SECTION 6 STUDY ON AIRCRAFT

SECTION 6 STUDY ON AIRCRAFT

6.01 GENERAL

6.01.1 Scope of the Study on Aircraft

(01)Objective: Based on the future air traffic demand which has been figured out in the previous section, the appropriate aircraft may be specified through this section as basic specifications as the numbers of seats, operation cost, type of airport available, range, etc. The aircraft to be studied will cover VTOL (Helicopter) type, STOL type, CTOL type and Amphibious type of aircraft.

(02)<u>Investigation Items</u>: To prepare the basic specifications of an aircraft to be applied for each potential air route, the following investigations and study was conducted.

- Inventory survey of existing aircraft.
- Investigation of aircraft development plan.
 - Evaluation of introduction plan of aircraft.
 - Characteristics of aircraft being used in the scheduled airlines.
 - Operating expenses and public charges for aircraft operations by the commercial airline companies.
 - Future trend of the air transportation system in relation with the total transportation system.
 - Problems as to aircraft presently used.

Based on the results of the above works, the basic specification of aircraft to be used and required numbers was worked out. 6.01.2 Outlines of Aircraft Fleet and Airport System

(03)<u>Airlines in Indonesia</u>: Airline industry in the Republic of Indonesia consist of scheduled airlines, non-scheduled airlines and general aviation companies. Scheduled airlines consist of the government owned companies and the private companies as listed below.

- Government Owned Companies

PT. GARUDA INDONESIA

PT, MERPATI NUSANTARA AIRLINES

- Private Companies

PT. BOURAQ INDONESIA AIRLINES

PT. MANDARA AIRLINES

Non-scheduled airlines come to 20 companies and are mostly air charter operators. Whereas, the number of general aviation companies registered amounts to 44 as of 1987. The airline names including scheduled, non-scheduled and general aviation companies are presented in Table-2.1 of Study Report Part-II.

(04)<u>Aircraft Fleet</u>: In addition, the type of aircraft and the numbers available for scheduled and non-scheduled flights are given in Table-2.1 of Study Report Part-11.

(05)<u>Airport System</u>: In Indonesia the number of airports equipped with refueling facilities comes to about 40, which is scarce in comparison with the total number of airports. Soekarno-Hatta Airport is the sole airport, which can provide a 24 hours refueling service. The majority of airports are operational in daytime only due to deficiency of navaids, personnel and some other reasons. At present, the 7 airports listed below are under 24-hour operation.

- Soekarno-Hatta, Jakarta
- Juanda, Surabaya
- Ngurah Rai, Denpasar

- Hasanuddin, Ujung Pandang

- Polonia, Medan

- Talangbetutu, Palembang

- Frans Kaisiepo, Biak

The data relating to the airports used for traffic demand forcast are shown on Table-6.1, compose of:

- Airport city name

- City code

- Airport location

- Airport category

- Runway length

- Airport code

The airport category is the airport classification according to DGAC (Directorate General of Air Communications). The airport which is classified from Category-I to Category-V is controlled by DGAC.

6.01.3 Route Characteristics of Future Air Traffic Demand

(06)Future Air Traffic Demand: The air traffic demand employed in the preparation of aircraft specifications is the total annual traffic demand assigned to the respective route based on the origin/destination trip specific air The conceivable air routes will come up 219 to numbers. routes in the year 1994 with the projected annual passengers of about 12.8 million. In 2004, there will be 235 routes and 16.7 million passengers approximately.

(07)<u>Route Characteristic</u>: The route characteristics, which give the stage length and the annual passengers, can be classified as shown in Table-6.2. The average stage length and average number of passengers are classified into short, medium and long hauls, and given in Table-6.3.

Table-6.1(1) Data of Airport

.. . .

.

No.	Airport	City	Airport	Location	Airport	Runway	Airport
	City Name	Code	Longitude	Latitude	Category	Length(m)	Code
1	Sabang	101001	95,21	-5.52	V	1250	3000
2	Banda Aceh	101002	95,25	-5.31	Ĩ IL	1850	3001
3	Lhok Seumawe	101003	95.56	-5.13	v	800	3002
4	Meulaboh	101004	96.13	-4.15	IV	900	3003
5	Sinabang	101005	96.14	-2.25	Iγ	750	3005
6	Tapaktuan	101008	97.18	-3.18	IV	750	3004
7	P.Panjang	101009	97,19	-2.03	IV	1400	3160
8	Medan	102010	98.40	~3.33	I * ∘ .	2900	3006
9	Sidikalang	102011	98,21	-2.43	IV	750	3007
10	Prapat	102012	98,56	-2.35	IV	750	3008
11	Rantauprapat	102013	99.42	-2.16	0	750	3009
12	Sibolga	102014	98.35	-1.33	IV	1400	3010
13	Padang Sidempuan	102015	99,27	-1.23	IV	750	3011
14	Gn.Sitoli	102016	97.37	-1.16	IV	750	3012
15	P.Tanah Bala	102017	98,27	-0.06			3161
16	Lubuksikaping	103018	100.02	-0.11	Щ	1300	3013
17	Padang	103021	100,21	0.53	11 *	2150	3016
18	Siberut	103022	99,04	1,26	N N	650	3017
19	Sipora	103023	99,41	2.05	V	750	3018
20	Dumai	104024	101.26	-1.35	ÎI.	1800	3015
21	Pakanbaru	104025	101.27	-0.28	п	2150	3014
22	Rengat	104026	103.19	-0.20	Ш	1300	3019
23	P.Batam	104027	104.06	-1.07	П	2500	3020
24	Natuna	104029	108.23	-3,57	Ш	1500	3021
25	Jambi	105030	103.39	1.38	· · · · ·	1670	3022
26	Muara Bungo	105031	101.58	1.22	IV.	. 815	3023
27	Sungai Penuh	105032	101.22	2.06	. IV	650	3024
28	Lubuk Linggau	106033	103.09	3.09	IV	1000	3026
29	Palembang	106034	104.42	2.54	I.	2200	3028
30	Kayu Águng	106035	104.52	3.19	IV IV	1300	3029
31	Muara Enim	106036	103.50	3.36	IV	900	3027
32	Bangka	106038	106.08	2,10	n	1520	3030
33	Tg.Pandan	106039	107.45	2.45	Ш	1650	3031
34	Bengkulu	107040	102.20	3.52	III	1800	3025

• Table-6.1(2) Data of Airport

No.	. Airport	City	Airport	Location	Airport	Runway	Airport
	City Name	Code		Latitude	Category	Length(m)	Code
35	Kotabumi	108041	104.56	4.46			3162
36	Tanjung Karang	108042	105.11	5.15	н	1520	3032
37	Jakarta(CGK)	209043	106.39	6.08	[_*	3660	3033
38	Pandeglang	210044	106.11	6.29	П	1800	3034
39	Tangerang	210045	106.34	6.18	Ĩ	1600	3035
40	Sukabumi	210049	106.58	6.55	. –	-	3036
41	Bandung	210051	107.35	6.54	. П	1959	3037
42	Cirebon	210052	108.23	6.35	0	725	3033
43	Tasikmalaya	210053	108,17	7.25	Ш	1200	3039
44	Tegal	211054	109.08	6.51	·	-	3040
45	Semarang	211055	110.23	6,59	Л	1650	3043
46	Cilacap	211056	109.03	7.38	V ·	660	3041
47	Kebumen	211057	109.32	7.42	-	-	3042
48	Сери	211058	111.32	7.12	IV	900	3046
49	Solo	211059	110.45	7.31	ш	1850	3044
50	Yogyakarta	212060	110.26	7.47	П	1850	3045
51	Madium	213061	111.30	7.37	0.	1800	3047
52	Kediri	213062	112.03	7.47	-	-	3048
53	Surabaya	213063	112,46	7.22	I *	3000	3049
54	Sumenep	213064	113.56	7.04	ĩV	850	3051
55	Malang	213065	112.44	7.54	п	2250	3050
56	Banyuwangi	213066	113.41	8.10	П	2000	3052
57	Denpasar	214067	115.10	8.45	I *	2700	3053
58	Ampenan	315068	116.04	8.32	Ш	1600	3054
59	Sumbawa Basar	315069	117.25	8.30	IV	1470	3055
60	Bima	315070	118.42	8.30	Ш	1400	3056
61	Ruteng	316071	120.29	8.35	IV	1300	3057
62	Ende	316072	121.39	8.52	• V	900	3058
63	Maumere	316073	122.15	8.38	m	1470	3059
64	Lamatukang	316074	123.39	8.22	IV	750	3060
65	Alor	316075	124.34	8.13	· V	850	3061
66	Tambolaka	316076	119,24	9.24	0	1300	3062
67	Waingapu	316077	120.18	9.40	Ш	1500	3063
68	Sabu	316078	121,50	10.30	v	800	3064

Table-6.1(3) Data of Airport

No.	Airport	City	Airport	Location	Airport	Runway	Airport
	City Name	Code	Longitude	Latitude	Category	Length(m)	Code
69	Rote	316079	122.50	10.53	v	1100	3065
70	Naikliu	316080	123,50	9.30	0	1500	3066
71	Kupang	316081	123.40	10.10	П	1850	3067
72	Atambua	316083	124.54	9,20	ΙŲ	850	3068
73	Baucau	317084	126,23	8.37	m	3000	3070
74	Dili	317085	125.31	8.32	Т	1750	3069
75	Singkawang II	418088	109.40	-1.05	IV	970	3071
76	Pontianak	418089	109.24	0.09	I.	1655	3072
77	Sanggau	418090	110.31	-0.09	· · 0 · ·	600	3073
78	Putusibau	418091	112.56	-0.50	IV a	850	3074
79	Sintang	418092	111.29	-0.04	Ń	900	3075
80	Ketapang	418093	109,58	1.51	īv	1000	3076
81	Muaratewe	419094	114.53	0.31	0	600	3077
82	Buntok	419095	114.50	1.44	• IV . •	600	3078
83	Palangka Raya	419097	113.56	2,16	n	1650	3079
84	Sampit	419098	112.59	2.33	ille v	855	3080
85	Pangkalan Bun	419099	111.40	2.45	ш	1600	3081
86	Rantau	420100	115.13	2.59	· - · ·	<u> </u>	3082
87	Batu Licin	420101	115.59	3.28	0	1300	3085
88	Kotabaru	420102	118.26	3.17	Ш	900	3086
89	Banjarmasin	420103	114.45	3.27	1	1870	3083
90	Tanjung Selor	421104	117.26	-2.50	0	750	3089
91	Long Bawan	421105	115.41	-3.52	· · · · V	700	3087
92	Tarakan	421106	117.34	-3.20	ш	1650	3088
93	Tg.Redep	421107	117.26	2.09	V V	760	3090
94	Səmərinda	421109	117.09	0.27	m	900	3091
95	Balikpapan	421110	116.54	1.16	a 1 - 2 - 1 1 - ₩1	1800	3092
96	Tanah Grogot	421111	116.13	1.52	IV	640	3093
97	Melangguane	522112	126.42	-4.03	N N	850	3094
98	Tahuna	522113	125.25	-3.43	IV	850	3095
99	Manado	522114	124.55	-1.32	1 1 . *	2500	3096
100	Bolaang Mongondow	522115	124.22	-0.42	0	710	3097
101	Gorontalo	522116	122.55	-0.39	Ш	1650	3098
102	Toli-Toli	523117	120.48	-1.08	IV 2	850	3099

