DEMOCRATIC SOCIALIST REPUBLIC OF SRI LANKA MINISTRY OF MAHAWELI DEVELOPMENT:

THE STUDY ON EXTENSION OF THE MORAGAHAKANDA AGRICULTÜRAL DEVELOPMENT PROJECT

UPDATING THE FEASIBILITY STUDY

VOLUMEJII ANNEX

PHASE-I

a MAY 1988*

* JAPAN INTERNATIONAL COOPERATION AGENCY

JEA LIBRARY 1066308[6]

17819

DEMOCRATIC SOCIALIST REPUBLIC OF SRI LANKA MINISTRY OF MAHAWELI DEVELOPMENT

THE STUDY ON EXTENSION OF THE MORAGAHAKANDA AGRICULTURAL DEVELOPMENT PROJECT

UPDATING THE FEASIBILITY STUDY

VOLUME-II ANNEX
PHASE-I

MAY 1988

JAPAN INTERNATIONAL COOPERATION AGENCY

REPORT

VOLUME-I	MAIN REPORT
VOLUME-II	ANNEXES
ANNEX-A	GENERAL ECONOMY
ANNEX-B	METEOROLOGY AND HYDROLOGY
ANNEX-C	SOIL AND LAND CLASSIFICATION
ANNEX-D	SOCIO- AND AGRO-ECONOMY
ANNEX-E	AGRICULTURE
ANNEX-F	IRRIGATION AND DRAINAGE
VOLUME-III	ANNEXES
ANNEX-G	POWER GENERATION
ANNEX-H	WATER BALANCE
ANNEX-I	FOUNDATION AND CONSTRUCTION MATERIAL
ANNEX-J	OPTIMUM SCALE OF DAM AND POWER STATION
ANNEX-K	PRELIMINARY DESIGN OF MORAGAHAKANDA DAM
ANNEX-L	CONSTRUCTION PLAN AND COST ESTIMATE
ANNEX-M	PROJECT EVALUATION

DRAWINGS

VOLUME-IV

ABBREVIATIONS

CB Central Bank of Sri Lanka

CEB Ceylon Electricity Board

CECB Central Engineering Consultancy Bureau

CISIR Central Institute for Scientific and Industrial Research

DA Department of Agriculture

DCS Department of Census and Statistics

FAO Food and Agriculture Organization - United Nations

FD Forest Department

GDP Gross Domestic Product

GNP Gross National Product
GOJ Government of Japan

GOSL Government of Sri Lanka

IBRD International Bank for Reconstruction and Development (World Bank)

ID Irrigation Department

IDB Industrial Development Board

JICA Japan International Cooperation Agency

MADR Ministry of Agricultural, Development and Research

MASL Mahaweli Authority of Sri Lanka

MEA Mahaweli Economic Agency

MECA Mahaweli Engineering and Construction Agency

MFP Ministry of Finance and Planning

MLLD Ministry of Lands and Land Development

MMD Ministry of Mahaweli Development

MTI Ministry of Trade and Industries

NCDZ North Central Dry ZoneNCP North Central ProvinceNCRB North Central River Basin

NWDZ North-Western Dry Zone

RVDB River Valley Development Board

SEDZ South-Eastern Dry Zone

SD Survey Department

UNDP United Nations Development Programme

WMP Water Management Secretariat

GA Government Agent Division

AGA Assistant Government Agent Division

GS Grama Sevaka Division
T&V Training and Visit System

KVS Kursi Vapthi Sevaka (GS level instructor)
CRCS Comprehensive Rural Credit Scheme

MPCS Multi-Purpose Co-operative Societies

ASC Agrarian Service Centre

NCRCS New Comprehensive Rural Credit Scheme

AI Agricultural Instructor
PMB Paddy Marketing Board

MRKFED Co-operative Marketing Federation FCD Food Commissioner's Department

CWE Co-operative Wholesale Establishment

REPORT

MGDP Master Plan of Mahaweli Ganga Development Project (UNDP/FAO, 1968)

AMDP Accelerated Mahaweli Development Programme (NEDECO, 1977)

ISS Implementation Strategy Study (NEDECO, 1978)
HCP Hydrological Crash Programme (NEDECO, 1981)

TDS Transbasin Diversion Study (Electrowatt, 1981 & 1984)

MWRMP Mahaweli Water Resources Management Project (ACRES, 1986)

ABBREVIATIONS OF MEASUREMENT

Length	Electrical Measures
mm = Millimeter	V = Volt
cm = Centimeter	A = Ampere
m = Meter	Hz = Hertz (cycle)
km = Kilometer	W = Watt
ft = Foot	kW = Killowatt
yd = Yard	MW = Megawatt
	GW = Gigawatt
Area	
cm ² = sq.cm = Square centimeter	Other Measures
$m^2 = sq.m = Square meter$	% = Percent
ha = Hectare	PS = Horsepower
$km^2 = sq.km = Square kilometer$	o = Degree
	= Minute
Volume	" = Second
cm ³ = cu.cm = Cubic centimeter	°C = Degree centrigrade
1 = lit = liter	10^3 = Thousand
kl = Kiloliter	10^6 = Million
$m^3 = cu.m = Cubic meter$	10 ⁹ = Billion (milliard)
gal. = Gallon	
MCM = Million Cubic Meters	Dirived Measures
and the control of th	$m^3/s = m^3/sec = Cubic meter per second$
Weight	cusec = Cubic feet per second
mg = Milligram	mgd = Million gallon per day
g = Gram	kWh = Kilowatt hour
kg = Kilogram	MWh = Megawatt hour
ton = Metric ton	GWh = Gigawatt hour
lb = Pound	kWh/y = Kilowatt hour per year
	kVA = Kilovolt ampere
Time	BTU = British thermal unit
sec = s = Second	
min = Minute	Money
h = Hour	Rs. = Sri Lanka Rupees
d = Day	US\$ = US dollar
y = Year	Yen = Japanese Yen
	the control of the co

CONVERSION FACTORS

	From 1	Met	ric System	To Metri	<u>c S</u> y	<u> estem</u>
Length	1 cm 1 m 1 km		0.394 inch 3.28 ft = 1.094 yd 0.621 mile	I inch I ft I yd I mile	=======================================	2,54 cm 30,48 cm 91,44 cm 1,609 km
Area	I cm ² 1 m ² 1 ha 1 km ²	=======================================	0.155 sq.in 10.76 sq.ft. 2.471 acres 0.386 sq.mile	1 sq.ft 1 sq.yd 1 acre 1 sq.mile	11 11 11 11	0.0929 m ² 0.835 m ² 0.4047 ha 2.59 km ²
Volume	1 cm ³ 1 lit 1 kl 1 m ³ 10 ⁶ m ³		0.0610 cu.in 0.220 gal. (imp.) 6.29 barrels 35.3 cu.ft 811 acre-ft	1 cu.ft 1 cu.yd 1 gal. (imp.) 1 gal. (US) 1 acre-ft	11 11 11 11	28.32 lit 0.765 m ³ 4.55 lit 3.79 lit 1,233.5 m ²
Energy	1 kWh	=	3,413 BTU	1 BTU	=	0.293 Wh
Temperature	°C	, 52	(°F-32) 5/9	oF	, =	1.8°C + 32
Derived Meas	ures 1 m³/s 1 kg/cm² 1 ton/ha 10 ⁶ m³ 1 m³/s	= = = =	35.3 cusec 14.2 psi 891 lb/acre 810.7 acre-ft 19.0 mgd	1 cusec 1 psi 1 lb/acre 1 acre-ft 1 mgd		0.0283 m ³ /s 0.703 kg/cm ² 1.12 kg/ha 1,233.5 m ³ 0.0526 m ³ /s

EXCHANGE RATE

US\$1.0 = J. Yen 140.0 = Rs. 30.5

ANNEX - A GENERAL ECONOMY

ANNEX - A

GENERAL ECONOMY

TABLE OF CONTENTS

A.2		LATION
	A.2.1	Population
	A.2.2	
		et de la companya de La companya de la co
1.3	ECON	OMIC CONDITIONS
	A.3.1	Gross Domestic Product
	A.3.2	Agricultural Sector
	A.3.3	Industrial and Services' Sectors
	A.3.4	Public Finance
	A.3.5	Prices
	A.3.6	Foreign Trade

LIST OF TABLES

	4.4		Page
Table	A.2.1	POPULATION BY SEX, URBAN/RURAL RESIDENT AND LABOUR FORCE	A-9
Table	A.2.2	POPULATION EMPLOYED BY INDUSTRIAL SECTOR	A-10
Table	A.3.1	GROSS DOMESTIC PRODUCT AT CURRENT PRICES	A-11
Table	A.3.2	GROSS DOMESTIC PRODUCT AT 1982 CONSTANT PRICES	A-12
Table	A.3.3	PRODUCTION OF MAJOR CROPS	A-13
Table	A.3.4	MANUFACTURING PRODUCTION	A-14
Table	A.3.5	GOVERNMENT FISCAL PERFORMANCE	A-15
Table	A.3.6	PRICE INDECIES AND WAGE ESCALATION	A-16
Table	A.3.7	COMPONENT OF EXPORT	A-17
Table	A.3.8	COMPONENT OF IMPORT	A-18
Table	A.4.1	GDP BY INDUSTRIAL ORIGIN AT 1985 CONSTANT PRICES	A-19

ANNEX-A GENERAL ECONOMY

A.1 ADMINISTRATION

Sri Lanka is located in a tropical zone which extends from 5.5° to 9.5° north latitude and from 79.4° and 81.5° east longitude and only 29 km away from India across Palk Strait. Total land area of the country is 65,510 km². The main land is about 430 km at the longest part from north to south and about 220 km from east to west. Regarding administrative structure, Sri Lanka is divided into Provinces, the Provinces into the Government Agent divisions which are called GA or District, the District into Assistant Government Agent (AGA) divisions, and AGA into Grama Sevaka (GS) divisions.

The Moragahakanda agricultural project area is located in the central zone of the east coast. It occupies an gross area of 118 x 10³ ha, comprising 100 x 10³ ha or 85% of North Central Province and 18 x 10³ ha or 15% of Eastern Province. It also consists of two Districts, i.e., Polonnaruwa and Trincomalee. The former is in North Central Province and the latter is in Eastern Province. The project area, furthermore, is divided into seven AGA divisions as of 1987, i.e. (1) Elahera, (2) Sinhala Pattuwa, (3) Lankapura, (4) Medirigiriya, (5) Tamankaduwa, (6) Kinniya and (7) Kantalai. The first five AGA divisions belong to Polonnaruwa District and the other two AGA divisions to Trincomalee District.

There are 53 Grama Sevaka divisions which are related to the Project. They are broken down as follows: 6 GS divisions in AGA Elahera division; 13 in Sinhala Pattuwa; 11 in Lankapura; 9 in Medirigiriya; 10 in Tamankaduwa; 3 in Kantalai; and 1 in Kinniya. It should be noted that these numbers are as of the 1981 census year. In this study, the characteristics of the project area would be captured by figures or indicies of Polonnaruwa District because of data availability and because 85% of the project area is located in the District.

A.2 POPULATION

A.2.1 Population

Sri Lanka had a population of 16,117 x 10³ in 1986 according to the provisional estimation of the Central Bank of Sri Lanka, corresponding to the density of 245 persons/km². The growth in population was about 1,086 x 10³ as compared with 1981 census, i.e., the average growth rate was 1.66% per annum during the period from 1981 to 1986, as shown in Table A.2.1. This growth rate was a little high by 0.08% as compared with that for two census years between 1971 and 1981. A population projection, which was carried out in a general report of the "Census of Population and Housing 1981" (Ref. 2) by the Department of the Census and Statistics, shows that the population of Sri Lanka in the year 2001 would reach between 20.0 x 10⁶ and 21.3 x 10⁶, corresponding to the annual growth rate of 1.43% and 1.76% per annum. Using the provisional estimation of the Central Bank, if the average annual growth rate of 1.66% for the period from 1981 to 1986 may be applied to the forecast of population in the future, the population of Sri Lanka is expected to be 20.6 x 10⁶ by the year 2001.

Polonnaruwa District, where 85% of the project area is included, had a population of 294×10^3 in 1986, corresponding to the density of 91 persons/km². The growth during both periods of 1971/1981 and 1981/1986 is 98×10^3 and 32×10^3 , i.e., the average annual growth rates are 4.80% and 2.33%, respectively. These growth rates were much higher than the national ones. In particular, the growth rate of 4.80% during the period from 1971 to 1981 was quite high. According to the Census Report, a rate of natural increase in the District was 2.7% during the period. Therefore, 48×10^3 was caused by inmigration increase. This fast growth might be brought about by agricultural development in the Mahaweli river basin and other settlement projects.

A.2.2 Labour Force

The population between 15 and 54 years old in the years 1971, 1981 and 1986 was 6,586 x 10³, 8,225 x 10³ and 8,904 x 10³ respectively, as shown in Table A.2.1. According to the table, labour force was estimated at 5,093 x 10³ in 1981 and therefore labour participation rate was 34.3%. Since unemployment population was estimated at 594 x 10³, an unemployment rate was 11.7% in 1981. "Public Investment 1987-1991" issued by National Planning Division says that though the unemployment rate was recorded at 14% in 1985, it is forecasted to rise to 19% by 1989 if radical measures are not adopted to spur industrial growth.

Percentage of workers employed in the agricultural sector such as agriculture, livestock, fishery and forestry in the country was about 45.5% of the number of whole workers in 1981 or decreased by about 4.5% as compared with the 1971 percentage. Share of the agricultural sector to the whole industry had a tendency to decrease. On the contrary, there was an observable tendency to increase in shares of industrial and services' sectors. This might be reflection of the govrnment development policy of employment in the field of manufacturing, services and tourism.

A.3 ECONOMIC CONDITIONS

A.3.1 Gross Domestic Product

The Gross Domestic Product (GDP) of Sri Lanka was estimated at Rs. 163.7 x 10⁹ in 1986 and Sri Lanka economy has achieved a stable economic development for the recent five years from 1982 to 1986, as shown in Tables A.3.1 and A.3.2. Such a stable growth is largely due to the expansion of the agricultural sector, although the production in 1984 went down because of weather conditions. The share of the agricultural sector to the total GDP, however, kept almost the same level of arround 27% during the period. The leading growth sectors of the economy in the period were manufacturing sub-sector (average growth rate of 6.6% per annum), electricity, gas and water-supply sub-sector (6.6%), and the services' sector (5.4%) during the period.

Per capita GDP was estimated at Rs. 10,157 (about US\$360) in 1986. Its real growth attained to 3.3% as an average annual rate during the period.

A.3.2 Agricultural Sector

Agriculture plays an important role in the Sri Lanka economy in terms of contributions to GDP, export earnings and employment as mentioned before. Characteristics of agricultural production in Sri Lanka is summed up as follows:

- (1) Agricultural sector is mainly divided into two sub-sectors such as plantation sub-sector and other crop production sub-sector.
- (2) Plantaion sub-sector is specialized into three major crops such as tea, rubber and coconut, which are important export products for Sri Lanka;
- (3) Other crop production sub-sectors produce food crops such as rice, upland crops and vegetables for domestic consumption;
- (4) Livestock is still backward in the national ecenomy, which is mainly carried on in the homesteads and/or is raised for land cultivation; and
- (5) Fishery production is gradually increasing in both coastal fishing and inland fishing, but its productivity is still low because of primitive and petty farming.

Rice is the staple food for Sri Lanka people, so it is one of the most important crops. Rice cultivation occupies one-fifth of the arable land. As shown in Table A.3.3, paddy production reaches 2,588 x 10³ tons in 1986, attaining to self-sufficiency in the near future. The extent cultivated, yield and total production of paddy have shown an upward trend in a recent decade, due to the provision of irrigation facilities, improved seed varieties, extension services, fertilizer and pricing policy. In these days, other crops such as vegetables including onion, chillies, and soyabean are expected to be promoted for domestic consumption and to help coordinate import and production activities.

A.3.3 Industrial and Services' Sectors

Manufacturing sub-sector plays one of leading roles in Sri Lanka economy. Between 1982 and 1986 the real average annual growth rate on manufacturing sub-sector has mostly exceeded the avarage annual growth rate in GDP, as shown in Table A.3.2. The average percentage share of manufacturing to GDP during the same period is 14.5% varing between a low of 14.0% in 1983 and a high of 15.2% in 1986, as shown in Table A.3.1. In particular, (a) textiles and garments, and (b) food, beverages and tobacco industries might perform a considerable contribution to GDP growth during the period, as shown in Table A.3.4.

The services' sector also contributes to GDP growth during the period. Relatively high rates are observed in the sub-sectors of (a) transportation and communication and (b) other services, which record average annual growth rates of 5.8% and 5.9%, respectively.

A.3.4 Public Finance

Government fiscal performance reflects the economic development policy of the government which is to attain an increase of both employment opportunities and family incomes in order to improve living standard in the country. Thus, the fiscal performance has shown the following conspicuous characteristics for recent years, as shown in Table A.3.5:

- (1) The expenditure has increased since 1977 and kept the high level of the ratio of expenditure to GDP. In these years, the ratio of capital expenditure to GDP kept more than 18% except in 1984, which was about 9% in 1977.
- (2) To meet the budget deficit, the government finance has been depending on domestic and foreign loans. However, owing to retrenchment in the expenditure in a recent few years, the ratio of net cash deficit to GDP has declined year by year except in 1985. Recognizing these budgetary constraints, the government makes an effort to commit economic development policy, reducing in the budget deficit and overcoming the economic exerting pressure on prices and balance of payments.

Table A.3.5 shows the size of Mahaweli investment in the government fiscal performance during the period from 1982 to 1986. Mahaweli investment had the peak amount of Rs. 7,313 x 10⁶ in 1982 and thereafter went down to Rs. 4,716 x 10⁶ in 1986. The ratio of Mahaweli investment to the government capital expenditure was recorded at 40% in the peak year of 1982.

A.3.5 Prices

One of the serious economic problems in Sri Lanka is a price increase. Since 1978, the Colombo Consumer's Price Index has increased at the rate of more than 10% per annum, though it went down to 1.5% in 1985. In 1986, however, the index recorded a shaper increase than that in 1985 again. The price increase is thought to be caused mainly

by the following economic characters: (1) high degree of dependence upon imports; and (2) upward trend of subsidized consumer commodities and public utility prices because of retrechment in the government expenditure.

