEP	660		ï
-137 1,430 09 OCT -15 1,520 26 SEP -17 NOT REPORTED		1,520	SEP -	210		ີ 1
	-137 1,430 09 OCT	1,520	SEP	NOT REP	ORTED	•
	-		•			

- : · ·					
Flood Year	River System	Discharge /1 Observation Point	Drainage Area (km ²)	Peak Discharge (m ³ /s)	Peak Discharge Unit D.A. (m ³ /s/km ²
1978	Ping-Wang	P7A	42,700	1,178	2.8 x 10 ⁻²
•	Yom	¥17	21,415	480	2.2×10^{-2}
· · ·	Nan	N8	32,878	1,430	4.3 x 10 ⁻²
	Chao Phraya	C2	110,569	3,540 '	3.2 x 10 ⁻²
		C13	120,693	3,740	3.1 x 10 ⁻²
л. 1	Pasak	S9	14,374	3,206	22.3 x 10 ⁻²
1980	Ping-Wang	P7A	42,700	905	2.1 x 10 ⁻¹
- · · ·	Yom	¥17	21,415	732	3.4 x 10
н 1997 - 1997 -	Nan	N8	32,878	1,520	4.6 x 10
· · ·	Chao Phraya	C2	110,569	4,320	3.9 x 10
		C13	120,693	3,795	3.1 x 10
tan sa tan P	Pasak	S9	14,374	886	6.2 x 10
1983	Ping-Wang	Р7А	42,700	1,439	3.4 x 10
· · ·	Yom	Y3A	13,583	465	3.4 x 10-
	Nan	NIOA	30,760	673	2.2 x 10~
	Chao Phraya	C2	110,569	2,290	2.0 x 10"
		C13	120,693	3,290	3.1 x 10-
	Pasak	S9	14,374	851	5.9 x 10"
		· · · · · · · · · · · · · · · · · · ·			

Table 2-3. PEAK DISCHARGES OF 1978, 1980 AND 1983 FLOODS

Note: /1 Refer to Fig. 2-5 for the location of observation points.

. . . .

2-50

•

		harge	0			rologic Valu	
River		vation int	Catchment Area /1	Hydrologic	·· (1)	(2) Bunoff	(3)
Basin		LIIL		Year /2	Rainfall	Runoff	Balance
	Upper	Lower	(km ²)		(mm)	Discharge	(1)-(2)
						(mm)	(mm)
Wang	W10A	W3A	6,187	1978	1,067	215	852
0				1979	935	76	859
				1980	956	108	848
				1981	-Data Mie		040
				1982	829	51	770
				1983	1,017		778
				1984	961	109 58	908
				1985	-Data Mis		903
				Average	961	103	858
Ping	W4A,	P7A	5,797	1978	1,401	361	1,040
	P12			1979	1,129	192	937
				1980	1,563	400	
				1981	1,319	235	1,163 1,084
				1982	1,103	259	844
				1983	⊷Data Mis		044
				1984	1,055	140	016
				1985		258	916
			• *	1705	1,213	2.10	954
		e -e -e -e e e e e e e e e e e e		Average	1,255	264	991
lom	¥20	¥14	6,721	1978	1,373	255	1,118
				1979	1,019	77	942
				1980	1,324	192	1,132
				1981	1,364	286	1,078
				1982	978	79	898
				1983	1,118	137	981
				1984	1,163	108	1,054
				1985	1,343	150	1,193
				Average	1,210	161	1,049
••••••••••••••••••••••••••••••••••••••		t 498 Kast reak diak pak lina kan ada ang	، وجار هي ايرا وي	یں ہوتے ہوتے ہوتے ہوتے اپنی اپنی اپنی کی کرنے ہوتے ہوتے ہوتے ہوتے ہوتے ہوتے ہوتے ہوت			
lan	N12A,	N5A	7,105	1978	1,503	507	996
	N33			1979	1,040	160	880
				1980	1,610	459	1,151
				1981	1,345	301	1,044
				1982	1,100	189	911
			· · · · · ·	1983	1,319		1,097
				1984	-Data Mis	sing-	-,
				1985	-Data Mis		
	188 568 567 558 568 569 566 558 568 568 568			Average	1,320	306	1,014
1-	<i>atn</i>		10.000	1070			
asak	S4B	S 9	10,808	1978	1,413	394	1,018
				1979	1,077	45	1,032
				1980	1,157	. 191	966
				1981	1,337	158	1,180
	1.1			1982	1,186	219	- 967
				1983	1,262	191	1,071
				1984	-Data Mis	•	
				1985	-Data Mis	sing-	
	·			Average	1,239	200	1,039

Note: $\underline{/1}$ Balance between the catchment areas of lower and upper discharge observation points.

 $\underline{/2}$ From April in the subject year to March in the following year.

Table 2-5. RECORD OF PAN EVAPORATION

LampangYearAPRMAYLampang1978192.0141.3Lat. N19°53'1979204.7171.3Lat. N19°53'1980196.8184.6Long. E99°50'1981193.7154.8Elev. 241 m1982168.8168.9Flev. 241 m1982168.8164.2Cong. E99°50'1981193.7154.8Elev. 241 m1982191.2164.2Cong. E99°50'1978166.2157.0Phitsanulok1978166.2157.0Lat. N16°49'1978166.2157.0Lat. N16°49'1978196.5196.5Elev. 44 m1982190.9191.6Average196.1190.9191.6		JUL									
1978 192.0 1979 204.7 1980 196.8 1981 193.7 1982 168.8 Average 191.2 1979 206.4 1981 194.5 1981 194.5 1982 190.9 Average 196.1		ł	AUC	SEP	OCT	NOV DEC		JAN	FEB	MAR	ANNIJAT.
1979 204.7 1980 196.8 1981 193.7 1982 193.7 Average 191.2 1978 166.2 1979 206.4 1981 194.5 1981 194.5 1982 190.9 Average 196.1				0 201	с С Г	, i				•	
1979 196.8 1980 196.8 1981 193.7 1982 166.8 1978 166.2 1979 206.4 1981 194.5 1982 190.9 Average 196.1		•		1000 2	7-01	74	88.0	95•2	110.0	182.7	1,497.3
1980 196.8 1981 193.7 1982 168.8 Average 191.2 1978 166.2 1979 206.4 1981 194.5 1982 190.9 Average 196.1			115.3	112.8	114.3	110.4	93.6	(61.9)	126.1	156.4	1.583.
1981 193.7 1982 198.8 Average 191.2 1979 206.4 1980 222.7 1981 194.5 1982 190.9 Average 196.1				94.8	90 . 2	(98.3)	(85.2)	92.5	116.2	172.8	1 520
1982 168.8 Average 191.2 1978 166.2 1979 206.4 1980 222.7 1981 194.5 1982 190.9 Average 196.1				117.7	104.1	74.9	68-0	86. 5	116.0	171	1011 101 101 101 101
Average 191.2 1978 166.2 1979 206.4 1980 222.7 1981 194.5 1982 190.9 Average 196.1	14	8 133.I	122.2	111.3	126.0	114.0	90.4	93.2	124.5	180.1	1.563.3
1978 166.2 1 1979 206.4 1 1980 222.7 2 1981 194.5 1 1982 190.9 1 Average 196.1 1	ĵ	136.1 127.8	117.4	108.7	107.6	98, 3	85.2	91.9	118.7	168.7	I,515.8
1979 206.4 1 1980 222.7 2 1981 194.5 1 1982 190.9 1 Average 196.1 1		1 128.7	130.5	102.6	147.9	123.0	129.4	121.0	135.5	204.2	1 686 1
1980 222.7 1981 194.5 1982 190.9 Average 196.1		•		127.2	137.5	139.0	118.1	113.4	1 30.5	183.0	
194.5 1982 190.9 Average 196.1	-	~		113.8	122.4	115.1	118.2	116.7	129.8	173.0	1 797.0
1982 190.9 Average 196.1	5 135	Provel	157.6	125.7	130.2	107.6	110.0	112.9	125.4	175.6	9-494-1
196.1	• 6 155	.8 134.1	118.3	118.7	132.5	115.3	108.2	108.5	125.0	182.3	1,681.2
	1.9 145.9	9 149.0	135.3	117.6	134.1	120.0	116.8	114.5	131.0	183.8	1,735.0
Phechabun 1978 214.8 161.	4 151.9	1	101.1	95.4	131.6	126.4	143.5	138 8	5 171	170.0	007
1979 201.3		-		116.0	2477	121) . 	1/2°2	L,000.1
148	2 112 0) i i i i i i i i i i i i i i i i i i i) 	1 + 7 + 7	0.001	0°6CT	191.9	I,790°7
101 1001		0 777 O	0.001	40 . 5	1-00-1	153.3	154.1	144.8	147.1	216.9	1,718 (
1.741 1061	67T			104.0	106.9	112.5	120.7	112 7	118 7	179.3	1.597.6
161 6*181 7841	4 132	7 118.3	90.5	85.6	104.2	110.1	101.7	105.7	124.1	182.1	1,528.7
Average 187.9 175.1	•1 129.0	0 127.7	103.8	98°3	125.3	130.8	132.2	126.5	138.2	190.1	I,664.9

Source: Annual Meteorological Bulletin, Meteorological Department other four years.

.

	Disc	harge	Pan	in a fa a marta air air de la chuid air	Со	mpariso	
River		vation	Evaporation	Hydrologic	(1)	(2)	(3)
Basin	Po:	int	Observation	Year /1	Hydrologic	Pan	Ratio
	Upper	Lower	Point		Balance	Evaporation	(1)/(2)
	tt				(mm)	(mm)	(%)
Wang	W10A	W3A	Lampang	1978	852	1,497	57
				1979	859	1,583	54
				1980	848	1,520	56
				1981	-Data	Missing-	
				1982	778	1,563	50
	دا های شاه ماه ماه ماه نوب می می منه به م	a		Average	834	1,541	54
71	176.4	D74	Distances in the	1070	1.040	1 696	60
Ping,	W4A	P7A	Phitsanulok	1978	1,040	1,686	62
No, P12				1979	937	1,816	52
				1980	1,163	1,797	65
				1981	1,084	1,695	64 50
				1982	844	1,681	50 59
		a - a ao na ag ag ag ag ag ag	بن ب	Average	1,014	1,735	58
Yom	¥20	¥14	Phitsanulok	1978	1,118	1,686	66
				1979	942	1,816	52
				1980	1,132	1,797	63
				1981	1,078	1,695	64
				1982	898	1,681	53
				Average	1,034	1,735	60
		NF 4	Mi. I 1 . 1.	1070	007	1 606	50
Nan	N12A	N5A	Phitsanulok	1978	996	1,686	59
				1979 1980	880 1,150	1,816 1,797	48 64
				1980	1,044	1,695	62
				1981	910	1,681	54
				Average	996	1,735	57
				قی اور اینا 173 ی ^س این این می می این این برد این برد			
Pasak	S4B	S 9	Phetchabun	1978	1,018	1,689	60
				1979	1,032	1,791	58
				1980	966	1,719	56
				1981	1,180	1,598	74
				1982	967	1,529	63
				Average	1,033	1,665	62

Table 2-6. COMPARISON BETWEEN HYDROLOGIC BALANCE AND PAN EVAPORATION DATA

Note: /1 From April in the subject year to March in the following year.

	Table	e 2-7(1/2).	CONSTANT PA	PARAMETERS FOR	BASIN RUNOFF	FF CALCULATION	NO	
		Basin No. BS-1	Basin No. BS-2	Basin No. BS-3	Basin No. BS-4	Basin No. BS-5	Basin No. BS-6	Basin No. BS-7
	Parameter Items Symbol	Fing River (20,031 km ²)	Wang River (6,187 km ²)	Ping River (5,797 km ²)	Fing River (5,162 km ²)	Yom River (6,721 km ²)	Yom River (4,320 km ²)	Nan River (8,521 km ²)
	A. Multiplier		•		-			
	it Tank							
	- Runoff Hole (upper) al	0.111	0.200	0.060		0.120		
•	lower)	0.020	0.035	0.035	0.040	0,035	0.030	0.031
	- Infiltration Hole ao 2. 2nd Tank	0.014	0.025	0.025	0.034	0,025	0.021	0.019
	- Runoff Hole	0.006	0.010	0.010	0.014	0.010	0,009	0.007
•]	- Infiltration Hole bo	0,011	0.020	0,020	0.027	0.020	0.017	0.016
2-	Jru lank - Runoff Hole	COC C				000		0
54	- Infiltration Hole co	0.001	0,004	0,002	0.003	0.002	0.002	0.002
		1))))	
	- Runoff Hole d1	100.0	0.001	100-0	0.001	0.001	0.001	100.0
	B. Height of Runoff Hole (mm)			- -				
•	1. 1st Tank							-
		130	130	130	I,	130	1	130
	- Tarre AZ	100	100	100	100	100	100	100
	:	D C Y	80	08 0	000	0.00	080	08
		202			005	00	005	
	4th Tank	20	20	20	50	500	50	50
	C. Initial Storage Height (mm)						- 	*******
	1. 1st Tank	C	C	c	c	C	C	C
	2nd Tank	0	0	0	0	> 0	> 0	0
	. 3rd Tank	0	0	0	0	0	0	0
	4. 4th Tank X4	20	20	20	20	20	20	20
		•			-	- - -		
		-						

	Basin No.	Basin No.	Basin No.	Basin No.	Basin No.	Basin No.	Basin No.
	BS-8	BS9	BS-10	BS-11	BS-12	BS-13	BS-14
Parameter Items Symbol		í	Nan/Yom	Sakae Krang	Tha Pla Pai	1	
	(9,568 km ²)	(5,478 km ²)	kiver (15,488 km ²)	Kiver (5,775 km ²)	River (4,349 km ²)	Pasak Kiver (5,180 km ²)	(8,124 km ²)
A. Multiplier							
- Runoff Hole (upper) al	1	1	1	0-060	1	1	
Hole (middle)	0.034	0*044	0.026	0.050	0*040	0.018	0.036
	0.029	0.039	0.023	0.050	0.040	0.007	0.014
- Infiltration Hole ao	0.021	0.028	0.017	0.010	0.034	0.007	0.014
2. 2nd Tank							
- Runoff Hole bl	0.008	0.011	0.007	0.010	0.014	0.004	600.0
- Infiltration Hole bo	0.017	0.022	0.013	0.020	0.027	0.004	00.00
3. 3rd Tank							
- Runoff Hole cl	0.002	0.002	0.001	0.002	0.003	0.002	0.002
- Infiltration Hole co	0.003	0.004	0.002	0*007	0.005	0.002	0.002
4. 4th Tank						****	4
- Runoff Hole dl	0.001	0.001	0.001	0.001	100.0	0.0009	600000
J. Ist Tank						w solice	
	1	I	1	200	130	1	000
	100	100	100	80	100	100	100
- Lower A3	80	80	80	60	80	80	80
2. 2nd Tank B	60	60	60	40	· 09	60	09
3. 3rd Tank C	50	20	50	30	20	20	20
4. 4th Tank D	20	20	20	10	20	20	20
					¢		
tial Storage Height (mu							
	0	0	0	0	0	0	0
Tank	0	0	0	0	0	0	0
	0 0	0	0	0	0	0	0
	50	70	20	20	20	20	20

Table 2-7(2/2). CONSTANT PARAMETERS FOR BASIN RUNOFF CALCULATION

Subbasin Code No.	Upstream Discharge Observation	Downstream Discharge Observation	Year	Observ Downst Poin	ream	Simulat Downs Poi	tream	Lag Time
	Point	Point		Date	(m ³ /s)	Date	(m ³ /s)	(days)
BS-1 (Ping River)	Chiang Mai (P1)	Bhumibol Dam (Inflow)	1978 1978 1978	Ju1.09 Aug.17 Oct.06	1,080 1,070 1,270	Ju1.08 Aug.14 Oct.04	1,030 1,080 1,330	1.0 3.0 2.0
			1980 1980 1983 1983	Sep.09 Oct.08 Oct.19 Nov.13	1,380 1,660 1,570 1,470	Sep.07 Oct.07 Oct.18 Nov.12	1,410 1,550 1,590 1,520	2.0 1.0 1.0
			1303	MOV.13	1,470	104.15	1,520	1.0
BS-2 (Wang River)	Chae Hom (W10A)	Thaen (W3A)	1978 1980 1983	Aug.15 Sep.07 Sep.16	640 420 350	Aug.14 Sep.06 Sep.14	650 430 350	1.0 1.0 2.0
BS-3 (Ping River)	Wang Kra Chai (P12) and Wang Khrai (W4A)	Kamphaeng Phet (P7A)	1978 1978 1978 1978 1980 1980	Jul.12 Oct.02 Oct.15 May 23 Oct.04	780 1,180 630 1,530 910	Ju1.10 Sep.29 Oct.13 May 22 Oct.02	770 1,190 770 1,540 920	2.0 3.0 2.0 1.0 2.0
BS-5 (Yom River)	Ngao Sak (Y2O)	Si Satchanalai (Y14)	1978 1978 1980 1980 1983	Aug.15 Sep.26 Sep.02 Sep.08 Sep.16	1,550 1,000 990 2,170 710	Aug.13 Sep.23 Sep.01 Sep.07 Sep.14	1,550 1,180 970 2,150 860	2.0 3.0 1.0 1.0 2.0
BS-7 (Nan River)	Nan (N1)	Sirikit Dam (Inflow)	1978 1978 1980 1980 1983	Aug.15 Sep.14 Aug.25 Sep.06 Sep.19	1,320 1,150 1,070 2,260 1,070	Aug.14 Sep.13 Aug.25 Sep.05 Sep.18	1,020 960 1,000 2,330 1,020	1.0 1.0 0.0 1.0 1.0
BS-8 (Nan River)	Tha Pla (N12A)	Phitsanulok (N5A)	1978 1978 1980 1980 1980 1983	Aug.16 Sep.25 Aug.01 Sep.09 Sep.20 Sep.09	1,410 1,210 1,240 1,520 1,230 660	Aug.13 Sep.23 Jul.30 Sep.07 Sep.18 Sep.07	1,320 1,210 1,280 1,530 1,220 780	3.0 2.0 2.0 2.0 2.0 2.0 2.0
BS-14 (Pasak River)	Wichian Buri	Saraburi (S9)	1978 1980	Oct.03 Oct.05	3,210 890	Sep.30 Oct.01	3,260 850	3.0 4.0

Table 2-8. COMPARISON OF EXTREME VALUES BETWEEN OBSERVED AND SIMULATED BASIN RUNOFF DISCHARGES

2-56

,

.

River Stretch Code No.	River System	Travelling Time (days)
R1	Ping (Chiang Mai to Bhumibol Dam)	2.0
R2	Wang (Chae Hom (W10A) to Thoen (W3A))	1.0
R3	Wang (Thoen (W3A) to Wang Krai (W4A))	1,0
R4	Ping (Bhumibol Dam to Kamphaeng Phet (P7A))	2.0
R5	Ping (Downstream from Kamphaeng Phet (P7A))	1.0
R6	Yom (Ngao Sak (Y2O) to Si Satchanalai (Y14))	2.0
R7	Yom (Downstream from Sam Ngam (Y17)) '	3.0
R8	Nan (Nan (Nl) to Sirikit Dam)	1.0
R9	Nan (Sirikit Dam to Phitsanulok (N5A))	2,0
R10	Nan	1.0
R11	Yom/Nan	1.0
R12	Chao Phraya	1.0
R13	Tha Pla Pai	8.0
R14	Sakae Krang	6.0
R15	Chao Phraya	3.0
R16	Pasak (Lom Sak to Wichian Buri)	2.0
R17	Pasak (Wichian Buri to Rama VI Dam)	3.0

Table 2-9. CONSTANT PARAMETERS ASSUMED AS FLOOD TRAVELLING TIME

÷

Table 2-10. CONSTANT PARAMETERS OF STORAGE FUNCTION FOR SUBDIVIDED RIVER STRETCH

River Stretch	, μαζιμάζι δου τολικού με <u>μα</u> (η μβιζα ή η μάτα με που ταλ _α τη τη μβιλα, μη που παγ	Constant Par	rameters	1.
Code No.	K	p	<u>T1</u>	T1z
S1	80.0	0.800	0.0	4.0
S2	.80.0	0.800	0.0	0.0
\$ 3	80.0	0.600	0.0	7.0
S4	80.0	0.800	0.0	0.0
S5	210.8	0.615	2.0	0.0

(1) Upper Reaches from Nakhon Sawan

(2) Lower Reaches from Nakhon Sawan

River Stretch	Flow Capacity	Constant Par Less Than F1		Constant Parame More Than Flow	
Code No.	(m ³ /s)	K	р	К	Р
S6	2,700	17.1	0.6	4.6×10^{-5}	2.2
S7	2,000	12.1	0.6	1.2 x 10-5	2.4
S8	1,200	5.8	0.6	1.3 x 10-7	3.1
S9	700	. 1.0	0.6	4.6 x 10-15	5.6
S10	700	3.3	0.6	1.5×10^{-8}	3.5
S11	200	2.1	0.6	1.1×10^{-5}	3.0
S12	700	4.6	0.6	2.4×10^{-6}	2.8
S13	250	3.3	0.6	1.4 x 10 ⁵	2.8
S14	900	5.8	0.6	5.8 x 10^{-7}	3.0
S15	200	3.3	0.6	5.0 x 10 ⁻⁶	3,1
S16	200	4.2	0.6	7.1×10^{-5}	2.7
S17	150	2.9	0.6	6.3×10^{-6}	3.1
S18	200	2.1	0.6	1.1 x 10 ⁻⁵	3.0
S19	900	2.9	0.6	3.1×10^{-10}	4.0
S20	1,800	4.8	0.6	8.8 x 10 ⁻⁸	3.0
S21	3,000	4.6	0.6	1.4×10^{-6}	2.5
S22	-	120.0	0.8	120.0	0.8

Note: $\underline{/1}$ Zero value is assumed as parameters of "T1" and "T1z" for all river stretches in the lower reaches from Nakhon Sawan.