6-6

•

 $(x_1, \dots, x_{n-1}) \in \mathbb{R}^n$

		1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	÷	•			X	
1 ¹ .		Table-6	.1(4)	Data of	Airport			
· .	No.	Airport	City	Airport		Airport		
1		City Name	Code	·	Latitude	Category	Runway Length(m)	Airport Code
	103	Palu						
	103	Poso	523118		0.55	II	1625	3100
	104	Salea	523119 523120	120.43	1.24	W	1117	3101
	106	Luwuk	523120		1.56		050	3102
	107	P.Banggai	523121	122.46 123.36	1.01	IV	850	3103
	108	Malili	524123	123.36	1.40 2.38		050	3104
	109	Mamuju	524123		2.35	IV IV	850	3105 3106
:	110	Makale	524125			0	710	
84 C	111	Watampone	524125		3.05		750	3107
	112	Vjung Pandang	524127		4.55	 I *	0500	3108
	113	Benteng	525130		5.04 6.06	1 7	2500	3109
	114	Kendari	525130	120.33	4.05	Ш	1050	3110
	115	Kolaka	525131	122.20	4.03	IV	1650 1050	3111
	116	Kasiputo	525133		4.18		1050	3112 3113
	117	Bau-Bau	525133	122.03	5.31	0	850	3113
	118	Raha	525137		4.48	0	1200	3114
	119	Morotai	626138	122.30	-2.04	v	1000	3115
1	120	Galela	626139		-1.49	ĪV	750	3110
	121	Ternate	626140	127.26	-0.50	m	1400	3118
	122	Buli Serani	626141	128.09	-1.12	_	-	3119
	123	Labuha	626142		0.39	v	850	3120
:	124	P.Obi	626143	1	1.23	_	-	3121
	125	P.Gebe	626144	129.48	0.13	_	-	3122
	126	Mangole	626145		1.47	v v	1200	3123
	127	Taliabu	626146	ł	1.37	0	900	3124
	128	P.Burn	626147	· · · ·	3.15	IV	1400	3125
	129	Seram	626148		3.21	v	850	3126
	130	Ambon	626149		3.42		1850	3127
	131	Bula	626150		3.06	0	985	3128
	132	Geser	626151	131.23	4.01	-	-	3129
	133	Bandanaera	626152	and the second second	4.35	v	700	3130
	134	Langgur	626153		5.40	0	1300	3131
	135	Saumlaki	626154	131.18	7.57	0	850	3132
н. Н	136	P.Babar	626155	and the first of the	7.50		-	3133
	100			L	L	<u> .</u>		1

Table-6.1(5) Data of Airport

.

No.	Airport	City	Airport	Location	Airport	Runvay	Airport
	City Name	Code	Longitude	Latitude	Category	Length(m)	Code
137	P.Wetar	626156	126.05	7.40	-	- 1 - 1 - 1	3134
138	P.Waka	626157	134,33	5.53	V	850	3135
139	P.Waigio	727158	130.53	0.22		-	3136
140	P.Salavati	727159	130,44	0.13	-		3137
141	P.Misool	727160	130,03	1.46		10 – 10 m	3138
142	Sorong	727161	131.07	0,56	Π	1650	3139
143	Manokwari	727162	134.03	0.53	m	1400	3140
144	Bintuni	727163	133,31	2,06	V.	650	3141
145	Fak-Fak	727164	132.13	2,56	N IV	630	3142
146	Kaimana	727165	133.41	3,39	V	1500	3143
147	Timika	727166	136.54	4.32	tali II	1800	3144
148	Paniai	727167	135.30	3.22	Ш	1150	3145
149	Enarotali	727168	136.25	3,55	IV	600	3146
150	Waren	727169	136.23	2.16	0	470	3147
151	Serui	727170	136.14	1.52	IV S	650	3148
152	Sarmi	727171	138.45	1.51	IV IV	900	3149
153	Jayapura	727172	140.31	2.34	П	1850	3150
154	Oksibil	727173	140.36	4.51	, V	600	3151
155	Jayawijaya	727174	138,57	4.04	Ш	1500	3152
156	Agast	727175	138,15	5,31		1000	3153
157	Kepi	727176	139.27	6.40	and V and	675	3154
158	Tanah Merah	727177	140,18	6.06	IV	1050	3155
159	Merauke	727178	140.28	8.37	ш	1850	3156
160	Okaba	727179	139.42	8.06	V	600	3157
161	Kimaan	727180	138.51	7,52	0	600	3158
162	Biak	727181	136,07	1.12	П *	3570	3159

* : International Airport

- : No Airport

Source : 1) AERONAUTICAL INFOMATION PUBLICATION INDONESIA (A.I.P) Acronautical Information Service, D.G.A.C

2) DIRECTORY OF AERODROMES FOR LIGHT AIRCRAFT, VOL. I & II Ninth Edition, 1987 (DOK.PA.500.1.87),

Aeronautical Information Service, D.G.A.C

- 3) DATA DAN PRASARANA POKOK BANDAR UDARA
 - POSISI : NOVEMBER 1987 (D.G.A.C)

		-		Pax-km (X10 ⁶)	570	2539	2211	3037	0	-	8356	516	3231	3357	4056	0	1 2 T	10111
	•	Total		Pax. (X10 ³)	1502	4159	3647	3454	0		12763	1356	5821	4526	5041	0	0101	77101
				Route	116	74	21	∞	0		219	103	98	24	10	0	00E	637
			· ·	Pax-km (X10 ⁶)	120	1283	944	1973	0	•	4320	114	1606	1700	2606	, 0	3075	0700
	· ·	Long haul	~006)	Pax. (X10 ³)	02	829	830	1619	0		3348	84	1266	1019	2234	0 0	6437	4005
	1		<u> </u>	Route	S	11	2	4	0	:	23	3	18	g	ъ	0	ş	70
	Route Characteristics	ul	~	Pax-km (X10 ⁶)	313	911	1143	1064	0		3431	299	1098	1506	1419	0	0067	7704
•	racter	Medium haul	300-900	Pax. (X10 ³)	718	1728	2024	1835	0		6305	069	2061	2710	2477	0	0002	1 200
	te Cha	Ŵ		Route	53	30	12	4	0		99	47	35	14	4	0	VV F	001
				Pax-km (X10 ⁶)	133	344	123	0	0		009	104	527	151	31	0	010	CTO
	Table-6.2	Short haul	~300	Pax. (X10 ³)	713	1600	793	0	0		3106	283	2495	262	331	0	A DAR	60024
	Ц З	N)	Route	60	33	4	0	0	- -	97	53	45	4	+-4	0		C01
· .		Distance	(km)	Demand (X10 ³)	~ 30	30 ~ 120	120 ~ 300	300 ~ 900	~ 006	*	Total	~ 30	30 ~ 120	120 ~ 300	300 ~ 900	~ 006		local
			<u>.</u>	Year			• .	1994	•						2004			

	•	 		[
Average	Route Pax.	(X10 ³)	32	64	146	58	41	62	144	7
Average	Stage Length	(km)	193	544	1290	655	193	244	1309	667
Pax-km	(X10 ⁶)		600	3431	4320	8356	813	4322	6026	11161
Pax.	(X10 ³)		3106	6305	3348	12763	4205	7938	4603	16742
Route			26	66	23	219	103	100	32	235
Distance	(ka)		Short haul (~300)	Medium haul (300~900)	Long haul (900~)	Total Route	Short haul (~300)	Medium haul (300~900)	Long haul (900~)	Total Ronte
Year			Sh	1994 Me	Lo.		Sh	2004 Me	Lo Lo	

Table-6.3 Route Characteristics (Summing-up)

6.02 EVALUATION MODEL FOR AIRCRAFT SPECIFICATION STUDY

6.02.1 Methodology of Analysis

(08)<u>Macroscopic Investigation</u>: Macroscopic investigation of existing aircraft allocation in Indonesia has been performed in connection with :

- What range performance is required for an air route.

- How long it takes to fly an air route.

- What kinds of aircraft are used.

Such macroscopic investigation has been analyzed and summarized in respect to the items below.

- Relation between air route stage length and aircraft range performance

Relation between air route stage length and block time
Types of aircraft in service

(09)<u>Basic Specifications</u>: The basic specifications for aircraft to be prepared will specify aircraft in respect to the following items.

- Standard number of passenger seats

- Maximum cruising speed

- Maximum range

- Takeoff distance

- Landing distance

The aircraft to be studied in preparation of the specifications are as defined tentatively 13 aircraft operating in Indonesia at present.

6.02.2 Structure of the Model

(10)<u>Input and Output of Model</u>: Input and output data for preparation of aircraft specifications will be;

- Air route stage length and airport facilities' data (input)
- Air traffic demand of an air route (input)
- Standard number of passenger seats (output)
- Maximum cruising speed (output)
- Maximum range (output)
- Takeoff distance (output)
- Landing distance (output)

To execute the actual calculation of the above items, a computer program, TCHART, was developed. The program also provides the following data required for aircraft operating cost estimation;

- Type of aircraft, such as conventional airplane, short takeoff and landing (STOL) airplane, helicopter and amphibian.
- Number of aircraft required.
- Parameters relating to aircraft operation such as passenger load factor, utilization and frequency.

(11)<u>The Aircraft Specifications to be Studied</u>: The aircraft specifications are to be studied based on statistical equations as shown in sub-section 5.01 of Study Report Part-I. The computer program, TCHART, covers the questions listed below.

- Maximum range with maximum payload
- Number of Passenger seats
- Takeoff field length at maximum takeoff weight
- Landing distance at maximum landing weight
- Type of aircraft
- Maximum cruising speed at maximum takeoff weight
- Passenger load factor
- Flight frequency and adjusted passenger load factor
- Flight frequency check
- Number of aircraft
- Annual utilization of aircraft

(12)<u>Additional Data for Operating Cost</u>: The additional data necessary for estimation of aircraft operating cost are as follows.

Aircraft maximum takeoff weight

- Aircraft empty weight (equipped)

- Number of crew and cabin attendants for a flight

- Maximum takeoff thrust and power

- Fuel burnt during flight

- Aircraft price.

- Engine price

- Fuel price

- Oil price

- Insurance rate

- Depreciation years

- Labor rate

- Crew and cabin attendant rates

These statistical equations are shown in sub-section 5.02 of Study Report Part-I. (The operating cost model refers to sub-section 6.02.4 of this report)

6.02.3 Limitation of the Model

(13)<u>Documents Referred</u>: To prepare the basic aircraft specifications, the computer program TCHART has been introduced. The variables to be input in the model are quoted from "Statistik Angkutan Udara, 1984". In addition, the following documents are referred to in the study.

- Directorat Jenderal Perhubungan Udara,

Proyek Pengembangan Angkutan Udara

- Pengkajian Jaringan Trayek dan Pengguaan,

Jenis Pesawat Untuk Rute Utama Term II

- Konsep Laporan Akhir (Draft Final Report),

1986, by PT. Lenggogeni

The actual block time to be compared with the estimated one has been extracted from the timetables of airlines.

(14)<u>Item to be Checked</u>: Cross checking has been made between an actual record and estimated one based on the model in respect to the following items.

- Flight frequency or number of flights per week

- Block time

For estimate of flight frequency, the following factors have to be taken into account.

- Number of passengers per year

- Standard number of passenger seats of aircraft

- Passenger load factor

For estimation of block time, the following figures are given.

