鼎約

服配

703

61.8

SDS IBRARY

AND MARKEN MARKEN AND M

ANTAR 1988

TARAN INTERNAL INVERTIGATION AND THE ACCOUNT AND THE ACCOUNT AND

MANADARA ALEMARA

FEDERATIVE REPUBLIC OF BRAZIL

FINAL REPORT

ON

THE ITAJAI RIVER BASIN FLOOD CONTROL PROJECT

PART II

FEASIBILITY STUDY ON RIVER IMPROVEMENT PROJECT IN BLUMENAU-GASPAR STRETCH

SUPPORTING REPORT

1065354[1]

JANUARY 1988

JAPAN INTERNATIONAL COOPERATION AGENCY

TOKYO, JAPAN

	• •				•	
	国際 受入 月日 ⁸ 登録 No.	協力事 8.5.16 17592	業団 708 61.8 5DS			

ABBREVIATION

	JICA	:	Japan International Cooperation Agency
	ACARESC	:	Associacao de Credito e Assistencia Rural de Santa Catarina
	CASAN	;	Companhia Catarinense de Aguas e Saneamento
	CEDEC	:	Coordenacao Estadual de Defesa Civil
	CELESC	:	Centrais Eletricas de Santa Catarina
	CEPA	:	Instituto de Planejamento e Economia Agricola de Santa Catarina
	CIDASC	:	Companhia Integrada de Desenvolvimento Agricola de Santa Catarina
	DNAEE	:	Departamento Nacional de Agua e Energia Eletrica
	DNER	:	Departamento Nacional de Estradas de Rodagem
	DER	:	Departamento de Estradas de Rodagem
	DNOS	;	Departamento Nacional de Obras de Saneamento
	EMATER	:	Empresa de Assistencia Tecnica e Extencao Rural
	EMBRAPA	:	Empresa Brasileira de Pesquisa Agropecuaria
:	EMATER	:	Empresa de Assistencia Tecnica
	EMPASC	:	Empresa de Pesquisa Agropecuaria ria de Santa Catarina
	гатма	:	Fundacao de Amparo a Tecnologia e Meio Ambiente
	FGV	:	Fundacao Getulio Vargas
:	GAPLAN	:	Gabinete de Planejamento e Coordenacao Geral
	IBDF	:	Instituto Brasileiro de Desenvolvimento Florestal
	IBGE	:	Instituto Brasileiro de Geografia e Estatistica
	IBRD	:	Internatinal Bank for Reconstruction and Development
	ITAG	:	Instituto Tecnico de Administracao e Gerencia
	МА	:	Ministerio da Agricultura
	MDUMA	:	Ministerio do Desenvolvimento Urbano e Meio Ambiente
	PORTOBRAS	:	Empresa Brasileira de Portos
	SAMAE	:	Servico Autonomo Municipal de Agua e Esgoto
	SUDEPE	ن ر :	Superintendencia do Desenvolvimento da Pesca

Length	Time		
mm : millimeter	s or sec	:	second
cm : centimeter	min	:	minute
m : meter	h or hr	:	hour
km : kilometer	d	:	day
	y or yr	:	year
Area	Others		
cm ² : square centimeter	¥	:	percent
m ² : square meter	°C	: •	degree centigrade
ha : hectare	103	:	thousand
km ² : square kilometer	106	:	million
	109	:	billion

ABBREVIATION OF MEASUREMENT

Volume	Derived	Measure	
cm ³ : cubic centimeter	m ³ /s	: cubic meter per	second
l : liter	kwh	: kilowatt hour	
m ³ : cubic meter			
Weight	Money		
g : gram	Cz\$: Cruzado	

	:				the state of the s	
kg		kilogram		Cr\$: Cruzeir	0
				1		
ton	:	metric ton	an an an an an	US\$: US doll	ar

		ABBREVIATION OF ECONOMIC	TECHNICAL	TERMS
GDP GRDP	•	Gross Domestic Product Gross Regional Domestic Product		
GVA	:	Gross Value Added	· .	
VA	;	value Added	· .	. '

₽V : Production Value

LIST OF ANNEX

- I. TOPOGRAPHIC SURVEY
- **II. GEOTECHNICAL SURVEY**
- III. HYDROLOGICAL STUDY
- IV. SOCIO-ECONOMY
- V. FLOOD DAMAGE STUDY
- VI. ENVIRONMENTAL ASSESMENT STUDY
- VII. FLOOD CONTROL PLAN
- VIII. CONSTRUCTION PLAN AND COST ESTIMATE

ANNEX I. TOPOGRAPHIC SURVEY

enes experies subjects a take the

I. TOPORAPHIC SURVEY

TABLE OF CONTENTS

		Page
L.	INTRODUCTION	1-1
2.	SUPERVISION OF TOPOGRAPHIC SURVEY	1-2
2.1	Field Works	1-2
	2.1.1 Ground control survey	1-2
	2.1.2 River cross sectional survey	1-2
	2.1.3 Topographic survey for major structure sites	1-3
	2.1.4 Aerial photography	1-3
2.2	Indoor Works	1-3
	2.2.1 Aerial triangulation	1-3
	2.2.2 Mapping	1-3
	2.2.3 Correction of topographic appearance	1-4
	2.2.4 Drawing	1-4
2.3	Delivered Material	I-4
	2.3.1 Topographic mapping	1-4
	2.3.2 River cross sectional survey	1-4
: ·	2.3.3 Topographic survey for major structure sites	I-4

LIST OF TABLES

I.1.1 COORDINATES OF GROUND CONTROL POINTS (1/2-2/2) I-5

LIST OF FIGURES

I.1.2 GENERAL PLAN OF SURVEY AREA 1-7

1. INTRODUCTION

The topographic survey for the feasibility study on Blumenau-Gaspar river stretch includes;

- Topographic mapping on a scale of 1:10,000 and contour interval of 1 m in Blumenau-Gaspar stretch.
- (2) River cross sectional survey on Blumenau-Gaspar stretch in the Itajai river and tributaries flowing into Blumenau city, and
- (3) Topographic survey for major structure sites in Blumenau on a scale of 1:1,000 and contour interval of 1 m.

Above topographic surveys were executed from the end of February to the end of May 1987 by TERRA FOTO S/A, Brazilian contractor, which was selected by JICA, under supervision of Study Team. The survey results were carried back to Japan and inspected.

I-1

Survey area is illustrated in Fig.I.1.1.

2. SUPERVISION OF TOPOGRAPHIC SURVEY

2.1.1 Ground control survey

The ground control surveys were executed for;

- (1) Control points of aerial triangulation for topographic mapping on a scale of 1:10,000,
- (2) Basic points of river cross sectional survey, and
- (3) Control points of topographic survey for major structure sites on a scale of 1:1,000.

The datum of ground control surveys are;

- (1) Vertical : Imbituba, Santa Catarina,
- (2) Horizontal : SAD-69 (South American data in 1969) , and
- (3) Projection : Universal Transverse Mercator (UTM).

Ground control points surveyed for the feasibility study are listed in Table 1.2.1.

The horizontal control survey was carried out by traverse survey method and twenty-nine control points were surveyed. Fourteen points among these control points were set by concrete peg for continuous field works.

The vertical control survey was executed by direct leveling from national bench marks and all results were shown on aerial photographs.

The accuracy of ground control surveys have satisfied our technical specification, especially high accuracy for closure rate of coordinate of traverse was obtained.

The following equipments were used for ground control survey;

(1)	Distance measure	1	Geodimeter (Swedish) Tellurometer (South African),
(2)	Angle measure	:	Theodolite T-2 (Swiss), and
(3)	Leveling	2	Auto-Level NA-2 (West German).

2.1.2 River cross sectional survey

The river cross sectional surveys were carried out on the Itajai main stream, the Garcia river, the Velha river and the Itoupava river. The interval of cross sections were about 300 m. The datum pegs were drived on the left bank and obtained the coordinates by traverse survey. The land part was surveyed to the extend of 100 m by leveling. The river part was carried out by bathymetric survey. The accuracy of river cross sectional surveys have also satisfied our technical specification.

The following equipments were used for river cross sectional survey;

(1) Distance measure : Geodimeter (Swedish),

(2)	Angle measure	:	Transit T-1A (Swiss),
(3)	Leveling	:	Auto-Level NA-2 (West German), and
(4)	Bathymetic	:	Echo sounder RAYTHEON (American).

2.1.3 Topographic survey for major structure sites

In order to prepare the maps with a scale of 1:1,000 on the river mouth of the Garcia, Velha and Itoupava rivers, the topographic surveys were carried out for acreage of 270,000 m^2 based on ground control points.

2.1.4 Aerial photography

The available aerial photographs for the project area were shot in 1978 by whole Santa Catarina aerial photography program. But, after nine years, many construction works such as building of houses, establishing of national road (BR-470), widening of the river were accomplished. To obtain updated topographic information, it was planned to take new aerial photographs and to revise the topographic appearances.

The application of new aerial photography was submitted to Federal Government of Brazil on March 1987, and permitted on the beginning of May 1987. New aerial photographs on a scale of 1:25,000 were shot under licence (No. 083/87) in the middle of May 1987.

2.2 Indoor Works

2.2.1 Aerial triangulation

The aerial triangulation which was based on ground control survey was executed for topographic mapping on a scale of 1:10,000. As the method of aerial triangulation, the independent analytical method, PAT-M-43, which was developed by Prof. Ackerman of Stuttgart University, West Germany, was applied. The accuracy of aerial triangulation has satisfied our technical specification. The maximum residual error at ground control point was less than one meter.

The following equipments were used for aerial triangulation;

(1) Point transfer device	: PUG -4 (Swiss)
(2) Observation	: Autograph A-10 (Swiss)
(3) Recorder	: EK-22 (Swiss)
(4) Computer	: VAX 11/730 (American)
그는 친구에 물로 한 물로 가지 않는 것이 없다.	

2.2.2 Mapping

The mapping was carried out based on the aerial triangulation. The topographic features were plotted on the polyester bases and edited using Autograph A-10 (Swiss) and Stereo plotter A-8 (Swiss).

2.2.3 Correction of topographic appearance

The change of topographic appearance after the lapse of nine years of old aerial photograph was corrected by means of photogammetric method using new aerial photographs. Autograph A-10 (Swiss) was used to correction.

2.2.4 Drawing

The topographic map on a scale of 1:10,000, river cross sections and topographic map for major structure sites on a scale of 1:1,000 were drawn on polyester bases by black ink.

- 2.3 Derivered Material
- 2.3.1 Topographic mapping
 - (1) Original map (polyester base) 1 set
- (2) Copy (polyester base) 1 set
- 2.3.2 River cross sectional survey

(1) Cross section	(polyester base) 1	set
2.3.3 Topographic survey	for major structures	sites
(1) Original map	(polyester base) 1	set
(2) Copy	(polvester base) 1	Rot

I-4

Tables

Table I.2.1

COORDINATES OF GROUND CONTROL POINTS (1/2)

		Coor	Elevation	
Code No.	Vertex	East	North	(m)
0001	VRT-RIB.DO SOUTO	680,304.182	7,035,196.754	536.160
0002	VRT-INDAIAL	676,948.405	7,023,786.060	276.380
0003	VRT-RIB.BRANCO	681,479.614	7,020,886.346	497.660
2000	VRT-PTA . AGUDA	692,609.353	7,022,489.124	167.466
2001	VRT-TORRE	694,455.510	7,019,174.700	243.003
2002	VRT-POCO GRANDE	709,325.838	7,019,950.476	25.714
2003	VRT-CACHORRO	695,858.214	7,036,630.945	827.841
3000	VRT-AUX. IGREJA	702,789.389	7,019,764.606	30.476
3001	VRT-AUX. PLACAS	699,574.879	7,022,817.551	21.781
3002	VRT-AUX BR-470	699,737.110	7,024,099.942	15.298
3003	VRT-AUX.LOTEAMENTO	693,190.680	7,022,739.166	57.852
3004	VRT-AUX.CEMITERIO	691,311.882	7,016,099.848	59.384
3005	VRT-AUX PONTE	689,260.747	7,021,191.238	15.670
3006	VRT-AUX. BANESPA	692,675.587	7,020,776.360	12.492
3007	VRT-AUX. PREFEITURA	691,750.417	7,021,733.278	15.050
3008	VRT-AUX. MAFISA	689,690.676	7,026,134.039	19.901
3009	VRT-AUX. AEROPORTO	689,914.897	7,031,616.184	18.000
8000	VG-1400B	0.000	0.000	10.463
8001	VG-001	0.000	0.000	8.746
8002	VG-002	0.000	0.000	8.263
8003	VG-003	0.000	0.000	8.570
8004	VG-004	0.000	0.000	7.033
8005	VG-005	0.000	0.000	61.555
8006	VG-006	0.000	0.000	12.493
8007	VG-007	0.000	0.000	10.604
8008	VG-008	0.000	0.000	11.704
8009	VG-009	0.000	0.000	6.859
8010	VG-010	0.000	0.000	8.799
8011	VG-011	0.000	0.000	7.005
8012	VG-012	0.000	0.000	9.554
8013	VG-013	0.000	0.000	9.654
8014	VG-014	0.000	0.000	16.147
8015	VG-2009A	0.000	0.000	7.634
8016	VG-2009B	0.000	0.000	7.246
8017	VG-2009C	0.000	0.000	10.009
8018	VG-2009E	0.000	0,000	12.257
8019	VG-2009F	0.000	0.000	7.260
8020	VG-2009G	0.000	0.000	16.163
8021	VG-2009H	0.000	0.000	13.618
8022	VG-2009V	0.000	0.000	12.283

1-5

Table I.2.1

COORDINATES OF GROUND CONTROL POINTS (2/2)

		Coor	Elevation	
Code No.	Vertex	East	North	(m)
9000	HV-01	688,023.937	7,032,749.218	40.000
9001	HV-02	692,652.855	7,031,300.994	42.560
9002	HV03	686,393.813	7,026,673.463	94.000
9003	HV-04	693,197.733	7,028,451.208	24.640
9004	HV-05	696,682.644	7,028,844.837	79.216
9005	HV-06	702,693.241	7,028,608.853	286.060
9006	HV-07	686,456.783	7,020,993.424	58.690
9007	HV-08	702,349.071	7,025,294.475	117.390
9010	HV-11	689,527.546	7,016,901.266	171.010
9011	HV-12	693,384.435	7,015,808.415	40.360
9012	HV-13	698,705.447	7,016,224.053	18.266
9013	HV-14	703,217.778	7,015,854.329	19.300
9014	HV-15	709,261.055	7,019,879.571	10.740
9015	HV-16	709,821.464	7,015,713.537	26.398
9016	HV-17	692,682.259	7,020,724.988	12.400
9017	HV-18	691,268.228	7,016,091.307	59.970
9018	HV-19	689,146.991	7,021,210.142	15.220
9019	HV-20	689,674.485	7,026,141.580	24,410
9020	HV-21	702,809.318	7,019,766.312	80.680
	· .	and the second		

I-6

e en la companya de l

ANNEX II. GEOTECHNICAL SURVEY

.