Name of River	River Stretch	Subdivided Stret		Length of	Flow Capacity
Partice Of MAYCA	Code No.	From	То	Stretch (km)	(m ³ /s)
Chao Phraya	S 6	Chao Phraya Dam	Sing Buri	50	2,700
~do	S7	Sing Buri	Diversion Point to Bang Kaeo River	40	2,000
-do-	S8	Diversion Point to Bang Kaeo River	Diversion Point to Bang Luan River	20	1,200
-do-	S9	Diversion Point to Bang Luan River	Diversion Point to Bang Ban River	5	700
do	S1 0	Diversion Point to Bang Ban River	Ayutthaya	15	700
Noi	S11	Pakhai	Confluence Point with Bang Luan River	10	200
Noi (Bang Luan)	S12	Diversion Point from Chao Phraya River	Confluence Point with Bang Ban River	22	700
Noi (Bang Ban)	S13	Whole stretch		17	250
Noi	S14	Confluence Point with Bang Ban River	Confluence Point Chao Phraya River	20	900
Lop Buri	S15	Sing Buri	Lop Buri	20	200
-do-	S16	Lop Buri	Confluence Point with Bang Kaeo River	26	200
Bang Kaeo	S17	Whole stretch		13	150
Lop Buri	S18	Confluence Point with Bang Kaeo River	Ayutthaya	14	200
Pasak	S19	Rama VI Dam	Ayutthaya	45 ·	900
Chao Phraya	\$2 0	Ayutthaya .	Confluence Point with Noi River	15	1,800
do	\$21	Confluence Point with Noi River	Bang Sai	5	3,000

Table 2-11. FLOW CAPACITY OF SUBDIVIDED RIVER CHANNELS (CHAO PHRAYA RIVER AND TRIBUTARIES)

Table 2-12. COMPARISON OF OBSERVED AND SIMULATED ANNUAL PEAK DISCHARGES AND ANNUAL DISCHARGE VOLUME

Annual Discharge Volume Simulated 31,779 30,255 - /2 23,370 22,036 18,560 13,756 14,780 10,852 (106^m³) Observed 11,966 31,215 29,709 23,945 20,725 16,889 13,639 11,815 19,727 $(10^{6_{m}3})$ 72 Oct. 10 27 27 Oct. 13 26 Oct. 9 ~ Oct. 7 Date ŧ Oct. Oct. Oct. Oct. Simulated Annual Peak Discharge (m^3/s) 4,352 3,796 2,604 3,553 3,739 3,024 3,097 2,967 23 Oct. 10 25 12 25 Oct. 13 თ ~ Date Oct. Oct. Oct. Oct. Oct. Oct. Oct. Observed (m^3/s) 3,540 4,320 3,115 2,550 2,482 2,290 3,741 3,795 3,290 1978 1978 1980 1983 1980 1978 1980 1983 Year 1983 Downstream points of Ping, Yom and Nan River <u>/1</u> Nakhon Sawan (C2) Starting From Simulation Chai Nat (Cl3) Nakhon Sawan (C2) Verification Point Angthong (C7A) Chai Nat (C13) ල (3)E

Kamphaeng Phet (P7A) of Ping River, San Ngam (Y17) of Yom River and Thaphan Hin (N10A). Simulation was not made due to the missing discharge data at Y17. 7 2 Note:

Data		stance from	Obse	rved `and	Computed (m above	Maximum W MSL)	later Stag	ļe
Date of Flood	Objective Point	River	and a special second	Co	mputed by	Varied Ma	inning's (n)
F100d	FOINE	Mouth (km)	Observed	n=0.03	n¤0.028	n=0.026	n=0.024	n=0.02
	•							
Oct 21 '78	Pak Nan	7	1.75	1.78	1.77	1.76	1.75	1.73
	Bangkok Port	27	1.73	1.92	1.87	1.83	1.80	1.75
	Satha Pradit	40	1.77	2.07	1.95	1.84	1.75	1.62
	Memorial Bridg	e 48	1.89	2,26	2.14	2.04	1.92	1.76
	RID Samsen	54	2.03	2.30	2.21	2.11	2.04	1.88
	Pakred	70	2.15	2.67	2.49	2.31	2.16	2,00
	Bang Sai	110	3.25	3.41	3.18	2,97	2,79	2.49
، غانہ کارا شہ بھی ہے۔ جب وجب وہی اللہ	غان الان الان الحاجة بلية برية وية جمع وي في التر في عن	84 /78 FB -78 FB FB FB F		a man wan anip laar dadi wisi itsi Bali				
Oct 27 '80	Pak Nan	7	1.68	1.71	1.70	1.70	1.69	1.66
	Bangkok Port	27	1.77	1.78	1.73	1.70	1.66	1.61
	Satha Pradit	40		1.88	1.77	1.68	1.60	1.47
	Memorial Bridg	e 48	1.92	2.32	2,20	2.10	2.03	1.93
	RID Samsen	54	2.01	2.33	2.22	2.12	2.04	1.93
	Pakred	70	2.21	2.68	2.51	2.36	2.22	1.98
	Bang Sai	110	3.16	3.23	3.02	2.82	2.66	2.34
Det 31 '83		7	1.93	2.04	2.03	2.02	2.01	2.00
•	Bangkok Port	27	1.97	2.14	2.11	2.10		2.06
	Satha Pradit	40	1.87	2.15	2.07	2.00	1.94	1.86
	Memorial Bridge		1.82	2.07	1.99	1.93	1.90	1.88
	RID Samsen	54	1.94	2.27	2.19	2.12	2.06	1.98
	Pakred	70	2.05	2.41	2.28	2.15	2.05	1.89
	Bang Sai	110	3.09	3,35	3.19	3.04	2.92	2.77

Table 2-13. EFFECTS OF MANNING'S ROUGHNESS COEFFICIENT ON COMPUTED STAGE FOR TIDAL COMPARTMENT

Tab	le_	2	14.
	TC	4.4	

CONSTANTS FOR TIDAL PREDICTION FORMULA AT FORT PHRA CHUL

	-	1978-1988 - Tanan Baratan (Sanatan Sanatan Sanatan Sanatan Sanatan Sanatan Sanatan Sanatan Sanatan Sanatan San			T	delain de ciscul a compaña de la compaña		
	•	CONSTITUENTS	CONSTANTS	FOR 1978	CONSTANTS	FOR 1980	CONSTANTS	FOR 1983
	1 i	CYCLE Ti	AMPLETUDE	PHASE	AMPLETUDE	PHASE	AMPLETUDE	PHASE
		(HR)	H1 (M)	R1 (RAD)	H1 (M)	RI (RAD)	1 1 (M)	RÍ (RAD)
	1	8765.82422	0.16590	3.31894	0.12731	3.23874	0.14736	3.39769
	2	4382.90625	0.04730	2.65788	0.04737	4.06928	0.04585	4.69960
	- 3 - 4	661.30933 354.36694	0.02141	0.32317	0.01360	3.20360	0.00880	0.04215
	5	327.85889	0.00299	4.46429	0.01630 0.02234	0.19595 3.32207	0.00840 0.02680	0.91319 2.51708
	6	24.00000	0.02461	1.88119	0.03550	2.06727	0.04019	2.88921
	7	23.93446	0.59835	2.72694	0.58481	5.82850	0.64441	2.88899
÷ .	8 9	24.06589	0.19438	3.01946	0.18809	3.03100	0.17455	3.11989
	10	23.86929	0.00591	-0.95539 0.25081	0.01393 0.01776	-0.51029 -0.64174	0.01045 0.05371	-1.24002
	11	23.80447	0.01746	-1.06281	0.01929	-1.12477	0.01382	-0.73148 4.23182
	12	24.84120	0.02206	3.21864	1	-1.02316	0.01406	-1.00772
	13 14	23.20695	0.00779	-0.77349	0.00973	3.99981	0.00100	4.53057
	15	23.09848	0.02145	4.07350 0.20434	0.01971	0.79343	0.02515	2.23615
	16	25.81934	0.35621	1.05281	0.01322 0.30833	4.22073 3.72591	0.00653	3.49912
	17	25.66812	0.03516	2.72095	0.07083	-1.26044	0.02798	~1.40323 0.27381
	18	22.42018	0.04566	1.27614	0.03241	4.64898	0.04240	3.53555
	19	22.30608	0.02352	1.18994	0.02426	-1.35951	0.03457	3.90042
	20 21	26.72305	0.00890	-0.35848	0.01972	1.51319	0.01024	-0.49557
	52	27.84839	0.05941	0.59283 0.96843	0.06496 0.01590	0.02463	0.06769	-0.14711
	23	28.00623	0.00622	-0.45591	0.00432	-0.41371 4.16998	0.01236	2.50667
į	24	12.00000	0.28765	3.73524	0.28537	3.77340	0.27866	3.53473
	25	12.01645	0.02955	-0.63727	0.02235	-0.53788	0.04117	4.26908
	26	11.98360	0.02425	-0.59707	0.02011	0.23727	0.06404	-0.00376
	27 28	11.96724	0.09187 0.04106	~0.17670	0.09782	-0.04354	0.09812	-0.14813
	29	12.22177		4.70062	0.01659	-1.19211 2.80822	0.03616	1.37229
	30	11.78613	0.01372		0.00444	0.22124	0.01305	1.94738 -0.81790
	31	11.75452	0.00604	0.68521	0.01733	-1.56307	0.00819	4.40608
	32	12.42060	0.59429	1.25708	0.53392	4.13625	0.54115	-0.93723
	33 34	11.60695 12.45590	0.01450	2.57281 3.60376	0.01649	-0.08596	0.01556	4.54853
i	35	12.38551	0.02671	4.44754	0.09276	1.32671	0.08650 0.01146	1.42424
1.1	36	12.65835	0.09054	0.62571	0.10215	0.29416	0.09382	-0.05445
	37	12.62600	0.01350	-0.91633	0.02769	1.87212	0.02491	-0.23624
1	38	12.87176	0.03148	1.09054	0.02000		0.05500	3.02702
÷.,	39 40	12.90538 13.12727	0.02112	1.51821	0.02138	0.72540	0.01367	3.66487
	41	13.16671	0.00958	0.83623 1.21399	0.00482	0.76748	0.01129	4-53338
	42	7.99271	0.01554	-0.79450		-0.74522	0.01399	4.69037
	43	8,17714	0.02026	2.74135	0.01452	-0.44397	0.01862	0.90648
	44	8.19243	0.01452	3.92204	0.01286	0.41700	0.02110	1.80928
	45	8,28041 8,38631	0.00715	2.66405	0.00301	2.58846	0.00633	1.93824
	47	6.00001	0.01964 0.00705	1.88989 -0.78628	0.01600	0.79556	0.01699	3.67781
	48	5.99180	0.00360	-0.28940	0.00290	0.71030	0.00494	-0.47131 0.04127
	49	6.10334	0.02503	3.11459	0.02443	-0.27790	0.01928	0.98670
-	50	6.09485	0.00285	-1.20417	59900.0	1.25713	0.00317	1.04141
	51	6.16020	0.00400	2.61011		2.61111	0.00278	2.73232
	53	6.26918	0.02853	0.85495	0.02442	0.03211	0.02392	2.74803
	54	4.04567	0.00313	4.15684	0.00465	1.34230	0.00771 0.00688	3.78920
	55	4.04194	0.00168	1 19847	0.00274	3.24459	0.00336	3.78235
	56	4.09239	0.00994	1.85561	0.00836	1.28528	0.00554	3 81168
1	57 58	4.08857 4.11787	0.00261	-1.46789	0.00343	3-56286	0.00053	-0.66542
	59	4.14020	0.00741	1.65096	0.00184	3.64339	0.00135 0.00439	-1.35679
	60	4.16628	0.00328	-0.65571	0.00305	3.52702	0.00297	-0.71555
	61	0.0	0.41679		0.47845		0,63102	

Note: /1 Constants for each year are estimated in the basin of tidal levels recorded for 357 days (1 Jan. to 23 Dec.) in the preceding year.

 $\frac{12}{12}$ Constant of 'Phase' is subject to the standard time at 0:00 AM on either 27th March in a non-leap year or 28th March in a leap year.

Year	Month	Obser		Predi	
	nonca	Maximum	Minimum	Maximum	Minimur
1978	JAN	1.95	-1.23	1.86	-1.32
1770	FEB	1.74	-1.16	1.81	-1.1
	MAR	1.69	-1.05	1.64	-0.99
	APR	1.75	-1.27	1.68	-1.30
	MAY	1.97	-1.51	1.63	-1.51
	JUN	2.04	-1.31	1.03	-1.59
	JUL	1.90	-1.34	1.55	-1.53
	AUG	1.72	-1.27	1.51	
	SEP	1.81	-1.10	1.48	-1.26 -0.98
	OCT				
		2.04	-0.97	1.63	-1.07
	NOV	1.85	-1.11	1.73	-1.19
	DEC	1.83	-1.18	1.82	-1.28
	ANNUAL	2.04	-1.51	1.86	-1.59
1000	Τ Å እ፣	1 02	-1.22	1 0 5	1 9 t
1980	JAN FER	1.93		1.85 1.83	-1.31
	FEB	1.78	-1.11		-1.22
	MAR	1.72	-1.01	1.71	-0.84
	APR	1.82	-1.15	1.66	-0.99
•	MAY	1.70	-1.46	1.59	-1.12
	JUN	1.60	-1.50	1.52	-1.28
	JUL	1.75	-1.50	1.63	-1.45
	AUG	1.77	-1.30	1.69	-1.29
	SEP	1.75	-0.99	1.65	-0.94
	OCT	1.75	-0.94	1.69	-0,93
	NOV	1.94	-1.05	1.73	-1.02
	DEC	2.08	-1.06	1.77	-1.20
	ANNUAL	2.08	-1.50	1.85	-1.45
1983	JAN	2.12	-1.15	2.13	-1.14
	FEB	2.05	-1.03	1.96	-0.96
	MAR	1.90	-0.83	1.82	-0.81
	APR	1.90	-1.01	1.88	-0.88
	MAY	1.93	-1.19	1.86	-1.03
	JUN	2.17	-1.37	1.81	-1.31
	JUL	1.94	-1.32	1.75	-1.45
	AUG	2.09	-1.13	1.65	-1.33
	SEP	2.03	-1.05	1.62	-1.03
	OCT	2.13	-0.89	1,79	-0.87
	NOV	2.19	-0.65	2.00	-0.96
	DEC	2.25	-0.81	2.14	-1.07
	ANNUAL	2,25	-1,37	2.14	-1.45
	ANNUAL	2,25	-1,3/	2.14	-1.4

Table 2-15. MONTHLY AND ANNUAL EXTREME VALUES OF TIDAL LEVEL

2-63

, LEVEL	
I TIDAL	
MAXIMUM	
DAILY	
PREDICTED	
AND	(E)
FERENCES BETWEEN OBSERVED AND F	IN ADVANC
BETWEEN	ONE YEAR IN A
DIFFERENCES BETWEEN OBSERVED AND PREDICTED DAILY MAXIMUM TIDAL	(PREDICTED ONE YEAR IN ADVANCE)
Table 2-16.	

	•		VENEDIALITY UNIT	UNE LEAK IN AUVANCE	UVANUE /				
			• • • • •	• •					
Subject		Maximum	Average	Occurre	Occurrence of Difference in Daily Maximum Tidal Leve	rence in Dail	y Maximum Tid	lal Leve in One	e Year
Year	Season	e .	A ·	Less than 0.1 m	Less than 0.2 m	Less than 0.3 m	Less than 0.4 m	Less than 0.5 H	More than 0.5 m
				/ ray /	/day/	(day)	(day)	(day)	(day)
1978	Rainy Season	0.58	0.16	63	131	162	177	182	184
	Dry Season	0.32	60°0	128	165	180	181		
	Annual	0.58	0.12	161	296	342	358	363	365
		د هم همه بعد الله من الله الله الله الله الله الله الله الل		یں کی جائے ہیں ایک					
0001	2	•	•	ŗ	((-	
UBYI	kainy season	U . 38	0.11	76	158	178	184		
	Dry Season	0.45	0.13	83	141	171	179	182	
	Annual	0.45	0.12	180	299	349	363	366	
من فق حد آب ج		• 	ہوتے ہے۔ اس اس اس اس اس اس اس اس اس	ی میں جب سے بینے جو انداز اور	و کی جار ہے۔	,	مد مد سه مد زند مد به عب بد مد حد مد بد	سر به نکر این این کر کل کل کا این کار کر در این	
1983	Rainy Season	0.49	0.16	72	124	159	172	184	
	Dry Season	0.36	0.11	96	156	177	181		
	Annual	0.49	0.13	168	280	336	353	365	

2-64

.

	Tabl	Table 2-17.	INVENTORY OF	INVENTORY OF SELECTED WATER GAUGING STATIONS (STEP	IR GAUGING	STATIONS	(STEP 1)	
Code	Diver Suctor	Station		Locatio	E		Type of	Administration
No.	1	Number	District	Provínce	Latitude	Longitude	Gauge /1	Office /2
					8			
и-н .]	Wang	WIOA	Chae Hon	Lampang	18°31'16"	99°37'52"	Λ	HyD
W-H.2	Wang	M3A	Thoen	Lampang	17°38°29"	70.71.66	મિ	HAD
W-H.3	Wang	M4A.	Sam Ngao	Tak	17°12'22"	"80'90°99	ţ.,	QAH
W-Н.4	Ping	P12	Sam Ngao	Tak	17°14'30"	99°00'45"	ţr.	HvD
W-H.5	Ping	P7A	Muang	Kamphaeng Phet	16°28'38"	99°31'06"	Δ	HvD.
W-H.6	Yom	Y20	Song	Phrae	18°35'03"	100°09'L7"	£	HVD
W-H.7	Yon	Y14	Si Satchanalai	Sukhotal	17°35'42"	99°43'08"	Λ	HVD
W-Н.8	Yom	Y4	Muang	Sukhotai	17*00*18"	12192°49	Δ	ЦŲЙ
W-H.9	Топ	Y17	Sam Ngam	Phichit	16°30'50"	100°12'40"	Δ	GAH
W-H.10	Nan	EEN	Nam Pat	Uttaradit	17°43'05"	100°34°32"	ţıı	HYD
W-H.11	Nan	N1 2A	Tha Fla	Uttaradit	17°44'10"	100°32'28"	£4	HYD
W-H-12	Nan	N27A	Phrom Phiram	Phitsanulok	17°01'54"	100°11'05"	សា	HAD
W-H.13	Nan	NSA	Muang	Phitsanulok	16°49'15"	100°15'49"	ស	HVD
4-H-H	Nan	N40	Wat Bot	Phitsanulok	17°13'14"	100°21'10"	Δ	Hyd
W-H.15	Nan	N24	Wang Thong	Phitsanulok	16°50°35"	100°31'20"	м	HYD
W-H.16	Nan	NIOA	Taphan Hin	Phichit	16°12'42"	100°25'01"	μ	HyD
W-H.17	Pasak	89	Kaeng Khoi	Saraburi	14°37'33"	101,10,101	ţı.	HyD
W-H.18	Pasak	S5	Muang	Ayutthaya	14°21'32"	100°35°02"	ß	HYD
W-H.19	Sakae Krang	Ct.8	Thap Than	Uthai Thani	15°29'30"	99°56'28"	Δ	HyD
W-H.20	Chao Phraya	C2	Muang	Nakhon Sawan	15°40°15"	100°06'45"	Ē	HYD
W-H.21	Chao Phraya	CI 3	Sanphaya	Chai Nat	15°09'57"	100°11'32"	Δ	HYD
W-H.22	Chao Phraya	ប	Muang	Sing Buri	14°53'44"	100°24'14"	Δ	HyD
W-H.23	Lop Buri	L2A	Muang	Lop Buri	14°47°37"	100°36'34"	Δ	HyD
W-H.24	Chao Phraya	C7A	Muang	Ang Thong	14°35'05"	100°27"12"	Δ	HyD
W-H.25	Chao Phraya	C29	Bang Sai	Ayutthaya	14°11'33"	100°30'23"	Δ	HyD
₩-н.26	Chao Fhraya	C22	Pakred /3	Nonthaburi	13°53'47"	100°29'39"	ͤ	HAD
W-H-27	Chao Phraya	C12	Dasit /4	Bangkok	13°47°14"	100°30'56"	μ	HAD
W-H.28	Chao Phraya	5	Thon Buri	Bangkok	I3°44'IS"	100°29'55"	Ē4	HyD
W-PAT	Chao Phraya	Fort	Pom Phra	Bangkok	13°32'50"	100°34°58"	Şe4	PAT
		Phra	Chulachomklao					
		74.1 2						

V = Vertical Staff Gauge; F = Recorder, Float Gauge; B = Recorder, Bubble Gauge HyD = Hydrology Division, RID; PAT = Port Authority of Thailand; MD = Meteorological Department RID Pakred Office RID Bangkok Office 101 06 30" 15°39'25" Phetchabun Lom Sak Wichian Buri Fort Fhra Chul Lom Sak Wichian Buri

ĝ ę

⊳ ۵

101 14 58"

16°46°25"

Phetchabun

Pasak Pasak

14-1 1-41

.

Note:

1212121

2--65

Table 2-18. INVENTORY OF SELECTED RAINFALL GAUGING STATIONS (STEP 1)

1000		с о U	6 4 7 0 1 6 7 7 0 1				HOULDELESTREEP
No.	River Easin	District	Provin	Latitude	Longitude	Gauge /1	0ffice /2
R-H.1	Ping	Khlong Lan	Kamphaene Phet	I6"20"03"	99°16'29"	ρ.	DvH DvH
R-H.2	Ping	Khlong Khlung	Kamphaeng Phet	16°04*22"	181 1 72 o 66	84	HyD
К-н.3	Ping	. Khanu	Kamphaeng Phet	15°54'10"	99°28'45"	PK 1	HAD
R-H.4	Sakae Krang	Lat Yao	Nakhon Sawan	15°47'01"	99°40°55"	NR	Hyd
R-H. 5	Sakae Krang	Lat Yao	Nakhon Sawan	15°38'23"	99°32'20"	84	U AB
R-H.6	Sakae Krang	Lam Sak	Uthai Thani	15°31'38"	99°28'10"	æ	HAD
R-H. 7	Топ	Song	Phrae	18°35'03"	100°09717"	24	HvD
R-H.8	Топ	Satchanalat	Sukhotai	17°35'42"	180.57.66	ĸ	HyD
6-н-	Nan	Tha Pla	Uttaradit	117°44'LO"	100°32'28"	24	HyD
R-H.10	Nan	Muang	Phicsanulok	16°49'15"	100°15'52"	R	HyD
R-H.II	Nan	Wang Thong	Phitsanulok	16°50'35"	100°31'20"	м	GAH
R-H.12	Ping/Yom/Nan	Muang	Nakhon Sawan	15°40'15"	100°06'45"	NA NA	U AH
R-0.1	Wang	Muang	Laupang	18°26'16"	99°38'04"	£4	RO
R-0.2	Nan	Muang	Uttaradit	17°37'38"	100°06'33"	RN	RO
R-0.3	Nan	Phrom Phiram	Phitsanulok	17°02'50"	100°10'52"	NR.	RO.
R-0.4	Pasak	Khlong Phrieo	Saraburi	14°31'34"	100°56'08"	NR	RO
R-M-1	Wang	Muang	Lampang	18°17'23"	99°30'27"	ссі	Q
R-M-2	Wang	Thoen	Lampang	17°36'39"	"80'E1°69	P2	Q
R-H.3	Fing	Sam Ngae	Tak	17°14'30"	99°03'45"	ы	Ð
RM - 4	Fing	Muang	Tak	16°52'50"	99°07'36"	¢4	Q
R-M.5	Ping	Muang	Kamphaeng Phet	16°28'56"	99°31'26"	NR	Q
RM.6	Тош	Song	Phrae	18°28'06"	100°11'11"	NR	Ð
R-M. 7	Тош	Muang	Phrae	18°08'44"	100°08'42"	R	Q.
R-M 8	Yom	Muang	Sukhothai	17°00'21"	99°49'36"	N	ĝ
RM . 9	Yon	Sam Ngam	Phichit	16°30'25"	100°12'23"	NR NR	QM
R.H. 10	Nan	Muang	Uttaradit	17°37'32"	100*05*57"	P4	QW
R-M. 11	Nan	Muang	Ph1tsanulok	16°49'24"	100°15'45"	6 4	Ð
R-M 12	Nan	Taphan Hin	Phichit	16°12'44"	100° 25'23"	NR	Q.
R-M.13	Pasak	Lom Sak	Phetchabun	16°46'42"	101°14'45"	NA NA	9
R-M.14	Pasak	Миалд	Phetchabun	16°25'00"	101 09:35"	64	QY
R-H.15	Fasak	Nong Phai	Phetchabun	15°59'13"	101 03 53"	Ň	Q
R-M.16	Pasak	Wichlanburi	Phetchabun	15°39'20"	101 06 37"	R	CIN CIN
R-H.17	Pasak	Bua Chum	Lop Buri	15°15'50"	"00'11°101	м	đМ
21 70	Docat	Chof Rodom	Lop Burl	15°02'12"	101 008 11 11	âN	5

72 HyD = Hydrology Division, RID; RO = Regional Office, RID; MD = Meteorological Department

Table 2-19. WATER LEVEL GAUGING STATIONS TO MONITOR AND CALIBRATE THE RIVER FLOW DISCHARGE (STEP 1 FLOOD FORECASTING SYSTEM)

River System	Monitor and	Station Code No.	Location
مىلىنىڭ بىزىرىد بۇرىلىكىتىنى يىرىمىيى مايىمىڭ بىرىمىيىن بور ئىلىد	Calibration Items	Coue no.	<u>,</u>
Ping	Discharge	W-Н.5	Kamphaeng Phet (P7A)
Wang	Discharge	W-H.2	Thoen (W3A)
Wang	Discharge	W-H.3	Wang Khrai (W4A)
Yom	Discharge	W-H.7	Si Satchanalai (Y14)
Yom	Discharge	W-H.8	Sukhotai (Y4)
Yom	Discharge	W-H.9	Sam Ngam (Y17)
Nan	Discharge	W-H.12	Lower Naresuan Dam (N27A)
Nan	Discharge	W-H.13	Phitsanulok (N5A)
Nan	Discharge	W-H.16	Thaphan Hin (N10A)
Sakae Krang	Discharge	W-H.19	Thap Than (Ct8)
Pasak	Discharge	W-M.2	Wichian Buri
Pasak	Discharge	W-H.17	Saraburi (S9)
Pasak	Water Level	W-H.18	Ayutthaya (S5)
Chao Phraya	Discharge/Water Level	W-H.20	Nakhon Sawan (C2)
Chao Phraya	Discharge/Water Level	W-H.21	Lower Chao Phraya Dam (C13)
Chao Phraya	Discharge/Water Level	W-H.22	Sing Buri (C3)
Lop Buri	Discharge/Water Level	W-H.23	Lop Buri (L2A)
Chao Phraya	Discharge/Water Level	W-H.24	Angthong (C7A)
Chao Phraya	Discharge/Water Level	W-H.25	Bang Sai (C29)
Chao Phraya	Water Level	W-H.26	Pakred (C22)
Chao Phraya	Water Level	W-H.27	RID Bangkok Office
Chao Phraya	Water Level	₩-н.28	Memorial Bridge
Chao Phraya	Water Level	W-PAT <u>/1</u>	Fort Phra Chul (Gulf)

Note: <u>/1</u> The observed water level is also used to predict the tidal level in the Gulf of Thailand.