Wholesale price index has also recorded a high increase rate since 1978. In 1985, however, the index declined by 15.2% and in 1986 also it went down by 3.0%. These declines were caused by the drop in export prices of tea and coconut products which are major contributory factors towards the wholesale price declines. As a result, the wholesale price increase rate for five years 1982-1986 was about 6.6%, as shown in Table A.3.6.

In 1986, wages in both agricultural work and construction work recorded around 5% increase, which is more stable than before. Increase of wages before 1983 was induced by a consequence of the steeper rise in prices, because wage increases come out after rises in prices, in general.

A.3.6 Foreign Trade

Foreign trade is one of the most important economic activities for the Sri Lanka economy. This is reflecting the economic structure, i.e., (a) plantation products such as tea, rubber and coconuts are important articles for export, which attained to Rs. 15.0 x 10⁹ or 46.3% of the total export in 1986 including some minor crop, as shown in Table A.3.7 and (b) Sri Lanka can not help importing some consumer goods, intermediate goods and investment goods because of characteristics of the national economic structure. Since 1977, foreign trade rapidly has increased because of the implementation of import liberalization policy. Therefore, Sri Lanka economy is sensitive to foreign trade trend. The flactuation of international price of agricultural products, particularly tea, rubber and coconuts, directly influences the national economy.

In export component of Sri Lanka, the plantation products have played an important role but their share to total export has gradually decreased. Especially, the trade amount of tea export is so slow in increase for these years because of competitive world market, except 1984 and 1985. On the other hand, industrial products, textile and garment in particular, have grown to major export articles. Its share reaches to the same level as the agricultural export, as shown in Table A.3.7.

In import goods compornent, the share of consummer commodities, rice in particular, are going down because of self-sufficiency endeavour, as shown in Table A.3.8. On the other hand, intermediate goods, petronium in particular, get a big share in total import. Investment goods has grown at a high growth rate because of development policy of the government.

A.4 DEVELOPMENT PLANS

"Public Investment 1987-1991" is only a plan which is functioning as national development policy in Sri Lanka. The public investment programme is a rolling plan and is revised every year. The programme 1987-1991 is the latest virsion, published in May 1987. Intergrated regional development plans are now being conducted under the assistance of the World Bank and other organizations. The Moragahakanda project area, however, is outside of the integrated plans, though it was included in the Public Investment 1986-1990 published in 1986. Therefore, there is no integrated development plans related to the project area.

In the public investment programme, the following perspective during the medium term from 1987 to 1991 is invisaged to accelerate the growth of the economy:

- (1) The government budget will continuously be serious because financial resources are vulnerable due to unstable export commodity prices and because budgetory expenditure has to increase on security in the country. Thus, the private sector will be promoted to move actively in areas which creates employment and earn foreign exchange through export oriented production or efficient import substitution. For the sake of that, the government provides necessary incentives and infractructure facilities.
- (2) Although the policy emphasizes the necessity for retreching in the expenditure and for stabilizing social issues in the short run, the basic policy in the long run will still forcus on the issues of structural transformation. Any available resources for new projects will be allocated in accordance with the government policy.
- Ouring the period, the following production is expected to grow the national economy from the point of view of fair contribution to GDP: (a) agricultural production from paddy, sugar and livestock; (b) industrial production from textile, garments, food, beverages, tobacco, wooden products, paper and rubber products; and (3) services.
- (4) The government still make an effort to improve employment opportunity. Its objectives, however, would be to promote productive employment rather than to create jobs merely aimed at redistributing incomes. Then, in rural area in particular, the following activities would be promoted to provide a number of productive job opportunities: agriculture, handicrafts and livestock. Since most of these activities are managed by the basis of self-employment, the government will provide encouragement and official support for them.
- (5) In this context, GDP is expected to grow at an average growth rate of 4.6% per annum during the period from 1987 to 1991, as shown in Table A.4.1. The each economic sector is expected to grow at the following annual rates: (a) 3.0% in agricultural sector; (b) 5.0% in industrial sector; and (c) 5.3% in services' sector. In construction sub-sector, the growth rate of 4.9% takes into account of the trends in downstream development in Mahaweli in particular.

(6) Domestic prices are expected to move moderately. The average inflation rate is likely to be lower than what was experienced in the past 9 years. Since the average inflation rate was 8.4% annum during the 9 years, it would be expected to be less than 8% per annum.

REFERENCES

No.	Title	Issued on	Issued by
001	Statistical Abstract of the Democratic Socialist Republic of Sri Lanka 1985	Jan. 1987	Dept, of Census and Statistic MPI
002	Census of Population and Housing 1981 Population Data for Words and Grama Sevaka Divisions		Dept. of Census and Statistic MIP
003	Review of the Economy 1986		Central Bank of Sri Lanka
004	Economic & Social Statistics of Sri Lanka	Dec. 1986	Central Bank of Sri Lanka
005	Report on Consumer Finances and Socio Economic Survey 1981/1982 Sri Lanka Part I	Oct. 1984	Central Bank of Sri Lanka
006	Public Investment 1987-1991	May 1987	National Planning Division MFP

TABLES

Table A.2.1 POPULATION BY SEX, URBAN/RURAL RESIDENT AND LABOUR FORCE: 1971, 1981 AND 1986

	Item	Pop in	ulation Census	(10 ³) Year	Dist	Percentage tribution	(%) (%)	Average	Average Growth Rate
		1971	1981	198671	1971	1961	1986	71/86	98/18
Н	Sri Lanka								
- •	1. Population	12,690	14,847	16,117	100.0	100.0	100.0	1.58	1.66
- 1	2. Male	6,531	7,568	8,215	51.5	51.5	51.5	1.48	1.65
•	3. Female	6,159	7,279	7,902	48.5	49.0	49.0	1.68	1.66
•	4. Urban	2,848	3,195	ſ	22.4	21.5		1.16	1.
•	5. Rural 12	9,842	11,652	1.	77.6	78.5	···	1.70	, i
	6. 15-54 Years old	6,586	8,225	8,904	51.9	55.4	55.2	2.25	1.60
-	7. Labour Force	1	5,093/3	· I	1	34.3	ı	- I	. 1.
• •	8. Gainful workers	1	4,499/3	ı	l	30.3	1	1.	1
	9. Unemployment	1	59473	l	I	4.0	l		ı
	Unemployment rate (%)	1	11.7	I	1 .	.		. 1	
H	Polonnaruwa District	164	262	294	e ₩	۲.	8.4	4.80	2.33

Provisional figure by Central Bank of Sri Lank Note:

Source: Ref.001, 003 and 004

Labour participation rate of 34.3% and percentage distribution of equipment is quoted from ref.005 Include estate population 777

Table A.2.2 POPULATION EMPLOYED BY INDUSTRIAL SECTOR: 1971 AND 1981

Insustrial Sector		lation 10 ³)		entage %)	Average Annual Growth
	1971	1981	1971	1981	Rate (%)
Agriculture	1,829	1,876	50.1	45.5	0.3
Industry	466	593	12.8	14.4	2.4
- Mining & Quarrying	13	34	0.4	0.8	9.9
- Manufacturing	339	409	9.3	9.9	1.9
- Construction	104	134	2.8	3.3	2.6
- Elec., Gas & Water	10	1,6	0.3	0.4	5.2
Services	1,040	1,281	28.5	31.1	2.1
- Transport and Communication	179	200	4.9	4.8	1.1
~ Trade	344	437	9.4	10.6	2.4
- Others	517	644	14.2	15.6	2.2
Not-specified	314	369	8.6	9.0	1.6
Total	3,649	4,119	100.0	100.0	1.2

Source:Ref.002

Table A.3.1 GROSS DOMESTIC PRODUCT AT CURRENT PRICES: 1982 - 1986

		GDP	(Rs.	(907		Регсе	entage	Distri	ibution	90
TDGGSTRIBT CROGD	1982	1983	1984	1985	1986	1982	1983	1984	1985	1986
Agricultural Sector	24,964	32,180	40,138	41,069	44,355	26.4	28.3	28.7	27.7	27.1
- Agriculture & Livestock	20,771	27,110	35,051	35,599	37,889	21.9	23.8	25.0	24.0	23.1
- Forestry	1,710	1,907	2,199	2,530	3,087	6 ਜ	1.7	1.6	1.7	1.9
- Fishing	2,483	3,163	2,888	2,940	3,379	2.6	2.8	2.1	2.0	2.1
Industrial Sector	24,887	29,992	36,856	38,859	43,547	26.3	26.3	26.3	26.2	26.6
- Mining & Quarrying	2,238	2,799	3,153	3,328	4,155	2.3	2.5	2.2	2.2	2.5
- Manufacturing	13,601	15,958	20,890	21,849	24,868	14.4	14.0	14.9	14.7	15.2
- Construction	7,959	9,807	11,180	11,640	12,272	8.4	8	8.0	7.9	7.5
- Elec., Gas and Water	1,089	1,428	1,633	2,042	2,252	1.2	1.2	7.	ц.	전 전
Services Sector	44,828	51,706	63,045	68,393	75,810	47.4	45.4	0. 84	46.1	46.3
- Transport & Communication	10,666	12,554	15,499	16,554	17,911	11.3	11.0	11 1	11.2	11.0
- Trade	19,694	21,759	27,192	29,261	31,808	20.8	어 어	19.4	19.7	19.4
- Others	14,468	17,393	20,354	22,578	26,091	15.3	15.3	14.5	15.2	15.9
GDP	94,679	113,878	140,039	148,321	163,712	100.0	100.0	100.0	100.0	100.0
GDP per Capita (Rs.)	6,233	7,387	8,977	9,365	10,157	I	1	i	. 1	ı

Source: Ref.003

GROSS DOMESTIC PRODUCT AT 1982 CONSTANT PRICES: 1982 - 1986 Table A.3.2

										i
		GDP	(Rs. 1	(90	,	Annua	-	Growth Ra	ite (%)	
industrial Group	1982	1983	1984	1985	1986	82/83	83/84	84/85	85/86	82/86
Agricultural Sector	24,964	26,212	26,113	28,366	29,106	5.0	4.0-	8	2.6	9. 0.
- Agriculture & Livestock	20,771	21,868	22,300	24,504	25,037	5.3	2.0	9	2.2	4.8
- Forestry	1,710	1,816	1,889	1,923	1,958	6.2	4.0	1.8	ы. В.	3.4
- Fishing	2,483	2,528	1,924	1,939	2,111	∞ ⊢	-23.8	8	ω ω	
Industrial Sector	24,887	25,323	27,108	28,062	29,770	۲. 8.	7.0	ຜ	6.1	4.6
- Mining & Quarrying	2,238	2,413	2,449	2,486	2,615	7.8	ហ្គ. H	٠ ١	5.2	0.7
- Manufacturing	13,601	13,710	15,390	16,193	17,558	0.8	12.3	5.2	8.4	9.0
- Construction	7,959	8,039	8,030	8,070	8,191	0.	0.0	0.0	ц Ю	0.7
- Elec., Gas and Water	1,089	1,161	1,239	1,313	1,406	9.0	6.7	0.9	r-i - /	9.0
Services Sector	44,828	47,840	51,174	53,142	55,385	6.7	7.0	ω m	4.	3. 4.
- Transport & Communication	10,666	11,281	12,437	12,959	13,377	ις Ω	10.2	4.2	3.2	5. 8
Trade	19,694	20,738	22,029	22,925	23,821	ر ا ا	6.2	4.1	ω ο/	9.9
- Others	14,468	15,821	16,708	17,258	18,187	9.4	5.6	ლ ლ	5.4	ເນ ດີ
GDP	94,679	99,375	104,395	109,570	114,261	5.0	5.1	5.0	4. W	44, 00
GDP per Capita (Rs.)	6,233	6,446	6,692	6,919	7,089	ю 4.	ω m	3.4	2.5	w w

Source: Ref.003

Table A.3.3 PRODUCTION OF MAJOR CROPS: 1978, 1982 AND 1986

	Item	U	nit	Р	roducti	on	Average Growth	n Rate
				1978	1982	1986	78/82	82/86
Ι.	Major Export Crops							
	Tea	106	kg	199	188	211	-1.40	2.93
	Rubber	106	kg	156	125	138	-5.38	2.50
	Coconut	.106	nuts		2,521	3,039	_	4.78
II.	Minor Export Crops			·	·			: •
	Cinnamon	103	ton	26	32	14	5.33	-18.66
	Pepper	103	ton	17	18	9	1.44	-15.90
	Cocoa	103	ton	12	14	6	3.93	-19.08
III.	Food Crops							
	Paddy	103	ton	1,891	2,156	2,588	3.33	4.67
	Manioc	103	ton	499	638	397	6.30	-11.17
	Potatoes	103	ton	30	65	103	21.32	12.20
	Red Onions	103	ton.	72	93	72	6.61	-6.19
	Maize	103	ton	35	45	41	6,48	-2.29
	Chillies	103	ton	28	27	38	-0.90	8.92
	Cowpea	103	ton	23	36	20	11.85	-13.66

Source:Ref.003

Table A.3.4 MANUFACTURING PRODUCTION: 1982 AND 1986

(Unit: Rs. million at Current Prices)

	Catogary		e of ction	Value	Added	Incre	ment
	Category	1982	1986	1982	1986	Value	Times
1.	Food Beverages and Tobacco	5,246	12,129	2,259	6,850	4,591	3.0
2.	Textiles & Garments	3,863	12,088	488	3,104	2,616	6.4
з.	Wood Products	361	632	134	393	259	2.9
4.	Paper Products	725	1,289	257	626	369	2.4
5.	Chemicals	13,099	11,088	1,927	2,705	778	1.4
6.	Non-metallic Products	1,370	2,053	862	1,117	255	1.3
7.	Basic metal Products	262	281	. 14	37	23	2.6
8.	Machinery & Transport Equipment	904	1,757	790	1,116	326	1.4
9.	Not specified	74	136	29	71	42	2.4
	Total	25,904	41,453	6,760	16,019	9,259	2.4

Source:Ref.003

Table A.3.5 GOVERNMENT FISCAL PERFORMANCE: 1982 - 1986

		(Unit:		at	H
Item	1982	1983	1984	T985	1986
1. Current Receipt	17,809	25,210	37,731	39,010	41,644
2. Recurrent Expenditure - Mahaweli Development	20,110	23,963	28,926	33,842	34,772
3. Advance Account	1879	1,120	2,916	314	-170
4. Recurrent Account (1)-(2)+(3)	1,422	127	5,889	4,854	7,042
5. Capital Expenditure - Mahaweli Development	18,669	21,733	21,750	30,529	35,112
6. Budget Deficit	20,091	21,606	15,861	25,676	28,070
7. Debt Repayment	2,612	5,025	2,229	6,897	7,529
8. Net Cash Deficit	17,479	16,580	13,632	18,779	20,541
9. Public Debt Outstanding	71,250	86,423	95,741	123,720	150,276
10. Share of Capital Expenditure to GDP (%)	18.8	17.9	14.1	18.8	19.6
11. Share of net cash Deficit to GDP (%)	18.5	14.6	7.0	12.7	9.2

Source: Ref.003

Table A.3.6 PRICE INDECIES AND WAGE ESCALATION: 1982 - 1986

רכפונ		4	C	,			4500	٤	•		
	1982	1983	1984	1985	1986	1982	1983	1984 19	1985	1986	82/86
I price Index (1982 = 100)			1					i	1		١.
1. Consumers Price 1 (In Colombo Consu	100.0	114.0	132.9	134.9	145.6	10.8	14.0	16,6	۲. 5	7.9	ω ω
		u	Ų	6	Ć		u	u	u		
3. Construction Cost Index	100.0	105.1	115.7	124.5	125.0	. 4. υ. ભ.	7.1	11.7	7.7	0.7	יין פ מו מ
4. Implicit Deflator	100.0	114.6	134.1	135.4	143,3	1.	14.6	17.0	о. П	5.8	9,
II. Producer Price (Rs.)											
1. Paddy (kg)		9	7	თ,	0	•		•			
2. Curry Chillies (kg)		7.	0	۳į	7.78		44.	ς,	*	6,1	11.9
3. Red Onions (kg)	6.71	99.9	21.11	11,94	•	-11.8	-0.7	217.0	-43.4	•	S)
4. Banana (each)		φ,	0.3		I		S	H	0	1	i .
				-	:						
III. Retail Prices of				•	:						
Agricultural Input				٠			-				
	81.60	86.65	93.41	95.14	98,95	5.7	6.2	7.8	თ ⊢I	4.0	8
(Improved: Bushel)	•										
2. Seed Paddy	77.43	83.35	87.83	88.44	92.31	4.5	7,6	5,4	0.7	4.4	4.5
(Traditional: Bushel)		-									
(20	145.79	155.43	152,25	152.30	156.41	22.4	9	-2.0	0	2.7	⊒.8
4. C.P.D (50 kg)		55.9	59.6	58.5	56.9	4	•	•	•	•	٠.
(ad) atta assess white the		-									
- Transplating		ф.	4. 80	v.			é	•	•	•	
- Harvesting	₫.	4	7.5	39,15	Ŋ	7.8	18.8	7.3	4.4	6.1	0-6
- Threshing	33:17	41.02	41.26	7.3	3		•	4		•	
Washington Manager 1						٠					-
- Master		۰ در	വ വ	. α	2.3	4		•	1.3	•	
- Skilled Helper	vo.	39.98	43.83	47.03	49.60	13.0	12.1	φ. Θ	7.3	5	8
- Unskilled Helper	26.34	4	e. □	5.3	7.3	0	4,	. •	•	•	•

Table A.3.7 COMPONENT OF EXPORT: 1978, 1982 AND 1986

	Amount	(Rs. mi	llion)	Da.	centag	9	o l	[]
Item				Dis	tributi	on	Growth Rate	(%)
	1978	1982	1986	1978	1982	1986	78/82	82/86
						6		
1. Agricultural Export	디	, 65	98	Ġ	্ খ	Ġ,	φ.	∞
п Теа		, 34	,25	•	•	•	-0.22	o,
- Rubber		2,323	2,622	L)	10.8	7.7	. •	3.07
- Coconut		49	, 60	•	•	٠, •	7.3	∞
- Minor Crops	\circ	49	50	•	•			0
2. Industrial Export	2,475	,27	,87		ω,	9	5.2	۲.
- Textile & Garments	481	3,502	9,629	ა. ზ	16.3	28.3	64.26	28.77
- Petroleum Products		,28	35	•	ς.	•	6.4	•
- Others	4	,48	90	•	٠		7	۲.
3. Mineral Export	i	LO)	∞	1	•	•		ú
- Gems	531	685	755	4.0	3.2	2.2	6.57	2.46
- Others	1	<u>-</u>	0	ı	•	•		-
					•			
4. Un-classified	ı	899	1,249	I	3.1	3.7	1	16.94
Total	13,206	21,454	34,072	100.0	100.0	100.0	12.90	12.26
					-			

