3-3 Mineralization in the Eastern Area

In the eastern part of the surveyed area, the remarkable indications of mineralization are distributed in the alternation zone composed mainly of acidic volcanic rocks and tuffaceous mudstone, which is correlated with the succession of the horizon of the Hajar ore deposit. Among them, the most remarkable ones are recognized at the northeast of the Oukhribane block and in the Amzourh block. The assay results of the samples collected from the main mineralized and altered zones are as follows.

Locality	Sample No.	Cu (%)	Pb (%)	Zn (%)
Oukhribane	No.327	1.08	0.92	1.52
Oukhribane	No.335	0.66	0.12	0.12
Amzourh	No.311	0.03	0.06	1.88
Amzourh	No.314	4.40	8.40	0.26

The sample No.327 was collected at about 0.4 km northwest of Oukhribane and the sample No.335 was collected at about 1 km northwest of Oukhribane. They are gossans accompanied with network quartz vein. The sizes of the gossans are 80 m x 50 m and 30 m x 20 m, respectively. They are distributed near along the boundary zone between the tuffaceous mudstone and the alternation of sandstone and slate.

The sample No.311 was collected from the gossan contained in the acidic volcanic rock, and the sample No.314 was collected from the gossan distributed in the fracture zone found in the alternation of siltstone and slate.

In the Tiferouine area about 3 km south of Oukhribane, although the surface is covered with the Quaternary sediments, a remarkable bipole magnetic anomaly has been confirmed, the intensity of which is after that in the Hajar area. Diamond drilling of three holes, total length of which is 1,300 meters, was carried out targetting the above magnetic anomaly. However, the result has been no more than the confirmation of pyrrhotite dissemination and magnetite veinlets in the basement green rocks at the depth of about 90 meters. Further exploration is warranted in this area.

3-4 Mineralization in the Western Area

(1) Frizem Mineralization Zone

In the Frizem area, rhyolitic rocks are distributed and a high magnetic

I-15

anomaly corresponding to the rhyolite has been confirmed. In the pelitic schist underlying the rhyolite, many gossans are recognized to be seated. The gossans are discontinuously distributed, associated with the bedding faults of NNW system. The gossans located in the Frizem village and at about 1 km west of the village are worth noted.

The area of distribution of the gossan in the east has the width of 80 m in maximum and is extending more than 600 meters, while that of the gossan in the west has the width of several meters in maximum and is extending about 1.5 km.

These gossans are composed mainly of siderite, hematite and quartz, and green copper dissemination is recognized. The assay result of the gossans is as follows.

	Locality	Sample No.	Cu (%)	Pb (%)	Zn (%)
	Frizem East	No.188	7.00	5.25	5.80
	Frizem East	No.191	0.36	6.90	2.58
• .	Frizem West	No.194	4.50	0.29	8.40
	Frizem West	No.196	4.80	3.20	0.96
{ : :				·	

Diamond drilling of 10 holes was carried out for the potentiality at the depth of the gossan in the east, and the existence of low grade disseminated ore and network ore has been confirmed. The main ore minerals are pyrite, pyrrhotite and chalcopyrite which are associated with galena and sphalerite. Gangue minerals are mainly quartz, calcite and chlorite. Compared with the mineral composition of the Hajar ore deposit, it is characteristic that pyrite and copper minerals are more frequently contained in this indication of mineralization, which is thought to be suggestive of the predominance of vein type mineralization in this area. The Frizem mineralization zone shows a tendency to become predominant toward southeast, where it is covered with the Quaternary sediments.

Quartz veins of this area are estimated to have been formed in the ocean floor, judging from the evidence that the quartz grains are extensively fractured and brecciated and existed with gossaneous dusty materials.

I-16

(2) Other Indication of Mineralization

Galena-quartz vein at about 4 km west of Frizem:

Strike; N45°W, Dip; 50°N,

Width of galena-disseminated vein ; approx. 5 cm

Assay result; Ag 14.0 g/t, Cu 0.04 %, Pb 1.65 %, Zn 2.28 %

Quartz vein associated with gossan about 1.5 km east of Taouililt :

Strike; N70°W, Dip; 70°N, Width of vein; 2.5 m,

Assay result; Cu 1.76 %, Zn 1.75 %,

Location ; along the northern extention of the Frizem mineralization zone, at about 1.5 km north of it.

Mineralization ; Lots of quartz veins and small alteration zones are found in the surrounding area, partly

associated with green copper dissemination.

Fractured manganese-oxide quartz veins about 1 km east of Guemassa:

Strike; N70°E, Dip; 85°S, Width of vein; 1 m,

Strike; N80°E, Dip; 80°E, Width of vein; 0.5 m

Argillization zone in and around Daoud:

The argillaceous altered zones are sporadically accompanied by quartz veins of NNE trend.

The area extends about 2 km south of Daoud.

Magnetic anomaly zone near Mjed:

In the area of 6 km in east and west and 5 km in north and south, near Mjed, a magnetic anomaly of ∞ shape has been confirmed. The area is mostly covered with the Quaternary sediments, but at a locality about 0.5 km northwest of Mjed village, two layers of limestone beds (thickness 2 m and 4 m respectively) are exposed. They have been replaced by siderite and quartz. Diamond drilling of 1 hole was carried out in this area and pyrrhotite dissemination was confirmed. Further exploration is necessary.

High magnetic anomalies about 2 km and 5 km southeast of Daoud: The surface is completely covered with the Quaternary sediments in this area and it is necessary to examine and investigate these magnetic anomalies.

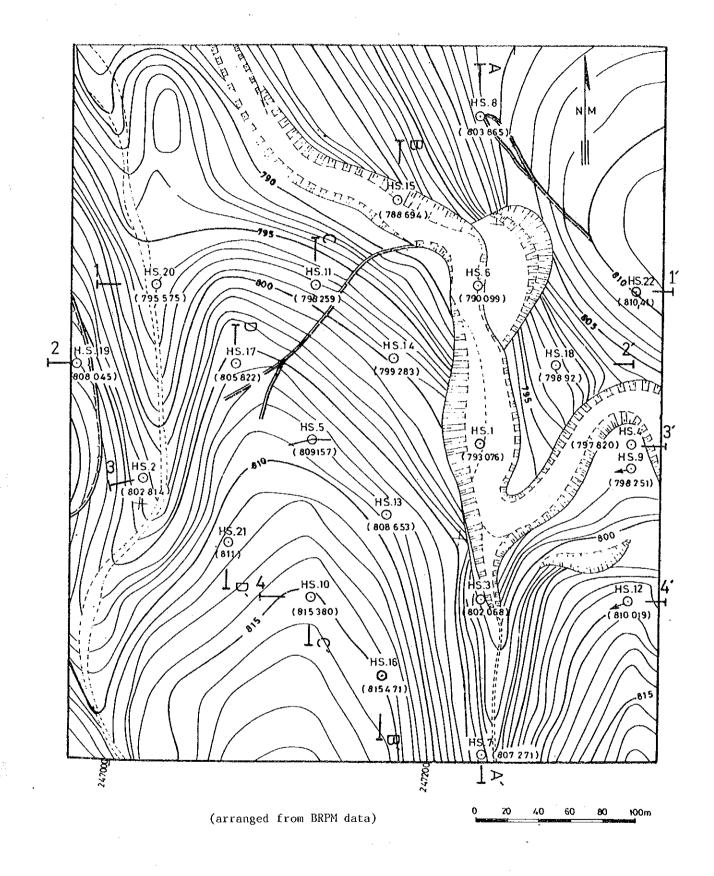


Fig. I-7 Exploration Map of Hajar Mine (1) Drilling Site

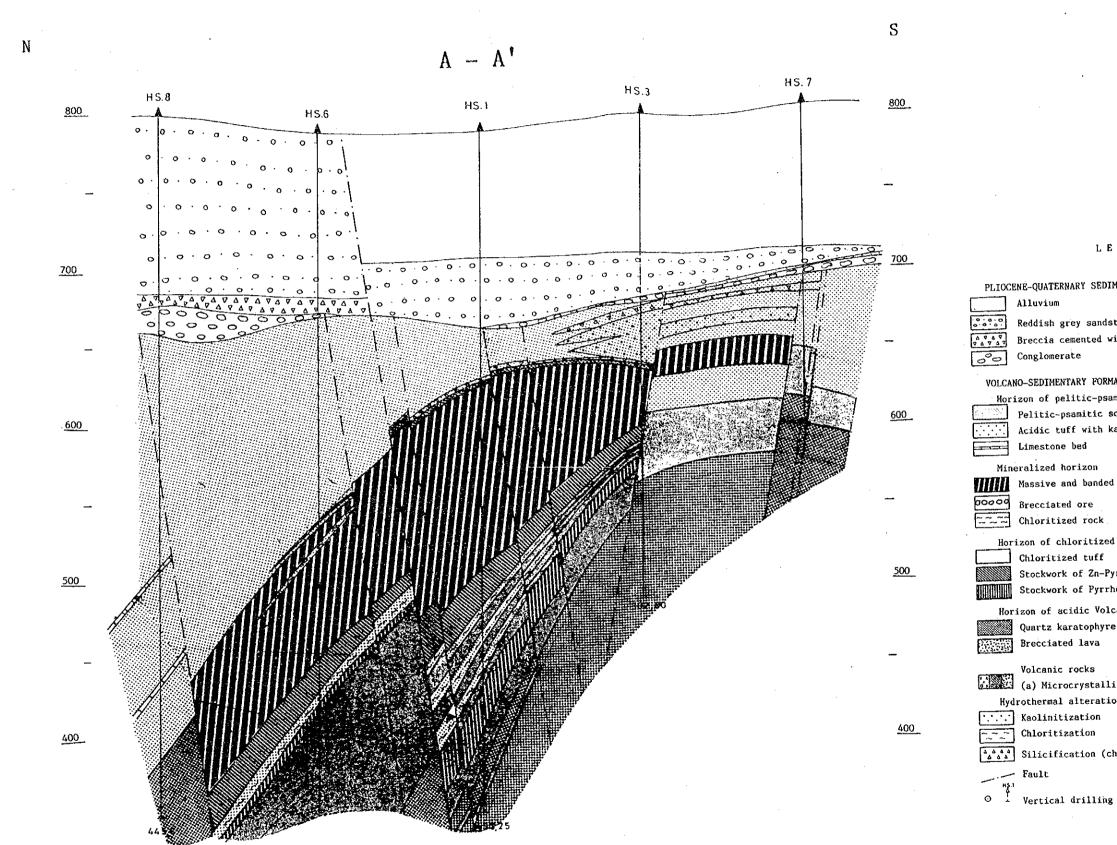
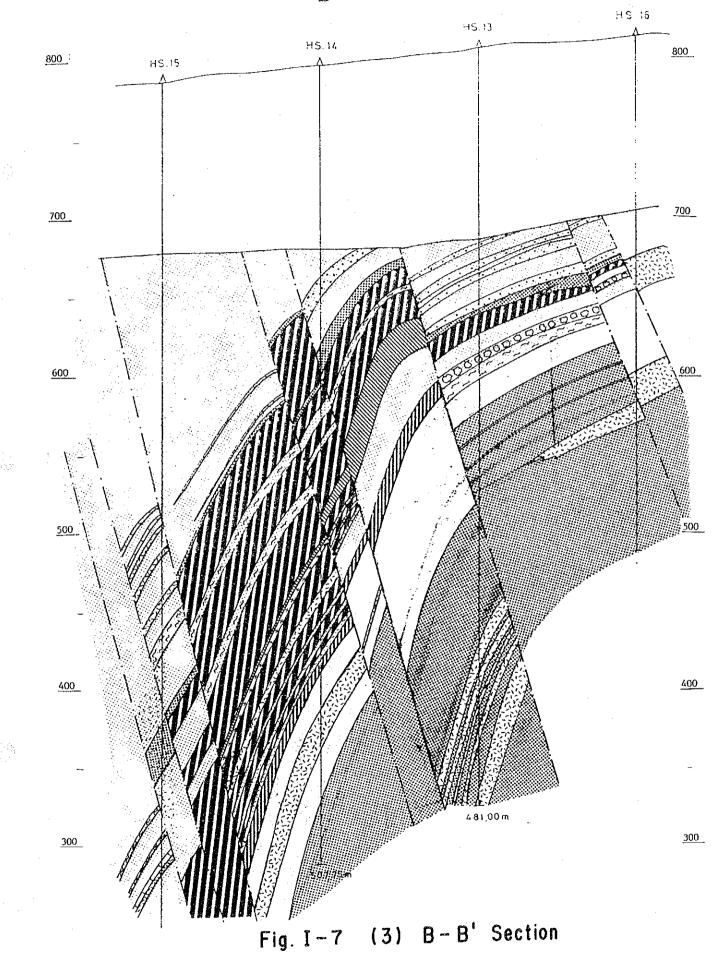