II. GEOTECHNICAL SURVEY

TABLE OF CONTENTS

		Page
1.	INTRODUCTION	II-1
2.	GEOLOGY	. II-1
2.1	Regional Geology	.II-1
2.2	Geology in Project Area	.11-3
	2.2.1 General	.II-3
	2.2.2 In and around project area	.11-3
3.	FIELD WORKS AND LABORATORY TESTS	.11-6
3.1	General	.11-6
3.2	Field Works	. II-6
3.3	Laboratory Tests	.II-7
4	GEOTECHNICAL EVALUATION OF THE PROJECT AREA	.II-8
4.1	General Geologic Situations	.II-8
4.2	Structure Foundation	. 11-9
	4.2.1 Introduction	.II-9
	4.2.2 Shear strength characteristics	.II-9
	4.2.3 Settlement characteristics	.II-10
4.3	Levee Materials	. 11-11
	4.3.1 General	.II-11
	4.3.2 Soil classification	.11-11
•	4.3.3 Engineering properties	.II-11
	4.3.4 Available quantities	.II-13
5.	SUMMARY OF GEOTECHNICAL INVESTIGATION	.II-14

LIST OF TABLES

דד כ ו י	COMPARISON OF WORK OUANTITIES RETWEEN	Page
	CONTRACT AND EXECUTION	. 11-15
11.3.2	TESTING STANDARDS	II-16
II.3.3	EQUIPMENT UTILIZED	II-17
11.3.4	SUMMARY OF LABORATORY TEST (1/10-10/10)	II-18

LIST OF FIGURES

II.2.1	REGIONAL GEOLOGICAL MAP OF SANTA CATARINA STATE 11-29
11.2.2	GEOLOGICAL MAP OF PROJECT AREA
11.3.1	LOCATION MAPII-31
11.3.2	GEOLOGIC LOG OF DRILL HOLE (1/15-15/15) II-32

II-i

•	
11.3.3	DUTCH CONE SOUNDING TEST RESULT (1/8-8/8)
11.4.1	RELATIONSHIP BETWEEN SPT (N-VALUE) AND CONE RESISTANCE (q _C) FOR SANDY SOILS
11.4.2	PLASTICITY CHART OF FILL MATERIAL
11.4.3	RELATION BETWEEN NATURAL MOISTURE CONTENT AND OPTIMUM MOISTURE CONTENT

II-ii

1. INTRODUCTION

Geotechnical investigation was carried out, prior to the commencement of the feasibility Study, to obtain geotechnical features in the project area needed for the same study, in the period from March 1987 to July 1987.

Major objectives of the investigation were to grasp general geologic conditions along the Itajai main river and its tributaries, foundation conditions of proposed structure sites and engineering properties of levee materials.

The investigation work was executed by a local contractor, Tecnosolo S.A., selected on a basis of selective competitive tender, under supervision by an expert of JICA STUDY TEAM.

II-1

2. GEOLOGY

2.1 Regional Geology

The regional geology of Santa Catarina state consists of the four major groups of the Precambrian, the Palaeozoic, the Mesozoic and the Cenozoic rocks as shown in Fig.II.2.1.

The Precambrian rocks are distributed along the coast of the Atlantic with about 60 km width. These rocks are divided as follows:

- Archaeozoic complexes of the gneisses and the migmatites consisting of polyphase-banded rocks and blastoporphyritic rocks,
- superior/Archean to inferior/Proterozoic complexes of the Brusque metamorphic complex of mica-schists, metamorphic calcareous rocks, marbles, metamorphic sandstones and metamorphic volcanic rocks, the suite of gneissic granites and the valsungana intrusive suite of granites, and
- media/superior Proterozoic complexes of the Itajai group of ortho-conglomerates, litho-feldspathic sandstone, basic volcanic rocks, siltstones, rhyolites and silt-sandstones, and the Subida intrusive suite of granites.

The Palaeozoic rocks are distributed widely among the Geral mountains and the Mar mountains and sporadically in the other areas. These rocks are sediment accumulated in the Parana tectonic basin. These rocks are sedimentary rocks of glacial, fluvial, coastal or marine deposit origins. The constitutent grain sizes vary from clay to sand and some conglomerate is intercalated locally.

The Mesozoic rocks consist of the aeolian sandstones, the basaltic lava flow or dikes and the alcali rocks. The basaltic lava flows and dikes are distributed widely in the most area westside of the Geral mountains. The aeolian sandstones are distributed along the eastern periphery of the basaltic rocks. The alkali rocks are sporadically distributed concentrically in the area situated between about 28° to 28°30' of the south latitude and 50°10' to 50°20' of the west longitude.

The Cenozoic sediment consists of the semiconsolidated Tertiary/diluvial conglomerate including coarse detritus, the Tertiary/diluvial sediments of terrace deposit and marine deposits, and the alluvial deposits.

The large scale of conglomerate is found only in the limited are of the upstream reach of the Tres Barras river situated at the north-east edge of the State.

The Tertiary/diluvial deposits are developed widely in the coastal area northern from 27° of the south latitude and stretched along the coast with about 2 to 5 km width towards the south from 28° of the south latitude. This sediment is distributed sporadically in the area along the coast between 27° and 28° of the south latitude.

The alluvial deposits are developed widely in the plain area southern from 28°40' of the south latitude and with various scales in the other areas along the rivers. 2.2 Geology in Project Area

2.2.1 General

The Itajal river basin is divided by the Moema mountains (Serra do Moema), the Jaraqua mountains and their feeders at the northern watershed, by the Geral mountains (Sera Geral) and its feeders at the western watershed, and the Tijucas mountains (Serra do Tijucas) and its feeders at the south-eastern watershed as shown in Fig.II.2.2. The main stream crosses the Mar mountains (Serra do Mar) between Lontras and Apiuna, the Pomerode mountains (Serra Pomerode) around Indaial city and the Selke mountains (Serra das Selke) around Blumenau city.

The Itajai river has many tributaries. The main tributaries are, in the order from downstreams, the Itajai Mirim river, the Luis Alves river, the Benedito river, the Itajai do Norte river, the Itajai do Sul and the Itajai do Oeste river.

The geology of Itajai river basin which is illustrated in Fig.II.2.2 consists mainly of the following three groups:

- alluvial deposits of the Cenozoic age distributed widely in the downstream reach of the main stream, the Itajai Mirim river and the Luis Alves river with a maximum depth more than 30 m and narrowly along the upper main stream and the other tributaries with a maximum depth of about 10 m,
- the granulites, migmatites, metamorphic volcanic and sedimentary rock and the intrusive or plutonic rocks of the Precambrian age distributed in the easternside of the Mar mountains, and
- the sedimentary rocks of the Palaeozoic age distributed between the Mar and Geral mountains.

2.2.2 In and around project area

In the right-side area downstream from the easternside of the Mar mountains including the Benedito river and the Luis Alves river basins, the gneisses of Archaeozoic granulite is widely distributed. These rocks are also distributed locally in the right bank around Indaial city.

The anky-metamorphic sandstones of the medium and superior Proterozoic age accompanied with the conglomerate of the same age are distributed in the limited portions of this area along the main stream downstream from Blumenau and around the downstream reach of the Luis Alves river. In this limited area, the anky-metamorphic phyllite and shale from the superior Proterozoic to the Cambrian is distributed locally. The many faults are found in this limited area. Each rock in the gently sloped portion of this area is generally covered with weathered zone of more than 10 m.

In the left side area of the main stream downstream from the eastern of the Mar mountains including the Itajai Mirim river basin, the various Precambrian rocks are distributed complicately.

The micaschist aged from the superior Archaeozoic to the inferior Proterozoic is distributed locally in the Tijucas mountains near the river and in the Itajai mountains near Ilhota and Gaspar, and distributed widely in the same mountains at both sides of the middleupper reaches of the Itajai Mirim river. this rock layer is occasionally intercalated with meta-calcareous rocks, dolomite and marbles.

The Archaeozoic gneisses are stretched narrowly south-westward from Gaspar to near the Mar mountains and distributed locally around the midpoint between Gaspar and Ilhota and around the midpoint between Ilhota and Itajai.

The anky-metamorphic sandstone is also stretched narrowly along the northern of the gneisses accompanied with the metamorphic conglomerates.

The anky-metamorphic shale and phyllite from the superior Proterozoic to the Cambrian age is distributed widely south-westward from Blumenau to the eastside of the Mar mountains crossing the main stream between the northern Apiuna and Subida.

The anky-metamorphic sandstone of the medium-superior Proterozoic age is distributed locally along the northwestside of the above mentioned shale crossing the main stream between Ascurra and the northern Apiuna.

The granites from the Archaeozoic to the Proterozoic age are distributed widely in the Itajai mountains and the Tijucas mountains around Brusque. The granites of the superior Proterozoic are distributed locally in the Itajai and Tijucas mountains near the above mentioned granite masses and around Subida at the right bank of the main stream.

The metavolcanic-sedimentary sequence is distributed sporadically in the Itajai and Tijucas mountains with a shape of narrow strip from north-east to south-west. In the area along the Itajai Mirim river near to the Mar mountains, however, this sequence is distributed with a width of about 5 km and a length of about 20 km from the same direction as mentioned above. In the other areas than the ones mentioned above, this sequence is distributed with a shape of narrow strip along the southern of the anky-metamorphic sandstone from Gaspar afore-mentioned. Each rock in the gently sloped portion of this area is generally covered with a thick weathered rock layer of more than 10 m depth.

In the area downstream from the eastside of the Mar mountains, the alluvial deposits are developed along the mainstream and the tributaries. The distribution area of these deposits is widened along the main stream downstream from the vicinity of Gaspar and around the confluences with the Luis Alves river and the Itajai Mirim river. According to the current geotechnical investigation result, the depth of the alluvial deposits that mainly consist of clayey soil and fine sand, are estimated to be approximately 30 m at maximum in the project area and this clayey deposit has been found to contain thick layer of organic matter locally, particularly downstream the middle point between Blumenau and Gaspar, though the riverbed deposit consists mainly of fine to medium sand containing a little coarser particles.

In the areas other than this, the alluvial deposits consist mainly of sandy silt or silty sand intercalated with gravels. The depth of those layers is estimated generally at about 10 m in view that base rocks are occasionally found to crop out in the riverbed in the other areas.

The diluvial deposits are distributed in the right bank of the Itajai river along the coast of the Atlantic.

The Palaeozoic sedimentary rocks from the Carboniferous period to the inferior Permian period is distributed in the waterhead areas of the Benedito river and its tributary at the eastern slope of the Mar mountains.

FIELD WORKS AND LABORATORY TESTS

3.1 General

3

(1) Work items and quantities

Items and quantities of the field works and laboratory tests are shown in Table II.3.1 as a comparison between contract and execution. Since the subsurface geologic conditions encountered in the course of the investigation were appreciably different from those expected, that is, wider distribution of sandy deposits and shallower existence of stiff layer than expected, the executed quantities of the field works and the laboratory tests were much reduced.

(2) Locations

Locations of the field works consisting of core drillings, Dutch cone soundings, auger borings and test pittings are shown on Fig.II.3.2, while the laboratory tests were executed mainly in the laboratories in Rio de Janeiro, which are owned by the contractor and universities in Rio de Janeiro, and in a laboratory of the university of Blumenau.

(3) Testing Standards

Testing standards principally utilized for both the field works and the laboratory tests are listed in Table II.3.2. Although some tests such as permeability test in-situ and undisturbed sampling were executed based on common practices in Brazil, which differ slightly from the standards listed, they were within permissible limits.

(4) Equipment Utilized

Equipments utilized for this investigation are listed in Table II.3.3. Some of the rotary drilling equipments had been broken down often during the investigation work due to improper maintenance of the equipments, which caused some delay of completion of the field work. The other equipments were generally in acceptable conditions.

3.2 Field Works

The field works mainly aim at obtaining in-situ geotechnical conditions of the project area as well as collecting soil samples of both disturbed and undisturbed for the laboratory tests.

(1) Core drilling

Core drilling with in-situ tests that is one of the most useful means to survey subsurface geologic condition, was carried out at fifteen locations along the Itajai river in the project area. Results of core drilling inclusive of permeability tests in-situ, standard penetration tests (SPT), ground water level measurement and locations of undisturbed sampling are compiled in a form of geologic log as shown on Fig.II.3.2. Total drilling length was 341.05 m. (2) Dutch cone sounding

Results of Dutch cone sounding are illustrated on Fig.II.3.3, which present cone penetration resistance of subsurface soils up to approximately 15 m in maximum depth. Total sounding length was 797.93 m.

(3) Auger boring

Auger boring was carried out as a supplemental mean to the Dutch cone sounding, to enable to classify subsurface soils up to 5 m deep at the same locations as the sounding. Total boring length was 270.87 m.

(4) Test pit

Test pitting was carried out aiming at collecting disturbed soil samples for laboratory tests to examine suitability of materials obtainable and enabling close observation of subsurface conditions for levee materials. Total pitting length was 57.95 m.

3.3 Laboratory Tests

The laboratory soil tests aim at classifying soils for identification of soil characteristics and at obtaining such engineering properties of soils as shear strength, compressibility, permeability and compaction. Results of laboratory tests are summarily shown in Table II.3.4.

II-7

GEOTECHNICAL EVALUATION OF THE PROJECT AREA

4.1 General Geologic Situations

4.

(1) Depth of base rock along main stream

The core drilling results suggest that depth of base rock along the main river becomes deeper toward the downstream in the project area as shown below.

I	ocation/Section	Depth of rock to be referred	Drill hole
1.	confluence with Itoupava and its immediate downstream	12m - 24m	SM-12,13,14 & 15
2.	Section between confluences with Velha and Garcia	17m - 23m	SM-8,9,10 & 11
3.	Sta. 64km - 59km	23m - 24m	SM-6 & 7
4.	Sta. 56km - 46km	27m - 31m (or:	>31m) SM-1,2,3,4 & 5

(2) Alluvial deposits along main stream

Over the base rock, alluvial deposits consisting mainly of clayey soils and fine sand are distributed widely up to the ground surface. The alluvial deposits are normally soft in case of clayey soils and loose in case of sand, which suggest that they are not suitable as supporting layer for proposed structure foundations.

It is noted that ultra-soft deposits, which consist mainly of organic clayey soils and have penetration resistance of less than 2 kg/cm² in Dutch cone sounding, have been confirmed to exist. Those deposits are found in vicinities of the confluence with the Itoupava river (refer to Fig.II.3.3(1)), the right bank low land area around Sta.73.5 km (refer to Figs.II.3.3(2) & (3)), the confluence with the Garcia river (refer to Fig.II.3.3(4)) and sporadic spots in a section between Sta.60 km and 45 km on both banks (refer to Figs.II.3.3(5)-(8)).

(3) Subsurface situations along tributaries

Results of the sounding along three tributaries indicate that firm layers which can support the structure foundations are distributed at 10 m depth or less from the ground surface, and rather soft alluvium is deposited over the firm layers along the existing river channel floor.

4.2 Structure Foundation

4.2.1 Introduction

The field investigation indicates that reliable supporting layers do not exist or are very thin even if they exist, between the ground surface and the base rock at the proposed structure sites such as pump stations and bridges, as seen on Fig.II.3.2 and Fig.II.3.3. Accordingly, it is recommended that those structures are founded on the base rocks in principle.

4.2.2 Shear strength characteristics

Since the soft alluvium inclusive of ultra-soft alluvium are deposited thickly in the project area, stability of levee foundations and of cut slopes formed with construction of the flood diversion channel in Gaspar and with the widening of the main river, is to be examined thoroughly, if the heightening of levee is more than 5 meters and the cut slopes to be formed is steeper than the existing slopes.

(1) Since laboratory shear test for undisturbed sandy soil was not done due to difficulty in its sampling, evaluation of shear strength is to be made by using the results of SPT and Dutch cone sounding.

Fig.II.4.1 shows relationship between N-value in SPT and cone penetration resistance in Dutch cone sounding for sandy soils. The relationship has broad distribution that may be resulted from some difference of subsurface conditions due to separated locations between the core drilling and the Dutch cone sounding, though those two locations are generally close with distance of some meters or less than 10 meters. However it is judged that the formula proposed by Meyerhof, $q_c = 4N$, is applicable for this project area taking into account the above and the results of laboratory tests.

And shear strength of sandy soils is proposed to evaluate by using the commonly applied following formula proposed by Dunham,

$\emptyset = 12N^{0.5} + 15$

(2) For clayey soils, shear strength can be evaluated by results of unconfined compression tests and consolidated undrained triaxial compression tests that are obtained as follows:

Unconfined compression			. · · ·	CU - Test			
· · · · · · · · · · · · · · · · · · ·	qu (kg/cm)			C _{cu} (kg/cm ²)		ø(degree)	
Max.	1.75	· · · · · · · · · · · · · · · · · · ·	· · · · · ·	·	0.4	26	
Min.	0.18				0.1	12	
Mean	0.69	antin Talan antina Africa antina			0.26	20	

However it is noted that the above results were obtained mainly from soft to medium clayey soils. Therefore, evaluation of shear strength
of clayey soils inclusive of very soft and ultra-soft clay is to be made by using the results of Dutch cone sounding. In this case, the following formula proposed by Begeman is applicable.

$$q_c = 14 C_u (kg/cm^2)$$

(3) Taking into consideration the above discussion, and all the results of field works and laboratory tests, it is proposed to apply following shear strength for stability analyses required.