Source: Ref.004

Table A.3.8 COMPONENT OF IMPORT: 1978, 1982 AND 1986

Item	Amount	(Rs. mi.	million)	Per Dist	centag	e on	Average Growth Re	Annual
	1978	1982	1986		1982	1986	11	131
1. Consumer Goods	5,618	0	60	38.3	20.5	34.1	11.24	21.28
- Rice		925	1,052	4.7			7.6	3
(Quantity 1,000 t)	1	(174)	231				1	34
- Flour	•	62		1	0.1	•	. 1	ω,
- Sugar	620	~	1,764	4.2	2.3	3.2	11.84	4
(Quantity 1,000 t)	<u> </u>	(134)	~		-	-	<u>-</u>	5
- Textile and Clothin	531	16	ഗ	9.e	5.1	11.6	42.13	30.8
			. •					
2. Intermediate Goods	5,591	28	117	38.1	51.6	40.9	40.26	r.
- Wheat	!	0	62	1	4.2	4.3	ı	7.31
(Quantity 1,000 t)	- 1	(495)	S				<u> </u>	(8.30)
- Fertilizer	252	Ø	∞	1.7	•	•	2.0	ω.
- Chemical	4	$^{\circ}$	58	0.8	1.7	2.9	13.07	4
- Petroleum	2,403	12,274	6,293	16.4	•	11.5	50.33	-15.37
3. Investment Goods	3,367	1,159	10,556	27.6	27.6	19.3	36.21	-2.30
4. Un-classified	110	114	3,130	0.3	0	5.7	06.0	128.91
Total	14,687	41,946	54,609	100.0	100.0	100.0	30.00	6.82

Source: Ref. 003 and 004

Table A.4.1 GDP BY INDUSTRIAL ORIGIN AT 1985 CONSTANT PRICES:

		-							
		GDP (Rs.	million)		Anr	Annual Gro	Growth Ra	te	Average Annual
Industrial Origin						%	_		Growth Rate (%)
	1985	1986	1987	1991	1985	1986	1987	1991	/91
Agriculture	41,069	Ų.	, 05	, 08		•		24.9	4
- Paddy	9,379	00	,72	0,29	•	٠	.∀'	•	7.64
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5,269	20	,26	54	•		4	. •	1
- Rubber	1,164	1,172	1,202	1,244	0	ω.Ο	0.8	9.0	11.84
- Coconut	3,342	4	, 95	46	•	•	•	. *	
- Other	21,915	7	90	54	. •	•			42.13
Industry	36,817	$^{\circ}$,76	, 62		•	. •	•	40.26
- Mining & Quarrying	3,328	3,397	3,594	4,766	2.2	2.2	2.2	2.5	· · · · · · · · · · · · · · · · · · ·
- Tea, Rubber, Coconut	5,646	5,604	ω	94	•	•	က က	33.	2.0
Processing									13.07
- Other Industries	16,203		7,86	2,55	•	11.0	11.1	11.7	
- Construction	11,640	12,106	12,675	15,362	7.8	7.8	7.9	7.9	50.33
Services	70,435	74,661	78,991	96,743	47.5	48.4	49.4	50.0	36.21
dOb	148,321	154,344	159,818	193,453	100.0	100.0	100.0	100.0	06.0
								:	· ·

Source: Ref.006

ANNEX - B

METEOROLOGY AND HYDROLOGY

ANNEX - B

METEOROLOGY AND HYDROLOGY

TABLE OF CONTENTS

1981	100		Page
B.1	METEO	ROLOGY	B-1
	B.1.1	General	B-1
	B.1.2	Rainfall	B-1
	B.1.3	Air Temperature	B-2
	B.1.4	Pan-Evaporation	B-2
	B.1.5	Relative Humidity	B-3
100 miles (100 miles) 100 miles (100 miles)			
B.2	HYDRO	DLOGY	B-4
	B.2.1	River Basin	B-4
	B.2.2	Runoff the Mahaweli Ganga at Polgolla	B-4
	B.2.3	Polgolla Diversion	B-5
	B.2.4	Runoff of the Amban Ganga	B-5
· · · · · ·	B.2.5	Flood Discharge at Moragahakanda Dam Site	B-6
	B.2.6	Runoff of the Residual Area	B-6
in a line a second	B.2.7	Sedimentation	B-7
•	B.2.8	Quality of Water	B-7

LIST OF TABLES

			Page
Table	B.1.1	GENERAL FEATURE OF THE CLIMATIC CONDITIONS AT ANURADHAPURA	В-9
Table	B.1.2	GENERAL FEATURE OF THE CLIMATIC CONDITIONS AT MAHA- ILLUPPALLAMA	B-9
Table	B.1.3	GENERAL FEATURE OF THE CLIMATIC CONDITIONS AT TRINCOMALEE	B-10
Table	B.1.4	MONTHLY RAINFALL AT BAKAMUNA	B-11
Table	B.1.5	MONTHLY RAINFALL AT POLONNARUWA	B-11
Table	B.1,6	MONTHLY RAINFALL AT HINGURAKGODA	B-12
Table	B.1.7	MONTHLY RAINFALL AT KANTALAI	B-12
Table	B.1.8	AVERAGE MONTHLY RAINFALL	B-13
Table	B.1.9	MONTHLY MEAN PAN-EVAPORATION AT METEOROLOGICAL STATIONS	B-13
Table	B.1.10	PAN-EVAPORATION AND ESTIMATED EVAPORATION FROM TANK SURFACE	B-14
Table	B.1.11	AVERAGE MONTHLY METEOROLOGICAL DATA AT MAHA-ILLUPPALLAMA	B-14
Table	B.2.1	MONTHLY RUNOFF AT POLGOLLA OF MAHAWELI GANGA	B-15
Table	B.2.2	AVERAGE MONTHLY ANNUAL RUNOFF AND DIVERSION WATER	B-16
Table	B.2.3	RUNOFF RECORD AT ELAHERA	B-17
Table	B.2.4	RUNOFF RECORD AT ANGAMEDILLA	B-17
Table	B.2.5	RUNOFF RECORD AT MINNERIYA, ETC.	B-18
Table	B.2.6	RUNOFF RECORD AT KAUDULLA	B-18
Table	B.2.7	RUNOFF RECORD AT KANTALAI	B-19
Table	B.2.8	RUNOFF RECORD AT GIRITALE	B-19
Table	B.2.9	RUNOFF RECORD AT PARAKRAMA SAMUDRA	B-20
Table	B.2.10	RUNOFF RECORD AT SYSTEM H	B-20
Table	B.2.11	AVERAGE MONTHLY INFLOW TO TANKS	B-21
	•		
		LIST OF FIGURES	•
			Page
Fig.	B.1-1	Location Map of the Meteorological Stations and Other Gauging Stations	B-22
Fig.	B.1-2	Characteristics of Climate at Maha-Illuppallama	B-22
Fig.	B.2-1	Flood Hydrographs	B-23
Fig.	B.2-2	Sediment Diagram	B-23

ANNEX-B METEOROLOGY AND HYDROLOGY

B.1 METEOROLOGY

B.1.1 General

The project area is located around 7° North in latitude and characterized by tropical monsoon with the dry and rainy seasons; north-eastern monsoon period (November to March), and south-east monsoon period (April to September).

The Mahaweli Project Area is divided into three climatic zones. The dry zone is defined as the area where annual evaporation is exceeding the annual rainfall. The wet zone is defined as the area where the annual rainfall is exceeding 2,000 mm and the intermediate zone is a transition zone between the wet zone and dry zone.

The meteorological observation has been carried out at Anuradhapura, Maha-Illuppallama and Trincomalee and other gauging station as illustrated in Fig B.1-1 and the general features of climatic conditions are shown in Tables B.1.1 to B.1.3.

The average annual rainfall is approximately 1,650 mm (65 inches) at the Hingurakgoda meteorological station (1950-1977 records), located in the central part of the project area. About 75% of annual rainfall occurs during the north-east monsoon period and the balance during the south-west monsoon period. The fluctuations of annual rainfall are considerably large, ranging from 2,830 mm (111 inches) to 970 mm (38 inches).

The mean temperature at the Maha-Illuppallama meteorological station shows little variation throughout the year, ranging from 25°C to 28°C. The annual mean relative humidity is about 80% with little fluctuation between 75% in September and 88% in December. North-east winds prevail in the Maha season (rainy season from October to March) and south-west winds in the Yala season (dry season from April to September). The monthly average of daily maximum wind velocity ranges from 5.5 km/hr in November to 16.4 km/hr in June.

Mean annual evaporation is over 2,000 mm (80 inches) at Maha-Illuppallama, which is represented the characteristic of the climate of the project area. The monthly mean pan evaporation ranges from 120 mm (4.8 inches) in November to 230 mm (9 inches) in July. Potential evaporation is estimated to be 1,850 mm (73 inches) on an annual average.

B.1.2 Rainfall

Although 225 rainfall stations are available in Sri Lanka, taking continuation of the record and distance from the project site into account, following four gauging stations were considered to represent rainfall in the project site:

Station	Area
1) Bakamuna (Elahera)	Morahakanda dam site, and G
2) Polonnaruwa	D2
3) Hingurakgoda	D2
4) Kantalai	A/D Meteorological Station
5) Maha-Illuppallama	

Based on the 28 years rainfall record (1950-1977), average annual rainfalls in Bakamuna, Polonnaruwa, Higurakgoda and Kantalai are recorded at 1,671 mm, 1,859 mm, 1,648 mm and 1,596 mm, respectively as shown in Tables B.1.4 to B.1.7.

According to the rainfall data at Hingurakgoda, 75% of rainfall is concentrated in the Maha season (October to March). The monthly rainfall varies widely from approximately 10 mm in June and 440 mm in December as shown in Table B.1.8.

B.1.3 Air Temperature

The air temperature is observed in the Anuradhapura, Maha-Illuppallama and Trincomalee meteorological stations for 30 years and 23 years and 30 years, respectively, as shown in Tables B.1.1 to B.1.3.

In order to grasp climatic conditions of the project area, the observations at the Maha-Illuppallama meteorological station were used as the representative of the project area because of the nearest station, and continuity and reliabilities of records. Average, monthly mean temperature varies in the narrow range from 25°C to 28°C as shown below:

			Tarana Tarana								Unit: °C			
Month	J	F	M	A	М Ј	J	A	S	0	N	D	Annual		
Mean Air Temperature	25	26	28	28	28 28	28	28	27	26	26	26	27		

B.1.4 Pan-Evaporation

Near the project area, evaporation has been measured with the standard A-pan at four stations as listed in Table B.1.9.

Annual average evaporation of these stations is within a range from 1,450 mm to 1,930 mm.

Evaporation value from water surface of tank or reservoir can be estimated by applying pan coefficient, which is the ratio of evaporation from A-pan and evaporation from tank or reservoir. Though pan coefficient varies seasonally or with the depth of water, average value is around 0.75. As variation of pan coefficient would little influence to the water balance study of the Moragahakanda Reservoir, the evaporation from the Reservoir and tanks is assumed at 75% of A-pan value at Kalawewa station, which is the closest to the project area. Average annual evaporation from reservoir or Tank surface was estimated at 1,428 mm as shown in Table B.1.10.

B.1.5 Relative Humidity

As stated in the previous Sub-section, the relative humidity is also observed at Maha-Illuppallama meteorological station. The average relative humidity is 75% varying from 83% in December to 68% in September as shown in B.1.11 and Fig.B.1-2.

B.2 HYDROLOGY

B.2.1 River Basin

The Mahaweli Ganga originates from Nuwara Eliya which is the hilly area in the Central Province of the Sri Lanka, flows down 330 km north-east direction and reaches Koddiyar bay near Trincomalee. The catchment area of the Mahaweli river at the river mouth is 10,500 km². At the 80 km upstream from estuary, the Amban Ganga joins to the Mahaweli Ganga. The catchment areas at Elahera and Angamedilla anicuts are 779 km² and 1,363 km², respectively.

The river basin in the project area is divided into two basins, its own basin of the Amban Ganga and the Mahaweli Ganga basin, which is connected through the Polgolla diversion tunnel completed in 1975. The Amban Ganga flow augmented by the Polgolla diversion is once impounded at the Bowatenna reservoir. A part of regulated water is diverted from the Bowatenna reservoir to Kalawewa region so-called Systems H, IH and MH areas with an irrigation area of 48,600 ha, located in the other basins. Further diversion is made for the Nalanda reservoir about 10 km upstream of the Bowatenna reservoir to Dewahuwa area with an irrigation area of 1,220 ha in another basin.

Downstream of the Bowatenna reservoir, there are two existing intake weirs at Elahera and Angamedilla. Intake water at Elahera anicut is led to the existing fields in Systems G and D1 through Elahera-Minneriya canal which links four existing tanks, Minneriya, Giritale, Kaudulla and Kantalai. Water diverted at Angamedilla anicut is impounded at the Parakrama Samudra tanks and the regulated water is supplied to the existing fields in System D2.

B.2.2 Runoff the Mahaweli Ganga at Polgolla

The Mahaweli Ganga has a catchment area of 1,292 km² at the Polgolla diversion weir site. The Gurudeniya gauging station located at about 16 km downstream is the nearest one. Discharges at Polgolla were estimated based on the runoff records at Gurudeniya by multiplying the conversion factor 0.961, which is estimated by the ratio between catchment area at Polgolla and Gurudeniya. The monthly runoff at Polgolla from 1950 to 1977 is shown in Table B.2.1 The average annual runoff at Polgolla was estimated to be 2,430 MCM (77 m³/sec) on an average form 1950 to 1977. The variations of annual runoff were so large, ranging from 1,332 MCM (42 m³/sec) in 1976 to 3,356 MCM (106 m³/sec) in 1957 The average monthly runoff at Polgolla (1950-1977) is shown below:

Average Monthly Runoff at Polgolla

Unit: MCM

Jan	Feb.	Mar.	Apr.	May	June	July	Aug.	Sep.	Oct.	Nov.	Dec.	Annual
116	70		107			273	249	239	321			2,438

B.2.3 Polgolla Diversion

The construction of the Polgolla diversion tunnel and the Bowatenna dam and irrigation tunnel permitted the water to be diverted into the Amban Ganga and the Kala Oya from the Mahaweli Ganga.

As formulated in the previous Feasibility Study in 1979, the same diversion policy was followed at this stage. In the diversion policy of the UNDP/FAO Master Plan, the maximum diversion capacity of the Polgolla tunnel was limited to 56.6 m³/sec (2,000 cusec) and the minimum downstream release to 4.25 m³/sec (150 cusec). Based on the above policy, the average annual diversion was estimated to be 1,282 MCM, ranging from 963 MCM in 1976 to 1,513 MCM in 1960.

After completion of the Kotmale reservoir, the regulated flow at Polgolla has been available to increase Polgolla diversion, if the UNDP/FAO policy might be applicable i.e. the minimum downstream release of 4.25 m³/sec (150 cusec). Possible average annual diversion at Polgolla is augmented from 1,282 MCM in case without Kotmale to 1,538 MCM with Kotmale. The average monthly diversion is shown in Table B.2.2 and details in ANNEX-H.

B.2.4 Runoff of the Amban Ganga

The Amban Ganga is the biggest tributary of the Mahaweli Ganga originating from a mountain slope at 1,300 m in altitude about 12 km southeast of Matale town, it flows 50 km northward to the existing Bowatenna dam, then 25 km eastward to Elahera and then about 45 km northeastward and it flows into the Mahaweli main stream at its 80 km upstream from the estuary. Total length of the river is 123 km down to the confluence with the Mahaweli Ganga.

The Amban Ganga has a catchment area of 782 km² at the proposed Moragahakanda damsite. Only one gauging station on the Amban Ganga is the Elahera station located at about 2 km upstream of the damsite with a catchment area of 779 km². Runoff records at the Elahera station were adopted as the runoff at the proposed damsite without any correction, since the difference in both catchment areas is negligible. The average annual natural runoff was 776 MCM (25 m³/sec). The runoff record at the gauging station is shown in Table B.2.3.

At Angamedilla with about 1,363 km² of catchment area, the average annual natural runoff was estimated to be about 1,440 MCM (46 m³/sec), ranging from 775 MCM (25 m³/sec) in 1974 to 2,363 MCM (75 m³/sec) in 1977, which was estimated by NEDECO as shown in Table B.2.4.

The average annual natural runoffs (1950-1977) at the proposed damsite and Angamedilla are summarized below:

Ún	ìt:	N	1C	M

i i									والتجويط والمسترجي والمسترجي والم			7	the state of the s
Location	Jan.	Feb.	Mar.	Apr.	May	Jun.	Jul.	Aug.	Sep.	Oct	Nov.	Dec.	Annum
Elahera	142	88	49			26	1.15		20	54	98	167	776
(Dam Site) Angamedilla	272	162	97	89	75	43	48	34	37	89		322	

B.2.5 Flood Discharge at Moragahakanda Dam Site

Since river gauging records of the Amban Ganga at Elahera have been recorded during low flows stage, the results of flood analysis for Bowatenna dam were utilized for the estimation of flood runoff at the Moragahakanda dam site. On purpose to compare with UNDP/FAO results, the probable flood runoffs at the dam site was calculated by applying the results of flood analysis for Bowatenna dam. The peak discharges of both results are as summarized below.

Unit: m³/sec

Return Period		nated Runoff	UNDP/FAC
20	2,0	080	2,505
50	2,8	365	3,000
100	3,2	262	3,481
500	3,9	90	4,415
1,000	4,6	624	4,981

For the safe design, the estimated flood runoff by UNDP/FAO was adopted for the feasibility design of the Moragahakanda dam. Accordingly, flood discharge at the proposed damsite was estimated to be about 3,480 m³/sec for a return period of 100 years and about 3,880 m³/sec for a return period of 200 years. Since the flood conveyance capacity of the downstream of the Mahaweli Ganga is limited, the swamp areas in lowland are created and might be subject to periodic inundation even though the series of dams on the Mahaweli Ganga have been completed, but such inundation be decreased.