Fig. I-7 (2) A - A' Section

LEGEND

PLIOCENÉ-QUATERNARY SEDIMENT Reddish grey sandstone Breccia cemented with carbonate VOLCANO-SEDIMENTARY FORMATION Horizon of pelitic-psamitic schist with acidic tuff Pelitic-psamitic schist with acidic tuff Acidic tuff with kaolinitization Massive and banded ore of Cu. Pb. Zn. Pyrrhotite Horizon of chloritized tuff _____ Chloritized tuff Stockwork of Zn-Pyrrhotite Stockwork of Pyrrhotite Horizon of acidic Volcanic rock Quartz karatophyre with tuffeceous rock Volcanic rocks (a) Microcrystalline, (b) Glassy, (c) Brecciated Hydrothermal alteration $\begin{bmatrix} a & a & a \\ a & b & a \end{bmatrix}$ Silicification (cherty bed) .--- ³⁵¹² Inclined drilling

N

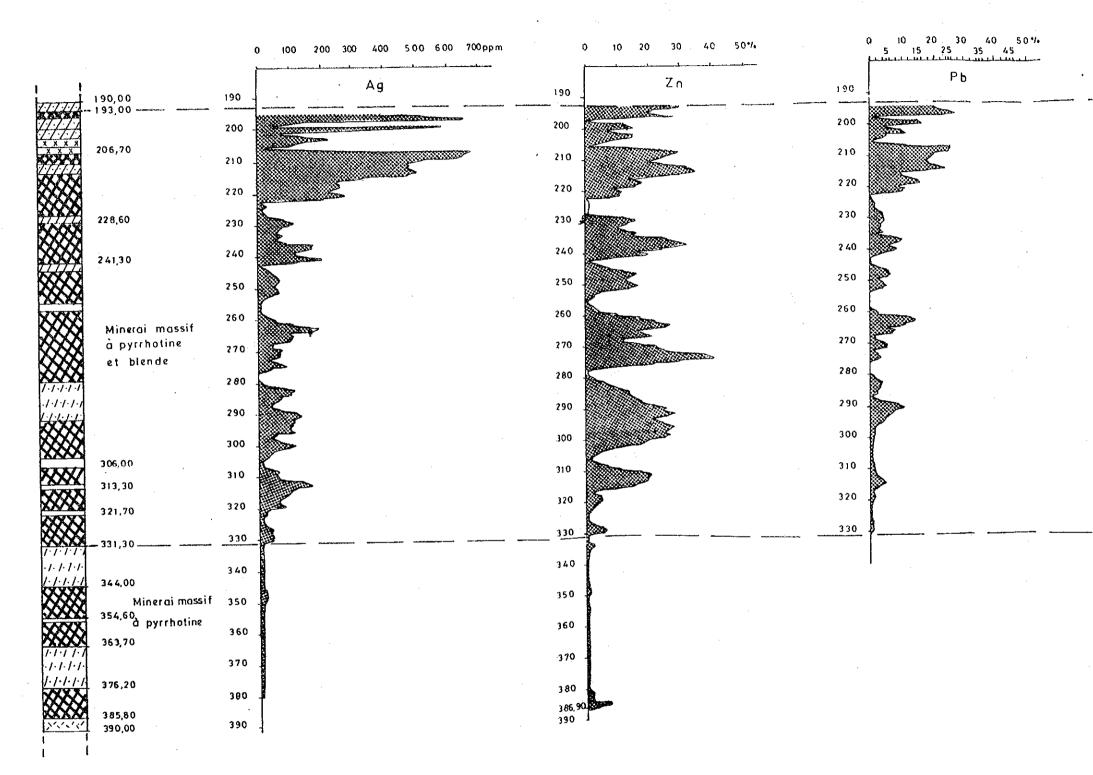
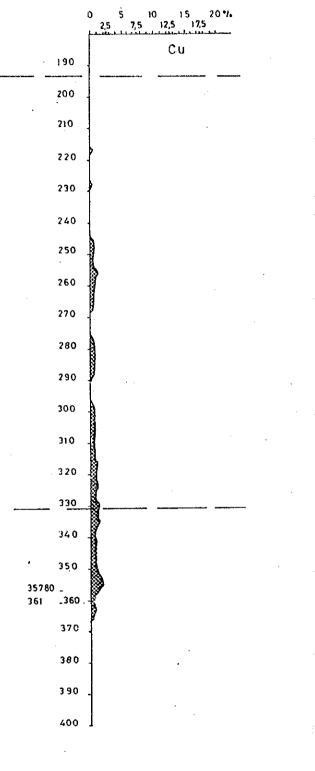



Fig. I-7 (4) Grade Distribution (HS-14)

CHAPTER 4 GEOCHEMICAL SURVEY

4-1 Outline of the Geochemical Survey (Fig. I-8)

The following two items were taken up as target for the geochemical exploration in this area.

1) Confirmation of indications of mineralization

 Confirmation of the degree of concentration of metal elements in each difference rock types and strata, for the analysis of the period of mineralization and its characteristics.

Total 215 samples of rocks including 13 samples of gossans were collected for the geochemical exploration. These rock samples were collected with a rock hammer, about 2 kg each in weight, and they were sent immediately to the laboratory for analysis. The geochemical analysis results are shown in the Ap. I-7.

The limit of precision for the analysis is as follows.

Ag = 0.1 ppm Cu, Pb, Zn = 1 ppm

4-2 Statistical Analysis

The statistical analysis was carried out with computer, after gossan samples were excluded, as they belong to other population than that of ordinary rock samples.

As there are many low grade assay values, the frequency distribution of the real values has strong inclination to low grade side. For the approximation of this frequency distribution to normal distribution, logarithms of the assay values were employed here, and the geometrical mean (M) and the standard deviation (σ) was calculated. Also, histograms and cumulative frequency curves were prepared for the extraction of anomalous values. The same process of analysis was carried out with each different stratum, and the mechanism of concentration of metal element was considered.

The statistical values are given in the Tab. I-1, and the histogram and cumulative frequency curve are shown in the Fig. I-9 and I-10.

The correlation coefficients of content of the metal elements in the total of 202 rock samples excluding gossans are shown below. A positive

correlation is found in the relation between Pb and Zn. Both Ag and Cu do not show any correlations to other elements.

		the second s			Ì
Element	AG	· CU	PB	ZN	
AG	1.00000	0.07531	0.25310	0.17907	
CU	0.07531	1.00000	0.05234	0.38423	
PB	0.25310	0.05234	1.00000	0.70623	
ZN	0.17907	0.38423	0.70623	1.00000	
1		er er er			

4-3 Geochemical Anomalies

The threshould values for the extraction of anomalous values were established as given below, on the basis of the type of frequency distribution and the degree of bending of the cumulative frequency curve, considering the value of $M + 2 \sigma$.

Ag : 6.0 ppm ($M + 2\sigma = 6.0$) Cu : 200 ppm ($M + 2\sigma = 170$) Pb : 300 ppm ($M + 2\sigma = 229$) Zn : 700 ppm ($M + 2\sigma = 713$)

la garan e

According to the above threshould values, the numbers of anomalous values are none for Ag, 8 for Cu, 4 for Pb and 12 for Zn. Including anomalous values with gossans, the total numbers are 2 for Ag, 16 for Cu, 9 for Pb and 17 for Zn.

The geochemical anomalous values of each samples are shown in the Tab. I-2. The distribution of the anomalous values in each area is as follows.

Layers of the horizon of Hajar Ore Deposit

-	
Oukhribane area	3 samples (Cu 2, Pb 0, Zn 1)
Amzourh area	4 samples (Cu 2, Pb 1, Zn 2)
Hajar mine	3 samples (Cu 1, Pb 3, Zn 2)
Frizem area	8 samples (Ag 2, Cu 7, Pb 3, Zn 6)
Daoud area	4 samples (Cu 1, Pb 2, Zn 2)
Other areas	4 samples (Cu 3, Zn 4)

The above distribution of the anomalous values in each area shows that the remarkable anomalous zones are concentrated in Oukhribane area, in Frizem area and in the layers of the horizon of Hajar ore deposit including Amzourh area. The geochemical anomalies in Daoud area are generally caused by quartz veins of NNE trend. The geochemical anomalies in other areas are explained to be associated with the faulted and fractured zones of ENE trend and they are distributed in the vicinity of the Guemassa fault running to the same direction of ENE.

4-4 Metal Elements in Each Stratum (Tab. I-1)

The geometrical mean values of content of the metal elements in the total of 202 rock samples excluding gossans are Ag 6.0 ppm, Cu 27 ppm, Pb 36 ppm, and Zn 120 ppm. The geometrical mean values are thought to represent the background values in this area. The grade of concentration of the metal elements have significant variation, and the characteristic and the period of the mineralization are considered to be as follows.

(1) Volcanic Rocks in Frizem Area (Iv)

The mean values of the 3 samples are Cu 110 ppm, Pb 217 ppm, and Zn 374 ppm. Each of these Cu, Pb and Zn values shows the highest of all and the values are 3 times as high as the total average of the assay values of the whole rock samples. This is thought to be an evidence for the fact that this volcanic rocks could have some intimate relation with the Cu-Pb-Zn mineralization.

(2) Alternation Zone of the Horizon of Hajar Ore Deposit (Ia)

The average value of the 18 samples is Zn 180 ppm. This value of Zn content is the second highest after the volcanic rocks in Frizem area. However, the average values of Cu and Pb are not necessarily high. This fact is thought to suggest that the mineralization of the Hajar ore deposit is zinc-rich mineralization, whose characteristics are different from those found in the mineralization zone in Frizem, which is rich in copper and lead.

(3) Intrusive Rocks

The average values of the 4 samples are Ag 0.2 ppm, Cu 7 ppm, Pb 11 ppm and Zn 39 ppm. They are the lowest values found in this area. This is thought to show that the intrusion of these rocks occurred after the mineralization.