- Air route stage length

- Average cruising speed

(15)<u>Cross Checking</u>: Cross checking has been made in respect of the following three types of aircraft since the data on other types of aircraft are deficient.

- Aircraft with up to 50 seats

- Aircraft with up to 100 seats

~ Aircraft with up to 340 seats

In fact, the maximum number of seats of these three types of aircraft spread over those of types of aircraft. It is thus considered that cross checking on the above three types of aircraft is sufficient to evaluate the automation model. The results of cross checking are summarized in Table-6.4. The deviation between estimation and actuality is less than 10 minutes for block time and is within 7% for flight frequency. As a while, it is considered that the model can be applied for preparation of specifications of aircraft to be Result of Comparison Between Actual and Estimated Flight Frequencies and Block Time

Table-6.4

Difference -0:05 -0:07 -0.01 -0:03 -0:04 +0:0+ -0:08 +0:03 0:00 -0:02 +0:0+ -0:01 +0:07 Block Time (hr:mim) Estigation 1:38 2:10 0:59 1:02 0:49 1:25 1:02 0:53 1:10 1:03 1:06 0:53 1:09 Actual 1:45 2:15 1:00 1:05 1:40 0:45 1:10 0:50 0:55 1:10 1:10 01:1 1:10 Estimation (EST-ACT)/ACT +0.02 +0.04 +0.07 +0.07 +0.07 -0.07 -0.07 -0.07 -0.07 +0.04 +0.04 ò 0 Flight Frequency (No.of Flights/Week) ыз 33 2 55 30 26 2 52 녑 ٠ø ŝ * 3 Actual 9 # 8 2 20 않 읞 뎕 -0 얺 **** 1 얺 14 Estidation No. of Passenger Seats 340 340 ·, 100 100 100 100 100 100 100 ន្ល ន 3 30 Actual 226 244 244 6 5 5 ខ្ល ទួ ទួ 8 1 4 47 Aircraft Model DC-10 A-300 A-300 HS-748 81/-SH H5-748 PC-9 6--3a 6-30 F-28 F--28 F-29 F--28 F-27 (Pax./Year) 21,116 Passenger 467,350 200,693 287,725 95.168 41,148 7,575 179,846 62,440 52,725 47,350 37,320 87,552 Demand Kalikpapan-Banjarmasin Jakarta-Ujungoandang Ujungpandang-Kendari Yoovakarta-Surabaya Jekerte-Benjereesin Bandung-Yooyakarta Jakarta-Yooyakarta Segerang-Surabaya Jakarta-Paleabang Ujunopándang-Paju Medan-Banda Ache Jakarta-Denpasar Belikpapan-Palu Air Route

Source : I STATISTIK ANGKUTAN UDARA, 1984. I PENGKAJIAN JARINGAN TRAYEK DAM PENGSUAAN JENIS PESAMAT UNTUK RUTE UTAMA TERM II, KONSEP LAPORAN AKHIR (URAFT FINAL REPORT), 1986, PT. Lenggogeni

allocated in future to specific air routes.

6.02.4 Aircraft Operating Cost Model

(16)<u>Models</u>: A computer program, "TCHART" was developed for estimation of aircraft operating cost, and consists of the following elements.

- In regard to the direct operating cost of an aircraft with turbofan engines, the standard Air Transportation Association model (ATA model) is to be applied after making some modifications to the 1976 coefficients.
- The direct operating cost of an aircraft with turboprop engines is to be estimated by Boeing short Haul Airplane Operating Cost Analysis model with modifications.
- The indirect operating cost is assumed based on Lockheed California company model modified as required.

(17)<u>Constitution Items of DOC</u>: Direct operating costs consist of the following items.

- Crew cost
- Fuel and oil cost
- Airframe labor cost
- Material cost of airframe
- Engine labor cost.
- Material cost of engine
- Maintenance burden
- Depreciation
- Insurance cost

(18)<u>Constitution Items of IOC</u>: Indirect operating costs consist of the following items.

- System cost

Labor, property, equipment

Station maintenance cost (from ground facilities)

- Local cost

Landing fees and servicing

- Aircraft control cost

All aircraft handling charges

- Cabin attendant cost

Stewardesses

- Cost of food

All food and refreshments served without charge

- Passenger handling cost

Cost of handling passenger's baggage

- Cargo handling cost

Handling mail, freight and express cargo

- Other passenger service costs

All activities related to passenger comfort, safety and convenience

- Freight commissions and advertising cost

Expenses associated with creating a public preference for an individual air carrier, stimulating air travel, and providing timetables

- General and administrative cost Costs of overall corporate nature

1) Land based Fixed Wing Aircraft

For the aircraft with turbofan, turboprop engines, the methods used in Indonesia to calculate these costs are described in sub-section 5.02 of Study Report Part-I. The calculation of operating cost for a STOL is similar to that for a conventional airplane, therefore, the equations of direct and indirect operating costs described for conventional airplane can be applied

2) Water based Fixed Wing Aircraft (Amphibian)

The maintenance cost constituting the direct operating cost is higher. The maintenance cost per flight cycle does not change, but the maintenance cost per flight hour is about 1.3 times higher.

The maintenance cost can be obtained by modifying the

equations for conventional airplane, and shown in subsection 5.03 of Study Report Part-I. The equations of indirect operating costs described for conventional airplane can be applied.

(4

of

3) Rotary Wing Aircraft (Helicopter) Examples of helicopter DOC's are given for BO-105 seats) and Bell 412 (13 seats). The DOC for a 10 seat Helicopter has been calculated by interpolating these helicopters and shown in sub-section 5.03 Study Report Part-I.

6.03 INVESTIGATION OF BASIC SPECIFICATIONS OF AIRCRAFT

6.03.1 Establishment of Study Scenario

(19)<u>Scenarios</u>: To study the basic specifications for the aircraft, it would be necessary to define the situation of airports available as one of boundary conditions. Three (3) study scenarios were assumed as follows.

- Scenario-A :

The existing airports can be substantially upgraded and several new land airports can be constructed so as to make the aircraft operable under minimum direct operating cost.

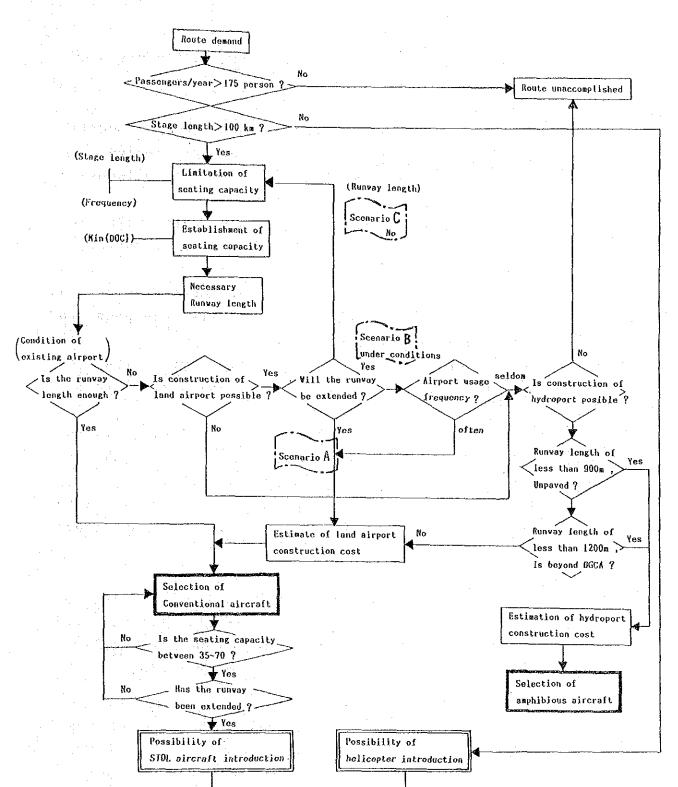
Scenario-B :

This is a compromised scenario between the Scenario-A and Scenario-C. Some existing airports can be upgraded, and some new hydroports as well as land airports can be constructed to save total infrastructure investment cost.

Scenario-C :

The existing airports can be utilized as much as possible without any additional investment for new construction and/or upgrading. Some burden will result from increases of aircraft operating cost.

6,03.2 Basic Criteria for Optimal Aircraft


(20) <u>Basic Assumption</u>: The aircraft to be allocated to each air route have been selected based on the minimum direct operating cost (DOC/seat-mile). Flight frequency was calculated by number of passenger per year, load factor and number of seats, but not less than computed 0.5 per week. (The initial passenger load factor of 0.67 was employed, which is nearly on economic break-even point of airlines operation in Indonesia.) The number of aircraft allocated to each route was determined by the block time, frequency and annual utilization hour which was given by ATA (Air Transportation Association) model. But type and size of aircraft selected in such manner are greatly affected by the runway length of the airports at both ends of route. Therefore, the following criteria have been assumed in selecting aircraft.

If the water based airports, (21) Types of Aircraft: Hydrowere available, the fleet including amphibians, as ports, well as conventional planes, have been studied. It has been assumed that helicopters may be allocated when stage is not more than 100 km and there is no airport on length one end of the route. It has also been assumed the STOL planes may be allocated when at least one of airports of a runway 3,000 feet or more in length, and has i t i s route constrained to use aircraft having 20 to 35 seats.

(22) Airport Conditions: The optimal aircraft (a conventional airplane and with DOC minimum for a route) is selected in the case that the runway length of the airports at both ends a route are sufficient for the takeoff and landing disof tance of the economically optimal aircraft. Otherwise, that is, if the takeoff and landing distances of the optimal aircraft is longer than the available runways, an aircraft having smaller number of seats and capable of takeoff and landing on the available runways are selected. (Depending the nature of a route, this rule may exclude the possion bility of operating the particular route due to insufficient range of the aircraft thereby chosen, which are too small in size.)

6.03.3 Analysis and Assumption

(23)<u>The Procedure for Analysis</u>: The procedure for analysis for aircraft selection are illustrated in Figure-6.1. To

Figure-6.1 Procedure for Aircraft Selection

Reduction of airport construction cost proceed an analysis, the domestic airports in Indonesia has been classified into the following three categories.

- Major National Airport

Airports which are particular important in constituting a nation-wide, major air network, which are provided with sufficient facilities for allocation of large aircraft.

(The aircraft which have up to 510 seats with jet engines can be takeoff and land on these airports.)
National Airport

Airports which are necessary in constituting a nation-wide air network, sufficiently equipped to accommodate medium size aircraft.

(The aircraft which have up to 150 seats with jet engines can be takeoff and land on these airports.)