Clayey soil	Чc	(kg/c	cm2)	. :		C	u (kg	/cm2	;) ;	
ultra-soft	0		2				0		0.1	· ·
soft	2	-	4			0	.1		0.3	: '
medium	4	÷	20			0	.3		0.8	:
	······································				· · · · · · · · · · · · · · · · · · ·			· · · · · ·	· · · · · · · · · · · · · · · · · · ·	<u> </u>
Sandy soil	N-Va.	lue	··	q _C (k	g/cm	2)	: ::. :::::::::::::::::::::::::::::::::	ð (d	egree)
very loose	0	4		0		16		·····	25	
loose	4 -	10	· .	16	***	40		-	30	
medium	10 -	30	· ·	40	-	120			35	

4.2.3 Settlement characteristics

Results of laboratory consolidation test are useful to evaluate settlement characteristics of clayey soil foundation in case the soft ground is loaded with levee embankment. The results of consolidation tests are summarised as below.

	Compression index C _C
Max.	0.98
Min.	0.12
Mean	0.27

The above result indicates that compression index for medium to soft clay is about 0.2 and that for very soft clay is about 1.0. Although no consolidation test result was obtained for ultra-soft clay, it is expected that its compression index is obviously more than 1.0 and might be about 2.0 or more.

4.3 Levee Materials

4.3.1 General

- (1) The levee material investigation was carried out aiming to examine suitability of materials obtainable near the embankment sites by means of sixteen numbers of test pittings in the field and the laboratory tests as mentioned in the preceding sections.
- (2) The investigation was focussed on two potential material sources; one is residual soils that are distributed superficially on most of hill slopes in the project area, and the other is alluvial deposits that form the Itajai river banks.

4.3.2 Soil classification

As seen on Fig.II.4.2, a large part of residual soils are classified into clayey soil, i.e. CL, CH or C'H, that has relatively higher plasticity.

On the other hand, the river bank materials (TP-9 & 16) are classified into silty soil, i.e. CL-ML that has relatively low plasticity.

4.3.3 Engineering properties

Engineering properties of those materials were examined through respective laboratory tests, of which results are presented hereunder.

(1) Permeability

Coefficient of permeability of the residual soils and the river bank materials under the maximum dry density and optimum moisture content were obtained as below.

	Residual soil	River bank material
Max (cm/s)	2 x 10~5	2 x 10-6
Min (cm/s)	1 x 10-7	1 x 10-7
Mean(cm/s)	9 x 10-7	6 x 10-6

These results show that both materials have low enough permeability as the levee materials.

(2) Shearing strength

Shearing strength of those materials was examined by triaxial compression test under consolidated undrained condition with porepressure measurement, and their results are as follows.

		Resi	dual s	soil	Ri	ver ba	ink mat	erial
Cohesion	(Kg/cm2)		<u>.</u>			···· · · · · · · · · · · · · · · · · ·		
Max Min	I	• • •	1.0 0.25	*				
Mean	· ·		0.71				0.1	
Internal	friction	(degree)						
Max			29.0				:	
Min			18.2		1. 		-	
Mean			23.9	: : :		3	33	

The above results show that those materials have relatively high shear strength so that slope stability problem in relation with levee embankment is to be focussed chiefly on the levee foundations.

(3) Compressibility

Compressibility of those materials was examined by one dimensional consolidation meter, of which results are as follows.

·		
· · ·	Residual soils	River bank soil
• • • • • • • • • • • • • • • • • • • •	······································	
Max.	0.37	an a
Min.	0.12	-
Mean	0.23	0.16

The above results indicate that compressibility of those materials are relatively small so that potential compressive settlement of levee will not be large after construction.

(4) Resistibility of piping and erosion

Resistibility against piping phenomenon or erosion is preliminarily evaluated by using plasticity index in case of cohesive soil. In Fig.II.4.2, residual soils having plasticity index of more than 20 can be classified as high resistible soil against piping or erosion.

The river bank materials (TP-9 & 16) that have very low plasticity index of about 7 or less and consist of silty soils, are susceptible to piping or erosion.

The remainder residual soils that have plasticity index of 9 to 18, consist of highly weathered rocks of which textures are still observed. Those soils should be regarded as low to medium resistibility against piping and erosion.

(5) Workability in embankment work

Fig.II.4.3 shows relations between natural moisture content (NMC) and optimum moisture content(OMC) that is derived from laboratory compaction test. It is seen that most of soils have higher NMC than OMC by four(4) to nineteen(19) percent. However it is noted that unexpectedly continuous rainfall occurred during this investigation work, which might have resulted in extraordinarily higher NMC of the soils. Taking into consideration such seasonal variation of moisture content, it is expected that annual average NMC will be much closer to OMC. However some measure to adjust the NMC might be required so as to assure good workability of embankment work for such type of soils as CH and MH that are commonly regarded as relatively poor materials for workability in case their NMC is higher than OMC by several percents.

4.3.4 Available quantity of residual soils

As discussed in the preceding clause, the residual soils which are deemed to be suitable for the levee embankment are distributed on most of hill slopes in the project area so that its available quantity is expected to be much greater than required for the proposed embankment work for levee heightening.

ÍI-13

5. SUMMARY OF GEOTECHNICAL INVESTIGATION

Main points of the result of the geotechnical investigation are summarized as follows:

- (1) The major structures proposed are to be founded on the base rock, depth of which ranges from 12 m to 31 m or more and which has a trend to become deeper toward the downstream along the Itajai river.
- (2) The proposed structures in the vicinities of three tributaries could be founded on firm layers or base rock that are distributed at around 10 m depth or less under the ground surface.
- (3) The stability of cut slopes, which will be steeper than existing, and of foundations of levee having more than 5 m, is to be examined thoroughly in case the ultra-soft deposits are distributed appreciably thick thereunder.
 - The engineering properties of foundation soils are given in the preceding chapter.
- (4) The earth materials for levee is obtainable from residual soils that are suitable for levee embankment and are distributed on hill slopes with available quantity far more than required.

Table II.3.1

COMPARISON OF WORK QUANTITIES BETWEEN CONTRACT AND EXECUTION

••••••		Quan	tity	(3) =	Amount
	ITEMS (1)Contract	(2) Executed	(2)/(1) Ratio (%)	Executed (US\$)
Fie	eld Works			· .	
1.	Transportation	L.S.	L.S.	100	9,068.89
2.	Assembling/ Dismantling	14	15	107	687.90
3.	Drilling	350 m	341.05	97	12,124.32
4.	Permeability test in-situ	45	34	76	2,189.94
5.	SPT	175	136	7.8	3,153.84
6.	Undisturbed sampling	70	22	31	1,598.30
7.	Sounding	900	797.93	89	49,471.66
8.	Auger boring	350	270.87	77	4,466.64
9	Test pit	70	57.95	83	2,896.50
· .	Sub-total				85,657.99
Labo	ratory Tests				
1.	Moisture content	140	104	74	1,500.72
2.	Specific gravity	105	69	66	995.67
3.	Particle size	105	69	66	2,133.48
4.	L.L.	105	69	66	995.67
5.	P.L.	105	69	66	995.67
6.	Compaction	21	18	86	547.20
7.	Permeability	21	18	86	1,706.58
8.	Unconfined compression	70	21	30	714.21
9.	Triaxial (cu)	12	8	67	1,525.20
10.	Triaxial (cu)	12	11	92	2,970.11
11.	Consolidation	21	21	100	3,150.00
	Sub-total	*.		· · · · · · · · · · · · · · · · · · ·	17,234.51
	Grand total				102,892.50

II-15

	Items	Standards
Fie	eld Works	
1	Core drilling	Earth manual
2	Permeability test in-situ	Earth manual E-18
3	Standard penetration test	ASTM D1586-74
4	Undisturbed sampling	ASTM D1587-74
5	Deep sounding (Dutch-cone)	ASTM D3441-79
6	Anger Boring	ASTM D1452-72
•	- Visual manual procedure for "Description of soil"	ASTM D2488-69 (1975)
7	Test pit	- ditto -
lab	oratory Tests	
8	Moisture content test	ASTM D 2216
9	Specific gravity	ASTM D 854
10	Particle size	ASTM D 422
11	Liquid limit	ASTM D 423
12	Plastic limit	ASTM D 424
13	Compaction	ASTM D 698
14	Permeability (Variable Lend)	ASTM D 2435
15	Unconfined compression	ASTM D 2166
16	CU-Test with undisturbed	Earth manual E-17
17	CU-Test with remoulded	- ditto -
	Consolidation (Undisturbed)	ASTM D 2435
18		

Table II.3.2 TESTING STANDARDS

II-16

Table II.3.3 EQUIPMENT UTILIZED

ItemsQuantityModel No.ManufacturField EquipmentMAQUESONDA, MACH-850BrasilRotary drilling equipment2SONDEQ, SS-21BrasilRotary drilling equipment2SS-21BrasilWater pump2MT-100BrasilWater pump2MT-100BrasilDutch-cone sounding2Cap. 2tBrasilLaboratory Equipment2Ronald Top LTD.BrasilConsolidation test apparatus10Soil Test TopUsa			·····	
Field EquipmentMAQUESONDA, MACH-850BrasilRotary drilling equipment2SONDEQ, SS-21BrasilRotary drilling equipment2SONDEQ, SS-21BrasilWater pump2MAQUESONDA MT-100BrasilWater pump5BS-101BrasilDutch-cone soundingMAQUESONDA Cap. 2tBrasilLaboratory Equipment2Ronald Top LTD.BrasilTriaxial compression test apparatus2Ronald Top LTD.Brasil	Q	uantity	Model No.	Manufactured
Rotary drilling equipmentMAQUESONDA, MACH-850BrasilRotary drilling equipment2SONDEQ, SS-21BrasilWater pump2MAQUESONDA MT-100BrasilWater pump5BS-101BrasilDutch-cone sounding2Cap. 2tBrasilLaboratory Equipment2Ronald Top LTD.BrasilConsolidation test apparatus10Soil Test Inc.UCA	Field Equipment			
Rotary drilling equipmentSONDEQ, SS-21BrasilWater pump2MAQUESONDA MT-100BrasilWater pump2SOCAR BS-101BrasilDutch-cone soundingMAQUESONDA Cap. 2tBrasilLaboratory Equipment2Cap. 2tBrasilTriaxial compression test apparatus2Ronald Top LTD.BrasilConsolidation test apparatus10Soil Test TopUSA	Rotary drilling equipment	2	MAQUESONDA, MACH-850	Brasil
Water pumpMAQUESONDA MT-100Water pump2Water pumpSOCAR BS-101Dutch-cone soundingMAQUESONDA 22Cap. 2tBrasilLaboratory EquipmentTriaxial compression 	Rotary drilling equipment	2	SONDEQ, SS-21	Brasil
Water pumpSOCAR BS-101BrasilDutch-cone soundingMAQUESONDA 2BrasilDaboratory EquipmentZCap. 2tBrasilTriaxial compression test apparatus2Ronald Top LTD.BrasilConsolidation test apparatus10Soil Test TroUSA	Water pump	2	MAQUESONDA MT-100	Brasil
Dutch-cone soundingMAQUESONDA Cap. 2t2Cap. 2tBrasilLaboratory EquipmentTriaxial compression test apparatus2Consolidation test apparatus10Soil Test Inc.	Water pump	5	SOCAR BS-101	Brasil
Triaxial compression test apparatus 2 Ronald Top LTD. Brasil Consolidation test apparatus 10 Soil Test Troch USA	Dutch-cone sounding	2	MAQUESONDA Cap. 2t	Brasil
Triaxial compression test apparatus 2 Ronald Top LTD. Brasil Consolidation test apparatus 10 Soil Test Trochust	Laboratory Equipment			
Consolidation test apparatus 10 Soil Test The USA	Triaxial compression test apparatus	2	Ronald Top LTD.	Brasil
TI HOW IN SOLL TOST THE. USA	Consolidation test apparatus	10	Soil Test Inc.	USA
Other test apparatus Solo Test LTD. Brasil	Other test apparatus		Solo Test LTD.	Brasil

Table II.3.4 SUMMARY OF LABORATORY TEST (1/10)

SAMPLE NO				(I) I-WS	(2)	(3) - ((4)	SM-2 (1)	(2)	SM-3(1)}	(2)	(3)	:
SAMPLE DEP'	TH		(m)	13-13.5	16-16.6	20-20.62	0.6-21.1	7.5-8.0	18.5-19	9-9.5]	9.5-101	5.0-15.5	
	GRAVEL		(%)	0		0	0	0	0	0.	0.1	0	•. •
	SAND		(8)	38	27	201	26	56.9	31.9	51.7	23	20	
	SILT		(8)	39	37	40	32	32.5	46.6	35.3	46	38	:
GRADATION	CLAY		(8)	23	36	40	42	10.6	21.5	13	31	42	
	MAX DIAMET	Ϋ́Ξ	(um)	2	2	2	2	2) -	0.84	2	2	2	
	COEFFICIEN	T OF UNIFORMITY	Ωc	1		I	1	1	1		- · · · -		
	COEFFICIEN	T OF CURVATURE	DC	1	1		ŀ		1	1	1	-	
CON-	LIQUID LIM.		wL (8).	63	63	59		NP	33.9	29-99	35.2	48.3	
SISTENCY	PLASTIC LI	MIT	WP (%)	34	25	27	15		19.1	18.19	20.1	24.7	
	PLASTICITY	INDEX	đI	29	38	32	18	1	14.8	11.8	15 1	23.6	
PERMEABILI	ΤT		K(cm/s)				ł		-			1	
COM-	MAX DRY DE	NSITY	8 m (kg/cm3)	1					- - -		-		سان
PACTION	OPTIMUM MO	ISTURE CONTENT	(8) OM	l	1	1	l	•	I	-	-		
SPECIFIC G.	RAVITY OF S	TIO	S.D	2.28	2.56	2.43	2.69	2.69	2.58	2.73	2.71	2.74	
	WATER CONT.	ENT	(%) M	1101	59	59	26	25.2	31.18	33.95	38.68	42	1
NATURAL	WET DENSIT	X	δt(q/m3)	1.386	1.624	1.602	1.957	1.967	1.829	1.753	3 - 71	1	·
STATE	VOID RATIO		Û	2.45	1.51	1.42	0.73			-	-	1	
	DEGREE OF	SATUPATION	Sr (8)	100	100	100	96	-	-	(-		
	UNCONFINED	COMPRESSIVE STRENGTH	qu (kg/cm2)	0.65	0.36	0.7	0.4	0.4	0.75	0.28	0.4	1	
	COM-	MODULUS OF ELASTICITY	E50 (kg/cm2)	1	1	-	ļ	1	1		• • •	1	
	PRESSION	SENSITIVITY RATIO	st	1	 	1	ļ		-	1		1	
MECHANICAL	**	TYPE OF TEST	***	1	-	1	1	1	1	1	-	- co	ا
PROPERTIES		COHESION	C (kg/cm2)						1	1	1	0.25	
	(2)	ANGLE OF INTERNAL FRICTION	(o) ø			ŀ	1	-				16	
	-ITOSNOD	YIELD STRESS OF CONSOLIDATION	PV (kg/cm2)	-		_	l	1.2		2.2	-	1.7	; ; ;
	DATION	COMPRESSION INDEX	CC	-	1		l	0.22	1	0.12	4.	0.51	
CLASSIFICA	VTION			C'H]	CH	СН	CL		CI	CL	IJ	CT :	
-										!			