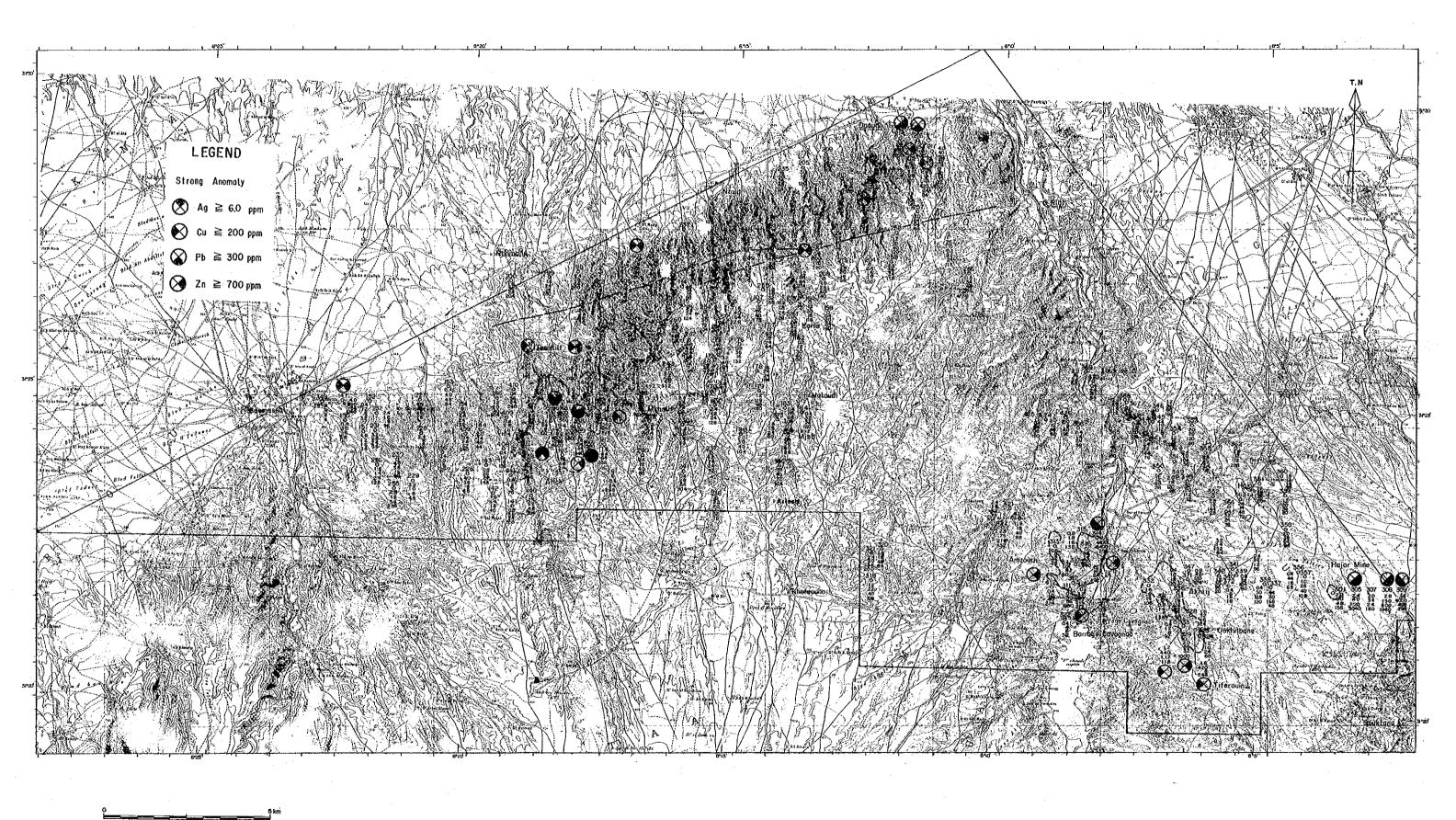
(4) Layers Overlying the Horizon of Hajar Ore Deposit $(IIC \cdot II_{D^2})$

The pelitic semischist and the carbonate semischist, which are observed to overlie the successions of the horizon of Hajar ore deposit, have Zn content of 80 ppm and 74 ppm, respectively. These values are the second lowest after those for the intrusive rocks. This is thought to be an evidence for the fact that the Hajar ore deposit can be a syngenetic ore deposit and that the deposit did not affect the overlying layers at any rate. The fact that Pb content in these two semischist are as high as 63 ppm and 64 ppm, respectively, is thought to suggest that the lead concentration could have occurred in the period of sedimentation, viewing from the point that these two rocks are dolomitic as a whole.

magnations and a second sec A second secon Tab. I -1 Statistical Values of Geochemical Assay Results

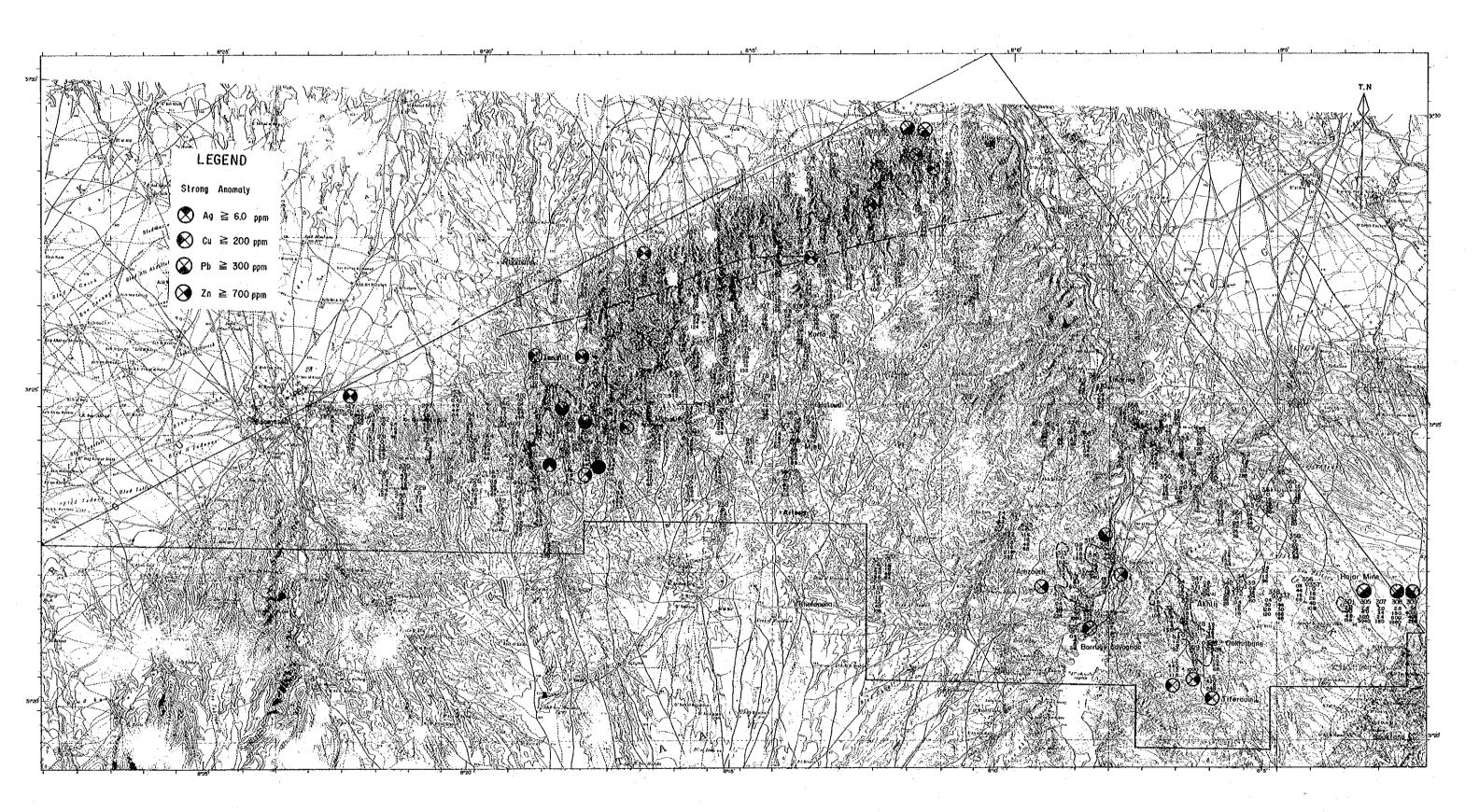
20 245 1869 1 402 283 854 805 632 887 713 211 6167 + Σ (mqq) ъ 580 179 145 316 1519 283 272 292 339 175 5 + Σ 2n Mean 374 125 180 40 142 127 83 80 74 120 117 + 20 280 42 341 229 451 244 98 92 737 25 79 ы м + д н (mdd) 58 48 169 34 147 <u>1</u>33 313 100 16 17 41 Pb Mean 217.5 34.9 38.6 27.7 63.1 63.5 36.0 11.3 21.0 41.0 25.3 + 2₀ 2490 63 223 243 82 263 30 43 14 170 17 Mean M + o M (mqq) 48 28 524 12 89 18 40 78 87 11 67 5 110.5 28.5 11.0 11.3 25.3 7.0 30.8 30.4 17.7 26.8 27.5 Mean $|M + \sigma |M + 2\sigma|$ 13.90 4.33 4.65 3.02 6.10 4.81 5.96 1.13 6.12 6.53 I.51 Ag (ppm) 2.66 4.26 3.30 2.34 0.92 2.59 1.85 2.57 2.91 0.57 2.81 1.08 I.76 1.32 0.28 1.16 0.57 1.44 I.13 1.37 1.67 1.27 4 8 7 37 8 1 2 3 ۲ ۲ <u>1</u>9 tო 2 202 54 No. IIC' (Carbonatic semischist) IIal (Alternate semischist) IIP2 (Pelitic semischist) IIp1 (Pelitic semischist) (Carbonatic schist) (Pelitic schist) Ips (Pelitic schist) (Volcanics) IIav (Volcanics) Classification Intrusive rock Total Ip ۲v ц 0 ŝ Q ~ ŝ δ ---1 2 ŝ 4

