5.8 Design of River Protection

5.8.1 Required Area of Water Opening

The discussion on required water opening to runoff flood discharge is presented in Section 5.2.2.

5.8.2 Type of River Bank Protection

As planned for the Phase I Bridges, river bank protection at the front of abutments is constructed when the velocity of water is over 3 m per second or when erosion and scouring are anticipated.

Considering the availability of local materials, grouted riprap protection is adopted for the Project. Since grouted riprap as a structure is not expected to prevent soil embankments from failure, it must be placed at a slope equal to or flatter than the natural angle of repose of the supporting soil. In design, the slope of 1.5:1 is proposed.

Grouted riprap foundations must be extended to bedrock or below the scour depth anticipated. Figure 5.8-1 shows a typical cross section of grouted riprap.

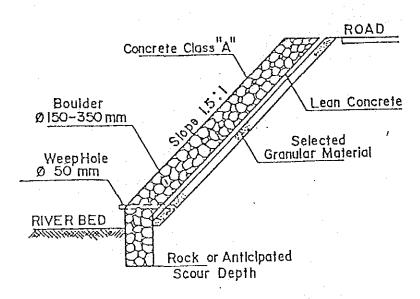


FIGURE 5.8-1 RIVER BANK PROTECTION

5.9 Implementation Plan

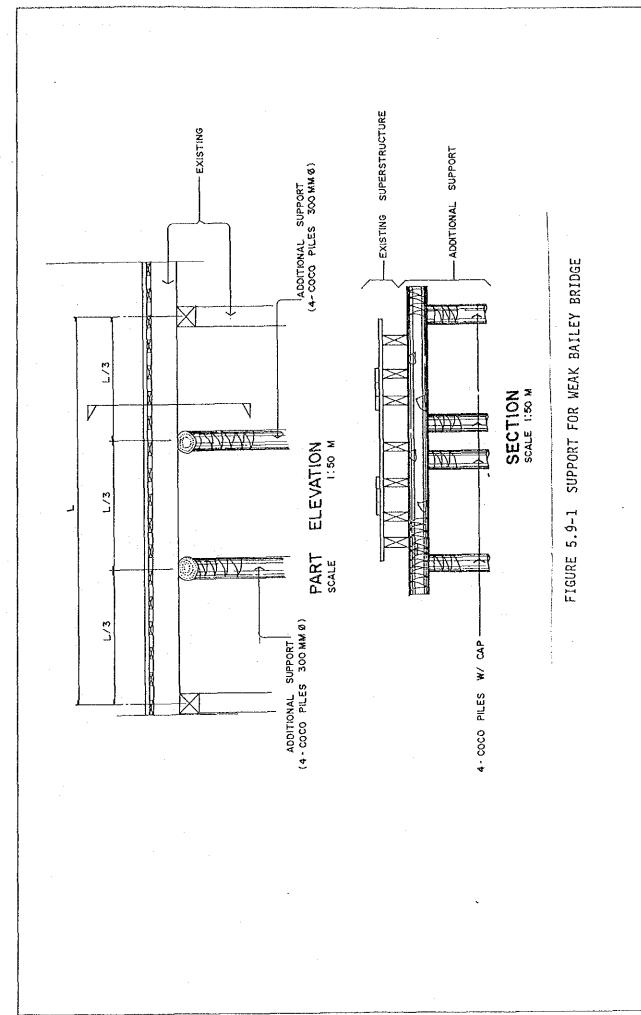
5.9.1 Transportation of Steel Materials

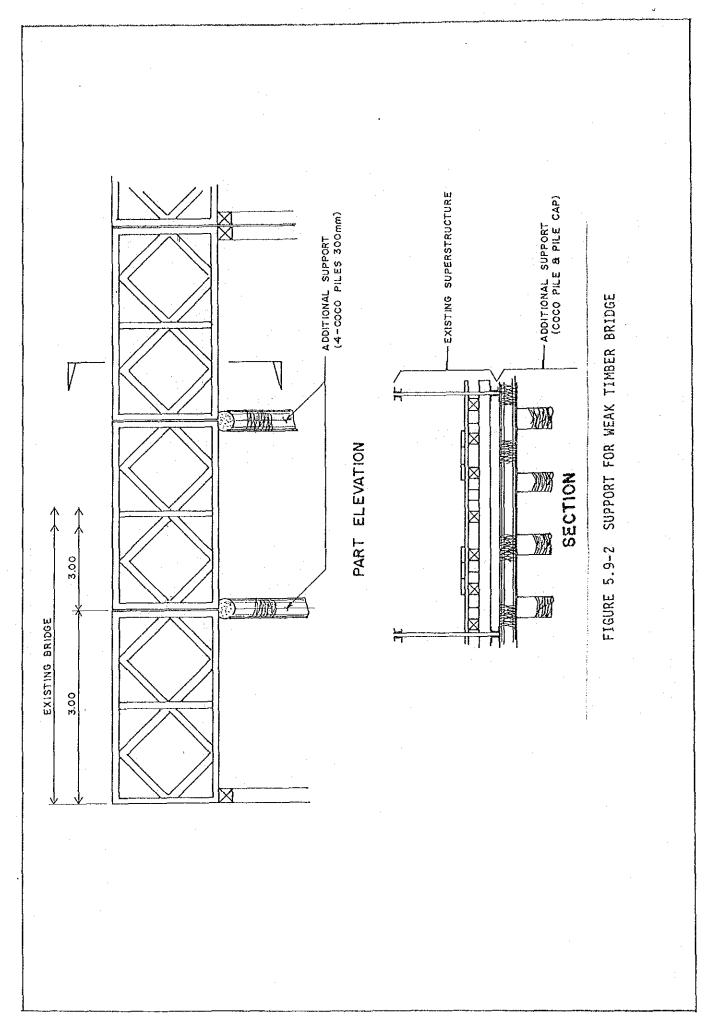
Steel materials supplied by Japan's Grant Aid will be shipped by sea from Japan to ports of entry in the Philippines, and then delivered to bridge construction sites by land. The transportation routes and existing conditions of the roads are presented in Table 5.9-1.

As described in the Minutes of Discussions, the Philippine Government will keep the access roads including bridges therein to the following bridge sites passable for the transport of materials and equipment.

- 04.04b Lumang Bayane Bridge:

 Temporary Construction of 2 spillways.
- 04.05b Olangoan I Bridge :
 Reinforce 7 dilapidated bridges
- 05.03 Narangasan I Bridge:
 Reinforce 3 dilapidated bridges
- 07.01 Banban Bridge :

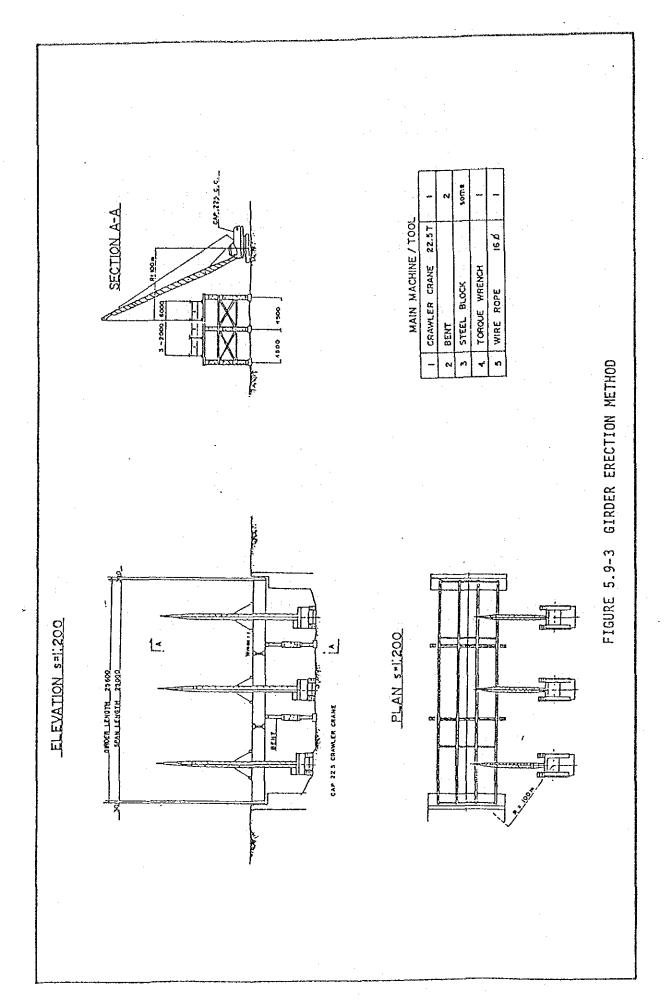

 Reinforce 3 dilapidated bridges
- 07.02 Campacas Bridge:
 Improve road from Dalaguete to site
 including reinforcing 1 dilapidated
 bridge
- 08.04 Talisayan Bridge :
 Reinforce 2 dilapidated bridges
- 10.01 Hayangabon I Bridge:
 Reinforce 11 timber bridges


Several measures to reinforce these dilapidated bridges can be proposed, and the following measures are presented as examples. Figures 5.9-1 and 5.9-2

illustrate measures to reinforce Bailey and timber bridges, respectively.

TABLE 5.9-1 THE ROUTES OF TRANSPORTATION AND THE ROAD CONDITION

Bridge No.	Bridge Name	Ports of landing	Land Route	Existing Condition land route
04.01a	Binambang	Manila	.Manila->site .108km from Manila	.Paved .Good
04.03a	Leviste II	Manila	.Manila->site .93km from Manila	.Paved .Good
04.04b	Lumang Bayan	Manila-> Matabang	.Matabang->site .5km from Matabang	.Un-paved, little bad .2 spillways
04.05b	Olangoan	Manila-> Anilawan	.Anilawan->site .13km from Anilawan	.Un-paved, little bad .7 dilapidated bridges
05.03	Narangasan I	Manila-> Masbate	.Masbate->site .31km from Masbate	.Un-paved, very bad .2 dilapidated bridges
06.03	lyang	Cebu-> Iloilo	.Iloilo->site .110km from Iloilo	.Paved .Good
07.01	Banban	Cebu	.Cebu->toledo->site .54km + 7km = 61km	.54km paved, 7km un-paved .3 dilapidated bridges
07.02	Campacas	Cebu	.Cebu->Dalaguete->site .85km + 13km = 69km	.13km very bad .Need improvement
08.04	Talisayan	Cebu-> Tacloban	.Tacloban->MacArther ->site .59km + 10km = 69km	.59km paved, 10km un-paved .2 bridges need rein- forcement
10.01	Hayangabon I	Cebu-> Surigao	.Surigao->Bacnao->site .35km + 40km = 75km	.35km paved, 40km un-paved.11 bridges need rein-forcement



5.9.2 Erection of Steel Girders

The methods which can be adopted to erect the steel girders include the direct erection method which uses a crawler crane from the river bed or from approach roads and the towing-cable erection method. Given the magnitude of construction and other conditions, the direct erection method from the river bed using a crawler crane was adopted in this Study. The scheme of the method is illustrated in Figure 5.9-3.

Since the crawler crane needs to enter the river, an approach road leading the crawler crane to the river was planned to be constructed with a temporary embankment. The height of the embankment should be one meter higher than the ordinary level of water considering flooding in the rainy season. However, for the Campacas Bridge, a temporary platform was planned to be constructed for the erection since the river is narrow, and the water flow would be obstructed if a temporary embankment is to be constructed.

With this method, bents are required to hold steel girders while erecting. Coconut trees which are available will be used instead of steel bents. Since it is difficult to build saddles on the river beds during the rainy season, it is planned to drive coconut tree piles into the river beds during the dry season, and the piles can serve as erection girders even during the rainy season.

5.9.3 Construction of Cofferdams

Construction of substructures are planned to be implemented in the dry season because this means not only reducing construction cost but also guaranteeing the safety and quality of construction. However, where the ordinary water level is high during high tide, temporary cofferdams will be required during construction of substructures.

The fill type is basically employed for cofferdams; however, sheet piles are employed where the ordinary water level is relatively high or the river is wide.

The bridges whose substructures require cofferdams in the construction are listed below:

Filled Cofferdams :

	•		
04.01a	Binambang Bridge	(1	pier)
04.04b	Lumang Bayan Bridge	(2	piers)
04.05b	Olangoan Bridge	(2	abutments)
07.01	Banban Bridge	(2	abutments)
10.01	Hayangabon I Bridge	(1	piers)

Sheet Pile Cofferdams:

05.03	Narangasan Bridge	(1	pier)
06.03	lyang Bridge	(1	pier)
08.04	Talisayan Bridge	(3	piers)

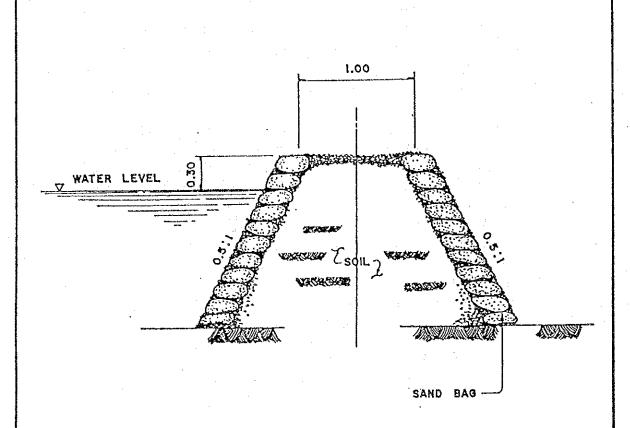
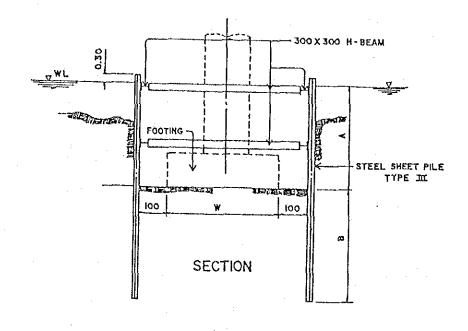



FIGURE 5.9-4 FILLED COFFERDAM

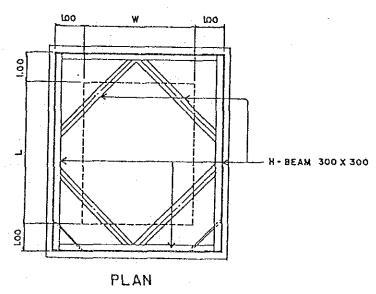
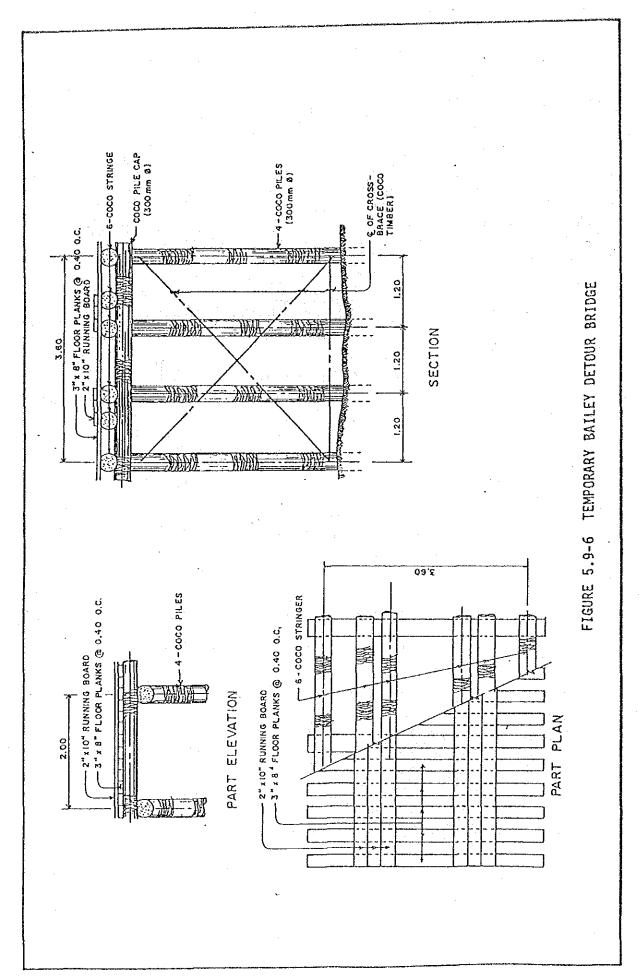


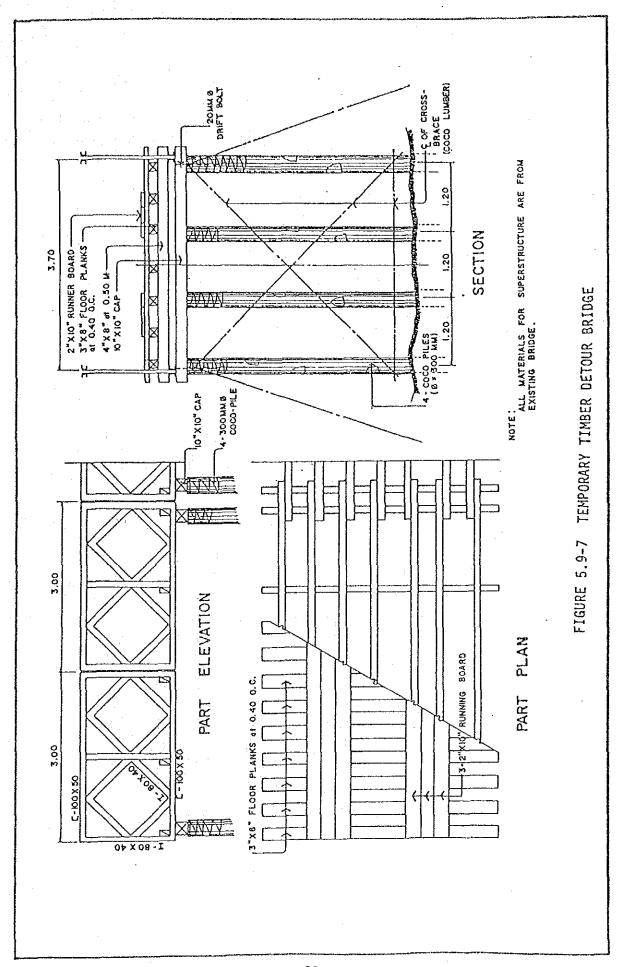
FIGURE 5.9-5 SHEET PILE COFFERDAM

5.9.4 Detour Roads

Detour roads are planned to provide for traffic during construction. The serviceability of the detour roads need to be at the present level to maintain the functions of the roads.

Table 5.9-2 shows the existing conditions of the bridges and their detour roads. According to the Table, the detour roads can be categorized as follows:


- 1) Existing bridges/spillways to be utilized
 - 04.01a Binambang Bridge
 - 04.04b Lumang Bayan Bridge
 - 04.05b Olangoan Bridge
- 2) Ford crossing (no bridge exists)
 - 04.3a Leviste II Bridge
 - 08.04 Talisayan Bridge
- 3) Detour road exists
 - 07.02 Campacas Bridge
- 4) Temporary bridges to be constructed


05.03	Narangasan I Bridge	(uti	lize me	mbers	o f
		exi	sting b	ridge)	
06.03	Iyang Bridge	(woo	den bri	dge)	
07.01	Banban Bridge	(11)	
10.01	Havangabon I Bridge	(11)	

Temporary bridges utilizing members of existing bridges and the wooden temporary bridges are illustrated in Figures 5.9-6 and 5.9-7, respectively.

TABLE 5,9-2 DETOUR AND EXISTING CONDITIONS

Bridge No.	Bridge Name	Existing Condition	Detour
04.01a	Binambang	Spillway	Existing spillway can be used
04.03a	Leviste Il	Washed-out	Ford-crossing
04.04b	Lumang Bayan	Fair bailey bridge	Use existing bridge
04.05b	Olangoan	Fair bailey bridge	Use existing bridge
05.03	Marangasan I	Fair bailey bridge	Temporary road, using existing bridge members, at upstream side
06.03	lyang	Dilapidated timber bridge	Temporary road with wooden stage downstream side
07.01	Banban	Dilapidated timber bridge	Temporary road with wooden stage, upstream side
08.04	Talisayan	No existing bridge	Ford-crossing
10.01	Hayangabon I	Dilapidated timber bridge	Temporary road with wooden stage, downstream side

5.9.5 Demolition of Existing Bridges

Existing bridges will be demolished as necessary either before construction is undertaken, by the Japanese side, or after completion of construction, by the Philippine side, as follows:

1) By Japanese side

- 05.03 Narangasan I Bridge
- 06.03 lyang Bridge
- 07.01 Banban Bridge
- 07.02 Campacas Bridge
- 10.01 Hayangabon I Bridge

2) By Philippine side

- 04.01a Binambang Bridge
- 04.04b Lumang Bayan Bridge
- 04.05b Olangoan Bridge

3) No existing bridge

- 04.03a Leviste II Bridge
- 08.04 Talisayan Bridge

CHAPTER 6

IMPLEMENTING ARRANGEMENT

CHAPTER 6

IMPLEMENTING ARRANGEMENT

6.1 Executing Agency and Organization

The Department of Public works and Highways (DPWH) is the executing agency for both the Project for Constructing Bridges along Rural Roads Phase I and Phase II.

The DPWH is headed by the Secretary who is assisted by five (5) Undersecretaries and six (6) Assistant Secretaries. In the Department, there are six (6) Service Offices - Planning, Controllership and Financial Management, Administrative and Manpower Development, Legal, Monitoring and Information, and Internal Audit; and five (5) Bureaus - Design, Construction, Maintenance, Equipment, and Research and Standards. Refer to Figure 6.1-1: Organization of the DPWH.

The five (5) Bureaus have the following major functions:

- . Bureau of Design undertakes project development, engineering surveys and designs of infrastructure facilities.
- . Bureau of Construction . provides technical services for the construction, rehabilitation, betterment and improvement of infrastructure facilities.
- . Bureau of Maintenance .. provides technical services and supervision on the maintenance and repair of roads and bridges and other associated structures.
- . Bureau of Equipment ... manages all Government construction and maintenance of equipment, including procurement and dispersement to the regions.

. Bureau of Research and Standards

provides research and technical services on quality control and on the management of materials, plants and ancillary facilities for the production and processing of construction and maintenance materials.

regional level where the infrastructure Αt the projects are implemented, the DPWH has 14 Regional Offices each headed by a Regional Director. addition, there are 92 District Offices and 59 City Engineering Offices, Regional Equipment Centers The latter are under the supervision the Regional Director concerned. These offices serve the implementing arms of the DPWH. The locations as regional offices are shown in Table 6.1-1. The organization of the DPWH and of a regional office are shown in Figures 6.1-1 and 6.1-2, respectively.