II-18

(BAR OVER THE SYMBOL SHOWS THE MEASUREMENT OF PORE WATER PRESSURE) ** (1): DIRECT SHEAR (2): TRIAXIAL COMPRESSION *** UNCONSOLIDATED UNDRAINED: UU

CONSOLIDATED UNDRAINED: CU

CONSOLIDATED DRAINED: CD

Table II.3.4 SUMMARY OF LABORATORY TEST (2/10)

	in the second												
AMPLE NO				SM-3 (5)	(9)	(1)	(8)	SM-4 (1) S	M-5 (1)-	(2) S	(T) 8-W	(3)	<u> </u>
AMPLE DEP	ТН		(m)	19-19.5	19.5-20.0	25-25.5	25.5-26	20-20.5	5-5.5	5.5-6	5-5.5	10.5-	H
	GRAVEL		(8)	0	0.	- 0 	0	0	0	0	T I I		0
•	SAND		(%)	9.2	3.8	4 3	15.4	0:3	2.2	3.4	18.9		25
•	SILT		(%)	53.2	56.2	41.8	46.4	64.1	70.3	58.1	901		55
RADATION	CLAY		(%)	44	40	37.5	31	35.6	27.5	38.5	20		20
	MAX DIAMET	2.R.	(uuu)	58.0	0.42	0.42	2	0.42	0.42	0.42	101	0	84
•	COEFFICIEN	T OF UNIFORMITY	° N	ł	1		1		1	1	1	1	ľ
	COEFFICIEN	T OF CURVATURE	0 D	1	1	-	1			1	1	1 :	
-NOC	LIQUID LIM		(%) Tw	45	49	48	38	63	38	41	33.9	28	2.2
SISTENCY	PLASTIC LI	MIT	WP (8)	25	22	21	25	38	20	28	21:3	18	0
	PLASTICITY	INDEX	Ц Н	20	24	27	13	25	18	13	12.6		(m M
PERMEABILI	TΥ		K(cm/s)								: t		Γ
-MOC	MAX DRY DE	ALISN	Jm (kg/cm3)	1	1		1	1					Γ
PACTION	OP TIMUM MO	ISTURE CONTENT	(%) 0M	I	1	l	1		1		3 1 1 1 1	1	Ē
SPECIFIC G	RAVITY OF S	TIOS	ŝ	2.66	2.69	2.62	2.52	2.35	2.67	2.7	2.64	2	68
	WATER CONT	ENT	(%) M	28.85	31.23	48.23	29.69	63 67	37.95	36.5	28.9	31	0
VATURAL	WET DENSIT	X	0 t (g/m3)	2.048	1	1.984	2.015	1.611	1.896	- 		1.	869
STATE	VOID RATIC		Û	1			1			-	-	1 1 2	Γ
	DEGREE OF	SATUPATION	Sr (8)	1	1					1	1		Γ
	UNCONF INED	COMPRESSIVE STRENGTH	qu (kg/cm2)	1.75	1	1.5	1.7	0.75	0.95) 	1	0	[œ [⊣
	COM-	MODULUS OF ELASTICITY	E50 (kg/cm2)	1	ł		1	1	1	l	1	1	
. • .	PRESSION	SENSITIVITY RATIO	St.	1	1		1	1	1	.1	1		:
<i>IECHANICAL</i>	**	TYPE OF TEST	* * *	CU	1		1	ca	CC .		cu	BO	
PROPERTIES		COHESION	C (kg/cm2)	1.0			1	0.25	0.3		0.2	0	-25
	(2)	ANGLE OF INTERNAL FRICTION	(o) ø	20	1	1		12	19.5		26		26
	CONSOL I-	YIELD STRESS OF CONSOLIDATION	Py (kg/cm2)	3.7	3.3	1.5	0.7	6 T	0.65	0.7	1.3		9-1
- - - - -	DATION	COMPRESSION INDEX	S S	0.23	0.22	0.19	0.13	098	0.2	0.1.7	0.23	0	21
LASSIFICA	NOIL			ML	CT :	CL	ML	C'H	CL -	ML	CL	CT	
									-				ĺ

** (1): DIRECT SHEAR (2): TRIAXIAL COMPRESSION
*** UNCONSOLIDATED UNDRAINED: UU

(BAR OVER THE SYMBOL SHOWS THE MEASUREMENT OF PORE WATER PRESSURE)

CONSOLIDATED UNDRAINED: CU

CONSOLIDATED DRAINED: CD

II--19

Table II.3.4 SUMMARY OF LABORATORY TEST (3/10)

AMPLE NO				SM-9(1)	(1)11-WS	(2)	(3)	SM-12(1)	SM-13(1)	(3) [5	(1) + 1 - M
SAMPLE DEP	ТН		(m)	5-5.5	5-5.5	7.5-8	9-9-5	5-5:5	5-5.5	0.5-11	5-5.5
	GRAVEL		(8)	0	0	0	0	0	0	0	0
•	SAND		(8)	44.7	ΤŢ	9	20.5	49.6	13.3	15]	18.2
	SILT		(8)	41.1	63	42	53	35.4	39.7	46.6	62.9
RADATION	CLAY		(%)	14.2	2.6	52	26.5	15	26.4	38-4	18.9
	MAX DIAMET	2.R.	(uuu)	0 84	0.42	0.42	2.5.5	0 84	0.42	2	0.84
	COEFFICIEN	T OF UNIFORMITY	0 C			 					
	COEFFICIEN	T OF CURVATURE	nci							1	
-NO	LIQUID LIM	LT.	(%) TM	28.8	33	49	26	NP	31	50	27
SISTENCY	PLASTIC LI	MIT.	WP (%)	1.7	20	23	10		191	21	20
	PLASTICITY	INDEX	đΙ	11.8	13	26	9.1.	1	- 12	29	L
PERMEABILI	λL		K(cm/s)				,		ъс.	1	
-WO:	MAX DRY DE	NS I TY	Tm (kg/cm3)	1			,	1	1		
PACTION	OF TIMUM MO	ISTURE CONTENT	(8) OM							l e e	
SPECIFIC G	RAVITY OF 5	0IT	SS	2.71	2.83	2.72	2.78	2.52	2.55	2.63	2.5
	WATER CONT	ENT	(&) - M (&)	47.9	29.1	30.51	23.99	22.59	28.89	27.57	35-95
VATURAL	WET DENSIT	λ	ð t (g/m3)	1.719		1.943	2.078	1.998	2:012	2:001	1.725
STATE	VOID RATIO		9	ļ		1	1	l	-	1	
	DEGREE OF	SATUPATION	Sr (%)		- - - - -	1	1	1	1		
	UNCONFINED	COMPRESSIVE STRENGTH	qu (Kq/cm2)	0.48		0.74	0.28	0.3	9.0.6	1.	0.38
	COM-	MODULUS OF ELASTICITY	E50 (kg/cm2)	-		1	1				
	PRESSION	SENSITIVITY RATIO	St					 			1
TECHANICAL	**	TYPE OF TEST	* *						cu : l		CO.
PROPERTIES		COHESION	C (ka/cm2)						0.4	 ►	0.3
	(2)	ANGLE OF INTERNAL FRICTION	ø (o)	-	1	1			18.5	1	24
	-ITOSNOD	YIELD STRESS OF CONSOLIDATION	Py(kg/cm2)	- 1	1.2		1	1.2	L.2	1	5 . T
	DATION	COMPRESSION INDEX	CC		61.0		1	0.24	0.19		0.28
JLASS IF ICA	VIION				CL	CL	CL	. -	CL	CH	CI-MI-

** (1): DIRECT SHEAR (2): TRIAXIAL COMPRESSION
*** UNCONSOLIDATED UNDRAINED: UU

(BAR OVER THE SYMBOL SHOWS THE MEASUREMENT OF PORE WATER PRESSURE)

CONSOLIDATED UNDRAINED: CU

CONSOLIDATED DRAINED: CD

TABLE II.3.4 SUMMARY OF LABORATORY TEST (4/10)

AMPLE NO				TP-1	TP-2		TP-3		TP-4			
AMPLE DEP	ΗŢ		(m)		7	1.5	1	2	1	1.5	1-0-1-5	1.1
	GRAVEL		(8)	0 1	0.1	0]0	0	0	0	0	
- - -	SAND		(%)	4.5	3.7	3.4	3	11.4	1.4	1.2	1.1	10.0
	SILT		(%)	37.4	70.8	37.6	34	44.6	46.8	47.2	55.9	1.5
RADATION	CLAY		(8)	58	25.4	59	63	44	51.8	51.6	43	÷ .
	MAX DIAMETH	ßR	(mm)	10	4 76	2	2	2	1.2	1.2	2	
· · . ·	COEFFICIEN	T OF UNIFORMITY	00	-		-	• • •		1		-	1.
	COEFFICIENS	T OF CURVATURE	l . Uc) 				1		
-NON-	LIQUID LIMI		(%) IM (%)	59	35[58	59	ۍ ۲	46.9	49.6	64	e 1. s
SISTENCY	PLASTIC LIN	VIT V	4P (%)	31	21]	26	28	27	31.7	31.4	29	1.1
	PLASTICITY	INDEX	IPI	28	14	32	31	23	15.2	18-2	35	10 E
PERMEABILI	TΥ		<pre>K(cm/s)</pre>	9-01X1	2X10-6	1	3X10-7		1	1	8XI0-7	
-MOC	MAX DRY DEI	NSITY	8 m (ka/cm3)	1.461	1.7	1	1.485		1		1.557	699
PACTION	OP TIMUM MO	ISTURE CONTENT	(%) OM	28.6	161	1	28.81	1			24.2	
SPECIFIC G	RAVITY OF S	TIO	SS	2.61	2 67	2.62	2.63	2.7	2 - 702	2 744	2.64	
	WATER CONTI	ENT	(%) M	32.5	24	29.3	31.4	29.3	35.6	31.8	30.13	
UATURAL	WET DENSITY	λ	[δ t (g/m3)	-								1.
TATE	VOID RATIO		0	1					1			1
	DEGREE OF :	SATUPATION	Sr (%)	l	1			1		 		21
	UNCONFINED	COMPRESSIVE STRENGTH	gu (kg/cm2)	l U		1	1	1	1			
··· ···	COM-	MODULUS OF ELASTICITY	E50 (kg/cm2)	l	1	1 1 1 1 1	ĩ	1	 		-	
	PRESSION	SENSITIVITY RATIO	St	ł	1		.1	1		1		
TECHANICAL	**	TYPE OF TEST	***	<u>cu</u>	SU						B	
PROPERTIES		COHESION	C (kg/cm2)	0.92	0.44	1	1				0.25	
	(2)	ANGLE OF INTERNAL FRICTION	(o) ø (o)	18.2	24.1	- - - -	t i		1		29	
	CONSOLI-	YIELD STRESS OF CONSOLIDATION	PV(kg/cm2)	0.72	1.1	1 1 1)			0.78	1.1
	DATION	COMPRESSION INDEX	°C -	0.25	0 16		1		-	l	0.37	1.1
LASSIFICA	NOIT			C'H	CL	СН - {	CH	C'H	, MT	Ţ	CH	
									 '.			

II**--2**1

** (1): DIRECT SHEAR (2): TRIAXIAL COMPRESSION *** UNCONSOLIDATED UNDRAINED: UU

(BAR OVER THE SYMBOL SHOWS THE MEASUREMENT OF PORE WATER PRESSURE)

р С CONSOLIDATED UNDRAINED:

CONSOLIDATED DRAINED: CD

Table II.3.4 SUMMARY OF LABORATORY TEST (5/10)

AMPLE NO		ويربيك والمرابع		3.00			1 3 0 0 0	j			
											·
AMELE DEP	ľ.H.		(m)	1.5	2	4	1.51	. 2	3-3.5[4.5-5	
	GRAVEL		(8)	0.3	1.0	0.3	1.4	1.3	0	0.4	
	SAND		(8)	14.9	2.6	17.8	21.9	23.2	30.9	29	
	SILT		(8)	18-2	48.4	15.9	24	26.6	45.6	24.1	
RADATION	CLAY		(%)	66.6	49	66	52.7	48.9	23.5	46.5	
	MAX DIAMET	ER	(uuu)	4.8	3	4.8	9.5	5 5	2	4 67	÷.,
	COEFFICIEN	T OF UNIFORMITY	nc	1	1	1	1				
	COEFFICIEN	T OF CURVATURE	on	1		1	1:	 			
-NOC	MIT GINOIT	L.J.	(%) ML (%)	86.3	49	80.8	74.3	71.3	45	14	
SISTENCY	PLASTIC LI	TIM	WP (8)	59.6	28	52.9	50.3	40.3	29	36	. •
	PLASTICITY	XEONI	đI	26.7	-21	27.9	24	118	91	41	
PERMEABILI	ТY		K(cm/s)	1	3X10-6	1	1	1	8X10-6	6X10-6	
-MOC	MAX DRY DE	YTIXY	[2 m (kg/cm3)	1	1.527	1	1	 	1.554	1.467	'
PACTION	OPTIMUM MO	ISTURE CONTENT	(%) OM	1	25.5	1	1	 	23.8	27-8	
SPECIFIC CI	RAVITY OF S	TIOS	GS	2.736	2.67	2.631	2.636	2.643	2.67	2.66	Ľť.
	WATER CONT	ENT	(8) M	44.56	43.78	41.45	33.38	33	27.16	24.73	1
VATURAL	WET DENSIT	Α.	5 t (g/m3)	1	1					 	1.5
STATE	VOID RATIO		Ð	1	-		1			,	
	DEGREE OF	SATUPATION	Sr (%)	: : !	1	1)	1	1		
	UNCONF INED	COMPRESSIVE STRENGTH	gu (kg/cm2)	1	1	1	1		 		
	COM-	MODULUS OF ELASTICITY	E50 (ka/cm2)	1	1	, 1 1 1	 1			1	÷.
	PRESSION	SENSITIVITY RATIO	St	1	1		 				÷.,
TECHANICAL	**	TYPE OF TEST	***	1	cu) 		<u>CŪ</u>		
PROPERTIES		COHESION	C (kg/cm2)		0.52			 	0.8		
	(2)	ANGLE OF INTERNAL FRICTION	(o) ø	1	25				20	,	$[\cdot] \in$
 - -	CONSOLI-	YIELD STRESS OF CONSOLIDATION	Py (kg/cm2)	-	0.45	•	1	l	: 0 ° E	1	1
	DATION	COMPRESSION INDEX	S	1	0.24	1	1	4	0.12	1	
LASSIFICA	LON			MH	Ш	MH	C'H C	C'H	Q	C'H'	1.1
	:.										

** (1): DIRECT SHEAR (2): TRIAXIAL COMPRESSION
*** UNCONSOLIDATED UNDRAINED: UU

CONSOLIDATED UNDRAINED: CU CONSOLIDATED DRAINED: CD

(BAR OVER THE SYMBOL SHOWS THE MEASUREMENT OF PORE WATER PRESSURE)

11-22

Table II.3.4 SUMMARY OF LABORATORY TEST (6/10)

		والمنافع فالمنافع والمنافع والمنافعة والمنافع والم									
SAMPLE NO				TP-7		TP-8 1		TP-9		TP-10	
SAMPLE DEP	ТН		(m)	1	I.5	1.5	2	1.5	2	1[2
	GRAVEL		(%)	0	0	0.2	0.1	0	0	0_3	0
	SAND		(%)	0 1	1 2	4	5.7	41.5	46.2	17:9	31.9
	SILT		(%)	39.9	32.8	37:8	49.2	39.3	37.1	25.9	36.6
GRADATION	CLAY		(%)	60	99	58	45	19.2	16.7	55.9	31.5
	MAX DIAMET'	ßR	(unu)	0.84	2	10]	4.76	0.6	0.84	4.8	0.84
	COEFFICIEN	C OF UNIFORMITY	0 C		2	1		1	1	1	1
	COEFFICIEN	P OF CURVATURE	UC.	1		1		1	1		1
CON-	LIQUID LIM.	(T	MT (8)	62	55.8	80	50	25.5	24	59.2	36
SISTENCY	PEASTIC LI	411	(%) dM	32	36.6	36	24	18 6	17	30.71	18
	PLASTICITY	INDEX	đI	30	19.2	44	26	69	12	28.5	81
PERMEABILI	ТҮ		K(cm/s)	7X10-7		2X10-5		1	2X10-6		2X10-7
сом-	MAX DRY DEI	ATISV	Vm (kg/cm3)	1.471		1.47			1.84	1	1.742
PACTION	OPTIMUM MO.	CSTURE CONTENT	(8) OM	27.5	1	26.7			14	1	17.3
SPECIFIC G	RAVITY OF S	OIL.	SS	2.71	2.732	2 64	2.66	2.629	2.64	2.694	2 6
	WATER CONTI	LNT.	(8) M	39.62	34.5	38-4	26.8	26.13	27.55	32.47	31.64
NATURAL	MET DENSIT.		ğ t(α/m3)						1	1	
STATE	VOID RATIO		e		3 1 1		1		 		
	DEGREE OF	SATUPATION	Sr (8)				1				
	UNCONFINED	COMPRESSIVE STRENGTH	qu (kg/cm2)	-	1					1	,
	COM-	MODULUS OF ELASTICITY	E50 (kg/cm2)		-		1	1	1		1
	PRESSION	SENSITIVITY RATIO	. St		1						,
MECHANICAL	**	TYPE OF TEST	***	cu l	-	<u>c</u> 0	- - -		<u>cu</u>		СŪ
PROPERTIES		COHESION	C (kg/cm2)		1			-	0.1	- - -	0.7
	(2)	ANGLE OF INTERNAL FRICTION	(o) ø	20	-	23.5	1		33		21
	CONSOLI-	YIELD STRESS OF CONSOLIDATION	Py(kg/cm2)	0.4	-	0.75	1	1	-	1	0.75
	DATION	COMPRESSION INDEX	ပ္ပ	0.26	t	0.2	ł	1	1		61.0
CLASSIFICA	NOIT			C'H	MH	C'H	- CH -	CL-ML	CL-ML	C'H'	CL:

** (1): DIRECT SHEAR (2): TRIAXIAL COMPRESSION
*** UNCONSOLIDATED UNDRAINED: UU

CONSOLIDATED UNDRAINED: CU

CONSOLIDATED DRAINED: CD

(BAR OVER THE SYMBOL SHOWS THE MEASUREMENT OF PORE WATER PRESSURE)

11-23

Table II.3.4 SUMMARY OF LABORATORY TEST (7/10)

							.				
SAMPLE NO				0I-aL	TP-II			TP-12			
SAMPLE DEP	ТН		(m)	ε	1	1.5-2.0	2	1	2	ო	-
	GRAVEL		(%)	Ö	õ	0	0	3.11	ີ ເດ ເຕ	93	
÷.	SAND		(%)	20.6	3.5	20	5	15.3	22	18-5	
	SILT		(8)	32.9	49.6	54	69.6	59.8	55:3	64.6	
GRADATION	CLAY		(8)	46.5	46.9	2.6	25.4	21.8	19-2	13.6	
	MAX: DIAMET	Дí,	(unu)	0.6	5	0.42	1.2	4.8	4.8	4.8	
	COEFF ICIEN	T OF UNIFORMITY	DC		1		1	1		1	
	COEFFICIEN	T OF CURVATURE	UC		1	5. 1	.1	1	1	,	
CON-	LIQUID LIM	ΤT	(-8) Jw	42.1	41	38	35.5	48.7	21 2	50	
SISTENCY	PLASTIC LI	TIM	(8) GM	24.1	26.5	18	23.9	34.6	26	35.7	
	PLASTICITY	INDEX	đΙ	181	14.5	20	11.6	14.1	25	14.3	
PERMEABILI	TY		K(cm/s)		1	1×10-6	1		7×10-6	1	
сом-	MAX DRY DE	AIISN	Km (kg/cm3)	1	1	1,61	1	1	1.435	1	
PACTION	OP TIMUM MO	ISTURE CONTENT	(%) OM	ł		22.8	1	 	26.5		
SPECIFIC G	RAVITY OF S	TIO:	S.S.	2.63	2 704	2.76	2.617	2.561	2.72	2.625	
	WATER CONT	ENT	(8) M	31.52	33.96	27.7	24 04	35:34	34.86	33.97	
NATURAL	WET DENSIT	λ	5 t (q/m3)	-	1	- - - -	I			1	
STATE	VOID RATIO		Û	1	i i t	- 1 - 1	1		 		
	DEGREE OF	SATUPATION	Sr (%)	1		1					
	UNCONFINED	COMPRESSIVE STRENGTH	gu (kg/cm2)	· · ·	1	L.				 	
	COM-	MODULUS OF ELASTICITY	E50 (kg/cm2)	1	1		:		: 	1	
	PRESSION	SENSITIVITY RATIO	St	-	1	-	1	 1	1		
MECHANICAL	**	TYPE OF TEST	***	1	1	1	1	1	 - 	1	
PROPERTIES		COHESION	C (kg/cm2)	1	1		ţ	1 1 1	:	1	
-	(2)	ANGLE OF INTERNAL FRICTION	(o) ø	-	1	1	-	-		1	
	CONSOLI-	YIELD STRESS OF CONSOLIDATION	"Py(kg/cm2)				1				-
	DATION	COMPRESSION INDEX	co		 - - -	1 1 1					
CLASSIFICA	LION			CI	ML	cL = {	- TM	I III	CH	ML-MH	
				-		:			:		

** (1): DIRECT SHEAR (2): TRIAXIAL COMPRESSION
*** UNCONSOLIDATED UNDRAINED: UU

CONSOLIDATED UNDRAINED: CU

CONSOLIDATED DRAINED: CD

(BAR OVER THE SYMBOL SHOWS THE MEASUREMENT OF PORE WATER PRESSURE)

II--24

Table IL.3.4 SUMMARY OF LABORATORY TEST (8/10)

SAMPLE NO				TP-13				TP-14			
SAMPLE DEP	TH		((w)	1.	1.5	3[. 3	1	2	3	4
	GRAVEL		(%)	0.2	0.4	0.1	0.2	0	10	0	1
	SAND		(%)	22.4	21.8	22 7	21.9	8.5	1.11	7.4	, ,
- - -	SILT		(8)	31.7	36.3]	31.7	35.9	59.9	45.3	66.9	1
GRADATION	CLAY		(\$)	45.7	41.5	45.5	42)	31.6	34.2	25.6	1
	MAX DIAMET	TER	(uuu)	4.8	4.8	4 8	4.8	1.2	0-42	2	1
	CORFE ICLEN	UT OF UNIFORMITY	UC				1		1	t.	
	COEFF ICLEN	IT OF CURVATURE	Ucl	1	1	- -		-			
-NOO	TIQUID LIN	1	w፲ (%) [57.6	69.8	55	67	64.5	66	64.8	
SISTENCY	PLASTIC LI	NIT	WP (%)	36.9	33.1	33,71	36	41.4	41	41	
	PLASTICITY	INDEX	đI	20.7	36.7	21:3	31	23.1	25	23.8	1
PERMEABILI	ΤΥ		K(cm/s)	-	2×10-7	- 	1×10-7	Ì	8×10-7		1
COM-	MAX DRY DE	ALISN	Tm (kg/cm3)		1.528	1	1.488	1	1 343	1	1
PACTION	OPTIMUM MC	ISTURE CONTENT	(%) OM		24-6		29.2	1	33		
SPECIFIC G	RAVITY OF 5	SOIL	SS	2.69	2.67	2.657	5.7	2.695	2.94	2.662	
	WATER CONT	ENT)(%) M	29.2	30.66	30.87	30.93	45.94	43.82	45.86	45.97
NATURAL	WET DENSIT	, Xu	<u>ð t (d/m3)</u>	-		-			- - - -		
STATE	VOID RATIC	2	٥,	1		1	1	1	 		1
	DEGREE OF	SATUPATION	Sr (%)	l	1		1	1	1	i si T	1
	UNCONF INED	COMPRESSIVE STRENGTH	gu (kg/cm2)	-	-	- 	· · · · ·	1	1	1	1
	COM-	MODULUS OF ELASTICITY	E50 (kg/cm2) [1	-		1	1		-	-
	PRESS ION	SENSITIVITY RATIO	St	 	 	i I	۱. ۱		•		
MECHANICAL	*	TYPE OF TEST	***		cữ		, ,	l	CŪ	 	
PROPERTIES		COHESION	C (kg/cm2)		0.5			 		1	
	(2)	ANGLE OF INTERNAL FRICTION	(o) ø	1	33	1	. :	1	25	1	1 1
	CONSOLI-	YIELD STRESS OF CONSOLIDATION	Py (ka/cm2)	-				1	0.75		1
	DATION	COMPRESSION INDEX		1	-	-			0.32		•
CLASSIFICA	TION			CTH	C'H	C'H	CH	C'H	C'H]	C'H	1

** (1): DIRECT SHEAR (2): TRIAXIAL COMPRESSION
*** UNCONSOLIDATED UNDRAINED: UU

CONSOLIDATED UNDRAINED: CU

CONSOLIDATED DRAINED: CD

(BAR OVER THE SYMBOL SHOWS THE MEASUREMENT OF PORE WATER PRESSURE)

II-25

Table II.3.4 SUMMARY OF LABORATORY TEST (9/10)

SAMPLE NO			:	1 1					
SAMPLE DEF	ንጥዙ.			CT-AT			TP-16		
	100×1001		(m)	1.5	2	n		Г. Г	2.5
	GRAVEL		(%)	0.1	0.6	0	0	0	10
-	SAND 911 m		(8)	27	23.7	22.7	32.5	39	45.6
NOTTRAD	THTS		(8)	42.9	46.1	44 9	46.7	41.8	62.5
NOT TRACTO	NAV PTAND		(%)	30	29:6	32.4	20.8	19.2	16.8
•	LAWE DIAMET	ER	(uuu)	4 8	10	2	1.2	0.6	4 8
	VITOT FAROO	T. OF UNIFORMITY	UC	I.			1		
CON-	THORE A TOTEN	UT OF CURVATURE	nc	1		1			
VON GT S T S		1.1.1	WL (8)	31.5	36	33	27.5	26.8	25.2
T) N T T D T D		1 T T T	WP (%)	22.4	22	22.4	20.4	19.7	19.7
TTANTATO	TEACOLLUL T	TNUEX	đΙ	9.1	14]	10.6	7.1	1.7.1	5-5
	110 V 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		K(cm/s)	1	3×10-7	1	1	i i	$1 \times 10 - 7$
	THAN UKI UE	I T T SN	1 m (kg/cm3)	1	I 732	1	 	1	1 746
PACETON	OM WOWLT AO	LSTURE CONTENT	WO (8)	1	19.61	1			17.0
OFATAAN	KAVITY OF 5	TIOS	GS.	2.558	2.67	2.691	2.415	2 604	2 5 2
	WATER CONT	ENT	(8) M	24 84	25.52	25.03	26.77	26.94	27.51
TYAN TWA	TISNEL DENSIT	Ţ	¥ t (g/m3)			1			
THE	VULD KATIO		e	1	1	1	-		
	DEGREE OF	SATUPATION	Sr (%)	1	1	1		1	
	UNCONFINED	COMPRESSIVE STRENGTH	qu (kg/cm2)	1	1	1		-	
		MODULUS OF ELASTICITY	250 (kg/cm2)			1	1		
	FRESS TON	SENSITIVITY RATIO	st	1			1		
MECHANICAL DDODDDDTTO	*	TYPE OF TEST	***	1	 				
ГХОТЕКТАВО	ć	COHESION	C (kg/cm2)			 			
	CONCOT -	ANGLE OF INTERNAL FRICTION) (o) ø	1		1	1	1	
		TIELD STRESS OF CONSOLIDATION	Py (kg/cm2)			1		1	0.75
KUTULOUR LU	IDTTON	COMPRESSION INDEX	S S	-		1	1	1	0.16
				JML .	CE	CI	CI-ML	CL-ML	CI-MI

II-26

** (1): DIRECT SHEAR (2): TRIAXIAL COMPRESSION
*** UNCONSOLIDATED UNDRAINED: UU

D CONSOLIDATED UNDRAINED: (BAR OVER THE SYMBOL SHOWS THE MEASUREMENT OF PORE WATER PRESSURE)

CONSOLIDATED DRAINED: CD

	1 A.					
Table	11.3.4	SUMMARY	OF	LABORATORY	TEST	(10/10)

	Sample	NO.	Depth (m)	Natural	Moisture (%)	Content
	SM-2	(3) (4) (5)	19-19.5 25-25.5 25.5-26		28.0 33.2 31.8	
	SM-3	(4) (6)	15.5-16 19.5-20		39.5 32.7	
	SM-4	(2)	20.5-21		52.8	
	SM-5	(2)	5.5-6		35.4	
	SM-6	(1) (2)	5-5.5 5.5-6		18.3 20.2	
· ·	SM-8	(2) (4)	5.5-6 11-11.5		29.6 26.7	
	SM-9	(2)	5.5-6		32.3	
	SM-12	(2)	5.5-6		19.8	· .
	SM-13	(2)	5.5-6		27.3	
	SM-14	(2)	5.5-6		30.8	·
	TP-5		1.0 3.0		41.66 43.93	
· ·	TP-6	i.	1.0 4.0		36.85 23.93	
	т₽-7	$\mathbf{x} = \mathbf{x} + \mathbf{y}$	2.0		29.47	
	TP-9		1.0 3.0	:	26.65 20.80	
	TP-10		1.5 4.0 5.0		30.39 30.05 32.25	
• •	TP-11		0.5 3.0	1 12	32.25 22.65	
	TP-12		1.5 3.5	e Por de la constance	34.09 33.90	
	TP-13		5.0		31.24	
	TP-14		1.5		44.66	
. *	TP-15		1.0 4.0		24.33 24.77	

-			
I –	\$	n'A	nd
1.2	Ý	1.	110

	<u> </u>	<u>, 1</u>		· · · · · · · · · · · · · · · · · · ·	
SYMBOL	LITHOLOGY	GROUP	SERIES	PERIOO	ЕЛА
	ST DI # 1 * 1 * 1 1 U Y I & 1 , # U Y I & 1 CO & 1 * 1			QUETERMONY TERTIBRY	CEN 2010
	\$434LT LAVA OR DIEL			TRASSIC RHATTIAN	- HEADFOIL
	470LIC \$140FT04CE			TR 1 # \$ \$14	
	COASTAL STOIMENTANT ROCKS: SILTSTONE, SHALE, SANDITONE	610 00 FESTO			
	WARNE STOINENTART AUCKS : INALE, SILISTONE, SANDSTURE, PHYLLITE	(918684 ¥0¥4	:	_ //11/1 ~	
	NAMINE SEDINENTARY ROCKS OF SANAT SILTIENE	QUATI			P314802010
	PLUVIAL SEGULÉNTIAL AUTAS OF				
	AMATHETAMORPHIC SUNDSTONE, SHALE SILFERONE; MITOLEIE; VOLCANES PATALIE		11044	224 \$ 3 1 E N	
	BISCOADANCE		erusaut	31.40×*1=*	******
	EN212922, NP4WA31823				************
	CARNIE - MTAUSIVE LCOD			7037 #LSONK	14H
	ANTOLITE & INTRUSIVE BASIC				ii (2) (7)
	DIARASE + INTRUSIVE RESEC				1

Fig. II.2.1 REGIONAL GEOLOGICAL MAP OF SANTA CATARINA STATE

II-30

	*****		Fig	. U	3.2		GEO	LOGIC LOG	OF DI	RILL	. HC)LE	(1	/15)					
7RC 101	LE DJE(CT ; NO	ĠЕО : sм	TEC	HNICA	L INVEST GROUN	IGATION	I FOR ITAJAI 10, 317	RIVER ANGLI	BA E FR	STN IOM	FL VER	OOD TICA	C0 L: V	NTF	ROL. TCAL	PRO	JEC.	r (Ji	CA)
)E I	- T				D WAT	ER TABLE	. 4,12 m) 	DATE	:23~ T	29 AI	PRIL	1987	SU	RVE	YED	BY:	<u> </u>	1 : 1	1
	E V V) î	E)S	î		OBSER		RECORD	<u> </u>	S	TAN	DAR) PI	ENET	rra [.]	LION	TE	ST	-	17
	ELEVATIO	DEPTH	THICKNES	G.W.L	LOG	CLASSIFI- CATION	COLOR	DESCRIPTION	CORE RECOVER1	DEPTH	BLOW PENE cm	1 BLC PER	WS 15 cm 30 cm		N —	VAL 20	υε 30	40	SAMPLING	PERMEABI
: .,		0,3	0,3			ORGANIC CLAY	LIGHT BROW	N · Soft	90%	-			·	1.			1.	1		1
1		1,4	1,1	. 			иноми	+5011	50%	-			Ę							
2-						SANDY.	LIGHT	∙Very soft	15 %	2,15 2,45	1 30	1 30		ĺ						
3-						SILT	BROWN													
4		4,0	2,6							4,15	3	1	2			i '				
5		· .								11.0					1					
6				:						6,15	2	1	. 1	ļ				 .		1 · ·
7-			. ·				1.1017	Fine cond		0,40		: •								
8-						SAND	BROWN	Very toose	5%	8,15	3	- -	2							2,931
9-	-			. [:]						8,45	30	15	15	ľ			1	ļ		
0				· .						10.15	4		2							
 1										10,45	30	15	15							
2	:	11,8	7,8	ļ	u 11					12,15		1 1	· · ·			1 × 1				
-3		:			P					12,45	30	30		١					13,0	
4-													· ,						1 13,5	
5					μυ					14,15	5 30	15	<u> </u>							
			-			ORGANIC			4%										16.0	4,94x1
-					10 B	CLAY	BLACK	•very sott generol		16,75	1	1	1.5				1.		2	. :
					n 4		ĺ			17,05	30	30		ľ	÷					
8	•		•				* .			18,15 18,45	1 30	1 30	·				ŀ			
9					17		2 10 - 24			- 1.									20.0	
0 		20,6	8,8		H 1)								:						3	
n										21,10 21,40	-5 30	2	3 15						4 21,1	:
2	.	•				CLAY	GREY	Medium soft	50 %	22,00	4 30 1	2	2							
3-				н. "н				Higt plastic												
4	<u>.</u>	24,0 24,45	3_4 0,45			CL AY	JGHT GREY	·Medium	100 %	24.00 24.30	5 30	2	3 15					•••		1,12x10
5		25,00	0,55		• •	UNAC		• F INC	0%											
6		. :									А.]				E a				
7-	:	· .	:											.		ļ				
8				н 1914 1917															- 2	
9-	: 1		н.						· ·			.	ľ		· .					
ᆌ				· .							Í									
-			<i></i>							- 1 <u>-</u> 1 - 1										
		·. ·	<u> </u>							· [·			:						