o = Standard diviation

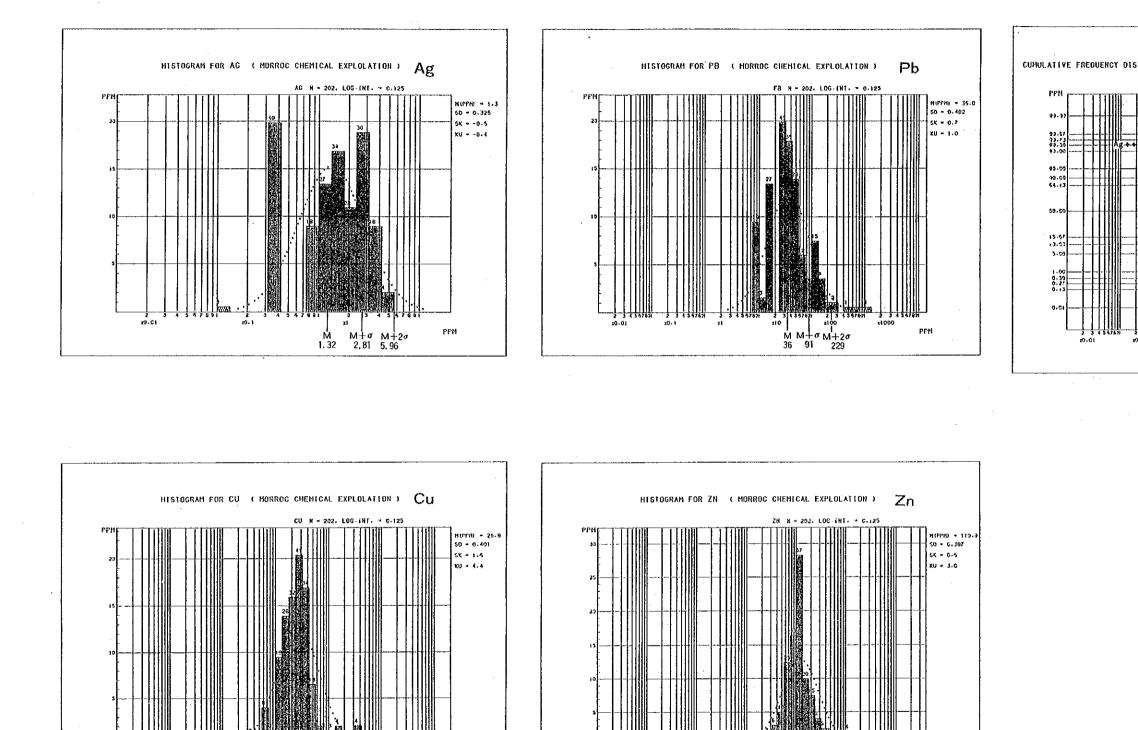

M (Mean) = Geometric mean

= excluded of gossan samples

Total


Area	Sample	Rock Type	Grade			<u>(ppm)</u>
Alea	No.	NOCK Type	Ag	Cu	Pb	Zn
	305	Green rock	2.4	40	1120	3040
Hajar	308	orean rock	2.4	150	800	1960
, najar		T		4000	496	296
	309	Low-grade ore	3.6	4000	490	290
	325	Tuff	1.6	420	- 8	248
Oukhribane	329	Tuff	2.0	66	32	1000
	333	Gossan	1.2	440	112	116
	311	Gossan	0.4	30	56	1880
Amzourh	314	Gossan	2.4	4400	8400	256
AMZOULU	316	Limestone	3.6	14	220	940
	318	Gossan	3.2	620	216	272
	126	Calc sch	2.4	1760	16	1750
	135	Bndd sch	0.4	420	10	148
	184	Rhyolite	4.0	540	248	216
	188	Gossan	5.6	7000	5250	5800
Frizem	189	Pel sch	1,6	104	144	1840
	191	Gossan	10.0	360	6900	2580
	194	Gossan	8.0	4500	288	8400
	196	Gossan	5.0	4800	3200	960
	214	Calc sch	3.2	44	600	1400
	215	Calc sch	3.2	18	96	1120
Daoud	216	Calc sch	5.0	154	560	680
	218	Pel sch	1.6	420	24	84
	147	Psm sch	4.0	640	56	1040
	207	Pel sch	0.8	1300	120	760
Others	268	Pel sch	2.4	26	104	1160
	407	Pel sch	0.4	320	24	880
			~ • •	520	2 7	

Tab. I -2 List of Geochemical Anomalies


Fig. I-8 Geochemical Anomaly Map

Scale |: 100,000

Scale I: 100,000

Fig. I-8 Geochemical Anomaly Map

10 M M+σ M+2σ 26.8 67 170

1000

pen

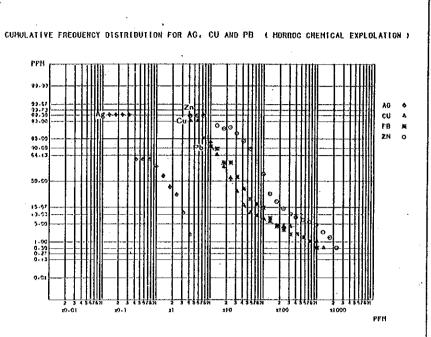

•

Fig. I = 9 Histogram and Cumulative Frequency Curve of Geochemical Assay Results

#10C0

PPH

M M+σM+2σ 120 292 713

.

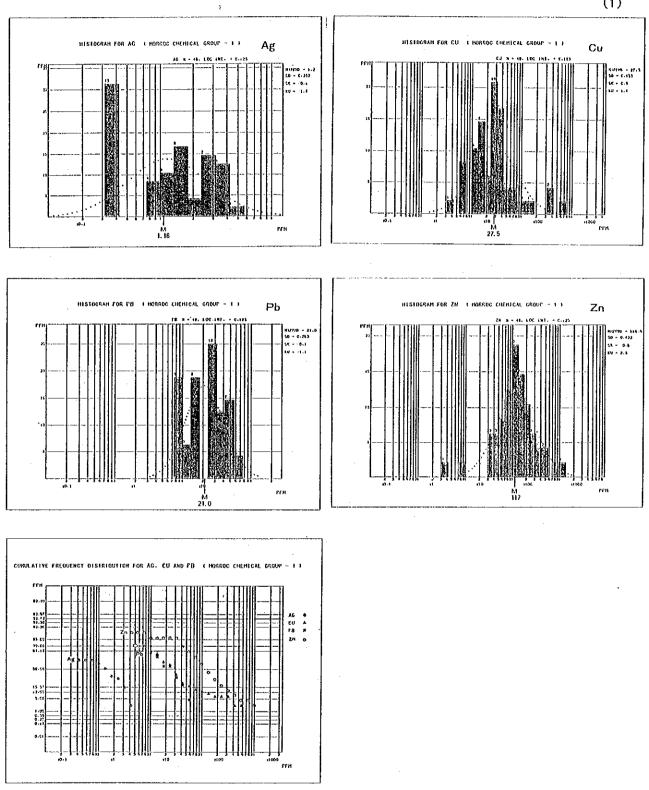


Fig. I-10 Histogram and Cumulative Frequency Curve of Geochemical Assay Results by Each Formation (1) Group I ps (Pelitic schist)

(1)

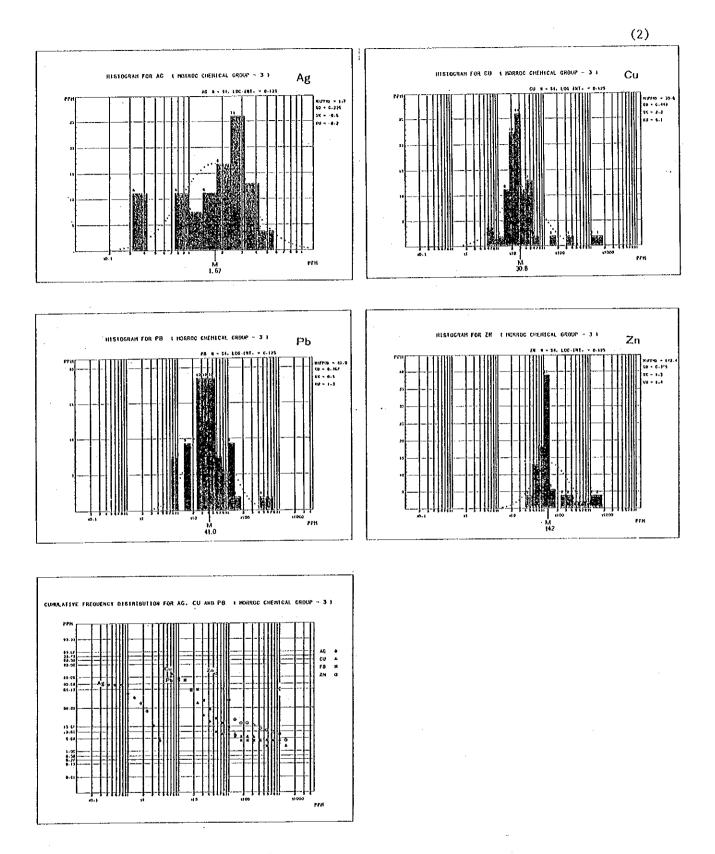
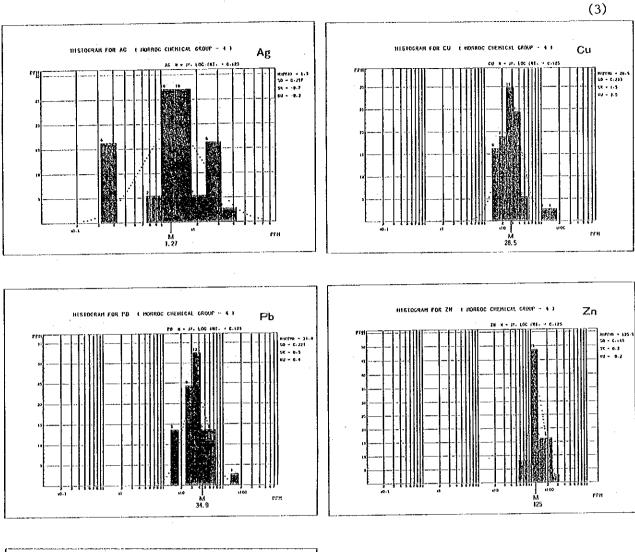



Fig. I -10 Histogram and Cumulative Frequency Curve of Geochemical Assay Results by Each Formation (2) Group I c (Carbonatic schist)

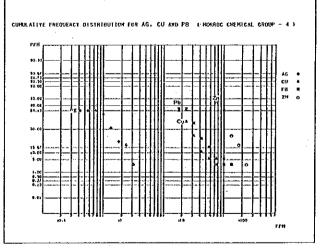
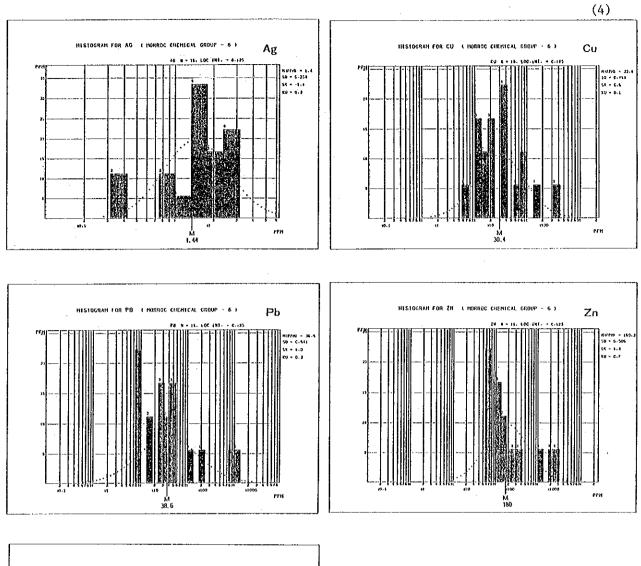



Fig. I -10 Histogram and Cumulative Frequency Curve of Geochemical Assay Results by Each Formation
 (3) Group I p (Pelitic schist)

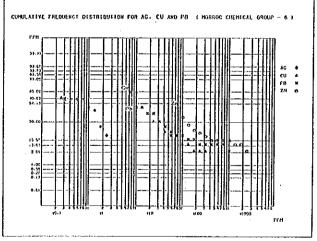
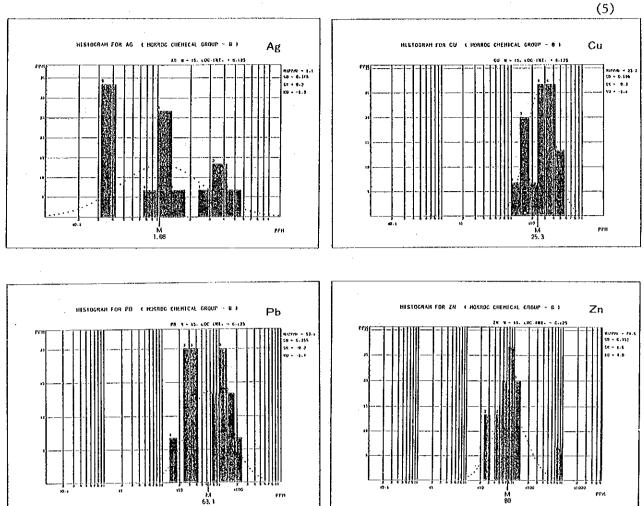