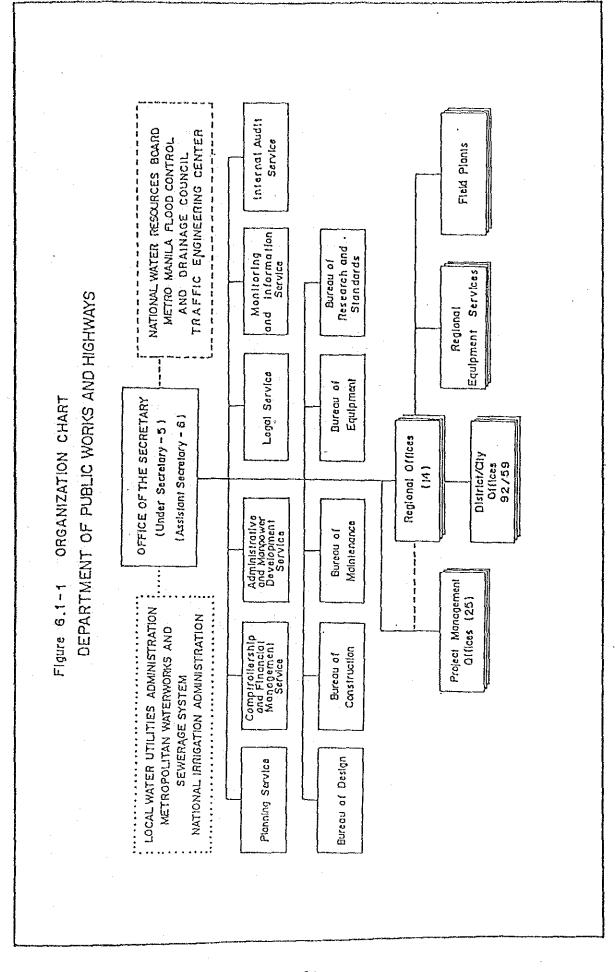
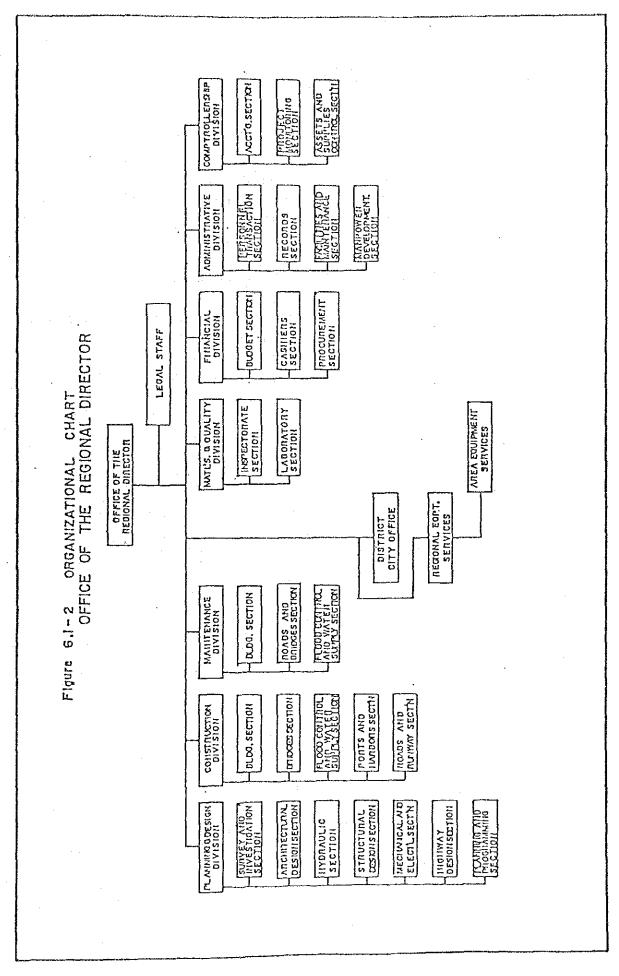



Table 6.1-1 Location of Regional Offices

	Regio	n	Location
1	Region	I	San Fernando, LA UNION
2	Region	I	Tuguegarao, CAGAYAN
3	Region	Ш	San Fernando, PAHPANGA
4	Region	IV-A	Quezon City, HETRO HANILA
5	Region	IV-8	Quezon City, HETRO HANILA
6	Region	γ	Legaspi City, ALBAY
7	Region	VI	
8	Region	VI	Cebu City, CEBU
9	Region	VI	Palo, LEYTE
10	Region	IX	Zamboanga City, ZAH8OANGA DEL SUR
11	Region	X	Cagayan de Oro Ciely, HISAHIS ORIENTAL
12	Region	ΧI	Davao City, DAVAO
13	Region	ХI	Cotabato City, MAGUINDANAO
14	NCR		2nd Street, Port Area, Hanila

6.2 Undertaking of Both Governments

There are a total of ten (10) bridges with a total length of 517.0 m or an average length of 51.7 m per bridge and a total of nineteen (19) spans in the Phase II Bridges. Undertaking of both governments as shown in The Minutes of Discussions for the Project, dated April 7, 1988. The Project covers the following items:

6.2.1 Scope of Grant Aid by the Government of Japan

The scope of Grant Aid by the Government of Japan for the Phase II Bridges covers construction of bridges, access roads and related structures including supply of steel materials. The major construction works are as follows:

(1) Major Construction Works

- 1) Construction of Superstructures:
 - . Supply, delivery and erection of steel materials, construction of concrete slabs and handrails
- 2) Construction of Substructures
 - . Construction of abutments and piers (including piles)
 - . Temporary works (sheet pile cofferdams)
- 3) Construction of Approach Roads (Scope is limited to connecting new bridge to existing road with smooth alignment.)
 - . Earth works and construction of pavement structures
 - . Installation of drainage facilities
 - . Supply, delivery and installation of steel railings
- 4) Construction of River Bank Protection (Scope is limited to abutments.)

The quantity of the major construction works for the Phase II Bridges is shown in Table 6.2-1.

TABLE 6.2-1 SUMMARY OF QUANTITIES FOR PHASE II BRIDGES

ht Concrete Abutment (height) Pier (height) (An S94.1 m² H= 7.0 m H= 7.0 m H= 7.0 m A2 In S90.9 H= 5.0 H= 5.0 H= 7.0 m H= 7.0 m A2 In S90.9 H= 5.0 H= 5.0 H= 7.0 p2 In S90.9 H= 5.0 H= 5.0 H= 7.0 p2 In S90.9 H= 5.0 H= 5.0 H= 7.0 p2 In S90.1 H= 5.0 H= 5.0 H= 6.0 A2 In S90.1 H= 4.5 H= 4.5 H= 6.0 A2 In S90.1 H= 4.5 H= 4.0 H= 5.0 A1 In S90.1 H= 4.5 H= 4.0 H= 5.0 P2 In S90.1 H= 4.5 H= 4.0 H= 5.0 P2 In S90.1 H= 4.5 H= 4.0 H= 5.0 P2 In S90.5 H= 4.0 H= 5.0 P2 In S90.6 H= 6.0 P2 In S90.9 H= 6.0 P2 In S90.9 H= 5.0 P2 In S90.9 H= 5.0 P2 In S90.9 H= 5.0 P2 In S90.1 H= 4.5 H= 5.0 P2 In S90.9 H= 5.0 P3 In S90.9 H=			Superstructore	tore			Substru	cture		Approach Road	Road	River Bank Protection	rotection
Singulation Single-Law Boam Sight March Marc	idge No	dge N	440.00	Concrete	Abutment	(height)	Pier	RC Pile	Sheet Pile	(road length)	mgth)	(protection area)	ก ละยล)
Billitup Beam 594.1 mf H= 7.0m H= 7.0m H= 7.0m A1 113.5 7.43 113.5 1.0m H= 5.0 H= 5.0 A1 113.5 173.5 203.5 H= 6.0 H= 6.0 A2 A2 10.0 170.2 170.2 H= 5.5 H= 5.5 H= 7.5 A2 11.40 Built-up Beam 297.4 H= 5.0 H= 5.0 H= 7.5 A2 11.40 H- 60a 390.1 H= 5.0 H= 5.0 H= 6.0 A2 11.4 A1.0 H- 60a 390.1 H= 5.0 H= 5.0 H= 6.0 A2 11.4 A1.0 H- 60a 390.1 H= 5.0 H= 5.0 H= 6.0 A2 11.5 A1.0 H- 60a 300.1 H= 4.5 H= 6.0 H= 6.0 A2 11.4 A1.5 H= 5.5 H= 5.0 H= 6.0 H= 6.0 A2 11.4 A1.2 H= 5.3 H= 4.5 H= 6.0 H= 6.0 A2			nelight lasts	ueck Stab (Area)	N1	A2	(height)	(length x number)	(weight)	A1	A2	A1	A2
Lumang Bayan H-Ream 203.5 H= 6.0 H= 6.0 A2 A2 A2 A2 A2 A2 A2 A	04,01a	8 i nambang	Built-up Beam 35+35≕70m 113.5	594, 1 mi	H= 7.0m				1	120	123	286	286
Luneng Bayan 35+45=105m 890.9 H= 5.5 H= 5.5 A2 Luneng Bayan 170.2	04.03a		H—8eam 24m 36.0	203.5	ம்	, 6.	l	A1 =11.0×14=154.0 A2 =11.0×14=154.0		120	120	204	506
Narangasan I Sultt-up Beam Sign	04.04b	Lumang Bayan	Built-up Beam 35+35+35=105m 170.2		ະຕ	ري د	¥		1	160	148	220	220
Narangasan H-Beam 24+24=48m 406.8 H= 5.0 H= 5.0 H= 8.0 A2 A2 A2 A2 A2 A2 A2 A	04, 05b		Built-up Beam 35m 56.8		s,	l fi	1		-	134	121	135	145
1 y a n g	05.03	, 	H-8eam 24+24=48m 72.0		ທ່	(c)	80 ₩	A1 = 19.0×10=190.0 A2 = 16.0×10=160.0 P1 = 6.0× 9= 54.0	455m 27.3	121	121	330	320
H - Beam SKCW 25m 211.8 H = 3.5 H = 5.0 A	06.03	ខ្ពស់	H-Bcam 23+23=46m 67.9		Ψ.	= 4.	ا بۇ		390m 23. 4	120	120	210	190
Campacas H—Beam 203.5 H= 4.0 H= 4.0 A2 A2 A2 A3.5 H= 4.0 H= 5.0 A4 H= 5.0 A4 H= 5.0 A4 H= 5.0 B7 B2 A4 H= 5.0 B7 B2 B4.3 H= 4.0 H= 5.0 B7 B2 B4.3 H= 4.0 H= 5.0 B7 B2 B4.3 H= 4.0 H= 6.0 B7 B2 B4.3 H= 6.0 B7 B4.3 H= 6.0 B7 B73.5 H= 4.0 H= 6.0 B73.5 H= 6.0 B73	07.01	anba	FT-Beam SKEW 25m 40.0	211.8	د.	₩	l	A1 =25.0×10=250.0 A2 =25.0×10=250.0	l	121	120	274	276
Talisayan 24+24+24 813.3 H= 4.5 H= 5.0 A1 H= 5.0 A2 H= 5.0 A2 H= 5.0 B2	07.02	Campacas	H-Beam 24m 36.0	203.5		1)	ì	A1 =11.0×10=110.0 A2 =11.0×10=110.0	l .	121	120	240	250
Hayangabon I 22+22=44m 373.5 H= 4.0 H= 4.0 H= 6.0 56.3 56.3 H= 4.0 H= 6.0 H= 6.0 56.3 11-up 8eam 811-up 8eam 340.5 t 4.384.9 mf 10 abuts 10 abuts 9 piers 1.0 bridges 1.0 bridges 1.0 bridges 1.0 bridges 1.0 bridges 1.0 bridges 1.0 abuts	08.04	sayan	H-8eam 24+24+24+24 =96m		₹.	≡ 5,	 20 03 03	A1 = 14,0×10=140.0 A2 = 11,0×10=110.0 P1 = 12,0×12=144.0 P2 = 13,0×12=156.0 P3 = 11,0×12=132.0	1260m 75.6	121	121	170	180
8ilt-up 8eam 210m 310.5 t H—8eam 337.m			±				°;	-	1	121	121	261	239
452.2 [Total	10 bridges	8ilt-up 8eam 210m 340.5 t H-8eam 307m 452.2 t	4,384.9 m	10 abuts	10 abuts	9 piers	261 plles L= 2,988.0m	2,015 m 126.3 t	1,259 m	1,233 m	2, 330m*	2,310m²

(2) Major Steel Materials

The major steel materials to be supplied by Japan's Grant Aid is as follows:

1) Steel Materials for Bridge Superstructures

i) H-beam Girders

Span length (r	No, of n) spans	Size of H-beam girders Weight (t)
22	2	$900 \times 300 2 \times 28.16 = 56.3$
23	2	912×302 $2 \times 33.94 = 67.9$
24	8	$912 \times 302 8 \times 36.00 = 288.0$
25	11	$900 \times 300 1 \times 39.96 = 40.0$
Total:	13	452.2

ii) Build-up Girders

	Span	No. of	Height of		
1	ength (m)	spans	Girders	Weight	(t)
-	35.0	6		x 56.75	= 340.5

2) Steel Sheet Piles and Others

Size Type-III	Total length (m) 2,105	Total Weight (t)
H-300	400	42.5
Total		168.8

3) Steel Railings for Bridge Approaches

Size	Total Length(m)	Total Weight (t)
	$16 \times 4 \times 10 = 640$	- 0 0 /

6.2.2 Undertaking of the Government of the Philippines

The scope of undertaking of the Government of the Philippines for the Phase II Bridges is as follows:

- (1) Scope of Major Undertakings
 - 1) To ensure the exemption of custom duties, internal taxes and other fiscal levies for supply of materials under Japan's Grant Aid.
 - 2) To acquire the right-of-way and to provide necessary land area for the construction works
 - 3) To demolish obstacles including houses within the right-of-way that affect the implementation of the Project.
 - 4) To make passable all roads and bridges leading to the project sites for the transportation of materials and equipment provided under Japan's Grant Aid.
- (2) Land Acquisition and Obstacle Demolition

The acquisition of right-of-way, the demolition of obstacles including houses and the temporary provision of necessary land area for construction works are shown in Table 6.2-2.

(3) Maintenance of Bridges and Road for Transportation of Materials

The bridges and roads leading to the project sites for the transportation of materials and equipment that must be made passable are shown in 5.9.1. The major maintenance works are as follows:

. 04.04b Lumang Bayan Bridge:
Temporary construction of 2 spillways

- . 04.05b Olangoan I Bridge :

 Rehabilitation of 3 dilapidated bridges
- . 05.03 Narangasan I Bridge :

 Rehabilitation of 7 dilapidated bridges
 - . 07.01 Banban Bridge:
 Rehabilitation of 3 dilapidated bridges
 - . 07.02 Campacas Bridge:

 Rehabilitation of road between

 Dalaguete and project site including reinforcing of 1 dilapidated bridge.
 - . 08.04 Talisayan Bridge:

 Rehabilitation of 2 dilapidated bridges
 - . 10.01 Hayangabon Bridge:

 Rehabilitation of 11 timber bridges

TABLE 6.2-2 LAND ACQUISITION, HOUSE DEMOLITION AND TEMPORARY LAND FOR CONSTRUCTION WORKS

Bridge Land	Name of	Land	House		Temporary	
	Bridge ction	Acquisition Demolit		Demoliti	on for	
(m ²)	Ction	R.O.W.	(m ²)	(units)	Works	
04.01a	Binambang	3,625	0	Transmission from the second s	600	
04.03b	Leviste II	3,065	0		600	
04.04b	Lumang Bayan	2,391	0	The state of the s	600	
04.05b	Olangoan	3,465	0		600	
05.03	Narangasan I	3,395	0		600	
06.03	lyang	2,280	2	(wooden)	600	
07.01	Banban	3,200	0		600	
07.02	Campacas	976	1	(Wooden)	600	
08.04	Talisayan	3,986	0		600	
10.01	Hayangabon I	3,540	10	(wooden) (nippa)	600	
	Total	29,923	13 5	(wooden) (nippa)	6,000	

6.3 Implementation Schedule

Several factors to be considered in proposing the implementation schedule are as follows:

- . Appraisal and Approval of the Project by the Government of Japan.
- . Exchange of Notes
- . Detailed Design: from November 1988 to January 1989
- . Climate

Dry Season : from December to May Rainy Season : from June to October

The Exchange of Notes between the Government of Japan and the Government of the Philippines is expected in the middle of October 1988.

The construction schedule, especially for the piers inside rivers, should be executed during the dry season: otherwise, the use of cofferdams may be required: The soil compaction for embankment of approach roads are also recommended to be done during the dry season.

The dry season differs by project sites but is basically from December to May.

With above mentioned conditions, construction is scheduled for twelve (12) months from March 1989 to February 1990. The proposed implementation schedule is shown in Figure 6.3-1.

PROPOSED IMPLEMENTATION SCHEDULE PHASE II BRIDGES

|--|

- Superstructure

Note: ______ Dry Season or less rainfall season

6.4 Fund Preparation

The fund preparation for the project by the Government of the Philippines is approximately 6.0 million pesos. The public investment program (PIP) of the Philippines includes the budget allocated for the Project including Phase I as shown in Table 6.4-1.

TABLE 6.4-1 BUDGET ALLOCATED FOR THE PROJECT

*** *** *** *** ***	~~		(unit:	million pesos)
	1988	1989	1990	Total
TP	20	20	96	136
P	20	20	96	136
S	0	0	0	0

Note: TP = total pesos

P = peso portion

S = foreign portion

According to the budget plan, the total budget is 136 million pesos. The fund to be prepared for Phase I is 82 million pesos and for Phase II 6.0 million pesos. Though the total budget of 136 million pesos is quite enough to cover the total requirement of 88 million pesos, the budget for the fiscal year of 1989 of 20 million pesos is not sufficient.

The DPWH representatives indicated that the budget for fiscal 1988 was already fixed, but that for 1989 can be adjusted. It is, therefore, recommended that the budget, including Phase I and Phase II for 1989, be amended in accordance with the construction cost estimated through the detailed design.

6.5 Design and Construction Supervision Plan

This Project shall be executed under Grant Aid Program of the Government of Japan, and the Assistant Secretary for Planning is responsible for the execution of the Project under the direction of the DPWH.

Design and construction supervision shall be executed by a Japanese Consultant and construction by a Japanese Contractor. Contracts for consultancy and construction shall be concluded by the DPWH.

The Government of the Philippines has designated the following organizations for the execution of the project under the Assistant Secretary for Planning as follows:

- . Bureau of Design : Design and cost estimates
- . Bureau of Construction: Specifications and tendering
- . Regional Offices : Direction and supervision of construction.
- . Bureau of Maintenance : Maintenance

The four (4) executive Bureaus are to have discussions, and contact and make adjustments with the Japanese Consultant in order to complete the Project.

6.6 Maintenance Plan

The Bureau of Maintenance is responsible for the maintenance of national roads and bridges in the Philippines.

There are four (4) categories of maintenance in the DPWH as follows:

. Routine Maintenance: Day-to-day basis throughout the year

. Periodic Maintenance: Recurrent time cycle of more than one year

. Emergency Maintenance: Unprogrammed activities required in the aftermath of slides, floods, etc.

. Special Maintenance: Outside the scope of normal maintenance operations

In the Philippine Highway Maintenance Management System (PHMMS), there are 56 work activities at present, of which eight (8) activities are related to bridge maintenance, as shown in Table 6.6-1.

TABLE 6.6-1 MAINTENANCE ACTIVITIES FOR BRIDGES

ctivity No.	Activity
151	Cleaning of Bridges
152	Patching of (PC) Concrete Decks
153	Repair of Concrete Bridges
154	Repair of Steel Bridges
155	Repair of Bailey Bridges
157	Clearing Bridge Waterways
402	Initial Response to Emergencies - Bridges
65X	Bridge Repainting

Since these activity standards are well established, timely application of these maintenance activities are highly recommended.

6.7 Construction Cost

The cost to be borne by the Government of the Philippines is roughly estimated at 6 million pesos, as shown in Table 6.7-1.

TABLE 6.7-1 CONSTRUCTION COST OF THE GOVERNMENT OF THE PHILIPPINES

Item	Quantity		Unit Cost (pesos)	
Rehabilitation of Roads Leading to Project Sites	13	km		2,900,000
Rehabilitation of Bridges Leading to Project Sites	29	bridges	;	330,000
Road Maintenance	663	km	500	330,000
Land Acquisition	29,923	m ²	50	1,500,000
House Demolition	18	houses	50,000	900,000
Necessary Land Rental for Construction Works	6,000	m ²	10	60,000
Total				6,020,000

CHAPTER 7

EVALUATION OF THE PROJECT

CHAPTER 7

EVALUATION OF THE PROJECT

The Project (Phase II) is a continuation of Phase I and it aims to promote active growth of socio-economic development. The Government of the Philippines is eager to complete the Project which can be evaluated as follows.

Traffic interruption due to the failure of old and weak bridges imposes direct and indirect constraints upon people's activities, as well as on the economic and development activities within the influence area of the bridges. This leads to a lack of confidence in road reliability which in turn, discourages, to a certain degree, the private sector's plans to invest in these areas.

The Project, when completed, is envisioned to provide basic transport access in rural areas with rich potential, especially improved transport facilities, which will eliminate severe constraints to increased productivity and social advancement.

The effects of the Project, therefore, should be evaluated not only from their impact on traffic function, but also from the socio-economic point of view.

(1) Direct Effects

The direct effects that will be derive from the Project accrue mainly from direct reductions in traffic costs to road users. This includes vehicle operation, travel time, accidents and discomfort. As for government administrative costs, maintenance and restoration cost savings and salvage value can be expected.

The actual benefits of this Project are as follows:

- 1) The problem of traffic closure during the rainy season will be solved.
- 2) Travel time will be shortened.

- 3) The safe passage of heavy construction equipment, heavy trucks, etc. will be ensured.
- 4) The function of the rural road network will be improved.
- 5) Traffic safety will be considerably improved.

(2) Indirect Effects


The various indirect effects of the Project which cannot be quantified are likewise assessed from the point of view of socio-economic impact. These effects are as follows:

- 1) Contributing to attaining a better life.
- 2) Activating social activities.
- 3) Generating greater opportunities for employment.
- 4) Minimizing disparities between localities.
- 5) Stabilizing commodity prices.
- 6) Developing agricultural and industrial productivity.
- 7) Promoting rich investment from the private sector.

Overall, the Project will serve as an incentive for increased participation by the rural population in economic activities. Further, it will have the impact of bringing people living in isolated and remote areas into the mainstream of the social and economic activities in the country.

CHAPTER 8

CONCLUSION AND RECOMMENDATION

CHAPTER 8

CONCLUSION AND RECOMMENDATION

8.1 Conclusion

The Project (Phase II), a continuation of Phase I Study, aims to improve essential transport facilities in rural areas and secure transportation in areas which are often isolated during the rainy season, by replacing old temporary and dilapidated bridges along rural roads with permanent steel structures.

January 1987, the Philippine Government proposed Medium-Term Philippine Development Plan 1987-1992, which aims to increase productivity in rural areas and to alleviate poverty. In the highway sector of Development Plan, an emphasis is put on improving rural roads connecting farms and markets. In line with this emphasis, replacement of old temporary and dilapidated bridges with permanent steel structures was selected as one of the most important strategies. This Project coincides exactly with the strategy of the Plan. The Project will promote the development of rural areas, increase the employment opportunities, and ultimately contribute to economic development. Therefore. continuous implementation of this project under Japan's Grant Aid is considered to be quite worthwhile and appropriate.

8.2 Recommendation

Considering the present socio-economic situation of the Philippines, the development of rural areas and the increase of employment opportunities are the most urgent issues. Since this Project contributes greatly to improving this situation, its prompt implementation is required.

To meet this requirement and complete the Project, the appropriate undertakings of the Government of the Philippines are of vital and the following recommendations are given to achieve this goal:

(1) The necessary budget for this Project should be promptly appropriated.

The fund preparation for the Project by the Government of the Philippines is about 6 million pesos. The lack funds to be readied for Phase I is 42 million The total of pesos. both should bе amended with the construction cost accordance estimated through the detailed design.

(2) A proper organization should be established for implementation of this Project.

This Project will be implemented under the jurisdiction of the Department of Public Works and Highways of the Philippine Government. The Assistant Secretary for Planning service should be responsible for the proper implementation of this Project and for the allocation of the required number and level of engineers and manpower.