	JEC E	T: (NO:	SEOT SM -	EC) 2		L INVEST GROUN	IGATION D EL :	FOR ITAJAI F	RIVER ANGLE	BA FR	SIN OM V	FLC	DOD ICAL	CON VEI	FROL RTICA	. Рі р. в	ROJI	ECT	(11	CA)
/c, r						OBSER	VATION	RECORD	2412.	I S	TAN	DARD	PE	NETR		N 1	res	<u>۲</u>	<u> </u>	
	ELEVATION (n	DEPTH(m)	THICKNESS(m	G.W.L.(m)	LOG	CLASSIFI-	COLOR	DESCRIPTION	CORE RECOVERY	DEPTH	BLOW PENE cm	BLO PER 1 15cm 2	NS Sem SOEm	N 10	- VA 20	L U I 30	40	• • • • • • • • • • • • • • • • • • •	SAMPLING	PERMEABILIT
1 1						SILTY CLAY	BROWN	MEDIUM	100 %									· ·		
2~ 3;	 	2,45	0,45		· · · · ·	CLAY SILTY SAND	LIGHT BRO- WNI BROWN ~LIGHT	· SOFT · FINE SAND · LOOSE	100 % 90%	2,15	30	15	2				• •			
4		4,45	0,45			SILT SAND	BROWN	·FINE SAND	50% 25%	4,15	4 30	2	2 15		•					
6 ;		60 6,45 7,0 7,5	155 0,45 0,55 0,5		· · · · · ·	SILT SAND CLAY	GREY GREY BLAC	· SOFT · FINE SAND · SOF T	100 % 35% 100%	6,15 6,45	30	15	2 15					ļ	7,5	
8 - 9		8,95	1,45			SILTY SAND	BROWN	· FINE SAND · VERY LOOSE	50%	865 8,95	.3 30	1	2						3,0	1,361
- - 1										10,15 10,45	9 30	4	<u>, 5</u> 15							
2			, Å.s 							12,15 12,45	18 30	8	10 15							•
4- 5						SAND	LIGHT BROWN	· FINE~ MEDIUM · LOOSE~ MEDIUM	20%	14,45 14,45	15 30	7	8 15							
										16,15 16,45	12 30	3	9 15							1,75xK
8		18,5		: 						18,15 18,45	8 30	3	5 15						18,5 2	
° 		20,45				SILTY SAND	GREY	OPCANIC	90%	20,15	6	3	3						3 19,5	
2-1		21,8	1,35			CLAY	BLACK	MEDIUM	30%	22,15 22,45	4	2	2							
4- 4-						SILTY CLAY	GREY	MEDIUM	100%	24,15 24,45	7 30	3	4	ſ					25,0	l, 181
6	· · · ·	26,0	4,2																4 5 26,0	
/		н - П - П		-																в.,
9-1 - - -	•																			
: -										:				·			 		· ·	

PRC	JEC LE	T : 0 NO :	SEOT	ECH		INVEST	IGATION D EL	FOR ITAJAL F	RIVER	BA FR	SIN FLOOD	CONT	ROL PI	ROJECT	- (J)	CA)
	2	Γ	-		<u> </u>	OBSER	VATION	RECORD		s	TANDARD P	ENETRA		TEST		() () ()
	EVATION (n	DEPTH(m)	HCKNESS (m	G.W.L(m)	LOG	CLASSIFI-	COLOR	DESCRIPTION) R E E C OV ERY	EPTH .	BLOW BLOWS PER 15cm PENE	N -	- VALUE	E	AMPLING	ERMEABIUT) I SITU (cm/s
	ш		<u>1</u>				LIGHT		ΰữ	ä	cm 15 cm Sccm	10	20 30	40	<u>5</u>	ā 4
- 1		1.0	1,0		. W	SAND	BROWN	· ROAD SUBGRADE	40%	ļ						
2 -		2,5	1,5			SAND	BROWN	FINE SAND	30%	2,15	<u>3 1 2</u> 30 15 15	- 8:				
3		3,7	1,2			SILTY CLAY	BROWN	· MEDIUM	65%					•		
4 5						CLAY	GREY 8 BROWN	MEDIUM	60%	4,15	1 4 2 2 30 15 15					
G		0,0	2,5			SILTY SAND	BROW	FINE	80%	6,15 6,45	6 3 3 30; 15 15			• *		
7	· .	1,0	1.0		<u> </u>	SAND	BROW	FINE SAND	50%				1999 - A.			0.35, 307
8 9	- 1	8,0	1,0			SILT	GREY	· VERY LOOSE	30%	8,15 8,45	1 1 30 30			i I	9,0	12,13110
10-		10,0	2,0	11			_			10.15	4 2 2				2	
		11,0	1,0		\sim	SILTY SAND	GREY	· FINE · LOOSE	60%	10,45	30 15 15		:	:	10,0	-
		12,0	1,0			SILT	GREY		80%				· · ·			
12-		13.0	10		• • •	SAND	GREY	· FINE · LOOSE	20%	12,15	6 2 2 30 15 15			1		
13 14-		1010	<u>. 19</u>			CLAYEY SLT	DARK GREY	· SOF T	10%	14,15	3 1 2					:
15		15,0	5.0	· · · · ·					<u></u>	14,43					15,0 3	
16-										16, 15	5 2 3			. :	4	3,08x10-
17						CLAY	DARK GREY	· MEDIUM~SOFT	40%	16,45	30 15 15					
- 18-										18,15	1 1		⁻			
19-		19,0	4,0						÷	18,45	30 30	$\left \right\rangle$		•	19,0	
20-	.* *.								· •	20,15	7 3 4		1		5 6 20,0	
21			· 1			CLAY	BROWN	• MEDIUM		20,45	30 15 15				- %	
22-		22,0	3,0							22,15	12 5 7					
23							BROWN		•	22,45	5 30 15 15					
24						CLAY	8 GREY	· STIFF ~ MEDIUM	75%	24,15	5 2 3			.1		1, 76×10-
25		25,0	3,0							24,45	30 15 15				25,0	
						-			· · ·	2615	8 7 5				8	
 5	• •		-			CLAY	BROWNISH	• MEDIUM	50%	26,45	30 15 15				26,0	
27-		27,5	2,5		0.0	SAND B			1000	1			\square].	
28-		28,5	1.0			GRAVEL		MAX SIZ JU	10%	28,45	30 15 15			مر ا،	l	
29- - 30-		30.4	1.9		0 0 0 0	GRAVEL		10 ~ 20 ^{mm}	5%							
 31				•		BOCK	DARK	ALTERNATION	50%							Т.
32	• •	32,5	2,1				GREEN	& SAND STONE								

	· . ·		≓ig.	11.3	.2		GEO	LOGIC LOG (OF DF	RILL	НÇ	LE	(4/	15)) :	: 	<u> </u>			
PRO	JEC	:T:	GEO.	reci	INICAI	L INVEST	IGATION	FOR ITAJAL I	RIVER	BA	SIN	FL	OOD	. CO	NTR	OL	PRO	JECT	· (J)	CA)
HOL	.Е 	NO:	Sh	1-4 5080		GROUN	DEL:	7, 256	ANGLE	FR	OM 1 IIIN			-: V 	ERT	ICAL	BY.		•	
UL F										STANDARD PENETRATION TEST									Γ.	1 2
	н (н																U			
	ATIC		KNES	1 3.0	LOG	CLASSIFI-	COLOR	DESCRIPTION	E OVEF	E	PER 15cm			N~ VALUE				PLIN	MEAE ITU (
	ធ្វែ		THIC			CATION			COR REC	DEP	em	15cm	30cm		0 2	0	30 4	ю.	SAM	PER
	·	1 60	1.6		W	-	GREY ~ REDDIS BROWN	SUBGRADE OF ROOD	45%							. .				
2-		2,45	0,85			SAND	LIGHT	MEDIUM SIZE	20%	2.15	6	3	3	Ŷ						.
3-		3,00	0,55		->>	SANDY SILT	BROWN	FINE SOND	30%	1 2,45	- 30	15	15				.			1
4 -		1,45	1,45	·		SAND	BROWN	MEDIUM~COARSE	35%	4,15	5 30	2	3 15							
5						SAND	LIGHT BROWN	FINE	30%											
6-		600	1,55		<u> </u>			1		6,15 6,45	4	2	2 15							
7				<u> </u>	1 1	ORGANIC OLAY	BLACK	THIN SILT LAYER 8 PEAT INTERCA-	95%				:							
8-		8,45	2,45		n u			SOFT		<u>8,15</u> 8,45	30 30	1	2 15							1,03210 0
9-		.					•					·								
10					1					10,15	17	8	9							
11–					<u>)</u>					10,45	30	15	15							Ì
12-		1. ¹			· · · ·	SILTY SAND	GREY	FINE SAND	35%	12,15	14	7.	7	•						
13-					• 4 •			MCOION .		12,45	30		GI .							an tar Tar
14-					· · · ·					14,15	22	: 11	<u>-11</u>			A				
15-		•								14,45	30	15	15		/					
16		16,45	800		· · · ·					16,15 16,45	6 30	1	5 15	8	ľ					8,00×104
17-					• • •			16 45 - 18 Om				÷								
18					<u>u</u> <u>p</u>			ALTERNATION OF ORGANIC		18,15	4	2	2	 	:	- 				e de la composition de la composition
19-					11 11	ORGANIC CLAY		CLAY E FINE SAND (OR SILT)	60%	19,15	3	2	1							
20-							GILLI	- 18,0 ~ 21,6 m MOSTLY ORGANIC		15,15					:				20,0 1	
21-		21 60	5 15		N 11			SOFT											2 21,0	
22		21,00	- 3,13		1					22,15	2	<u> </u>	1							
23-					\ \ \					22,45	30	I)	L)							
24-						SILTY SAND	GREY	FINE SAND	40%	24,15	7	3	. 4.	: \						· ·
- 25					: ·\·			LVUJE		24,45	30	15								
26-	· .	3F 67	4 00							26,15	9	2	7	Ì						
27-		20,30	-1, JU	 	IIII					26,45	30	15	- 15	- -						
28						ROCK		GNEISS	50%											
29-														:						
30-		29,50	3,00																	
-							:						-	:						
	h .						art. Contractor		·• }					2			1	i .	1	į .

II-35
PRO HOI DEF	JEC E TH	NO : NO : OF	GEO SM - GRC	TECI 5 DUNI	INICA	L INVEST GROUN ER TABLE	IGATION D EL : : 4,07	FOR ITAJAL I 9,904	RIVER ANGLE DATE	BAS 5 FRC 26~	31 N DM N 31 M/	FL.OO /ERTIC AY, 1987	D CC AL : SU)NTF VERT IRVE	ROL ICAL YED	PRO BY:	JECT	_(J)	CA)
	Ê]	Î			OBSER	VATION	RECORD		ST	TANC	ARD	PENE	TRA	LION	TE	ST	[2 - X
· .	CLEVATION (DEPTH(m)	HICKNESS	G.W.L(m)	LOG	CLASSIFI - CATION	COLOR	DESCRIPTION	CORE RECOVERY)£ртн 1	BLOW PENE cm	BLOWS PER 15 cr	n' i 	N	VAL	JE JE	40	SAMPLING	PERMEABILIT IN SITU (cm/
		0.5	0,5		Υ.Υ	SILTY SAND	BROWN	FILL MATERIAL	95%	++		i		Ť	1	1	1		<u> </u>
1		1.0	0,5			SILTY SAND	GREY DARK BRO -	FINE SAND MEDIUN	60% 50%										
2				<u> </u>	22	SANDY SILT	BROWN	· FINE SAND	85%	2.15	7	3 4				ł			{
		2,45	0.95		<u> </u>	¥ I		MEDIUM		2,45	30	15 15	ΠΪ		-				
3						SILTY CLAY	LIGHT. BROWN	• MEDIUM	70%			ļ		•		ļ		1	
4		4,45	2,0			ļ			 	4,15	5 30	2 3		1		ļ			ł
5-						SILTY CLAY	BROWN	· MEDIUM ~ SOFT	90%	i	į	į				ļ	· ·	5.0	-
G		6,2	1,75							6,15	3	<u>.</u>				İ		6,0	1
7					<u> </u>					6,45	30	15 15		1.	1				· .
					11 1	ORGANIC CLAY	BLACK	• MEDIUM	80%		i			1		;			1,27x10
		8,8	2,6		4 4					8,45	30	15 15		, I	-	÷	1		
9.		1			2-	SANDY CLAY	BLACK	ORGANIC MATERIAL	40%							1			
10-		10,0	1,2							10,15	3	1 2	16	1	3	ş			[
л.				1	· · ·	SAND		FINE	0%	10,45	30	13 10				1			
12		12,0	2.0			<u> </u>	· · · · · · · · · · · · · · · · · · ·	· VERT LOOSE		12.15	15	6 9		\backslash			:	.	1
		12,6	0,6			CLAY	BLACK	• STIFF	100%	12,45	30	15 15				į			
1.5	·					SAND	GREY	· FINE ~ MEDIUM	10%		}			1	1	• . •			· · ·
14		14,5	1,9					VERY LOOSE		14 15	8	4 4	-	4		; ; ; .			-
15		15,0	0,5			CLAY	DARK GREY	• ORGANIC	80%						•	1 1			
15) .]		!	· · ·					16,15	5	2 3				?			4,84x10
17		} .		. 1 						10,40	50	13 10			•	ł			-
10	1									18.15	23	11 12			t N	1 1			l
10.		Į			1: : :					18,45	30	15 15	1		1				
19 -	20 ¹											1		: /					1
20 <u>-</u>						SAND	GRAY	• MEDIUM	15%	20,15	15 30	7 8	-{	. {					
21		1						SMALL AMOUNT										۱. ۱	
22	:				· · ·		1	OF FINE SAND		22,15	14	6 8	1		i ·				
23	· • •				· · :			· LOUSE ~ MEDIUM		22,45	30 ; 7	1.5 1.5			1	1		ŀ	
					:::					24 15	11	5 6			!	:	} .		2.02×10
29		25.0	10 A		•				• .	24,45!	30	15 15	1	1		Į			.
25 - -	<u> </u>		.0,0				<u> </u>		:			1		1	:	1.	į.,		
26									. •		Í	· ·			•	:	1		
27											ļ				, 1			 	
28-														1	}	Ì			
20				· · ·							ļ		1.1	Į.	. 	} -		.	
23-							1				ĺ				1.	}		.	-
30- -							ina di secondo da secondo a de secondo	ja j				. (. 		1					
-	÷										ļ							· · ·	