Fig. I-10 Histogram and Cumulative Frequency Carve of Geochemical Assay Results by Each Formation (4) Group II a (Alternate schist)

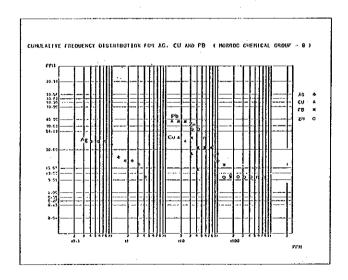
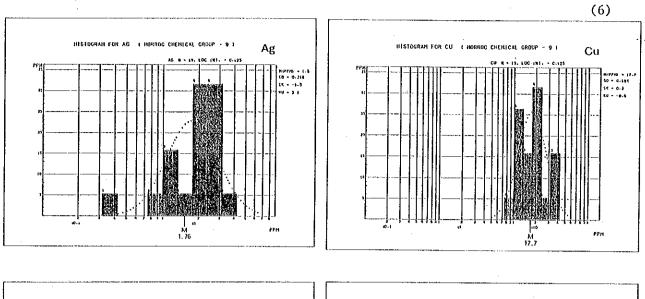
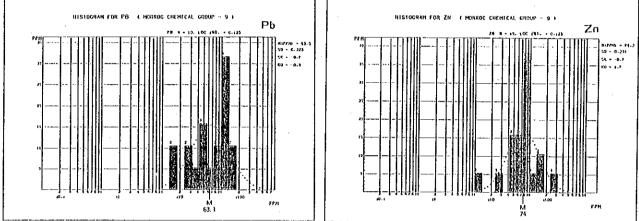




Fig. I-10 Histogram and Cumulative Frequency Curve of Geochemical Assay Results by Each Formation (5) Group II p2 (Pelitic schist)

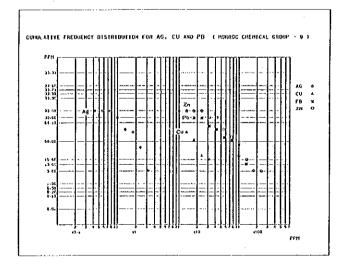


Fig. I-10 Histogram and Cumulative Frequency Curve of Geochemical Assay Results by Each Formation (6) Group II c (Carbonatic schist)

4.

5-1 Geological History

The surveyed area is located geologically in the Paleozoic geosyncline which developed along the northwestern margin of the West African craton. In this geosyncline, thick upper Paleozoic sediments, composed mainly of mudstone and marl, are observed to have accumulated on the basement of the lower Paleozoic group. The upper Paleozoic group was metamorphosed by the dynamic metamorphism during the period of Hercynian orogenic movement at the end of Paleozoic or in early Mesozoic Era. The sediments such as mudstone and marl were metamorphosed to form schist and semischist constituted mainly by the minerals such as chlorite, sericite, quartz and calcite. Many drag folds, intrafolial folds and schistosity-faults are well developed, and the bedding structures of the original rocks have been deformed remarkably. A large scale syncline has been formed dipping toward the east with the axis in the direction of ENE-WSW, together with the faults in the same posture. It is estimated that, after the Alpine orogenic movement in the period of later Mesozoic or Tertiary, the land has been uplifted and eroded out to form present condition of the terrain.

5-2 Sedimentary Environment and Volcanic Activity

In the upper Paleozoic group, sediments such as mudstone and marl are found predominant, and it is thought from this viewpoint that the sedimentation of these beds occurred in a tranquil environment with little change. It might have been an inner sea surrounded by land, where some reducing environment was prevailed. The upper Paleozoic sediments are observed to contain products of at least two periods of sub-marine volcanic activity. As is recognized in the Hajar area or in the Frizem area, the sub-marine volcanic activity is represented principally by acidic volcanic rocks and pyroclastic rocks, which are thought to be suggestive of the volcanic activity to have been comparatively in small scale. It is thought that the volcanic activity would have been of the type of sub-marine fissure eruption and that this type of volcanic activity usually occurs not in such a zone as island arc where usually intense structural movement takes place, but in the extensile volcanic rift of the crust.

5-3 Characteristics of the Mineralization

.

,

The Hajar ore deposit is intimately associated with the green schist originated from acidic volcanic rocks and pyroclastic rocks. It is most characteristic that the Hajar ore deposit contains a great deal of pyrrhotite in addition to copper, lead and zinc minerals. The occurrence of pyrrhotite in the ore deposit is thought to suggest that the environment was reducing at the period of mineralization or during diagenesis. As the examples of the same type of ore deposit found in the upper Paleozoic sediments, are listed the Frizem mineralization zone where copper and lead minerals are concentrated, the Kettara ore deposit in the Jebilet mountain which contains mainly pyrrhotite associated with copper minerals, and the Rio Tinto ore deposit in the southern part of Spain in which copper minerals are concentrated although pyrite is predominant, and so on. These same type of ore deposits as the Hajar ore deposit are recognized to have been emplaced in a certain horizon of successions which are accompanied by volcanic activities, although the metal elements they contain are different with different ore deposits. It is thought to be quite important for the future exploration to elucidate comprehensively the characteristics of the volcanic activities and the structural circumstances for the emplacement of ore deposits, in addition to the pursuit of the horizon of successions where ore deposits are emplaced.

In the Frizem mineralized zone where vein type ore deposits have been confirmed presently, it needs to pursuit a possibility of the emplacement of massive sedimentary ore deposits.

In the Daoud area, it needs to clarify the exact cause of the geochemical anomalies which suggest a possibility of intrusion of igneous rock deep underground or a influence of the mineralization of Hajar ore deposit.

v

PARTICULARS

PART I

GEOPHYSICAL SURVEY

CHAPTER 1 OUTLINE

1-1 Scope of the Survey

CSAMT measurements were carried out by measuring electromagnetic field generated by three transmitter bipoles (see Fig. II-1). The scope of the survey is as follows:

Area:	150 km ²
Station interval:	500m to 800m
Number of stations:	149 points from the transmitting bipole A
	76 points from the transmitting bipole B
	77 points from the transmitting bipole C
	302 points in total

Survey stations are dense in the eastern part of the survey area and not dense in the center to western part of the survey area (see PL. II-1).

1-2 Method of CSAMT Survey

The geophysical survey area is shown in Fig. II-1.

Controlled Source Audio Frequency Magnetotelluric method (called CSAMT) is a kind of magnetotelluric method with a controlled electromagnetic source. One horizontal electric field and one magnetic field, which are orthogonal to each other, are measured in ten different frequencies and apparent resistivity of each frequency is calculated.

General concept of CSAMT survey is illustrated in Fig. II-2.

Goldstein and Strangway (1975) described CSAMT method in detail. The specifications of this CSAMT survey are as follows:

(1) Signal source

Electrode: Three pairs of electrodes were grounded in the north of the survey area.

Transmitting bipole A: 2,000m long, E-W direction

Transmitting bipole B: 1,900m long, N70°E Transmitting bipole C: 1,800m long, E-W direction

Electrode Material: At each electrode, 8 to 11 holes (about 1m deep) were dug. Aluminum plates (0.5m * 0.5m) were buried with mixture of water, salt and bentonite in each hole.

Resistance of entire transmitting bipole system: Transmitting bipole A: 36 ohms in the first half and 24 ohms in the last half of the survey.

Transmitting bipole B: 19 ohms Transmitting bipole C: 37 ohms

Transmitting current: Transmitting electric current of each frequency is as follows:

Frequency (Hz)	4	8	16	32	:	:	256	•	1024	2048
Bipole A	14	14	14	14	14	14	14	12	10	7
Bipole B	12	- 12	12	12	12	12	12	11	9	7
Bipole C	11	11	11	11	11	11	11	11	8	4

a posta de la companya de la company

(unit in Ampere)

(2) Signal reception in the second se

Reception mode: TE mode (potential dipole direction is parallel to general strike of geological structure).

Distance from a source bipole: Distance between a survey station and a source is over 4 km.

Potential dipole: Electrode separation is 50 m and is parallel to the direction of a transmitting bipole.

Magnetic sensor: Ferrite core coil.

Frequency: 4, 8, 16, 32, 64, 128, 256, 512, 1,024, 2,048 Hz
Recording time: Over 30 minutes.
Repetition of measurements: Measurements were repeated at least
 three times for each frequency at a station.

1-3 Equipment

Equipments used for the survey are manufactured by Zonge Engineering & Research Organization except an engine generator.

They are as follows:

(1) Transmitter

Engine generator (B-20, Geotronics made)

output power 30 kVA, 120/208 V, 400 Hz, 3 phases, 53 HP (at 3,600 rpm)

Transmitter (GGT-5)

maximum output 5 kw, 24A, 1,000 V

Transmitter controller (XMT-2)

frequency range: DC to 10,000 Hz

(2) Receiver

Data processor (GDP-12)

amplifier, filter, A/D converter, data processor

Antenna coil (AMT/1)

and the second part of the second second

single axis ferrite core coil, sensitivity 0.2 mV/gamma Hz

1-4 Data Reduction and Analysis

Data reduction and analysis were carried out as the flow chart (see Fig. II-3).

The symbols used for this report are as follows:

 ρ : true formation resistivity (Ω m) ρ a: apparent resistivity (Ω m)

 ρ_a' : apparent resistivity after near field correction (Ω_m)

f :	frequency	(H _Z)
-----	-----------	-------------------

Ex : electric field $(\mu V / m)$

Hy : magnetic field (nT)

d : skin depth (m)

- r : distance between a transmitter bipole and a receiving station (m) '
- K(r) : geometric constant

h: : thickness of the first layer (m)

 ρ_1 : resistivity of the first layer (Ω m).

 ρ_2 : resistivity of the second layer (Ω m)

- ω : angular frequency $(2 \pi f)$
- μ : magnetic permeability $(4 \pi \times 10^{-7} \text{ H} / \text{m})$

(1) Calculation and Average of Apparent Resistivity \sim Apparent resistivity, ρ_{a} , is calculated as follows:

Measurements were repeated for each frequency at a station and an apparent resistivity at a station of respective frequency was decided by geometrically averaging over three well-repeated field data. Apparent resistivity values are listed in Tab. II-1.

(2) Near Field Correction

Resistivity values, thus obtained, include near field effect and do not show true magnetotelluric apparent resistivity in lower frequencies, if distance between a receiving station and a transmitting bipole is near, less than three-fold of a skin depth.

$$d = 503 \sqrt{\frac{\rho}{f}} \qquad (2)$$

Influence of near field effect is larger in resistive area. Near field effect is seen in data from all stations in the east end and the northern to western part of the survey area. Near field effect is corrected by the following equation, (3), by assuming homogeneous isotropic

earth.

$$\rho a' = K(r) \cdot r \cdot \begin{vmatrix} E x \\ ---- \\ H y \end{vmatrix}$$
 (3)

(3) Inversion

Apparent resistivity vs. frequency curves of all stations are inverted one-dimensionnaly into horizontally layered earth.