- (3) Prior to the commencement of the Project, the following items should be implemented:
 - . Acquisition of right of ways
 - . Demolition of houses
 - , Rental of land for construction works
 - . Maintenance and rehabilitation of all roads and bridges leading to the project sites for the transportation of materials and equipment
 - . Rehabilitation of dilapidated bridges

APPENDIX I

MISSION FOR BASIC DESIGN STUDY

- . MEMBERS AND ITINERARY OF THE BASIC DESIGN STUDY TEAM
- . LIST OF PERSONS MET
- . MINUTES OF DISCUSSION

:			

1. Member of the Study Team

Leader Mr. Hiro-o Jiin

> Head of Research Division, Planning and Development

Department. Honshuu-Shikoku

Bridge Authority

Project

Coordinator

: Mr. Juro Chikaraishi

Second Basic Design Study

Division, Grant Aid Planning and

Survey Department, Japan

International Cooperation Agency

Bridge

Construction

Planning

: Mr. Tsuneo Bekki

Katahira & Engineers Inc.

Bridge

Designing

: Mr. Nobuyuki Uchida

Katahira & Engineers Inc.

Implementation

Planning and

: <u>Mr. Minoru Miura</u>

Topographic Survey Katahira & Engineers Inc.

Geotechnical

: Mr. Ken Kusano

Survey

Katahira & Engineers, Inc.

2. Itinerary

No.	Da	ate		Study Team	Geological Survey	Topographic Survey
1	15th, 1988	Feb.		. Bekki, Miura and Kusano Arrived in Manila . Meeting at Embassy of Japan, JICA		
2	16th,	11	Tue	 Meeting with DPWH Explanation of Inception Report Discussion of Progress of Bridge Design for Phase I 		
3	17th,	H	Wed	Discussion among Study Team		
4	18th,	· ·	Thu	. Miura and Kusano Arrived in Batangas for Site Survey Bridge No. 04.01a 04.03a Discussion with District Engineer Office . Collection/Review of Data . Instruction and Supervision of Geological Survey Bridge No. 04.01a . Instruction and Supervision of Topographic Survey Bridge No. 04.03a	of Survey Bridge	of Survey
5	19th,	11	Fri	. Miura and Kusano Site Survey Bridge No. 04.01a, 04.03a returned to Manila		
6	20th,	"	Sat	. Collection/Review of Data		
7	21st,	11	Sun	. Collection/Review of Data		

No .	Da	ate		Study Team	Geological Survey	Topographic Survey
8	22nd, 1988	Feb.	Mon	Miura arrived in Batangas, Confirmation of Conclusion of Topographic Survey Bridge No. 04.03a Returned to Manila		Conclusion of Survey Bridge No. 04.03a
9	23rd,	11	Tue	. Kusano arrived in Batangas, Confirmation of Conclusion of Geological Survey Bridge No. 04.01a	Conclusion of Survey Bridge No. 04.01a	
10	24th,	**	Wed	. Bekki returned to Japan . Miura arrived in Batangas, Instruction and Supervision of Geological Survey and Topographic Survey Bridge No. 04.03a, 04.01a . Returned to Manila	Conclusion of Survey Bridge No. 04.03a	Conclusion of Survey Bridge No. 04.01a
11	25th,	**	Thu	. Data Analysis . Analysis of Geological Survey Results . Check of Results of Topographic Survey		
12	26th,	tt	Fri	. Miura and Kusano arrived in Masubate, Site Survey Bridge No. 05.03 . Discussion with District Engineer Office and Collection/Review of Data		
13	27th,	11	Sat	Miura and Kusano Site Survey Bridge No. 05.03 Instruction and Supervision of Geological Survey and Topographic Survey Bridge No. 05.03 Returned to Manila	Commencement of Survey Bridge No. 05.03	Commencement of Survey Bridge No. 05.03
14	28th,	tt	Sun	 Review of Implementation Planning Collection/Review of Data 		

No.	Date		Study Team	Geological Survey	
15	29th, Feb.		 Review of Implementation Planning Collection/Review of Data 		
16	lst, Mar.		Miura and Kusano arrived in Batangas Confirmation of Conclusion of Geological Survey Bridge No. 04.03a and Topographic Survey Bridge No. 04.01a Returned to Manila	of survey Bridge No.	of survey
17	2nd, "	Wed	Miura arrived in Masbate Confirmation of Conclusion of Topographic Survey Bridge No. 05.03 Returned to Manila		Conclusion of Survey Bridge No. 05.03
18	3rd, "	Thu	 Kusano arrived in Masbate Confirmation of Conclusion of Geological Survey Bridge No. 05.03 Returned to Manila 	of Survey	
19	4th, "	Fri	Miura and Kusano arrived in Mindro Instruction and Supervision of Geological Survey and Topographic Survey Bridge No. 04.04b Returned to Manila	of Survey Bridge No.	Bridge No.
20	5th, "	Sat	 Analysis of Results of Geological Survey Check of Results of Topographic Survey 		
21	6th, "	Sun	 Miura and Kusano arrived in Leyte Instruction and Supervision of Geological Survey and Topographic Survey Bridge No. 08.04 Returned to Manila 	Commencement of Survey Bridge No. 08.04	Commencement of Survey Bridge No. 08.04

. .

No.	Date	Study Team	Geological Survey	Topographic Survey
22	7th, Mar. 1988	. Review of Implementation Mon Planning . Analysis of Results of Geological Survey . Check of Results of Topographic Survey		
23	8th, "	. Review of Implementation Tue Planning . Analysis of Results of Geological Survey . Check of Results of Topographic Survey		
24	9th, "	. Miura and Kusano arrived in Mindoro, Site Survey Bridge No. 04.04b . Discussion with District Engineer Office . Collection/Review of Data . Confirmation of Conclusion of Geological Survey and Topographic Survey of Bridge No. 04.04b	Conclusion of Survey Bridge No. 04.04b	Conclusion of Survey Bridge No. 04.04b
25	10th, "	. Miura and Kusano, Thu Site Survey Bridge No. 04.04b . Returned to Manila		
26	11th, "	. Miura and Kusano arrived Fri in Leyte, Site Survey Bridge No. 08.04 Discussion with Regional Office and first Dist- rict Engineer Office . Collection/Review of Data . Confirmation of Conclusion of Geological Survey and Topographic Survey Bridge No. 08.04	Conclusion of Survey Bridge No. 08.04	Conclusion of Survey Bridge No. 08.04
27	12th, "	Sat . Uchida arrived in Manila . Discussion among Study Team		

No.	Date	Study Team	Geological Survey	Topographic Survey
28	13th, Mar.	. Analysis of Results of Sun Geological Survey . Check of Results of Topographic Survey		
29	14th, "	. Miura and Uchida Mon reported to JICA about progress of Study		ing the first and the new day of the last and the services
30	15th, "	. Miura and Kusano arrived in Sebu, Site Survey Bridge No. 70.01, 07.02 Discussion with Regional Office and Second District Engineer Office Collection/Review of Data Instruction and Supervision of Geological Survey and Topographic Survey Bridge No. 07.01 Returned to Manila	of Survey Bridge No.	Commencement of Survey Bridge No. 07.01
31	16th, "	. Basic planning of Bridge Wed . Review of Bridge Approach . Review of Implementation Planning . Estimate of Construction Cost		
32	17th, "	. Basic Planning of Bridge Thu . Review of Bridge Approach . Review of Implementation Planning . Estimate of Construction Cost		
33	18th, "	. Basic Planning of Bridge Fri . Review of Bridge Approach . Review of Implementation Planning . Estimate of Construction Cost		

No .	Date	Study Team	Geological Survey	
34	19th, Mar.	. Miura and Kusano arrived in Sebu . Confirmation of Cconclusion of Geological Survey and Topographic Survey Bridge No. 07.01 . Instruction and Supervision of Geographic Survey and Topographic Survey Bridge No. 07.02 . Returned to Manila	of Survey Bridge 07.01 Commencement of Survey Bridge No.	of Survey Bridge No.
35	20th, "	Survey and Topographic Survey Bridge No. 10.01 Discussion with First City Engineer Office Collection/Review of Data	of Survey Bridge No. 10.01	of Survey Bridge No. 10.01
36	21st, "	. Miura and Kusano, Site Mon Survey Bridge No. 10.01 . Returned to Manila		
37	22nd, "	. Miura and Kusano arrived in Iloilo, Site Survey, Bridge No. 06.03 . Instruction and Supervision of Geological Survey and Topographic Survey Bridge No. 06.03 . Discussion with City Engineer Office and Second City Engineer Office . Collection/Review of Data . Returned to Manila	Commencement of Survey Bridge No. 06.03	Commencement of Survey Bridge No. 06.03

No.	Date		Study Team	Geological Survey	
38	23rd, Ma	r. Wed	. Miura and Kusano arrived in Palawan . Discussion with Puerto Princesa City Engineer Office . Instruction and Supervision of Geological Survey and Topographic Survey Bridge No. 04.05b . Returned to Manila	of Survey Bridge No.	
39	24th, "	Thu	. Miura and Kusano arrived in Sebu . Confirmation of Conclusion of Geological Survey and Topographic Survey Bridge No. 07.02 . Returned to Manila	Conclusion of Survey Bridge No.	Conclusion of Survey Bridge No. 07.02
40	25th, "	Fri	Miura and Kusano arrived in Surigao Confirmation of Conclusion of Geological Survey and Topographic Survey Bridge No. 10.01 Returned to Manila	Bridge No.	of Survey Bridge No.
41	26th, "		. Miura and Kusano arrived in Palawan, Site Survey Bridge No. 04.05b . Discussion with Puerto Princesa City Engineer Office . Confirmation of Conclusion of Geological Surand Topographic Survey Bridge No. 04.05b . Returned to Manila	of Survey	Conclusion of Survey Bridge No. 04.05b
42	27th, "	Sun	. Miura and Kusano arrived in Iloilo . Discussion with Regional Office . Collection/Review of Data . Returned to Manila	Conclusion of Survey Bridge No. 06.03	Conclusion of Survey Bridge No. 06.03

No.	Date	Study Team	Geological Survey	Topographic Survey
43	28th, Mar. 1988	. Analysis of Results of Mon Geological Survey . Check of Results of		
		Topographic Survey Basic Planning of Bridg Review of Bridge Approach Review of Implementatio Planning		
44	29th, "	. Messrs. Jin and Tue Chikaraishi arrived in Manila . Meeting at Embassy of Japan, JICA		
45	30th, "	. Meeting with DPWH Wed . Explanation and Discussion of Phase II Bridges . Mr. Jin, Mr. Chikaraish	i ,	
46	31st, "	Miura, and Uchida arrived in Palanlan . Mr. Jin, Mr. Chikaraish Thu Miura and Uchida, Site Survey Bridge No.		
:		04.05b . Explanation and Discussion with Puerto Princesa City Engineer Office . Returned to Manila		
47	lst, Apr.	Fri . Discussion among Study Team		
48	2nd, "	Sat . Mr. Jin, Mr. Chikaraish and Miura arrived in Sebu . Discussion with Regiona Office		

No.	I	Date Study Team		Study Team	Geological Survey		
49	3rd, 1988	Apr.		. Mr. Nakamura arrived in Sebu . Mr. Jin, Mr. Chikaraishi Mr. Nakamura and Miura Site Survey, Bridge No. 07.01, 07.02			
50	4th,	ŧŧ		Mr. Jin, Mr. Chikaraishi Mr. Nakamura and Miura Site Survey for Phase I Bridges, Bridge No. 07.03, 07.04, 07.05 Returned to Manila Bekki arrived in Manila Meeting at JICA			
51	5th,	11	•	Explanation and Discus- sion on Phase II Bridge with DPWH Discussion among Study			
52	6th,	*1	Wed	Discussion about Draft of Minutes			
53	7th,	11	Thu	Minutes signed.			
54	8th,	н	Fri	Meeting at Embassy of Japan, JICA			
55	9th,	11	Sat .	Preparation for Returning to Japan			
56	10th,	11	Sun	Returned to Japan		± 1	

3. List of Persons Met

Persons whom the Study Team met are as follows:

Name and Organization

<u>Title</u>

Embassy of Japan in Philippines

Mr. Koji Kaminaga

First Secretary

JICA Office in Philippines

Mr. Moriya Miyamoto Mr. Katuhiko Ohshima

Mr. Katuhiko Ozawa

Resident Representative
Deputy Resident
Representative
Assistant Resident
Representative

DPWH

Mr. Toshiyuki Nakamura

JICA Expert
(Highway, Traffic)

DPWH

Mr. Teodoro Gener

Mr. Romulo del Rosario

Mr. Teodoro T. Encarnacion

Mr. Gregorio Alvarer

Mr. Manual M. Bonoan

Mr. Edmundo Mir

Mr. Francisco N. Pascual

Ms. Linda M. Templo

Mr. Geronimo S. Alonzo

Mr. Crispin B. Banaag, Jr.

Mr. Paciano D. Tubal

Mr. Carlos V. Rodriguez

Mr. Mariano Flores

Mr. Rico Bulan

Mr. Mauro Baccay

Mr. Exequiel Rana

Undersecretary Undersecretary Undersecretary Undersecretary Asst. Secretary for Planning Director. Bureau of Construction Director, Bureau of Design Chief Civil Engineer DPD, Planning Service Chief Civil Engineer PMO-Feasibility Study Chief Economist, DPD, Planning Service Supvg. Civil Engineer Bureau of Construction Chief Civil Engineer Bureau of Design Senior Civil Engineer of BOD Senior Civil Engineer of BOD Senior Civil Engineer of

Senior Civil Engineer of PS

DPWH

Mindro, District Engineer Office

Mr. Alberto Mercader

Mr. Mendoza

District Engineer

Assistant District Engineer

DPWH

Puerto, Princesa (Palawan), City Engineer Office

Mr. Maximo G. Tabang

Mr. Danilo Alagao

City Engineer Supvg. C. E. I.

DPWH

Masbate, District Engineer Office

Mr. Paquito F. Mahinay

Mr. Solomon J. Riveral

Mr. Villahermosa

Assistant District Engineer

Legal officer

Construction Engineer

DPWH

Iloilo, Regional Office

Mr. Mario Talatala

Mr. Bert Casteneda

Mr. Rutino Osunero

Mr. Villanueva

Mr. Saldevia

Regional Director

Assistant Regional Director

Chief Civil Engineer

Planning Engineer

Regional Structural &

Bridge Engineer

Iloilo, City Engineer Office

Mr. Jose Varela

District Engineer

Iloilo (Sara), Second District Engineer Office

Mr. Solomon Hufanda

District Construction

Engineer

<u>DPWH</u>

Sebu, Regional Office

Mr. Meichor D. Canete

Mr. Simplicio Verdon

Mr. Gloria Dindin

Regional Director

Chief, Planning & Design

Division

Supvg. C. E. II

DPWH

Sebu, Second District Engineer Office

Mr. Ernesto G. Roldan

Mr. Wilfredo Ordesta

Ms. Estela Rosario

District Engineer

Assistant District Engineer

Supvg. C. E. II

DPWH

Leyte (Tacloban), Regional Office

Mr. Alfredo P. Torres

Mr. Abelardo Morge

Regional Director

Division Chief

Leyte, First District Engineer Office

Mr. George R. Boco

Mr. Valentino Adolfo Mr. Arnaldo Bonifacio

Chief Civil Engineer Planning Engineer

Senior Chief Engineer

DPWH

Surigao, First City Engineer Office

Mr. Romeo

Mr. Songkit

Mr. Ernesto Geotina

Mr. Lecino Digao

Mr. Elsie Tejada

Mr. Maximo Cuarto

Mr. Rome Abao

District Engineer District Engineer

Assistant District Engineer

Chief Engineer of the Maintenance Section

Chief Engineer Quality

Control & Materials Section

Chief of the Planning

Section

Chief of the Construction

Section

MINUTES OF DISCUSSIONS

OF

THE BASIC DESIGN STUDY ON THE PROJECT FOR CONSTRUCTING BRIDGES ALONG RURAL ROADS (PHASE II)

IN

THE REPUBLIC OF THE PHILIPPINES

In response to the request by the Government of the Republic of the Philippines, the Government of Japan decided to conduct a basic design study on the project for constructing bridges along rural roads (Phase II) (hereinafter referred to as the "Project"). The Japan International Cooperation Agency (JICA) sent the Basic Design Study Team headed by Mr. Hiro-o Jin, Head of Research Division, Planning and Development Department, Honshu-Shikoku Bridge Authority, from March 29 to April 10, 1988.

The Team held a series of discussions and exchanged views on the Project with the authorities concerned of the Government of the Philippines.

As a result of the study and discussions, both parties mutually agreed to recommend to their respective Governments that the major points of understanding reached between them, attached herewith, should be examined toward the realization of the Project.

Manila April 7, 1988

HIRO-O JIN Leader,

Basic Design Study Team
JICA

TEODORO T. ENCARNACION

Undersecretary

Department of Public Works

and Highways

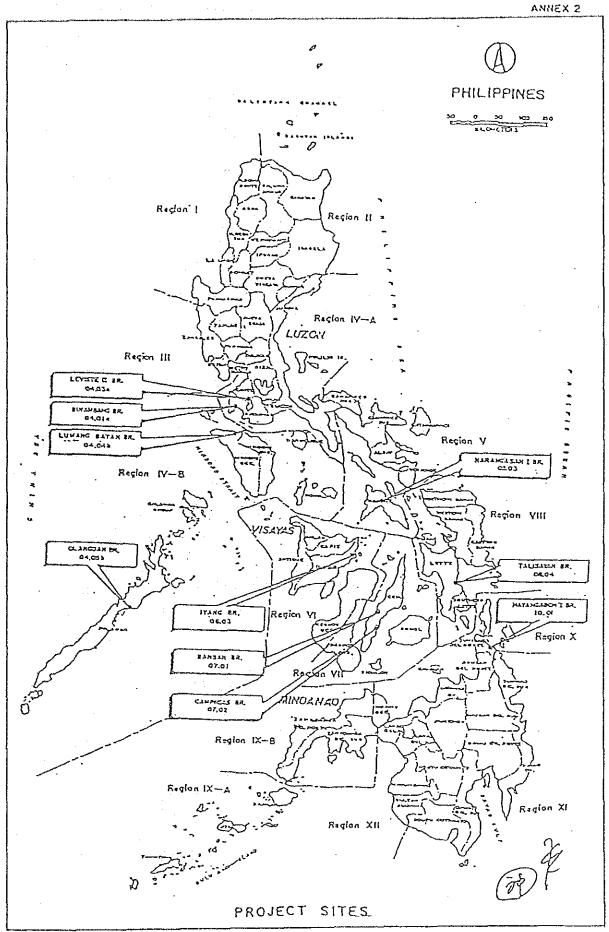
ATTACHMENT

1. The Objective of the Project

The objective of the Project is to construct bridges along rural roads as listed in Annex 1.

- Responsible and Coordinating Agency for the Project Department of Public Works and Highways (DPWH)
- 3. Project Sites

The Project sites of the bridges are as shown in the map of Annex 2.


- 4. The Team will convey to the Government of Japan the desire of the Government of the Philippines for the early and successful implementation of the Project and provide necessary materials and services under Japan's Grant Aid Program.
- 5. The Philippines side has understood the system of Japanese Grant Aid and the necessity of engaging Japanese consulting firm and contractor for the implementation of the Project.
- 6. The Government of the Philippines will undertake to provide the necessary measures as listed in Annex 3 on condition that a Grant Aid by the Government of Japan is extended to the Project.
- The Government of the Philippines will undertake to provide the necessary budget and personnel for the proper and effective maintenance of facility provided under the Grant Aid.

LIST OF BRIDGES FOR PHASE II

Bridges No.	Name of Bridges	Location
04.01a	Binambang Bridge	Km 107 + 540 Balayan-Balibago Calatagan Road Balayan, Batangas
04.03a	Leviste II Bridge	Km 92 + 430 Talisay-Laurel-Agoncillo Road
	·	Laurel, Batangas
04.04b	Lumang Bayan Bridge	Km 34+ 954 Mamburao-North Puerto Galera Road Orelan, Abra de Ilog, Mindoro Occidental
04.056	Olangoan I Bridge	Km 74 + 524 Puerto Princesa North Road Concepcion, Puerto Princesa City, Palawan
05.03	Narangasan I Bridge	Km 31 + 145 JCI Tawad-Balud Road, Milagros, Masbate
06.03	Iyang Bridge	Km 109 + 962 Concepcion-San Dionisio National Road Concepcion
07.01	Banban Bridge	Km 61 + 100 Toledo-Pinamungaban National Road, Cebu
07.02	Campacas Bridge	Km 97 + 600 Dalaguete-Mantalongon Road Dalaguete, Cebu
08.04	Talisayan River Crossing Bridge	Km 66 + 400 La Paz-Javier-Bito Road
		Talisayan-Javier Leyte
10.01	Hayangabon I	Km 1202 + 586 Surigao-Davao Coastal Road Hayangabon, Claver, Suriga del Norte

UNDERTAKINGS BY THE GOVERNMENT OF THE PHILIPPINES

- 1. To provide necessary data and information for basic design study and for implementation of the Project.
- 2. To ensure the exemption of custom duties, internal tax and other fiscal levies and prompt unloading and customs clearance at the port of entry in the Philippines of the materials and equipment provided under Japan's Grant Aid.
- 3. To exempt Japanese national engaged in the Project from customs duties, internal tax, other fiscal levies and other administrative requirements which may be imposed in the Philippines with respect to the supply of materials and services under verified contracts.
- 4. To accord Japanese nationals whose services may be required in connection with the supply of the materials and the services under verified contracts such facilities as may be necessary for their entry into the Philippines and stay therein for the execution of the Project.
- 5. To acquire the right of way and to provide necessary land area for the construction works.
- 6. To demolish obstacles including houses within the right of way that affects the implementation of the Project.
- 7. To make passable all roads and bridges leading to the project sites for the transportation of materials and equipment provided under Japan's Grant Aid.

APPENDIX 2

MISSION FOR EXPLANATION OF DRAFT FINAL REPORT

- . ORGANIZATION AND ITINERARY OF THE STUDY TEAM
- . LIST OF PERSON, MET
- . MINUTES OF DISCUSSIONS

Member of the Study Team

Team Leader : Mr. Juro Chikaraishi

Second Basic Design Study

Division, Grant Aid Planning and

Survey Department, Japan

International Cooperation Agency

Bridge

: Mr. Tsuneo Bekki

Construction

Planning

Katahira & Engineers Inc.

Implementation : Mr. Minoru Miura

Planning and

Topographic Survey Katahira & Engineers Inc.

Geotechnical : Mr. Ken Kusano

Survey

Katahira & Engineers, Inc.

ITINERARY

Date			Activity		
15th J 1988	une, v	•	Arrived at Manila Meeting at JICA and Enbassy of Japan		
16th J	une, 1		Meeting with DPWH Explanation on Draft Final Report		
17th J	une, I		Discussion on Draft final Report Discussion on Undertakings of R.P.		
18th J	une, S		Discussion on Implementation Schedule Discussion on Draft Minutes of Discussions		
19th J	une, S		discussion among Study Team Finalizationof Minutes of Discussions		
20th J	une, l		Signing of Minutes of Discussion Report to JICA and Embassy of Japan		
21th J	une, 1	fues .	Left from Manila		

List of Persons Met

Persons whom the Study Team met are as follows:

Name and Organization

Title

Embassy of Japan in Philippines

Mr. Koji Kaminaga

First Secretary

JICA Office in Philippines

Mr. Moriya Miyamoto

Mr. Katuhiko Ohshima

Mr. Katuhiko Ozawa

Resident Representative
Deputy Resident
Representative
Assistant Resident
Representative

DPWH

Mr. Toshiyuki Nakamura

JICA Expert
(Highway, Traffic)

DPWH

Mr. Romulo del Rosario

Mr. Manual M. Bonoan

Mr. Edmundo Mir

Mr. Francisco N. Pascual

Ms. Linda M. Templo

Mr. Geronimo S. Alonzo

Mr. Crispin B. Banaag, Jr.