B.2.6 Runoff of the Residual Area

In the project area, there are five tanks; Minneriya, Giritale, Kaudulla and Kantalai linked by the Elahera-Minneriya canal, and Parakrama Samudra. Each existing tank has its own catchment basin, the runoff from which is important water resources for the development of the area. However, there were no reliable runoff records on these existing tanks. NEDECO has estimated natural runoff to each existing tank taking into account rainfall, catchment area, topography and vegetation. (Ref. to ISS; Implementation Strategy

Study in 1978). As the NEDECO data were considered the most reliable at the previous study state, assessment of natural runoff to the tanks were based on them. In NEDECO data, however, the catchment areas of the Gal Oya 215 km² and Aluth Oya 73 km² were disregarded in the estimate of the Kantalai tank inflow as well as the area along the Elahera Minneriya canal 145 km² in the estimation of the Minneriya tank inflow. Therefore, the runoffs from these catchment areas were also counted by using ratios of catchment areas.

B.2.7 Sedimentation

The UNDP/FAO Master Plan Report has recommended to employ total sediment yield of 334 m³/km² (0.70 ac.ft/sq.mile) for reservoir designs. The report has also indicated a sedimentation diagram of the Mahaweli basin on the following assumptions:

- Annual total sediment yield would be 0.70 ac.ft/sq.mile and annual yields for both suspended load and bed load would be the same,
- In the case water is to be diverted to another basin, only suspended load would be diverted with water in proportion to the amount of water diverted, and no bed load would be diverted, and
- The trap efficiency would be calculated for each reservoir according to the empirical curve obtained by C.M. Brune.

The sedimentation diagram on the Moragahakanda Reservoir is as shown in Fig. B.2-2.

At the Bowatenna reservoir, about 50% of suspended load would deposit, and two-thirds of the balance would be flushed out to the Amban Ganga. then, the volume of sediment deposit of the Moragahakanda Reservoir is estimated at $15 \times 10^6 \text{ m}^3$ (11,600 ac.ft) for 100 years.

Sediment measurements were carried out at Elahera and Gurudeniya gauging stations for both suspended load and bed load transport. According to the records a total annual sediment yield in 1978 by JICA estimated at 95 m³/km² (0.2 ac.ft/sq.mile) and 22 m³/km² (0.47 ac.ft/sq.mile) at Elahera and Gurudeniya, respectively. The values were much less than the value recommended by the UNDP/FAO.

For the conservative design, the design sediment deposition of the Moragahakanda Reservoir was decided at $15 \times 10^6 \,\mathrm{m}^3$ based on the value recommended by the UNDP/FAO.

B.2.8 Quality of Water

The detailed water quality analysis were carried out for the water of Mahaweli Ganga, Amban Ganga and the existing tanks located in North Central Province by United States Operation Mission (USOM) in 1960 to 1961.

The electrical conductivity of the water showed less than 475 micro-mhos/cm at any time and places. The water was classified in C1 of C2 by the criteria of U.S. Salinity Laboratory. Water Sodium Adsorption Ratio (SAR) was less than 10 which was classified into S1 by the said criteria.

From the above classification, it was concluded that the water is suitable for the irrigation purpose in view of salinity and alkalinity.

TABLES

Table B.1.1 GENERAL FEATURE OF THE CLIMATIC CONDITIONS AT ANURADHAPURA

1. 1. 1. 1. 1.					AT	ИĄ	IUKA	DHA	PLOT	₹A.							:		. *	
* * .												•								
		4, 14,	100			0.0														
							Clies	tologica	1 Jable	of Obs	efyator <u>i</u>	Les in Se	ملامينا إ							
	Station(APV	EADRAPULA	Latio	1.31.18	laseri	5*12*E					•	.0410	11.							
		Man Sea	Dry bulk	Sela-	Yes	Yesa daily	Mighent	Loveet ain.	Pera Vind	Hean	Preval	- Honth-	Number of	Asin-	Asin- fail:	Heavl-	No. of	Cloud t-	Ro, of	No. 01
	Hosth	Prossu- re	tesp.	huo!-	SAT.	oln.	1444	lê≫p. reco¢-	apead at	wind	wind diract	rein- fall	rainy	criest	vettest	rain- fall	sun-	(Oct-	of thun-	ot
	· · · ·		1				444	444	Pont		ion					in 21 hrs.	per day		der	
		nò.	•c	1	*c	*c	°¢ .	°c	Leph.	kaph.		P4,		60 .	∞.	500.				
		1013,4 1010.1	21.3	71	28.4	10.7	36.3 1919.1	13.6	4.6	4.0	FR Ht	123.2	11	0.4	. 537.5 1923	166.4	1.0	4,4	1	0
	Japruary I	1012.4	23.9	69	30.7	10.7	37.1	11.7	4.7	4.3	£	53.6	4	0	195.1	136.4		3.4	2	•
	Herch 1	1012.2	25.9	15	33,2	- 11	38.6	1957,7	.6 . 6	3.4	DIE 1	18.8		. 0		1927.12	8.3	3.0	. 6	0
	li .	1008,3	30.3	60			1915.1	1935.1	7.2		£			1988 #	1936	1919.19		4,1		
		1010.5	27.1 29.4		33.3	23.6		18.1		5.2	2K	186,9	1)		457.7 1890	154.8 1955.19		1.* 5.9	ŧ	0
		1008.2	27.3		37.2	24.6	38.0	20.2	11.4	10.1	şv	99.4	.8	o	493.3	160.8	1,9	3.8	5	0
		1003.3	29.2		32.2	24.7	. 37.7	1935.11 21.3		13.5	S¥ S¥	13.5	4) yrs.	. 1891 176.)	1932.14	7.9	5.7 6.2	6	ō
	п	1006.1	21.1	6.5			1915.18	1912.5	15.1	. :	51			10 yrs	. 1885	1906.10		3.7	0	
			****				1953.1													
4. 1.		1004.1	26.8 29.0		33.7	. 24.3	38.3 1318.22	20.8 1549.11	13.2	12.7	5¥	33 . 6	,	Sr Ate		94.0 1938.31	1.1	6.0 6.1	2	٥
	August t	1008.0	26.9 29.1	37 63	33.0	24.2	38.2 1912.10	20.0 1939.10	13.3	12.7	5¥	46.7	. 3	8 775	217.7 1963	110.7	7.4	5.9 5.9	3	n
	Saptembet [1009.1	26.9	77 67	33.4	71.0	3A.4 1914 12	20,5 1925,13	12.9	11.8	5V 5V	89.6		0		49.1	1.1	5.7	\$	0
	October 1	1010.6	26.1	43	31.8	13.1	37,4	18,4	1.1	2,2	\$4	232.9	16	57.1	347.1	132.4	. 5.4	5.7	11	٥
	11	1001.7	27.1	11			•	1978.28	1.6		24			1870	1902	1924.24		6.2		
	Masenver !	1017.2	23.1	á۶	29.9	21.9	1957.13 34.8	14.1	4.2	4.5	Calla	248.4	14	45.7	393.6	130.6	6.2	3.0	8	۰
	11		26.3	80			1916.5	1934.13			NE			1904	1970	1970.73		6.7		_
	December 1	1009.7	23.8	91 39	28.5	21.3	13.1 1977.16	1937.6	5.6 5.8	3.4	H. Ht	242.3	17	62.5 1854	1457	313.5 1948.31	5.4	3.0	2	0
		1010.7	25.5 28.3	84 89	31.7	73.9	38.6	11.7	1.1	8.5		1447.3	113	. 743.2 1956	7426.5 1957	315.3	7.6	5.0	64	۰
	ferlind of Oste(Vests)	22	12	25	30	30	65	65	25	24	ю	Jn	ງຄ	103	105	17	,	25	10	ţo.

Table B.1.2 GENERAL FEATURE OF THE CLIMATIC CONDITIONS AT MAHA-ILLUPPALLAMA

Stet Ion: H	KA ELLU	PALLANA	144:01	K'50*	tozg:50*	25°E 3	1102-111	: 657fc.	. Anes	oseter:1	.0£t.	1•0830 s	i.L.5.T.	11+17	96 S.L.S	.T.			
ioneh	Hean S Level Presec t4		Pela- tive humi- dity	dally mis.	Kean delty min. temp.	Highest Has. temp. recor- ded	Lovast Min. temp. recor- ded	wind speed at hour	delly wind	fraval- ling wind direct ion	Month- ly rain- full	of Falny		fall vertest	est	hrs-of sun- shine per		Ma.of days of thun- dat	No. of days of log
	1 1013.	2 23.3	33	71.1	20.4	33.3	15.4	4.9	1.1	XĖ NE	113.5	,	O yra.		177.0	7.1	4.7 5.0	ì	4
erruar"	1 1017. 1 1031.			31.1	29.4	36.2 1473.28	13.4 1954-13	4.4 1.1	7.1	所 用是	51.3		0 6 714.	239.3 1922	107.4 1857.4	4.5	3.8 6.3	2	2
	1011. 1008.			31.4	21.3	38.1 197).70	11.9 1961.1	9.0	6.1	Yát . På	59.7	£	3.5 1943		106.7 1720.5	9.0	3,1		4
	1 1010. 1 100?			33.4	23.2	18.4 1417.9	14.8 1464.30	3.1	5.3	Vat.	162.5	11	7.1 1936		143.3 1944.1	8.7	6.0	17	1
	1 1001. 1 1001.			12.4	24.4	16,7 1933.77	19.4		12.1	34	\$9.3	.1	i yra.		1927.1	8,2	5.6 5.9	. 3	0
	1 1008. 1 1008.			32.2	74.4	37.1 1953.11	11.0 1945-17	11,4	15.4	50 V2	19.1	•) yr.	345.4 3917	121.9 1912.4	2.7	6.2 4.0	0	0
	1 1005 1 1006.			12.5	71.0	37.3 1973.27	17.5 1363.76		15.8	50 50	30.2		1, 212	. 1950	93.3 1940.11		6.1 6.0	7	0
	1 100% 1 107£			32.9	24.0	36.3 1953.4	19.9		15.8	ţV	54.4		14 773	. 1933	1413.11		6.1 4.0	. 3	٥
legterher I	1 1011. 1 1014.			31.1	21.8	37.7 1957 ₋ 15	20.0 1943.11		13.0	59	84.3		10 711	1957	\$48.5 1476,13		5.8 5.8	5	0
	L 1010. L 1037.			H.7	72,4	175.1A	14.5		3.4	sv.	226. I		1950	323.7	1447.10		6.3	1 2	1
fovesher 1	1 1012. 1 1003			30.0	21.5	34,9 1414,70	14.0 1361-23		5.5	Var.	213.5	-	61.5 Htt	1363	143.3		3.Z	•)
arraber L	1 1017.			25.7	21.1	31.2	15.6	1.4 1.1	5.3	AT A1	134,2		1475	1677	1307.15		5.3 5.8	3	3
	1 3010. 1 4001.			11.11	11 1	35.1	11.1	ιλ c 11.9	(9.7	-	1427.5	94	791.9 1355	7645.4 1957	375.9	1.6	5.1 5.6	45	10
recivit of	. n	. 23	· 13	71	11	73	1.3	13	15	LG.	10	10	71	71	71	72	23	13	15

Table B.1.3 GENERAL FEATURE OF THE CLIMATIC CONDITIONS AT TRINCOMALEE

	Lituatolocical	table of observation in Set tacks	
	decidence trans		1
	100	Anches 101-1511 1-1810 511.5.1. 11-1/10 5.1.	0.15
L 41988 Ph.	Section Lab 1011	Anchester-1611 1-0013 511.5.1. 13-1110 3.6.	****

Man Falls 1	F13	countr	Lativi	135 'N	tenped!	(*15')	SALVALLE	er:1014.	Anta		1511	1-0810	SIL.S.F.	11-1	110 2.6.						
Y-olk .	٠	Nesn Sre Lavil Freuzu- ti	Dry bulk trap.	fele- tive hype- dity	ALT.	Hean datty min. temp.	162 1449.	Nin .	Plean wind spa-d at hour	antily	freval- ling wind otrect ion	IV.	: Of Fainy		Vittes	rain- fall	soli- shine	1041-	- 01	42)(
			·c		• • •	•c			keesh.	1 eph.		aur c		ea.	141	w.				·	
		1013.7	35.1	11	17.0	14.1	21.7		11.4	13.1	NE NE	210.4	11	7431 0.8	331,4 231,4	}#1.5 [1/1.7		3.4		0	
[4p147£4		1013.2	26.2	11	21,1	24.3	34.3		12.4	IC.I	NE '	23.7			331.4 , 1941	227.8 1163.14		1.7	1		
N+119		1012.2 1002.1	1) 1 28.6	24 35	19.9	24.8	17. 1915.11	14.4		10.3	NC JA	(4.)	•)37.4 . 1944		4,1	3.1	1	0	
april		1010.7	24.3 21.7))))	17.0	25.4	28.4 1956.75	70.9 1943-15		10.3	54 T	36.7	1	2,319	- 1613 - 1913	1455.11		1.1	•	0	
Nav.		1004.0	}4 t 30.4		(11.4	. 26.F	18.3 1915.25			16,7	\$V \$V	63.0	•	1926 f 1936 f	1930	1910.3	1.0	3.7	•	°	
June		1007.4	28.6 11.2	10 51	pa		18.3			21.6	şv şv	118-3	2	5) At 2	191.1 . 1973	1911.3		3.1	1	. 0	
1011		1008.0	24.0		13.7	25.6	35.4 `1918.19			19.8	51 ¹	54.1			. 1921 . 1921	1916-11		1.1		. 0	
lagus t		1005.1	11 J 10 0		33.5	25.)	37.6 1969.12	20.8 1931.13		15.4	SV	102.1	. 1	0.5 1111	798.2 1909	1970.71		3.3		•	
rpaenbri		1003.1	21.E	11 61	113	isa	37.6 1967.17			ie, C	in in	86. 7	4	3.0 1148	7/1-3 1101	120-5 1919-11		5.1 6.1	8	0	
	٠				•			1110.21	. :		4			·	1.5						
		1007.1	11.1 21.1		31.3	14.3		1151.0		- 13.4	NE 2A	134.1	16	1111		130.1	4.3	5.3	10	. 0	
Savember		10011.1	23.1	11	23.7	21.3	1122.2	18.1		13-4	NNE SV	333.1	11	. 55.A 197)		761.7 1104.11		-13		. 5	
-ce#her		1012.1	25,9 26,2		11.1	21.0		19,4 1927, 3]	17.0 21.1	15.4	BNE	313,4	18	36.4 1930		371.A 1969.37	5.5	3, † 4, 1		0	
		1610.3	23.4 28.4		21.0	74.9	38.7	18.)	14.1	16.0	. •	1726.7	101	586, 2 1839	7578.4 1963	322.8		3.2	56	0	
tertod ef Usta tska		10	23	15) a	30	*>	45	25	10	LO.	. in	jn	107	103	. 11	10	H	10		

Table B.1.4 MONTHLY RAINFALL AT BAKAMUNA

* MONTHLY RAINFALL A'T BAKAMUNA (ELAHERA)

*	UNIT	THCII	4.2	100		
					. 2	
	1.1.2.4	100				

	. 141344	and the second of	10 to 20 10 10 10 10 10 10 10 10 10 10 10 10 10				4,			4.5							
	YEAR	JAN	FEB	MAR	APR	YAN	JUN	JUL	AUG	SEP	OCT	NOV	DEC	ANNUAL		YALA APR-SEP	
	1050	6.38	5.24	5,32	1,29	1.88	0.60	0.00	0.00	0.04			0.34		34,37	4,26	
		26.20	5.64	5,11	4.88	5.27		0.00			2,95		8.34			18.82	
٠		17.21			8.32			0.47					11.63		74,99		
i.		11.80	3.77		14.98		0.00	0.73	0.00	5.67			14.34	69,51	50,46	19.05	
						0.00	0.06	1.79	4.15				14.14	81.09	58,38	22.71	
		15.54		12.08	8.49	0.00	0.00		3.18	0.00	8.28		20,73		67,73	12.66	
		17.70	4.50	1.93		1.42	0.00	0.18	1.02	4,56	1,13		7.50	51.88	36,50		
		7,42		3.51	3.57	0.00	0.00	0.00	0.00	0.00			25.42		62,17	3,57	
,	1957	8.62	13,39		1.37	2.52			0.00	3.03	15.40	17.02	51.67	113.62	106,10	7.52	
	(958	6.83		8.73	4,99	3.75		0.08	0.00	0.00	2,20	5.50	12.60	49,18	40.36	0.82	
		3.27	1.03		5.23	3.54	2.70	0.25	0.59	0.17	6.98	14,45	14.01	52.67	40.19	12,48	-
		11.08	23,55		15.75	0.68	0.00	2,73	0.00	0.06		19.09		84.55	65.33	19,22	
Ċ	1961	9.97		8.08	3,73	0.90	0.12	0.04	0.00	0.05	6.32	14.88	21.03	72,50	67.66	4.84	
	1962	14.21	1,44	0.94	10.74	3.75	0.00	0.04	1.58	0.04		7.78		59.02	42.87	16,15	
	1963	14.94	8.64	2.76	15.24	1.02	0.03	0.28	0.00	0.38		19.35		93.92	76,97	16.95	
	1964	11.05	4.64	1.50	7.37	3.16	0.00	6.93	0.35		11.31		8,41	60.58	41.25	19.33	
	1965	4.83	10.88	5.04	10.41	5.69	0.00	0.00	4.71		11.07			85.75	64.94	20,81	
	1966	16.60	0.82	5.72	4.40	0.00	0.00		0.71				9453	64.72	57.36	7,36	
		0.93	4.70	1.72	5.98		0.96	0.00	0.00		15.63		7.60	58.10	50.78	7.32	
	1968	6,16	0.00	9.87	2.46	0.00	0.00	0.00	0.00	0.00		11.98	8,40	47.75	45.29	2,46	
	1969			0.63	5.85	0.09	0.00	0.00	7.57	0.80	9.55		27.29	69.61	55.30	14.31	
		18.79	23.61	4.17		0.85	0.00		0.00	2.01			12,68	83.03	75,38		
		9.79	7.29	5.07	8.46	1.21	0.15	0.00	7.11	0.45	2.34		27,19	74.48	57.10	17.38	
	1972	1.11	0.00	2.00	7.36	4.25	0.00	0.00	0.00		18.10			63.64	47.66	15.98	
		0.00	3.78	0.04	1.19	0.00	0.00	0.00	0.00					54.54	52.00	2.54	
	1974	0.00	3.99	0.00		0.20	0.00	0.00	1,35				28.45				
	1975	4.70	3.02	7.16	3.40	1.80	0.25				1.22			32.14	20.31	11,83	
	1976	5.79	1.88	0.41	4.41			3.98	0.00	0.05		10,85		46.77	37,29	9,48	
	1977					0.00	0.00	0.31	0.43	0.00			13.39	45.05	39,90	5,15	
	1977	4.97	0.44	1.40	0.81	1.66	0.00	1,45	1,10	2,58	10,51	12,59	12,12	49.63	42,03	7.60	
	мели	9.46	5.81	3.47	6.38	1.73	0.16	0.74	1,33	1.49	7.28	11,59	16,35	65.80	53,95	11,84	