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	лс∧)	ີ (ມາ	JECT	PRO	OL ICAL YED	NTR ERT RVE	CO _: \ _SUI	00D 10Al 987	FLC ERT E, I	IN A V JU	4S 20	8A 5 FR 1 1~	RIVER ANGLE DATE	FOR ITAJAI	1GATION ID EL : E∵ 10,40	INVEST GROUN ER TABLE	INICAU	EC) 6 UNI	SEOT SM- GRC	T: (NO: OF	JEC E TH	PR(HO DEI
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	(285)		ST	TES	ION	'RA1	NET	PE	ARD	ND	ST,	S	· · ·	RECORD	VATION	OBSER		· · ·	e.		â	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	้อยสพยุณสาน อยสพยุณสาน มหาวิที่วัน (มหา	SAMPLING	ų.	ίε ο 1	VA L 1	N	1	/S 5 cm Ocm	BLO PER 1	ONV ENE	Ð	DEPTH	CORE RECOVERY	DESCRIPTION	COLOR	CLASSIFI- CATION	LOG	G.W.L.(m	THICKNESS (т,нтад	ELEVATION	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $								•				1	80%	+Soft	BDOWN	CLAY						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $. :					80%	•Fine_sond	BROWN	SANDY SILT			1,5	1,5		
4. SILTY SAND BROWN 50 % 4,55 4 2 2 6 6,0 4,0 BROWN 6,15 4 2 2 7 BROWN 6,15 4 2 2 6,5 30 15 15							Î	2	1	3 -	5	2,15 2,45					\. \. \. .\.					2
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0	5,0						2	2	4	5	4,15	501%	•Fine sand •Loose	BROWN	SILTY SAND	· \. • \. • \.	:	: 	· .		4-
6 2	2	1	. .					· ·											4.0	6.0		5
7^{-} $5AND$ $GREYISL$ Fine sond Loose 40% a_{15}	2	6,0						2 15	2	4	5	6,15						· ·		<u></u>		6-
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	6.33×10*				.								40%	·Fine sond	BROWN	SAND				. :		7
9 30° 20° 20° 30° 30° 10° 5° 12° 5° 10° 10° <		 .			· i			5 15	3	9	-	8,15 8,45		·Loose	BROWN		•••		3.0	9.0		8-
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			n. An an		:								40%	·Fine sand	BROWN	SANO			10	10.0		9
$\begin{array}{c c c c c c c c c c c c c c c c c c c $								5	4	3 ·	_	1015					·····	<u></u>		.0,0		10- -
12- SAND GREY -Small amount of Fine sand ,										Ĭ.	ĺ	10,40		•Medium sond			• • •	•			:	11~
13- 14 14,0 4,0 - - - - Medium 12,8 30 13 0 15- 15- 15- 15- 15- 15- 15- 15- 15- 15-		ł						6	4	0 .	<u>.</u>	12,15	35 %	Small amount of Fine sand	GREY	SAND	•••			·		15~
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							-	15	·5			12,45	2.5	• Medium			•••			- a		13
15- 15- 5ANOY BROWN Fine sand Medium 50% 30 15 15 16- 16,2 2,2 SILT BROWN Fine sand Medium 50% 16,15 10 4 6 17- 17,0 0,8 . . SAND GREY Fine medium Containing of tew Good lights 20% 18,15 17 7 10 18- 18,0 1.0 . . SAND BROWN Fine medium Containing of tew Good lights 20% 18,15 17 7 10 18- 18,0 1.0 . . SAND BROWN Well graded 10% 18,45 30 15 15 19- 20- 20,0 2,0 21- 22- 22- <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>4</td> <td>2</td> <td>s</td> <td></td> <td>14,15</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>4,0</td> <td>14,0</td> <td></td> <td>14-</td>								4	2	s		14,15							4,0	14,0		14-
10- 10- 2-2 SAND GREY Fine-medium 50% 16,15 10 4 6 17- 17,0 0,8 SAND REDDISH Fine-medium 50% 16,45 30 15 15 18- 10,0 SAND REDDISH Fine-medium 20% 16,45 30 15 15 18- 10,0 SAND REDDISH Fine-medium 20% 16,45 30 15 15 19- GAVELLY REDDISH SAND BROWN Well grouded 10% 18,45 30 15 15 20- 20,0 2,0 SAND BROWN Well grouded 10% 20,15 23 13 10 21-	5,26×10							15	15				50%	•Fine sand •Medium	BROWN	SANDY	- 1/-1 		2.2			15-
17. 18.0 1.0 SAND REDDISH BROWN Cine medium Grovel 12 cml 20% 18.15 17 7 10 18.0 1.0 GAVELLY SAND REDDISH BROWN Well groded 10% 18.45 30 15 15 19 20,0 2,0 .0 SAND BROWN Well groded 10% 18.45 30 15 15 20 20,0 2,0 .0 SAND BROWN Grovel zise 20% 13.10 20 21- 0 SANDY GREYISL GREYISL .0 Grovel zise 20% 20% 22,15 40 15 24 22.4 2.6 2.6 0 GRAVEL .0 Metamor phosed 90% 22,45 30 15 15 23- 24.6 2.0 <		e.					1	6 15	4	0		16,15	50%	• Fine-medium	GREY	SAND	······································		2,2 0,8	16,2		16-
18 GAVELLY REDDISH <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>10</td><td>_</td><td></td><td></td><td></td><td>20%</td><td>Fine medium Containing a lew gravel (2 cm)</td><td>REDDISH BROWN</td><td>SAND</td><td>· · ·</td><td></td><td>1,0</td><td>18,0</td><td></td><td>1 /</td></td<>								10	_				20%	Fine medium Containing a lew gravel (2 cm)	REDDISH BROWN	SAND	· · ·		1,0	18,0		1 /
19 20,0 2,0 SAND BROWN Well groded 10 % 20 21- 21- 22- 22- 22- 22- 22- 22- 22- 22-		5		• • •		. 4	•	15	15	<u></u>		18,45			REDDISH	GAVELLY	;o; ;					18-
20 20 20 23 13 10 21- 0 0 SANDY GREYISL Grevel zise 20% 20 15 15 22- 22,6 2,6 0 0 GREYISL GREYISL Grevel zise 20% 20% 20 22- 22,6 2,6 0 0 GREYISL GREYISL Grevel zise 20% 22,45 30 15 15 23- 0 0 GREYISL Metamor phosed 90% 22,45 30 15 15 24- 24,6 2,0 1 ROCK VIOLE T Metamor phosed 90% 90% 15 15 25- 26- 27- 28- 1 1 1 1 1 28- 29- 1 1 1 1 1 1 1					X .								10 %	• Well groded	BROWN	SAND	: <u>)</u> ;};		2,0	20,0		19-
21- 0 0 GREYISL 1 cm ~ 5 cm 20 % 22- 22,6 2,6 0 0 GREYISL 1 cm ~ 5 cm 23- 22,45 20 15 15 24- 24,6 2,0 1 cm ~ 5 cm 90 % 25- 26- 27- 28- 28- 29-					d			10 15	13	3.		20,15		Grovel ZISE			· 0 · 0					- 20
22- 22,6 2,6 0 0 0 23- 24,6 2,0 24,6 2,0 22,45 30 15 15 25- 26- 27- 27- 28- 29- 29- 29- 29- 29-		1 ¹ 											20%	1cm~5cm	GREYISL	GRAVEL	0, 0				:	<u></u>
23- 24- 24,6 2,0 ROCK VIOLE T • Metamor phosed Sond stone 90% 25- 26- 27- 28- 28- 29-			- -	کر ا			· .	24 15	5	0	<u>'</u>	22,15 22,45							2,6	22,6		
24,6 2,0 0 <td< td=""><td>2,74×10</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>:</td><td></td><td></td><td></td><td>90%</td><td>• Metamor phosed Sand store</td><td>VIOLET</td><td>ROCK</td><td></td><td></td><td></td><td></td><td></td><td>-دى- - : -</td></td<>	2,74×10								:				90%	• Metamor phosed Sand store	VIOLET	ROCK						-دى- - : -
28-28-29-29-29-29-29-29-29-29-29-29-29-29-29-																· · · · · · · · · · · · · · · · · · ·			2,0	24,6		- 25
20-							· i															23
28-29-29-29-29-29-29-29-29-29-29-29-29-29-							ł						· · ·									26
28-							l	:				- -		-								27-
				۰				· ·							:							28-
								· .	:			•										29-
																						30- -
								· .														

HOL DEF	UEC E PTH	NO NO OF	GEO SM GRC	- 7 DUNI		GROUN	D EL: 1	FOR (14JA) 2,179	ANGLE DATE	84 E FR 241	OM AAY ~	VER 3 JU	UUU TICAI VE, 198	-: ॣv ⁊SŲI	ERT RVE	ICAI YED	BY:	JEU 1	(01	
	Ē		F			OBSER	VATION	RECORD		s	TAN	DAR) PE	NET	RA	ION	TE	ST		295
	E LEVATION:	DEPTH(m)	THICKNESS(פ אי ר (m) פ	LOG	CLASSIFI-	CÓLOR	DESCRIPTION	CORE RECOVERY	DEPTH	BLOW PENE cm	BLC PER	WS 15cm 30cm		Ņ-	ν Λ L 20	UE 30	40	SAMPLING	PERMEABIUN IN SITU (sm/
	·												1		.				1	
5						SILTY SAND	BROWN	FINE SAND	40%	2,15	4	2.	2	Q						
3					$\cdot \cdot \cdot I$			·LOOSE		2,45	30	15	15							
4		4,5	4.5		· · · · · · · · · · · · · · · · · · ·		000		50%	4,15	5	2	3 15							
5		5,0	0,5		<u>\</u>	SANU	DDOWN	FINE SAND	30 %											
6-	:	7,0	5,0		S	SILTY SAND	BROWN	· COMPACT	60%	6,15	30	15	- 15 - 15							
8					• • •					8,15	- 4	2	2							
9						SAND	GREY	· FINE · LOOSE	20%	8,45	30	15	15	ľ						3,398.10
10-		10,45	3,45		• • •					10,15	4	2	2	ļ						
11-		11 <u>.0</u> 12.0	0,55	1		SILT	BROWN	FINE ~ MED	90 % 20 %											
12	i	13,0	1,0	<u>.</u>		SILTY CLAY	DARK GREY	MEDIUM	60%											
13		14,0	1,0		• • •	SAND	GREY	MEDIUM SAND	20%	14.15	6	. 2	4							· .·
15-		15,0	1,0		`•, · · · · · >	SILTY SAND	DARK GREY	· FINE · COMPACT	90%	14,45	30	15	15	٩ ا						
.16		15,5 16,0	0,5 0,5		· · · ·	SAND SILTY SAND	DARKGREY	· FINE / COMPACT	80 %	•										1,95x10
17		17,0	1,0 0,5			SILTY CLAY	DARKGREY GREY	· SOFT	50% 10%				19							
18-		18,0 18,45	0,5 0,45			CLAY SAND	DARK GREY	• SOFT • MED~COARSE, • MEDIUM [100% 20%	18,15 18,45	22 30	11 15	11 - 15							
19					•••										/	1				
20	•,				• • •	SAND	GREY	FINE	20%											
22-					· · · ·			LOOSE		22,15	7	3	4		/ .					
23		23, 5	5,05					d .		2 2, 45	.30	12	5							
24 25		25.6	2.1			ROCK	VIOLET	METAMORPHOSED SAND STONE	75%			-								
26	. i					<u> </u>									-					
27	;																			
28:			· · · .																	
30-		- 2												• •						
	•													· .						
ł.		.	I	-	ب		L		••••••••••••••••••••••••••••••••••••••	لىمىي			••••••			•	•	*	•	•

PRO HOL	JEC .E	T:C NO	EOT SM-	ECH 8	NICAL	GROUN	GATION DEL: 1	- FOR HAJAL - R 0,290	NGLE	FROM VERTICAL: VERTICAL
DEP	TH	OF	GRO	UND	WAT	ER TABLE	2,86	C	ATE	2~4 JUNE, 1987 SURVEYED BY:
:	(u		Ê	4		OBSER	VATION	RECORD	a Sinta y	STANDARD PENETRATION TEST
	LEVATION	СЕРТН (т	HICKNESS (с. ч. L (л	L0 G	CLASSIFI- CATION	COLOR	DESCRIPTION	CORE RECOVERY	BLOW BLOWS N-VALUE
	ال ا				W	SILTY CLAY	BROWN	FILL MATERIAL	60%	
1			0,8						· <u>·</u>	
2 3		3,4	2,6	<u> </u>		CLAYEY SILT	GREYISH BROWN	CONTAINING SMALL AMOUNT OF SAND SPORADICALLY SOFT	80%	2,15 3 1 2 2,45 30 15
4.		4.6	1.2			CLAY	GREY	FAT • SOFT	100%	4,15 2 1 1 4,45 30 15 15
5						SILT CLAY	GREY	· SOFT	50%	6,1 5 <u>3</u> 1 <u>2</u> 6,0
7		7,0	2,4		X				<u>.</u>	6,45 30 15 15
8		8,0	1,0			CLAY	GREY	SOFT	100%	8,15 5 2 3 8,45 30 15 15
9		9,0	1,0			SILTY SAND	GRE Y		70%	
10		10,0	1,0			CLAY	GRAY	SOFT	100%	10,15 7 3 4 10,5
11	i			-		CLAYEYSILT	GREY	MEDIUM	60%	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
12-		12,8	2,8				D DOW/M			12,45 30, 15 15
13		13, 5	0,7		000	SILTY SAND	GREY	MEDIUM	60 %	
14		14,3	0.8			GRAVEL			·i	
15						ROCK /	GREY	14,3 ~ 14,6: HIGHLY FRACTU RED CALCITE	90%	
18-		19.0	4.7					CRACK: 30 ^{mm} 300 ^{mm}		
19		13.0		+	<u></u>	<u>.</u>				
20										
21										
22	-								,	
23-									}	
24					· ·					
23	-							:		
26	-									
	-									
20	-				· .					
20	-									
. 20	-									
l	L	_	- I							

PRC	NEC	T: 1	GEO	(EC)	INICAL	INVEST	IGATION	FOR ITAJAL	RIVER	BASIN FLOOD CONTROL PROJECT (JICA)
HOL	. E	NO :	SM	- 9		GROUN	DEL.	7, 100	ANGLE	FROM VERTICAL : VERTICAL
DEL	тн	OF	GRC	UNI	D WAT	ER TABLE	7, 20	2497233333334 4	DATE	4~8 JUNE, 1987 SURVEYED BY
	Ē		Ê			OBSER	VATION	RECORD		STANDARD PENETRATION TEST
1.) HO	E H	SS (<u>ع</u> ۲			· · · · ·	· - · ·		
	L T A	CEPT	CKB	6.W	LOG	CLASSIFI-	COLOR	DESCRIPTION	E C C C	T PER 15 cm
	ш		THI			CALION			R C C	$\begin{bmatrix} \dot{u} \\ \dot{u} \\ \dot{G} \end{bmatrix}$ cm (15 cm 30 cm) 10 20 30 40 $\begin{bmatrix} \dot{d} \\ \dot{G} \\ \dot{G} \end{bmatrix}$
		0,7	0,7	3 · · · ·		SAND CLAY	LIGHT	ALTERNATION OF	70%	
17					<u>}</u>					
2.		н. 1				SILTY CLAY	GREY	· 50F1	85 %	2,15 2 1 1
3-		2,8	-2,1		<u> </u>	· · · · · · · · · · · · · · · · · · ·		······		
4			} .							4,15 2 1 1
	e Se fie					SILT SAND	BROWN	FINE SAND	65 %	4,45 30 15 15 5,0
5.		6.0	4.2					· VENI EUUSE		
- 6- - 1		6,5	0.5			SAND	BROWN	· MEDIUM & DENSE	20 %	6,2 5
7			:	₩ <u>₹</u>		SILTY SAND	BROWN	· FINE SAND	50%	
8-	· · · ·	8,0	1,5							8,15 14 7 7
9						SAND	GREY	MED SAND	20%	θ,45 JU 15 13 ,
- 10-		9,65	1,85				<u>.</u>	meorom		
:			1.45		000	OR OR PEBBLE			50%	
		11,3	1,43		000	10000				
12					N=	SANDY &	· . · · ·			
13					<u>₿9</u> =	WITH GRA-			15%	
14			.		EVE	VEL 8			Į .	
15	· .				Ê	FEBULE				
16		16,1	4,8							439,10.6
17									1	
18-						ROCK		GNEISS	80%	
		1.				, o o n				} ,81×10^{−6}
19		20.0	3.9							
20		1 .			╏					
21		}								
22		ļ.								
23										
24			[·					н. Н		2,73×10-5
25			}							
21		···	 .							
			{ · .					: .		
61										
28							. •			
29	•	·		· · .						
30										
]							