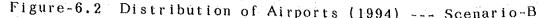
- Regional Airports

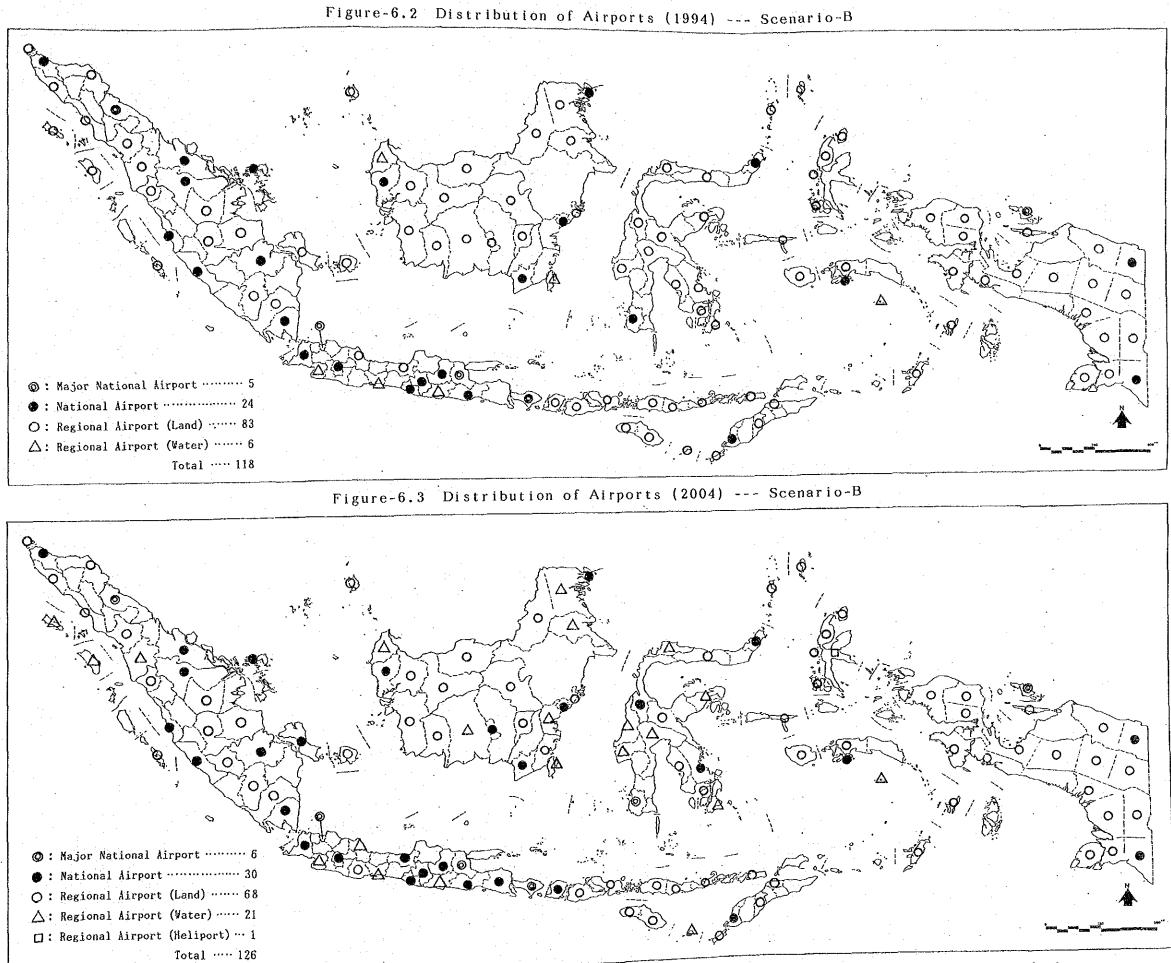
Airports which are required in establishing intraregional air routes and pioneer airlines, which are suitable to small aircraft or light plane. (The aircraft which have up to 50 seats with turboprop engines can be takeoff and land on these

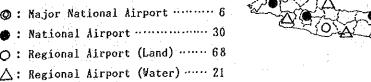
airports.)

In accordance with the airport classification criteria of DGAC, existing airports in Indonesia are classified into CATEGORY-1 to CATEGORY-V. Then correspondence between two classifications can be presented as following table.

CATEGORY	Classification	Typical
(DGAC)	on this study	Aircraft
I	Major National	B-747,DC-10
II III	National	DC-9 F-28
IV V	Regional	F-27 CN-212


(24)<u>Data for Scenario-A</u>: A total of 162 airports have been studied for air network between 181 zones to which the territory of the Republic of Indonesia is divided, including imaginary airports to be constructed in establishing the air traffic demand forecast as well as existing ones (presented in Table-6.1). But, Scenario-A produces the data of new airports required and those of extended airports, including runway lengths, when the optimal aircraft for each route is determined.


(25)<u>Data for Scenario-B</u>: It is assumed in this scenario that, while the existing land based airports are effectively utilized, the repletion of major national airports, national airports and regional airports are implemented by certain extent before and in the period from 1994 to 2004, corresponding to overall air traffic demand and growth of routes. Outline of airport repletion schedule is illustrated in Table-6.5, and Figures-6.2 and 6.3.


(26)<u>Data for Scenario-C</u>: The same data as in Scenario-A are also used in Scenario-C. But the airport data used in Scenario-C are those of existing airports (Table-6.1), as it is assumed that no investment is made on airports in future.

	Year	1988 - 1994	1995 - 2004	Total
<u></u>	Number of A/P	6	8	14
	Extended R/W	2,455 m	2,355 m	
	Length (Total)			
	2800 m Class		Ujung Pandang	
Major National	2500 m Class	Yogyakarta,	Semarang	
Airport &		Banjarmasin,		. 1.
National Airport		Balikpapan		
	2000 m Class	Pontianak	Ampenan, Ambon	
	1800 m Class	Tanjung Karang,	Bangka,	
		Tarakan	Palangka Raya,	
			Palu, Kendari	
	Number of A/P	12	25	37
· · · .	Land Airport	6	10	
e a traj di el component		(Total 3,200m)	(Total 2,130m)	
Regional		Samarinda,	Rengat,	
Airport		Buntok etc.	Muara Enim etc.	
	llydroport	6	15	×
		Sukabumi,	Tanjung Selor,	
		Kediri etc.	Cirebon etc.	

Table-6.5 Airport Repletion Schedule on Scenario-B

6.03.4 Aircraft Deployment

(27)Deployment of Aircraft and Airports: The characteristics and numbers of aircraft which are required in meeting demands of each air route (airport to airport) for air traffic demands in 1994 and 2004 have been estimated, and the size and number of aircraft allocated to each class of airport and air traffic demand can be identified by the classification of aircraft and airports. The estimations for Scenario-A are presented in Table-6.6 and Table-6.7. Those for Scenario-B are presented in Table-6.8 and Table-6.9, and those for Scenario-C in Table-6.10 and Table-6.11.

(28) Percentage Satisfaction for Future Air Traffic Demand: Projections of these scenarios are summarized in Figure-6.4 the extent to which the future air terms of traffic in. demand can be satisfied in each scenario. It seems tσ be unrealistic that Scenario-C will accomplish the air net works for the future air traffic demands, because of the percentage satisfaction of Scenario-C than that of lower Scenario-A or -B as shown in Figure-6.4.

6.03.5 Basic Specifications of Aircraft

(29)<u>Required Aircraft</u>: Evaluation of Scenarios-A, -B and -C indicate that extension of airport facilities is essential in meeting the future air traffic demand. Construction and extension of local national airports and regional airports (including hydroport) would be particularly important. The basic specifications of aircraft required in Scenarios -A, and -B in which the most realistic way of airport extension is assumed, are presented in Table-6.12. Especially, aircraft distribution and required airports in Scenario-B have been shown in Figure-6.5.

(30) Operating Cost: Direct operating cost (DOC) and indirect

Table-6.6 Aircraft Distribution and Required Airports for Air Traffic Demand (Year : 1994, Scenario-A)

x10⁶ Pax.Km 改 Demand Pax.x10³ Annua] Traffic /Day Flight \circ Length (km) Stage \$.. •~• Route <€ No.of ഹ H Total ഹ 믑 33 2404 2345 Large Plane တ ∞ **e** 57 2744 2680 ñ R 66 21*27* 1032 Medium Plane Aircraf ပ 130 2436 1372 ਲ ∽ 118 1266 424 ဖ ∞ ß Small Plane 262 1662 487 প্থ Plane Light F1 [S 28 [S ഹ တ ហ ខ ŝ \$ T/O L/D Extension E Airport | x 10³/Y ្ព Airport No.of ß თ \$ ព្អ H Flight Pax. Km -600m (1nc. Heliport) No. of Route Grass≩ 600m Paved 22100m Paved 2500m IT BECD CIRSS Paved≩ 600m Grassiz 800m Paved≧ 800m Paved≩1100m Paved≧1500m Paved 2000 Annual Pax. Sub Total Condition Runway Total Table-6.7 Aircraft Distribution and Required Airports for Air Traffic Demand (Year : 2004, Scenario-A)

Statil Plane Meotum Plane I I I I II 7 7 1 1 1 7 15 1 1 1 1 15 22 46 22 46 23 14 20 15 14 20 48 13 5 11 8 13 51 29 48 13 23 13 23 13 51 29 48 13 33 34 15 34 15 34 15 34 33 <th></th> <th></th> <th></th> <th>raft</th> <th></th> <th></th> <th></th> <th></th> <th>ir Tra</th> <th></th> <th></th> <th>두</th>				raft					ir Tra			두
Airport $x 10^{-}N$ (a) Plane I II I II I II I	Light	I P I	Kedium /	lane	ir ge	lane	lotal	No.of		.	Annua	Pax.Km
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Plane	-				-		Route	Length (km)	/Day	Pax.x103	x10°
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		· · ·	·		·	9		, . .	00 80	80	18	F-4
							m	63	541	5 Cl	15	0
8 10 400 3 7 15 420 2 15 47 97 16450 16 46 22 14 20 25 88 8465 13 23 14 20 2 7 49 4855 13 23 14 20 2 7 49 4825 3 11 5 11 8 20 232 17315 4 51 29 48 13 27 4 112 0 0 5 10 17 13 25 127 608 47875 46 158 80 96 34 52 127 608 47875 46 158 80 36 35 15 16 127 608 47875 46 158 80 36 57 101 128 136 136 136 136 57 101 3641 23 128 1369 553							0	0	0	0	0	0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$. <u></u> .	. 2					10	10	1861	53	ູ ຮີ.	16
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	~~	15					17	17	4341	35	175	43
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1Q				· · ·		84	83	22657	235	1898	513
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			50		÷		02	69	23648	212	2671	1005
20 232 17315 4 51 29 48 13 27 4 112 0 0 5 10 17 13 25 127 608 47875 46 158 80 96 34 52 127 608 47875 46 158 80 96 34 52 127 608 47875 46 158 80 96 34 52 128 138 1442 160 3554 1849 4881 32 138 1442 1608 3554 1849 4881 32 138 1442 1608 3554 1849 4881 32 138 1442 1608 3554 1849 4881 32 138 1442 1608 3554 1849 4881 32			11	Ø	·		88	88	18260	120	2208	1156
4 112 0 0 5 10 17 13 25 127 608 47875 45 158 80 96 34 52 127 608 47875 45 158 80 96 34 52 127 608 47875 45 158 80 96 34 52 128 22 78 40 48 15 16 64 231 149 195 57 101 138 1442 1608 3554 1849 4881 138 1399 553 1906 1713 3641 29	4		48	13	27	∞	180	166	1787	571	14347	9748
127 608 47875 45 158 80 96 34 52 22 78 40 48 15 16 64 231 149 195 57 101 138 1442 1608 3554 1849 4881 3641 20 18 399 553 1906 1713 3641 26		<u>.</u>	17	13	25	14	84	69	58258	285	12042	9825
127 608 47875 45 158 80 96 34 52 22 78 40 48 15 16 64 231 149 195 57 101 138 1442 1608 3554 1849 4881 32 138 1399 553 1306 1713 3641 26		1 4 1 1 1 1				1 						
22 78 40 48 15 16 64 231 149 195 57 101 138 1442 1608 3554 1849 4881 32 18 399 553 1906 1713 3641 26	45		98	34	52	ន	4.88	456	221442	1494	33472	22315
130 1544 1000 1544 1045 2001 1713 3641 1713 1500 1713 1504 1			48 195 2564	i 	i †	8 44 7300		 	2		()) 1 1 1 1 1 1 1	
			19061			2030						
Total 127 608 47875 23 79 40 48 17 26 11	1 1 1		48	17	26	11	244	228	110721	747	16736	11157