Table B.1.5 MONTHLY RAINFALL AT POLONNARUWA

* MONTHLY RAINFALL AT POLONNARUWA * UNIT : INCH

YEAR	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	NNUAL	AHAM	YALA
	5 J. J.		977 11								•		TOTAL	OCT-HAR	APR-SEP
1950	5.29	2.02		0.55	2.43	0.00				4.63	6.76	.7.03	.39,31	32,38	6.93
1951	19.70	4.28	2.97	5,31			2.18	1.63	5,82	2.45	15,12	10.44	70.44	54.96	15.48
	18.26	5.02	1.83	5.25	3.82	0.00	2.08	0.00	4.15	7,05	7,31	8,94	63:71	48.41	15.30
1953	8.82	3.52	2.88	8.45	0.00	2.91	6,75	1.42	5.24	10.46	9,64	17.20	77.29	52.52	24.77
1954	11.69	3.84	8.33.	4.43	0.00	0.00	3.58	2.55	0.00	7.86	7,26	22.76	72.30	61.74	10.56
1955	10.27	4.16	1.22	5.03	1.75	0.00	0.00	5.28	6.86	6.48	4.04	5.80	50.89	31.97	18,92
1956	4.94	2.51	2.35	4.13	0.02	4.37	0.48	2,17	0.17	8.82	12.28	11.84	54.08	42.74	11.34
1957	4.44	12.42	0.00	2.80	5.01	0.09	3,22	0.71	0.58	7.02	24.12	47,98	108,39	95.98	12.41
1958	7.56	3.59	4.08	3.20	2.37	0.00	0.00	6.29	1,23	8.35	8,93	15.65	61.25	48.16	13.09
1959	10.55	0.60	0.56	3.80	1.15	0.85	0.00	1.18	0,68	14.62	13,33	10,16	57.48	49.82	7.66
-1960	10.82	16,11	3.34	12.07	.6,47	0.00	5.52	0.94	1.48	3.98	10.42	5.08	76.23	49.75	26.48
1961	16.65	10.23	4.08	4.55	5.54	0.27	0.00	0.00	0.36	5.69	13.73	20.21	81.31	70.59	10.72
1962	8.17	2.58	2.83	3.77	3.00	0.00	0.19	1,07	5.00	6.65	8,09	8.75	50.10	37.07	13.03
.1963	19.24	10.13	4.00	8.54	1.55	0.07	1.88	0.20	5.28	7.41	19.31	17.01	94.62	77,10	17.52
1964	6.40	8.69	10.06	3,12	1.51	0.00	4.08	1.83	2.87	3,43	5.79	6.11	53.89	40.48	13.41
1965	4.15	16.23	0.90	7.16	6.25	0,85	0.00	5,98	0.02	9.50	23,47	22.60	97.11	76.85	20.26
1966	9.52	0.69	6.36	9.44	0.10	0.10	0.21	4.71	2.05	16,61	20,25	10.07	80.11	63,50	16.61
1967	2.58	4.85	2.08	3.45	0.43	0.00	0.00	0.03	0.59	10.23	18,37	19.90	.62,51	58.01	4.50
1968	5.28	0.00	4.80	3.88	0.05	0.00	0.00	0,16	1.28	7.46	12,36	8.39	43.66	38,29	5.37
1969	4.37	1.66	1.11.	10.67	0.00	0.00	3,80	3.44	1.35	10.62	4.30	27.93	69.25	49.99	19.26
. 1970	7.08	11.92	0.74	7.75	5.42	.3.75	0.00	4.07	1.40	8.65	19,24	12,87	82.89	60,50	22.39
1.971	6.94	4.00	6.32	6.62	1.19	0.00	5.86	11,13	0.10	7.88	7.09	31.42	88.55	63.65	24.90
1972	1.58	0.00	0.00	5.44	5.21	0.00	0.46	0.02	16.03	24.31	22.81	17.14	93.00	65.84	27.16
.1973	0.80	4.60	1.75	1.45	3.50	2,60	13.70	1.76	15.05	7,24	15,41	49.47	117.33	79.27	38.06
1974	0.00	2.18	1.30	5.70	2.58	0.00	0.00	0.03	5,95	1.00	7.54	9.32	35.60	21.34	14.26
1975	5.83	6.85	8.03	7.51	4.44	0.00	20.00	3.81	0.00	8.27	11,24	15,04	91.05	55.26	35.79
1976	9.06	0.60	0.15	2.32	0.00	1.76	0.68	3.10	4.15		23.88	27.00	77.67	65,66	12.01
1.977	6.06	1.95	5.71	7.51	4.78	0.19	6.53	3,29		10.29		20.31	99.09	70.70	28.39
	.,							- •							
MEAN	8,07	5.19	3.37	5.50	2.47	0.64	2,90	2.50	- 3.37	8.28	13,52	17.37	73.18	55.80	17.38

MONTHLY RAINFALL AT HINGURAKGODA Table B.1.6

*	MONTH	Y	RAINFALL AT	HINGURARGODA
	UHIT :			100

. 001						2.7			- 1				2	property to a contract.	 King a diameter property 	
YEAR	JAN	FEB	MAR	APR	HAY	JUN	JUL	λυG	SEP	OCT	ИОЛ	DEG	TOTAL	MAHA OCT-MAR	YALA APR-SEP	
		100	4.2.2.2	300	10.00			2.00	1 05	3.64	7.76	6,56	45.03	33,34	11.69	
1950	5,20	3,70	6.48	0.74		0.00			1.00	3.46	10.45	7,19		57.79	17.19	
1951	22.04	4.17	1.48			0,23		1.25		3,40	6 dR	7,13		38.02	14.71	
1952	15.89	2.19		4.38		0.02			5.48	3.60	6,48		75.19	50.15	25.04	
1953	9.58	1.88	0.61	10,19		0.06				12.17	6.48	16.39	61.02	49.03	11.99	,
1954	10.74	1.35	6.79	7.14		0.00		1,34		7.28		6.97	50.48	33.36	17.12	
	10.52	4.90	2.08	7.49	1.93	0.00		3,62		2.66		10.49	47.09	40.07	7.02	
1956	6.40	1.81	0.72	3.01	0.05	2.81	0.03	1.09	0.03		11:27		111.32	98.59	12.73	
1957	4.27		0.00	2.05	4.43	0.16	2.72	1,45	1.92	7.56	23,90			39.77	13.80	
1956	9.27		4.49	2.52	2.69	0.03	0.43	6.18	1.95	4.83	8,42		53,57	43.14	13.64	
1959		0.44	0.26	4,47	4.48	2.07	0.13	0.52	1.97	11.32	13+13	10.51	56 4 78	60.45	the state of the same	
	11.07		2.35		8.94	0.10	6.35	1,16	5.80	7.18	39,12	4.10	90.93			
	17.87		6.14		2.41		0.27	0.05		9.99		19.81	83.70	74.43	9.27	
1962		2.91	3.59	4.04		0.00			5.12	5,49	8,66	8.27	51.53	36.67	14.86	
	17.93		.7.24			0.00			5.55	4.77	23,11	19,72		80,45		
1964		5.28	4.91		4.49		4.06		2.23	7.01		5.26	45,41	32,68	12.73	
1965	3.67	7.10	0.62	8.50		0.00	0.39	4.77	0.00	16.22	15.76		87,39	64.87	22.52	
1966	6.81	0.98	6.07	5.43		0.02			6.18	20,93	16,20	8,46	73,44	59,45		
1967	1.35	3.64	3.50	2.69	1.73	0.19	0.06	0.40				22.71	71.98	64,00		
1968	5.84	0.00	5.49	2.45	0.46	0.00	0.00	3,36	5.29	7.35	9.03	8,38	47,65	36,09	11,56	,
1969	3.33	2.49	0.11			0.00			6.32	12,96	11.06	33.55	83,15	63,50	19.65	
1970	4.82	8.87	2.12			1,65			1.90	2.36	11.23	13.06	61,27	42,46	18.81	
1971	8.79		1.82	8.89		0.47	1.43			3.50			67,18	48.34	18.84	
1972	2.93	0.07	0.67	4.94	5.41	0.00	0.00			12.27		12.15	67.67	42.78	24.89	Ė.
1973	0.00	2.28	2.00	1.56	2.12	2.99			3.72		3.71	18.74	52.07	32.25	19.82	
1974	0.00	2.25	0.38			0.00					4,55	16.66	38.17	24.08	14.09	j-
1975	5.60	2.26	2.60	6.80		0.00	8.38			1.91	9.45	7.13	57,59	28.95	28.64	,
1976	1.27	0.85	0.18		0.62	0.00	1.43					19.53		37.87		
			2.23			0.00	1.93			14.03			4 1 1 1 1 1 1 1 1	50.51	14.21	
1977	3.31	1.44	2,43	0.84	1.29	0.00	(493	1633	0.00	. 7 . 0 3						
MEAN	7.45	4.00	2.71	4.89	3,14	0.40	2,09	1.97	3,72	7,73	11.66	15.13	64.89	48.68	16.21	
															4.4	

MONTHLY RAINFALL AT KANTALAI Table B.1.7

														3.00			
	YEAR	JAd	FED	MAR	APR	МУХ	JUH	JUL	ΛUĢ	SEP	OCT	NOA	DUC	ANNUAL	AllAH	YALA	
			1	1			12.12.2							TOTAL	OCT-HAR		
	1950	2.73	3.18			0.85	0.00		4.26			10,57	10.71	48,07		14.28	
		18.7			5.90		0.00		1.13	5.68		13,48		68,93	51.77	17.16	
		16.61			5.72			1.64			1,14		6.68	47,82	35.03	12.79	
	1953	9.9.				0.00		11.49			6.30	7,04	12.08	67.70	41.52	26.18	
		12.6			4.96		0.00					5.95		70.98	57,31	13.67	
	1955	7			11.92		0.00		13,91		4.83	3,02	8.77	75,25	36.91	38.34	
	1956	5.6.	1.97		4.01	0.12	2,79		2,77			15,39		58.62	41.04	16.78	
	1957	4.70		0.05		2.62	0.08					20.15	37.98	80,95	79.08	9.87	
	1958	3.96	2.75		4,25	0.46	0.00	1.64		3.06	6.34	5,56	8,03	47.88	31,80	16.08	
	1959	6.50			3.83		5.42	0.00	5.40	1.89	7.65	12.93	12.49	57,40	40.44	16.96	
	1960		11,24		7,32		0.00	7.28	0.00		5.00		4.52	60,08	48,83	19.25	
		16.19	4.73		2.15		0.16	0.59	0.08	4,16	11.40	17.39	22.53	84.62	75,89	8.73	
	1962	10.04	2.19	1.18	4.10	3.99	0.00	0.70	1.38	3.17	5.20	7.94	.12.67	52.56	39,22	13.34	
	1963	14.43	6.42	3.77			0.00	2.14	0.99	3.86	5,81	26,21	19.72	92.76	76.36	16.40	
	1964	4.44	1.27	5.92	1.86	0.40	0.00	5.17	4.84	0.35	8.00	5,24	6.09	44.38	31.76	12.62	
	1965	2,81	9,69	0,93	7.11	4.73	0.24	0,00	11.88	1.94	10.83	15.83	27,94	93.93	68.03	25.90	
	1956	9.81	1.86	3,17	-5,55	0.00	0.00	0.28	8.35	4.42	16,24		9.21	75.30	56.70	18.60	
	1967	1.13	4.40	1.63	3,28	1,08	0.00	0.00	4.61		13.55		18,45	69.59	58.42	11,17	
	1968	5.84	0.11		4.32			0.00	3.36			15.03	14.35	59.42	45.35	14.07	
1	1969	4.80	4.94	0.00	4.87		0.00	4.03	7.05	1.57	11.31	9.87	20.37	69.66	51.29	18.37	
•	1970	6,30	6.77	2,19	5.31	3.80		0.03	2.64		4.19		9.12	59.05		15.93	
	1971	6.81	0.53	1.45	1.97	1.85	0.03	2.54	4.39		4.24		25.08	60.06	45.27	15.59	
	1972	1.21	1.49	0.78	1,75		1.68		0.00		12.15	9.85		52.57	36.56		
	1973	0.75		0.28	0.24		8.23	3.05	1.55		10.98		20.34	56.09		16.01	
	1974	0.00	1.91	0.08	4,65	4.65	0.00	2.80	1,44			4.50	14.12		36.27	20,62	
	1975	2,26	1.10	1.99	1.06	3.51	0.00	3.74	3.67	1.85	3,25	9.32		39.21	21.56	17.65	•
	1976	0.85	0.12	0.07	2.53	0.00	1.50	3.12		3.53		10.61		.39.17	25,34	13,83	
	1977	1.77	5.26	2.67	1.83	1.84	0.09	1.03	1.55		14.35		15.61	46.23	32.52	13,71	
			5,00	~,		.01	V. 0.	.03		0.00	14.35	14.90	12.15	54.04	49.10	14.94	
	неан	6,96	3,38	1,95	4.27	2.21	0.76	2.24	3.59	3.68	7.57	11.62	14.64	62.85	46.11	16.74	
													1104	02,03	40.11	10./4	

^{*} MONTHLY RAINFALL AT KANTALAI * UNIT : INCH

Table B.1.8 AVERAGE MONTHLY RAINFALL (IN MILLIMETER) (1950 - 1977)

Station	Jan.	Feb.	Mar.	Apr.	МаУ	June	July	Aug.	Sep.	Oct.	Nov.	Dec.	Total
Elahera	240	148	& &	162	44	4	ц 6	34	38	185	294	415	1,671
Polonnauruwa	205	132	8	140	63	7	74	64	80	210	343	441	1,859
Hingurakgoda	189	102	69	124	80	10	53	50	ъ Ф	196	296	384	1,648
Kantalai	177	98	50	108	56	б	57	91	93	192	295	372	

Table B.1.9 MONTHLY MEAN PAN-EVAPORATION AT METEOROLOGICAL STATIONS

Station	Jan.	Feb.	Mar.	Apr.	May	June	July	Aug.	Sep.	Oct.	Nov.	Dec.	Annual
%Anuralhapura	118	134	- σ	7	Ω)	. 0	~ ~	220	0		108	102	2,020
Badulla	S	0	143	129	143	138	158	164	159	127			I (N
Batticaloa		4	Ø	∞	\circ	\circ	0		O		m	118	80,
Colombo	4	സ	∞	S	ひ	4	4,	ST1	ന		129	$^{\omega}$,72
Diyatalawa	0	⊣	3	Н	ω	$^{(1)}$	Ŋ	O	4		84	ω	48
Gaile	₽,	4	∞	~	~	Ø	5	α	∞		3	C#4	9
Hambantota	∞	Q)	0	∞	∞	\mathbf{Q}	\circ	\circ	O		S	ŀΩ	22
Jaffna	158	162	, 	\vdash	4	\sim	H	198	-1		129	112	2,238
Kankesanturai	Ø	~	Q)	0	$^{\circ}$	~	\Box	ത	O		0	W	23
Katugastota	~	∞	0	L-	I ~	LO.	O	F~-	S		(1)	T11	9
Kurunegaia	~	∞		Q)	ഗ	S	$\boldsymbol{\omega}$	O.	∞		W	CT	7
ºMaha Illuppallama	$^{\circ}$	S	\circ	~	\circ	ᆏ	(2)	N	(2)		N		15
Mannar	158	N)	N	ത	П	Q)	ω	ത	(O)		S	m	H
Nuwara Eliya	118		~	$^{\circ}$		\leftarrow	0	\circ	0		ഗ	\circ	8
Puttalam		Ø	\circ	9	Q)	Q)	∞		\circ		123	N	ਜ੍
Ratnapura	143	Q	Ø	マ	ന	$^{\prime}$	വ	4	$^{\prime}$		\vdash	\sim	9
orrincomale		162	O		ഗ	വ	∞	(O)	4	174	ന	ന	4
Vavuniya	133	134	∞	€-	190	\vdash	\sim	N	\circ		123	\circ	o (
						•				÷			

Table B.1.10 PAN-EVAPORATION AND ESTIMATED EVAPORATION FROM TANK SURFACE

Station	Jan.	Feb.	Mar.	Apr.	May	June	July	Aug.	Sep.	Oct.	Nov.	Dec.	Annual
KALAWEWA KANTALAI BATALAGODA TOPPAWEWA	122 102 105 108	131 106 129 116	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	153 128 128 143	171 162 118 189	181 190 115 212	190 193 117 235	194 183 209 09	11 11 12 13 13 13 13 13 13 13 13 13 13 13 13 13	151 146 1199 529	126 102 98 122	120 92 109 105	1,901 1,716 1,455 1,931
Estimated Value from Tank Surface	8	හ හ	125	11 5	128	136	143	145	149	113	95	06	1,428
	Table B	B.1.11	AVERA	VERAGE MONTHLY METEOROLOGICAL	THLY ME	STEOROI	OGICAL	DATA	at mae	MAHA-ILLUPPALLAMA	PPALLA	WA	
Station	Jan.	Feb.	Mar.	Apr.	Мау	June	July	Aug.	Sep.	Oct.	Nov.	Dea.	Annual
KALAWEWA KANTALAI BATALAGODA TOPPAWEWA	122 105 116 108	130 130 130 130 130	11 11 11 11 11 11 11 11 11 11 11 11 11	128 128 1435	171 162 118 189	181 190 115 212	190 193 117 235	4 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	198 173 133 202	151 1146 119	11 11 12 2 8 2 8 2 8 2 8 8 2 8 8 2 8 8 2 8 8 2 8 8 2 8 8 2 8	120 92 109 105	1,900 1,721 1,451
Estimated Value from Tank Surface	92	86	125	51 5	128	136	143	145	149	773	ω w	06	1,428