Prediction	f Prediction	App11	ed Gauging	Station
Time	Target Point	River System	Station Code No.	Location
Short	Bangkok Metropolis	(1) Chao Phraya	W~H25	Bang Sai (C29)
Short	Ayutthaya	(1) Chao Phraya	W-H21	Lower Chao Phraya Dam (Cl3)
8 8 J 1		(2) Pasak	WM2	Wichian Buri
Short	Chai Nat, Sing Buri, Lop Buri and Angthong	(1) Ping	W-H5	Kamphaeng Phet (P7A)
	and Angenong	(2) Yom	W-H9	Sam Ngam (Y17)
		(3) Nan	W-H16	Thaphan Hin (N1OA)
Short	Nakhon Sawan	(1) Ping	W-H4	Lower Bhumibol Dam (P12)
		(2) Wang	W-H3	Wang Khrai (W4A)
		(3) Yom	W-H9	Sam Ngam (Y17)
		(4) Nan	W-H13	Phitsanulok (N5A)
	n an	(5) Nan	W-H15	Kehk River (N24)
-ong	All Target Points	(1) Ping	w-H4	Lower Bhumibol Dam (P12)
		(2) Wang	W-H1	Lower Kiu Lom Dam (W1OA)
		(3) Yom	w-H6	Ngao Sak (Y2O)
		(4) Nan	W-H11	Lower Sirikit Dam (N12A)
		(5) Nan	W-H10	Nan Pat River (N33)

Table 2-20. WATER LEVEL GAUGING STATIONS TO INPUT THE OBSERVED DISCHARGE AS BOUNDARY CONDITION (STEP 1 FLOOD FORECASTING SYSTEM)

.

2--

2-68

.

Table 2-21. POINT RAINFALL GAUGING STATIONS APPLIED TO BASIN RUNOFF PREDICTION MODEL (STEP 1 FLOOD FORECASTING SYSTEM)

		(order 1)	FLOOD FORGOADIING 31	SILM/
+	ctive sin	A	opplied Gauging Station	ىلىلىكى يەرىپىلىكى بىلىكى بىلىكى بىلىكى يەرىپىلىكى يەرىپىلىكى بىلىكى بىلىكى بىلىكى بىلىكى بىلىكى بىلىكى بىلىكى يېڭى بىلىكى بى
Basin Còde No. /1		Station Code No. /Location	Station Code No. /Location	Station Code No. /Location
BS-2	Wang	R-0.1/Lampang	R-M.1/Lampang	R-M.2/Thoen
BS-3	Wang/ Ping	R-M.3/Sam Ngam	R-M.4/Tak	R-M.5/Kamphaeng Phet
BS-4	Ping	R-M.5/Kamphaeng Phet R-H.1/Khlong Lan	R-H.2/Khlong Klung	R-H.12/Nakhon Sawan
BS-5	Yom	R-M.7/Phrae	R-H.8/Satchanalai	R-M.6/Song
BS-6	Yom	R-H.8/Satchanalai	R-M.8/Sukhothai	
BS8	Nan	R-H.9/Tha Pla R-H.10/Phitsanulok (R-M.11/ Phitsanulok) <u>/2</u>	R-O.2/Uttaradit (R-M.8/ Uttaradit) <u>/2</u>	R-0.3/Phrom Phiram
BS-9	Nan	R-H.11/Wang Thong	R-H.10/Phitsanulok (R-M/11/Phitsanulok)	
BS-10	Nan/ Yom	R-M.8/Sukhotai R-M.9/Sam Ngam	R-M.12/Taphan Hin	R-H.12/Nakhon Sawan
BS-11	Sakae Krang	R-H.3/Khanu R-H.4/Lat Yao	R-H.5/Lat Yao	R-H.6/Lan Sak
BS-12	Tha Pla Pai	R-H.12/Nakhon Sawan		
BS13	Pasak	R-M.10/Lom Sak	R-M.11/Phetchabun	R-M.12/Nong Phai
BS-14	Pasak	R-M.13/Wichian Buri R-M.14/Bua Chun	R-M.15/Chai Badam	R-0.4/Khlong Phrieo

Note: <u>/1</u> Step 1 Flood Forecasting System does not cover the upper reaches of Bhumibol and Sirikit dams which correspond to Basin Code Nos. 1 and 7.

 $\frac{/2}{2}$ Gauging station in parenthesis is applied as secondary station to supplement lacking data of the main station.

Target Point	Year	Obse	rved	Predicte in Adva	d 3 Days nce	Predicte in Adva	d 6 Days ince
. O.L.IIL.		m ³ /s	Date	m ³ /s	Date	m ³ /s	Date
Nakhon Sawan	1978	3,540	Oct. 07	3,329	Oct. 07	3,228	Oct. 08
Chai Nat	1978	3,741	0ct. 11	3,693	Oct. 10	3,408	Oct. 11
Angthong	1978	2,550	Oct. 10	2,996	Oct. 12	2,693	Oct. 12
Nakhon Sawan	1980	4,320	Oct. 09	4,461	Oct. 09	4,580	Oct. 09
Chai Nat	1980	3,795	Oct. 10	3,789	Oct. 10	3,796	0ct. 10
Angthong	1980	3,115	Oct. 15	3,024	Oct. 13	3,011	Oct. 11
Nakhon Sawan	1983	2,290	Oct. 23	- /1	- /1	2,348	Oct. 24
Chai Nat	1983	3,290	Oct. 25	3,079	Oct. 27	3,139	Oct. 27
Angthong	1983	2,482	0ct, 24	2,604	Oct. 26	2,477	Oct. 28

Table 2-22.ANNUAL PEAK DISCHARGE PREDICTED AT TARGET POINT
THROUGH STEP 1 FLOOD FORECASTING SYSTEM

Note: <u>/1</u> Prediction was not made because of the missing upstream observed discharge data at Y17.

Observation/	Objective Poin	int	Observed	'ed	Predicted 3 in Advance	l 3 Days	Predicted	1 6 Days
Prediction Date <u>/1</u>	Location Name	Distance from River Mouth (km)	Water Level (m. MSL)	Time	Water Level (m. MSL)	Time	Level T	Time
Oct. 21 1978	Bangkok Port	27	1.73	10:00	1 56	00.11		
	Satha Pradit	07	1.77	10:00	مر ، ۲	00-11	7C+1	00:11
	Memorial Bridge	48	1.89	10:00	1.93	10:00	1 86	
	RID Samsen	54	2 . 03	12:00	1.90	11:00		11-00
	Pakred	70	2.15	12:00	2.01	13:00	1.88	12:00
Oct. 27 1980	Bangkok Port	27	1.77	00:00	1.69	10:00	99,1	00-01
	Satha Pradit	40	21	lissing	I.63	11:00	1.65 1.65	11:00
	Memorial Bridge	48		10:00	1.97	10:00	2.06	10:00
	RID Samsen	54	2.01	10:00	1.98	11:00	2.00	11:00
	Pakred	70	2.21	11:00	2.26	12:00	2.30	12:00
Oct. 31 1983	Bangkok Port	27	1.97	15:00	1.76	16:00	1.72	16:00
	Satha Pradit	40	1.87	16:00	1.72	17:00	1.60	17:00
	Memorial Bridge	48	1.82	16:00	2.08	16:00	1.97	16:00
-	KLD Samsen	54	1.94	17:00	I.85	17:00	1.73	17:00
	rakred	70	2 . 05	18:00	2.11 ·	19:00	I.90	19:00

ONE-DAY MAXIMUM WATER LEVEL PREDICTED FOR TIDAL COMPARTMENT THROUGH STEP 1 FORECASTING SYSTEM Table 2-23.

Note: /1 Date of observation of annual maximum discharge at Bang Sai.

TIME
LAG
FLOOD
2- 24.
Table

Ē	(2)	(3)	(4)	(5)	(9)	(1)	(8)	(6)
Point	Upstream Pottet	Flood	Date of	Date of	Date of	Concentra-	Traveling	Flood Lag
		TCGI	Qmax Predicted	Qmax Observed	Qmax Observed	tion time	Time	Time
			at (2)	at (2)	at (1)	(day)	(day)	(dav)
Nothen Carried								
Sta TI-W 201		19/8	29 Sep	02 Oct	07. Oct	ę	ις,	80
104 M H- M - M - M - M - M - M - M - M - M	Taver gura	0861	0 C L		10 Oct	2	9	¢
		1983	15 Oct /1		23 Oct	'n	ŝ	00
	Sta. W-H.7	1978	23 Sep			(°)	· -	14
·	Yom River	1980		08 Sep	10 Oct	·	1	÷ 68
•		1983	04 Oct			101	18	20
- - - - -	Sta. W-H.13	1978	23 Sep	25 Sep	07 Oct	~	۲ ۲	71
	Nan River	1980	07 Sep	09 Sep	10 Oct	5	l m	; ;;
· · · · · · · · · · · · · · · · · · ·	•	1983	05 Oct			3	91	. 18
Chai Nat	Sta. W-H.14	1978	06 Oct		11 Oct	1	I	_ u
(Sta. W-H.21)	Sakae Krang River	1980	06 Oct /1		12 Oct	1	ı	<u>י</u> ר
	· · ·	1983	Oct	ŀ		1	ł	~
Ayutthaya (1)	Sta. W-H.17	1978	30 Sep	03 Oct	03 Oct	ę	0	- -
1003. W-U.L	rasak River	1980	00th 00th	05 Oct	05 Oct	4	0	t- 1
		1983	10 Oct /1	14 Oct		4	0	4
Ayutthaya (2)	Sta. W-H.21	1978	t	11 Oct	17 Oct 12	1	ų	,
(Sta. W-H.18)	(Chai Nat Dam)	1980	ł		000	1) u	o r
	Chao Phraya River	1983	I	25 Oct		ŀ	<u>, r</u>	
Bang Sai	Sta. W-H.21	1978	I	11 Oct	27 Oct	l r	91	4 L
. (Sta. W-H.24)	(Chai Nat Dam)	1980	1	13 Oct	01 Nov		20	2 C
	Chao Phraya River	1930	1) •	1

 $\frac{1}{2}$ Date of the maximum one day rainfall is substituted. $\frac{1}{2}$ Date of the predicted discharge is substituted.

Note:

ANNUAL PEAK DISCHARGE AND ANNUAL DISCHARGE VOLUME SIMULATED THROUGH VARIED POINT RAINFALL GAUGING NETWORK	
Table 2-25(1/3).	

Tear Case No. Resift all bensity of (km2/station) Number of Rainfall Annual Peak Discharge Rainfall D 1378 (1) Observation - - - 1,267 Oct. 05 1378 (1) Observation - - - 1,267 Oct. 05 1378 (1) Observation - - - 1,267 Oct. 05 (3) Simulation 1 1000 20 1,337 Oct. 05 (4) Simulation 2 1000 13 1,431 Oct. 05 (5) Simulation 1 1000 13 1,431 Oct. 05 (5) Simulation 2 1000 13 1,431 Oct. 05 (3) Simulation 2 1000 13 1,431 Oct. 05 (3) Simulation 2 1000 13 1,431 Oct. 05 (4) Simulation 2 1000 13 1,431 Oct. 05 (5) Simulation 2 1000 13 <t< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<>								
(1)Observation1,267Oct. 06(2)Simulation 21200201,327Oct. 05(3)simulation 21200201,337Oct. 05(4)Simulation 5more than 1800131,431Oct. 05(5)Simulation 5more than 1800131,431Oct. 05(6)Simulation 11000131,431Oct. 05(7)Simulation 11000131,431Oct. 05(7)Observation1,568(7)Observation111,368Oct. 05(1)Observation111,368Oct. 05(2)Simulation 11000131,587Oct. 08(3)Simulation 21200131,662Oct. 08(4)Simulation 31400131,662Oct. 08(5)Simulation 41600121,587Oct. 08(6)Simulation 21200121,577Oct. 08(7)Observation11000121,577Oct. 08(6)Simulation 31400121,577Oct. 19(7)Simulation 31600161,577Oct. 20(7)Simulation 31600161,577Oct. 20(6)Simulation 41600131,779Oct. 20(6)Simulation 5more than 1800131,779 <th>Year</th> <th></th> <th>Case No.</th> <th>Density of Rainfall Gauging Network (km²/station)</th> <th>Number of Rainfall Stations</th> <th></th> <th>k Discharge (Date)</th> <th>Annual Discharge Volume (106m³)</th>	Year		Case No.	Density of Rainfall Gauging Network (km ² /station)	Number of Rainfall Stations		k Discharge (Date)	Annual Discharge Volume (106m ³)
(2) Simulation 1100020 $1,20,0$ $0ct.05$ (3) Simulation 2120017 $1,337$ $0ct.05$ (4) Simulation 3140013 $1,431$ $0ct.05$ (5) Simulation 5more than 180011 $1,431$ $0ct.05$ (6) Simulation 5more than 180011 $1,368$ $0ct.05$ (7) Simulation 1 $1,000$ 13 $1,431$ $0ct.05$ (6) Simulation 1 $1,000$ 11 $1,368$ $0ct.05$ (1) Observation 1 $ 1,662$ $0ct.08$ (2) Simulation 2 1200 17 $1,587$ $0ct.08$ (3) Simulation 2 1200 17 $1,587$ $0ct.08$ (4) Simulation 3 1400 17 $1,587$ $0ct.08$ (5) Simulation 4 1000 12 $1,662$ $0ct.08$ (1) Observation 5more than 1800 12 $1,657$ $0ct.08$ (1) Observation 1 1000 12 $1,574$ $0ct.08$ (2) Simulation 2 1400 12 $1,657$ $0ct.08$ (5) Simulation 3 1400 12 $1,577$ $0ct.20$ (6) Simulation 3 1400 1600 16 $1,577$ $0ct.20$ (6) Simulation 4 1000 16 $1,577$ $0ct.20$ (7) Simulation 5 1400 1600 16 $1,577$ $0ct.20$ (6) Simulation 5 1400 1600 16 $1,577$ $0ct.20$ (6) Simulation 5 1600 13 $1,670$ <td>1978</td> <td>(1)</td> <td>Observation</td> <td></td> <td></td> <td>4700 F</td> <td></td> <td></td>	1978	(1)	Observation			4700 F		
(3) simulation 21200701,3270ct. 05(4) Simulation 31400131,4310ct. 05(5) Simulation 41600131,4310ct. 05(6) Simulation 5more than 1800111,3680ct. 05(1) Observation $ 1,662$ 0ct. 05(2) Simulation 1100019 $1,547$ 0ct. 08(3) Simulation 2120017 $1,587$ 0ct. 08(4) Simulation 3140017 $1,587$ 0ct. 08(5) Simulation 4100013 $1,547$ 0ct. 08(4) Simulation 5140012120012(5) Simulation 4160012 $1,587$ 0ct. 08(4) Simulation 5more than 180012 $1,587$ 0ct. 08(5) Simulation 4160012 $1,587$ 0ct. 08(6) Simulation 5more than 180010 $1,597$ 0ct. 19(7) Observation 1100012 $1,574$ 0ct. 19(6) Simulation 2120012 $1,574$ 0ct. 19(7) Simulation 3140010 $1,805$ 0ct. 20(6) Simulation 3140016 $1,574$ 0ct. 19(7) Simulation 4100010 $1,574$ 0ct. 19(6) Simulation 5more than 180016 $1,574$ 0ct. 20(5) Simulation 5160016 $1,577$ 0ct. 20(6) Simulation 5more than 180010 $1,670$ 0ct. 20(7) Simulation	÷ .	(2)	Simulation 1	1000	30	107°1		0 0
(4) Simulation 31400131400(5) Simulation 416001314310ct. 05(6) Simulation 5more than 1800111,4310ct. 05(1) Observation1,4310ct. 05(1) Observation1000131,4310ct. 05(2) Simulation 21200171,5680ct. 08(3) Simulation 31400171,5870ct. 08(4) Simulation 31400171,5870ct. 08(5) Simulation 41600121,6020ct. 08(6) Simulation 5more than 1800101,6350ct. 08(6) Simulation 6101,6020ct. 08(7) Observation1,5770ct. 08(6) Simulation 31000101,8050ct. 19(7) Observation 11000201,5930ct. 20(6) Simulation 31400161,5770ct. 20(7) Simulation 31400161,5770ct. 20(6) Simulation 41600161,5770ct. 20(7) Simulation 5more than 1800161,5770ct. 20(6) Simulation 5more than 1800161,5770ct. 20(6) Simulation 6160010161,5770ct. 20(6) Simulation 5more than 1800111,7090ct. 20(6) Simulation 51600131,7090ct. 20		(E)	simulation 2	1200	- 4 6	120 1		6,77
(5) Simulation 41,4310ct. 05(6) Simulation 5more than 1800111,4310ct. 05(1) Observation1,6620ct. 05(1) Observation11,9620ct. 08(1) Observation11,6620ct. 08(1) Observation11,6620ct. 08(2) Simulation 21200171,5470ct. 08(3) Simulation 21200171,5470ct. 08(4) Simulation 31400121,6570ct. 08(5) Simulation 41600121,6570ct. 19(5) Simulation 5more than 1800101,8650ct. 19(6) Simulation 11000201,5770ct. 19(1) Observation1,5770ct. 20(3) Simulation 31400161,5770ct. 20(6) Simulation 41600111,6700ct. 20(7) Simulation 5more than 1800111,6700ct. 20(6) Simulation 5more than 1800111,7090ct. 20		(4)	Simulation 3	1400	- 0	L,JJ/		6,79
(6)Simulation 5more than 1800131,431Oct. 05(1)Observation $ 1,662$ Oct. 05(2)Simulation 1100019 $1,547$ Oct. 08(3)Simulation 2120017 $1,587$ Oct. 08(4)Simulation 3140017 $1,587$ Oct. 08(5)Simulation 4160012 $1,587$ Oct. 08(6)Simulation 5more than 180012 $1,567$ Oct. 08(5)Simulation 5more than 180012 $1,577$ Oct. 08(6)Simulation 11000 12 $1,577$ Oct. 19(7)Observation 11000 10 $1,577$ Oct. 19(1)Observation 1 1000 16 $1,577$ Oct. 20(3)Simulation 2 1400 16 $1,577$ Oct. 20(4)Simulation 3 1400 1000 16 $1,577$ Oct. 20(5)Simulation 3 1400 16 $1,577$ Oct. 20(5)Simulation 4 1600 14 000 $0ct. 20$ (5)Simulation 5more than 1800 11 $1,709$ Oct. 20(6)Simulation 5 $1,600$ $0ct. 20$ $0ct. 20$		9	Simulation A		5 5 - 5	I,43I		6,96
(1)0bservation1,368Oct. 05(1)0bservation1,662Oct. 08(2)Simulation 11000191,547Oct. 08(3)Simulation 21200171,587Oct. 08(4)Simulation 31400121,587Oct. 08(5)Simulation 41600121,627Oct. 08(6)Simulation 5more than 1800101,635Oct. 08(7)Observation1,652Oct. 08(7)Simulation 5more than 1800101,805Oct. 08(6)Simulation 11000201,577Oct. 19(7)Simulation 21000161,577Oct. 20(6)Simulation 314001600161,577Oct. 20(7)Simulation 314001600161,577Oct. 20(6)Simulation 41600111,709Oct. 20(6)Simulation 5more than 1800111,709Oct. 20		2	Simulation 5		1 1	1,431		6 ,96
<pre>(1) Observation</pre>		\sim	C MOTIPTINATO	a)	11	1,368		6,167
(2) Simulation 11000191,547001.00(3) Simulation 21200171,587001.08(4) Simulation 31400131,627001.08(5) Simulation 41600121,635001.08(6) Simulation 5more than 180010121,635001.08(6) Simulation 1100010121,635001.08(7) Observation 5more than 1800101,805001.08(1) Observation 11000201,574001.19(2) Simulation 21200161,577001.19(3) Simulation 31400161,577001.20(5) Simulation 4100014160014(6) Simulation 5more than 1800111,577001.20(6) Simulation 5more than 1800111,709001.20	1980	3	Observation	I	I	1.662		4 1 1
(3) Simulation 21200171,5470ct. 08(4) Simulation 31400171,5870ct. 08(5) Simulation 41600121,6270ct. 08(6) Simulation 5more than 1800121,6350ct. 08(6) Simulation 5more than 1800101,8050ct. 08(7) Observation1,6350ct. 08(1) Observation1,5740ct. 19(2) Simulation 11000161,5930ct. 19(3) Simulation 31400161,5770ct. 20(4) Simulation 314001400141,6700ct. 20(5) Simulation 41600131,6700ct. 20(6) Simulation 5more than 1800111,7090ct. 20		(5)	Simulation 1	1000	01	1000		n - • • •
(4) Simulation 31,5870ct. 08(5) Simulation 31400131,6270ct. 08(5) Simulation 41600121,6350ct. 08(6) Simulation 5more than 1800101,8050ct. 08(1) Observation1,5740ct. 19(2) Simulation 212001,5740ct. 20(4) Simulation 31400161,5770ct. 20(5) Simulation 41600131,6700ct. 20(6) Simulation 5more than 1800111,5770ct. 20(7) Simulation 31400161,5770ct. 20(6) Simulation 41600131,6700ct. 20(6) Simulation 5more than 1800111,7090ct. 20		(E)	Simulation 2	1900	∧ f - +	L, 04/		6,21
(5) Simulation 41400(5) Simulation 41600(6) Simulation 5more than 1800(1) Observation1(1) Observation-(1) Observation-(1) Observation-(1) Observation-(1) Simulation 11000(2) Simulation 21,574(3) Simulation 31400(4) Simulation 31400(5) Simulation 41600(6) Simulation 51600(1) I1,709(6) Simulation 511,709(6) Simulation 511,709(6) Simulation 511,709(7) Simulation 411,709(6) Simulation 511		$(\overline{\Phi})$	Simulation 3	0071	7 7	L,587		6,18
(6) Simulation 5more than 1800121,6350ct. 08(6) Simulation 5more than 1800101,8050ct. 08(1) Observation1,5740ct. 19(2) Simulation 11000201,5930ct. 19(3) Simulation 31400161,5770ct. 20(4) Simulation 41600131,6700ct. 20(5) Simulation 5more than 1800111,7090ct. 20		E	Cimularion V	1400	-1-	1,627		5,93
(1) Observation - 1,805 0ct. 08 (1) Observation - 1,574 0ct. 19 (2) Simulation 1 1000 20 1,574 0ct. 19 (3) Simulation 2 1200 16 1,577 0ct. 20 (4) Simulation 3 1400 1400 1400 0ct. 20 (5) Simulation 4 1600 13 1,652 0ct. 20 (6) Simulation 5 more than 1800 11 1,709 0ct. 20	÷	22	t HOTTPETON 4	nna T	12	1,635		5,93
 (1) Observation (2) Simulation I (2) Simulation I (3) Simulation 2 (3) Simulation 2 (4) Simulation 3 (5) Simulation 4 (6) Simulation 5 (7) 000 (7) 000 (8) 000 (9) 000 (10) 000 		(0)	C UOIJETNETC	than	10	1,805		5,499
Simulation 1 1000 20 1,593 0ct. 19 Simulation 2 1200 16 1,593 0ct. 19 Simulation 3 1400 16 1,577 0ct. 20 Simulation 4 1600 14 0ct. 20 0ct. 20 Simulation 5 more than 1800 1 1,670 0ct. 20 Oct. 20 13 1,670 0ct. 20 0ct. 20	1983	(I)	Observation	1	1	1 577		
Simulation 2 1200 1,293 0ct. 19 Simulation 3 1200 16 1,577 0ct. 20 Simulation 4 1400 14 0ct. 20 0ct. 20 Simulation 5 more than 1800 1 1,670 0ct. 20 Simulation 5 more than 1800 1 1,709 0ct. 20	1.	6	Simulation !	1000	Cc			4,939
Simulation 3 1400 16 1,577 0ct. Simulation 3 1400 14 1,670 0ct. Simulation 4 1600 13 1,652 0ct. Simulation 5 more than 1800 11 1,709 0ct.		3	Simulation 2		0.4	L, 293		5,04
> Junitation 3 1400 1400 0ct. > Simulation 4 1600 13 1,670 0ct. > Simulation 5 more than 1800 11 1,709 0ct.		33			- T6	1,577		5.01
) Simulation 5 more than 1800 11 11 1,652 0ct.		Ĵ	ormulation 5	1400	14	1,670		
/ Dimulation D more than 1800 11 1,709 0ct.		33	4 UOIDETNUIC	1600	13	1,652		5,54
)	Simulation 5	than		1,709		5,285