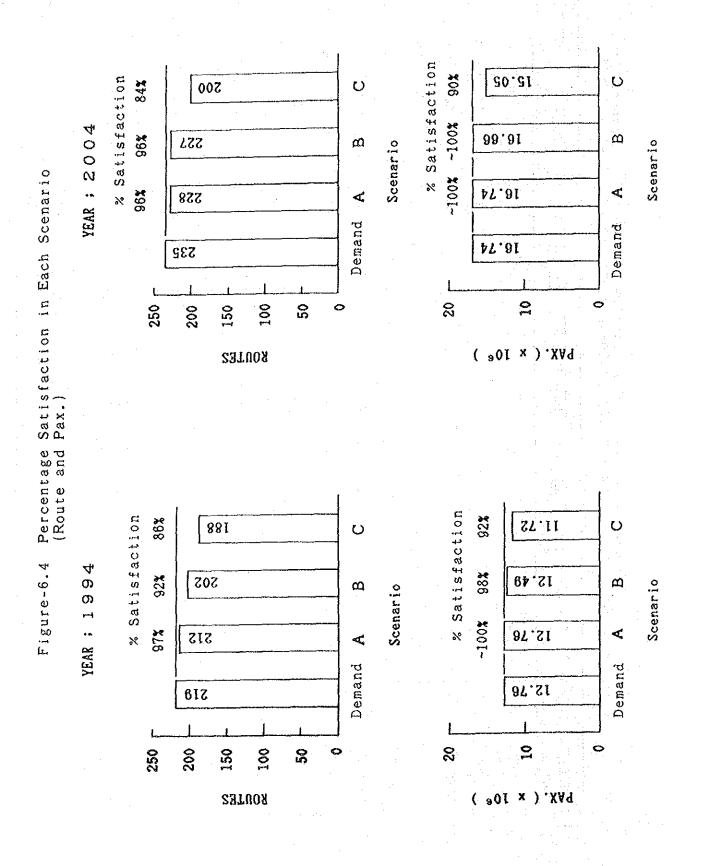
6--28

Table-6.8 Aircraft Distribution and Required Airports for Air Traffic Demand (Year : 1994, Scenario-B)

					, 4			.			r				
10.01	T/0 L/D	Extension	Light	Small	Plane	Medium	Plane	Large Plane	Plane !	Total	No.of	Stage	Flight	Annual	Pax Km
Airport	× 10 ³ ∕Υ	(H	Plane	Ĭ	11	I	II	Т	- II		Route	Length (km)	/Day	Pax.x10 ³	x10 ⁶
0	0	0	0			·	· ·	' <u></u>	.	0	0	0	0	0	•
80	20	0	19							19	ŝ	1329	23	119	33
တ	33	0	30							ŝ	0	1604	80	198	36
2	2	0	63	Q						თ	00	1665	17	. 74	15
ន	52	150	G	48						54	31	8442	134	593	164
ଛି ଖ	52	2950	18	(S11) 31	~					(S11) 56	ନ୍ଥ ଅ	14757	125	830	244
(22)				(\$4)					~ · · ·	(S4)	(ZS)				
33) 33)	528	775	53	62 (S6)	11	40	······			202 (S6)	81 (S)	50731	571	5832	2912
^{ده} (ک	21	1680	ц	14 (S4)	S	15		<u></u>		३ है	<u>ଝ</u> ୍ଜି ଅ	11512	130	1843	912
00	142	0	16	8	ង	20	24	4		124	22	43094	360	5874	4694
4	162	0	G	12	8	45	x	10	N	139	83 83	49642	421	1/26	7507
6	0	1		() () () () () () () () () () () () () (4				 - -	(66)	9 9	1560	55	250	67
118 (S12)	754	5555	132	214 (S30)	146	120	25	14	2	680 (S30)	404 (S14)	184336	1924	24984	16590
			8	8	6 4	31	14	5	• • • • • • • • •						
• .			189	298	251	200	78	82	 •\$*						
· ·	· · · · · · · · · · · · · · · · · · ·		407 88	1648 495	2703 1054	3675 2628	2509 2442	1239 1283	314 309		· · ·	• • • •	- - -		•
118	754	5555	99	107	23	8	8	2		340	202	92168	962	12492	8295

Aircraft Distribution and Required Airports for Air Traffic Demand (Year : 2004, Scenario-B)

Table-6.9

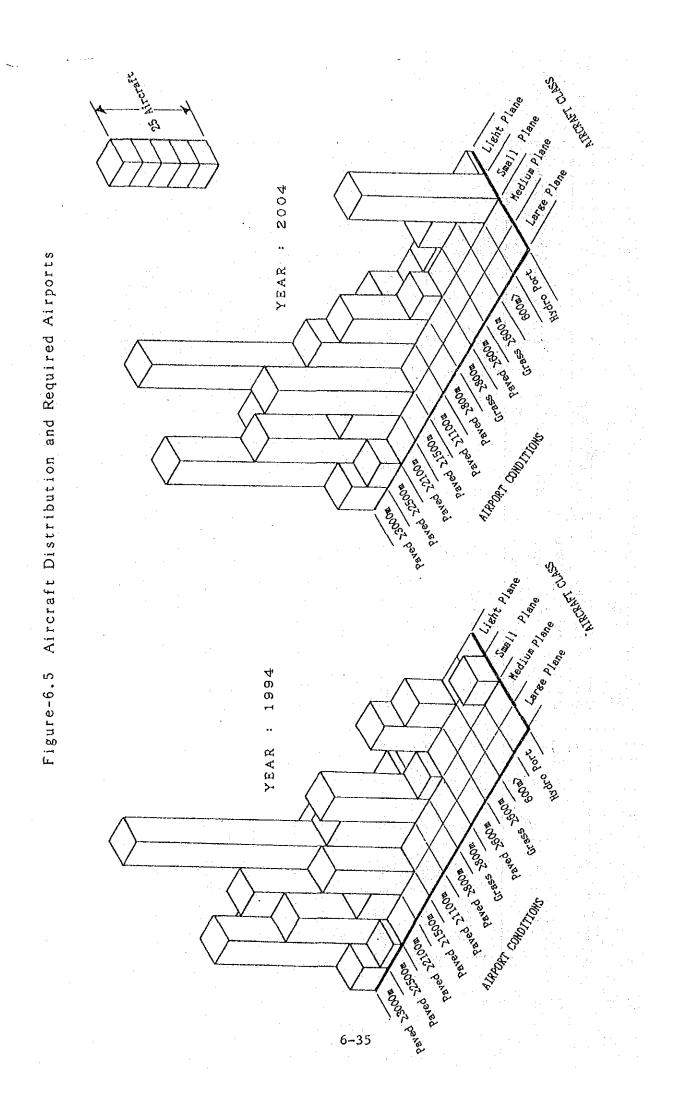

x10⁶ Pax. Ka ----2 --- It's able to select STOL: (S) or Helicopter: (H) alternatively 128 3884 21 329 6556 9825 295 22313 11156 1261 D е в а п d /Day | Pax.x103 , 711, 504 23 თ ន Annual 1128 7278 2571 8462 12042 33323 16661 1101 AITTAFFIC fil ight ∞ ŝ \$ 616 5 108 162 1065 21 2130 151 431 467 Route Length(km) 80 88 2103 6069 367 58404 12555 110400 15537 58659 58258 7621 220800 Stage 454 (H2, S16) 27 (H1, S4) (135 (S1) (S1) (S1) (S2) (S2) -(EI) 2 No.of 23 (S3) ŝ Ξ 227 706 (H4, S40) 65 (H2, S8) 209 (S11) 8 (<u>F</u>) 8 42 (S12) 146 35 35 13 (S) # Total 2 ឋ 353 Large Plane 2 13 1132 881 ဖ ŝ ဖ È C 5 33 1604 2045 Ħ 11 3 H Medium Plane 12 83 2691 2353 Aircraf ស្ល ង ង റ്റ É 53 350 6320 4370 3 69 24 ŝ 2 28 44 265 2849 963 5 ្ឋ 53 ន ଷ 2 142 7 Small Plane Ħ 24 (S11) (S12) (S1 12 (2) 17 87 28 28 28 89 318 318 518 518 တ 111 Plane ~ (H) ~ 11 (<u>일</u> 11 14 14 2 ង ខ្ម ខ្ល ស ŝ 0 ង Light 엄 ŝ ----ខ្ព Extension 9940 9940 4035 2430 0 1 0 0 0 0 1095 2080 300 9 1/0 L/D Airport | x 10³/Y 245 171 180 \$ 840 840 61 ព 43 67 ŝ 吕 l'r'p'o r 17 (52) (52) (52) (52) (52) (52) (54) (54) (IS) 7 8 8 126 (H2, S13) ~ (H) თ 126 N ත No.of Flight -600m (Inc. Heliport) No. of Route Pax. Km t each class Annual Pax. Paved≩1100m Paved≧1500m Paved≩2100m Paved 22500m Paved 23000m Paved 2 600m Grass 800m Paved≧ 800m Grass 600m Hydro port Sub Total Condition Runway Total

Aircraft Distribution and Required Airports for Air Traffic Demand (Year : 1994, Scenario-C) Table-6.10

x10⁶ 7471 6729 14942 Pax.Km 0 3442 911 3351 \$ 39 4 193 2 Demand Pax.x10³ . 99 20 23440 11720 7213 1839 \$847 Annua l 143 236 795 733 3568 0 υ Flight /Day 1005 2010 . 1 446 0 104 109 732 131 23 63 44 188 Traf Length (km) 161212 80606 11303 0 1980 1518 12942 54837 28506 40324 1701 8101 Stage Route đ, 376 188 No.of 0 2 12 ~ 33 Ş <u>4</u> 5 \$ S i, 349 Tota! 0 ខ 33 00 65 49 254 4 20 142 698 - 7 Large Plane 3 32 1553 1592 ŝ 4 4 29 9 51 1646 1776 Medium Plane 16 ຊ 8 20 craf г ... 28 199 3396 2177 49 8 11 Ξ 7 120 đ Plane 39 280 3016 3016 ∽ 8 ယ ្ឋ 17 83 റ്റ Small Small 73 307 478 210 105 S 5 8 82 14 ន ~ Plane Light 36 212 455 94 2 4 36 00 144 0 ង 33 2 H 9 33 Extension 9 ł T/0 L/D x 10³/Y 287 784 0 24 40 ω 22 5 23 87 171 784 د ب , Airpo Airport 113 ŝ ഗ 4 113 0 ဍ A ഗ 33 윉 33 No.of Flight Pax. Km Paved 21100m No. of Route Grass≧ 600m Paved≩ 600m Paved≧1500m Paved≩2100m Paved 2500 Paved 23000m Annual Pax. Grass≩ 800m Paved≧ 800m t each class Sub Total Condition Runway Total

Table-6.11 Aircraft Distribution and Required Airports for Air Traffic Demand (Year : 2004, Scenario-C)