Table B.2.1 MONTHLY RUNOFF AT POLGOLLA OF MAHAWELI GANGA

Prior + Alian +	ilay sida Martoga	OUP III BOA AT	итертон Вогоогр	COBTC (orana Charar	Altera :	1292 gg	.10:)						
YEAR	UMI	erm	HAR	ÆR	MAY	Jun	JUI,	AUG	84.19	ocr	: : VOV	ще	ระวังโล	:
1950	66	57	75	49	154	136	246	212	. 508	227	- 133	6.1	1947	162
1951	204	101	71	117	Ġ9	928	299	24	322	328	441	132	2536	245
1952	500	6.3	5.3	149	773	468	234	259	108	564	168	88	3147	262
.1953	61	44	17	83	44	33	325	184	174	219	152	115	1536	12
1954	103	6.1	90	169	218	197	206	374	213	458	181	328	2600	217
1955	187	124	107	161	411	702	325	183	214	558	228	12h	2000	250
1950	172	58	. 73	6.4	113	627	213	240	228	372	423	183	2671	223
1957	115	95	.64	77	117	444	500	202	144	- 175	388	1027	3356	289
1958	237	78	167	129	229	249	235	278	121	372	326	136	2557	213
1959	91	72	67	121	137	614	516	204	206	334	250	156	2770	231
1960	122	178	. 85	149	173	258	306	264	477	372	113		2980	248
1961	64	64	56	73	279	188	227	385	198			153	2900	
1962	100	53	46	86	280	164	. 255	189	306	207	243	195		183
1963	137	71	64	115	117	178	255	217	210	-383	240	143	2253	186
1964	143	04	71	56	96	113	264	254	266	340	246	296	2246	187
1965	53	49	36	139	442	283	115	257		178	380	124	2029	169
1966	90	40	56	110	60	67	108	121	156	290	239	202	2261	188
1967	91	75	73	57	56	148	193		355	314	253	122	1696	141
1968	5	41	Ġ5	78	146	251		174	93	431	320	. 350	2061	172
1969	102	56	42	146	280	372	515	344	319	308	300	103	2635	. 220
1970	156	129	65	143	146	238	100 204	131	237		183	218	2254	188
1971	176	76	69	177	192	303	346	379	174	310	321	342	2607	217
1972	76	41	29	82	367	108	340	359	553	381	195	270	3099	256
1973	100	46	34	55	36	102		237	173	481	403	293	2619	210
1974	107	58	77	149	232	352	1,44 539	324 436	108	112	200	223	1484	121
1975	102	47	53	98	135	502			303	306	132	133	2904	242
1976	121	46	. 9	96	40	34	175.	441	356	400	671	226	3208	267
1977	46	31	36	76	222	275	153	118	95	228	234	158	1332	111
			, 50		222	275	210	153	91	371	212	116	1869	156
JATOT	3237	1961	1780	3008	5572	8384	7635	6963	6688	6980	7940	6106	68254	5688
ипун	116	70	64	107	199	299	273	249	239	321	284	218	2438	203

Table B.2.2 AVERAGE MONTHLY NATURAL RUNOFF AND DIVERSION WATER (1950 - 1977 RECORDS)

	Average	Average Monthly Natu	Vatural		Diversion	. Water		Inflow to	× to
Month		Runoff		Polgolla	511 a			Moragahakanda	kanda
•	Polgolla	Elahera	Angamedilla	Before	After	Nalanda	Bowatenna	Before	After
-				Kotmale	Kotmale			Kotmale	Kotmale
				,					
Jan.	116	142	272	89	114	<u>ო</u>	23	207	229
Feb.	70	80	162	51	6 8	₽. Д	37	119	142
Mar	64	24	97	49	06	0.7	47	7.6	101
Apr.	107	46	68	8	119	8.0	42	85	118
May	199	44	75	100	131	3.3	54	06	120
June	299	26	43	119	137	3.4	70	77	01
July	273	2.4	87	135	145	3.7	69	88	96
Aug.	249	21	34	131	146	3.1	57	66	106
Sep.	239	. 20	37	123	137	1.8	71	71	83
00 tr	321	5.4	68	141	146	2.5	15	172	182
Nov.	284	86	3 172	138	144	D. 3	25	209	214
Dec.	218	167		121	139	4.4	8 단	268	287
Total	2,439	778	1,450	1,283	1,537	26.6	519	1,553	1,770
				1.					

A AMAN GANGA AT FLAHTRA MATURAL BUNDET IN MILLION CUBIC METERS A: CATCHMENT ANEA 1 779 SO.KM.

200			1.0											
YFAR	JAH	FIA	N A B	AFR	MAY) II H	յսլ	Alle	SEP	Oct	HOV	DEC	TOTAL	PEAH
3250	144	40	, k7	14			•			•			. 1	
1251		101	40	76	78	24	75	27	40	3.6	. 38	52.	562	47
3.957	265			5.5	2.8	4.6	3.6	13	58	59	125	162	1025	1.85
1953	. 61	104.		5.3	۸1	35	16	14	11	79	81	A 3	857	71
		3.4	3.2	.57	: 9	3	14	. 9	5	62	60	103	446	3.7
3054	173	97	- : 61	-5.6	7.0	12	12	. 9	. 5	- 54	4.6	260	805	47
1955	244	112	LA	47	0.0	3.7	17	1.5	30	26	30	40	696	58
J 056	32.	3.4	51	49	3.6	15	5	. 3	2	10	99.	102	452	38
1057	19	90.	36	. 9	12	3.2	17	7	ī	66	119	398	879	73
1957	114	40	104	ЯЯ	92	24	18	3.2	ž	51	77	107	764	64
1050	80) A	9	27	17	2.6	43	ŝì	19	37	92	155	613	51
1940	144	302	73	5.8	14	23	45	17	17	46	143	99		2 ! # 3
1961	117	6.5	5.5	3.0	43	25	24	28	12	18			1001	
1942	143	92	.32	52	85	23	21	23			99	155	660	5.5
1961	257	111	٨١	7,9	44	22			26	91	90	147	825	69
1944	254	143	20	3.8	12	. : 18	19	70	14	33.	95	553	1008	Αų
1945	79	112	3.8	71			29	19	20	25	64	150	852	.21
1044		71	66	4 6	77	3.1	17	32	15	5.2	105	1.45	816	: 68
1947	120	118	-56		72	1.4	11	.9	25	6.0	147	103	711	.59
1968	128			4.0	3.1	₹4	50	18.	10	5 A	189	246	930	7 %
		4.3	. 71	34	17	15	31	17	1.2	52	125	176	7.70	60
1010	134	94	3 4	40	3.1	. 27	13	29	24	93	63	179	778	65
1970	214	244	. A 5	7.5	- 6	2.2	10	16	5.0	46	72	161	. 99A	A 3
1971	210	A5	5.0	8.8	6.9	42	3.4	50	6.8	4.0	61	311	1080	94
1972	97	49	18	77	ΑÒ	19	24	14	12	8.8	108	227	763	64
1973	61	4.7	1.9	19	1.6	11	10	9	A-	9	43	177	431	36
1974	6.1	19	- 20	13	21	1.8	26	33	44.	27	21	94	417	35
1975	7 8	1 4	45	22	25	25	23	30	29	23	145	116	599	50
1976	145	34	4.7	3.0	21	1	15	17	22	86	170	192	793	66
1977	A 5	. 55	2.8	59	147	117	94	47	27	140	535	291	1242	103
TOTAL	3977	2454	1342	· 1284	1207	724	654	577	567	1503	2741	4674	21736	1812
MEAN	142	48	49	4.6	4.3	26	24	21	20	54	98	167	776	1912
			•	. , ,		• 11		٠.	20	, •	70	107	,,,	0,7

Table B.2.4 RUNOFF RECORD AT ANGAMEDILLA

A CATCHMENT AREA : 1658 50.KV.

YEAR	JAN	5 F A	o _i p	A D R	N V A	३॥५ -	3UL	AUG	SEP	061	ноч	DEC	10T#L	HEAR
1950	271	71	145	49	53	1.8	4.8	41	74	50	53	. 74	999	#3
1951	4 ለ አ	180	7.6	9.9	45	ž a	4.5	26	173	85	200	331	1793	149
1752	171	204	۶.	110	106	53	24	20	16	113	119	140	1383	115
1953	1 6 1	ላስ	Ą»	80	15	4	74	19	ò	116	113	196	865	72
1254	124	18)	116	1/18	3 R	24	24	18	9	Д	74	473	1472	123
1255	414	218	101	114	75	5.6	25	1 /	41	4.0	59	76	1262	103
1956	, R O	A A	RN	71	45	2.6	Q	٠,	5	20	191	196	822	69
1757	. 144	1 4 7	8.6	1 8	4.0	0.4	30	10	á	121	226	748	1642	137
3 Q S A	218	9 1	198	1 4 8	170	44	31	δà	1 Å	95	143	200	1434	120
1950	188.	51	1 ለ 8	5.1	89	49	8.0	59	33	103	170	291	1297	108
1940	304	421	111	43	59	16	6.6	2.8	29	6.6	210	176	1599	133
1941	241	134	9.5	4.5	7.5	39	3.4	36	18	20	196	325	1290	108
1962	345	203	45	101	109	19	3.3	33	3.8	130	158	291	1545	129
1743	520	289	115	124	7.6	14	2.6	28	21	49	164	424	1870	156
1444	511	27.5	141.	69	5.5	20	4.5	29	. 54	3.5	8.9	220	1522	177
1945	. 150	285	44	119	178.	46	24	65	21	79	171	339	1453	171
1946	7.64	151	140	ጸዳ	40	21.	18	14	36	94	250	1/13	1299	108
1947	240	241	108	8.6	5 6	3.4	280	2.5	15.	. A9	351	460	1981	165
1968	308	79 -	124	44	3.0	23	68.	24	19	75	193	355	1347	112
1949	274	184	45	101		34	1.8	. 64	34	135	96	359	1399	117
1970	491	453	111	124	78	34	5.8	26	31	71	123	334	1810	151
1971	320	120	96	114	114	64	40	66	103	89	115	715	2026	149
1977	2.0 ^	91	A 4	201	179	2.6	4.1	24	2.6	181	200	464	1657	118
1973	108	ΑĻ	3 3	3.8	30	71	20	5.0	11	20	8.6	333	784	۸5
1974	113	\$3	18	6.3	39	3.1	f 0 -	۸3	8.0	. 5 1	39	176	775	. 65
1975	14.	73	8.6	4.1	,48	49	44	5.A	5.A	4.4	271	219	1139	95
1976	Jina	100	7.8	5.8	10	1	2.6	31	4.1	120	1 318	359	1482	124
1977	3.18	41	5.3	73	265	513	176	ÞΦ	51	300	434	544	2363	197
10141	7708	4537	2710	2479	2023	1711	1350	954	1466	2605	1812	9010	60110	- 3341
21.4.4	177	1/2	27	A ?	13	4.3	4.8	3 4	37	8.9	172	372	1440	120

à	CYICHAEPL	ARIA	584 SO.K"

	וון לא וון נהוא של היו				. 1	* r 10 C		4 h						
	H					1501			- :					
YEAR	JAH	ttu	чхе	V L B	чдү	JUN	Jut	AUG	SFP	O C T	% 0.V	DFC	TOTAL	MŢÁN
1950	R ·	٠. ٨	10	7	я	n	n	٨	3	6	13	1.0	??	6 9
1251	- 54	٨	7	R	10	Ų	(t		5	5	7.0	11	112	7
1952	74	3	7	4	5	0	2	ሳ	Ŗ	A	10	1.1.	7.9 115	10
1953	14	3	7	16	O	ŋ	14	5.	5	18	11	27	91	8
1954	1 /	7	1.0	11	n	- (1	5	7	0	11	. 1.0	24 11.	78	7
1955	1 ^	A	3	11	3	U	0	5	6	. 5	10	11	75	, A
1256	1.0		. 7	. 5	. 0	\$	0		0	14	18	80	167	14
1957	Α	14	()	*	٠, ٨	Ü	\$. ₹	3	11	3.5		81	7
1958	14	δ,	۸ (3.	5	0	. 0	10	3	8	13	13 16	83	7
1083	10	0	n	6.	4	3	0	ő	3	18	21	10 6	137	-11
1 ዋሉ በ	1.6	5.6	3	13	13	()	10	7	Я	11	20	30	125	10
1961	27	13	1.0	- 8	ì	, O	Ú	0	2	14	18	13	71	6
1942	- 5	5	, ,	٨	3	0	0	5	8	8	13		147	12
1941	27,	11	7 11	я	5	Ò	5	5	8. 3	A	35	30	68	. 6
1964	8	R	Я		ń.	9	6	?		11		. 8	137	11
1945	5	11.	2	1.3	13	U	0	- 8	0	24	74	3.2	112	ý
1944	10	2	10	Н	0	0	0	3	10	2.5	24	13 34	109	. ,
1967	?	5	5	5	3	0	0.	. 0	5.	- 13	5.0	**	43 103	. 6
የላዩ	R	0	R	₹3	9	Q	. 0	\$. 8	- 11	13	13	152	10
1949	5	3	0	10	7	0	4	3	10	19	16	51 19	65	. R
1970	Ŗ	13	3	11	5	3	0	ű	3	3	18	38	98	. 8
1971	13	5	. 3	1.3	6	0	5	. 3	?	5	8.	18	1,04	9
1972	5	Ü.	2	R	H	0	0	0	2.5	19	5.5	28		,
1973	0	5	3	3	. 3	5	13	0	5	A	5		56	č
1074	Ō	.3.		6	10	0	0	Ó	5	0	. 6	5.6	86	7
1975	Я	3.		1.0	, R	0	13	5	8	3	14	11	76	. 6
1976	5.	?	1	ነ ባ	. ?	0	- 2	3	?	. 5	19	29	96	. 8
1977	5	2	3	0	. 2	0	- 3	3	.13	. 21	. 22	2.7	40	
TOTAL	306	1 4 8	116	8.05	132	16	86	84	158	327	491	641	2733	852
VEAV	11	6	4	7	5	1	. 3	3	6	12	18	23	ጸየ	8

RUNOFF RECORD AT KAUDULLA Table B.2.6

YEA	R JAN													
		FEE	к ,ыдя	APR	ИДҮ	HIL	յսլ	AUG.	SFP	0 c T	404	0 E C	JATOT	PEAH
125	0 2	1	. 2	. 0	2	0	0	•			_			
195		.1	Q	7	?	ō	. 0	,	,	1		2.	15	1
195		1	0	1	1	0	ň	n	ż	,	2.	2	5.5	5
1954		. 1	n	3	0	ŋ.	3 `	1	1	i	3	Ά.	16 ** 25	1.
1950					0	a	1	0	n :	5	ž	5	18	5
195(1	. 0		1	0	0	1	1	1	2	. 2	16	
1957		3	n	1	. 1	'n	. 0	ŋ	0	. 3	- 4	3	15	i
1958		1	1	1	i	0	1		. 1	3	8	17	3 6	š
1955		.: ก	0	1	1	. 1	. 0	۸ .	11	· .	3	3	18	2
1946		5	1	5 to \$	3	0	2	Ď	2	9 .		3	18	· 2
1962		.5	5	7	1	0	Ö	· ó	0	, i	. n	7	58	
1943		1	1	1	1	ŋ	ŋ T	· 1	2	ź	3	1	. 28 . 16	5
1944	. 2	2	2		. 0	9	1	: 0	7	2	. 8	7	33	1 7
1965		2	'n	. (≀ ₹	1	0	1	0	1	2:	2	2	15	
1946 5		0	?	Ž.		1)	0	?	0	5	5	7	7.8	,
1967		. 1	1	1	. 1	0	0	1	2	~ 7	5	3	24	ż
1944		0	7	1	Ó	'n		. 9.	1	4	6	8	2.3	ž
1949 1976		. 1	0	2	0	0	1		2		3	3	1.6	1
1971		, 3	1	2	1	1	0	ž		.4	4 :	11	2.7	2
1977		1	. 1	3	5	0	. 0	ī	Ó	•	.:4.	4	5.5	. 2
1973		1	()	2	. 2	0	0	0	5	4	5		2.2	2
1074	. 0	1	,	1	1	1	3	Ω -	1	2	í		23 18	2.
1975		i	1	i 2	· ·	0	9	n	1	0	2	ď	13	
1976	O	0	0	,		11	\$	- 1	2	1	. 3	ž	20	1
1977	1	0	1	0	Ď.	0	() •	. 1	ŷ	1	14	6	14	1
• • • • •						.,	1	3	3	5 -	- 5	5	55	5
TOTAL	۸5	36	74	44	29	4	17	17	36	74	44.			-
M.F.A.M	• ; • . • .	. 1.	1	5	1 1	0	1	1	1	71.	110	138	5.9.1	49
								-		,	4	>	21	

^{*} MATURAL INFLOW IN MILLION CUBIC METERS * CATCHMENT AREA; HS SO.XM.

Table B.2.7 RUNOFF RECORD AT KANTALAI

A CATCHMENT APEA ; 487 SULVIII METERS

YFAR	JAN	FFR	PAR	APR	PAY	JUN	յու	AUG	SEP	ост	иоч	DEC	TOTAL	HEAN
1950	17	10	. 15	٠ 7	12	0	ų	10	5	10	2.2	17	115	10
1951	5.6	10	5	1.5	1.5	0	n	. 2	10	10	- 51	2.0	194	16
1952	4.7	5	Z	1.2	1.0	0	2	Ö	15	1.5	17	20	1.4.0	- 12
1953	2.5	. 5	₹	27	n	n	25	7	7	5.2	2.0	49	199	17
1954	77	5	17	0.5	, ñ	0	10	7	0	2.0	17	4.4	162	14
1955	27	. 12	5	2.0	5	n	Ų	1.0	10	7	17	17	130	11
1956	17	5	. 2	7	Q	-7	0	. ?	0	2.5	5.9	27	121	10
1957	1.7	27	, 0	5	1.7	0	7	5	5	2.0	61	137	. 291	74
1958	2.5	1.12	12	7	7	0	0	17	5	12	- 22	2.5	141	17
1959	17	0	ŋ	1.2	17	· 5	O	2	5	29	37	27	146	12
1960	27	44	. 7	. 55	5.5	0	17	. 2	15	2.0	49	10	235	20.
1941	47	7.7	17	17	7	Q	Û.	0	5	27	32	5,1	217	1.8
1045	7	7	1.0	- 10	- 5	0	0	10	.12	- 15	2.2	. 22	120	. 10
1963	4.7	Σņ	5.0	1.5		O	· 1 n	5	15	12	61	51	252	21
1984	15.	1.5	12	. 5	1.17	0	10	2	`5	. 17	12	1.5	1117	10
1965	1.0	. 50	7	5.5	2.5	0	0	12	0	42	42	56	558	19
1756	17	?	-17	1.5	0	0	0	. 5	17	54	4.2	2.2	191	16
1967	2	1.0	1.0	. 7	5	0	0	Q.	7	3.4	49	59	183	1.5
1988	1.5	0	. 15	7	2	0	0	10	15	2.0	2.5	5.5	131	1.1
1949	10	7	n	1.7	. 5	0	10	7	17	34	29	-√88	155	18
1970	1.7	2.2	5	20	10	- 5	ŋ	12	5	7	29	34	. 161	13
1971	7.7	10	5	2.5	12	?	5	5	2	1.0	15	66	176	15
1972	. 7	0	. 2	12	15	0	0	0	37	3.2	39	3.2	176	15
19/3	n	. 5	5	-5	5	. 7	5.5	2	10	15	10	49	135	11
1974	U	5	0	1 Ú	17	. 0	0	0	1.0	0 .	12	44	98.	8
1975	15	5	. 7	17	15	. 0	5.5	7	12	. 5	25	5.0	150	13
1976	. ?	2	. 0	17	2	0	. 5	5	2	10	3.5	51	128	11
1977	10	5	5	2	S	0	5	5	. 55	37	39	· 39	171	14
TOTAL	525	292	199	358	. 230	2.6	150	143	267	571	857	1111	4729	396
MEAN	19	10	7	13	8	1	5	5	10	20	3 1	40	169	1.4

Table B.2.8 RUNOFF RECORD AT GIRITALE

* GIPITALE TANY

* HATUPAL THELOW IN MILLION CHBIC METERS

* CATCHMENT AREA: 74 SOLVE.