2~73

	Case	of Observation	and Simulation	Objective Nakhon Sav	ve Basin: Upper Sawan (C.A. = 58,	per Reaches from 58,721 km ²) <u>/1</u>	
Year		Case No.	Density of Rainfall Gauging Network (km ² /station)	Number of Rainfall Stations	Annual Peak (m ³ /s)	ak Discharge (Date)	Annual Discharge Volume (10 ⁶ m ³)
1978	335	Observation Simulation 1 simulation 2	1000 12000	4 57 I 4 9 9	3,540 3,579 3,574	0ct. 07 0ct. 07 0ct. 08	31,21 30,89
	<u>)</u> 9999	Simulation 3 Simulation 4 Simulation 5	1400 1400 more than 1800	33 4 4 3 3 4 5 3 3 4 5	3,378 3,390 3,268	0ct. 08 0ct. 08 0ct. 08 0ct. 08	29, 133 28, 477 29, 453 29, 780
1980	<u> </u>	Observation Simulation 1 Simulation 2 Simulation 3 Simulation 4 Simulation 5	1000 1200 1400 1600 more than 1800	3 4 4 9 3 3 4 4 5 4 5 4 6 7	4,320 4,360 4,434 4,514 4,580	Oct. 09 Oct. 09 Oct. 09 Oct. 09 Oct. 09 Oct. 09	29,085 30,753 30,959 30,501 31,681 31,663
1983	80£005	Observation Simulation 1 Simulation 2 Simulation 3 Simulation 5	- 1000 1200 1400 1600 more than 1800	3 4 5 8 3 4 7 8 3 4 7 8	2,290 2,324 2,332 2,304 2,304	Oct. 23 Oct. 24 Oct. 24 Oct. 24 Oct. 24	23,945 24,831 25,081 24,962 25,612 25,612

Note: /1 Covering the sub-basins of Code Nos. BS-2, 3, 4, 5 6, 7, 8, 9 and 10.

2--74

	Gase	Case of Observation	and Simulation	Objective from Sarab	Basin: uri (S.9	Pasak River Upper Reaches) (C.A. = $8,124 \text{ km}^2$) /1	Reaches 1 ²) /1
Year		Case No.	Density of Rainfall Gauging Network (km ² /station)	Number of Rainfall Stations	Annual Peak (m ³ /s)	Peak Discharge (Date)	Annual Discharge Volume (10 ⁶ m ³)
1978	E	Observation			3.206	Oct. 03	5.186
	(5)	Simulation 1	1000	1	1	1	
	:e	simulation 2	1200	7	3,272	Oct. 03	5,318
	(4)	Simulation 3	1400	i	1	1	1
	3	Simulation 4	1600	ŝ	3,305	Oct. 03	6,023
	(9)	Simulation 5	more than 1800	ę	3, 309		6,239
1980	(1)	Observation	I		No Notable	Flood	
	3	Simulation 1	1000				
	(3)	Simulation 2	1200				
	(4)	Simulation 3	1400				
	(2)	Simulation 4	1600			-	
	(9)	Simulation 5	more than 1800				
1983	Ê	Observation			No Notable	Flood	
-	(2)	Simulation 1	1000				
	(3)	Simulation 2	1200				
	(+)	Simulation 3	1400				
:	(2)	Simulation 4	1600				
	(9)	Simulation 5	more than 1800				

Table 2-25(3/3). ANNUAL PEAK DISCHARGE AND ANNUAL DISCHARGE VOLUME SIMULATED THROUGH VARIED POINT RAINFALL GAUGING NETWORK

2-75

Note: /1 Covering the sub-basin of Code No. BS-14.

Table 2-26(1/2). INVENTORY OF POINT RAINFALL GAUGING STATIONS SELECTED FOR STEP 2 FLOOD FORECASTING SYSTEM

nstaliation	Code	River Basin		tion
Priority	No.	MIVEL DAOLI	Latitude	Longitude
1 .	ກ_1	Calcas Varana	15°54'	99°28'
1	R-1.1	Sakae Krang	15°47†	99°41'
1	R-1.2		15°381	99°41' 99°32'
1	R-1.3	. 11		
1	R-1.4	1 1	15°28'	99°341
	R-1.5	Chao Phraya	15°20'	100°32'
1	R-1.6	Pasak	15°28'	101°04'
1	R-1.7		15°13'	101°16'
1	R-1.8	11	15°04'	101°04'
1	R-1.9	11	14°51'	100°59'
1	R-1.10	۴۲	14°37'	101°11'
2		Disc	16°52'	99°07'
2	R-2.1	Ping		99°07' 98°55'
2	R-2.2	11	16°46'	98°55'
2 2 2 2	R-2.3	11	16°20'	
2	R-2.4	1 . 1	16°12'	99°43'
2	R-2.5	11	16°03'	99°51'
2	R-2.6		15°56'	99°59'
2 2	R-2.7	Yom	16°49'	99°48'
2	R-2.8	11	16°39'	99°35'
2	R-2.9	11	16°27'	99°53'
2	R-2.10	Nan	16°52'	100°45'
2 2 2 2 2 2	R→2.11	11	16°50'	100°31'
2	R-2.12	11	16°42'	100°36'
2	R-2.13	1.11	16°25'	100°33'
2	R-2.14	31	16°12'	100°25'
2	R-2.15	Nan	16°10'	100°33'
2	R-2.16	59	16°11'	100°51'
2	R-2.17	े म	15°51'	100°35'
2 2	R-2.18	H L L	15°38'	100°29'
2	R-2.19	. 11	15°35'	100°39'
2	R-2.20	Pasak	16°25'	101°09'
2	R-2.21	i ii	15°59'	101°03'
2	R-2.22	u	15°59'	101°14'
	1 2824		13 37	101 14

2-76

.

Table 2-26(2/2). INVENTORY OF POINT RAINFALL GAUGING STATIONS SELECTED FOR STEP 2 FLOOD FORECASTING SYSTEM

Installation	Code	River Basin	Loc	ation
Priority	No.	KIVEI DASIII	Latitude	Longitude
2				
3	R-3.1	Wang	18°17'	99°30'
3	R-3.2	11	18°07'	.99°31'
3	R-3.3	11	17°52'	99°20'
3	R-3.4	Yam	18°23'	100°22'
3	R-3.5	1. 11	18°08'	100°08'
	R-3.6	l n	18°04'	99°50'
3	R-3.7	11	17°53'	99°361
3	R-3.8	- 11	17°19'	99°33'
3	R-3.9	11	17°00'	99°34'
3 .	R-3.10	Nan	17°37'	100°05'
3	R-3.11	11	17°28'	100°07'
3	R-3.12	11	17°13'	100°21'
3 ·	R-3.13	TR .	17°17'	100°33'
3	R-3.14	н	17°05'	100°50'
1				
4	R-4.1	Ping	18°50'	98°58'
4	R-4.2	11	18°51'	99°17†
4	R-4.3	. 11	18°50'	:98°44'
4	R-4.4	11	18°42'	99°02'
4	R-4.5	21	18°29'	98°21'
4	R-4.6	81	18°24'	98°40'
4	R-4.7	11	18°27'	99°08'
4	R-4.8	11	18°17'	98°19'
4	R-4.9	F 8	18°18'	98°49'
4	R-4.10	II .	18°03'	98°38'
4	R-4.11	11	17°47'	98°21'
4	R-4.12	11 -	17°48'	98°57'
4	R-4.13	31	17°39'	98°46'
4	R-4.14	11 .	17°22'	98°291
4	R-4.15	Nan	18°44'	101°01'
4	R-4.16	н	18°34'	100°45'
4	R-4.17	11	18°23'	100°51'
4	R-4.18	11	18°19'	100°43'
4	R-4.19	11	18°02'	101°01'

Installation	Station River		Location		Existing <u>/1</u> Gauging	Existing River	
Priority	Code	River Sýstem			Station	Structure	
-1.001209	No .	бувсещ	Latitude	Longitude	Located	Located	
		······			Nearby	Nearby	
1	W/R-1.1	Chao Phraya	15°40'	100°06'	C2 (RID)	-	
, 1 · .	W/R-1.2	Sakae Krang	15°29'	99°56'			
1	W/R-1.3	Pasak	16°46'	101°14'	Wichian Buri (MD)	-	
1	W/R-1.4	12	14°33'	100°45'		Upper Rama VI Dam Site	
2	W/R-2.1	Ping	17°12'	99°06'	W4A (RID)	· -	
2	W/R-2.2	11	16°28'	99°31'	P7A (RID)	÷.	
2	W/R-2.3	Yom	16°30'	100°12'	Y17 (RID)	-	
2	W/R-2.4	Nan	16°49'	100°15'	N5A (RID)	-	
2	W/R-2.5	11	16°12'	100°25'	N10A (RID)	~	
2	W/R-2.6	Pasak	16°46'	101°14'	Lom Sak (MD)	-	
3	W/R-3.1	Wang	18°31'	99°37'	W10A (RID)	Lower Kiu Lom Dam Sit	
3	W/R-3.2	FT	17°38'	99°14'	W3A (RID)		
3	W/R-3.3	Yom	18°35'	100°09'	¥20 (RIÐ)	· ••	
3	W/R-3.4	ŧ	17°35'	99°43'	¥14 (RID)	-	
3	W/R-3.5	ti	17°00'	99°491	¥4 (RID)		
3	W/R-3.6	Nan	17°44'	100°32'	N12A (RID)	Lower Sirikit Dam Site	
3	W/R-3.7	21	17°01'	100°11'	N27A (RID)	Upper	
	an a					Naresuan Da Site	
4	W/R-4.1	Ping	18°47'	99°00'	PI (RID)	-	
4	W/R-4.2	Nan	18°46	100°46'	NI	-	

Table 2-27. INVENTORY OF POINT RAINFALL AND WATER LEVEL GAUGING STATIONS SELECTED FOR STEP 2 FLOOD FORECASTING SYSTEM

Note: 1 The name in parenthesis means the office controlling the existing water level gauging station.

Table 2-28(1/2). POINT RAINFALL GAUGING STATIONS APPLIED TO BASIN RUNOFF PREDICTION MODEL (STEP 2 FLOOD FORECASTING SYSTEM)

	ective Isin	·	Applied Gauging Station						
Basin Code No.	River System	Station Code No. /Location	Station Code No. /Location	Station Code No. /Location					
BS-1	Ping	W/R-4.1/Chiang Mai R-4.3/Mae Rim R-4.6/Chom Thong R-4.9/Hot R-4.12/L1	R-4.1/Samoeng R-4.4/Sarapi R-4.7/Mae Tha R-4.10/Ban Aen R-4.13/Ban Ko	R-4.2/Sam Kamphaeng R-4.5/Mae Chaem R-4.8/Huai Mae Ka R-4.11/Omkoi R-4.14/Ban San Mamuang					
BS2	Wang	W/R-3.1/Kiu Lom Dam R-3.3/Sop Prap	R-3.1/Lampang W/R-3.2/Thoen	R-3.2/Mae Tha					
BS-3	Ping	W/R-2.1/Wang Khrai R-2.3/Khlong Lan	R-2.1/Tak W/R-2.2/Kamphaeng Phet	R-2.2/Doi Musae					
BS-4	Ping	W/R-2.2/Kamphaeng Phet R-2.6/Banphot Phisai	R-2.4/Khlong Khlung W/R-1.1/Nakhon Sawan	R-2.5/Ban Pang Wai					
BS ⊷ 5	Yom	W/R-3.3/Ngao Sak R-3.6/Long	R-3.4/Rong Kwang R-3.7/Wang Chin	R-3.5/Phrae W/R-3.4/Si Satchanalai					
35-6	Yom	W/R-3.4/Si Satchanalai W/R-3.5/Sukhotai	R-3.8/Thung Saliam	R-3.9/Ban Dan Lan Hoi					
S-7	Nan	W/R-4.2/Nan R-4.17/Na Noi W-R-3.6/Tha Pla	R-4.15/Mae Charim R-4.18/Yan Sarang	R-4.16/Sa R-4.19/Nam Pat					
S8	Nan	W/R-3.6/Tha Pla R-3.12/Ban Nong Bon W/R-3.7/Naresuan Dam	R-3.10/Uttaradit R-3.13/Chattrakan W/R-2.4/Phitsanulok	R-3.11/Thron R-3.14 Nakhon Thai					
S-9	Nan	W/R-2.4/Phitsanulok R-2.12/Nan Khek	R-2.10/Khao Krayang R-2.13/Wang Saiphum	R-2.11/Wang Nok Aen					

Table 2-28(2/2). POINT RAINFALL GAUGING STATIONS APPLIED TO BASIN RUNOFF PREDICTION MODEL (STEP 2 FLOOD FORECASTING SYSTEM)

Objective Basin		Applied Gauging Station					
Basin Code No.	River System	Station Code No. /Location	Station Code No. /Location	Station Code No. /Location			
BS-10	Nan/ Yom	R-2.7/Khirimat R-2.13/Wang Saiphum R-2.16/Chon Daen R-2.19/Phaisali	R-2.8/Phran Kratai R-2.14/Bang Mun Nak R-2.17/Nong Bua W/R-2.3/Sam Ngam	R-2.9/Sai Ngam R-2.15/Thap Khlo R-2.18/Thatako W/R-2.5/Taphan Hin			
BS11	Sakae Krang	R-1.1/Ban Pang Makha R-1.4/Lan Sak	R-1.2/Ban San Chao W/R-1.2/Uthai Thani	R-1.3/Khlong Pho			
BS-12	Tha Pla Pi	R-1.5/Ban Mi					
BS-13	Pasak	W/R-2.6/Lom Sak R-2.22/Ban Wang Thadi	R-2.20/Phetchabun W/R-1.2/Wichian Buri	R-2.21/Nong Phai			
BS14	Pasak	W/R-1.3/Wichian Buri R-1.8/Chai Badam W/R-1.4/Rama VI Dam	R-1.6/Kok Saat R-1.9/Phatthana Nikhom	R-1.7/Ban Tha Ruak R-1.10/Kham Takhian			

. . .

Table	2-29(1	/2]
-------	--------	-----

2). INVENTORY OF WATER LEVEL GAUGING STATIONS SELECTED FOR STEP 2 FLOOD FORECASTING SYSTEM

Installation	Station	River	Loca	Location		Existing River
Priority	Code No.	System	Latitude	Longitude	Station Located Nearby	Structure Located Nearby
1	W-1.1	Chao Phraya	15°09'	100°11'	C13 (RID)	Chao Phraya Dam
1	W-1.2	11	14°53'	100°24'	C3 (RID)	
1	W-1.3	Lop Buri	14°47'	100°36'	L2A (RID)	**
1	W-1.4	Chao Phraya	14°35'	100°27'	C7A (RID)	·
1	W-1.5	11	14°21'	100°35'	S5 (RID)	
1	W-1.6	11	14°11'	100°30'	C29 (RID)	-
1	W-1.7	11	13°53'	100°29'	C22 (RID)	- .
1	W-1.8	11	13°47'	100°30'	C12 (RID)	- · · ·
1	W-1.9	n .	13°44'	100°29'	C4 (RID)	-
1	W-1.10	It	13°32'	100°34'	Phra Chul (PAT)	
1	W-1.11	C-P Canal <u>/2</u>	15°20'	100°06'		Nanorom Regulator
1	W-1.12	11	15°09'	100°25'	• • • • • • • • • • • • • • • • • • •	Chongkae Regulator
1	W-1.13	. 11	14°54'	100°36'		Kake Kathien Regulator
1	W-1.14	11	14°38'	100°45'		Reong Rang Regulator
1	W-1.15	C-A Canal <u>/3</u>	15°10'	100°10'	-	Maharaj Regulator
1	W-1.16	Noi	15°10'	100°09'	-	Borommathat Regulator
1	W-1.17	17	14°56'	100°17'	. .	Chanasatr Regulator

Note: $\frac{1}{1}$ The name in parenthesis means the office controlling the existing water level gauging station.

/2 Chai Nat - Pasak Canal.

/3 Chai Nat - Ayutthaya Canal.

Table 2-29(2/2). INVENTORY OF WATER LEVEL GAUGING STATIONS SELECTED FOR STEP 2 FLOOD FORECASTING SYSTEM

Installation	Station	River	Loca	tion	Existing <u>/1</u> Gauging	Existing River
Priority	Code No.	System	Latitude	Longitude	Station Located Nearby	Structure Located Nearby
1	W-1.18	Noi	14°45'	100°25'	-	Yang Nanee Regulator
1	W-1.19	11	14°26'	100°23'	-	Pakhar Regulator
1	W-1.20	Suphan	15°13'	100°04'	-	Phonlathep Regulator
1	W-1.21	18	15°03'	100°01'	-	Thabote Regulator
1	W-1.22	11	14°46'	100°06'	-	Samchook Regulator
1	W-1.23	11	14°32'	100°08'	54	Phophya Regulator
2	W-2.1	Ping	17°14'	99°00'	P12 (RID)	Lower Bhumibol Dam Site
4	W-4.1	11	17°15'	98°50'	-	Upper Bhumibol Dam Site
4	W-4.2	Nan	17°46'	100°33'	~	Upper Sirikit Dam Site

Note: $\underline{/1}$ The name in parenthesis means the office controlling the existing water level gauging station.

Table 2-30. WATER LEVEL GAUGING STATIONS TO MONITOR AND CALIBRATE THE RIVER FLOW DISCHARGE (STEP 2 FLOOD FORECASTING SYSTEM)

River System	Monitor and	Station	Location
	Calibration Items	Code No.	
Ping	Discharge	W-4.1	Upper Bhumibol Dam
Ping	Discharge	W/R-2.2	Kamphaeng Phet (P7A)
Wang	Discharge	W/R-3.2	Thoen (W3A)
Wang	Discharge	W/R-2.1	Wang Khrai (W4A)
Yom	Discharge	W/R-3.4	Si Satchanalai (Y14)
Yom	Discharge	W/R-3.5	Sukhotai (Y4)
Yom	Discharge	W/R-2.3	Sam Ngan (Y17)
Nan	Discharge	W-4.2	Upper Sirikit Dam
Nan	Discharge	W/R-3.7	Lower Naresuan Dam (N27A)
Nan	Discharge	W/R-2.4	Phitsanulok (N5A)
Nan	Discharge	W/R-2.5	Thaphan Hin (N10A)
Sakae Krang	Discharge	W/R-1.2	Thap Than (Ct8)
Pasak	Discharge	W/R-1.3	Wichian Buri
Pasak	Discharge	W/R-1.4	Upper Rama VI Dam
Chao Phraya	Discharge/Water Level	W/R-1.1	Nakhon Sawan (C2)
Chao Phraya	Discharge/Water Level	W-1.1	Lower Chao Phraya Dam (C13)
Chao Phraya	Discharge/Water Level	W-1.2	Sing Buri (C3)
Lop Buri	Discharge/Water Level	W-1.3	Lop Buri (L2A)
Chao Phraya	Discharge/Water Level	W-1.4	Angthong (C7A)
Chao Phraya	Discharge/Water Level	W-1.5	Ayutthaya
Chao Phraya	Discharge/Water Level	W-1.6	Bang Sai (C29)
Chao Phraya	Water Level	W-1.7	Pakred (C22)
Chao Phraya	Water Level	W-1.8	RID Bangkok Office (C12)
Chao Phraya	Water Level	W-1.9	Memorial Bridge
Chao Phraya	Water Level	W-1.10 /1	Fort Phra Chul (Gulf)
	HALLE ACTUE		

Note: /1 The observed water level is also used to predict the tidal level in the Gulf of Thailand.

.

WATER LEVEL GAUGING STATIONS TO INPUT THE OBSERVED Table 2-31. DISCHARGE AS BOUNDARY CONDITION (STEP 2 FLOOD FORECASTING SYSTEM)

. .