Mr. Paciano D. Tubal

Mr. Carlos V. Rodriguez

Undersecretary Asst. Secretary for Planning Director, Bureau of Construction Director, Bureau of Design Chief Civil Engineer DPD, Planning Service Chief Civil Engineer PMO-Feasibility Study Chief Economist, DPD, Planning Service Supvg. Civil Engineer Bureau of Construction Chief Civil Engineer

Bureau of Design

MINUTES OF DISCUSSIONS

ИО

THE BASIC DESIGN STUDY ON THE PROJECT FOR CONSTRUCTING BRIDGES ALONG RURAL ROADS (PHASE II)

IN

THE REPUBLIC OF THE PHILIPPINES

In response to the request by the Government of the Republic of the Philippines, the Government of Japan decided to conduct a basic design study on the project for constructing bridges along rural roads (Phase II) (hereinafter referred to as the "Project"). The Japan International Cooperation Agency (JICA) sent the Basic Design Study Team headed by Mr. Hiro-o Jin, Head of Research Division, Planning and Development Department, Honshu-Shikoku Bridge Authority, from March 29 to April 10, 1988.

As a result of the study, JICA prepared a Draft Final Report and dispatched a team headed by Mr. Juro Chikaraishi, Second Basic Design Study Division, Grant Aid Planning and Survey Department, JICA, to explain and discuss it with the relevant officials of the Government of the Republic of the Philippines from 15th to 21st June 1988.

Both parties had a series of discussions on the Report and agreed to recommend to their respective Governments that the major points of understanding reached between them, attached herewith, should be examined towards the realization of the Project.

Manila, June 20, 1988

JURO CHIKARAISHI

Leader of the Draft Final Team Japan International Cooperation

Agency (JICA)

MANUEL M. BONOAN

Asst. Secretary for Planning Department of Public Works and Highways (DPWH)

ATTACHMENT

- 1. The Philippine side has in principle agreed to the basic design proposed in the Draft Final Report.
- 2. The Philippine side has understood Japan's grant aid system and reconfirmed the necessary measures to be taken by the Philippine Government as agreed on the Minutes of Discussions of the Basic Design Study dated 7th April 1988.
- 3. The Philippine side has confirmed that the necessary budget and personnel will be appropriated for the proper and effective maintenance of facility provided under the Grant Aid.
- 4. The Final Report (15 copies in English) will be submitted to the Philippines side within August 1988.

APPENDIX 3

DATA OF PROPOSED BRIDGES

TABLE 1 (1/2) LIST OF CANDIDATE BRIDGES FOR PHASE II

Brid	ige No.	Name of	Bridge	Location
02	.01 St	a. Cruz		km. 640 + 747
				Dugo-San Vicente Road
				Sta. Ana, Cagayan
02.	.02 Du	ımadata		km. 339 + 770
				Cordon-Diffun-Maddela-Aurora
				Road, Mangandingay
0.2	os ni			Cabarroguis Quirino km. 374 + 060
. 02.	.05 Di	lduyon		Cordon-Diffun-Maddela-Aurora
				Road, Maddela, Quirino
n a	.01a Bi	inambang		km. 107 + 540
04.	. Ola Di	.iiamuaiis		Balayan-Balibago-Calatagan
				Road, Caloocan, Balayan,
	•			Batangas
04.	.03a Le	eviste II		km. 92 + 430
				Talisay-Laurel-Agoncillo
				Road, Laurel, Batangas
04.	.04b Lu	mang Bayan		km. 34 + 954
				Mamburao-North Puerto Galera
				Road, orelan, Abra de Ilog
	4	•		Mindoro Occidental
04.	.05b Ol	angoan		km. 74 + 524
		•		Puerto Princesa North Road
		•		Concepcion, Puerto Princesa
				City, Palawan
04.	.06b Bc	ngabon		km. 122 + 720
				Calapan South-Bulalacao-San
				Jose Road, Bongabon
				Oriental Mindoro km. 31 + 145
05.	.03 , Иа	rangasan I	**	Jct. Tawad-Balud Road
	•		•	Milagros, Masbate
06,	03 Tv	rang		km. 109 + 962
00,	.03 19	ang		Concepcion-San Dionisio
				National Road, Concepcion
	•			Iloilo
0.7	. 0 1 Ba	inban '		km. 61 + 100
011				Pinamungahan-Aloguinsan
				-Mantalongon Road.
		:		Pinamungahan, Cebu
07.	.02 Ca	umpacas		km. 97 + 600
		•		Dalaguete-Mantalongon Road
				Dalaguete, Cebu

TABLE 1 (2/2) LIST OF CANDIDATE BRIDGES FOR PHASE II

	. Her was such than shan, give form and, give form from tipes used field both reads first, with these times than they give	عدة عدد عدد الله والله
Bridge No	Name of Bridge	Location
08.03	Habay	km. 1075 + 448 Liloan-San Francisco Road Habay, San Francisco S. Leyte
08.04	Talisayan	km. 66 + 800 La Paz-Javier-Bito Road Talisayan, Javier, Leyte
09.05	Patunan	km. 375 + 090 Dipolog-Sindangan Road Manukan, Zamboanga del Norte
10.01	Hayangabon I	km. 1202 + 586 Surigao-Davao Coastal Road Hayangabon, Claver Surigao del Norte
11.04	Manay	km. 1643 + 783 Davao Orientl -Surigao del Sur National Road Manay, Davao Oriental
12.01	Pikinit	km. 136 + 936 Dobleston-Tukuran Road Caromatan, Lanao del Norte
12.02	Durugao	km. 216 + 498 Awang-Upi-Lebak Road Durugao, South Upi, Maguindanao
12.04	Dangolaan	km. 133 + 983 Dobleston-Tukuran Road Caromatan, Lanao del Norte
12.05	Sapakan	km. 211 + 530 Dulawan-Marbel Road Sapakan, Maguindanao

TABLE 2 (1/3) PHASING OF PROPOSED BRIDGES

ON SONO	2000	84	2	2	2	2	2	~
DECIMENTAL AND CANCED INC.	100 MAN (100 MAN) (100 MAN	. Topographic and geological surveys.are required, study on flood control is necessary Use of cofferdam for deep water (h=3.5 m) is required Long span bridge is advisable because of deep water	. Topographic and geological survey are required. . Use of cofferdam for deep water {h=2.0m} is required.	. Study of flood area and control is required. . Bridge length should be studied	. Flood water level shall be studied . Topographic and geological survey is required. Alignment of road shall be studied in order to avoid demolision of existing houses.	. Haximum high ilood water level shall be reviewed	. Study on flood area and elevation is required	. Gealogical survey is required . Use of cofferdam for water is required
D BRIDGE	TYPE	Continuous steel girder Pile foun- dation	. H-beam girder . Pile foun- dation	Î.	. H-Beam Glrder Spread Footing	. Il-Beam . girder . Spread foundation	. Continuous stee! girder Pile foun- dation	. H-Beam Girder . Pile foun- dation
PROPOSED BRIDGE	LENGTH (M)	3 @ 30-90 m	17+1,7+34 m	1	3 @ 25~75m	20+20+20+20 +20 = 80 m	3 Ø30 1 30 m	20:20 - 40 m
	LOAD	•	zo.	1	vs.	,	ĸ	Vo
EXISTING BRIDGE	LENGTH AND CONDITION	Timber Olispi- dated timber trestle	Balley Dilapj- dated Limber trestle	Timber (Kashed- Out)	Spillway . Over- flow meter	Timber (washed- out)	Balley Fair Steel Ollapi- dated: timber trestla	Balley Fair Steel Timber Trestle
) î	LEHOTH IM)	90.00	30.00	30.00	00.00	40.00	60.09	36.00
TRAFFIC	(ADT)	281	261	261	,	520	\$08	
NAME	BRIDGE	Sta. Cruz Bridge Cagayan	Oumadata Or: Quirino	Olduyon Quirino	Binambang Bridge Batangas	Leviste II Br Datangas	Lumang Bayan Br. Mindoro Occ.	Olangoan Br. Palawan
BRIDGE	œ.	02.01	20.20	02.05	04.018	04.03a	04.04b	04.05b
9	<u>;</u>	-	2	ů	'n	v	٠	

TABLE 2 (2/3) PHASING OF PROPOSED DRIDGES

	raportion	2	<i>e</i> u	~	72	2	2	2
		. Stability of existing substructure shall be checked	. Bridge length shall be examined considering fiver bank	. Geological survey is required because of swampy and soft ground condition Use of cofferdam for deep water (h=2.0m) is required	. Study of flood area is required	. Geological survey is required . Maximum high flood water level shall be reviewed	. Geological survey is required . Study of flood area is required	. Topographic and geological surveys are required . Study flood area and control is required
DBRIDGE	TYPE	. Depend on existing pier	. Conti- nuous steel girder File foun- dation	Steel plate girder Plie foun- dation	Steel plate girder Plie foun-	H-beam gleder Pile foun- dation	H-beam girder pile foun- dation	il-beam girder Pile foun- dation
PROPOSED BRIDGE	LEMOTH (m)	. Depend on existing span length	2 © .35-70 m	26 m	30, m	£ . 52	72+22-26m	27+27 ** 54 m
ы	COAS	æ	-	3.5	ភ	រភ	~	
EXISTING BRIDGE	CENGTH AND CONDITION	Bailey Fair Steel Permanent sub-	. Balley . Dilapi- dated timber trestle	Timber . Ulimpi- dated	Timber . Of lapf- dated	Dalley Fair Steel Dlapi- dated trestle timhor	Balley . Good . Timber trestle	River Crossing No exis- ting bridge
ä	LENGTH 1ml	351.00	45.00	25.00	25.30	20.83	61,45	51.40
THAFFIC	(ADT)	153		526	97	÷		
NAME	BRIDGE	Bongabon Br. Driental Mindoro	Marangasan I Dridge Masbate	lyang Br. Hotlo	Danban Br. Cebu	Campacas Bridge Cebu	Habay Br. S. Leyte	Talisayan River Grossing Leyte
DRIDGE	0	04.065	05.03	06.03	07.01	07.02	08.03	00.04
Ş		ಪ	ō	10	Ħ	12	er er	7

TABLE 2 (3/3) PHASING OF PROPOSED BRIDGES

	PHASING	2	N	2	2	2	2	٧.
	DESIGN AND CONSTRUCTION REQUIREMENTS	. Stability of existing permanent substructures shall be examined and incorporated in design	. Geological survey is required . Use of cofferdam for deep water is required	. Stability of permanent substructure shall be checked	. Haximum high water level, shall be checked	. Stability of permanent substructure shall be chacked	. Direction of river stream was changed . Study of flood is required	. Stability of existing permanent substructure shall be checked.
PROPOSED BRIDGE	TYPE	. H-beam gfrder	. H-beam glrder . Pile foun- dation	, Depend on existing pier condition	. II-beam girder . Pile foun- dation	. Depend on existing pier condition	. N-beam girder Pile foun- dation	. Depend on exis- ting pier
PROPOSE	LENGTH SMI	25 เห	21+21·= 42 m	. Demand on existing span' length	21 m	. Depend on existing span length	24 ж	. Depend on existing span. length
lui	COAS	,	หร	យា	E.	ķo	E	10
EXISTING BRIDGE	LENGTII AND CONDITION	Dailey Fair steel Permanent pier timber trestle	Timber • Dilapi- dated condition	Balley Fair Fater Permanent Sub- sub-	Dailey	Dailey Fair steel Permanent sub- structure	Timber	Balley Falr steel Permanent sub- structure
ã	CEHOTH (m)	25.00	40.00	42,67	20.02	40.00	25.00	100.00
TRAFFIC	(ADT)	667	ro ro	450	31	ı	76	686
NAME	BRIDGE	Patunan Br. Zamboanga del Norte	liayangabon I Bridge Surigao del Norte	Manay Bridge Davao Oriental	Pikinit Br. Lanao del Norte	Durugao Br. Naguindanao	Dangolaan Bridge Lanao del	Sapakan Br. Magulndanao
BRIDGE	o S	03.05	10.01	11.04	12.01	12.02	12.04	12.05
	į	35	16	17.	18	.62	20	Ę.

APPENDIX 4

HYDROGRAPHIC ANALYSIS

OF BRIDGE OPENINGS

1. Open Channel Hydraulics

The hydraulic design component of this Study is concerned with the determination of the different flood levels that might occur in a channel due to a given flood and of the minimum waterway opening under a structure. The different flood levels were determined by the rating curve computation which is based on Manning's Formula (in metric units):

$$q = \frac{1}{n} AR^{2/3} \cdot S^{1/2}$$

where:

q = discharge, m /S

n = Manning's roughness coefficient

A = cross-sectional area, m²

R = hydraulic radius
(equals cross sectional area)
wetted perimeter

S = hydraulic gradient

The value of the coefficient, n, was estimated based on information. Assuming uniform to nearly uniform flow, the value of the hydraulic gradient, S, can be considered equal to the average slope of the stream.

For each site, three channel cross sections were considered: upstream section, bridge point section and downstream section. The selection of the upstream and downstream sections depended on their representativeness to the channel reach under study. Using the energy equation and the results of the rating curve computation, the water depth at the bridge point was obtained. The computation is contained in a computer program named BAK RAT.

The results of the hydraulic computation are given in Table 1, while the supporting computer print-outs are reported separately.

From Table 1, it can be observed that the computed maximum flood level, MFL (computed), and the maximum flood level obtained by field interview, MFL (interview), are not too different, except for the Olangoan I Bridge.

In some cases, MFL (computed) is less This seeming disparity can be explained (interview). fact that MFL (interview) varies greatly and may unreliable because it depends on the integrity (and reliability) of the interviewee(s) and on the accurate establishment of the datum point where flood measurements taken. Moreover, the frequency of storms causing MFL (interview) more often is unknown and very rare (or the worst that ever occurred and thus recorded in the memory of local residents) occurring more than fifty years in past. On the other hand, MFL (computed) is the product hydraulic analyses based the hydrological and physiographic characteristics of the basin and rainfall conditions. Clearly, these latter results have a certain level of accuracy and reliability within the specified frequency of design.

Given MFL and doing the necessary trimmings of the riverbanks to accommodate the available superstructure, the minimum bridge openings were established. This opening then became the basis of the length and number of bridge spans.

It may be stated that, in bridge design, a freeboard of 1.0 m between MFL and the bottom of the girder is always maintained for drift-free streamflows, while a 1.5 m freeboard is maintained for rivers prone to drifting.

2. Hydrological Data

Table 2 shows the difference in elevation of water level between data furnished by DPWH (permanent bench marks) and in elevation temporarily established based on temporary bench marks by the Study Team.

TABLE 1 RESULTS OF HYDROLOGICAL INVESTIGATION

Bridge No.	Name of Bridge	DA _(km²)	Q(design) (m/s)	V(av) (m/s)	MFL (computed) (m)	MFL (interview) (m)
04.01a	Binambang	91.38	441.70	4.73(ovf)	13.73	15.01
04.03a	Leviste II	3.50	107.97	2.01	17.10	18.00
04.04b	Lumang Bayan	149.02	580.00	2.15	20.91	231.45
04.05b	Olangoan	222.70	815.00	4.47	18.64	17.45
05.03	Narangasan I	36.75	468.50	3.02	57.65	59.00
06.03	Iyang	7.15	162.51	4.17	18.93	19.33
07.01	Banban	60.02	228.73	6.55	20.80	21.12
07.02	Campacas	28.64	272.00	4.61	393.05	393.01
08.04	Talisayan	33.37	279.00	4.02	297.90	298.24
10.01	hayangabon I	10.43	523.23	5.67	19.47	19.50

Note:

DA = drainage area

Q (design) = design discharge

V (av) = average velocity under the bridge

MFL (computed) = maximum flood level (50-year frequency)

as computed

MFL (interview) = maximum flood level on field interview

HYDROLOGICAL DATA	
N	
TABLE	

! !	Bridge No.	Name of Bridge	Localion of Bridge	HWL/MFL DPWH(1) Study	IFL (m) udy Team(2)	LWL/OWL (m) DPWH(1) Study T	'L (m) udy Team(2)	HWL/MFL (m) LWL/OWL (m) DPWH(1) Study Team(2) HIGH Tide(m) Temporary Bench Marks (Study Team(2) DPWH(1) Study Team(2)	Difference Temporary	Difference in Height Temporary Bench Mark (Sludy Team)
-	04.01a	Di กุลmbang	km 107 + 540 Baiayan-Balibogo-Cala- tagan Road Caloocan- Balayan, Balangas	44.900	15.010	41.400	16.610	None	(-)	29.890
2	04.03a	04.03a Leviste II	km 92 + 430 Tallsay-Laurel- Azoncillo Road Laurel Datangas	16.860	18.000	13.400	15.100	None	€	1.140
	04.04b	04.04b Lumang Bayan	km 34 + 954 Maburgo-North Puerto Gallera Boud Ovelan, Abra de 110g, Oce Mindoro	21.170	21.470	17.620	17.430	None	€	0.300
~7	04.05b	Olengoan	km 74 + 524 Pucrto Princesa North Road Concepcion-Pucrto Princesa City, Palawan	1	17.450	16.900	15.660	16.90	(-)	1.240
S	05.03	Narangasan 1	km 31 + 145 Jei, Tawad Malud Road Hilagros, Kasbale	18.310	69.000	14.020	54.840	56.56	€	40.690
ت	06.03	Zuakl	Km 109 + 962 Concepcion-San Binnisio National Road Concepcion Tiollo	1.720	19.330	1.088	18.110	19.33	€	17,630
1	07.01	Banban	km бi • 100 Tulcdo-Pipamungahan National Road, Cebu	4.100	21.116	1.520	18.970	20.47	•	17.016
σ,	07.02	Campacas	km 97 + 600 Dalaguete-Mantalongan Road Dalaguete, Cebu	400.780	393.010	397.80	388.240	None	•	7.770
6	08.04	Tallsayan	km 66 + 860 La Paz-Javier-Bito Road Talisayan, Javier, Leyte	9.560	298.240	6.92	295.940	None	÷	(+) 288.680
01	10.01	Hayangabon l	km 1202 + 586 Surigan-Davao Coastai Road Hayangabon, Claver, Surigao dei Norte	18.400	19.500	17.320	16.790	17.73	€	1.100
 	Note:	() Data (urnished by DPWI	ed by DPWII			MFL = maxim	maximum (lood level	70 [
		2) Elevation ten	2) Elevation temporarily estabitshed by Study Team based on temporary bench marks	tudy Team		11 11	high valer level			

APPENDIX 5

TOPOGRAPHIC SURVEY

TABLE 1 SURVEY QUANTITY LIST

Dridge No. Name of Bridge	Location	Centerline Survey (m)	Profile Survey (m)	Cross-Section, Survey, Along Road (Section)	Cross-Section, Survey, Along River (Section)	Monumling (Point)	Topographic Map (Sheel)
04.01a BINAMBANG	Km. 107 + 540 Dalayan, Datangas	522.75	522.75	26	10		••4
04.03a LEVISTE II	Km. 92 + 430 Lourel, Batankas	412.30	412.30	23	8	4	quant,
04.04b LUMANG BAYAN	Km. 34 + 954 Mindoro Occidental	564.03	564.03	30	16	-	,(
0.1.05b OLANGOAN	Km. 74 + 524 Pucrio Princesa Cily, Palawan	305.91	305.91	138	10	က	gred,
05.03 NARANGASAN 1	Km. 31 + 145 Milagros, Masbale	300.00	300.00	26	10	44	
06.03 TYANG	Km. 109 + 962 Concepcion-San Dionisio National Road Concepcion	380.00	380.00	62	01	4	grad
07.01 BANBAN	Km. 61 + 100 Cebu	340.00	340.00	16	13	8	gand.
07.02 CAMPACAS	Km. 97 + 600 Dalaguele, Cebu	280.00	280.00	15	10	4	
08.04 TALISAYAN	Km. 66 + 400 Talisayan-Javier Leyle	380.00	380.00	20	9	***	ya-4
10.01 HAYANGABON I	Km. 1202 + 586 Hayangabon, Claver, Surigao del Norte	349.75	349.75	18	9	ෆ	yard,
TOTAL		1 834 74	N7 NEB P	216	104	Lù	10

TABLE 2-(1/10) DESCRIPTION OF BM-POINT
04.01a BINAMBANG BRIDGE

8м. ко.	1	вы. ко.	2
DATE ESTABLISHED	Har. 1, 1988	DATE ESTABLISHED	Har. 1, 1988
ELEVATION	20.000	ELEVATION	19.890
ma stee 16.	BM=1 Cox60 cm concrete monunit, with \$ 8 m × 60 cm el bar on the center, 75m, to the right of 106+525.25	men bar to ti	0x60 cm concrete monutività de 8mm×60cm steel on the center, 57.10m he left of Sta. 106+
ви.ко.	3	вм. но.	4
DATE . ESTABLISHED	Har. 1, 1988	DATE ESTABLISHED	Ңаг. 1, 1988
ELEVATION	19.118	ELEVATION	13.190
mos stee 74.7	20x60 cm concrete monument, w/ \$8mx60cm el bar on the center, 5mto the right of Sta. +098.35m	with on th	BM#4 cs-8 cs-8 l k60 cm concrete monu- φ 8mm×60cm steel bar te center, 24m, to right of Sta. 107÷ 35m

TABLE 2-(2/10) DESCRIPTION OF BM-POINT 04.03a LEVISTE II BRIDGE

ам. но.	1	ви. но.	2
OATE ESTABLISHED	Feb. 22, 1988	OATE OBHRIJBATZB	Feb. 22, 1988
ELEVATION	19.443	ELEVATION	21.303
cs	weiting shed weiting shed shed shed shed weiting shed shed weiting shed shed weiting shed shed shed weiting shed shed	BM#2=20x2 men bar	BN#2 Ox60 cm concrete monut t w/ \$ 8mm \times 60cm \text{ steel} on the center, 15.20 m ne left of Sta. 92+639.40
вы. но.	3	вм. но.	4
DATE ESTABLISHED	Feb. 22, 1988	DATE ESTABLISHED	Feb. 22, 1988
ELEVATION	21.918	ELEVATION	23.413
□ cs-Ŀ	cs-4	O €=-1	
nient bar	0x60 cm concrete monu- , w/ \$ 8mm × 60cm steel on the center, 17.82 m he right of Sta. 92+	men stee	20×60 cm concrete monutivity ϕ 8mm $\times 60$ cm. I bar on the center, 24 m he right of Sta. $92+$

TABLE 2-(3/10) DESCRIPTION OF BM-POINT
04.04b LUMANG BAYAN BRIDGE

вм. но.	1	вм. но.	2				
DATE ESTABLISHED	Har. 9, 1988	DATE ESTABLISHED	Har. 9, 1988				
ELEVATION	20.000	ELEVATION	19.902				
が BM#1 = 20x20 ment bar (PI-2 PI-2 PX-60 cm concrete monu- w/ \$\phi \text{8mm} \times 60 cm steel} on the center, 22.15 m	BM#2=20x20 ment bar	WOODEN HOUSE EN HOUSE D PI-4 0x60 cm concrete monu- w/ \$ 8mm × 60 cm steel on the center, 55.15 to				
to th	e left of Sta. 35+073.60m	the r	right of Sta. 35+624.03m				
ви.ко.	3	8 M. NO.	4				
DATE	Har. 9, 1988,	DATE Non O 1000					
ELEVATION	20.712	ELEVATION	19.764				
	P[-3 PI-4 U WOODEN HOUSE BN#3	BM#4 CS-	PI-1 PI-2				
ment bar	0x50 cm concrete monu- x , w/ϕ $8mx \times 60cm$ steel on the center, 40.15 m, where $x = x + 40.15$ can be right of Sta. $x = x + 40.15$	ment bar o	x63 cm concrete monu- w/ \$8mm × 60cm steel n the center, 21.90m to of Sta. 35+073.60				

TABLE 2-(4/10) DESCRIPTION OF BM-POINT 04.05b OLANGOAN BRIDGE

вы, но.	1	ви. но.	2
DATE ESTABLISHED	Har. 26, 1988	DATE ESTABLISHED	Mar. 26, 1988
ELEVATION	20.000	ELEVATION	17.767
EM#1= 20x20 ment	CS-2 ERIDGE 0x60 cm concrete monu- w/ \$8mx \times 60cm steel on the center, 43.91 m, e left of Sta. 74\times 376.59	men bar	ERIDGE Ox60 cm concrete monut, w/ \$8mx 60cm steel on the center, 45.40 m ne left of Sta. 74+395.50
вы.но.	3	вм. но.	
DATE ESTABLISHED	Har. 26, 1988	DATE ESTABLISHED	
ELEVATION	16.964	ELEVATION	
ment bar	BRIDGE BRIDGE BM#3 0x60 cm concrete monu- , w/ \$8mm × 60cm steel on the center, 34.90 m. he right of Sta. 74+595.90		

TABLE 2-(5/10) DESCRIPTION OF BM-POINT
05.03 NARANGASAN BRIDGE

ви. ко.	1	вж. но.	2				
DATE ESTABLISHED	Mar. 2,-1988	DATE ESTABLISHED	Har. 2, 1988				
ELEVATION	60.000	ELEVATION	58.925				
BM#1=20x20x ment v	rice field BM#1 60 cm concrete monu- with \$8mm \times 60cm: on the of steel bar, 35.85m left of Sta. 30+898.47	BM#2=20x20 ment cente	rice field CS-1 CS-2 0x60 cm concrete monu- with \$\phi\$ 8mm \times 60cm on the r of steel bar, 44.88 m, e right of Sta. 30+898.47				
вж. но.	3	вм. но.	4				
DATE ESTABLISHED	Har. 2, 1988	DATE ESTABLISHEO	Mar. 2, 1988				
ELEVATION	57.820	ECEVATION	VATION 57.500				
ment the co	plantation plantation cs-3 x60cm concrete monu- with \$8 = x 60 cm on enter of steel bar, 49.50 o the right of Sta.31+ blm	BM#4=20x20 ment the c m, to	BM#4 2x60 cm concrete monu- with \$\phi \ 8_{mm} \times 60 cm on enter of steel bar, 36.90 the left of Sta. 31+ 01m.				