YEAR	MAL	FFH	* A R	APR	чат	JUN	յու `	YUG	\$ F P	ОСТ	NOV	ÐFC	TOTAL	MEAN
1950	, 1	Ð	1	0	1	0	0	g	^	•		_	_	
1951	. 7	n	n	1	1	ñ	0	n	0	0	Ţ	1	5	0
1952	7	0	0	ń	n.	0	0	0	0	0	(1	7-	1
1953	1	n	0	1	n	ñ	" 1 >	•	1]	1	1	6	1
1956	1	. 0	1	1	0	0	0	0	0		1	?	7	1
1955:	1	1	0	•	'n			. 0	0	1	- 1	2	7	1
1954	1	ó	n	'n	0	. 0	U	0	0	ņ	1	1	5	0
1957	0	1	0	0	ů.	0	. 0	ů.	0	1	1	1	4	0
1958	1	'n	0	,	0	0		0	n	1	. 2	5	9	1
1959	1	o .	'n	Α,	'n		ŋ	- 1	0	1	1	1	5	0
1949	1	5		1		0	0	0	ŋ	1	1	- 1	4	0
1961	: 2	1	1	,		ņ	1	0	1	1	5	0	10	1
1942	. 0	'n	'n.	,	1)	1)	0	0	0	1	· 1	2	9	1
1963	>	1		1,	0	0	ū	0	1	1	1	1	4	Ô
1964	i			'	0	0	- D	n	1	1	2	2	11	ï
1965	0	4	1	1)	9	0	. A	ο.	. ()	. 1	. 0	1	5	'n
1966	ĭ	0		1)	0	n	1	0	?	2	2	10	1
1967	'n	0		1	Ú	0	Ŋ	0	1	2	2	1	9	į
1948	•	. 0		0	0	ŋ	. 0	O.	0	1	2	2	Ś	o .
1769	'n	0		0	0	0	า	0	1	. 1	1	1	6	1
1970		"		1	0	Ú	0	0	1	1	1	3	. 7	,
1971	4	. 1	. 0	1	. 0	0	0	ŋ	0	0	1	- 1	ς.	'n
1977	1 .	U	. 0	1	0	U	· O	0	0	0	1	2	ć.	. 0
1973	ņ	,0	n	1	i	0	0	0	1	. 1	1	ì	ź	Ų .
	0	ő	n	n	n	. 0	1 .	. 0	0	1	n	,		. 1
1974	0	n	ŋ	. 0	1 .	Α.	0	. 0	. 0	0	'n	5	7	v
1975	1	n	Ð	1	1	0	1	0	1	. 0	1	1	. 7	U
1976	Λ	n	Ú	3	0	0	0	0	n	ñ	i	2	,	1,
1977	0	0	ŋ	0 .	0	- 0	0	Ŏ	· ĭ	í	i	1	4	. 0
TOTAL	22 .	9	7	15	7	0		2	10		7.3			•
MEAN	1	0	0	1	Ô	ŏ	0	0	10 0	77	. 3 <i>?</i> 1	43	173 6	14

Table B.2.9 RUNOFF RECORD AT PARAKRAMA SAMUDRA

- * PARAYOAMA SAMIDRA TANK
 * NATURAL RUNDER IN MILLION CURIC METERS
 * CATCHMENT AREA : 73 SOLUM.

YEAR	Jak	FER	A V K	APR	H'A Y	JUN	JHL	Atig	SEP	130	404	ρFC	TOTAL	MEAN
									^	2	. 7	2	13	1
1350	?	1		. 0	1.	n	0		,	•	5	4	. 54	7
1951		?	1	. 2	0	0	1		4		į	3	24	7
1952		?	1		1	a		•	9.	. 1	, Ţ.	6	2.7	2
1053		1	1	3	0	1					, í	Ä	2.6	. 2
1054	4,	1	5	7	. 0	O	1	1		,	1	, ,	17	1
1055	4	1	Ú	₽,	. 1	. 0	0	· ·	2			i	19	2
1754	. 7	. 1	- 1	- 1	n	. 5	. 0	. 1	U	,		17	3.8	
1957	7	4	n	· 1	2	. 0	1		0	·	7	: I (71	5
1058	3	1	1	1	1	, to	(1)	2	- 13	•	3.	"	10	,
1959		0.	ŋ	1	- 0	ŋ	. • P	, 0	0	,			7.	
1700	4	- 6	. 1	4	2	n	5	0	1	j	. 4		20	,
1981	Α.	. 4	1	. 7	. 5	n.	0	Û	0		• ?		17	4
1982	3	1	1	· 1	1	- 0	0	. 0	2	, 2	3)	35	
1943	. 7	4	1	3	. 1 -	0	1	e		3	: : <u>: : </u>	. 0	18	3
1964	. 2	3	4	1	0 -	0	1	1	1	1	: 2	′		
1.945	. 1	6	Ŋ	3	5	. 0	0	7	0	3	- 8	8	3.3	
1946	3	. 0	. 2	* * -	0	0	0	, ,	1	6	1	. 4	??	
1967	· 1	. 5	2	1	0	Ŋ	· 0	. 0	0	4	. 7	. 7	27	
1948	7	0	. 5	1	- 0	0	0	0	0	3	. 4	3	15	1
1949	7.	1.	4	4	. 0	0	1	. 1	. 1	4	. 5	10	3.0	. 3
1970	3	4	Ω	3	2	1	.0	1	1	. 3	. 7	5	30.	
1971	2	1	7 -	7	()	0	2	4	0	3	3	. 11	3.0	
1972	6	0	0	: 2	. 5	0	0	0	. 6	9	8	1	34	3
1973	. 0	. 7	1	1	1	1	- 5	1	5	3	. 5	1.8	43	4
1974	n	1	n	2	1	0	. 0	0	2	0	3	. 3	12	
1975	7	2	3	3	2	ń	• •	1	. 0	3	4	5	5.6	
1976	3	0	ñ	1	0	. 1	0	1	1	2.	8	10	2.7	
1977	Ş	ï	5	3	?	Đ	2	1	. 2	4	9	8	36	3
TOTAL	8.7	5.5	. 36	5.5	24	. 6	21	24	32	84	128	169	721	
PEAH	3	. 2	1	5	1	0	1	1	. 1	. 3	5	6	26	2

RUNOFF RECORD AT PARAKRAMA SYSTEM H Table B.2.10

- * CACALLA M * IN WHO WH * CACALLA M * IN WHO WH * CACALLA M * IN WHO WH

YFAR	يعفر	ffn	UAD	APR	υΑΥ	אַנונן			**-				1 1 2	
	•					3	J ¹¹ L	AUG	SEP	n C T	NOV	DEC	TOTAL	MEAN
1950	1	6.1	6.7	ي د	` н з	83	8.7	74	7.6	4.0				
1751	9	3	4.7	3 1	10	RI	44	73		60	76	50	771	64
1952	3	14	5.4	3.5	21	9.3	70	75	75	2	0		404	34
1955	75	ر بر	. 76	3.4	R (нз	R ₂	75	75	16	80	7.6	661	55
1954	· 1	28	_	. 7	73	н.3		49	77	9	19	6	690	58
1955	5.0	n	,	11	15	٧٥	27. 67		49	R	7.7	_ 0	439	3,7
1958	×η	7.7	. 7 K	я,	43	. 83	83	36 77	77	17	73	76	421.	. 35
1957	7.0	25	7.8	76	7,	59	4 A	56		49	24	4 5	862	77
1958	. 0	4.5	13	59	26	7.7	83		71	0	0	U	519	4.3
1959	5.1	۰۰	ii	ί,	6	77	23 80.	3 Q 5 7	7.6	13 %	53	67	532	44
1940	- 0	ė	4	Ŕ	59	72			75	1	2	0	497	41.
1941	9	7	76	53	58	42	0 A 3	12	71	5	6	. 6	235	2.0
1962	n	r	12		2	20	7 S 8 S	76	77	. 1	. 9	0	416	3.5
1943	0	ð	b	4	56	. 20 83	•	7.4	75	0.	5	Q.	267.	. 22
1944	Q	3	10	72	80	83	33	6.8	7.3	77	7	0	3 4 B	79
1945	78	5 p	۸ د	25	8	2.3 2.4	4.0	74	7.6	7	. 42	30	571	43
1946	e	22	14	΄,	8 5	8.2	RS	13	7.6	ņ .	0	P	468	39
1947			я	72	62	0 Z 6 §	49	4.2	44	a	0	. 8	361	. 30
1948	1	29	24	5.5	ያስ ያስ	-	73	6.5	7.6	0	4	0	431	3.6
1.959	4.4	5.7	71	29	۸'n	/8 83	83	61	75	Ģ	10	. 0	498	4.7
1970	0	, 'n	'n	71	51	23 23	х 3	4.6	7.5	O	4	0	577	4.8
1971	'n	2	. 2	΄ ς	71	? 3 ? 3	71	43	75	4	-3	- 0	371	3.1
1772	4	R c	7 %	· 26		50	23	72	5 3	. 0	3.3	0	354	3.0
1973	3.3	9.1	74	£3	83 .	яз	, 4 3	74	75	ຄ	8	n	540	4.5
1974	1.3	. 7	62	12	76	ባን ጸኚ	53	71	7.5	56	79	n	785	65
1975	И 1	a ;	75	83	75		, R.3	7.8	. 74	43	A3	74	801	6.7
1976	7.7	•	75	3.4	R)	43	. A7	76	7.6	5.8	12	47	811	68
1977	30	5.0	5 K	60	6	63	79	4.6	4.5	٨	6	6	622	5 2
		717	,,,	VIII	,n	7	7	34	76	. 1	1.	. 1	331	78
TOTAL	642	1058	1153	1144	1515	1946								
HEAN	2.3	37	41	42	54	70	1847 66	1599 57	1982 71	427	705	492	1452R	1213
										15				

Table B.2.11 AVERAGE MONTHLY INFLOW TO TANKS

Unit: MCM

Month	Kantalai	Kaudulla	Minneriya	Giritale	Parakrama Samudra	Total
Catch- ment (km2)	588	83	385	24	73	
Trans	19	. 3	4 4	·	2	2.0
Jan. Feb.	10	2	11	T	3 2	37 19
Mar.	7	1	4	0	1	13
Apr.	13	2	7	1	2	25
May	8	1	5	Õ	1	15
June	1	0	1	0	0	2
July	. 5	1	3	0	1	10
Aug.	5	1	3	0	1	10
Sep.	10	1	6	0	1	18
Oct.	20	3	12	1	3	38
Nov.	31	4	18	1	5	59
Dec.	40	5	23	2	6	76
Total	169	27	99	6	26	321

FIGURES

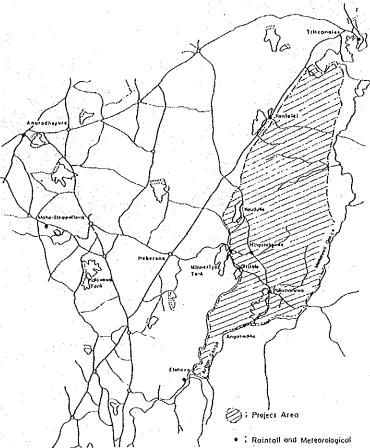


Fig. B.1-1 Location Map of the Meteorological Stations and Stations
Other Gauging Stations

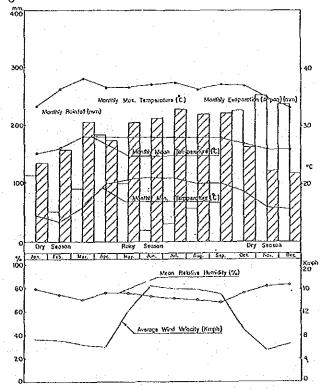


Fig. B.1-2 Characteristics of Climate of Maha-Illuppallama

GOVERNMENT OF DEMOCRATIC SOCIALIST
REPUBLIC OF SRI LANKA
MINISTRY OF MAHAWELI DEVELOPMENT
THE STUDY ON EXTENSION OF
THE MORAGAHAKANDA AGRICULTURAL
DEVELOPMENT PROJECT

JAPAN INTERNATIONAL COOPERATION AGENCY

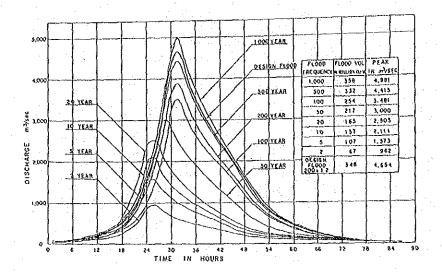


Fig. B.2-1 Flood Hydrographs

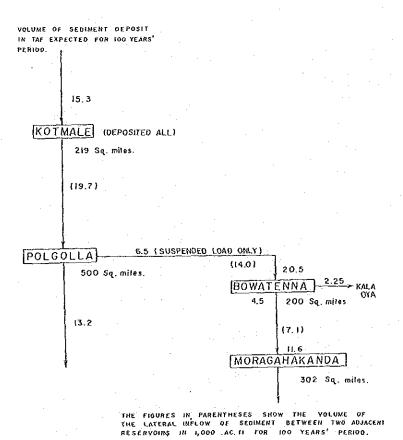


Fig. B.2-2 Sediment Diagram

GOVERNMENT OF DEMOCRATIC SOCIALIST
REPUBLIC OF SRI LANKA
MINISTRY OF MAHAWELI DEVELOPMENT
THE STUDY ON EXTENSION OF
THE MORAGAHAKANDA AGRICULTURAL
DEVELOPMENT PROJECT
JAPAN INTERNATIONAL COOPERATION AGENCY

ANNEX - C SOIL AND LAND CLASSIFICATION

ANNEX - C

SOIL AND LAND CLASSIFICATION

TABLE OF CONTENTS

			Page
C.1	GENER	AL	C-1
:	C.1.1	Introduction	C-1
	C.1.2	Survey Boundaries	C-1
5			
C.2	PHYSIC	OGRAPHY AND SOILS	C-2
	C.2.1	Physiography	C-2
*.	C.2.2	Soil Classification	C-2
	C.2.3	Results of Soil Observation and Analysis	C-4
C.3	LAND	CLASSIFICATION	C-6
	Ç.3.1	Land Classification System	C-6
	C.3.2	Results of Land Classification	C-6

LIST OF TABLES

			TUEC
Table	C.1.1	SOIL SURVEY BOUNDARIES	C-7
Table	C.2.1	LAND FORM	C-8
Table	C.2.2	RESULTS OF SOIL CLASSIFICATION	C-9
Table	C.2.3	RESULTS OF SOIL OBSERVATION	C-10
Table	C.2.4	MODEL PROFILE (1/2 -2/2)	C-11
Table	C.2.5	RESULTS OF SOIL LABORATORY ANALYSIS	C-13
Table	C.3.1	DESCRIPTION OF SOIL CLASSIFICATION	C-14
Table	C.3.2	RESULTS OF LAND CLASSIFICATION (UNDEVELOPED AREA)	C-15
-			
	•		. •
		LIST OF FIGURES	
.*			Page
Fig.	C.2-1	Soil Map (System A/D)	C-16
Fig.	C.2-2	Soil Map (System D1 Undeveloped Area)	C-17
Fig.	C.2-3	Soil Map (System D2 Undeveloped Area)	C-18
Fig.	C.2-4	Soil Map (System G Newly Developed Area)	C-19
Fig.	C.2-5	Field Observation Point	C-20

ANNEX-C SOIL AND LAND CLASSIFICATION

C.1 GENERAL

C.1.1 Introduction

This soil report was recompiled on the basis of the Feasibility Study Report on the Moragahakanda Agricultural Development Project (ANNEX III: SOIL SURVEY) prepared by JICA in 1979 (hereinafter referred to as the previous study).

The previous study aimed at identifying major soil groups and their distribution in the newly reclaimed land to evaluate the endowed land resources within the study area. Therefore, the soil map of this report covered an undeveloped area of 43,000 ha (106,270 ac) in Systems A/D, D1, D2 and other on going scheme of System G. The study results can be inferred as being reliable, and no specific change was observed in the previous survey in 1979.

C.1.2 Survey Boundaries

Soil obsevations were carried out on both developed areas and undeveloped areas to compare these two different types of land for the determination of the best soil condition for paddy and upland crops.

Soil chemical analysis of representative twenty one (21) samples also were completed at the soil science laboratory of the Land Use Division of the Irrigation Department (LUD) of the LD in 1979.

Based on the study results, soil maps of Systems A/D, D1, D2 and G were prepared and attached to the report. Areas of each surveyed Systems and number of observations and sampling points are shown in Table C.1.1. Results of the soil and land classification study are described in the following Chapters.

C.2 PHYSIOGRAPHY AND SOILS

C.2.1 Physiography

The study area for the Moragahakanda Agricultural Development Project extends in the lower and north-western part of the left bank of the Mahaweli Ganga, and is bordered by the Mahaweli Ganga on the east, the Amban Ganga on the south, the Elahera-Mineriya-Kantalai canals on the west and Kantalai Sugar factory on the north.

From physiographic point of view, the lands in the soil survey area, except existing paddy field of System D, are classified into six (6) land form categories as shown in Table C.2.1.