Item o	f Prediction	Applied Gauging Station				
Prediction Time	Target Point	River System	Station Code No.	Location		
Short	Bangkok Metropolis	(1) Chao Phraya	W-1.6	Bang Sai (C29)		
Short	Ayutthaya	(1) Chao Phraya	W-1.1	Lower Chao Phraya Dam (C13)		
		(2) Pasak	W/R-1.3	Wichian Buri		
Short	Chai Nat, Sing Buri, Lop Buri and Angthong	(1) Chao Phraya	W/R-1.1	Nakhon Sawan (C2)		
Short	Nakhon Sawan	(1) Ping	W/R-2.2	Kamphaeng Phet (P7A)		
		(2) Yom	W/R-2.3	Sam Ngam (Y17)		
		(3) Nan	W/R-2.4	Phitsanulok (N5A)		
Long	All Target Points	(1) Ping	W-2.1	Lower Bhumibol Dam (P12)		
		(2) Wang	W/R-3.1	Lower Kiu Lom Dam (W1OA)		
		(3) Yom	W/R-3.3	Ngao Sak (Y2O)		
		(4) Nan	W/R-3.6	Lower Sirikit Dam (N12A)		
		(5) Pasak	W/R-2.6	Lom Sak		
		(6) Ping	W/R-4.1	Chiang Mai (Pl) <u>/1</u>		
		(7) Nan	W/R-4.2	Nan (N.1) /1		

.

Note: /1 Subject to flood prediction for upper reaches from Bhumibol and Sirikit dams.

Table 2-32. WATER LEVEL GAUGING STATIONS TO MONITOR THE CANAL FLOW DISCHARGE AT EXISTING REGULATOR (STEP 2 FLOOD FORECASTING SYSTEM)

Name of Canal	Name of Regulator	Station Code No.
Chai Nat-Pasak Canal	Manorom	W-1.11
Chai Nat-Pasak Canal	Chongkae	W-1.12
Chai Nat-Pasak Canal	Kake Kathiom	W-1.13
Chai Nat-Pasak Canal	Reong Rang	W-1.14
·		
Chai Nat-Ayutthaya Canal	Maharaj	W-1.15
Noi River	Borommathat	W-1.16
Noi River	Chanasatr	W-1.17
Noi River	Yang Manee	W-1.18
Noi River	Pakhai	W-1.19
Suphan River	Phonlathep	W-1.20
Suphan River	Thabote	W-1.21
Suphan River	Samchook	W-1.22
Suphan River	Phophya	W-1.23

ł

2-85

,

.

÷., ÷

Table 2-33. INSTALLATION PRIORITY OF GAUGING STATIONS FOR STEP 2 FLOOD FORECASTING SYSTEM

		Coverage of Gauging	· · ·	Number of Ga	uging Station	
Priority Gauging Purpose	Network to be Expanded	Water Level Gauging Station	Water Level/ Rainfall Gauging Station	Rainfall Gauging Station	Radar Gauging Station	
1.	(1) Short Term Prediction for target areas except Nakhon Sawan	including Sake Krang River Basin	23	. 6	10	0
		(2) Pasak River Basin upto Wichian Buri		н. Т		
2.	 Long Term Prediction for target areas except Nakhon Sawan 					
	(2) Short Term Prediction for Nakhon Sawan	(2) Yom River Basin upto Sam Ngam (Sta. Y17)		_		
	waknon sawan	(3) Nan River Basin upto Phitsanulok (Sta. N5A)	·	. 6	22	0
		(4) Pasak River Basin upto Lop Buri				
3	(1) Long Term Prediction for all target areas	(1) Wang River Basin upto Chae Hom (Sta. WIOA)				· · ·-
		(2) Yom River Basin upto Ngao Sak (Sta. Y20)	0	7	14	0
		(3) Nan River Basin upto Sirikit Dam (Sta. N12A)				
4.	(1) Long Term Prediction for all target areas	 Catchment area of Bhumibol Dam upto Chiang Mai (Sta. Pl) 				
	(2) Flood mitigation affect for respective target areas through	(2) Catchment area of Sirikit Dam upto Nan (Sta. Ni)	2	2	19	0
	effective use of potential flood control functions attached to Bhumibol and Sirikit Dam.					
5.	 Facilitating the rainfall prediction measures 	(1) Most of Pasek and Sakae Krang River				
-	(2) Improving the accuracy of areal average rainfall estimated from the point rainfall	(2) Lower reaches of Ping, Yom and Nan River Basin	0	0.	. 0	2

Note: "Short Term Prediction" is proposed to be done 3 days in advance, while "Long Term Prediction" is to be done 6 to 10 days in advance.

. .

• . . .

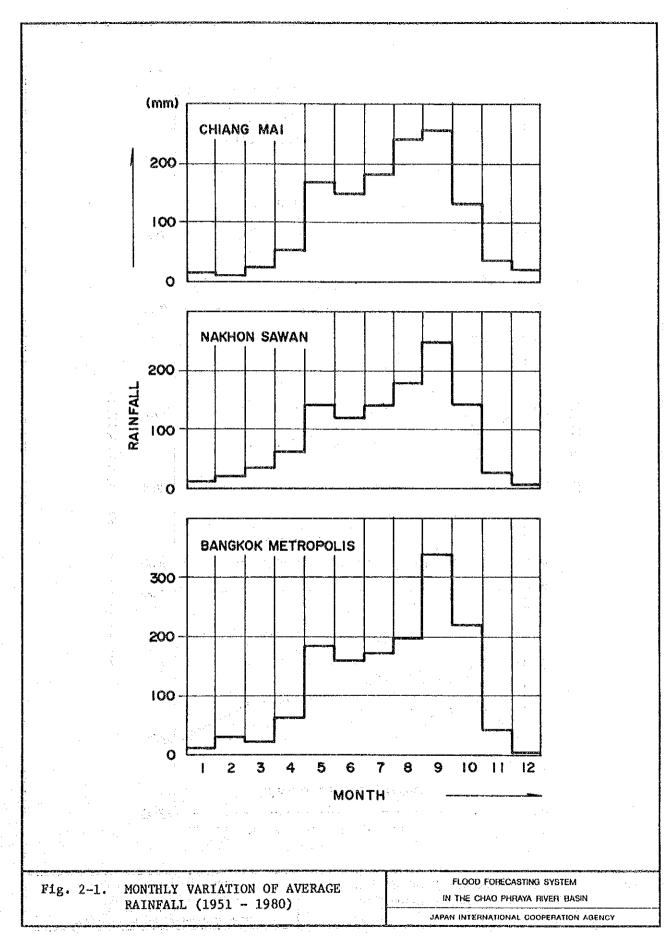
Target Point	Year Obse		erved	1	Predicted 3 Days Before		Predicted 6 Days Before	
		m ³ /s	Date	m ³ /s	Date	m ³ /s	Date	
Nakhon Sawan	1978	3,540	Oct. 07	3,527	Oct. 07	3,514	Oct. 08	
Chai Nat	1978	3,741	Oct. 11	3,689	Oct. 11	3,709	Oct. 11	
Angthong	1978	2,550	Oct. 10	2,966	Oct. 12	2,938	Oct. 12	
Nakhon Sawan	1980	4,320	Oct. 09	4,356	Oct. 09	4,373	Oct. 09	
Chai Nat	1980	3,795	Oct. 10	3,796	Oct. 10	3,796	0ct. 10	
Angthong	1980	3,115	0ct. 15	3,024	Oct. 13	3,011	Oct. 11	
Nakhon Sawan	1983	2,290	Oct. 23	- /1	- <u>/1</u>	2,332	Oct. 24	
Chai Nat	1983	3,290	Oct. 25	3,097	Oct. 27	3,114	Oct. 27	
Angthong	1983	2,482	Oct. 24	2,604	Oct. 26	2,425	Oct. 28	

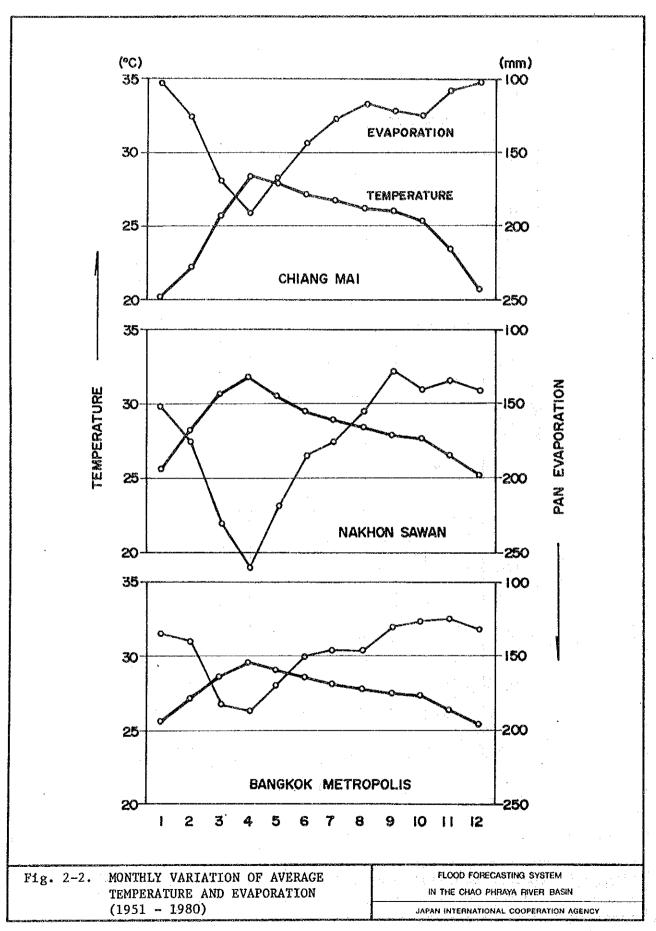
Table 2-34.ANNUAL PEAK DISCHARGE PREDICTED AT TARGET POINT
THROUGH STEP 2 FLOOD FORECASTING SYSTEM

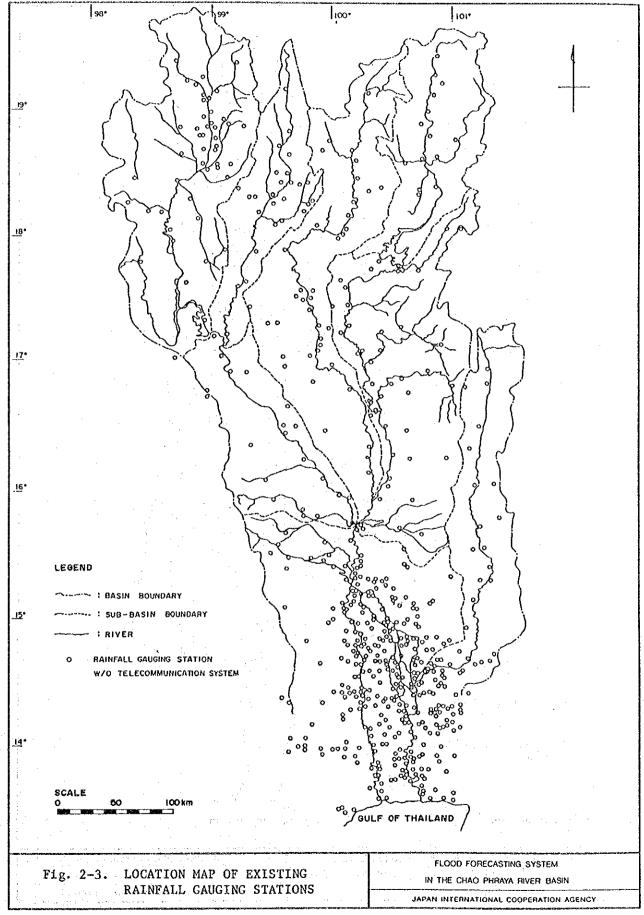
Note: <u>/1</u> Prediction was not made because of the missing upstream observed discharge data at Sam Ngam (Sta. Y17)

ONE-DAY MAXIMUM WATER LEVEL PREDICTED FOR TIDAL COMPARTMENT THROUGH STEP 2 FORECASTING SYSTEM

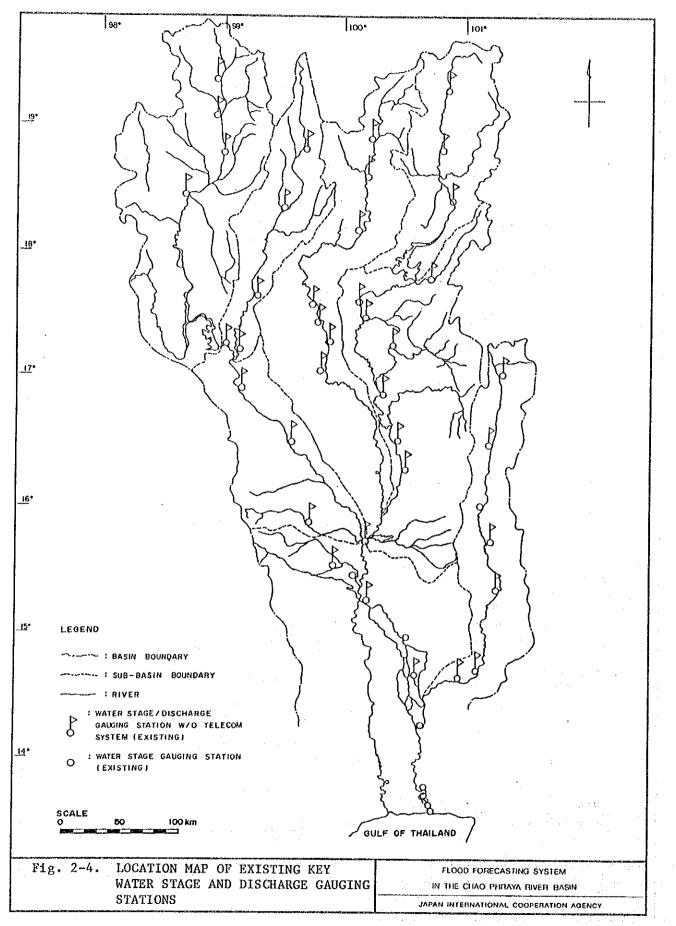
Table 2-35.

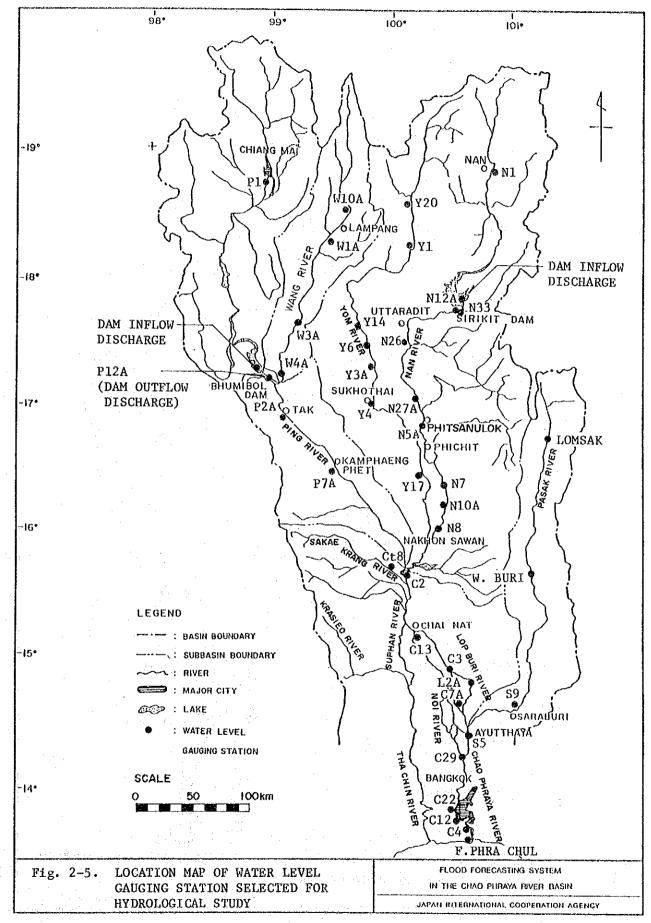

10:00 11:00 12:00 10:00 10:00 10:00 11:00 11:00 17:00 18:00 16:00 18:00 18:00 Time 6 Days Before Predicted (m. MSL) Level 1.86 1.75 2.07 2.27 2.27 1.89 1.74 2.13 2.00 2.00 Water н. 67 1. 60 1. 94 1. 98 1. 98 11:00 11:00 12:00 17:00 18:00 16:00 18:00 20:00 11:00 10:00 10:00 10:00 12:00 11:00 Time 3 Days Before Predicted (m. MSL) Level Water 1.70 1.66 2.07 2.00 2.09 1.86 1.76 2.04 2.24 1.93 1.97 1.97 1.97 Data Missing 1.92 10:00 2.01 10:00 2.21 11:00 00:60 10:00 12:00 12:00 15:00 16:00 17:00 18:00 10:00 10:00 Time Observed (m. MSL) Water 1.89 2.03 2.15 Level 1.73 1.77 1.77 1.97 1.87 1.82 1.94 2.05 from River Mouth (km) Distance 70440 754807 48 70 70 27 40 48 70 70 40 2 Objective Point Memorial Bridge Memorial Bridge Memorial Bridge Location Name Satha Pradit Satha Pradit Satha Pradit Bangkok Port Bangkok Port Bangkok Port RID Samsen RID Samsen **RID Samsen** Pakred Pakred Pakred Oct. 27 1980 Oct. 21 1978 Oct. 31 1983 Observation/ Prediction Date /I

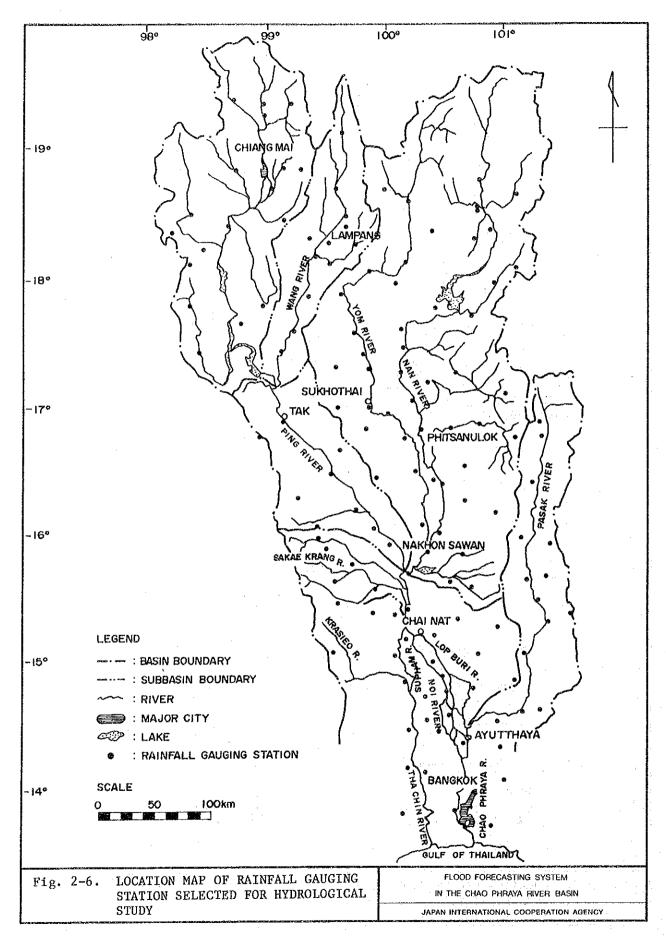

Note: /1 Date of observation of annual maximum discharge at Bang Sai.

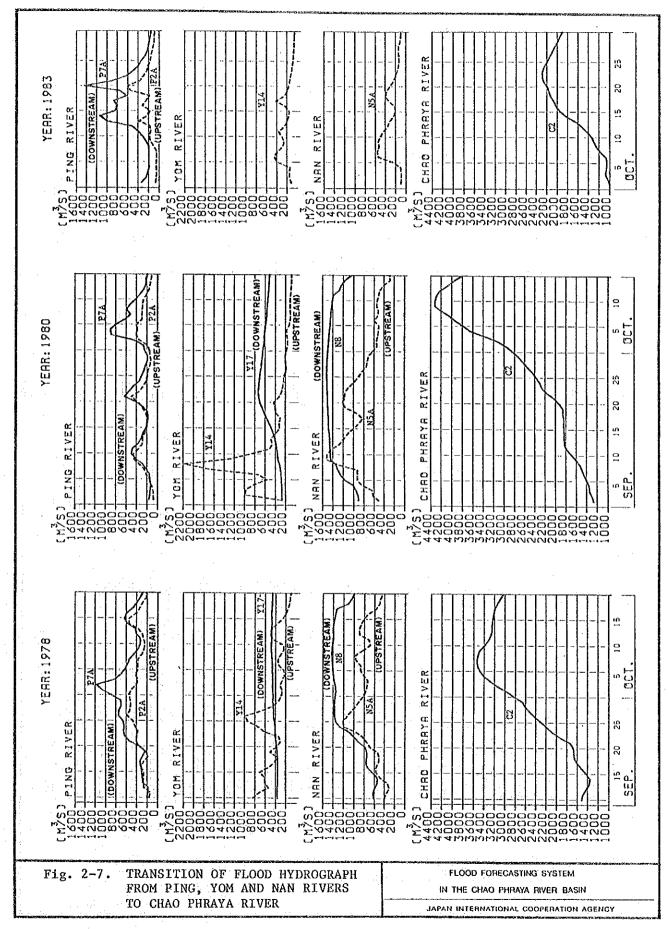

DIFFERENCES BETWEEN OBSERVED AND PREDICTED DAILY MAXIMUM TIDAL LEVEL	
D PREDICTED DA	
OBSERVED AND PI	IN ADVANCE)
DIFFERENCES BETWEEN C	(PREDICTED SIX DAYS IN ADVANCE)
Table 2-36.	