TABLE 2-(6/10) DESCRIPTION OF BM-POINT

06.03 IYANG BRIDGE

8M. NO.	1	вн. но.	2
DATE ESTABLISHED	Наг. 27, 1988	OATE ESTABLISHED	Har. 27, 1988
ELEVATION	20.000	ELEVATION	19.754
BM#1=20x20 ment bar o	Transmining bamboo fence	ment bar o	Ox60 cm concrete monu- with \$ 8 m × 60 cm steel on the center, 9.00 m e left of Sta. 109+800m.
вы.но.	3	вы. но.	4
DATE ESTABLISHED	Наг. 27, 1988	DATE ESTABLISHED	Har. 27, 1988
ELEVATION	19.433	ELEVATION	19.553
ment on the	x60 cm concrete monu- φ 8mm×60cm, steel bar e center, 3m to the left 1. 110+180 m.	ment bar	BM#4 0x60cm concrete monu- with \$\phi \text{8mm} \times 60cm steel} on the center, 9m to the of Sta. 116+180.

TABLE 2-(7/10) DESCRIPTION OF BM-POINT 07.01 BANBAN BRIDGE

вм. но.	1	ви. но.	2					
DATE ESTABLISHED	Mar. 19, 1988	DATE ESTABLISHED	Mar. 19, 1988					
ELEVATION	20.000	ELEVATION	17.767					
D BM#1		cs-1 	cs-2					
1	cs-2		0x60 cm concrete monu-					
bar or to the	w/ \$ 8ma×60ca steel of the center, 40.31 m right of Sta. 60+980	ment w/ \$ 8mx 60cm steel bar on the center, 40.50 m to the left of Sta. 60+991						
DATE	2	ВМ. НО.						
ESTABLISHED	Har. 19, 1988	DATE ESTABLISHED						
ELEVATION	16.964	ELEVATION						
cs-i	cs-2							
ment v bar or	c60 cm concrete monu- w/ φ 8m×60cm steel the center, 33.5 m of 1+320.00m							

TABLE 2-(8/10) DESCRIPTION OF BM-POINT 07.02 CAMPACAS BRIDGE

	4	· }				
BW. KO.	1	BM. NO. DATE	2			
DATE ESTABLISHED	Mar. 24, 1988	ESTABLISHED	Har. 24, 1988			
ELEVATION	400.00	ELEVATION	400.928			
BW#	1		BM#2			
	x60 cm concrete monu-	BM#2=20x20x60 cm concrete monu- ment w/ & 8mm×60cm on the				
	$w/\phi 8mm \times 60cm$ on the of steel bar, 9.00 m		r of steel bar, 3.00 m			
	right of Sta. of CS-1		e left of control Sta. 1			
вы, ко,	3	ви. но.	4			
DATE ESTABLISHED	Mar. 24. 1988	DATE ESTABLISHED	Har. 24, 1988			
ELEVATION	393.362	ELEVATION	396.860			
ment, cente	to Badian x60 cm concrete monu- w/ \$ 8mx 60cm on the r of steel bar 10.00 m e left of CS-3	ment the c	DX6C cm concrete monu- w/ \$ 8mm × 60cm, on center of steel bar, m, to the right of CS-3.			

TABLE 2-(9/10) DESCRIPTION OF BM-POINT

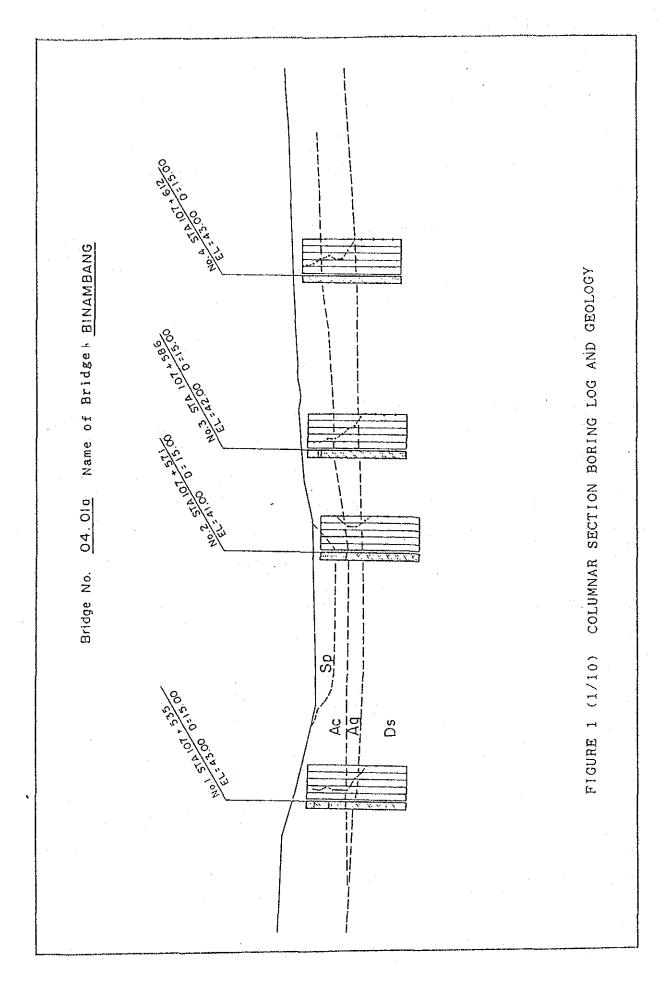
08.04 TALISAYAN BRIDGE

ви. ко.	1	вм. но.	2				
DATE ESTABLISHED	: Har. 11, 1988	OATE ESTABLISHED	Mar. 11, 1988				
ELEVATION	300.000	ELEVATION	299.310				
PO1	POT-S	EM#2 POT-3					
ment, bar o	x60 cm concrete monu- w/ & 8cm × 60cm steel n the center, 30m to ght of control Sta. 1	BM#2=20x20x60 cm concrete monu- ment w/ \$ 8mm×60cm on the center of steel bar, 3.50 m to the left of control Sta. 3					
вм. но.	3	вж. но. 4					
OATE ESTABLISHED	Har. 11, 1988	OATE ESTABLISHED	Har. 11, 1988				
ELEVATION	299.660	ELEVATION	298.962				
	POT-2 POT-1 c60 cm concrete monu- w/ \$\phi\$ 8mm \times 60cm on the	BM#4=20x20 ment	POI-2 Po				
center	of steel bar, 30.00 m left of control Sta.1	ment with ϕ $8mm \times 60cm$ on the center of steel bar, $30.00m$ to the right of control Sta. Sta. 1					

TABLE 2-(10/10) DESCRIPTION OF BM-POINT

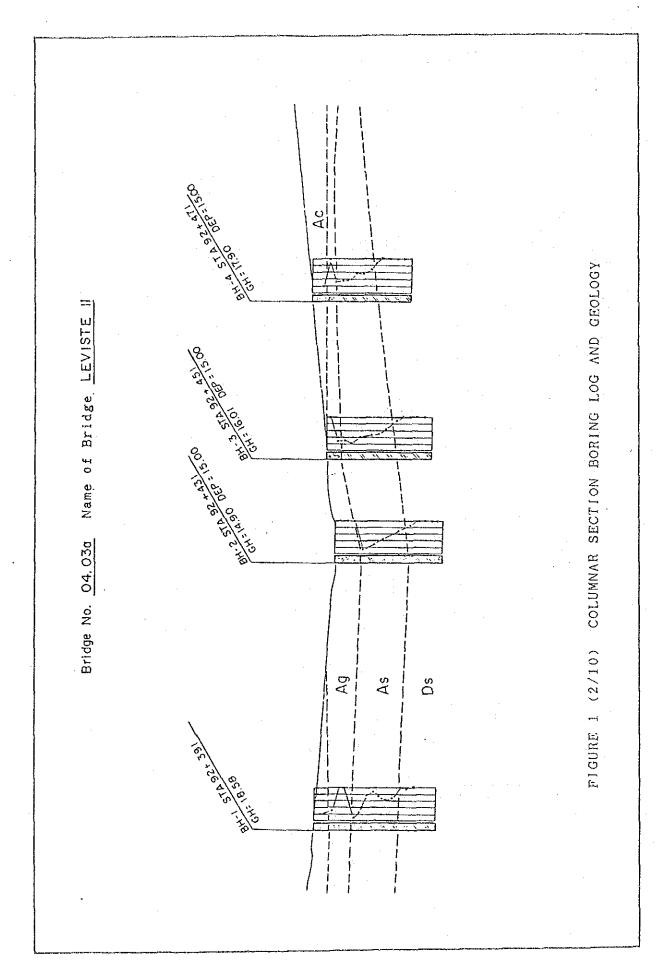
10.01 HAYANGABON I BRIDGE

	ADMALAH 10.01		
ви, ко.	1	вм. но.	2
OATE ESTABLISHEO	Har. 25, 1988	OATE ESTABLISHEO	Har. 25, 1988
ELEVATION	20.000	ELEVATION	18.566
BM#1=20x20x ment to the	nipa house 160 cm concrete monu- 160 cm concrete monu- 160 cm to the 160 cm to the 160 cnter, 21 m to the 160 cf Sta. 1202+485.5 m	BM#2=20x20 ment bar o	wooden fence wooden fence
вж. но.	3	ви. но	
DATE ESTABLISHED	Har. 25, 1988	DATE ESTABLISHED	
ELEVATION	19.369	ELEVATION	
ho BM#3=20x20: ment bar oi	wooden use Second concrete monu- with \$8mm \times 60cm steel the center, 32.51m to ght of Sta. 1202+782 m.		

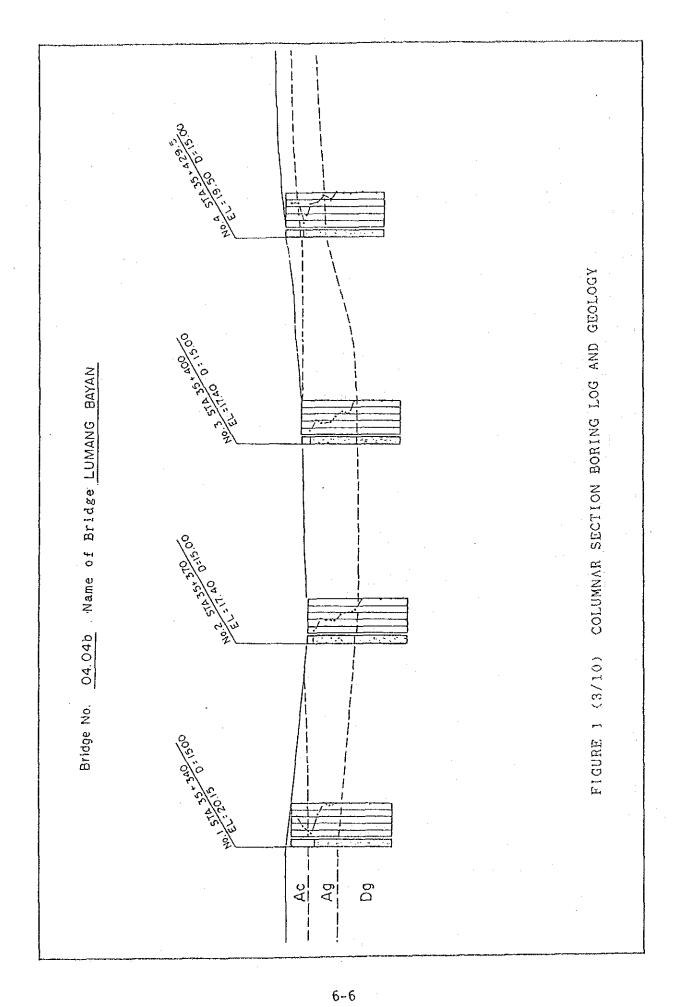


APPENDIX 6

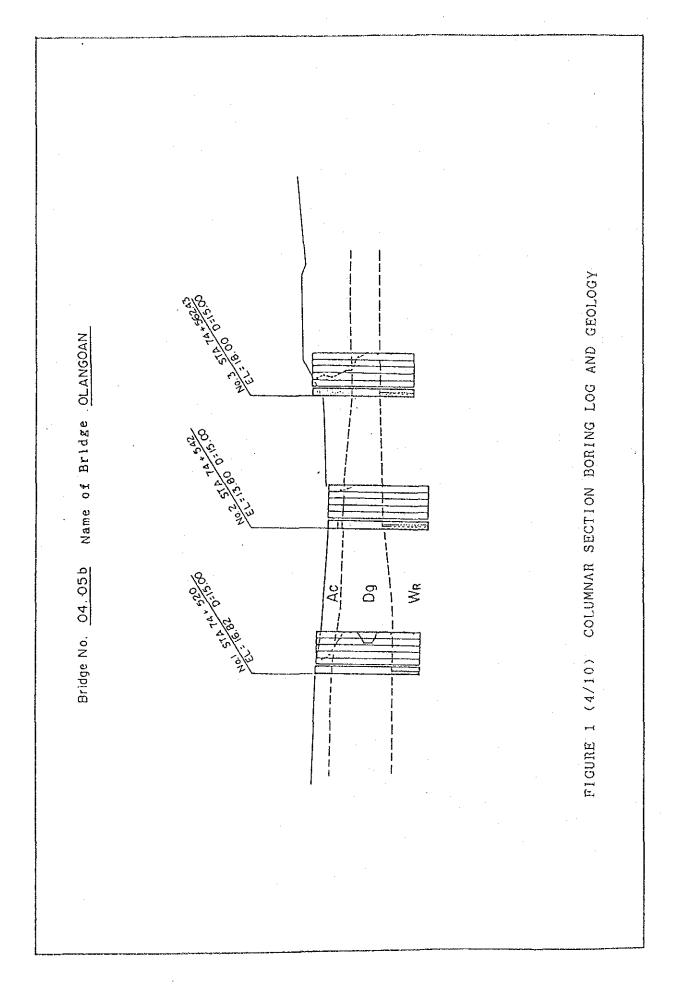
GEOTECHNICAL SURVEY


TABLE 1 QUANTITY LIST OF GEOLOGICAL SURVEY

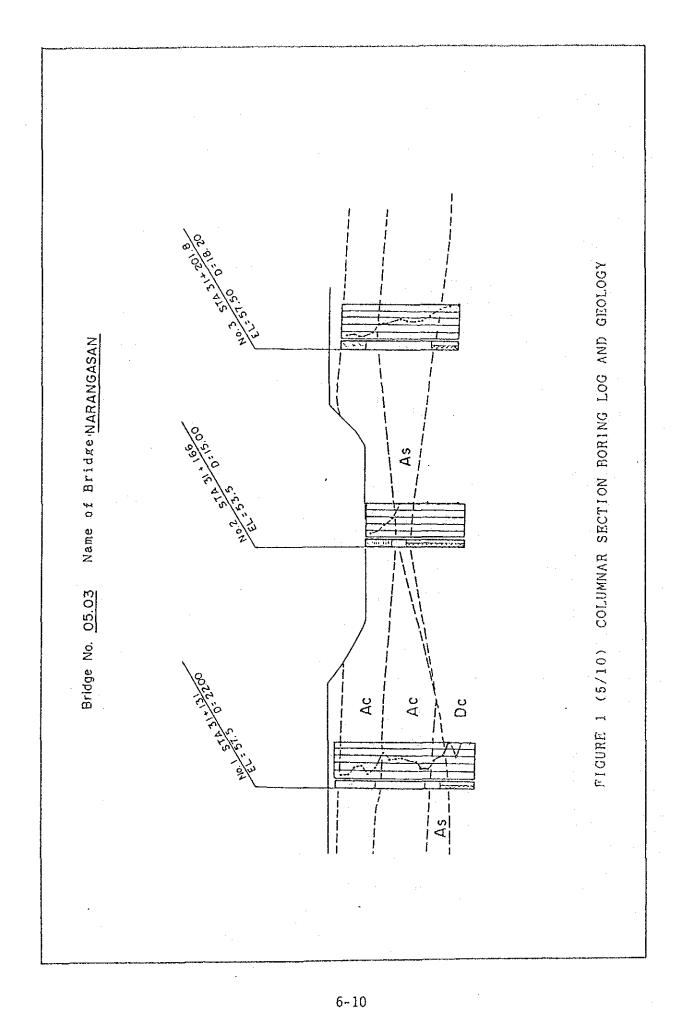
Bridge Name of Bridge	Location	No.	ring Depth	Sol! Common	1 Hard	SPT	Undisturbed Sampling	Unit Weight	Laboratory Tes	ry Test PL. HA	no.	Remarks
, UN) *			E)						. 1			
		***	15.0	10.0	5.0	10	. 0	0	10	٠		
04.01a BINAMBANG	Кт. 100 + 759.50	2	15.0	8.0	7.0	6	0	0	Ð			
	Balangas Province	ന	15.0	9.0	0.0	12	٥	0	д)			
		T	15.0	8.0	7.0	12	0	0	6	. :	ļ	
		-	18.0	12.5	5.5	1.4	0	0	14			
04.03a LEVISTE 11	Km. 92 + 425.62	2	16.0	11.0	5.0	14	0	0	12			
	ลกซูลธ	ຕ	16.0	11.0	6.0	14	0	0	14			
		4	15.0	10.0	5.0	15	0	0	9 7	;		
			15.0	7.0	8.00	13	0	0	10			
04.04b LUMANG BAYAN	Km. 34 + 954	2	15.0	8.0	7.00	12	0	0	Ø.			
	101	က	15.0	8.0	7.0	I	0	0	₩			
		4	15.0	8.0	7.0	12	0	٥	10		i	
		; ; ; ;	15.0	0.6	6.0	13	C	• • • • • • • • • • • • • • • • • • •	11			
OALOSH OF ANGOAN	7.8 + 5.7 A		2	0.4	11.0	m	C	C	c.			
	ο×.c	. co	15.0	8.0	7.0	10	0	. 0	6			
	<u> </u>	i -	22.0	17.0	5.0	13	0	0	19			
05.03 NABANGASAN 1	Km. 31 + 145		15.0	n.	10.0	6	C	C	Ġ			
	bate	က	18.2	13.0	5.2	15	0	0	12			
ŗ	Xx + 00 + 000	-	- 2		-	[C.	0	0	1.3		! ! !	
06.03 [YANG		. 63	15.1	4.0	11.1	2.7	0	00	11			
1		-	0 0 0	1 0					06			
07.01 DANBAN	cebu Province	- 2	30.0	25.0	.0.	20	າ ຕາ	מז ניז	20 13	13 13	9	
OF AN CAMBACAS	Km. 97 + 589.48		16.0	11.0	5.0	15	0	0	15			
	Cabu Province	23	16.0	11.0	5.0	12	0	0	დ ⊷			
			16.8	10.0	6.8	13	0	0	5			
08.04 TALISAYAN	Ka. 0 + 150	7.79	19.0	14.0	၀ ၀ ဖ ဖ	16	00	00	17			
	Km. 1202 + 586	ч	15.0	0.0	0.6	ហ	0	0	භ ₍			
10.01 HAYANGABON 1	Surigao del Norte Province	೧೧	15.0	ဝပ် ဝပ်	9.0	ယောယ	00	00	0 2			
TOTAL		30	506.2	307.5	198.7	372	9	9	325 13	13 13	ဖ	
	· /	1				1						


Bridge No. 04-01n Name of Bridge BINAMBANG

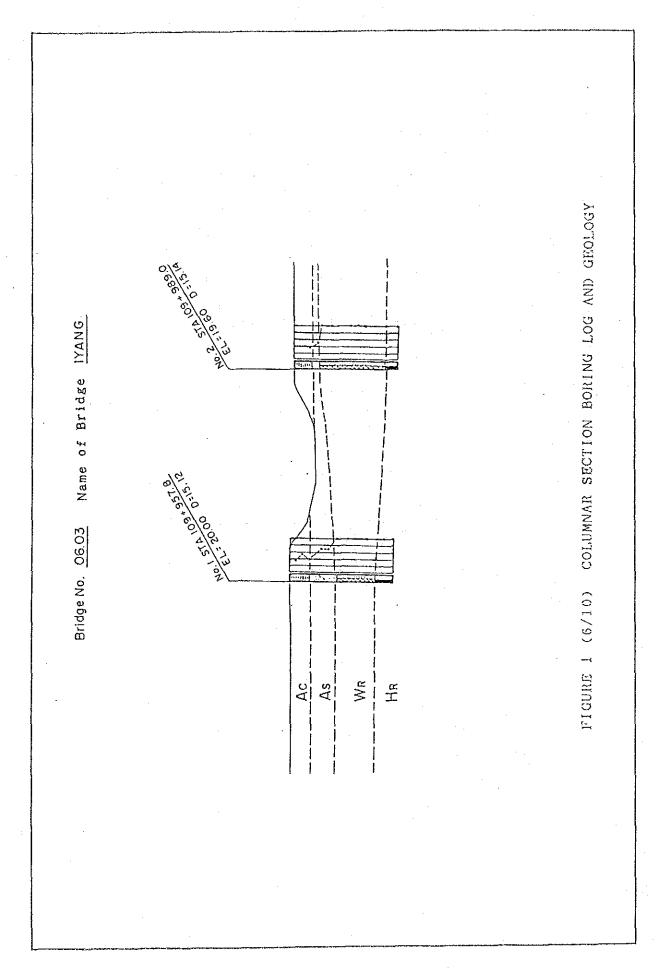
											·							
9	Sofi	MC(E)		1		40		42	23	44.	22.	23	6	,				
No State of the St	2	Value Value		1		10	<u>-</u> -	13	20	24	ν γ 20		12		,			
The state of		1015K-	<u></u>	ı			2,5		2.5		9.0		Š					
	Soli	MC(X)				26.		47	32	23		,,.,.	8					
Į į		Value				10		10	33	វន	50 V		12					
Boring	100	Thick- ness(#)	**************************************	1			6.5		10		0.1							
	Soli	Test		20			1		20	· · · · · · · · · · · · · · · · · · ·	,		9	· · · · · · · · · · · · · · · · · · ·				
Result of		Value		N>50	İ				35		05 A Z		ć.					
	i i	Thick- nesstal		3.0			,		3.0		6.0		1,5.					
	Soll	Test MC(x)		1	-	26		1	77	9	16		10					
	North No.	Value		ı		10		12	30	33	Z 7 50		2					
	ř	Thick- ness (s)		.1			. n		2,5		6.0		15		-			
		N-Value	N 7 50		N 50			10		13	30	ಕ್ಷ	20					
	Thick	ness (m)		3.0m		2.5		6.5	2.5	3,0	0.0	9.0		•				
	Layer		only BH-2	0-3.0m		0		6.5	2,5	0.0	6.0	15.0						
General Vlew		Constituted Materials (Layer	Rock blocks (tuff)	Breccia	(unantural)	clayey sand (fine sand)	sandy clay	allernation (alluvial fan)	claycy sand with gravel	(alluviat fan)	attif aand gravel	(dillylum deposits)						
		(rock) Layer	Spillways	Basement		Present river- claycy sand deposits (fine sand)			Flood plain- deposits		Terrace- deposits							
		Symbol (r. Sp. Sp. Sp. Sp. Sp. Ba					ğ		Ş	n Į		Ŝ	Totel		P. 19			