One-dimensional inversion was automatically performed as follows:

An apparent resistivity vs. frequency curve of a initial horizontally layered earth model is calculated by a computer. Then the calculated curve is compared with a field data. Usually the two has some difference. A computer looks for a more suitable horizontally layered earth model. And repeat calculation until two apparent resistivity curves match each other. Thus obtained most fitted horizontally layered earth model is one of the answers to a given field data because horizontally layered earth is assumed.

The forward equation for a two-layer earth model is as follows:

 $\rho_{a} = \rho_{1} \cdot \cot h^{2} (c_{1} h_{1} + \cot h^{-1} c_{1} / c_{2})$

where, 👘

$$c_{1} = \sqrt{\frac{J \omega \mu}{\rho_{1}}}$$
$$c_{2} = \sqrt{\frac{J \omega \mu}{\rho_{2}}}$$

The results of one-dimensional inversion of all stations are tabulated in Ap. II-1 at the end of this report.

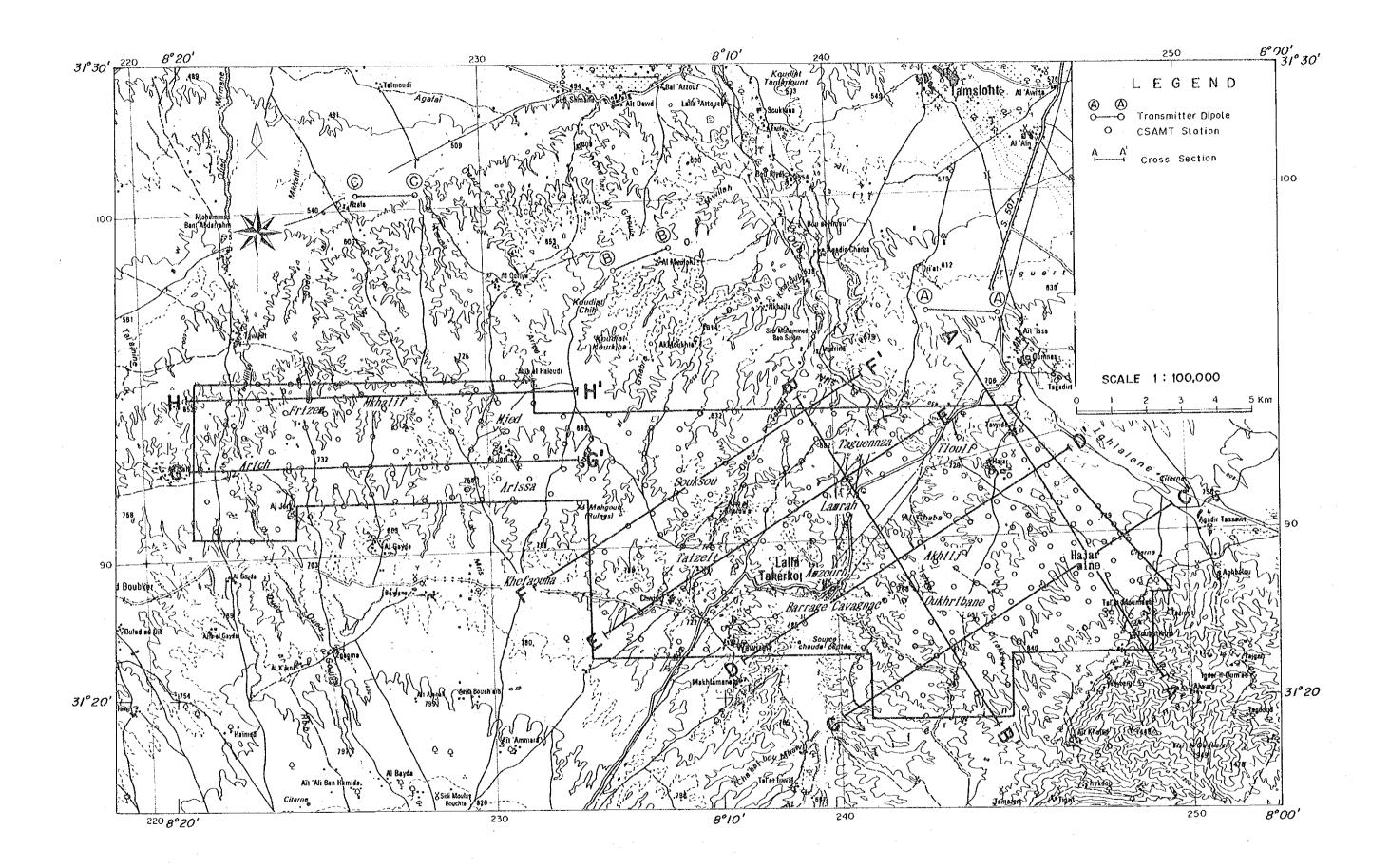


Fig II-I Geophysical Survey Area

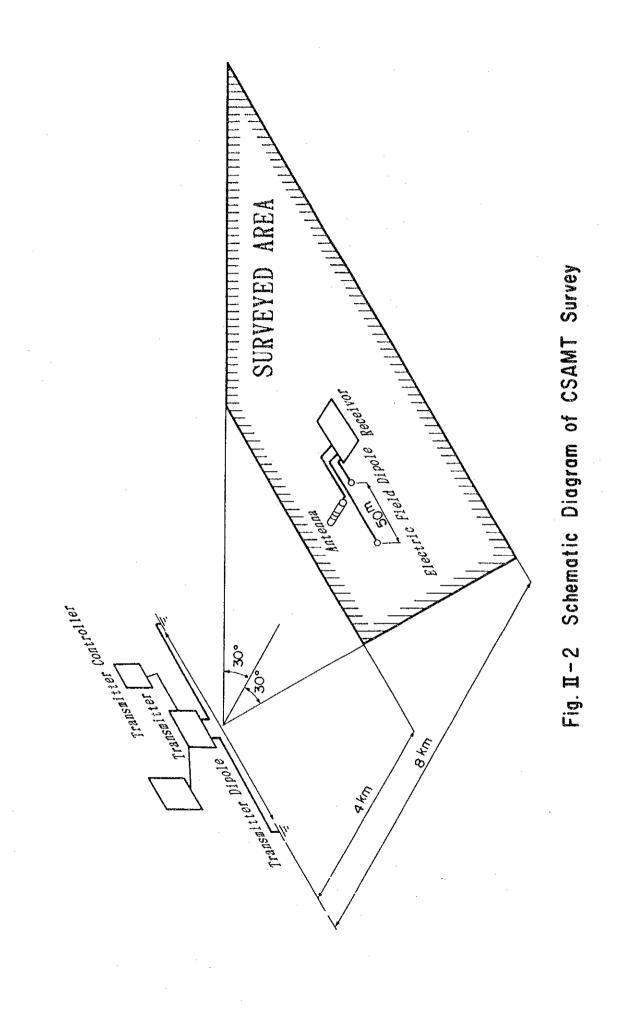


Fig. II-3 Flow Chart for CSAMT Data Processing

Tab. II-1 List of Apparent Resistivity (1/8)

ST.NO.				FREG	UENCIE	ES (HZ)	1. 1. 1.	an a		
& DIPOLE	4	8	16	32	64	128	256	512	1024	2048
1 A 2 A	248 180	224 184	197 170	153 157	132 131	84.9 116	85.3	36.4	14.3	10.8
3 A 4 A	46.2	43.4 88.4	40.0	40.8 81.5	43.0	42.8	38.5 30.6	40.1	79.0	49.0 24.4
5 A	129	81.6	57.9	34.7	17.5	20.2	14.1	11.9	11.1	10.9
6 A 7 A	416 157	279 176	208 199	129 254	,98.0 207	81.7 99.5	54.1 66.2	36.4 52.2	21.9 68.1	26.5 92.3
8 A 9 A	105 75.4	124 79.5	120 83.1	123 80.2	82.1 78.1	85.5 57.2	85.1 48.8	30.4 31.6	32.8 33.6	11.2 121
10 A 11 A	24.1	25.9	26.2 140	21.7 144	17.3 126	8.74	9.15 59.8	2.70 39.6	33.5	187 96,4
12 A 13 A	41.0 145	92.6	81.6 125	67.3 110	64.4 115	47.0 148	92.5 297	120 366	272 808	2330 4430
14 A 15 A	110	123 137	107 116	76.3	53.1 49.3	42.1 31.6	41.6	43.1 24.6	66.7 59.9	298 180
16 A 17 A	348 248	279	224 153	146 104	85.2	54.8	49.6	22.1	82.7 12.7	235 9.28
18 A	246 259	181 195	151 151	105	73.8	58.4	38.6	22.4	28.6	89.6
19 A 20 A	850	542	394	96.6	64.6 149	48.4	33.9 42.7	23.2 20.7	20.9 14.5	7.35 54.0
21 A 22 A	1190 2820	676 1400	436 1050	238 547	141 293	78.5 145	43.8 50.1	25.7 45.2	7.50 123	56.0 406
23 A 24 A	2320 573	1180 259	816 149	480 70.4	328 58.1	249 54.4	307 54.4	126 64.1	105 91.6	122 82.4
25 A 26 A	438 71.6	255 72.9	173 70.7	101 64.8	58.6 61.7	47.5	33.0 28.1	15.1 33.7	23.3 52.1	10.8 163
27 A 28 A	65.0 134	80.4 140	86.9 141	91.3	86.7 113	80.5	55.5 45.8	44.1 27.9	19.7	8.78 26.8
29 A 30 A	125 131	123 122	119 139	99.6 162	95.0 190	64.6 178	70.9 157	44.5 146	25.7	-508 79.4
31 A 32 A	333 95.1	326 89.1	307 86.8	241	251 73.1	178	142	77.7	34.5 39.8	128 101
33 A	169	132	111	81.3	59.9	33.0	17.0	12.9	14.3	21.4
35 A	180 190	180	201	148	132	125	153	114 159	522 92.6	1610
36 A 37 A	380 501	232 327	165 238	97.3 141	56.9 88.8	46.7 59.3	27.6 29.1	24.3 13.8	25.8 17.9	24.7 29.2
38 A 39 A	21800 121	17300 92.7	13200 77.1	8440 50.7	4950 42.6	5330 44.2	4470 28.2	2790 22.2	1930 14.8	671 8.41
40 A	747	516	432	316	237	241	221	140	105	122

unit : Ωm

List of Apparent Resistivity (2/8)

List of Apparent Resistivity (3/8)

unit : Ωm

List of Apparent Resistivity (4/8)

unit : Ωm

--

List of Apparent Resistivity (5/8)