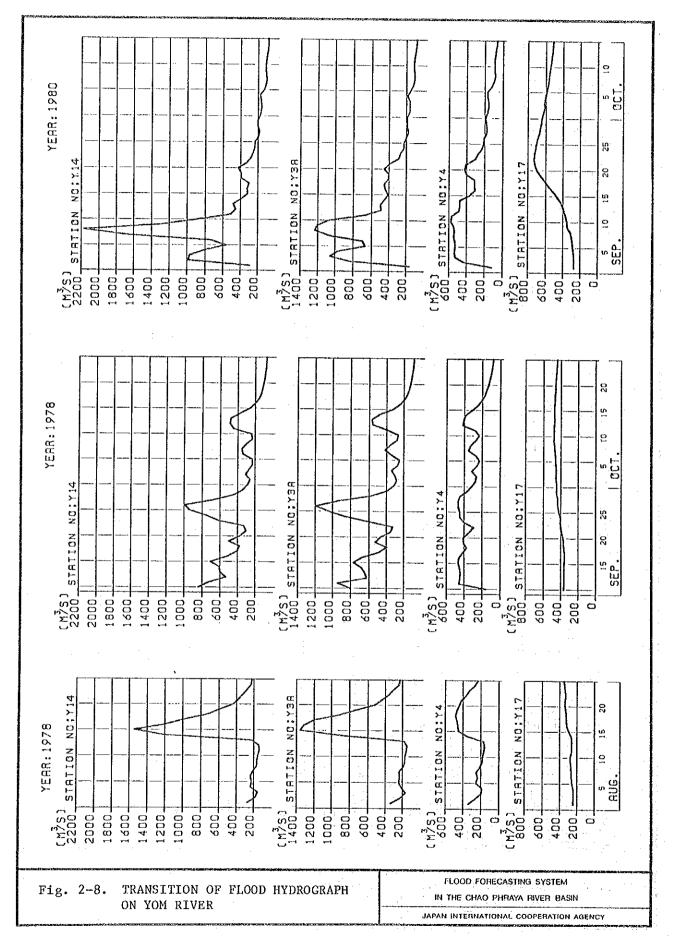
Ce Difference Tess than Less than O.5 m O.5 m	1.		Maximum	Average	ノー・シンシン	1)/{{ }}	TRAI DID IT TAADA TAAT INTA HAVE TH ADTIL ADDID TAAT TAADA TAAT		יד הכיכע בוו טוו	1001 0
Rainy Season0.450.11105157175182184Dry Season0.380.10115168177131Annual0.450.11220325352363365Annual0.450.11220325173181184Annual0.450.11220325365365Briny Season0.340.09112166179182Dry Season0.340.09237339360366Annual0.620.1195162180182Dry Season0.620.10212329360366Dry Season0.620.10212329361363Annual0.620.10212329361363Bry Season0.620.10212329361363Bry Season0.620.10212329361363Bry Season0.620.10212329361363Bry Season0.620.10212329361363Bry Season0.620.10212329361363Bry Season0.620.10212329361363Bry Season0.620.10212329361363Bry Season0.620.10212329361363Bry Season0.620.10212329361<			Difference (m)	Difference (m)	Less than 0.1 m (day)	Less than 0.2 m (day)	Less than 0.3 m (day)	Less than 0.4 m (day)	Less than 0.5 m (day)	More than 0.5 m (day)
Dry Season0.380.10115168177181Annual0.450.11220325352363365Annual0.450.11220325173181184Rainy Season0.340.09112166179182Dry Season0.340.09237339360366Annual0.340.09237339360366Annual0.520.1195162180182Bry Season0.580.09117167181Annual0.620.1195162180182Annual0.620.10212329361363Annual0.620.10212329361363		ıiny Season	0.45	0.11	105	157	175	182	184	
Annual0.450.11220325352363355Rainy Season0.330.08125173181184Dry Season0.340.09112166179182Annual0.340.09237339360366Annual0.340.09237339360182Rainy Season0.620.1195162180182Dry Season0.620.10212329361363Annual0.620.10212329361363	Ц Ц	ry Season	0.38	0.10	115	168	177	181	·	
Rainy Season0.330.08125173181184Dry Season0.340.09112166179182Annual0.340.09237339360366Annual0.340.09237339360366Rainy Season0.620.1195162180182Dry Season0.4280.09117167181Annual0.620.10212329361363	. Ar	nual	0.45	0.11	220	325	352	363	365	
Dry Season0.340.09112166179182Annual0.340.09237339360366Rainy Season0.620.1195162180182Dry Season0.280.09117167181Dry Season0.620.10212329361363		ainy Season	0.33	0.08	125	173	181	184		
Annual0.340.09237339360366Rainy Season0.620.1195162180182182Dry Season0.280.09117167181Annual0.620.10212329361363363	D1	ry Season	0.34	60°0	112	166	179	182		
Rainy Season0.620.1195162180182182Dry Season0.280.09117167181Annual0.620.10212329361363363	A:	nual	0•34	0°0	237	339	360	366		
0.28 0.09 117 167 181 0.62 0.10 212 329 361 363 363		ainy Season	0.62	0.11	95	162	180	182	182	184
0.62 0.10 212 329 361 363 363	đ	ry Season	0.28	60*0	117	167	181		• • •	
	Å	onual	0.62	0.10	212	329	361	363	363	365
			· · · · · · · · · · · · · · · · · · ·				· ·		•	•