Bridge No. 04-03a Name of Bridge LEVISTE II

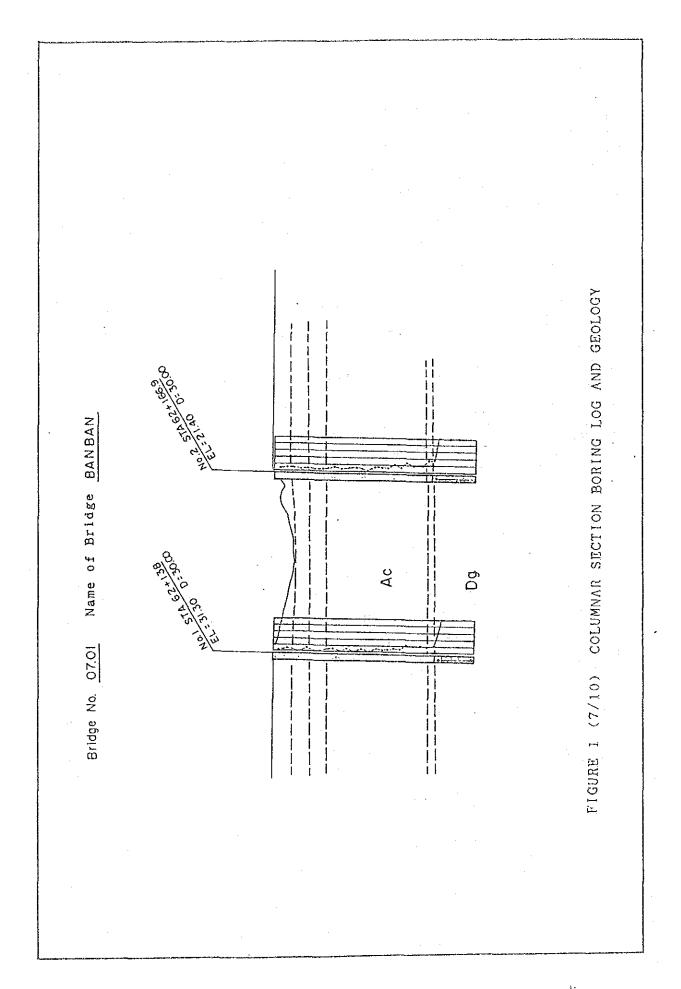
ГТ	~7				·							т				 	
		Soli Test			43	35		62		35		45	1.35			 	
	Boring No.	N- Value		11	N> 50	**		28		32		N> 50	ı,				ļ
1 2 6	Dorn	Thick- ness (a)	Silty	2.0	Sandy Silt (boulder)		5.0				0.5		15,0		****	 	
1	-	Soll Test MC(1)		52		.2 		25		53		20	4				
	Boring No.	N- Value		05 A 2		14	_	26		30		70	4				
Boring	202	Thick- nessia	!	1.5			5.5			 -	0.8		15.0			 	
10	,,	Soll Test Recti	33		36	24		34		22:		35	¥			 	
He su	Coring No.	N- Value	• •	05 A Z		10		17		30	-	N > 50	14				
	Š	Thick- ness(a)	Gravel	3.5%		رة ري					9.0		16.0				
	-	Soil Test RC(x)	25.		4.4	10		÷		36.		40	4				
	Coring No.	N- Value		7.	56	55		12	i	37		05 V	1.4				
1	S	Thick- ness (g)	sand clay	sand with	2.0		3.0				11.0		18.0				
		N-Value	Boulder sand clay	auoz puas	N*17	r)		20.	(Avc. 15)	30	-	05 × N					
		Thick- ness (s)	2.0		3.5	3.0		6.5		7		7.5			· • • · · · · · · · · · · · · · · · · ·	 	
		Layer Depth (m)	0		3.5	1.5		90		7		13					
General View	30. 11.20	Constituted Materials (Layer	Boulder (Andes) to or Basal t)	Gravel	Sand, sandy clay	Gravel sand (silly same)	clay included	Boulder and gravel		Sand	Included gravel						
		Name of Soll (rock) Layer	River			17100d	Plain Deposits				1	Jeposite				 	
		Symbol		Ας.	:		As				Ω		Total			 · · · · · · · · · · · · · · · · · · ·	


Bridge No. 04.04b ... Name of Bridge LUMANG BAYAN

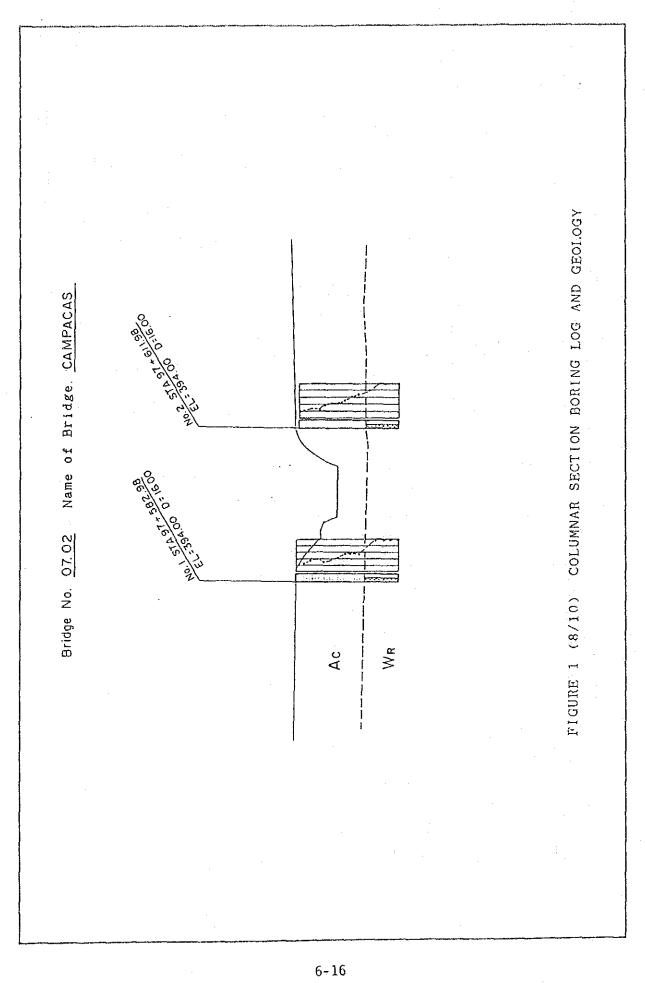
	٠.,	وخسمت					
	4	Soll Test Rutai	છ ₩	29	11 S	0 20	
	Boring No.	N- Value	60	98	42 50/5	82	
	1	Thick- ness (m)	w		G	7.0	
		Soll Test RC(r)	6	10	a	63	
	Boring No.	N- Value	ట	31	50/16	=	·
Joring		Thick- nessin	&			en en	
Result of Boring	~	Soll Test MC(1)	G	52	c []	6	
Reau	Boring No.	N- Value	s	16	50	1.2	
	Bor	Thick- ness(a)			. 60	9	
	-	Soil Test Rucin	8	27	7	0.1	
	Boring No.	N- Value	in.	36	46 V. 50	= .	
	Βo	Thick- ness is	į.		Đ	1.5	
		N-Volue	นา	E .	50/16		
		Thick-	t-	ణ	F 6		
		Layer Depth (m)	0	=	, m		
General View		Constituted Materials (Layer	silt, sond (fine) gravel (10 less andosite limestone schist	(A lluvium	grevel boulder cobble is limesione (Diluvium)		. •
		Name of Soll (rock) Layer	Flood plain deposits		Flood deposits		
		Symbol	Ac	Ag	6Q .	Total	


Bridge No. 04-05b Name of Bridge OLANGOAN

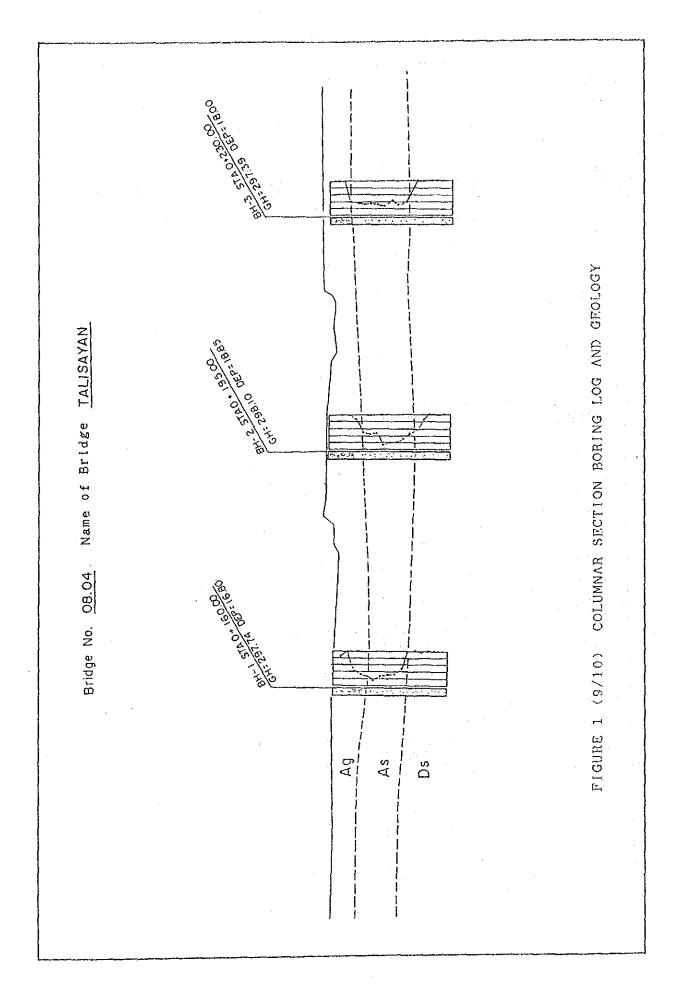
П	7	- 13					 			
		Soli Test MCI								
	Borng. No.	N- Value								
	1301	Tivick-						i		
		Sofi Test	22	21	6	50	,		ь	
	Boring No.	N- Value	13	23	25	N >50	N >50		10	
oring	101	Thick- ness (#)	Đ	6.0	0.0	10.0	10.0 15.0		3.5	
Result of Boring	7	Soll RC(S)	6	3.1	1		,		r	
Resul	Uoring No.	N- Value	41	N > 50	Z \		03< N	-	r	
		Thick- nessia	0-2 4 0-1.5B: 1.5-2 c by			0.0	0.0		5.	
		Soft	12	14	10	15	J	i	11	
	Boring No.	N- Value	6	16	Z \		N >50		3	
	Š	Thick- ness (s)	2,0 cley		9,9		3.1		16	
		N-Volue	13	23	45	N > 50	09 < z	 		
		Thick- ness (s)	0 ::	0,0	4.0	0.0	3.1	7.0		
	. General View	Cayer Depth (m)	0.0	6.0	6.0	11.5	g.0	15.0		
Coneral View		Constituted Materials	silt and clay	with gravel	sand grevel		boring core rocks fragment breecia rich	brecein is (weathered rocks)	·	
		Name of Soll (rock) Layer	silt clay		នឯក៥ិ	gravel	wenthered			
		Symbol	Ve		č		WR		Total	


Bridge No. 05.03 Name of Bridge NARANGASAN

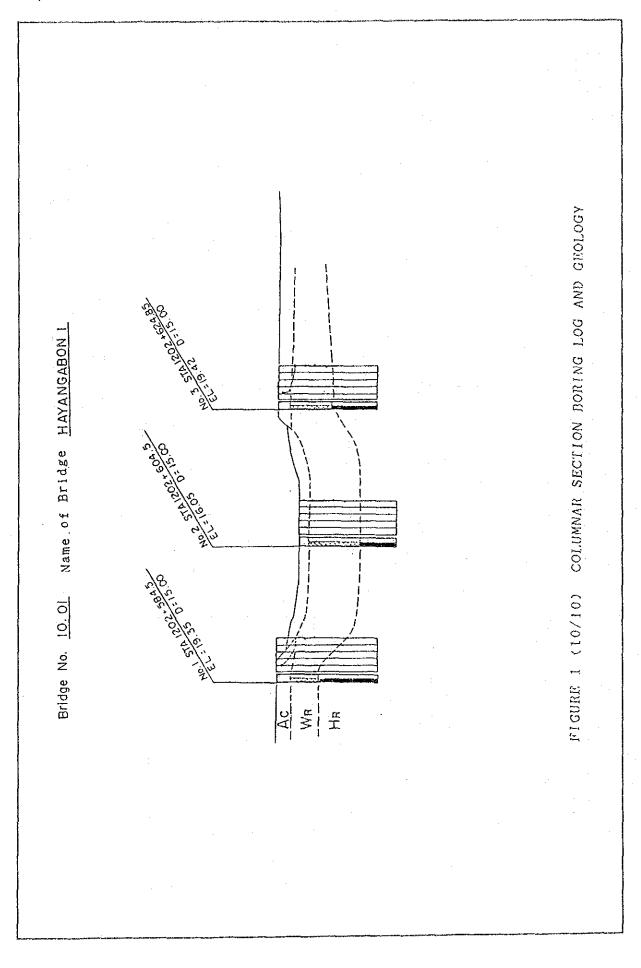
					···				r	
4	, , , , ,	WC(S)								
Boring No.	z	Value	•							
Paris	F	ne85 (#)								
		MC(X)	20	25	48				13	
ng Horion No	9 Z	Value	ы	&	22	, 6	43	. 09	1.5	
3oring	Thick	ne 58 (s)	u u		i,	e e	0,4		10.2	
] o [Soll		26	33	25	23		l	G	
Result of Boring	- Z	Value	'n	18	1	9 7	. X		G	
100	Thick	nesa (m)	r.			r.		1	15.0	
	Soil		33	48	20	38	22	36	1.0	
Borlag No	Z Z	Value	ক্	13	16	4.	۲ ۲ ۲		1.0	
6	Thick-	nces (x)	· v			=-1 1	Q		20	
		N-Value	ဗ	12	16	en En	S N			·
	Thick-	ne 89 (6)	4.5	5,5	1.5	0.11.	4.0	9.0		
	Layer	(E)	0	5,5	4.5	16	ల	20		
General View	1019	_,	clay att	fine sand	clny	alit Iine sand	weakly cemented mudatone	dilluvlum		
	Name of Soll	(rock) Layer	Flood plain	87180d50	Flood plain	deposits	Dilluvium deposits	:		·
		Symbol	δc		20	ĉ	De	:	Total	


Dridge No. DB-D3 Name of Dridge IXANG

	7			مجدا جامعهما					-	-	and Mineral June 1981 and 198	<u></u>		
	4	Soil Test				·	~~ <u>~~</u>				 		<u></u>	
	No.	N- Value									· ·			
	Baring	Thick- ness (a)									,			
	6	Soll Test MC(X)												
	Boring No.	N- Value				! 	,							
Boring	Bori	Thick- nessir											<u></u>	
il of B	2	Soll	18	30		23	3,4				-1 -1	 		
Result of	Boring No.		17	22		ç		impos-	200	ļ	11	!		
	Bor	Thick-		5.		9.50			ю.	. I	16.1			
		Soll Test Mc(II)	10	5	-	ప్ర	23	30	32		13			
	Doring No.	N- Value	18	27		.52	200	impog-	9					
	o((Thick- ness (s)		'n		0.11			2.1		18.1			
		N-Value	. 11	. 22		N 50			N 50					
		Thick- ness (a)	4.0	5. O		۳ و	6.5	1.5	2.0					
		Layer Depth (m)	0	5.0		4.0	9,5	3.0	15.0	·				
Convert View	Cellet at View	Consilluted Moteriols (Layer	gravel mixed clay (alluvium deposits)		(alluvium deposits) slity sand	weathered (tuffelus shale)	tertiery, pliocene	bed rocks	weakly weathered (tuffelus shale)	tertlary, pilocene			-	
		Same of Soll (rock) Layer		· cohesive		soft rock			bed rock					
		Symbol		ن <	As	WR			ng Ti		Total			


Bridge No. 07.01 Name of Bridge BANBAN

-				-		~	~~·			
	-	Soll Test ECIXI	-							
	Boring No.	N- Value								
	Borin	Thick- ness (s)	-							
		Soil Test MC(x)								
	é E	Veluc						·		
loring	Boring			<i></i>						
1 o 11	2	Soil Test	40		120		1		20	
Result of Boring	ng No.	N. Value	r		10		ι	-	. 20	
	Bor	Thick-			24			6.00	30	
		Soil Test MC(XI	40		130		,		20	
	Boring No.	N. Value	1/45		10		N > 50	,	20	
	ğ	Thick- ness (el			24.0		i	6.00	30	
		N-Value		1/45-10	(1-6)		05 ^ Z	· · ·		•
		Thick- ness (s)		24.00			0.0			
		Layer Depth (m)			24.00	24.00		30,00		
	Ceneral view	Consiltuted Materials	clay	organic	lagoon deposits	breccis, imestone	boulder	clay and sand		
		Name of Soil (rock) Layer		Clay			Sand	grsvet		
		Symbol		» V			ညိ		Total	


Bridge No. 07-02 Name of Bridge CAMPACAS

		Soll Test Extsi				and the second	Tariffe share over	<u> </u>			
	Horing No.	Value								. انداز <u>و ، و انظام و رو مساله مو</u>	
	Sori	Thick- ness(m)									
		Soil Test REIN									
	P. No.	Value Value						•			
oring	Horing	Thick-									
Result of Boring	~	Soll Test	23		50	2.5		37		15	
1 cst	Uaring No.	Vu lue	11		38		N > 50			ro.	
	Cor	Thick- ress(m		10,0	· · · · · · · · · · · · · · · · · · ·		5.0	38		0.91	
	-	Soil Test	2.4		33		120			G.	
	Norlng No.	N- Value	12		23	30	÷.	N > 50		15	
	130	Tinick- ness(m)		6 9			7.0			16.a	
		N-Vatue	11	0.0	ຄ	39		09 ¢ N			
		Thick- ness	9.0		10.0	5.0		7.0	0.7		
ŀ		Layer Depth (m)	0.0		10.0	0,.0		15.0	15.0	_	
Canada Wlow	General view	Constituted Materials (Layer		111	Include poor gravel (terrace deposita)	weathered rock		tertlary (Pllocene)	weethered sand stone mudatone		
		Name of Soil (rock) Layer		clay			soft rock				
		Symbol		νc			wR			Total	

Bridge No. 09-04 Name of Bridge TALISAYAN

9	Soll Test Macial										<u> </u>					
Boring No.	N- Value															
Bori	Thi															
·		8	-			10		35			1			22		
ing No.	żź	5	N 50			£.1		13		35		ν γ γ		51		
3oring	F 5	:	5.0				9.0	-			4.0			18.0		
Result of Boring		8		5		16		30		=		27		9]
Resu Boring No.	N- Value	45	N 7 50			ţ+-		15		22		N > 50		10		
Bor	Thick-		4,0	*******			0				7.8			19.0		
	Soll	12		20		. 24		20			ı			63		
Non-ing No	N- Value			22		7		25	*	25		N 50		. 13		
1	Thick- ness (a)			0.3	;			5.0		0.B				16.8		
	N-Value	**		ഗ		7		25		25	N 7 50	I		:		
	Thick-	4		ت 	· · · · · · · · · · · · · · · · · · ·	2		9.0		4		Ð				
	Layer Depth (m)	0.	•	ۍ ن		4.0		11.0		11.0		18.0				
General Vlew	D		boulder-grovel	sand-fine	-course (Alluvium gravel)	fine sand	(silty sand)	find grove!	(gravel is andesite)	silly, sand and gravel 11	breccia is wethered granite-porphyry					
	Name of Soil (rock) Layer	Flood plain	deposits				Flood plain			Dellvlum	deposits				·	
	Symbol			Αg			å				so			Total		

Bridge No. 10-01 Name of Bridge HAYANGABON I

~	~~7					·			γ		,	Y
	\$	Soll Test Mein										
	Boring No.	N- Value										
	Borin	Thick- ness (#)										
	3	Soil Test MC(X)	32		ř		1			ı	2	
	Horing No.	N- Value		12			N >50			1	හ	
oring	Hori	Thick- ness (x)	, , , , , , , , , , , , , , , , , , , 	2.3			4.7			0.0	15	
Result of Boring	7	Soil Teat		1			-1			1	o	
Resu	Boring No.	N Value		N > 50			N >50	.		N >50	ప	,
	Uor	Thick- ness (x)		£, 3			7.7			ō.0	51	·
		Soil Fest MX(X)		44	············			·			m	
	Boring No.	N- Value	10		4.		N > 50				15	
	ΙJo	Thick- ness is)		2.0			4.0			D.0	15	
		N-Value	. 01	·	(N > 50)	:	0	N > 50		Impossible		
		Thick- ness (s)	1.3	2,3		ŭ, D		0.0	5,0	0.0		
		Layer Depth (m)	Б		. 2 3	1.3		0.0	g. D	15		
	General View	Constituted Materials (Layer	sandy clay		(Alluetum deposits)	weathered bed rocks		(diabage)	bed rocks	(dlabase)		
		Mame of Soll (rock) Layer		sandy clay			soft rocks			bed rock		
		Symbol		ပ္			WR	_		Ť	Total	

APPENDIX 7

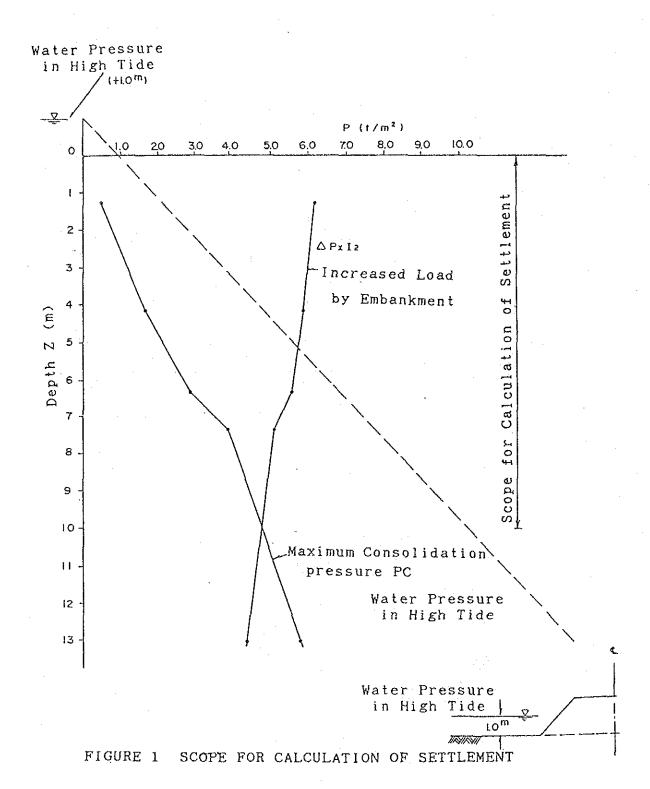
ANALYSIS ON SOFT GROUND

1. Calculation of Settlement

1.1 Geology Condition

Results of boring survey, soft soil layer of lagoon is deposited in thickness in Banban Bridge. Refer to Table 1.