Pax.Km x10⁵ 0 ទទួ 240 9750 62 13 4633 1260 19501 289 4351 8593 Вещалd Pax.x103 Annual 0 15049 168347 30099 8 963 9374 2566 4483 11144 55 Traffic Flight /Day 0 156 1290 2 റ്റ 227 140 937 175 268 2580 584 Length (km) ó 2219 1518 8275 91646 1701 13434 12346 34292 46050 183292 63457 Stage يم Route ⊲: No.of 0 ្ព 5 200 **r~** \$ \$ 33 61 ദ്ദ 400 151 424 0 Total റ്റ 8 28 អ្ន 308 52 ജ 175 848 ••• Large Plane 3 38 1814 1832 ഗ H 13 22 10 62 2014 2380 Medium Plane ដ น ង 4 ช 2 0 1 0 1 36 278 4779 3046 65 g 14 162 81 ŝ ч. 46 381 4096 1883 125 111 10 €--5 ន 222 Small Plane = 68 334 1749 483 218 109 G អ្ន 8 ပ 65 26 88 Plane *37* 279 601 129 ഹ ß 0 12 61 88 81 တ 180 Extension Light 0 8 ß e λ/ε01 × T/0 L/D 994 994 219 363 69 104 0 23 ø 88 5 53 LOGL 118 Airport 118 34 ŝ ß 77 24 ຊ No.of 12 ဖ 0 10 Ļ, <. Flight 600m
 600m
 61nc. Heliport) at each class No. of Route Pax. Km Annual Pax. Paved≧2500m Paved 23000m Paved 1500 Paved≩2100m Grass⊻ 600⊞ Paved≧ 600m Grass≧ 800≞ Paved≧ 800m Paved 1100m Sub Total Condition Total Runway



6~33

Required Basic Specifications of Aircraft (Scenario-B) Table-6.12

Aircraft Name No. of Aircraft (6 Int'l) Current Aircraft 33 23 42 21 22 C212, CN235 F27, HS748 A300, DC10 F28, DC9 B747 BN2 38 ÷ 38 06 ~02 25~ 40 30 10^{-15} 110~120 100~130 4 2004 ŝ Aircraft 105 No.of 65 2 80 35 ~ r-d 1994 Length Runway 2800 500 1100 1400 2000 2400 3500 3 Basic Requirements ~130 350~460 about 460 165~220 250~280 about 460 about 460 Cruise Speed (Kt) Range 4000 5500 5500 3200 500 1400 2000 ~510 ~ 10 ~ 35 ~100 ~150 ~225 Seat ~ 50 Small Plane Class-II Medium Plane Class-II Large Plane Class-II Large Plane Class-I Medium Plane Class-I Small Plane Class-I Classification Light Plane

(Air traffic demmand has increased by 34% in 2004) * Based on the sensitivity check of modal spilit model

operating cost (IOC) of aircraft are calculated and presented in Table-6.13 for Scenarios -A, -B and -C. It is obvious that total annual operating cost is the lowest in Scenario-A, in which aircraft having the minimum direct operating cost (DOC/seat-mile) are selected.

In Scenario-C, it is assumed that the selection of aircraft is constrained by the conditions of existing airports, therefore, operating cost/seat-km in Scenario-C grows highest among these scenarios.

The personnel expenses such as crew cost and maintenance cost prevailing in Indonesia in 1987 are used in calculating the direct operating cost. The indirect operating cost is also calculated based on figures stipulated in regulations which are applied to domestic airlines of Indonesia.

The DOC calculating brought the results that the weight of capital costs, such as aircraft cost (depreciation) in the operating cost is fairly large. Therefore, it would be necessary to formulate a future plan in such a manner that the burden of capital cost is not excessive.

6.03.6 Estimation of Acquisition Cost of Aircraft

(31)<u>Costs for Acquisition of Aircraft</u>: The costs for acquisition of aircraft, based on the assumption that all aircraft used in every route are to be purchased, are calculated and summarized in Table-6.14. The cost for purchase of aircraft is lower in Scenario-C than in Scenario-B, because the air traffic demands in future are not satisfied in Scenario-C, as showed in Figure-6.4.

6.03.7 Considerations to Introduction of Fleet

(32)<u>Aircraft for New Air Route</u>: The types of aircraft to be allocated to new air routes, which were determined in Section 4, as well as operations (flight/week) are presented in Table-6.15 and Table-6.16. It can be seen by the tables

Table-6.13 Operating Cost

.

Year : 1994

Airplane Medium Airplane Large Airplane T o t a B C A B C A B C t a B 22.2 22.7 9.7 8.7 7.6 4.2 3.6 3.9 2.5 2.4 2.4 3.9 4.5 1.6 1.3 1.2 1.0 0.9 0.6 0.6 0.6 0.8 0.7 0.1 0.1 1.4 2.2 2.7 3.6 7.6 5.9 7.5 2.4 2.4 12.3 1 0.1 0.1 1.4 2.2 2.7 3.6 7.6 5.9 7.5 2.4 2.4 12.3 1 0.1 0.1 1.4 2.12 3.18 265 233 70.1 71.1 576 638 31.2 34.2 183 318 265 233 70.1 71.1 576 638 Airplane Small Airplane Medium Airplane A							ļ		1					~	/Year	
B C A B C	Light	<u> </u>		lane	Small		ane	Mediu		lane	Large		lane	ц Ч		
2.2 2.7 9.7 8.7 7.6 4.2 3.9 2.5 2.4 2.4 3.9 4.5 1.6 1.5 1.3 1.2 1.0 0.9 0.6 0.6 0.6 0.6 0.8 0.7 0.1 0.1 1.4 2.2 2.7 3.6 7.6 5.9 7.5 2.4 2.4 12.5 12.3 1 0.1 0.1 1.4 2.2 2.7 3.6 7.6 5.9 7.5 2.4 2.4 12.5 12.3 1 0.1 0.1 1.4 2.2 2.7 3.6 7.6 5.9 7.5 2.4 2.4 12.5 12.3 1 0.1 0.1 1.4 2.2 2.7 3.18 265 233 70.1 71.1 576 638 11.2 34.2 149 219 236 183 318 265 233 70.1 71.1 576 638 ftrplane Small Airplane Medium Airplane Large Airplane 7 2.4	A		ഹ	ບ	Å	<u>60</u>	ပ ပ	Å	â	ບ	Å	B	C	A	8	പ
1.6 1.6 1.3 1.2 1.0 0.9 0.6 0.6 0.6 0.6 0.8 0.7 0.1 0.1 1.4 2.2 2.7 3.6 7.6 5.9 7.5 2.4 12.5 12.3 1 0.1 0.1 1.4 2.2 2.7 3.6 7.6 5.9 7.5 2.4 12.5 12.3 1 11.2 34.2 149 219 236 183 318 265 233 70.1 71.1 576 638 11.2 34.2 149 219 236 183 318 265 233 70.1 71.1 576 638 Airplane Small Airplane Medium Airplane Large Airplane T 7 4 3 B C A B C A B C 4 8 25.1 19.2 1.3 3.7 2.7 2.4 2.5 3.7 4.3 25.6 1.6 1.6 0.7 0.7 0.7 <	38.5		22.2	22.7	9.7	8.7	7.6	4.2	3.6	3.9	2.5	2.4	2.4	3.9		4.7
0.1 0.1 1.4 2.2 2.7 3.6 7.6 5.9 7.5 2.4 2.4 12.5 12.3 7 11.2 34.2 149 219 236 183 318 265 233 70.1 71.1 576 638 11.2 34.2 149 219 236 183 318 265 233 70.1 71.1 576 638 Airplane Small Airplane Medium Airplane Large Airplane Toa a B C A B C A B C A B 2.5 11.4 7.1 3.8 3.7 3.7 2.4 2.5 3.7 4.3 2.6 1.6 1.3 1.5 1.0 0.7 0.6 0.7 0.6 0.7 0.7 2.6 1.6 1.3 1.5 1.0 0.7 0.6 0.7 0.7 0.6 0.7 0.7 0.7 0.0 0.2 1.4 1.8 3.5 5.4 10.0 <td>2.3</td> <td></td> <td></td> <td>•</td> <td>•</td> <td>1.2</td> <td>1.0</td> <td>0.9</td> <td>0.6</td> <td>0.6</td> <td>0.6</td> <td>0.6</td> <td>0.6</td> <td>0.8</td> <td>0.7</td> <td>0.7</td>	2.3			•	•	1.2	1.0	0.9	0.6	0.6	0.6	0.6	0.6	0.8	0.7	0.7
11.2 34.2 149 219 236 183 318 265 233 70.1 71.1 576 638 Airplane Small Airplane Medium Airplane Large Airplane T 0 0 1 B C A B C A B C A B 6.2 21.1 9.2 11.4 7.1 3.8 3.7 3.7 2.4 2.5 3.7 4.3 5.2 21.1 9.2 11.4 7.1 3.8 3.7 3.7 2.7 2.4 2.5 4.3 6.2 21.1 9.2 11.4 7.1 3.8 3.7 3.7 2.7 2.4 2.5 3.7 4.3 2.6 1.6 1.3 1.5 1.0 0.7 0.7 0.6 0.7 0.7 0.7 0.7 0.0 0.2 1.4 1.8 3.5 5.4 10.0 8.1 9.8 4.4 2.7 16.6 16.2 0.5 0.2 1.4 2.8	0.0		0.1	0.1	1.4	2.2	2.7	3.6	7.6	5.9	7.5	2.4	2.4	12.5		11.1
Airplane Small Airplane Medium Airplane Large Airplane T o t a B C A B C A B C A B 5.2 21.1 9.2 11.4 7.1 3.8 3.7 3.7 2.4 2.5 3.7 4.3 5.2 21.1 9.2 11.4 7.1 3.8 3.7 3.7 2.7 2.4 2.5 3.7 4.3 2.6 1.8 1.5 1.0 0.7 0.7 0.6 0.7 0.7 0.7 0.0 0.2 1.4 1.8 3.5 5.4 10.0 8.1 9.8 4.4 2.7 16.6 16.2 0.5 43.6 149 228 284 245 439 352 333 129 84.3 742 816	10.4		31.2	34.2	149	219	236	183	318	265	233	70.1	71.1	576	638	606
Airplane Small Airplane Medium Airplane Large Airplane T o t a B C A B C A B C A B 5 2 21.1 9.2 11.4 7.1 3.8 3.7 3.7 2.4 2.5 3.7 4.3 5.2 21.1 9.2 11.4 7.1 3.8 3.7 3.7 2.4 2.5 3.7 4.3 2.6 1.6 1.3 1.5 1.0 0.7 0.6 0.7 0.6 0.7 0.7 0.7 2.6 1.4 1.8 3.5 5.4 10.0 8.1 9.8 4.4 2.7 16.6 16.2 0.0 0.2 1.4 2.84 245 439 352 333 129 84.3 742 816															/Vear	
B C A B C A B C A B 45.2 21.1 9.2 11.4 7.1 3.8 3.7 3.7 2.7 2.4 2.5 3.7 4.3 2.6 1.6 1.3 1.5 1.0 0.7 0.7 0.6 0.7 0.6 0.7 0.7 0.0 0.2 1.4 1.8 3.5 5.4 10.0 8.1 9.8 4.4 2.7 16.6 16.2 10.5 43.6 149 228 284 245 439 352 333 129 84.3 742 816	Light			lane	Smal	1	lane	Medi		plane	Larg		lane	{	t a	
21.1 9.2 11.4 7.1 3.8 3.7 3.7 2.7 2.4 2.5 3.7 4.3 1.6 1.3 1.5 1.0 0.7 0.7 0.6 0.7 0.6 0.7 0.7 0.2 1.4 1.8 3.5 5.4 10.0 8.1 9.8 4.4 2.7 16.6 16.2 43.6 149 228 284 245 439 352 333 129 84.3 742 816	A		1 1	ပ	A	8	IJ	A	m	U U	A	ß	ပ	A	â	ပ
6 1.6 1.3 1.5 1.0 0.7 0.7 0.6 0.7 0.6 0.7	56.2		45.2	•	9.2		7.1	3.8	3.7	3.7	2.7	2.4		3.7	4.3	4.5
0.2 1.4 1.8 3.5 5.4 10.0 8.1 9.8 4.4 2.7 16.6 16.2 43.6 149 228 284 245 439 352 333 129 84.3 742 816	2.6		2.6	1.6	1.3		1.0	0.7	0.7	0.6	0.7	0.6	0.6	0.7	0.7	0.7
43.6 149 228 284 245 439 352 333 129 84.3 742 816	0.0		0.0	0.2	1.4	1.8	3.5	5.4	10.0	8.1	8 0	4.4	2.7	16.6	16.2	14.5
	14.8		19.5	43.6	149	228	284	245	439	352	333	129	84.3		816	764