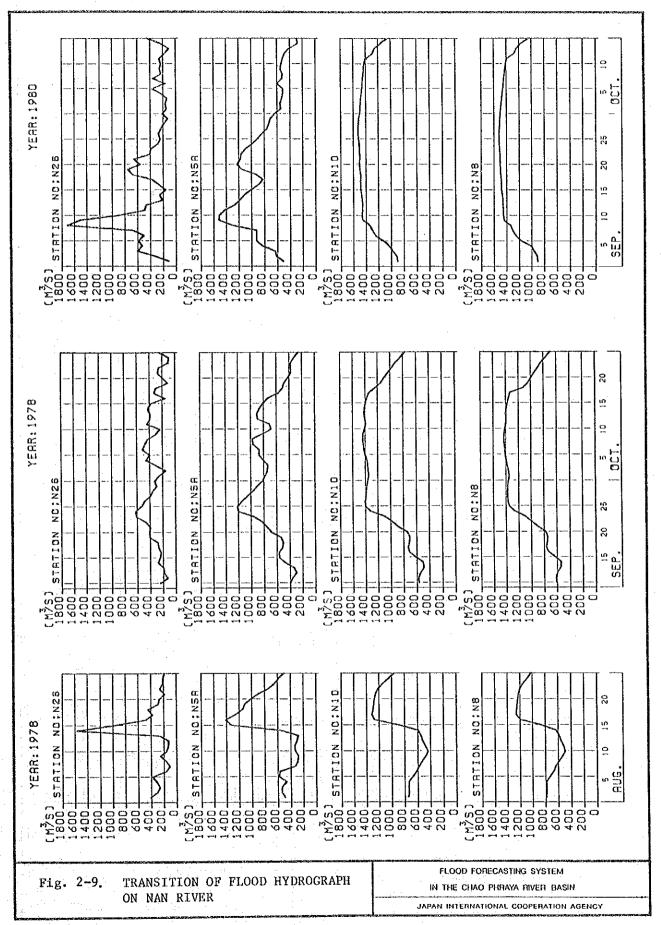

FIGURES

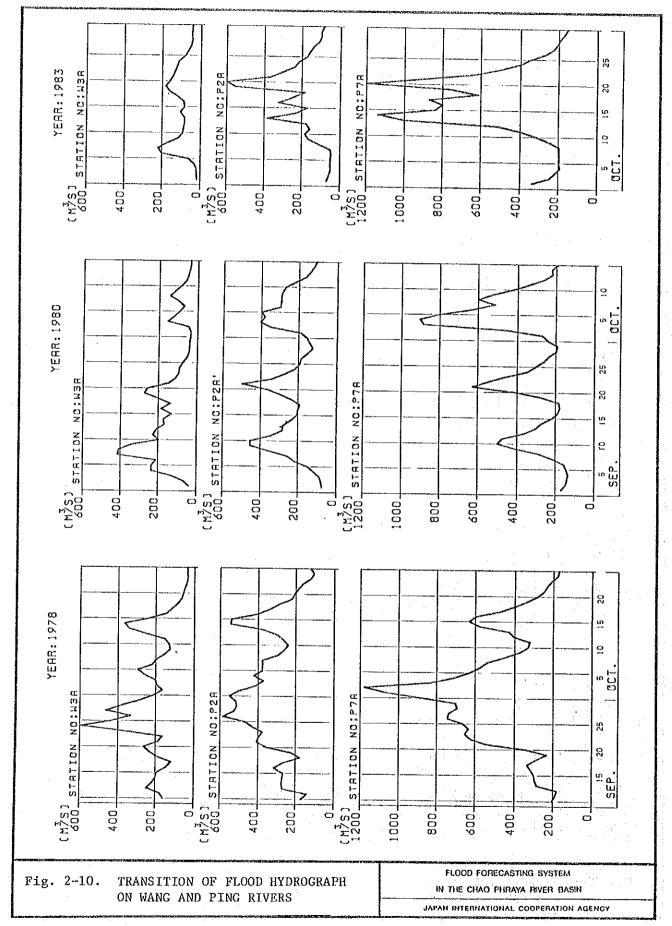


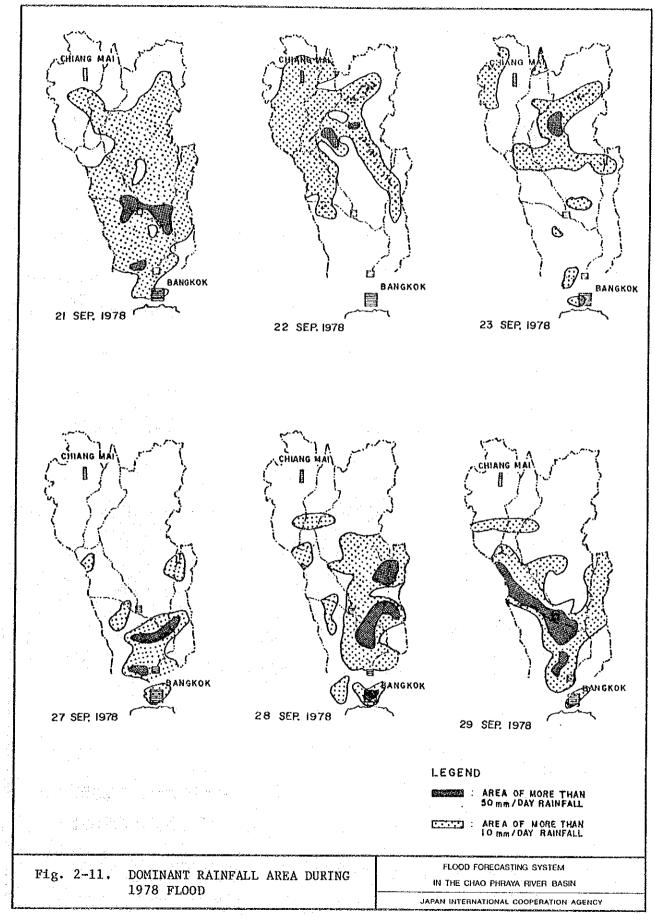


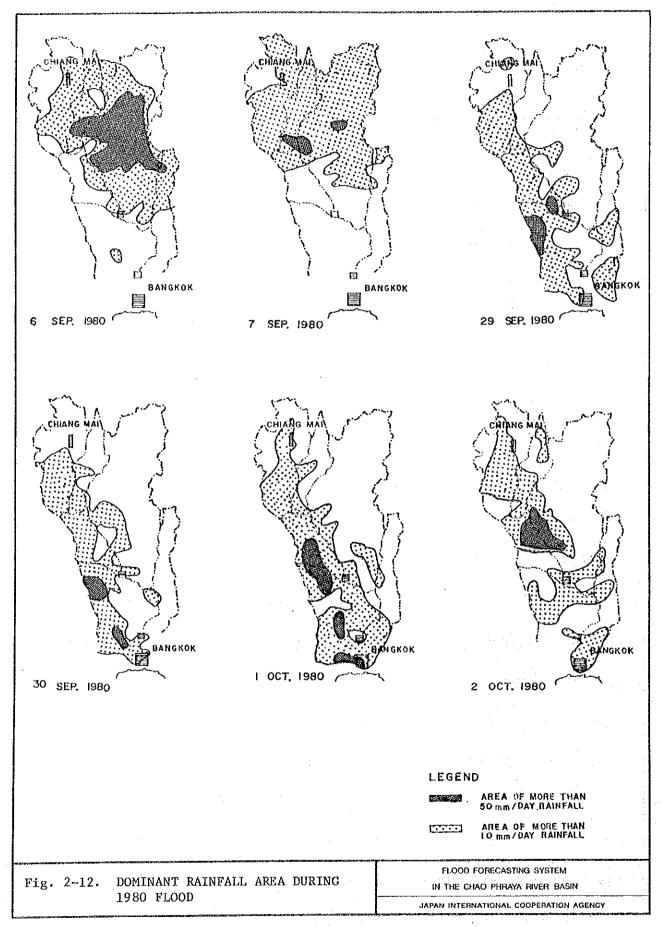


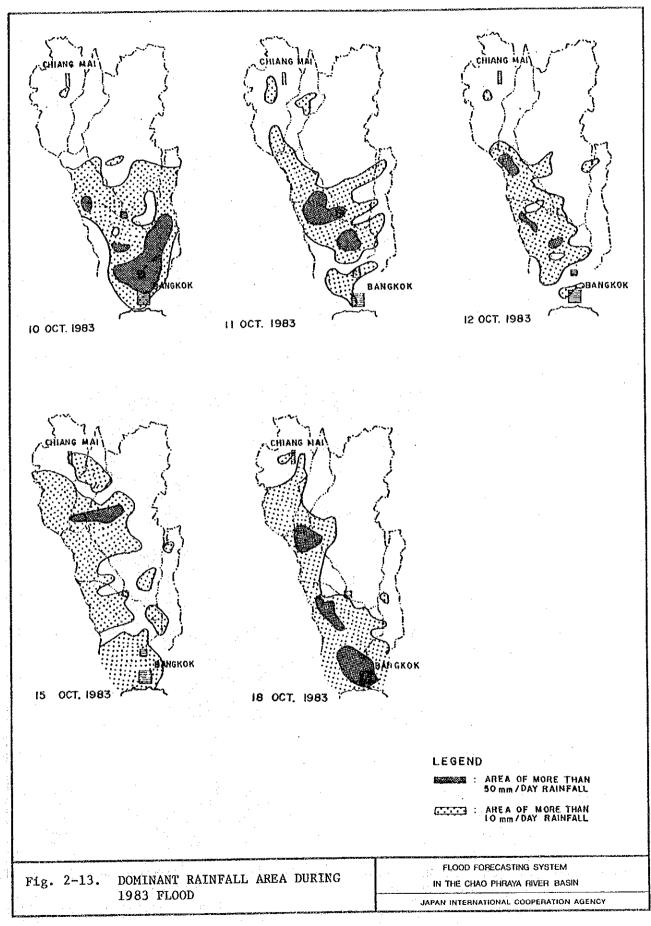

2--92

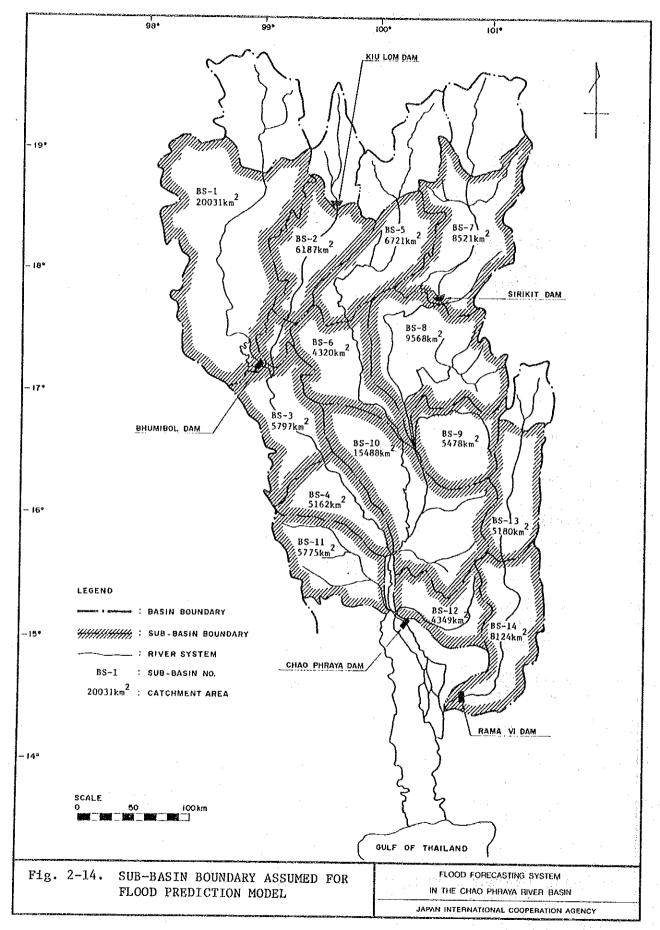


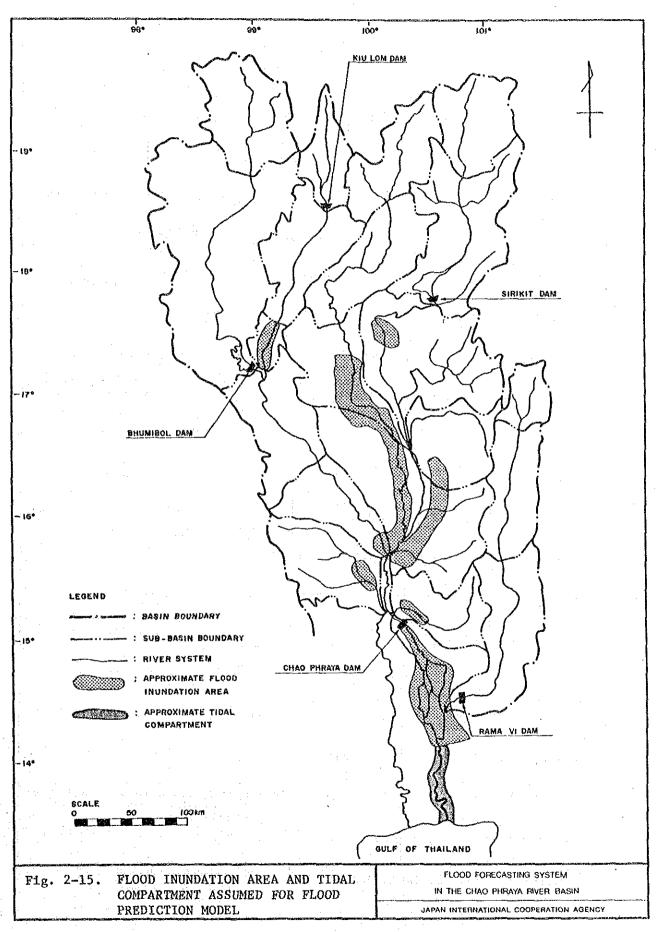


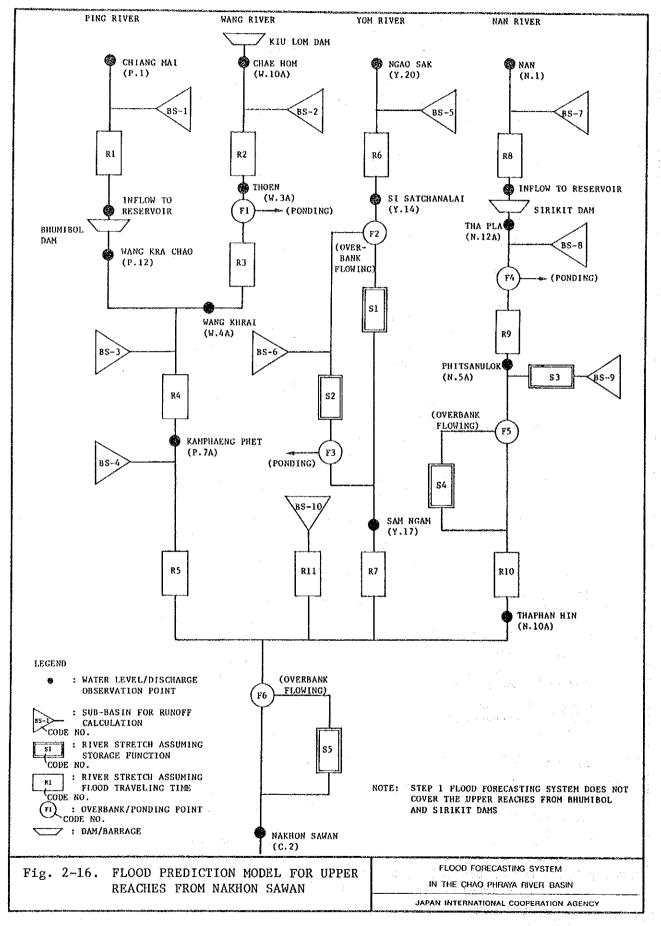


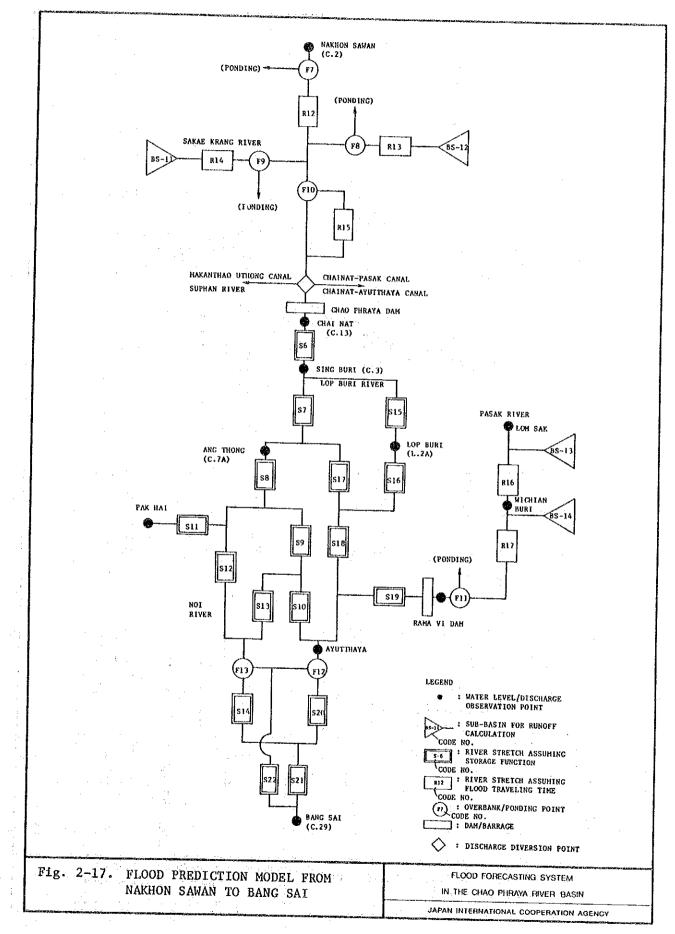


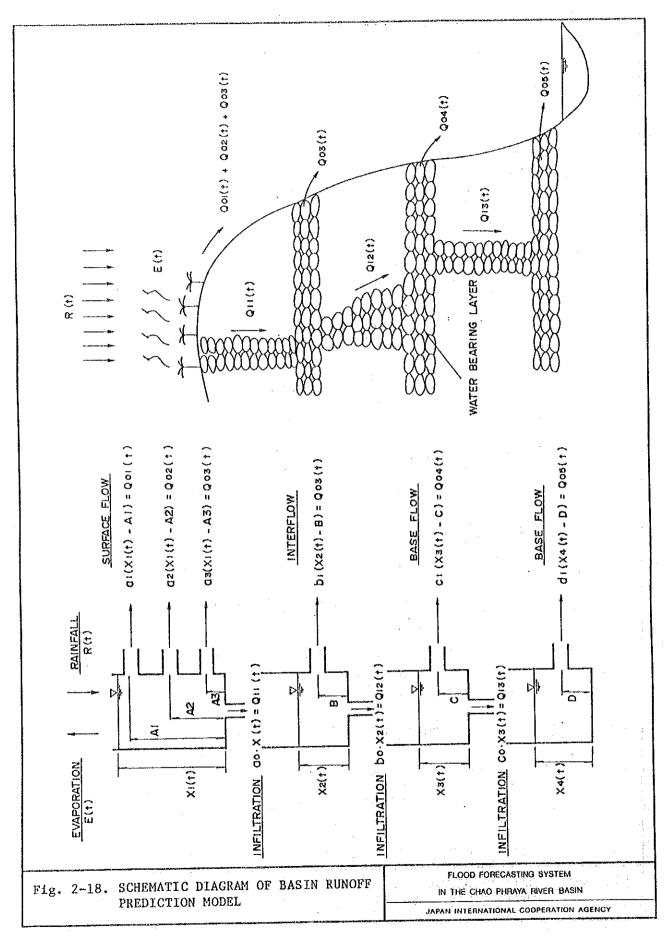

2-97

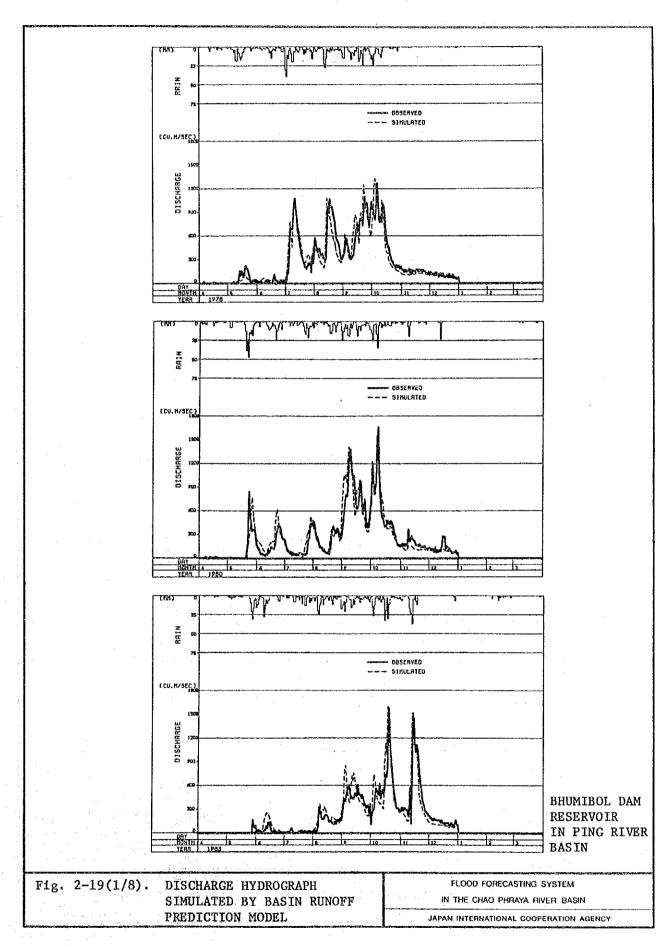


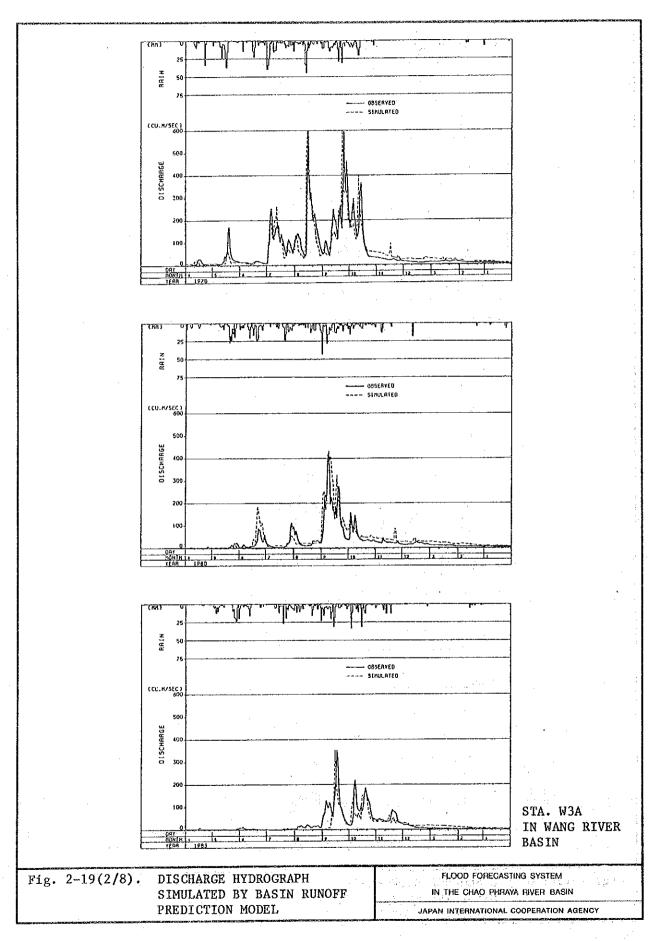


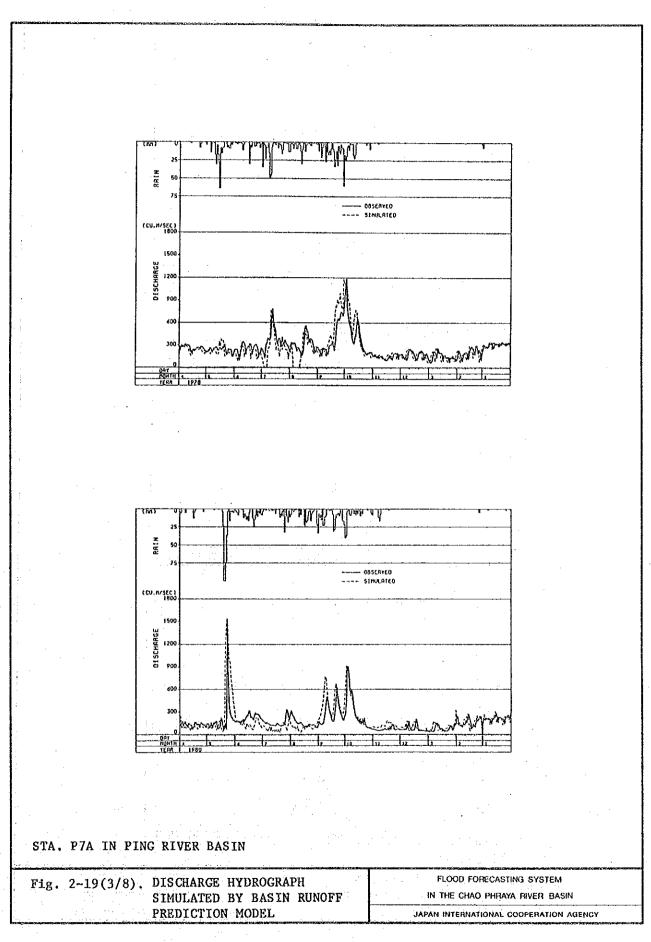


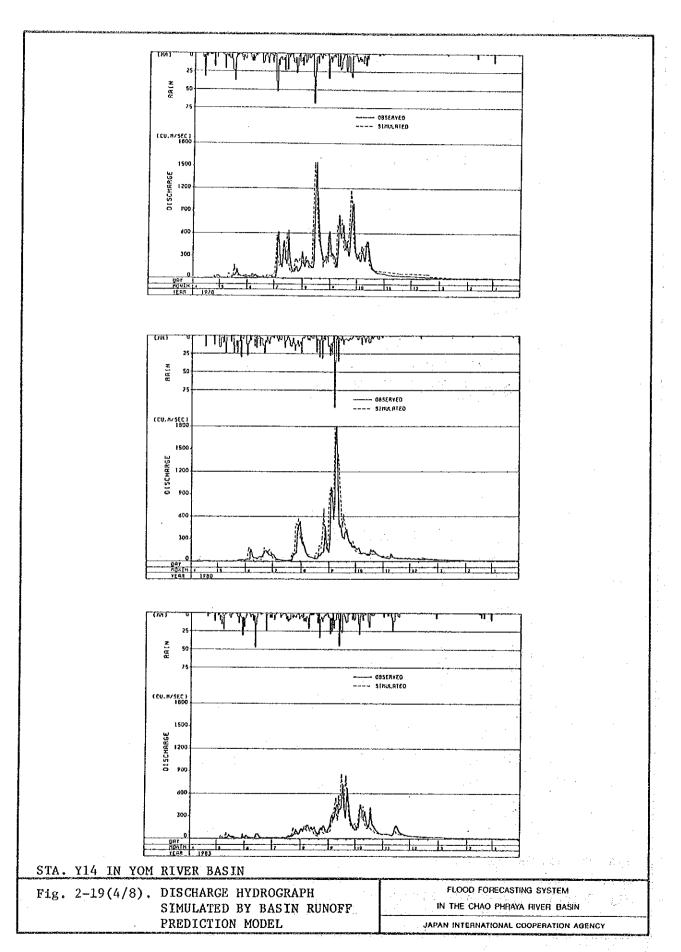


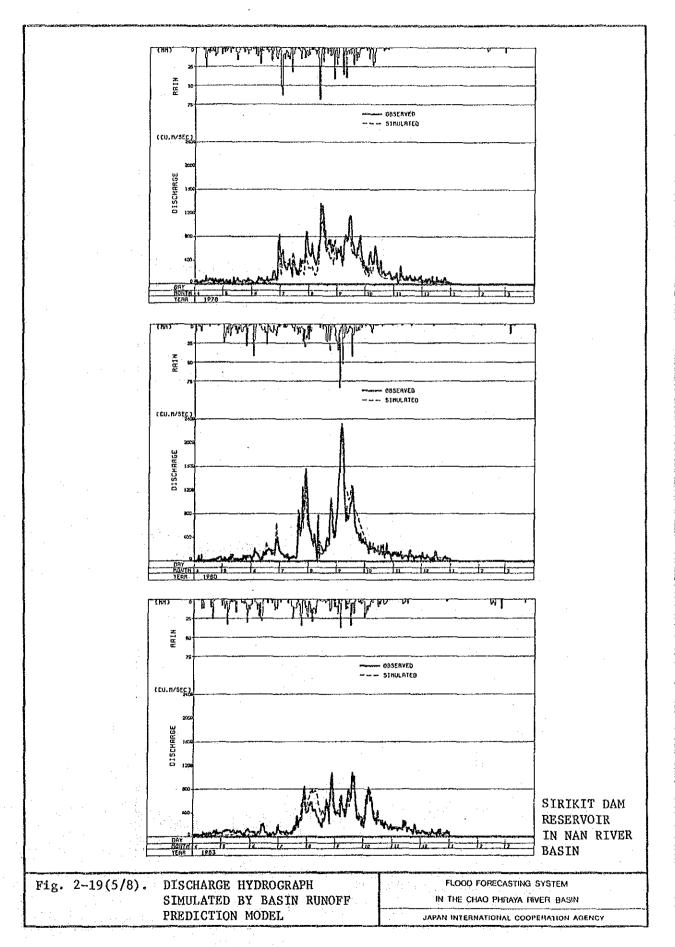


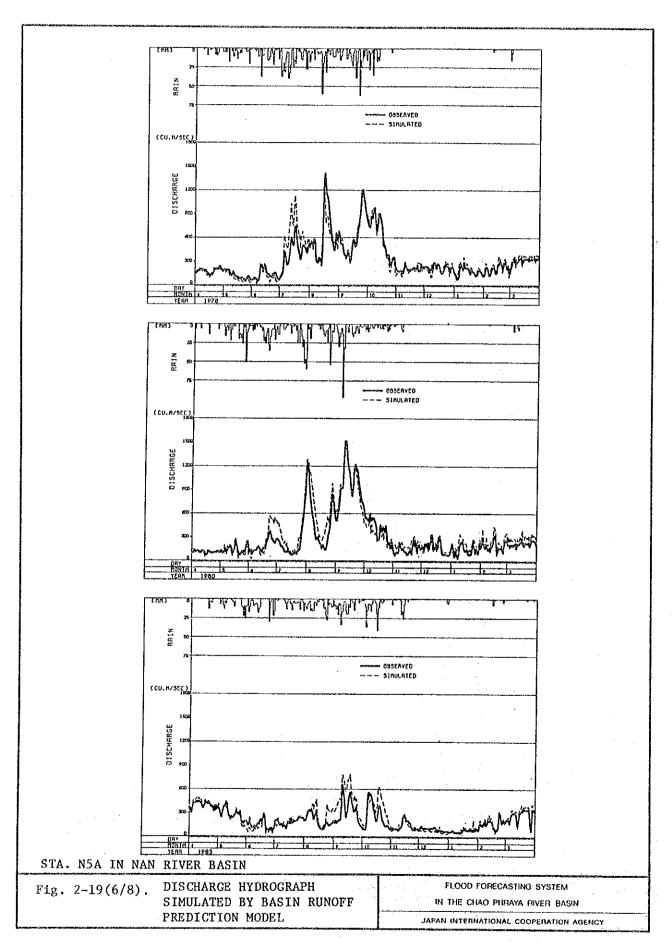

į



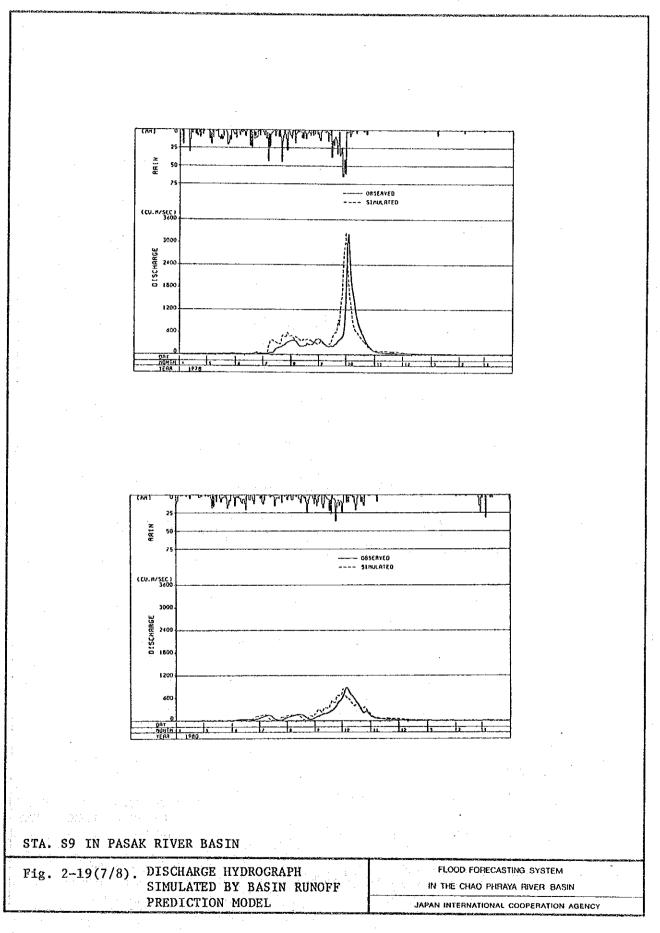