TABLE 1 LIST OF GEOLOGY


Geology	Depth	N-	Consis	tency	Natural Water	Unconfined Compression	Remarks
Geology	(m)	Value	LL	PL	Content (%)	Strength (kg/m2)	Remar As
Clay with Sand	0-2.5	2-3	88	25	9-51		Including plenty sand
Organic Clay	2.5-5.5	1-2	62-65	25-31	100-120	0.1061	Decayed vegetation is not homogeneous.
Clay with Sand	5.5-8.0	1-2	69	30 °	66-80	0.0989	Mixed sand is not regular.
Clay with Sand	8.0-9.0	2~5	80	44	50-60		Including small gravel
Clay	9.0-13.0	2-5	75-83	33-45	50-60	0.1268 0.1197	Homogeneous clay
Clay with Sand	13.0-14.0	2-4	81	39	49-59		Including sand in some parts of layer
Organic Clay	14.0-15.5	3-5	80	42	80-100	0.1038	Mixed decayed vegetation is not regular.
Clay	15.5-16.5	5-6	83	39	40-50	0.1287	Homogeneous clay
- do -	16.5-20.0	5-6	83-85	31-39	45-70		- do -
- do -	20.0-24.0	6-11	-	-	50-60		- do -
Sand and Gravel	24.0-30.0	N>50	-	-	-		Including block of coral rock

Note; LL = Liquid limit PL = Plastic limit

As above, Natural Water Content exceeds Liquid limit. Clay with sand layer at the depth of 5.50 m-8.0 m and clay layer at the depth of 14.0 m-15.5 m tend to be liquid layer.

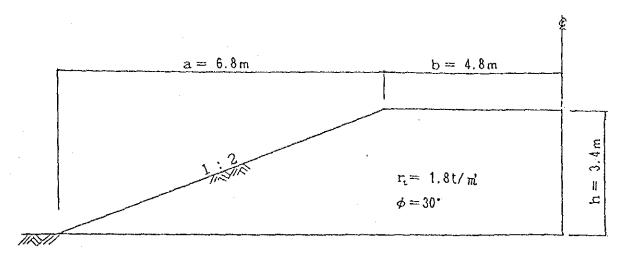
1.2 Scope for Calculation of Settlement

Scope for calculation of settlement shall be compared Maximum Consolidation pressure PC and Increased load by embankment $P_{\rm C}$ and shall be determined in case of Pc> P. Refer to Figure 1.

1.3 Calculation of Amount of Settlement

(1) Calculation of Amount of Settlement for Proposed Embankment

Refer to Figure 2 and Table 2.



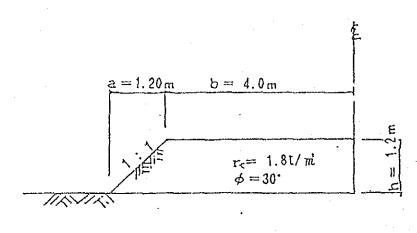

FIGURE 2 PROPOSED EMBANKMENT

TABLE 2 CALCULATION OF AMOUNT OF SETTLEMENT FOR PROPOSED EMBANKMENT

ioì)	Depth	Thickness of Soil Layer	Central Point				nfluence	Рc	∆p (qlz}		loulati Settiem		H <u>eO-el</u> 1+eo(cm)	e-logp
TAGE.	D (m)	H (m)	Z (m)	a/z	b/z	1 ' z	12(21,1)			eo	Po -ΔP	el	1+50(CM)	
1	1.30	1.30	0.65	10.46	7.38	0.499	0.998	0.52	6.11	1.33	6.63	1.22	5.1	
2	4.20	2.90	2.75	2.47	1.75	0.485	0.970	1.62	5-94	2.89	7.56	2.65	17.9	
3	5.40	2.20	5.30	1.28	0.91	0,450	0.900	2.85	5.51	1.77	8.37	1.65	9.5	~~~~~~
	7,40	1.00	6.90	0.98	0.59	0.420	0.843	3.82	5.14	1.27	8.96	1.20	3.1	
5	11.80	4.40	9.60	0.79	Q.56	0.350	0.720	5.11	4.41	1.69	9.55	1.62	11.4	
otal			·										45.0	

(2) Calculation of Amount of Settlement for Existing Embankment

Refer to Figure 3 and Table 3.

 $q = 1.2 \times 1.8 = 2.16t/\vec{n}$

FIGURE 3 EXISTING EMBANKMENT

TABLE 3 CALCULATION OF AMOUNT OF SETTLEMENT FOR EXISTING EMBANKMENT

50 i l	Depth	Thickness of	Central	Coefficient of	Δ	P	٧o	d Rat	i o	F1+e0	e-logP
	D (m)	Soil Layer H (m)	Point Z(m)	a/z b/z l'z lz(21'z)	(q!	(z)	60	Po+AP	el	(cm)	
	1.30	1.30	0.65	1.85 6.15 0.499 0.998 0.5	2 2	.16	1.33	2.68	1.23	2.8	A
- -	4.20	2.90	2.78	0.44 1.45 0.470 0.940 1.6						12.7	Ď
	6.40	2.20	5.30	0.23 0.75 0.380 0.760 2.8	6 1	64	1.77	4.50	1.72	3.9	8
	7.40	1.00	6.90	0.17 0.58 0.330 0.650 3.8						0.9	Α
	11.8	4.40	9.50	0.12 0.39 0.250 0.500 5.1						1.6	В
atal				جه ماها در من						21.9	

Amount of Settlement by Proposed Embankment Refer to Figure 4.



FIGURE 4 AMOUNT OF SETTLEMENT BY PROPOSED EMBANKIMENT

1.4 Calculation of Time of Consolidation

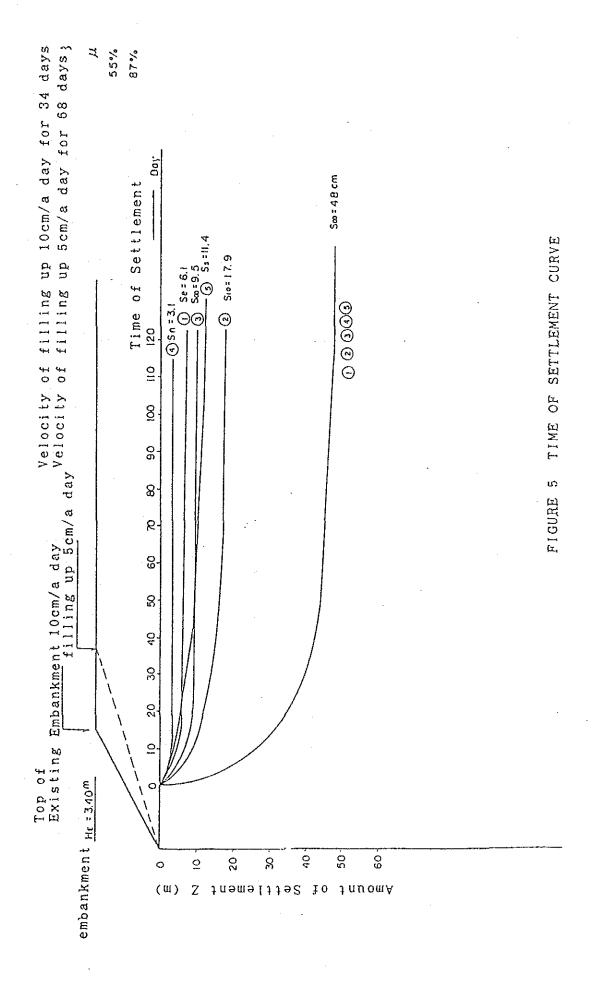

Layer of (1), (3), (4) and (6) are mixed with plenty sand, therefore, time of consolidation shall be calculated as drained layer. Refer to Table 4, Table 5 and Figure 5 Time of Settlement Curve.

TABLE 4 COEFFICIENT OF CONSOLIDATION CV

Layer	Thickness of Layer H (cm)	ΔP	$\frac{1}{2}\Delta P$	Po	$P + \frac{1}{2} \triangle P$	Cv (cm ² /S)	Adopted Curve of Cv
1	130	6.11	3.06	0.52	3.58	6.0 x 10 ³	Α
2	290	5.94	2.97	1.62	4.59	4.0×10^{-3}	D
3	220	5.51	2.76	2.86	5.62	6.7×10^{-3}	В
4	100	5.14	2.57	3.82	6,39	5.5 x 10 ⁻³	Α
5	440	4.41	2.21	5.14	7.35	6.0×10^{-3}	В

TABLE 5 CALCULATION OF CONSOLIDATION

Ux	10	20	30	40	50	60	70	80	90	95	Thickness 100 of Layer H(cm)	Cr (出)) ² / _{CY}
Ť	0.008	0.031	0.071	0.126	0.196	0.287	0.403	0.567	0.848	1.13	· · · · · · · · · · · · · · · · · · ·		
①	0.06	0.25	0.58	1.02	1.59	2.33	3.28	4.62	6.91	9.2	130	518.4	8.15
2	0.48	1.88	4.32	7.29	11.92	17.4	24.5	31.5	51.6	68.7	290	345.6	60.8
3	0.16	0.65	1.4	2.6	4.09	5.9	8.4	11.8	17.7	23.6	220	578.9	20.9
<u>(1)</u>	0.04	0.16	0.37	0.67	1.04	1.53	2.13	3.0	4.5	5.9	100	475.2	5.3
③	0.7	2.89	6.63	11.78	18.31	26.80	37.64	52.96	79.2	103.5	440	518.4	93.4

- 2. Calculation for Stability of Slope
- 2.1 Results of Calculation for Stability (Proposed embankment except abutment)

Objective of safety factor Fs is required more than 1.00, Fs \geq 1.00. Power of Resistance, PR = Fs:MD-MR. Refer to Table 6.

TABLE 6 POWER OF RESISTANCE

Depth of Slip Surface (m) MD	MR	Fs	PR
1.3	45.11	37.02	0.821	8.09
4.2	202.86	210.74	1.039	0
6.4	389.27	389.94	1.001	0
7.4	545.33	538.03	0.987	7.3

Note; MD: Moment of driving

MR: Moment of resistance PR: Power of resistance

An average slip surface is at an angle of 60^{0} at driven wooden pile. Therefore maximum Shearing Strength is shown as follows. Refer to Figure 6.

 $Smax = PR Cos \theta = 8.1 \times 0.5 = 4.05 t/m$

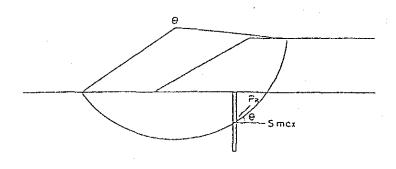


FIGURE 6 SLIP SURFACE

Shearing Strength of Wooden pile $7 \, \rm s$ is $4 \, \rm kg/cm^2$ (allowable stress of a short period. If diameter of wooden pile is 20 cm, allowable stress of a short period shall be adopted for a wooden pile.

 $7_{s \cdot Ap} = 14 \times 3.14 \times 10^2 = 4.396 \text{ kg (per a wooden pile)}$

Safety factor FS≥1.00, therefore

$$\frac{T_{\text{S}} \cdot AP}{\text{Smax}} = \frac{4.396}{4.05} = 1.00$$

Therefore, a wooden pile shall be required for per 1 \mbox{m} at embankment.

2.2 Results of Calculation for Stability (Abutment)

Results of calculation for Stability and Power of Resistance at abutment are shown in Figure 7 and Table 7.

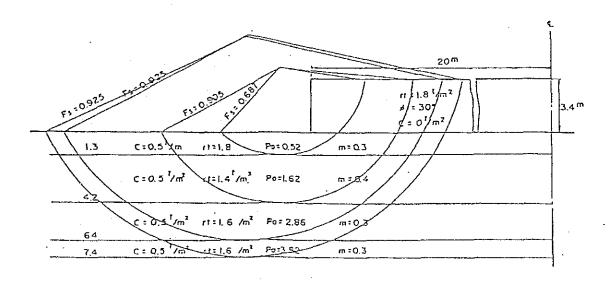


FIGURE 7 RESULTS OF CALCULATION FOR STABILITY (ABUTMENT)

TABLE 7 POWER OF RESISTANCE

Depth of Slip Surface D (m)	MD	MR	Fs	PR	
1.3	54.58	37.48	0.687	17.1	
4.2	174.38	157.89	0.905	16.5	
6.4	362.02	335.02	0.925	27.0	
7.4	440.97	407.98	0.925	32.9	

Note; MD: Moment of driving

MR : Moments of resistance PR : Power of resistance

If Objective of Safety factor should be required more than 1.00, Fs \geq 1.0. Power of Resistance is shown as above. Slip surface is at an angle of 60^{0} at a driven wooden pile. Therefore Maximum sheering Strength is shown as follows.

 $Smax = PR cos\theta = 32.9 \times 0.5 = 16.5 t/m^2$

If sheering strength of a wooden pile $7\,\mathrm{s}$ is 14 kg/cm 2 (a short period), formula is expressed as follows.

 $7 \text{s-AP} = 14 \times 3.14 \times 10^2 = 4.396 \text{ kg (per a wooden pile,}$ Diameter of a wooden pile is 20 cm)

 $7s \cdot AP/Smax = 6.5/4.4 = 3.7 \text{ piles/m}$

Therefore 4 wooden piles shall be required for per 1 m at abutment. Results of Calculation for stability, method of pile net should be adopted between 7.0 m - 8.0 m from abutment. Refer to Figure 8 as follows.

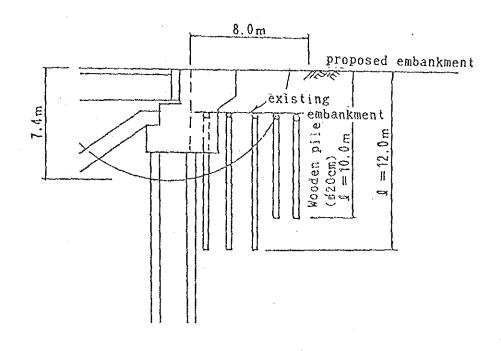


FIGURE 8 METHOD OF PILE NET

The strength of net of bamboo is assumed that C is $\ 1t\ per\ m^2$ and Safety factor, Fs is more than 1.00. Therefore embankment can be stabilized.

3. Measure of Settlement of Embankment

(1) Settlement of Embankment

- . Concrete pavement is planned at bridge approach and embankment should be required the end of Settlement for Constirubion of pavement structure.
- As results of review, if we subtract amount of settlement of existing embankment from amount of settlement of proposed embankment, non-uniform settlement will be arisen 26.1 cm at center of embankment and will be arisen 38.0 cm at shoulder of embankment.

(2) Stability of Embankment

. To use sand for materials of embankment, proposed embankment is not stabilized (\$\delta = 30^0\$, C=0t/m², rt= 1.8t/m²). Objective of Safety factor FS is required more than 1.00, F\(\text{\gamma}\)1.00 (Velocity of filling up 5cm/a day, top of embankment is U=80%)

(3) Measure of Settlement of Embankment

. Settlement and stability of embankment should be reviewed and measure should be required to reduce differential settlement and increase Safety factor. Therefore, Method of Pile net is the most suitable for measure and net of bamboo and coconut tree are used as a net and a wooden pile.

(4) Review of Method of Pile Net

Strength of a net of bamboo and a wooden frame should not be considered for review in this case. the shearing strength of a net of bamboo is estimated $1t/m^2$ ($Rn=1t/m^2$) and Safety factor is more than 1.00 (Fs \geq 1.00).

Bearing Capacity and required the wooden pile

Length of a wooden pile is 12.0m (The depth of slip

surface is 7.4cm and should be penetrated 1/3 of

length of a pile.)

Diameter of a wooden pile is \$20.0cm.

Point bearing capacity of a wooden pile is expressed as follows.

qal =
$$5qu \times Ap = 5 \times 1.0 \times 0.1^2 \times 3.14$$

= 0.157 t/a pile

Skin friction is expressed as follows

$$qa2 = \frac{qu}{2} \times 6c \times Lc = 0.5 \times 2 \times 3.14 \times 0.1 \times 12$$

= 3.768 t/a pile

qa1 + qa2 = 3.925 t/a pile

Load of embankment, $P = 2.2m \times 1.8 = 3.96 t/m^2$ (except existing embankment) and P approximates q (p=q) which is required a wooden pile per $1m^2$.

The shared area of a wooden pile for load of embankment is calculated as follows. Refer to Figure 9.

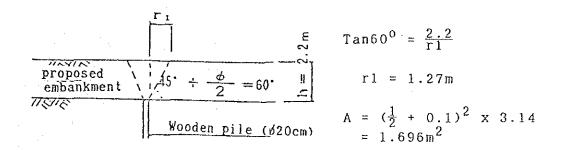


FIGURE 9 THE SHRED AREA OF A WOODEN PILE

The shear area of a wooden pile, A_1 is $1.696m^2$. If a driven pipe is at a square corner of an interval of 1.5m, the share area is expressed as follows. $A_1/A_2 = 1.696m^2/2.25m^2 = 0.75$ and Settlement of embankment can be reduced 75 percent by the wooden piles. Table 8 shows list of results for measure of Settlement.

proposed embankment existing embankmen! proposed embankment existing embankment Wooden pile (\$20cm) Kooden frame Net of bamboo Wooden plie (620cm) Figure differential settlement of shoulder of embankment (0=30°, rt=1.8t/m³, $C=1.01/m^2$) Results of calculation for stability, embankment at abutment is not stabilized Method of pile net should be adopted far Method of pile net should be adopted at shoulder of embankment for differential 26,1cm at center of embankment and will stabilized. (4=30°, rt=1.81/m) c=1.01/m) | removed | | removed | r differential settlement will be arisen The wooden pile (coconut of settlement of proposed embankment, If Slope of embankment is 1:2, safety Method of pile net should be adopted. at shoulder of embankment for differential settlement. The wooden Method of pile net should be adopted tree) and the net of bamboo is used. Measure of Seltlement of embankment If we subtract amount of settlement of existing embankment from amount pile (coconul tree) and the net of bamboo is used. Measure of selllement should be required that the height of embankment is higher than 1.5m, be arisen 38.0cm at shoulder. Settlement of embankment Settlement of embankment Stability of embankment Stability of embankment Measure of Settlement LIST OF RESULTS FOR MEASURE OF SETTLEMENT settiement. Calculation of Stability Depth Z (m) Fs 0.821 1.039 1.001 0.987 0.687 0.905 0.925 0.925 1.3 1.3 4.2 6.4 7.4 ~ 20 20 ~ 400 Calculation of Settlement Depth Z (m) amount (cm) that the height of embank-TABLE 8 11.4 Total 48.0 ment is lower than 1.5m. 6.1 7.9 9.5 (The height of existing 2.8 12.7 3.9 0.9 1.6 Tolal 21.9 embankment is 1.5m and 26.1 should not be required Measure of settlement is stabilized. embankment embankmen Proposed Existing 11.8 1.3 4.2 6.4 existing embankment C Man was 1 them! O D'actioners similar 4) 1 graph and all more and O prifittane abeitied @ Cross Section for Calculation existing embankmen *** () 65.1 8 11.28 (... 06 . 1 . 1. 7. 7. 1. 1. • =! 1 -15 -13 (exceptabul) Classifi-(abutment Embank-Embanklemarks callon men (men (

Note; Fs = Safety factor

APPENDIX 8

COUNTRY DATA

I. Land and Population

(1) Land

The Philippines consists of 7,100 islands that were formed by repeated orogenic movements and volcanic activities. The islands are divided into the three (3) main groups of Luzon, Visayas and Mindanao. Luzon is the largest island and is located furthest north. Visayas, composed of Samar, Leyte and other islands, is situated between the other two, and Midanao, the second largest island, is located furthest south.

The area of the major islands is as follows:

Island	Area (km²)
Luzon	104,687
Mindanao	94,630
Samar	13,079
Negros	12,704
Palawan	11,784
Others	43,541
Total	280,415

(2) Climate

The Philippines is located in the tropics. The climate in the Philippines is due to its geographical location and the different winds system that prevails over the locality. The condition of the climate has been described in term of the characteristics of the distribution of rainfall received in a locality during the different month of the year. There are four climate types in the Philippines.

Over 50% of the rainfall is associated with tropical cyclones. The frequency of tropical cyclones in the Philippine Area of Responsibility (PAR) has an average of 20 times a year, while the frequency

crossing in the Philippines has an average of 8.8 times a year.

The average annual rainfall in the Philippines is The largest average annual rainfall 2416.3 mm. 4316 mm and 4360 mm at Borongan in Samar and Hinatuan Surigao del Sur, respectively, both of which face the Pacific Ocean and belong to the 2nd type of The highest daily rainfall was 979.4 mm climate. recorded in Baguio City on October 17, 1967. In Samar Leyte islands, the highest daily rainfall 387.9 mm was recorded in Catbalogan City, whereas in Mindanao Island, 564.7 mm in Surigao City. Figure 1 shows type of Climate and Distribution of Rainfall.

(3) Population

The National Capital Region, an integrated community composed of 4 cities and 13 municipalities, holds a population density of 9,317.4 persons per each square kilometer, as compared to 160.3 for the whole country. Its population has being growing at a much higher rate.

Table 1 shows comparative figures of the population, and density of each region.

II. Economy

(1) National Economy

The decade of the 1970's witnessed substantial growth in the Philippines economy. Real Gross National product (GNP) increased at an average yearly rate of 6.2 percent from 1972 to 1980. However, the early 1980's was a period of relatively slower growth in the Philippine economy as an effect of the worldwide economic recession precipitated by the oil crisis.

This moreover, continued to pose difficulties for the Philippine economy until the early part of 1983. As a result of this tight financial situation, the maturities of Philippine borrowings became shorter while interest rates became higher. The declining pace of the economy continued until it reached fall in GNP in 1984 which gave a growth of 5.3%. The negative growth of 2.5% in 1985 showed a gradual recovery of the economy, which actually the start of the Philippine economic recovery, from a negative growth to a positive growth of 1.2% in 1986 to a rapid growth until the early part of 1987 which was estimated at 5.4%.

The relatively higher growth the country is currently experiencing is expected to continue as the necessary structural reforms within the economy are currently being instituted under the new leadership.

(2) Regional Economy

A review of past regional economic performance reveals that different regions of the country showed wide variations in growth and development as exhibited in Table 2. Overall, more than half of the country's domestic output was contributed by only 3 regions: Metro Manila (NCR), Southern Tagalog (R-III) and Western Visayas (R-VI). The depressed regions are Regions II, VIII, IX and XII.