The major soil covering the study area are those developed on (1) Mahaweli Flood Plain, (2) Old Alluvium, (3) Gently Undulating Plain and (4) Undulating Plain. These occupy 92% of the total area. The soils developed on (5) Dissected Undulating Plain and (6) Rock Knob Plain are not suited to irrigation farming due to their general features of sandy and/or gravelly texture, shallow soil depth and low inherent fertility, however, the area of these soils is relatively small in extent.

C.2.2 Soil Classification

According to the Sri Lanka soil classification system (C.R. Panabokke, Ph. D., Soils of Ceylon and Fertilizer Use, 1967), the soils of undeveloped area within the project area were identified as Reddish Brown Earth (RBE), Low Humic Gley soils (LHG), Alluvial soils, Solodized Solonets and Lithosols. The extensive major soil units are composed of the RBE, the LHG and Alluvial soils, occupying about 55% (24,000 ha), 16% (6,900 ha) and 20% (7,900 ha) in an undeveloped area of Systems A/D, D1, D2 and existing irrigation scheme of System G as shown in Table C.2.2. The distribution of these soil units are closely related with topography of small catchment area and drainage conditions. According to the drainage catenary association, the RBE and LHG are subdivided into well drained and imperfectly drained soil units.

The extends of these identified soil units are shown in Figs. C.2-1 - C.2-4. The soil maps were prepared as the medium intensity detailed soil maps on the topographic maps with a scale of 1/63,000 prepared by L.U.D. The major characteristics of the soil units are described below:

(1) Alluvial Soils, well to moderately well drained series

The soils are formed from semi-recent alluvium and occur on river levees and flood plains. They are deep soils characterized by moderately well to well drainability, dark reddish brown to reddish brown colour, and fine sandy loam to fine sandy clay loam texture. In the project area, these soils are observed on levees of the Mahaweli Ganga (System D2) and Amban Ganga (System G). The soils are suited to the cultivation of cash crops such as tobacco, chillies, onion, groundnut in both Maha and Yala seasons, with provision of supplementaly irrigation water.

(2) Alluvial Soils, imperfectly to poorly drained

The soils are formed from semi-recent alluvium and occur on the lower part of the floodplain. They are heavy textured soil, generally with a clay content ranging from 40% to 60% and with 20% to 30% silt and have imperfectly to poorly drainability. The soils of this group are characterized by deep soil, dark grey brown colour, mottlings and gleyed fine sandy clay loam texture. These soils are distributing over zones along Mahaweli ganga with in Systems D1, D2 and A/D. The soils are too wet for cultivation of upland crops. They have been rated moderate suitable for wet land rice.

(3) Low Humic Gley Soils

The soils of this group are formed from the old alluvium and occur on low-lying areas. Generally they are found in association with the RBE soils in a caterany seguence within Systems A/D, D1 and G. They are poorly drained, deep, dark grey coloured and sandy clay textured, overlying olive brown, mottled and gleyed, sandy clay to clay textured soils. These poorly drained soils are best suited for paddy cultivation under lowland condition.

(4) Reddish Brown Earth, well to moderately well drained

These soils occur on areas with the typical ridge-valley landscape. The soils are well drained, moderately deep, dark reddish brown, sandy clay loams underlain by dark red subsoils. On this well drained soils, a wide range of upland crops of the dry zone, namely chillies, onion, groundnut, soya bean, cowpea, green gram, upland rice, maize, sorghum, suger cane, etc. can be grown.

(5) Reddish Brown Earth, imperfectly to poorly drained

The soils of this group are generally found in association with Low Humic Gley Soils. These soils and Low Humic Gley soils generally occur in a catenary sequence in which the poorly drained soils extend from the upper slopes of the ridges towards the valley bottoms with increasingly impeded drainage conditions down to the slope. The soils are deep, dark greyish brown coloured, sandy loam to sandy clay loam textured, underline by yellowish brown, mottled, sandy clay loam to sandy clay textured horizon. These soils could be used for cultivation of rice, sugar cane and pasture.

(6) Reddish Brown Earth, shallow/rock phase

Same as soils of reddish brown earth, except that the gravel layer occurs at relatively shallow depth. These soils are best used as sites for settlement or homestead.

(7) Solodized Solenetz

The soils of this group occur as part of the river terrace where they are in association with Alluvium and Low Humic Gley Soils. They are poorly drained soils characterized by light brownish grey coloured, loamy sand to sandy textured overlaining olive brown, mottled and gleyed, sandy clay horizon. These soils could be used for rice cultivation, although yields could be less due to shallow sandy surface layers that overlying a sandy clayey textured strongly natric (sodic) subsoil.

(8) Lithosols

More than 25% of the surface area in this land unit is covered by rock exposures. The land could be used only for settlements, homestead and building sites.

C.2.3 Results of Soil Observation and Analysis

Soil profile observation was done at 140 points in and around the undeveloped area, and soil samples were taken at 21 selected sites for physico-chemical analysis at the Soil Science laboratory of LUD. The profile sites and sampling sites are shown in Fig. C.2-5.

The results of soil observation and laboratory analysis are shown in Tables C.2.3 to C.2.5 and are summarized as follows:

(1) Soil Reaction (pH)

Method : 1:2.5 soil : water suspension

Range: from 5.4 to 7.1 in surface layers

Interpretation: preferred range for crop cultivation

(2) Electrical Conductivity (EC)

Method : 1:5.0 soil : water suspension Range : from 0.04 to 0.96 (m.mos/cm)

Interpretation: No salinity problem will be anticipated

(3) Organic Matter (O.M.%)

Method : Walkley-black

Range : from 0.6% to 1.8%

Interpretation: normally low in organic matter content

(4) Total Nitrogen (%)

Method : Kjeldahl

Range : from 0.07% to 0.21%

Interpretation: normally suitable for crop cultivation

Available Phosphorus (ppm) (5)

Bray (diluted NH₄F))

Range

from 0 ppm to 12 ppm

Interpretation:

normally low in available phosphorus content

Cation Exchange Capacity (meg/100 g soil) (6)

Method:

ammonium take extraction, adjusted at pH 7.0

Range

: from 6.0 to 42.1 meg/100g soil

Interpretation:

suitable for paddy and upland crops

Exchangeable Sodium (ES) (7)

Range : from 0.1 to 4.4 meg/10g soil

Interpretation:

negligible for sodium effect

Base Saturation (%) (8)

Range: from 85% to more than 100%

Interpretation: Highly saturated by exchangeable bases such as Ca, Mg and Na

C.3 LAND CLASSIFICATION

C.3.1 Land Classification System

The range of crops that can be grown on each soil units based on experience and records on crop production in experimental stations and farms established as preliminary land classification system by Irrigation Department are described in Table C.3.1. The system was taking account of soil factors such as texture, depth (limited by gravel, rock or impervious material), salinity, chemical characteristics and permeability, and was adopted as land classification criterion by using soil classification data in this report.

C.3.2 Results of Land Classification

The land classification for the extension of the Moragahakanda Agricultural Development Project was made in accordance with above mentioned specifications for undeveloped area of Systems D1, D2 and A/C, and the acreage of each classification units is shown in Table C.3.2.

The results of land classification study showed that about 90% of the total area would be suitable for crop cultivation, of which about 30% would be suitable for upland crops, about 29% both for upland crops and paddy cultivation, and 41% would be best suitable for paddy cultivation.

TABLES

Table C.1.1 SOIL SURVEY BOUNDARIES

Survey Area	Area (ac)	Observation Point	Sampling Point
Undeveloped Area			
System A/D	17,910	15	1
System D1	50,480	30	. 7
System D2	14,700	15	1
Developed Area		•	
System G	23,180	19	5
System D	_	61	7
Total	106,270	140	21

Table C.2.1 LAND FORM

					(Un	<u>it : ac)</u>
:	Land Form Category	A/D	D1	D2	G	Total
(1)	Make and District	2 760	1,090	14,200	570	19,620
• •	Mahaweli Flood Plain Old Alluvium	3,760 1,260	13,790	14,200		17,100
, ,		•				27,205
(3)	Gently Undulating Plain	5,215	16,520	0	3,470	21,203
(4)	Undulating Plain	5,510	17,850	130	10,650	34,140
	Dissected Undulating Plain	0	980		1,860	2,840
(6)	Mountains and Rock Knob	2,165	250	370	2,580	5,635
	- Managaran da ayan ayan ayan ayan ayan ayan ayan					
	Total	17,910	50,480	14,700	23,180	106,270

Table C.2.2 RESULTS OF SOIL CLASSIFICATION

										-			
Mappin	Mapping Main Soil Unit	Soil Unit	Land Form	A/D	! !	01		D2		U		Total	
, o				ac	dφ	ac	æ	a.c	do .	ВC	de	ac .	æ
(1)	Alluvial Soil	Well to moderately well drained	Flootplain	0	0	0	0	3,650	25	570		4,220	4.0
(5)	Alluvial Soil	Imperfectly to poorly drained	Floodplain	3,760	21	1,090	74	10,500	11	6		15,400	14.5
(3)	Low Humid Gley Soils		Old alluviam	1,260	r-	13,790	27	0	0	2,050		17,100	16.1
(4)	Reddish Brown Earth	Well drained	Undulating plain	5,510	31	13,100	26	130		7,370		26,110	24.6
(5)	Reddish Brown Earth	Imperfectly drained	Undulating plain	5,215	5	16,520	83		0	5,470		27,205	25.6
(9)	Reddish Brown Earth	Shallow/rocky phase	Undulating plain	0	0	2,130	4	0	0	3,280		5,410	5.
(3)	Solonets		old alluvium	Ö	0	2,620	us.		0	0,		2,620	2.5
(8)	Rock Knob Plain		Rock knob	2,165	12	250	-	370	ო	2,580	٠	5,365	9.0
(6)	Erosion Reminents		Dissected undulating plain	0	0	088	~	Ο.	0	7,860		2,840	2.6
	Total			17,910 (7,250 ha)	100	50,480 (20,430 ha)	100	14,700 (5,940 ha)	100	23,180 (9,380 ha)	(43,	106,270 (43,000 ha)	100.0

TABLE C.2.3 RESULTS OF SOIL OBSERVATION

		·		<u> </u>
	g in the company of t	R,B,	E .	L.H.G.
Horizon		Well drained	Imperfectly drained	
Α	Depth (cm) Colour	0 - 15 Dark/brown.	0 - 40 Dark brown	25 - 30 Dark gley brown
	Texture	SL, SCL	SCL, SL	LS, SL
В	Depth (cm) Colour	15 - 110 dark reddish brown to	40 - 90 Dark yellowish brown	30 - Light gley brown
	Texture	reddish brown SCL	SCL	SCL, SC
С	Depth (cm) Colour	110 - 150 Light yellowish brown	90 - 120 Yellowish brown	
	Texture	-		

Table C.2.4 MODEL PROFILE (1/2)

Classification: Alluvium - Well drained to Mo well draned

Depth	Colour	Texture	Moisture, Structure, Consistence, Cutants, Gravels, Concretion, Pores, Roots, Motting, etc.
0 - 4	10 yR 4/2	S1 to C1	Organic Matter, ns & np (W)
	Varying colour	C1	ns & np (W) to SS & Sp
18 - 40	10 yR 5/4	C1	SS & Sp (W)
40 - 48	10 yR 5/3	C 1	SS & Sp (W) few soft MN Concretion

Classificationn: L.H.G.

Depth	Colour	Texture	Moisture, Structure, Consistence, Cutants, Gravels, concretion, Pores, Roots, Motting, etc.
0 - 4	10 yR 3/2	S1-SC1	Slight organic matter ns & np (W) faint mottles of colour 7.5 yR 4/4
4 - 14	10 yR 4/3	SC1	Cld mottles of colour 7.5 yR 4/4 SS & Sp (W) slightly gleyed by 5/1 few soft MN concretion
14 - 24	2.5 y 5/2	SC1	Cld mottles to C2d mottles of colour 7.5 y 4/4 SS & Sp (W) to S & p Common gleying 5 y 5/1 few soft MN concretion
24 - 40	2.5 y 5.2	SC1 - SC	C1d to C2d mottles of colour 7.5 yR 5/6 Common gleying of colour 2.2 yR 6/2 few soft MN concretion S & P (W)
40 - 48	5 y 5/1	SC	C2d mottles of colour 7.5 yR 5/6 Common gleying; Commons soft MN Concretion S & P (W)

Table C.2.4 MODEL PROFILE (2/2)

Classification: R.B.E. Imperfectly drained

Depth	Colour	Texture	Moisture, Structure, Consistence, Cutants, Gravels, Concretion, Pores, Roots, Motting, etc.
0 - 4	10 yR 4/2	S1	Slight organic matter ns & np (W)
4 - 12	10 yR 4/3	Scl	SS & Sp (W) faint mottling; Mottle colour 7.5 R 4/4; few soft MN concretion
12 - 28	10 yR 4/4	Scl	SS & Sp (W) Cld mottles of colour 7.5 yR 4/4 feldspar few soft MN concretion
28 - 40	10 yR 5/6	Scl	SS & Sp (W) C2d mottles of colour 7.5 yR 4/4 feldspar few soft MN concretion
40 - 48	10 yR 5/6	Scl	SS & Sp (W) C2d mottles of colour 7.5 yR 4/4 few Iron Stones, MN strains
48 - 54	10 yR 5/3	Scl- grscl	SS & Sp (W) Clp mottles of colour 7.5 yR 4/4 feldspar; MN strains

Classificationn: R.B.E. - Well drained

		·	Moisture, Structure, Consistence, Cutants,
Depth	Colour	Texture	Gravels, concretion, Pores, Roots, Motting, etc.
0 - 4	5 yR 4/2	S1, Scl	Slight organic matter ns & np (W)
4 - 12	5 yR 4/3	SC1	SS & Sp (W); mica feldspar; few soft MN concretion
12 - 28	5 yR 4/4	Scl	SS & Sp (W); mica feldspar; few soft MN concretion
28 - 36	5 yR 4/6	Scl	SS & Sp (W); mica feldspar; few soft MN concretion
36 - 40	2.5 yR 4/6	Scl- grscl	SS & Sp (W); mica feldspar; few soft MN concretion
40 - 44	2.5 yR 4/	gr Scl	SS & Sp (W); to S & P (W) few mica, feldspar; MN strains
44 - 48	10 R 4/6	gr Scl	S & p (W); mica feldspar MN concretion

Table C.2.5 RESULTS OF SOIL LABORATORY ANALYSIS

	11 S		5	C	ſ	2	- IX		0/2/	91.V	c	4	5
	1.2.5	0.05	1:2.5)	1	D I	d 3))	0		Coeff:)	d m
Sample No:		m.mhos	kci	Meg/	/beW	Meg/	Meg/	Meq/		 	u mdd	mg/100 g	
		сm		100 g	100 g	100 g	100 g	100 g					
							-				-		
R.B.E. well drai	rained so	oil								. :			
D2 D4 78/240	σ,	0.	ω,	9,	4	4	Si	.13	o,	0.7	Nil		7
DID 1		٥.	9.	0.0	Ο.	S	ď	32	ω.	60	ന	1,300	2
DIU 2 78/232	7.	°	rJ.	0.4	4,	œ	H	.11	ο,	.07	• 11	1	φ,
G 5 (Good)	ο,	0	Ġ	2.8	m	ω,	Τ.	21		.15	Nil	, 85	ω,
G 6 78/224	6.50	0.11	5.45	10.96	5 85	2.65	0.18	33	0.59	0.092	4	2,600	3.83
G 11 Poor	4	٥.	۲.	7.0	٠	4.	۲.	0.	۲.	60.		00	7
t t	; ; ;	7				•		:					
α 1 α	6 75	9 9	4	ď	C	S	, "	ď	a	C	o		. α
, 0) (3	. 0) (1) (2	, ,	. "		, (-	•	· α	, n		, (
C2/0/ 0T	. ·	, c	, ,) u	. 0	` .	ની જ .•	1 0	10	9 6	າ ເ		, c
_ '	٠,	· (י י	ე : -	5 . (3 <	∃ . •	δ,	Ö) i		⊃ # ``	> 0
ä	۲.	٥.	i)	1.4	Э	٥.	!	4	O	- T	_		0
7	۰.	0	ij	0.2	0	۲.	٦.	.43	4	. 12		25	ď
D1U 4 78/233	6.70	0.23	5.60	19.55	14.50	6.47	0.34	0.152	1.31	0.082	Nil	Q.	4.42
Ad 4	۲.	٥.	ო.	0.3	ω	e.	H	.10	ᅼ.	10	ო	1	ω,
L.H.G. soil													÷
DIU - 1	0.	ſ	0	2.1	n)	Ġ	4.		4,	.15	12		o,
D1U 1 - poor 78/231	Ο,	٥.	⊣.	4	0.4	<u> </u>	w,	7	S.	.07		t .	<u>ن</u>
D10 11	ᅼ.	۲.	0.	0.1	٥.	Θ.	ന	r	ω.	.05	٠Н	1,500	ω
	5.80	90.0	5.10	9.42	6.45	2.06	0 13	0.133	66.0	0.077	Nil	40	3.81
1U 21	ω,	⊣.	ω.	4	∞.	1.	۲۶.	Ġ	ω	.11	•		00
10	Н.	ᅼ	4.	0.9	7.	8	٥.	٥.	0.	.08	\vdash	1,150	Q,
D2D 9 poor X	0	ŭ	œ.	4	7	ø.	2	Ц	Ŋ	.07		9,	
D2D 3 78/238	ო.	٥.	ω.	8.0	∞.	ά	3	++1	7	۲.			٠
					-		•			٠			
7281. 20.00	t	C	1	0			. (ָר ר		C	u	C	
D2U4 78/239	0/.0))	0/.0	70.02	4. U.S.	4, D	67.0	0.310	7 / 1	807.0	n	7.700	I

Tale C.3.1 DESCRIPTION OF SOIL CLASSIFICATION

Classification Unit	Soil Unit	Definition
Upland Crop Type	Reddish brown earth (well drained) Alluvial soil (well to moderately well drained)	Suitable for a wide range crops such as cotton, groundnut, sugarcane, pulses, soyabeans, chillies and vegetables.
Lowland and Upland Crop Type	Reddish brown earth (imperfectly drained)	Suitable for intermediate crops, which can tolerate periodic wetness on the surface, such as sugarcane on ridges.
Lowland Crop Type	Low humic gley soils Alluvial soils (imperfectly drained)	Suitable fow lowland paddy.
Unsuitable to Crop Type	Solonetz, reddish brown earth (shallow/rocky phase) Rock knob Erosion remarks	Very poor to poor lands, and unsuitable for crops.