÷

Table-6.14 Aircraft Acquisition Cost

(Up to Year : 1994)

l îaht binn	sne Small Airnlane	Madî	ain.	Madium dinnlana		I and dinnland	ous	E	To+al (R¢)	Ŧ
DIPTA IL	UII PIQUE			H TALLC	- 1	212	Ialic	3	3	
B C A	ပ ရ	A	B	ပ	A	മ	ల	¢	æ	ပ
1.4 6.7	6.7 ~ 7.0	20.	20.8 ~ 22.5	2.5	38.	38.1 ~ 45.2	5.2			$\left[\right]$
66 72 125	125 180 190	48	86.	78	52	80	ෆ .	221	340	349
0.09 0.10 0.84 1.24 1.32 1.08 1.91 1.62 1.13 0.33 0.34 3.08 3.57 3.38	.24 1.32	1.08	1.91	1.62	1.13	0.33	0.34	3.08	3.57	3.38

•

(Up to Year : 2004)

Aircraft Type	Light		Airplane	Smal	l Airp	Small Airplane	Medi	ium Air	Medium Airplane Large Airplane	Larg	e Airp	lane	<u>بتم</u>	Total (B\$)	\$
Scenario	A	æ	ပ	A	ŝ	ပ	A	8	ပ	A	æ	ບ	4	20	່ ບ
Av.Unit Cost(M\$)		$.4 \sim 1.5$	5	S	6.9 ~ 7.2	-2	20	$20.7 \sim 22.1$	2.1	33	38.1 ~ 44.8	4.8			\mathbf{h}
No.of Aircraft	23		8	119	182	32 90 119 182 220	l	65 125 103	103	37	37 14	11	244	244 353	424
Acquisition Cost(8\$)	0.03		0.13	0.83	1.31	1.56	1.44	2.64	2.14	1.66	0.62	0.42	3.96	0.05 0.13 0.83 1.31 1.56 1.44 2.64 2.14 1.66 0.62 0.42 3.96 4.62 4.25	4.25

6--38

New Air Routes (1994) Table-6.15

Lines

·	No.	City Pair	ir	Dist	Demand	Max	%.	Flight		No.	
				(Ka)	/Year	Seats	AC	/Week	·.		• .
å	11	Pakanbaru	Sibolga	341	69068	50	2	45		Ч.	Banda Aceh
	2 2 2	Pontianak	Singkawang #	140	06619	50	-	9		12	Jakarta
	су С	Malang	Madiun	139	50856	50	~-1	33		1 3	Jakarta
	F 4	Pontianak	Natuna	469	40234	23	~	8	• .	7 4	Malang
·	ഗ പ	Semarang	Kediri ‡	204	35468	35		34		с Н С	Pakanbaru
	9.4	Jakarta	Kotabumi -	243	30340	35		53		19	Surabaya
	F 7	Bandung	Pandeglang	161	29640	35		28	:	17	Malang
	∞ ц	Bandar Lampung	Huara Enim	237	28072	8	2	46		∞ ⊷	Jakarta
	ດາ (ແ.	Palembang	Muera Bungo	348	27686	ର	~	45 .		ь Т	Jakarta
	FIO	Pakanbaru	Padang Sidempuan	244	26458	2	4	86 85		012	Bandung
6-1	FII	Pakanbaru	Lubuksikaping	161	23514	35		8			
10	F12	Pontianak	Batang Tarang	128	23320	10	ຸຕ	26			
	F13	Bandar Lampung	Sukabumi 🌣	270	21854	35		21			

2 7 8 8 8 8 8 8 8 8 8 8 8

8

2

90402 73982 73106

1353 1303 542

Yogyakarta

Denpasar

Manado Ambon

2

55412 41372 33488

1605 1072 860

Banjarmasin

Tarakan

3

8 8

Denpasar

* : Hydroport

Mataram Tarakan

No. Flight / Week

Ках

Demand

Dist (Ka) 1797

City Pair

Lines

(Trunk

Seats AC

/Year

4 S.

2 2

124584

Jakarta

50 8 ខ្ល

106160 90938

2199

284

119894

2388

Table-6.16 New Air Routes (2004)

(Trunk Lines)

(Feeder Lines)

																F15	F16.				
City Pair		Pakanbaru	Pontianak	Malang	Pontianak	Semarang	Jakarta	Bandung	Bandar Lampung	Palembang	Pakanbaru	Pakanbaru	Pontianak	Bandar Lampung	Banjarmasin	Jakarta	Mataram	Palangkaraya	Ternate	Palembang	
lir		Sibolga	Singkawang #	Madiun	Natuna	Kediri *	Kotabumi	Pandeglang	Muara Enim	Muara Bungo	Padang Sidempuan	Lubuksikaping	Batang Tarang	Sukabuni #	Tanah Grogot	Tas ikma laya	Banyuwangi	Rabuh Hampang	Buliserani **	Lubuk Linggau	
Dist	(Km)	341	140	139	469	204	243	161	237	348	244	161	128	270	240	230	265	264	89	174	
Demand	/Year	94766	83498	87408	54574	65498	39436	40268	40266	33556	33786	30892	30866	29212	42292	32042	32014	25538	18346	17910	
Max	Seats	50	20	22	50	35	35	35	35	35	35	35	35	35	ß	35	R	35	10	20	
No. F	NC /	2	2	1	2	2	~	8~4	2	2	1	-1	۲-1	ы	¥-4		r1	 1	2	,1	
Flight	/Week	62	54	41	36	62	37	38	38	32	8	8	ଷ୍ପ	28	82	8	8	24	00	8	
No.		F		ыл [L L	دى 	ۍ ۲۰	 با	- 1 -	0) 	10		T12	113	. T14		T16	117	T18	T19	
. City Pair		1 Banda Aceh	2 Jakarta	3 Jakarta	4 Malang	5 Pakanbaru	6 Surabaya	7 Malang	8 Jakarta	9 Jakarta					4 Jakarta			7 Medan		9 Medan	
air		Jakarta	Ambon	Manado	Denpasar	Yogyakarta	Tarakan	Banjarmasin	Tarakan	Mataram	Denpasar	Kupang	Surabaya	Kendari	Kendari	Bal ikpapan	Balikpapan	Denpasar	Balikpapan	Bandar Lampung	
Dist	(Km)	1797	2388	2199	284	1353	1303	542	1605	1072	860	1237	6261	1129	1762	1018	870	2283	962	1216	-
Demand	/Year	156618	160614	142794	107122	103510	100616	76160	77992	81910	40102	74078	66356	64290	58950	50528	46200	44724	43340	32560	-
Max	Seats	02	18	150	-100	18	20	100	70	8	22	20	150	02	20	02	22	18	22	2	
No.	A/C	5	4	2		2	3	1 1	ŝ	¥-4	•-•	2	F4	2	2			r-1	· •1	r-1	
Flight	/Week	73	25	31	R	8	47	ধ্য	8	53	19	¥	14	30	12	3	21	15	8	51	

that deployment of conventional land based aircraft is effective in constituting major air network of future which is planned in this study. Regional air network will be implemented by allocated small land based aircraft and by employing amphibians to complement land plane.

6.03.8 Required Future Study

(33)<u>Introduction</u>: The aircraft deployment plan developed by this study contains the following problems and items which must be subjected to further investigation.

In the current study, (34) Aircraft Distribution Plan: the aircraft to be allocated to each air route have been determined based on such algorithm that the size of aircraft (number of seats) which makes the direct operating cost of each route to minimum is selected. When airline operators allocate aircraft, however, it is more likely that actually attempt to enhance the utilization of aircraft and thev number of flight by optimizing the aircraft increase the through a series of air routes rather than in a operations single air route. Therefore, the number of aircraft employed, as calculated by the current algorithm, may well be larger than what is actually required, and operating cost thereby calculated may also be higher. It is therefore recommended to re-examine the number of aircraft required based on algorithm which is more similar to the actual strategy of aircraft distribution by airline operators (who intend to reduced operating cost and enhanced service to passengers), so that the demand on aircraft can be calculated with higher accuracy.

(35)<u>Aircraft Operating Cost</u>: Two models were developed for the estimation of direct operating cost and indirect operating cost by referring to the ATA model and the Lockheed model respectively. The basic data used in these models must be verified by studying the data of airline operators in Indonesia. Especially for indirect operating cost, it may also be required to verify the unit price, as well as the method, because it turned out to be unreasonably smaller than the direct cost in the current calculation.

(36) Repletion of Airport: In Scenarios -A and -B the rehabilitation of existing airports as well as construction of new airports have been studied based on currently available materials. It would be further required to examine the conditions of airports situation and feasibility of rehabilitation and new construction based on such studies as field surveys. Such studies will bring about more realistic cost estimates for rehabilitation and construction of airports, making it possible to more accurately compare the airport cost to the aircraft operating cost. As upgrading of airport systems must be implemented in good coordination with the overall national development program of Indonesia, detailed evaluations of such repletion programs of airport must be conducted in future.