Poverty has been identified as a critical problem in all of the country's regions. Despite various government assistance and programs directed toward low-income groups, the situation has worsened in recent years.

Larger number of poor families and higher poverty incidences have been observed in both developed and poorer regions, pointing to the uneven distribution of incomes within the regions.

As shown in Table 3 regional poverty incidence in 1985 ranged from 44.1 percent in the National Capital Region to a high 73.2 percent in Region V. Nine of the country's thirteen regions had poverty incidences higher than the national average. The Visayas area, covering three regions, had a generally higher

proportion of poor families in the Philippines. Poverty in the rural sector is more severe than in the urban areas. Rural poverty incidence were highest of Regions V, VI, VII and VIII, with more than 70 percent of families falling below the poverty line.

In urban areas, the proportion of poor families was highest in Eastern (R-VIII) and Western (R-VII) Visayas and Northern Midanao (R-IX).

(3) Industrial Structure

By industrial sector, the service sector consistently dominated the country's economy throughout the years from 1970 to 1985, contributing 38% to 42% to the national economy. Industry was next with contributions from 30% to 37%. Agriculture had the least contribution, ranging from 25% to 29% during the same period.

The economy of the country is basically agricultural and its total land area is predominantly rural. The total arable land of the Philippines is 1,333,258 hectares. In 1986, total agricultural crop production of the country reached to 28.5 million metric tons planted to 12.2 million hectors and valued at 77.9 million. Of total production about 80% was contributed by food crops made up of palay, corn and fruits, and only 20% by commercial crops with coconuts and sugarcane as the leading commercial crops.

The largest crop producing region of the country is Region XI (Southern Midanao) contributing about 18 percent of the country's total crop production. The next largest crop producing region are Central Mindanao (R-XII) and Western Visayas (R-VI) contributing 12 percent, respectively.

These different regions of the country consists of different soil types suitable to different types of crops, thus different regions each advantages to different types of crops. The major producers of palay are Regions X, XI and XII, all in Mindanao while the major producers of coconuts are Southern Tagalog

(R-IV) and Southern Mindanao (R-XI). Sugarcane is predominantly grown in Western Visayas (R-VI) while abaca is the major crop of Bicol Region (R-V).

Table 4 shows crop production and the value of production by region. Characteristic of the Philippines Economy, Functional Classification of National Government Expenditure (1987-1992) and Existing Road Length are shown in the Table 5, 6 and 7.

III. National Development Plan

The Medium-Term Philippine Development Plan from 1987 to 1992 was formulated to guide development efforts in both the public and private sector as follows:

The plan address the fundamental problems of the people persistence of poverty and income inequality, high unemployment and underemployment, and urban/rural and regional disparities. These have been brought about by continued structural inefficiencies in the economy. Moreover, the external debt crisis experienced in 1983 has set back whatever gains had been attained in the past.

The Philippines experienced the worst economic and financial crisis in its postwar history starting in late 1983. The roots of these problems can be traced to structural weaknesses in the foundation of the economy, errors in economic management, and abuse of power by the previous regime.

Philippines development efforts in 1987-92 shall be principally directed towards the following goals: (a) alleviation of poverty, (b) generation of more productive employment, (c) promotion of equity and social justice, and (d) the attainment of sustainable economic growth.

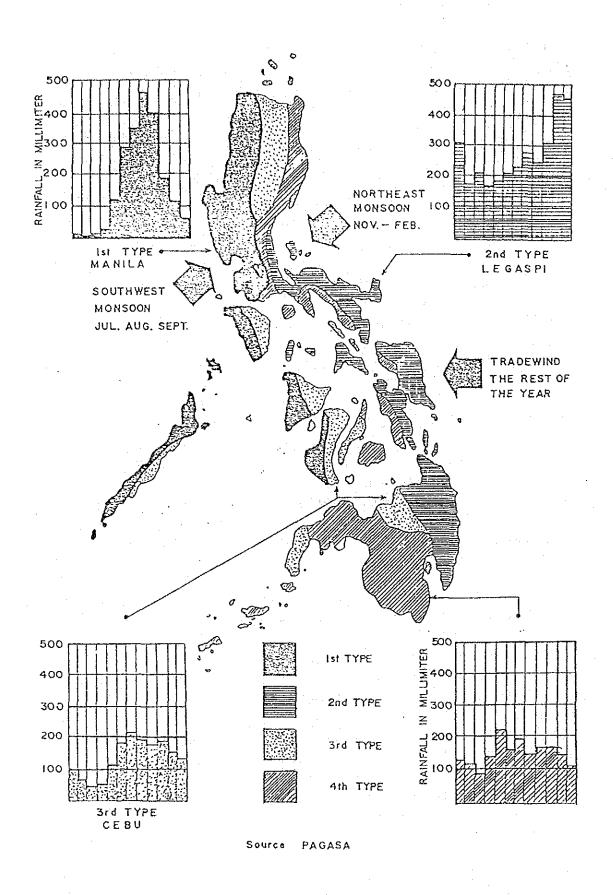


FIGURE 1 TYPE OF CLIMATE AND DISTRIBUTION OF RAINFALL

TABLE 1 POPULATION DENSITY BY REGION AND RANK 1906, 1975, 1970

		100 X	1.9	1900		6 1	1975		1.9	1970	
		(Sq. Km.)	Population (In Thousand)	Density	Rank	Population (In Thousand)	Density	Rank	Population (In Thousand)	Density	Rank
Philippines	nes	300000	48099	160.3		42071	140.2		36605	122.3	
Kational	National Capital Region	636	5926	9317.4		4971	7814.5	(3967	6236.9	r-1
Region	Region III-Central Luzon	18230.8	4803	263.4	2	4210	230.9	7	3616	198.3	ന
Region	VII-Central Visayas	14951.4	3787	253.3	ຕາ	3387	226.6	m	3033	202.8	7
Region	VI-Western Visayas	20223.1	4526	223.8	v	4146	205.0	V	3610	178.9	~
Region	V-Dicol	17632.5	3477	197.2	ស	3194	101.1	2	2967	168.3	'n
Region	1-110cos	21560.4	3541	164.2	9	3269	151.6	Q	2991	138.7	9
Region	IX-Western Mindanao	10605.1	2529	135.3	1.	2040	109.6	6	1869	100.0	ස
Region V	Region VIII-Eastern Visayas	21431.7	2800	130.6	ස	2600	121.3	7	2381	111.1	7
Region	IV-Southern Tagalog	46924.2	6119	130.4	<u>ص</u>	5214	111.1	a	4456	95.0	S
Region	XI-Southern Mindanao	31692.8	3347	105.6	10	27.15	05.6	p==4 p==4	2201	69.4	11
Region	XII-Central Mindanao	23293.2	2271	97.5	1	2070	. 88	‡ 0	1942	83.3	0
Region	X-Northern Mindanao	28327.7	2759	97.4	12	2314	01.7	12	1953	68.9	12
Region	II-Cagayan Valley	36403.0	2216	60.9	13	1933	53.1	13	1692	46.5	13

GROSS DOMESTIC PRODUCT AND GROWTH RATE BY REGION: 1971 TO 1985 (AT CONSTANT 1972 PRICES) TABLE 2

	f	3	GRDP. In Million Pesos.	11on Pesos			Growth Rate	Rate
	Kegion/rear	1971	1975	1980	1905	1971-1975	1975-1980	1980-1985
	Philippines	53528	67455	92706	90469	6.0	6.6	9.5
	N C R	16182	20976	29959	27026	6.7	7.4	8.0
,	Ilocos Region	2691	3144	3318	3859	4.0	prof	3.1
, ,	Cagayan Valley	1421	1809	2437	2472	6.2	ري • •	0.3
III.	Central Luzon	4664	5556	7500	7996	4.5	6.2	1.3
IV.	Southern Tagalog	6434	9617	12935	12905	0.6	5.1	-0.05
٧.	Bicol Region	2032	2554	3277	3069	5.9	5.1	8.7
VI.	Western Visayas	5988	5837	7331	7241	9.4	4.7	9.8
VII.	Central Visayas	3137	4754	6794	6332	1.0	7.4	3.6
VIII.	Eastern Visayas	1766	2094	2272	2205	4.4	1.6	9.4
IX.	Western Mindanao	1589	1834	3248	3235	3.6	2.1	9.9
×	Northern Mindanao	2304	2731	4267	4349	4.3	e. o	0.4
XI.	Southern Mindanao	3552	4587	6292	6157	6.6	6.5	9.6
XII.	Central Mindanao	1768	1962	3079	3623	2.6	9.4	3.3

TABLE 3 REGIONAL POVERTY INDICATORS: 1985

,		Total			Urban			Rural	
Region	Total Poverty Threshold (In P)	Magnitude of Poverty (000 Families)**	Incidence of Poverty (In %) ***	Total Poverty Threshold (In P)*	Magnitude of Poverty (000 Families)**	Incidence of Poverty (In %)***	Total Poverty Threshold (In P)*	Magnitude of Poverty (000 Families)**	Incidence of Poverty (In %) ***
Philippines N C P	2,382	5,676.6	59.3	3,021	1,875.9	52.1	2,066	3,800.7	63.7
Outs, MCR	2,285	5,126.1	61.6	2,912	1,325.4	56.3	2,066	3,800.7	63.7
,	2,374	364.9	52.3	3,093	7.68	56.2	2,139	275.2	51.1
Janet Samet	2,194	246.3	54.6	2,897	31.3	48.6	2,092	215.0	55.6
II M	2,550	420.0	44.4	3,153	178.5	45.2	2,104	241.5	43.8
۸Ι	2,471	712.2	55.9	3,048	241.7	50.6	2,174	470.5	59.1
>	2,148	464.0	73.2	2,625	. 81.2	62.3	2,047	382.7	76.0
۷Ĭ	2,449	632.4	73.1	3,069	154.1	65.0	2,249	478.3	76.2
IIA	1,982	530.6	63.8	2,426	1.42.7	58.9	1,819	387.9	73.4
VIII	2,016	385.4	70:4	2,733	. 81.9	70.1	1,822	303.5	70.5
IX	2,118	316.5	65.3	2,650	47.2	61.6	2,025	269.3	65.0
×	2,262	355.4	66.2	2,952	91.7	65.7	2,022	263.7	66.3
XI	2,388	426.0	61.7	2,998	143.1	59.6	2,079	282.9	62.8
XII	2,233	272.4	65.2	2,624	42.2	56.8	2,161	230.2	67.0

* The monthly income required to satisfy 100 percent of nutritional requirements and other needs of a family of 6.

** The total number of families below the poverty line or threshold in 1905.

*** Out of the total number of families, the proportion of families that fall below the povertyline in 1905.

SOURCE: Inter-agency Working Group on Poverty Determination - NEDA, FNRI, NCSO.

TABLE 4 (1) CROP PRODUCTION BY REGION, 1986 (IN METRIC TONS)

	llocos	Cagayan Valley	Central Luzon	Southern Tagalog	Bicol	Western Visayas	Central Visayas	Eastern Visayas	Western Mindanao
All Crops	1,713,726	1,760,242	2,001,026	2,753,156	1,741,385	3,038,775	1,157,011	1,594,719	1,511,664
Food Crops	1,382,284	1,710,079	1,789,876	1,824,165	1,485,439	1,769,198	815,986	1,266,609	1,122,542
Palay (Rough Rice)	871,740	1,172,110	1,525,355	985,765	683,090	1,121,920	148,180	469,440	353,370
Corn (Shelled)	64,530	374,835	8,370	242,305	133,975	43,740	243,645	273,020	216,700
Fruit and nuts except Citrus	265,868	73,754	101,881	330,135	118,420	430,622	137,106	254,842	191,755
Others	241,280	67,985	121,495	262,570	83,810	392,469	119,110	247,207	185,546
Commercial Crops	131,442	50,163	211,150	928,991	255,946	1,269,577	341,025	328,110	389,122
Coconut (Products)	84,961	23,393	10,913	624,397	212,533	116,617	133,123	245,035	295,673
Sugarcane	7,576	16,615	197,127	303,218	13,536	1,149,153	205,072	613,13	య
Abaca		1	1	594	29,860	1,185	930	21,462	860*6
Tobacco	35,855	10,122	3,105	695	13	412	583	39	65
Coffee	1,846	4,969	230	32,971	1,215	4,793	1,445	390	17,261
Cacao	114	09	1	133	113	186	2,174	56	306
Peanut	11,117	17,394	1,954	3,051	1,118	979	19,119	844	1,661
Rootcrops	85,378	22,590	38,364	95,247	466,930	82,291	242,079	285,208	301,211
Vegetables	147,067	9,433	35,130	54,954	17,484	25,658	10,482	5,184	3,074
Others	102,446	100,790	79,251	310,751	50,347	57,425	23,089	10,702	142,968

TABLE 4(2) CROP PRODUCTION BY REGION, 1986 (IN METRIC TONS)

Crops	Northern Mindanao	Southern Mindanao	Central Mindanao	Philippines
All Crops	2,673,185	5,040,157	3,544,782	28,529,828
Food Crops	2,351,905	3,995,652	3,207,726	22,921,461
Palay (Rough Rice)	342,095	653,195	770,720	9,096,980
Corn (Shelled)	252,850	1,203,315	900,735	3,922,020
Fruits and Nuts Except Citrus	1,469,021	1,927,076	729,846	6,030,326
Others	550,159	1,320,388	725,915	4,286,367
Commercial Crops	321,280	1,044,505	337,056	5,608,367
Coconut Product	177,555	983,362	254,827	3,162,389
Sugarcane	122,711	34,690	24,091	2,135,316
Abaca	5,474	9,653	4,409	82,665
Tobacco	652	55	4,405	56,002
Coffee	40,457	26,058	4,880	136,515
Cacao	846	3,070	246	6,235
Peanut	563	809	2,163	43,907
Rootcrops	184,054	101,547	763,577	2,668,476
Vegetables	20,603	18,845	9,246	357,060
Others	49,017	50,927	288,812	729,768

TABLE 5 CHARACTARISTIC OF THE PHILIPPINES ECONOMY

197	0 1975	1980 .	1982	1983	1984	1985
Population (thousands)36,8	50 42,070	48,320	50,740	51,960	53,170	54,380
GNP (billion pesos)	42 114	265	335	379	539	607
GDP (billion pesos) 1	43 195	265	279	282	268	257
GNP Growth rate (%)				1.1	-6.8	-3.8
GNP Per Capital (Pesos)	375		769	635	660	
Consumer Price Increase						
Rate (%)			10.2	10.0	50.4	23.1
Exchange Rate on USs						
(Pesas) 59,0	44 72,479	75,114	85,400	111,127	166,987	186,073
External Accounts	•					
(USs mil.)						
Current Account -	48 -923	-1,917	-3,212	-2,751	-1,268	8
Trade Account -	26 -1,196	-1,939	-2,646	-2,485		-48
Exports 1,0	64 2,263	5,788	5,021	5,005	5,391	
Imports 1,0	90 3,459	7,727	7,667	7,490	6,070	-5,111
Invisible trade						
Account -1	41 -46	-412	-1,040	-738	-975	111
Capital Account 2	71 1,094	2,684	2,846	~394	750	30)
Total External Account	75 -11	891	-730	-3,501	-403	952
Gold, Foreign Currency		•				
Reserves 2	51 1,359	3,140	1,711	864	890	1,110
Commercial Banking						**************************************
(mil.Rupiah)					•	
Total Asset	12 47	123	164	201	224	206
Deposit liabilities	7 15	45	55	76	88	100
Public Finance						
(mil.Pesos)					:	
Revenues 4,8	49 16,838	34,373	37,993	45,606	56,851	
Expenditures 4,7	90 18,198	37,758	52,407		66,689	
Accounts	59 -1,360	-3,385	-14,414	-7,468	-9,828	-11,141
External Debt(USsmil.) 1,5	62 2,043	17,390	24,166	23,871		
External Debt/GNP(%) 22	.1 12.9	49.4	61.5	69.9	75.8	83.7
Debt Service (USsmil.) 2		1,576			2,802	2,774
Debt Service/Exports(%)		19.7			35.0	35.0

Source: IMF, International Monetary Statistics yearbook, 1986 Philippines Central Bank Data

FUNCTIONAL CLASSIFICATION OF NATIONAL GOVERNMENT EXPENDITURES, 1987-1992 (Percentage Distribution) TABLE 6

	Actual	. 1			Proje	Projections			Annual
	Annual avaraga 1976-85	1986	1987	1998	1989	1990	1991	1992	Average 1987-92
Economic Sarvices	33.0	17.3	19.9	21.0	23.9	26.3	28.4	30,3	25.1
Agriculture	7.3	3.2	3.8	5.7	6,5	7.4	8.2	9,1	6,8
Industry, trade and tourism	3.1	0.7	4.4	9.	2.4	2,8	3.0	3,3	2,5
Utilities and Infrastructure	23.5	13,4	14.6	14.0	15.0	16.1	17.2	17.9	15,8
Social Sarvices	20.2	18,3	21.5	24,5	28.4	31,4	35.7	39.2	30,1
Education	12.3	10.2	11.5	13.2	14.1	14.9	17.1	18,7	15.0
Hoalth	3.9	3.0	3.4	4.2	5.9	9.9	8.2	9.6	6,3
Social security and welfare	2.1	4.7	6.2	6,2	6.2	6,3	6.4	6.4	6.2
Housing and community development	1.9	0,4	0.4	. 0.9	2.2	3.6	4.0	4,5	2.7
Defense	14.0	8,9	7.3	7.4	8.0	8.4	6.5	8.9	8.1
Ganaral Public Services	20.0	10.0	11.3	15.7	14.7	13.7	12.3	9.6	12.9
Debt Service Fund and Net Londing ^a	11.9	47,5	40.0	30.8	25.0	20.2	15.1	12.0	23.9
Total	100.0	100.0	100.0	100.0	100.0	100.0	100,0	100.0	100.0

For 1987 anwards, this liem includes a portion of the external liebilities of government financial institutions to be assumed by the national government, Excludes
debt service on liabilities of the Philippine Nuclear Power Plant,
Sources of Besic Date: MBM and NEDA.

8-13

TABLE 7 (1) EXISTING ROAD LENGTH, 1985 (km)

			Nationa				U	C : t ×	
	Concrete	Asphalt	Gravel	Earth	Total	Concrete	Asphalt	Gravel	Total
Philippines	6132.90	5714.75	13601.18	810.29	26259.12	637.44	2016.48	1166.85	3820.77
N C R	440.47	421.64	14.04	ţ	876.15	281.87	832.78	159.09	1273.74
⊢ ~⊀	447.90	943.16	904.49	90.19	2393,74	8.25	183.42	118.05	309.72
>	607.02	107.95	1530.31	61.95	2307.23	ı	. 1		ı
111	610.59	501.19	378.08	T.	1689.86	56.52	115.83	40.95	213.30
V-VI	507.04	973.72	854.66	16.30	10351.72	37.28	120.17	47.26	204.71
IV-8	23.47	265.89	1343,49	73.10	1705.95	0.64	7.46	54.91	63.01
^	624.42	401.32	961.39	47.45	2034.58	20.34	81.14	125.77	227.25
I۸	314.73	590.39	1637.44	52.80	2595.36	79.80	163.05	51.31	294.16
IIA	159.48	648.51	859.77	9.40	1677.16	32.43	236.68	24.10	293.21
VIII	664.81	58.84	1161.16	100.30	1985.11	39.09	2.81	20.02	61.92
ΙX	50.99	338.17	651.03	1	1040.19	8.22	76.89	36.31	121.42
×	639.07	311.62	1251.06	5.70	2207.45	36.10	71.20	98.91	206.21
ΙX	458.22	123.64	1234.97	142.95	1959.78	15.10	92.45	319.06	426.61
IIX	384.69	28.72	819.31	202.14	1434.86	21.71	32.61	71.11	125.43

TABLE 7(2) EXISTING ROAD LENGTH, 1985 (4m)

			Municipal				برهاد مراثة ميوندة بيرادة بالمالية	Provincial		
Region	Concrete	Asphalt	Gravel	Earth	Total	Concrete	Asphalt	Gravel	Earth	Total
Philippines	11706.25	1579.03	6318,79	3220.75	12990,63	711.57	2739.52	19443.45	5524.74	28419.28
ت د د ع	351.18	162.02	29,36	11.78	554,34	1	1	. 1	ı	1
Ţ	40.44	286.70	667.64	409.74	1404.52	48.84	483.32	1678.66	629-63	2870,51
pool. pool	21.09	56,45	827.99	236.41	1141.94	8.44	159.04	1416.70	300.23	1972.41
int int put	202.22	213,60	465.88	155.21	1082,09	302,75	360.87	1534.95	185.66	2384.23
IV-A	279.98	217.12	252.22	114.97	005,65	132.36	498.75	954.66	308.24	1894.01
IV-B	50.03	22.16	342,84	103.07	472.55	11.47	50,30	1667.75	351.90	2081.42
>	107.07	192.40	360.93	121.16	799,68	35.02	318.15	1089.53	361.05	1803.75
1 >	197.95	07.52	345.14	59.01	695,28	61.92	94.29	1966.89	106.20	2229.30
VII	97.56	137.24	445.53	228.19	930,47	13.69	169.93	1906.53	266.51	2356.66
IIIA	246.93	18.12	305.44	137,95	717.13	65.39	327.39	865.55	185.12	1443,45
11.	3.31	25.58	518,10	253.71	800.80	1.63	184.36	1563.86	278,35	2028.25
×	38,25	91.72	556.34	523.88	1221.26	14.09	87.97	1907.97	663.34	2673.37
ΙX	39.57	33.56	753:77	429.50	1283.37	10.74	4.50	2018.59	783.61	2817.44
XII	30.58	34.84	447.61	435,37	951.50	5.17	0.67	876.83	986.85	1869.52

TABLE 7 (3) EXISTING ROAD LENGTH, 1985 (km)

			Barangay					Total		
по : ба »	Concrete	Asphalt	Gravel	Earth	Total	Concrete	Asphalt	Gravel	Earth Tota	ta]
Philippines	J	1	90213.83	ì	90213,83	9188.15	12049.78	130749.11	9721.59 161708.63	8.63
e U z	ſ	ı	234.71	1.	234.71	1073.52	1416,43	437.20	11.78 2938.93	8.93
> −4	ŧ	t	11011.23	. 1	11011.23	545,44	1896.59	14380.08	1157.62 17989.73	9.73
H	1	1	7745.80	- 1	7745.80	636.55	323.44	11520.80	586.59 13167.38	7.38
Proof post post	ľ	1	7943.06	ī	7943.06	1372.08	1191.48	10362.91	386.05 13312.52	2.52
IV-A	ı	1	5428.89	ŧ	5428.89	956.66	1809.76	7537.69	460.87 10764.98	4.98
IV-B	ı	1	3702.27	F	3728.27	85.61	345.82	7191.26	532.56 815	8155.25
A A	1		4012.86	ı	4012.86	786.85	993,01	6550.47	547.78 887	8878.11
₩ >	. 1	1	7486.82	E	7486.82	654.41	935.25	11487.60	223.67 13300.93	0.93
7	t.	3	5854,05	1	5854.05	303,66	1192.36	9089.97	526:04 11112.03	2.03
IIII	ı	1	5113.86		5113.86	1016.22	407.12	7466.02	432.05 932	9321.44
XI	, I	1	5210.93	:	5210.93	64.20	625.00	7980.22	532.16 920	9201.58
×	: f		9675.19	ı	9675.19	727.60	562.51	13489.47	1204.00 15983.58	33.58
XX	ı	1.	9306.09	1	9306,09	523.72	254.15	13631.48	1382.98 1579	15792.33
IIX	ı	1	7408.08	t	7408.08	442.14	96.84	9623.94	1627.46 11790.38	30.38