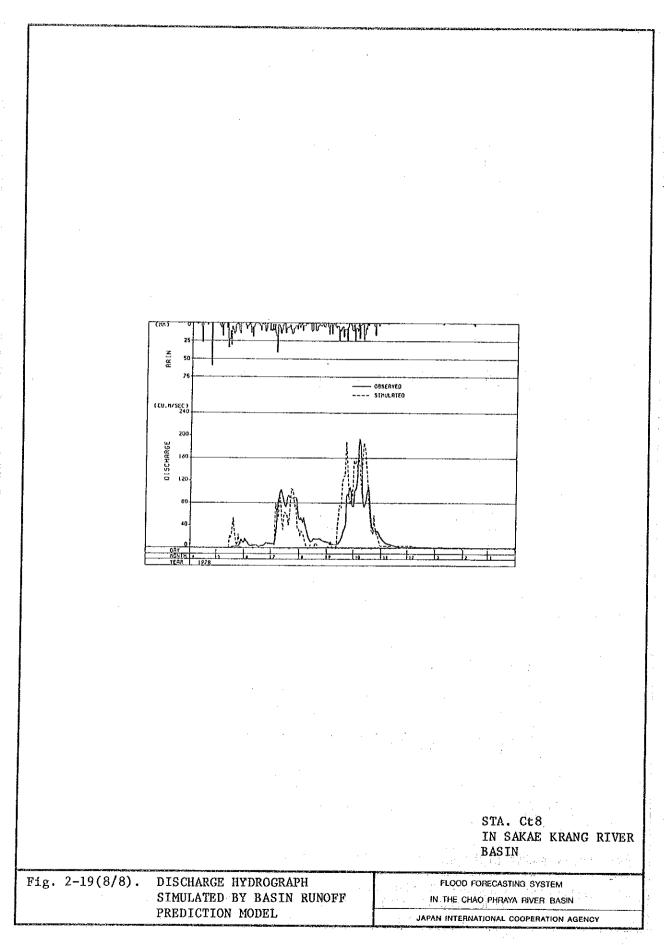


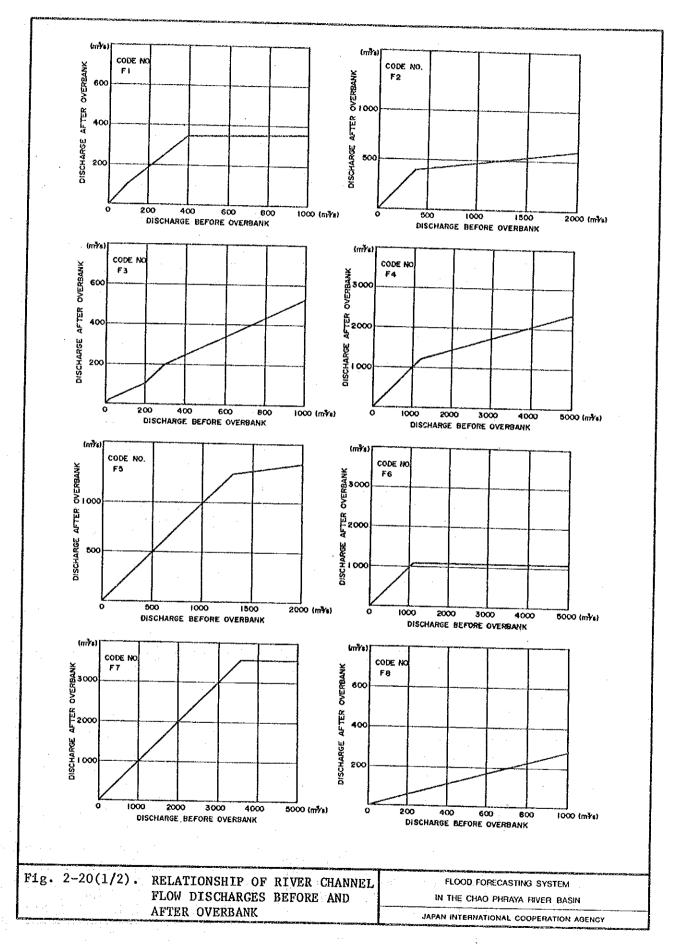


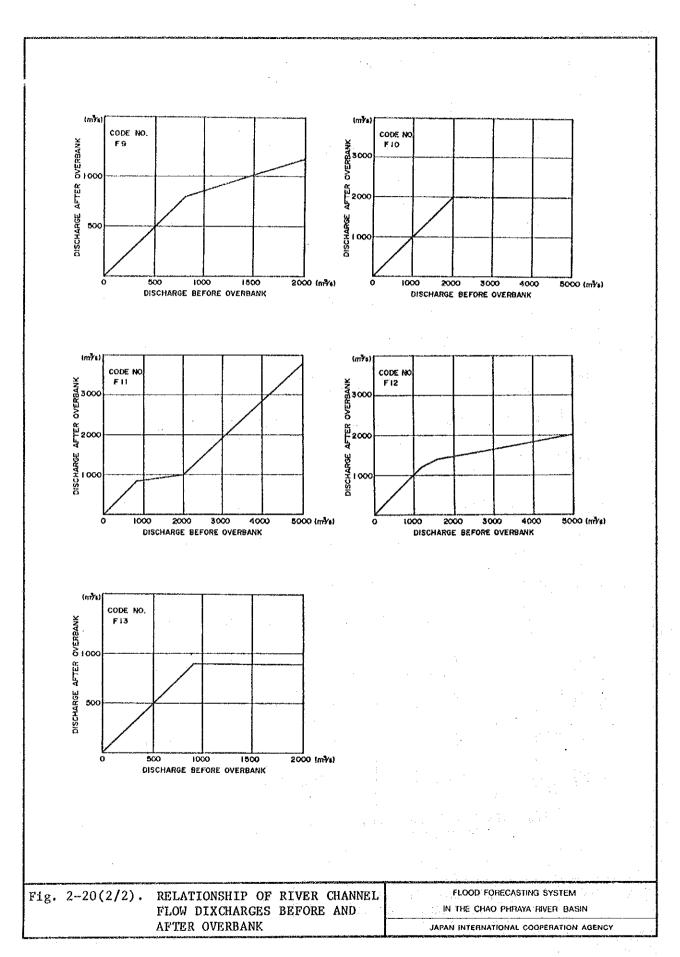


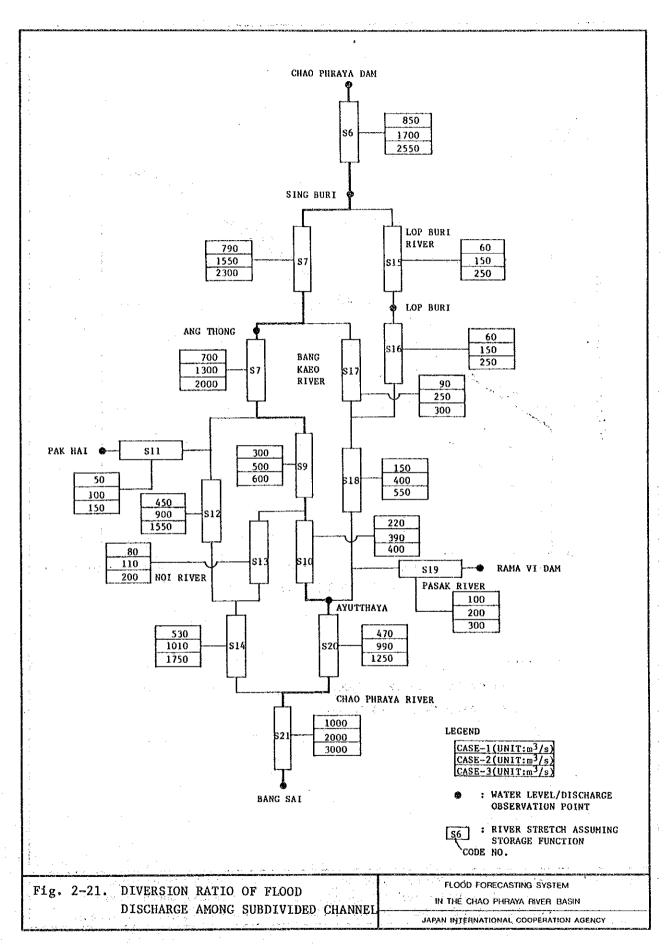
2--109

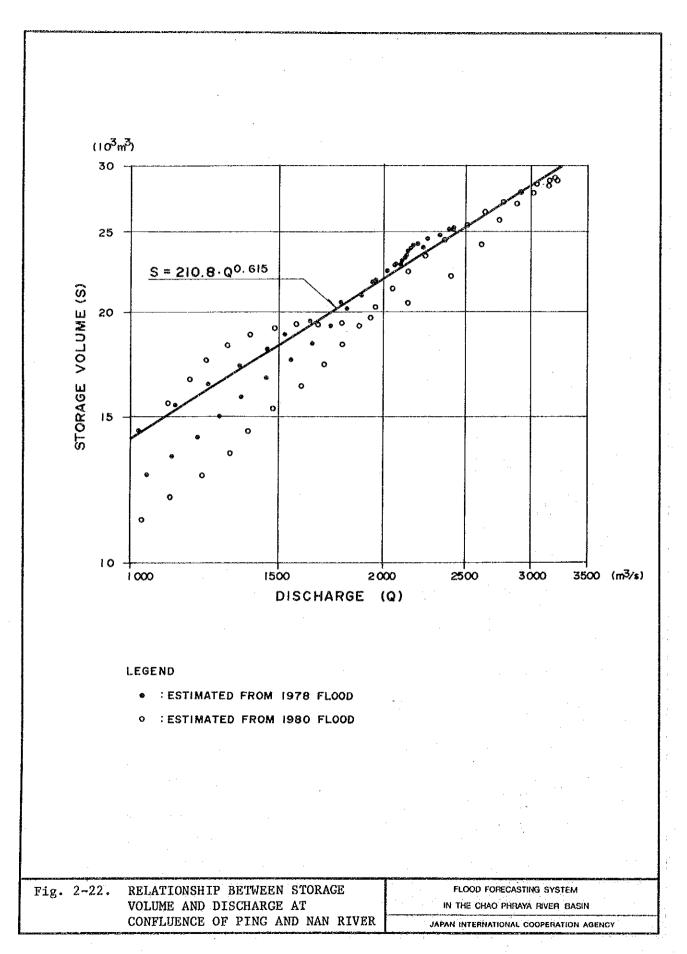


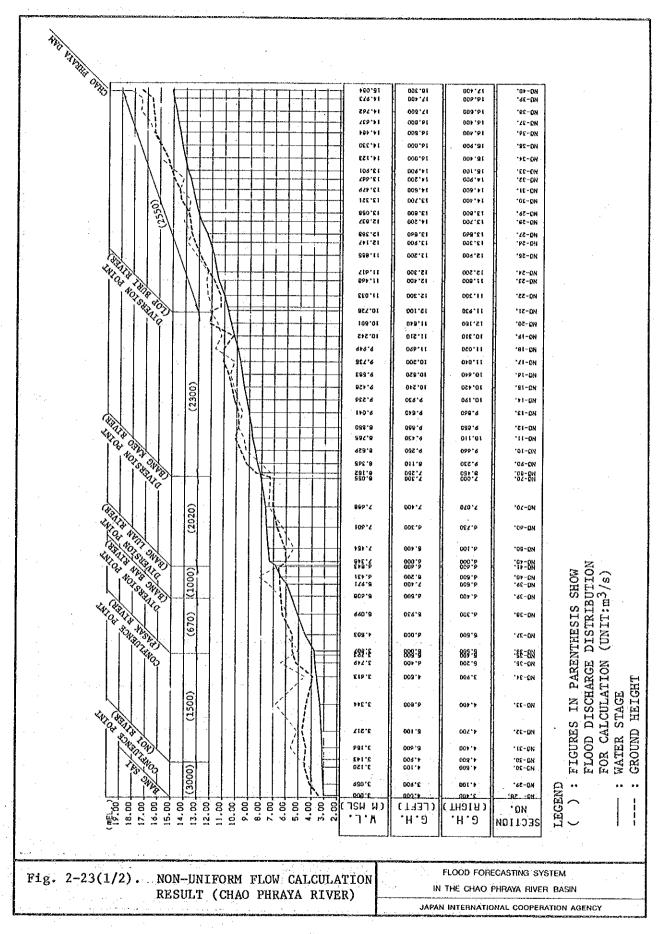


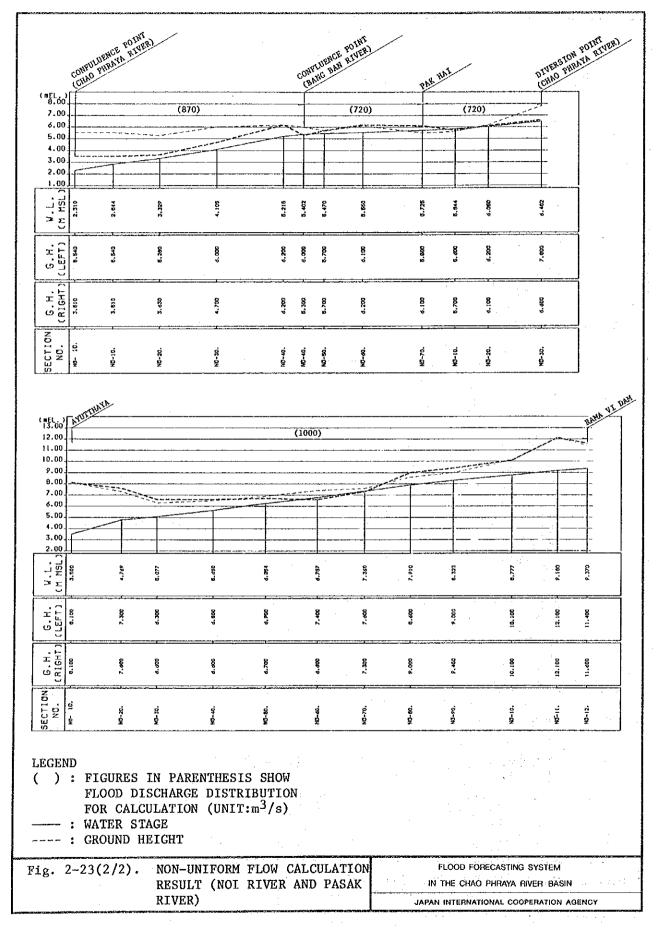


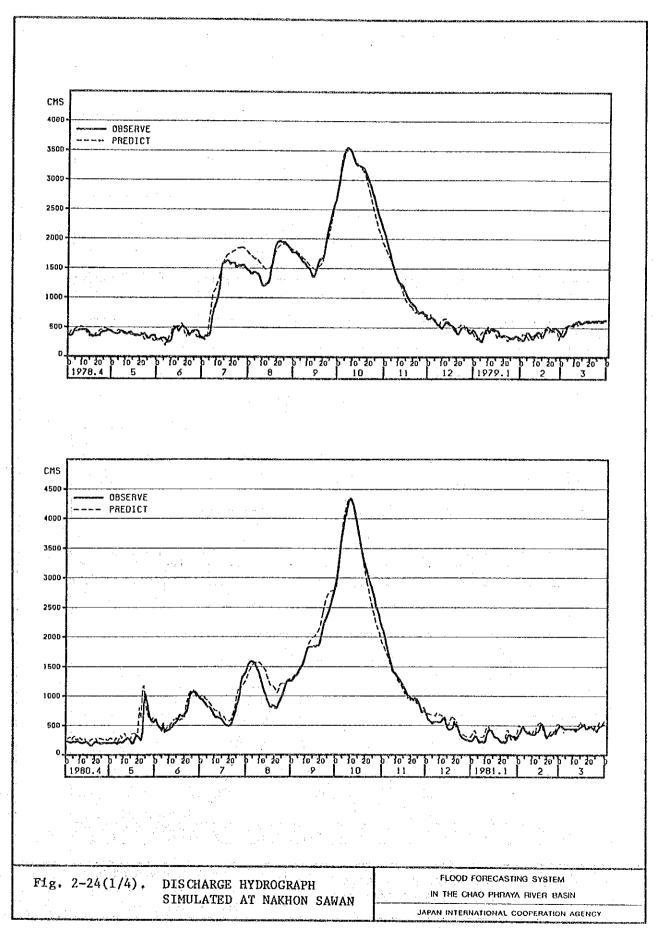


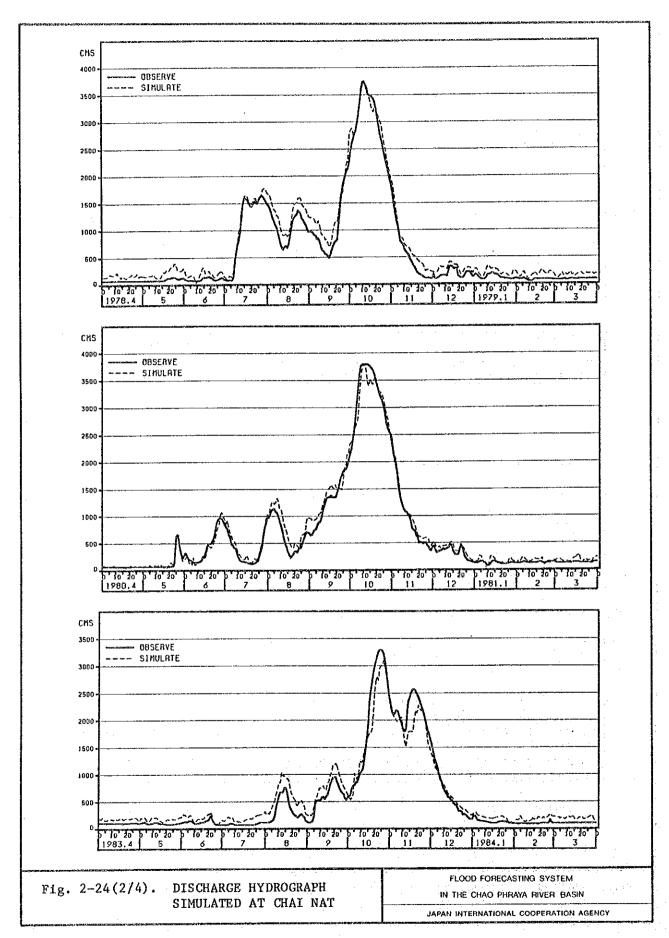

2-113

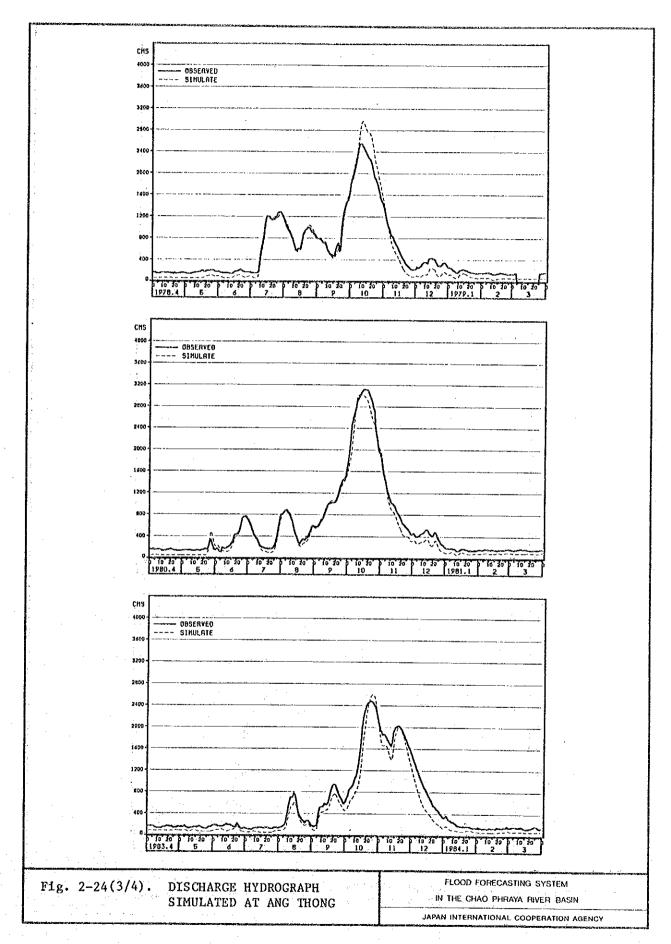


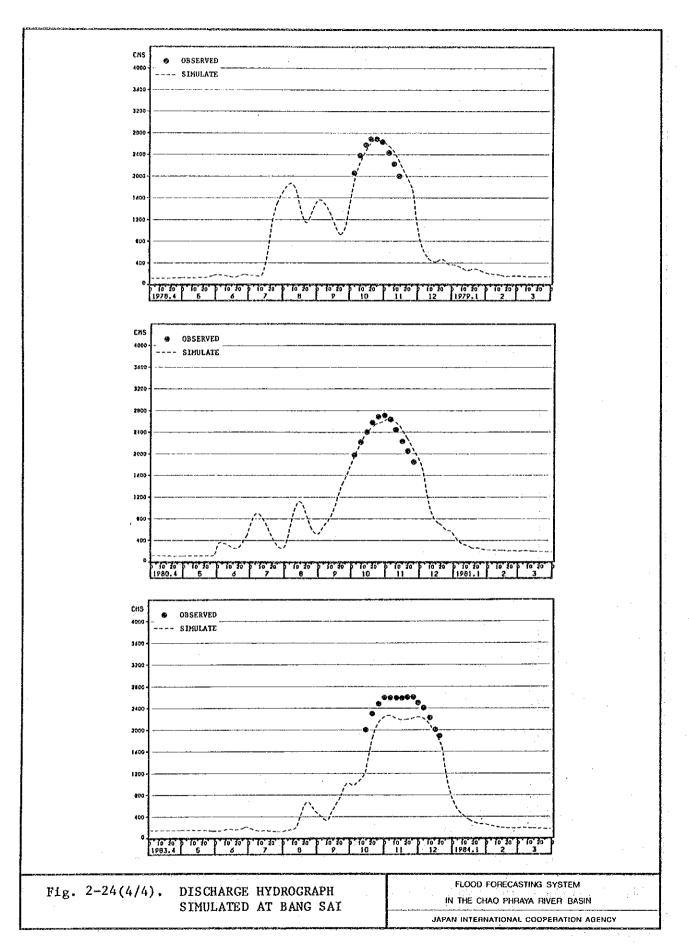


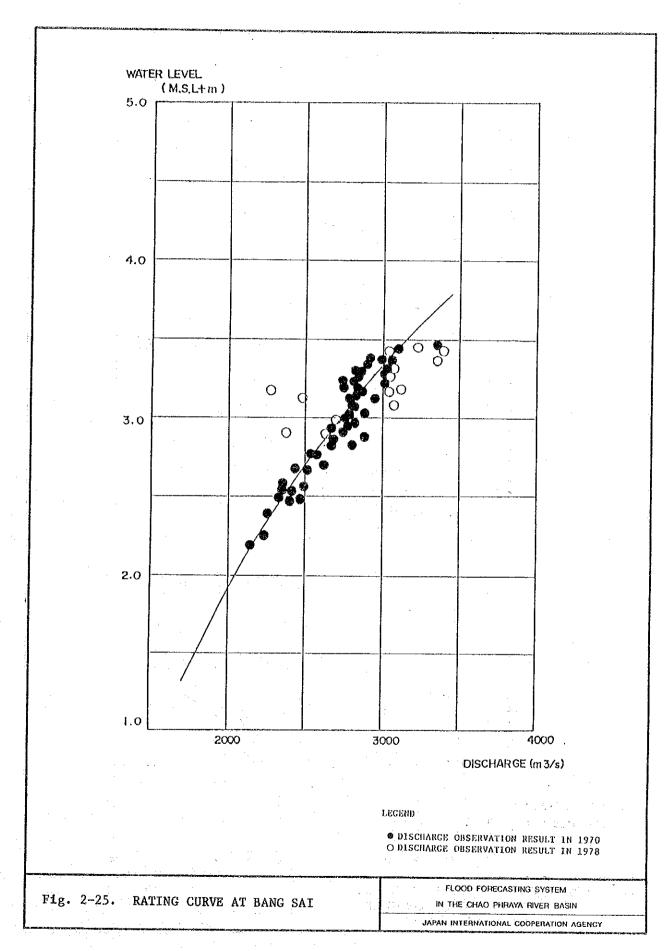


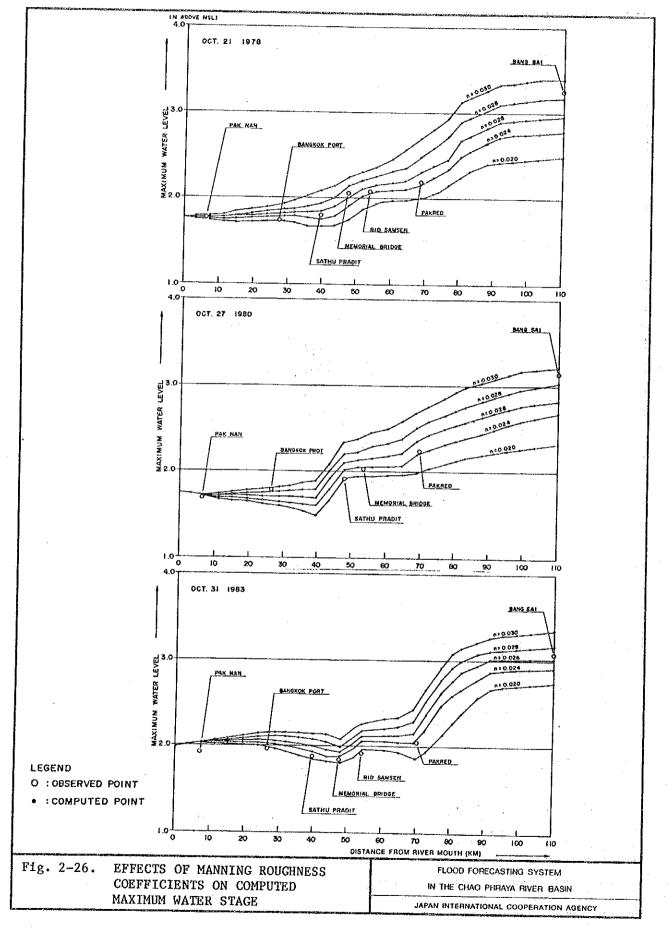


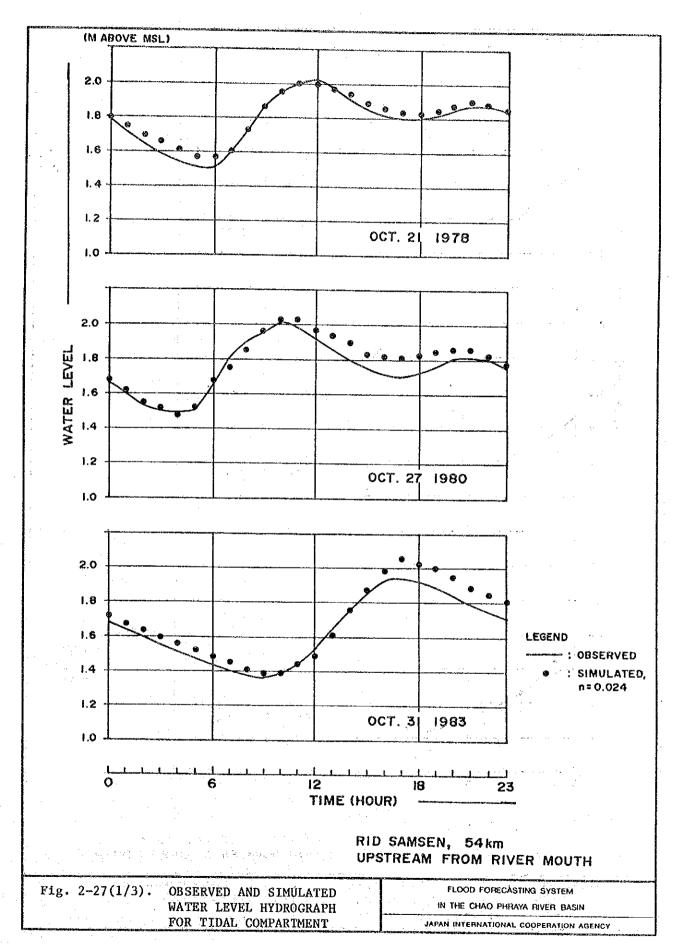


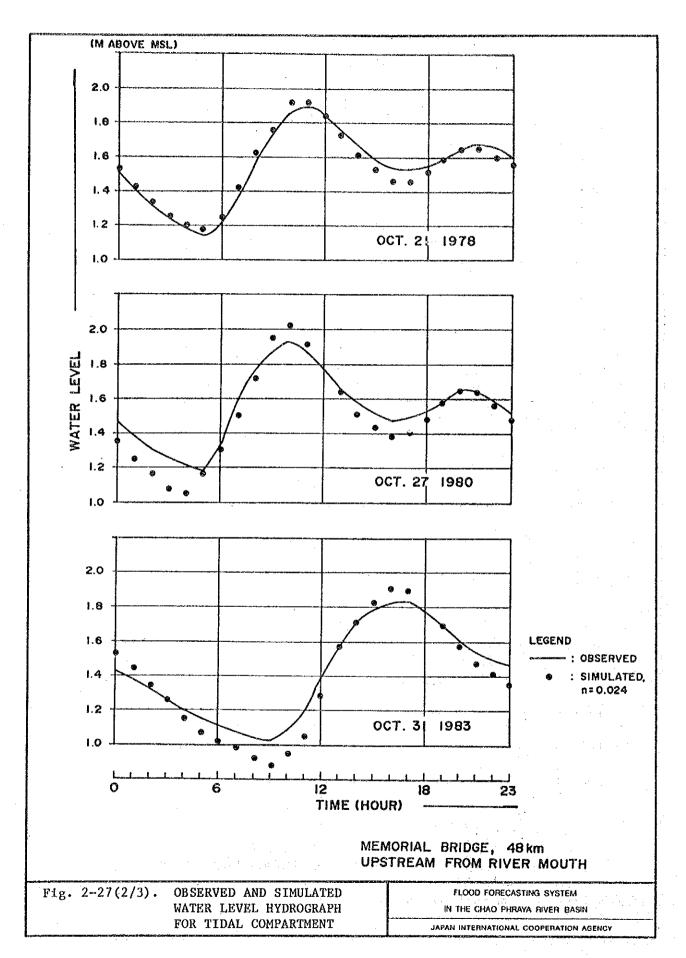


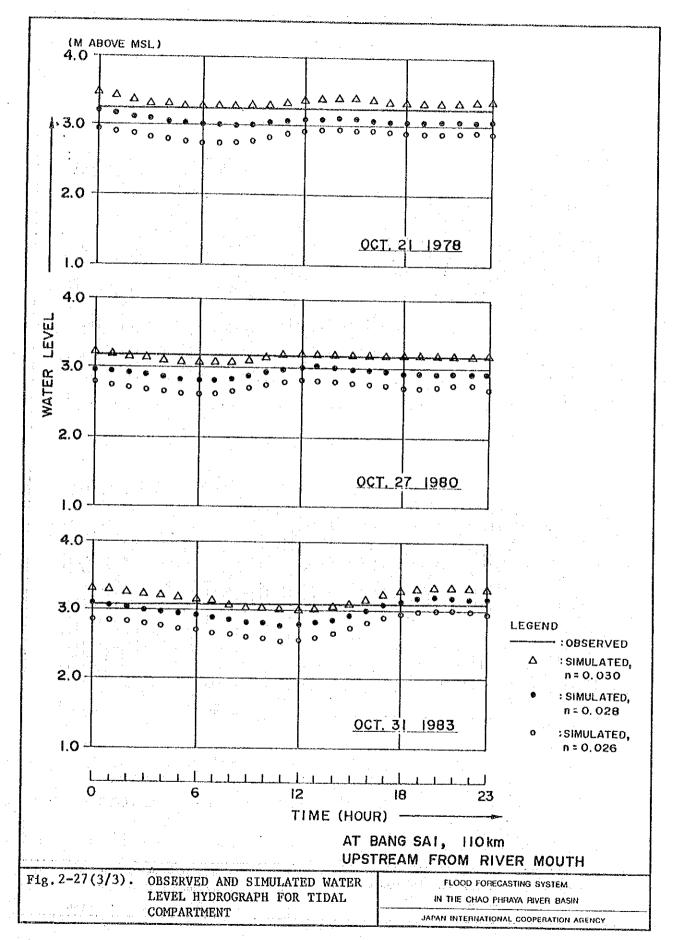












2 - 1.30