			Fig	II.	3.2		GEO	LOGIC LOG	OF D	RILL	HC	DLE	(10)/15	5)	• •••• •	······································		······	
RO OL EP	JE(.E TH	CT : NO OF	GEO SM GR	TE C - 10 OUN	HNICA	L INVEST GROUN	FIGATION ID EL: 1 E: 20,00	I FOR ITAJAI 10,467	RIVER ANGL DATE	8/ E FF	SIN 0M 12 J	FL VER UNE,	00D FICA 1987	CC L: SU	NTR VER RVE	OL tica YED	PRO L BY:	JECI	r (JI	CA)
	Ē		Ē			OBSEF	VATION	RECORD	······································		TAN	DAR) Pl	ENE	TRAT	ION	TE	ST	<u> </u>	Sec.)
	ROLEVATION	DEPTH (т	THICKNESS	6.W L (m	LOG	CLASSIFI-	COLOR	DESCRIPTION	COR E RECOVERY	DEPTH	BLOW PENE	BLC PER 15cm	WS 15 cm 30 cm		N	VAL	UE		SAM PLING	PERMEABILI N SITU (cm/
		1,0	1,0			SILTY CLAY	BROWN	SMALL AMOUNT OF ROOTS	50%	-								†		
2 3- 4 5						GRAVELLY CLAY	REDDISH	• MEDIUM~ STIFF	40%	2,15 2,45 4,15 4,45	7 30 8 30	3 15 3 15	4 15 5 15	0				•		
3- 7 3		6,45 7,0 7,5 8,2	5,45 0,55 0,5 0,7			CLAY CLAYEY SILT CLAY	BROWN BROWN GREY		55% 100% 100%	6,15 6,45 8,15 8,45	10 30 7 30	2 15 2 15	8 15 5 15							2,88×10
)		11,5	3,3 0,4		· · · · · · · · · · · · · · · · · · ·	S AND	REDDISH BROWN	• MEDIUM • LOOSE GRAVEL 20 •• 50 mm	20%	10,15 10,45 12,15	5 30 10	2	3 15 7							
;		13,0	1,0			SAND	LIGHTGREY	FINE SAND	10% 10%	12,45	30	15	15							i •
1 - - - - - -	:	17,0	3,0			SAND	LIGHT REDDISH BROWN	• MEDIUM • LOOSE~ MEDIUM	20%	14,15 14,45 16,15 6,45	30 30 17 30	1 15 5 15	2 15 12 15							<u>1,24 x 10 - 1</u>
• <u> </u>		19.8	2.8		00000	GRAVEL		ROUND 20~30mm	20%			-		· "						
		21, 6	1,8			ROCK		CONGLOMERATE	20%	-										1,11x10 ⁻⁵
																				•
															:					
																				. I

PRC HOI DEF	JEC LE TH	T: C NO OF	SEOT SM - GRO	ECH 11 UND	INICAL	INVEST GROUN ER TABLE	IGATION DEL: 1 : 6,80	FOR ITAJAL 1 4,065	RIVER ANGLE DATE :	BA FR 5~9	STN OM ' JUN	FLO VÈRT E, 19	DOD ICAL 987	COI v SUR	ATR ERTI (VE)	OL CAL (ED	BA:	JECT	(J1	JA)
	F	~ (OBSER	VATION	RECORD		S	TANI	DARC) PE	NET	RAT	ION	TES	ST		2
:	ELEVATION (1	06PTH(m)	THICKNESS (a	(ש) ר (ש)	LOG	CLASSIFI- CATION	COLOR	DESCRIPTION	COR E RECOVERY	DEPTH	BLOW PENE cm	BLO PER 15cm	WS 15 cm 30 cm		N- D 2	VALI	JE 10 4	10	SAMPLING	PERMEABIUT
1		1,7	1,7		w		REDDISH BROWN	FILL MATERIAL	90%											
2 3 4		2,0	0,3 2,45			SILYY CLAY	BROWN LIGHT BROWN	MEDIUM	100% 80%	2,15 2,45 4,15	6 30 7	3 15 3	3		-			· · · · · · · · · · · · · · · · · · ·		
5 6										4,45		15	15		-				5,0 1 5,5	
7. 8				<u> </u>		CLAY	LIGHT BROWN	SOFT	45%	6,65 6,95 8,15	4 30 4	1 15 2	3 15 2						7,5 2 8,0	2,78x 1
9. 10-		9,00	4,55	·		GLAY	LIGHT	MEDIUM	50%	8,45	30	15	15		• •				9,0 3 9,5	
11-	 	10, 3	<u>''</u> '							10,45	30	15	15					<u>.</u>		
12 - 13						CLAY	REDDISH BROWN	• STIFF	60%	12,15	14 30	6 15	8 15							
14- 15-		15,2	4,9		3					14,15 14,45	11 30	4 15	7							
16 17-		16,3	1,1			CLAY	BROWN	~ STIFF	100%	16,0 16,3	11 30	4 15	7							.5,86×1
18- 19-						SAND	LIGHT BROWN	• FINE ~ MEDIUM SIZE • MEDIUM ~ DENSE	20%	18,15 18,45 20.0	20 30	9 15	11 15							
.1		21,25	4,95			- - -				20,05	5									: -
27		23,25	2,0			ROCK	VIOLET	ME TAMORPHOSED SAND STONE	50%				- 	1						
24 25							•													
26- 27- 28-																				1
29- 30-																				
	.						1. 1. 1								- - -	- -				

		F	ig.	11.3.	2				GEO	LOGIC LOG	OF DF	RILL.	но	LE	(12	/15	()		:			· .
RO IOL DE P	JEC .E YTH	T : 0 NO OF	SEOT SM GRC	FECI - 12 DUNI	AN D	icz : WA	AL.	INVEST GROUN ER TABLE	IGATION D EL: 1	FOR ITAJAI 2,597	RIVER ANGLE DATE	BA E FR	SIN OM A 16 JU	FL VER	00D FICAI 1987	00 _: \ SU	NTR /ERT RVE	OL ICAL YED	PRO BY:	JECT	- (J)	CA)
	Ê	T			T			OBSER	VATION	RECORD		s 's	TAN	DAR	D PE	ENE]	[RA]	ION	TE	ST		
	ELEVATION (DEPTH(m)	T HICKNESS (G.W.L.(m)	1	.0 G		CLASSIFI- CATION	COLOR	DESCRIPTION	CORE RECOVERY	DEPTH	BLOW PENE	BLC PER 15cm	WS 15cm 30cm		N-	VAL	U E 30 4	10	SAM PLING	PERMEABILIT
1		1, 0	1,0	<u>v</u>		Ż		SANDY SILT	BROWN	FINE SAND MEDIUM	50%										-*	
2		3,0	5'0					SILTY CLAY	BROWN	VERY SOFT	50%	2,15 2,45	2 30	<u>1</u> 15	1 15	P.						
4 5-	·					<u> </u>		· · · · ·				4,15 4,45	4	2 15.	2 15						5,0	
- G- 7-						\		SILTY CLAY	BROWN	I · SOF I ∼ MEDIUM	70%	6,15 6,45	9 30	4	5 15						1 2 6,0	
8- 9-		7,8 8,6	4,8 0,8		<u>.</u>	·		SILTY SAND	BROWN GREYISH	·FINE SAND ·MEDIUM ·FINE SAND	75%	8,15 8,45	10 30	5 15	5							
-0		10,0	1.4				•	SAND	BROWN LIGHT BROWN	MEDIUM MEDIUM SAND MEDIUM	85%	10,15 10,45	29 30	13 15	16 15			6			.: .	
2- 3-		13.6	2.6					ROCK	GREY	GNEISS	100%			· .								2,01x10
4- - 5-				14 1 1		•											:					
6 7				-																		•
8 9								· .				÷			:							:
0 1				-												 :						· · .
2 3-		 -	1. L								• •								-			
4- 5-																:		1- -				j.
6- 	•.		а С												:							
9 9						·													•			
						:																•

		•••••	19.	II. 3	.2.		GEO	LOGIC LOG	DF DF	ILL	НО	L.E.	(13	/15)					
PRO	JEC	:T: (GEOT	ECH	INICAL	. INVEST	IGATION	FOR ITAJAL	RIVER	BA	SIN	FL	oób	col	NTR	OL.	PRO	JECT	(j)	CA)
HO	-E	NO :	SM	- 13		GROUN	D EL: 1	4, 230	ANGLE	FR	OM '	VER.	FICAL	.: v	ERT	ICAL		•		
DEI	PTH	0F	GRC) WAT	ER TABLE	7,86	: 	DATE	10~1	13 JU	NE.	1987	SUF	VE	<u>(ED</u>	BY:		<u></u>	
	Ê	Ê	ε	(i		OBSER	VATION	RECORD		S	TAN	DARI) PE	NET	RAT	ION	TE	ST		⊥⊤۲ ۵∕sec
	TION	oTH(KESS	1		CLASSIEL-			ERY		BLOW	BLO	WS 15 cm		м	VALI	JΕ		N C	CABIL U (cm
۰.	EVA	B	CK1	0	LOG	CATION	COLOR	DESCRIPTION	80 80 10 10	PTH	PENE								WPL	SIT
	ພິ		H H	ļ		COCANIC CLAY			0 8	ä	Cm	15cm	30cm	1	2	<u>o :</u>	<u>io</u>	ю 	ч S	a 2
- 1-		1,2	0,5	<u> </u>	2	SANDY CLAY	REDDISH		70%	ĺ										
 2					1					2.15	5		. 3							
- -										2,45	30	15	15	Î			ľ	ł		
-6																	·.			
4						SILTY CLAY	BROWN	MEDIUM	50%	4,45	30	15	15						50	
5-				:											* . .4		÷		1	
6		:		•	<u> </u>					6,15 6,45	30	3	3						60	
7-																	1			
8-	.			<u>v</u>						8,15	6	3	3							1,66x10-5
 9		8,9	7,7			CH T	CDEV		100%	8,45	30	15	15							
10		9,6	Q7	· · · · ·		SILT	BROWN	STIFF	70%	10,15	13	5	8		$\langle $		ł			
ب 		10,45	0,05	· · · · ·						10,45	30	15	14						10,5 3	
-							YELLOW-												11,0	!
12						CLAY	ISL	STIFF	45%	12,15 12,45	30	15	9 15							
13		13,7	3,25												. \	k				
14-	· · · ·							·		14,15	25	10	15			Da				
15-	:				1															i Alista
16-	.									16,0	25						- A	$\left \right\rangle$		9,01x10-5
- 17	-							DECOMPOSED		10,00	.0				·			/		
18-						SILTY CLAY	BROWN	GNEISS	50%	18.15	29	13	16							
- 10-							ICLUM	GRAVELS OF GNEISS CONTAI-		18,45	30	15	15			5				
19- 						-		NED SPORADI- CALLY		:	~ 7		10				Λ			
					=		÷ .			20,13	30	15	15	· .]	:]		2			
21-				. ·													$ \rangle$			1
22		22,45	8,7.5							22,15 22,45	41 30	- 18 - 15	23 15				'	5		· .
23-		23,0	0,55	Ľ	<u> </u>	SANUY GRAVEL	GREV	FINE ~ MEDIUM	30%								5.			. • • •
-24-	<u> </u>	24,0	۱,0			JANU	UNEI		£U%											
-25		an Tari		1. 																1
26-				i.		ROCK	GREY	GNEISS	25%											-
 27		•																		
 - -		28.0	4,0								-					-				
28-																	!			ļ
29-	• •											: : :				:				
-08								e. e. i			ĺ							ļ		
~	`	· .			- -					ч. н. 1					: [:			н.,	

			GRO		WAI	OBSER	11,93 VATION	RECORD	DATE	7~ S	9 JU TANI	NE, DARI	1987) PE		RAT	TED	BY. TE:	ST		
	ELEVATION (1	DEPTH(m)	T H ICKNESS (m	G.W.L.(m)	LOG	CLASSIFI- CATION	COLOR	DESCRIPTION	CORE RECOVERY	DEPTH	BLOW PENE cm	BLC PER 15cm	₩S 15 cm 30:m		N-	VAL	UE 30 4	- ч. к. Ю	SAMPLING	PERMEABILIT IN SITU (cm/s
1		2,5	0,4 2,1		W	SILTY CLAY	BLACKGREY REDDISH BROWN	DECOMPOSED GNEISS	100% 50%	2,15	9	4	<u>\$</u> 15	 1						
3 		5,0	2,5			SILTY SAND	BROWN	• FINE SAND • MEDIUM DENSITY	80%	4,15	10 30	4	6						5,0	
6 · · · · · · · · · · · · · · · · · · ·						SILT	GREY	• STIFF~MEDIUM	65%	6,15 6,45	9 30	4	5				non and a second se		1 2 6,0	5,85x10
9- 10-	- 	9,6	4,6			CLAY	GREY	· SOFT~MEDIUM	70%	8,45 10,0 10,3	30 4 30	15 15 2 15	15 15 2 15							
11 12- - 13		11,3	1,7	<u>v</u>		SAND	LIGHT BROWN	· MEDIUM SAND DENSITY	20%	12,15 12,45	- 15 30	6 15	9 15							
14 15 16-	-	17.0	3 3			ROCK		GNEISS	100%											
17- - 18- 19-	· 				┎╄╍┸╾┸╼╌															
20 21 22-															-					
23- 24 25														-	-					
26- 27- 28-	:	•																		
29 	•																			

PRC HO DE I	DJE LE PTH	NO : OF	GEOT SM- GRC	12.0 (EC) • 15 DUNI		ICA WAT	L INVEST GROUN ER TABLE	IGATION D EL: 4	FOR ITAJAI	RIVER ANGLE DATE	BA E FR 17~	SIN OM - 18	FL VER JUNE	00D TICAL , 1987	CO CO SUF	VTR ERTI (VE)	OL cal YED	PRO BY:	JECT	` (JI	CA)
	ELEVATION (m)	DEPTH(m)	THICKNESS(m)	G.W. L (m)	L.	06	OBSER	COLOR	RECORD	CORE Recovery	DEPTH CO	TAN BLOW PENE cm	DARI BLC PER) PE WS 15cm 30cm	NET	RAT N-	VAL	ΤΕ υε 30	ST 	SAMPLING	PERMEABIUTY
]		1,6	1,6			- <u>[</u> -	SANDY SILL	BROWN	• MEDIUM	90%										·	
2 3		2,45	0,85			:: \	SAND	BROWN	FINE SAND LOOSE	70%	2,15 2,45	4 30	2 15	2 15			· ·				:
4-		4,0	1,55		0	0		SRUWN	• MEDIUM	100 %	4,0 4,3	7 30	3 15	4		<u>\</u> .					
5~ 6		6,45	2,45		0 0	0	BOULDERS		• WEATHERED BOULDER	5%	6,15	27	14	13						:	· .
7		7,0	0,55		0	0	BOULDER	GRFY	· GNEISS	20% 20%	6,45	30	15.	15							
8 : 9 :		8,1 (8,3	1, 1 0.2			$\overline{\Pi}$	GRAVEL			C50%	8,0 8,05	25 5									-
9 10:2	:	10.8	2.5				ROCK	DARK GREY	GNEISS	80%											
11- 12-		10,0		•		1.1.1.					1 . 4										
13 -	-											:		н на 19							
14- 15-	-		-		, ž	L						1				-	-				
16- -																		. :			
17 18						•															
- 19			- - -		• :									•							
20 - 21							· · · ·													:	
- -52 -52				÷																	
24																					
25 ·										14 1											
27															:						
28- 29-																		-			
30-					•											•					•••
	. .					1					·· · ·		•	•							

⁻ II-47

Fig.II.3.3 DUTCH CONE SOUNDING TEST RESULT (2/8)

-Resistence Total (kg)

Fig. 1.4.1 RELATIONSHIP BETWEEN SPT (N-VALUE) AND CONE RESISTANCE (qc) FOR SANDY SOILS

II-56

FIG.I.4.3 RELATION BETWEEN NATURAL MOISTURE CONTENT AND OPTIMUM MOISTUR CONTENT