ST.NO. &				FREG	UENCIE	5 (HZ)	r		1	1
DIPOLE	4	8	16	32	64	128	256	512	1024	204
160 B	38.5	32.9	25.8	23.3	28.8	32.6	41.6	27.4	18.7	21.
161 B	107	102	98.7	92.2	80.0	64.4	49.0	30.0	24.9	26.
162 B	33.1	28.8	24.4	20.9	17.8	12.6	9.64	6.42	4.47	4.4
163 B	22.7	24.1	24.0	30.7	33.8	34.4	41.9	25.8	24.0	21.
164 B	29.7	25.9	23.8	30.4	34.8	32.3	81.7	45.0	47.8	48.
165 B	194	141	78.6	47.0	42.4	22.7	12.4	11.0	10.6	10.
166 B	327	195	101	46.5	43.4	23.5	14.3	9.51	7.45	6.9
167 B	1010	377	112	64.9	80.2	54.4	37.9	24.4	22.9	19.
168 B	436	305	143	51.0	52.7	38.1	20.1	11.4	10.6	9.4
169 B	70.8	57.8	47.0	37.7	32.8	19.3	17.0	10.0	9.00	10.
170 B	33.1	14.8	10.2	7.74	10.6	11.9	14.6	14.0	12.6	18.
171 B	54.7	42.3	34.6	24.8	22.2	14.9	12.0	5.98	13.1	14.
172 B	16.6	12.3	10.1	10.3	14.2	10.2	11.7	16.2	27.5	75.
173 B	9.29	5.47	5.67	7.73	10.4	8.71	12.5	16.7	11.7	2.1
174 B	79.4	73.1	65.3	53.1	45.3	30.4	26.6	22.0	35.4	6.6
175 B	134	126	110	89.1	84.0	50.9	31.8	21.0	16.5	10.
176 B	95.5	77.1	69.1	56.7	44.9	28.7	14.5	11.4	10.6	10.
177 B	186	170	124	79.0	86.4	56.9	25.2	15.3	10.0	11.
178 B	134	108	87.3	64.2	57.0	37.3	20.1	10.5	13.7	4.0
179 B	204	183	130	97.6	86.1	65.9	31.8	18.4	26.8	77.
180 B	120	96.7	91.5	66.9	57.8	39.0	24.7	12.8	8.95	9.6
181 B	76.8	72.2	59.9	51.7	60.0	27.5	13.6	10.6	8.26	6.9
182 B	184	180	150	153	121	85.5	47.4	25.9	18.2	14.
183 B	101	90.3	80.9	65.9	54.8	25.3	15.7	13.4	10.8	6.9
184 B	207	171	118	65.1	58.6	33.3	19.4	12.7	11.5	11.
185 B	357	284	187	84.0	74.6	43.5	21.5	12.2	7.59	7.8
186 B	491	375	226	93.0	83.7	43.7	27.4	13.0	19.5	6.2
187 B	133	110	80.9	45.3	43.4	25.8	14.9	9.56	7.93 172	7.4
188 B	1120	1060	1070	992	920	569 60.5	41.3 40.5	255 22.0	11.1	10.
189 B	173	158	142 89.3	114	111 29.9	20.6	12.5	8.56	7.95	8.8
190 B	110	121	82.2	37.1 33.5	22.1	14.6	7.35	6.13	7.53	7.4
191 B	178 487	328	192	85.4	40.5	28.6	18.0	11.9	9.26	8.2
192 B 193 B	461	254	137	55.4	28.5	17.1	9.99	9.65	8.78	9.2
193 B	550	325	173	68.7	26.7	19.4	12.1	10.3	9.63	12.
194 B 195 B	907	537	270	95.9	39.9	30,0	18.1	11.2	8.63	7.6
196 B	452	295	157	58.6	35.0	26.8	14.5	10.7	9.57	10.
190 B 197 B	492	353	214	82.9	63.5	39.5	20.2	11.5	12.7	14.
198 B	728	496	276	100	63.7	47.3	28.5	17.9	11.8	10.
199 B	802	560	313	111	89.0	58.4	33.7	20.9	13.9	14.
										0-
									unit :	75 m

•.

List of Apparent Resistivity (6/8)

ST.NO.				CDCC	HENCTE	S (HZ)				
. &					1		T	<u> </u>	Г]
DIPOLE	4	8	16	32	64	128	256	512	1024	2048
200 B	754	391	182	65.9	72.1	44.6	23.5	15.3	12.5	11.0
201 B	1360	907	495	174	143	116	83.2	48.0	29.7	22.0
202 B	1040	684	35.0	121	90.6	70.5	42.3	26.7	19.3	9.59
203 B	845	546	308	112	68.2	50.6	29.2	18.3	13.8	11.5
204 B	801	480	254	85.4	48.0	36.7	22.3	17.2	15.5	14.9
205 B 206 B	590 1160	331 830	169 481	62.3 189	25.4	17.9 142	11.1	75.4	6.55	8.17 27.8
206 B 207 B	493	271	401	77.8	82.5	52.9	28.0	15.3	9.27	25.2
207 B	1010	618	306	151	169	109	45.7	29.6	20.9	14.8
209 B	296	218	132	84.2	83.2	55.8	26.8	15.3	9.17	16.6
210 B	899	588	309	129	123	80.2	39.3	24.9	16.9	14.9
211 B	1740	1060	494	215	235	157	139	121	91.8	48.5
212 B	1100	519	202	127	155	120	62.9	37.2	28.2	27.5
213 B	412	278	151	69.6	64.5	35.0	22.2	11.8	10.8	9.30
214 B	211	139	90.8	105	117	80.8	84.1	45.4	17.2	6.47
215 B	4460	2510	1730	2420	2940	3080	2840	1980	1720	769
216 B 217 B	60.4 67.9	45.2	49.6 30.9	60.9 34.6	66.3 26.5	67.5 27.5	76.1 25.5	43.0 14.9	23.7	11.8 38.6
217 B 218 B	70.6	32.3	22.0	25.7	29.4	73.0	23.5	85.8	85.8	48.2
219 B	577	482	210	245	331	477	581	412	334	201
220 B	1360	726	385	219	248	184	117	77.3	60.8	50.5
221 B	141	117	80.1	56.8	52.0	29.5	19.2	15.6	15.7	24.4
222 B	3360	1730	884	452	370	234	123	73.7	58.3	50.8
223 B	335	322	267	190	180	134	80.5	39.8	23.9	12.8
224 B	397	449	307	204	156	91.1	44.7	22.4	12.6	9.48
225 B	941	612	357	181	104	70.1	37.9	26.5	21.5	24.6
226 C	356	321	345	285	208	134	74.6	54.3	63.8	58.0
227 C	117	89.2	140	116	108	109	103	55.8	14.6	29.5
228 C	33.3	39.0	41.9	36.8	43.2	32.6	24.1	14.4	7.65	3.24
229 C	70.7	50.1	56.9	55.5	63.4	66.4	60.1	40.7	30.0	21.9
230 C	46.5	75.9	117	106	76.0	61.6	37.5	22.2	13.6	5.46
231 C	544	708	1040	1270	1350	1250	948	681	447	215
232 C 233 C	52.9	71.7	110 107	121 129	124 158	94.8	78.1 113	61.0	43.9 79.0	37.8 95.3
233 C 234 C	29.3	25.0	31.3	41.3	51.5	118	50.1	101 37.2	30.3	95.3 51.9
235 C	590	519	495	500	474	314	171	88.7	51.6	37.1
236 C	156	141	132	134	149	130	86.6	60.3	32.4	33.4
237 C	1040	967	872	873	634	304	153	67.2	33.8	36.7
238 C	88.4	122	190	283	276	162	67.9	36.2	23.2	23.3

List of Apparent Resistivity (7/8)

& DIPOLE 239 C 240 C 241 C 242 C	4 705 97.8 160	8 750	16	32	64					
240 C 241 C	97.8	750	1	And and and any Design of the And		128	256	512	1024	2048
240 C 241 C	97.8		862	884	743	404	204	97.5	46.9	21.9
241 C		90.0	130	128	107	51.8	34.3	15.5	14.4	30.8
		182	162	112	61.3	37.4	20.5	9.64	5.42	4.1
	675	1110	1660	1350	839	393	217	84.1	32.1	10
243 C	129	192	190	150	107	61.6	31.7	11.7	14.9	12
244 C	192	205	266	377	. 493	403	210	70.9	21.5	92.
245 C	664	928	1360	1760	2500	2190	1100	575	400	32
246 C	164	198	251	297	321	236	143	73.3	46.5	17.
247 C	206	310	484	657	827	640	367	196	101	73.
248 C	423	552	595	690	734	539	310	183	111	55.
249 C	88.4	101	134	137	148	127	95.1.	65.5	34.7	74.0
250 C	250	269	305	264	171	93.6	51.5	28.2	31.1	61.
251 C	286	277	287	231	163	84.1	41.6	17.9	12.7	7.14
252 C	358	339	386	327	239	143	68.8	39.8	30.3	40.
253 C	331	320	448	457	397	289	157	100	125	33
254 C	4360	4570	5350	5110	4700	3400	2240	1390	874	691
255 C	52.8	77.4	119	146	195	231	258	259	166	10
256 C	9250	8910	12300	10800	11000	7740	6180	5460	5530	1710
257 C	106	142	203	230	257	292	356	394	344	34
258 C	704	809	1110	1390	1200	1110	1010	923	512	1120
259 C	1420	1660	2070	2020	1590	1140	795	600	339	572
260 C	132	140	121	68.7	47.0	55.3	66.4	56.1	44.6	44.
261 C	420	444	443	290	166	166	168	140	121	130
262 C	150	172	197	183	211	258	297	316	282	14
263 C	2450	2110	2310	2370	1960	1410	740	432	262	23
264 C	337	335	352	419	300	209	125	65.6	34.0	15.9
265 C	553	595	641	639	525	409	308	202	94.3	27.0
266 C	641	636	623	500	340	256	179	119	64.8	29.
267 C	71.4	66.4	43.9	13.1	32.8	70.4	89.6	89.2	93.1	57.8
268 C	301	289	339	334	324	243	165	92.0	48.4	10.8
269 C	443	460	527	603	572	452	317	179	80.0	48.1
270 C	686	654	708	708	726	797	726	630	406	35
271 C	272	264	292	315	3.90	462	563	521	340	389 29.1
272 C	548	517	634	536	410	247	129 179	58.7 84.9	33.5 38.6	29.1
273 C	532	467	540	551	457 257	302	71.5	84.9	23.2	23.3
274 C	342	289	326	308		141 97 z	55.6	32.4		36.0
275 C	142	134	141	1,39 391	115 403	84.3 368	290	207	26.3 133	99.5
276 C	391	361	381		1 1	3780	3630	3280	2320	545
277 C	4520	3860	3900 5430	4100	4160	4330	3150	2330	1530	1000
278 C	5910	5300	5430	5710	5540	4000	3120	200	(230	1000

List of Apparent Resistivity (8/8)

ST.NO.				FREQ	UENCIE	S (HZ)		<u></u>	naryanya distang distang kanala ka	an a
& DIPOLE	4	8	16	32	64	128	256	512	1024	2048
279 C 280 C 281 C 282 C 283 C 284 C 285 C 286 C 287 C 288 C 290 C 291 C 292 C 293 C 294 C 295 C 297 C 297 C 298 C 297 C 298 C 299 C 300 C 301 C 302 C	2370 10400 2920 955 340 354 899 753 3780 7030 3960 832 1370 1300 822 1370 298 1200 880 1450 539 312 1090 253	2190 8670 2600 856 317 272 698 565 3120 6110 3690 771 1300 1150 926 1460 319 978 728 1090 394 321 1290 216	2410 8780 2600 890 321 275 669 558 3200 6530 786 1410 1280 1690 416 1040 726 1240 375 397 1510 382	2660 8130 2730 849 322 258 636 514 3290 6890 4020 805 1510 1450 1390 1930 506 1130 805 1290 376 459 1430 592	2790 8330 2530 890 301 220 563 425 3400 7120 4100 772 1530 1490 1420 1900 578 1090 779 1170 378 498 1290 931	2350 7460 2340 743 215 142 284 2820 6260 3060 572 1250 1100 965 1130 478 780 577 919 277 367 782 761	2080 7300 2210 604 151 81.7 250 169 2380 2000 406 898 649 523 776 337 522 372 527 157 217 411 566	$\begin{array}{c} 1940\\ 6220\\ 1840\\ 435\\ 86.0\\ 149\\ 90.7\\ 1560\\ 3640\\ 1150\\ 247\\ 616\\ 328\\ 241\\ 351\\ 225\\ 84.5\\ 136\\ 226\\ 364 \end{array}$	1690 4390 1290 270 43.6 20.8 80.4 39.9 891 1330 524 103 364 144 109 187 138 220 157 103 53.7 79.1 122 263	1320 3240 908 165 29.0 36.0 20.5 14.3 261 216 134 38.4 199 65.7 53.7 133 104 64.3 61.1 91.0 43.6 34.7 88.8

Results of laboratory test of physical properties on rock samples, apparent resistivity measurement, and one dimensional inversion of all CSAMT measurement were illustrated in the following figures:

Tab. II-2	Rock Properties	
PL. II-2 to II-11	Apparent Resistivity Map	
Fig. II-10 to II-17	Apparent Resistivity Pseudo-Section	with
	Estimated Resistivity Structure	
PL. II-12 to II-15	Resistivity Structure Map	

In the following sections, the above mentioned figures are explained.

2-1 Physical Properties of Rock Samples

Twenty-four samples of representative rocks from the survey area are tested in laboratory for their resistivity, density, and magnetic susceptibility. The results are shown in Tab. II-2.

Characteristics of rock properties are as follows:

i) Geometric average of resistivities of rock samples are clearly divided into the following three groups.

an nga manang mang mang mang mang kanang kanang kanang kanang mang mang kanang kanang kanang kanang kanang kana	Formation	No. of samples	Average
Low Resistivity	Ore of Hajar mine	4	15 Ωm
Medium Resistivity	Quaternary	2	57 Ωm
High Resistivity	Carboniferous to Permian	18	500 Ω m
All samples		24	230 Ωm

and the second second

ii) Except ore samples from Hajar mine, which have very low resistivity, resistivity structure in the survey area consists by a resistive basement of the Permian to the Carboniferous and a overlying medium to low resistivity layer of the Quaternary. The Quaternary including some Pliocene is an aquifer with a free ground water table.

iii) Density of rock samples is also divided into two groups, high density basement of the Permian to the Carboniferous and low density overlying layer of the Quaternary. Ore of Hajar Mine has distinctively high density.

iv) All rock samples except ore samples have low magnetic susceptibility. Magnetic susceptibility of ore samples from Hajar mine is extremely high and magnetic survey for ore must be very effective.

2-2 Apparent Resistivity Map (see PL. II-2 to II-11 and Fig. II-5 to II-9)

Apparent resistivity is not the same as true formation resistivity but qualitatively reflects underground resistivity structure. Apparent resistivity reflects resistivity structure of relatively shallow structure for higher frequency and it of lower frequency reflects deeper structure.

Apparent resistivity values are divided into the following five groups.

(4) A set of the se							
1	0Ωm 40)Ωm 250	Ωm 1000 9	Ω m			
very low app.	low app.	medium app.	high app.	very high app.			
resistivity	resistivity	resistivity	resistivity	resistivity			

We studied all apparent resistivity data about static shift which is an erroneous shift of apparent resistivity vs. frequency curves only along the vertical axis, namely the resistivity axis, caused by local inhomogeneity at or near the ground surface. As a result, apparent resistivity data of the stations 38, 156, and 188 are obviously shifted to higher resistivity in the entire frequency range. Therefore the data from those three stations are eliminated from the interpretation.

(1) General View of Apparent Resistivity Distribution

General view of apparent resistivity distribution of ten frequencies, from 4 Hz to 2,048 Hz, is summarized as follows:

i) Generally, apparent resistivity is tend to be low in higher frequency and high in lower frequency. This tendency is remarkable in the center and the eastern part of the survey area.

ii) Arrangement and its direction of apparent resistivity anomalies are dominantly in NW-SE direction in lower frequency, and this directionality disappears in higher frequency.

iii) Apparent resistivity distribution has the following characteristics:

Eastern part	Generally small apparent resistivity anomalies are seen. Anomalies tend to aline in NW-SE direction.
Central part	Apparent resistivity value varies gently and very low apparent resistivity anomalies are seen in high frequency.
Western part	Apparent resistivity does not vary so much and high apparent resistivity is dominant in all frequency.

(2) Apparent Resistivity Distribution of Individual Frequency
The apparent resistivity distributions of five frequencies, 4 Hz, 16
Hz, 64 Hz, 256 Hz, 1,024 Hz, are explained in the following section.

and an and the second

i) Apparent resistivity map in 4 Hz (see PL. II-2 and Fig. II-5) High apparent resistivity covers most of the area except around Taguennza and the southwest of Barrage Cavagnac where low apparent resistivity zones are. High apparent resistivity zones are arranged in NW-SE lines, from Tiouli to Hajar mine, from northeast of Souksou to Amzourh, and from Mkhalif to Arissa. The arrangement of high apparent resistivity zones may show existence of resistive basement.

Hajar mine is at the center of a high apparent resistivity zone and is located between two very high apparent resistivity zones, in its northwest and its south.

ii) Apparent resistivity map in 16 Hz (see PL. II-4 and Fig. II-6) Apparent resistivity distribution in 16 Hz shows no significant change but slightly lower resistivity in the eastern half of the survey area in comparison with it in 4 Hz.

It indicates a characteristic feature of apparent resistivity distribution around Hajar mine that Hajar mine is surrounded by three high apparent resistivity zones.

iii) Apparent resistivity map in 64 Hz (see PL. II-6 and Fig. II-7) Apparent resistivity distribution in 64 Hz shows lower resistivity at around Hajar mine and Souksou in comparison with it in 16 Hz. High apparent resistivity zone appears near Amzourh in NW-SE direction.

iv) Apparent resistivity map in 256 Hz (see PL. II-8 and Fig. II-8)

High apparent resistivity area decreases and low apparent resistivity area increases largely at near Souksou and the west of Hajar mine. In the south of Oukhribane, high apparent resistivity zones and low apparent resistivity zones are arranged side by side in NW-SE direction.

v) Apparent resistivity map in 1,024 Hz (see PL. II-10 and Fig. II-9)

High apparent resistivity zone shrinks in comparison with in 256 Hz. Very low resistivity zone is dominant in the central part of the survey area.

Many small medium apparent resistivity zones are in between Amzourh and Akhlij and the entire area is surrounded by low apparent resistivity area.

The area around Hajar mine does not outstand in apparent resistivity distribution in 1,024 Hz not like in other frequencies.

2-3 Apparent Resistivity Pseudo-Section and Estimated Resistivity Structure (see Fig. II-10 to Fig. II-17)

The sections of A-A' and B-B' cut the eastern part of the survey area in NNW-SSE direction. The sections of C-C', D-D', E-E' and F-F' cut the central and the eastern part of the survey area in WSW-ENE direction. The sections of G-G' and H-H' cut the western part of the survey area in E-W direction. In each map, an apparent resistivity section and a resistivity structure section are illustrated.

Resistivity values are divided into as follows, not the same as apparent resistivity division:

40Ω m 150Ω m 1000Ω m 4000Ω m

very low	low	medium	high	very high
resistivity	resistivity	resistivity	resistivity	resistivity
a de la companya de l				

(1) A-A' section (Fig. II-10)

This section runs NNW-SSE direction over Hajar mine.

The apparent resistivity section shows low to medium apparent resistivity in higher frequencies but in lower frequencies apparent resistivity drastically changes into high, about $1,000\,\Omega m$. Low apparent resistivity anomalies surrounded by a contour line of $65\,\Omega m$ are found at near Hajar mine, the stations 43 and 67 in the frequencies between 256 Hz and 1,024 Hz.

The resistivity section consists by two to three layers with the resistive basement except at near the ground surface. Depth to the resistive basement is shallow, about 100m in the center and the north of the section and very deep, about 1,000 m and forms a concave at around Hajar mine.

Hajar ore deposit is at a concavity of the resistive basement, has medium resistivity of about $200 \Omega m$, and is controlled its both ends by resistivity discontinuity. Extremely low resistivity which may directly indicate ore was not found around Hajar mine. Instead, mineralization of Hajar mine is found as a low resistivity anomaly in the basement which may be seen as a concavity of the basement in the resistivity section.

(2) B-B' Section (see Fig. II-11)

Apparent resistivity in the section tends to increase its value toward lower frequencies. Higher apparent resistivity zone and lower apparent resistivity zone appear alternatively in horizontal direction.

The resistivity section consists by three layers in general, but is controlled by resistivity discontinuities, and varies horizontally. At the center of the section the resistive basement is shallow and contains relatively lower resistivity part deep in the ground. Resistivity value varies in the resistive basement. Concavities of the basement are found at the stations 3, 165, and 167, near Lamrah and the station 55 in the south of the section.

(3) C-C' Section (see Fig. II-12)

The section C-C' cuts through Hajar mine.

The apparent resistivity section shows similar apparent resistivity distribution as the section A-A' but with some lower apparent resistivity values.

a que la Se

The resistivity section consists by two to three layers with some variation in apparent resistivity which may be caused by influence of an underground water table. The resistive basement is shallow at the center of the section and is not seen in the west end of the section, the stations between 14 and 77, because the near surface conductive layer is very thick and the CSAMT survey could not reach the resistive basement.

Small concave of the resistive basement is seen at near Hajar mine and the station 54.

(4) D-D' Section (see Fig. II-13)

The apparent resistivity section shows very low apparent resistivity in the west end of the section and that apparent resistivity values generally increase to east with some variations and become high at the east end of the section, the station 41.

The resistivity section consists by three layers in the center and the west of the section. Along the section, layers are arranged the low resistivity layer at the top, the resistive basement, and the low resistivity part of the basement at the bottom. The bottom low resistivity layer is assumed to be a conductive part in the resistive basement and located in the depth of the area between the stations 62 and 19. The geological structure in the area generally declines toward the west and consists of some different resistivity layers alternatively. Resistivity structure in the west of the discontinuity is rather different and the resistive basement was not detected as the section C-C'.

(5) E-E' Section (see Fig. II-14)

The apparent resistivity distribution in the section shows high resistivity at the center of the section and low at the both ends. Very conductive zone is found at the station 69. The resistivity distribution shows discontinuity at between the stations 153 and 211.

The resistivity section consists by two layers in the west end and changes into three to four layers at the east end of the section except layers near the surface of the ground. In the east of the section, the resistive basement shows upheaval centered at the station 216 and declines toward the west. A high resistivity layer is also found at near the ground surface of the center of the section, but low to medium resistivity layers are dominant under the shallow resistive layer.

The resistive basement may upheave at the shallow part around the stations 153 to 211 from the resistivity section of B-B'.

(6) F-F' Section (see Fig. II-15)

The apparent resistivity section shows relatively linear increase of apparent resistivity from $10 \,\Omega m$ of high frequency to 1,000 Ωm of low frequency. Apparent resistivity distribution varies little by the stations.

The resistivity structure in the section is generally three layers. At the west of the section, the resistive basement is at shallow depth with variation of resistivity value. In the resistive basement, relatively low resistivity layer is found at deep in the ground. At the east of the section, resistivity structure consists of a very conductive layer at the top, a medium resistivity layer at the second and a resistive base at the bottom. A concavity of the resistive basement is assumed at around the stations 201 and 202.

(7) G-G' Section (see Fig. II-16)

The apparent resistivity distribution in the section shows that apparent resistivity increases from low frequency to high frequency and very high apparent resistivity in all frequencies are seen at the stations 254 and 287. An apparent resistivity discontinuity is between the stations 253 and 254.