SECTION 7 STUDY ON AIR TRAFFIC SERVICE FACILITIES

(a) Alternation

SECTION 7

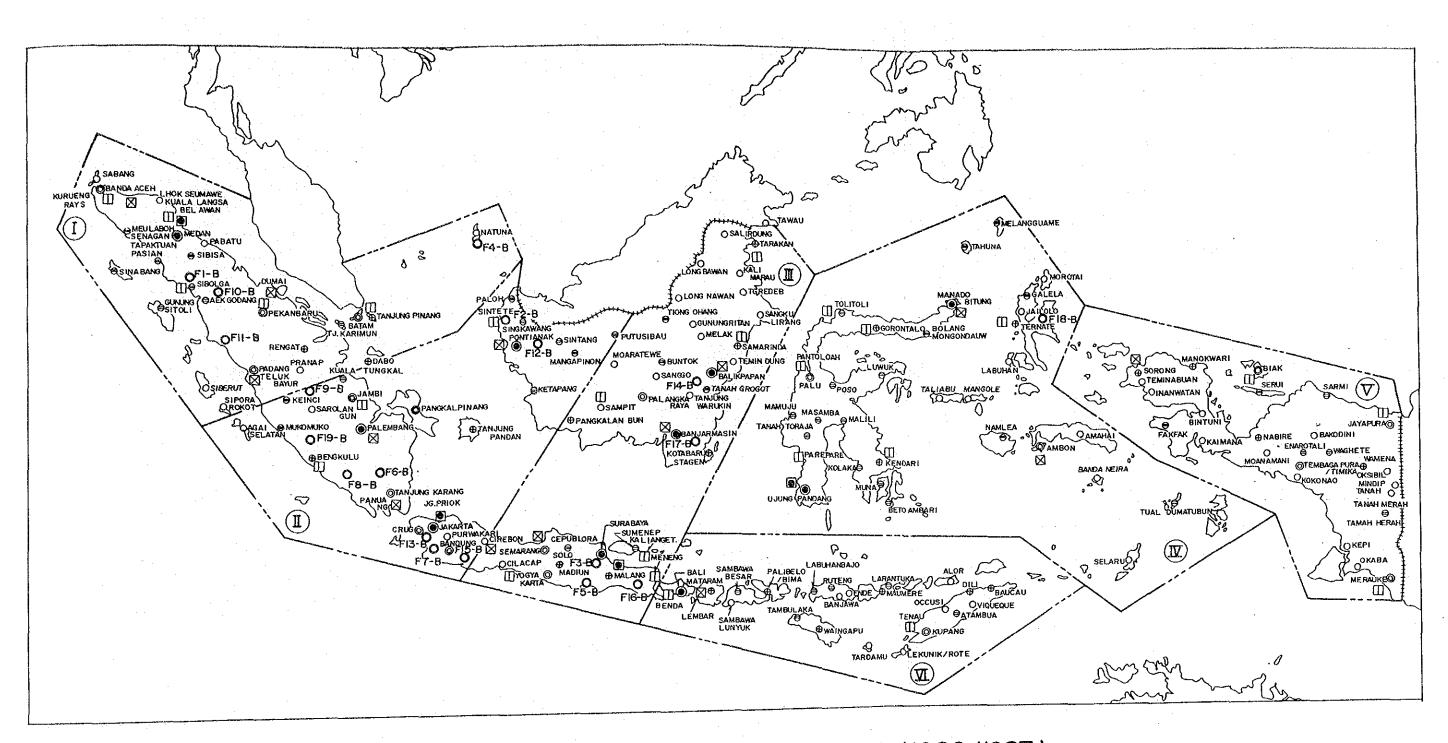
STUDY ON CIVIL AVIATION FACILITIES

7.01 GENERAL

(01)Definitions: The "Civil Aviation Facilities" herein defined include the airport facilities, Navaids the installed in an airport and en-route, and telecommunication systems. The present situations of these facilities are briefly delineated in the Subsection-2.03, Air Transportation and dealt with in detail in Section 2 of Part I of Study Report.

(02)<u>Objectives</u>: The objectives of this study, Study on the Civil Aviation Facilities, are to foresee the probable physical deficiencies in air transport operation likely to occur in connection with the airport facilities definedabove, due to introduction of a large-sized aircraft, increment of flight frequency and realization of the potential new air routes as listed in Tables-5.1 and 5.2 and as illustrated in Figures-5.2 and 5.3 of Section 5.

(03)<u>Studied Items</u> To achieve the above objectives, the following works have been elaborated.


- Data collection including field survey
- Evaluation of present airport facilities
- Future airport facility requirements
- Approximate cost estimate

The details of the above subjects are described hereunder.

7.02 AIRPORTS

7.02.1 Field Survey

(04)<u>Survey Method</u>: The field survey on the airports has been carried out to supplement the data and informations collected in Jakarta. The questionnaires concerning the current conditions of airport facilities were delivered to 64 major airports from DGAC Head Quarter and 4 selected airports, Ujung Pandang, Kendari, Denpasar and Surabaya, where a branch office of DGAC exists. The location of the existing airports are shown on Figure-7.1.

LOCATION PLAN OF EXISTING AIRPORT (1986/1987), Not to Scale

LEGEND:

	International/Regional, Major Airport (Category-I) (© Regional, Border/Major Airport (Category-II) (© Provincial, Feeder Airport (Category-II) (©	Colleeto	Sea Port r Sea Port Sea Port	 ~
·	Municipal, Pioneer Airport (Category – Ⅳ) Municipal, Pioneer Airport (Category – ∇) o Existing Domestic Air Route See Air Route Network of Scheduled Airlines, 1985-1986			
	New Airport, Category-IV and V (Pioneer),OFI-8 proposed by the Future Demand of the Inter-Island Traffic Project' 1987 Boundary Line and Number of Civil Aviation Region:	gure-7.1	Location of the	e Exi

۲ \boxtimes Ш

sting Airports

(05)<u>Survey Items</u>: The major survey items are summarized below.

- Overall conditions of airports and air traffic

- Maximum operation aircraft and airport facility

- Air Traffic Services

- Natural conditions

(06)<u>Survey Results</u>: The filled questionnaires were returned from 64 airports through DGAC Head Quarter and its five(5) region offices. The results are statistically arranged in Table-6.2 of Study Report and the noteworthy findings are summarized below.

- The airports servicing over 20 years occupy about 90%.

- About 40% of the airports operate for 10 hours per day.

- A wide body jet can be accommodated by 7 airports.
 - About a half number of airports have a runway length between 1,800 m and 800 m.
 - About 84% of a passenger terminal building have a floor area less than 5,000 m².
 - The airports handling more than 300,000 pax. are about 17%.
 - Aircraft movements of more than 100,000 movements correspond to 2% approximately.
 - Most of airports are located in flat soft of silty clay with high ground water level.
 - Load Classification Number(LNC) of runway of . most airports falls within 12 to 22 for the medium aircraft.

(07)Necessity of Rehabilitation: Through the field trips to more than 20 airports, the necessity of urgent rehabilitation has been impressed. Most of facilities are old enough and look like decreasing its original capacity. By rehabilitating these existing facilities, the handling capacity of an existing airport could be improved and extended substantially with a minimum fund investment. Simultaneously, the safety of the air transport could be secured further.

7.02.2 Facility Requirements

(08)<u>Reinforcement of Airport Facilities</u>: As described in Tables-5.1 and 5.2, the potential new air routes have been identified both in the trunk lines and in the feeder lines by the year of 1994 and 2004. To realize such new air routes, the appropriate airports facilities should be provided in advance of the opening of services by any of the following measures;

- Construction of a new airport

- Extension and overlay of the existing runway, if the existing airports could not afford to accommodate the larger aircraft and the heavier air traffic load expected in the future.

(09)Extent of Upgrading Works: Out of these two alternatives, the work items and quantities for expansion and overlay of the existing runway certainly depend largely the prevailing present conditions of these airports. on То figure out these conditions, it inevitably requires the extensive evaluation survey on each specific airport. Some airport, for example, would need the overlay or the reconstruction of a part or all of a runway or addition of a terminal building. It could hardly be possible to investigate the present status of all the respective airport and assess the extent of works involved for upgrading the existing facilities good for the expected future aircraft load and passenger demand.

(10)<u>Assumptions</u>: As such, to estimate the approximate cost accruing from improvement of airpot facilities to accommodate the expected future aircraft as specified in Table-6.15 in Section 6, it is assumed that;

- The existing runway shall be overlaid and expanded, in case that the expected future load is heavier than that at present. The cost accruing from the probable expansion of an existing terminal building has been disregarded since its present capacity and status are quite uncertain.

- The new airports, land airport and/or hydroport, be constructed in the zones where the airport is presently nonexistent and opening of the new air route is expected within 20 years as discussed in Sections 5 and 6, and detailed in Tables-5.6(3/3), 5.7(3/3), 5.11 and 5.12(2/2) of Study Report.

(11)<u>Runway Classification</u>: The work quantities and cost incurred for expansion and overlay naturally vary depending on the size/type of an aircraft to be assigned. To simplify and generalize, the runway has been classified to 6 groups by available numbers of seats of an aircraft as presented in Table-7.1 below. (See Table-7.6 and, Tables-A6.2 and A6.3 in Appendix to Section 6 of Study Report).

NO	Nos.of Seats	<u>Runway (L*W)</u>	Eguiv.Aircraft
1	340 < S < 510	2,900*45 ^{*1}	B-747-300
2	150 < S < 340	2,900*45 ^{*1}	
	_	2,800*45	
3	50 <u><</u> S < 150	2,400*45	DC-9
		2,000*45	
1.52		1,800*45	
4	20 < S < 50	1,400*30	F - 27
		1,100*30	CN-235
5	10 < S < 20	800*23	DHC-6
6	S < 10	500*18	BN-2A

Table-7.1 Numbers of Seats versus Runway Length

*1: Thickness of pavement is different.

Each runway belonging to the same group specified in the above table has a similar pavement structure. Thus, the cost required for extension and overlay of a runway in the specific group is mutually identical.

(12) Exten. & Overlay Length: As per Tables-5.6, 5.7, 5.11 and 5.12 of Study Report, the accumulated extension and runway has been assessed i n overlay length of а consideration to the existing runway length and the future put on services, and is summarized by aircraft to be Scenario which is defined in Section 6, in the following Table-7.2.

		SCENAR	10-A	SCENA	RIO-B
NO	Nos.of Seats	Exten.	O.L	Exten.	0.L
		(m)	(m)	(m)	·(m)
	1994				
1 - 1	340 <u><</u> S < 510	2,345	6,355	. – '	
2	150 <u>< S</u> < 340	8,960	22,240	-	-
3	50 <u><</u> S < 150	11,325	28,075	2,455	10,345
4	20 <u><</u> S < 50	9,995	22,405	1,950	2,850
5	10 <u>< S</u> < 20	1,090	5,310	150	6.50
6	S < 10				-
	Total	33,715	84,385	4,555	13,845
	2004				
1	340 <u>< S</u> < 510	4,150	7,450	-	
2	150 <u>< S</u> < 340	13,165	23,535	300	2,500
3	50 <u>< S</u> < 150	13,290	33,510	4,510	21,890
4	20 <u><</u> S < 50	12,850	22,150	2,935	6,465
5	10 <u><</u> S < 20	820	3,980	1,095	4,505
6	S < 10	_	-		
	Total	44,275	90,625	8,840	35,360

Table-7.2 Runway Extension and Overlay Length

Note: Exten.; Extension

O.L ; Overlay

S; Number of seats

In the above table, the length denoted in the column of 2004 means the length required, unless expansion and overlay will have been made at all by 2004. For example, in case of Scenarlo-A, the group of a runway which shall serve in 2004 for an aircraft having number of seats from 150 to 340, or 2,800m*45m and 2,900m*45m at the longest in the group, shall be extended by 13,165m and overlaid by 23,535m in the very group total, if no extension and overlay on the runway in the group would have been made at all by that year.

(13)<u>Probable New Airports</u>: In addition to the extension and overlay of the existing runways, several new airports should be constructed to satisfy the conditions of each SCENARIO. Such airports have herein been defined as a probable new airport which is currently non-existent and will connect the potential new air routes. The probable new airport may be either a land airport or a hydro airport depending on the SCENARIOS adopted, as presented in Table-

7.3 below.

Type of Airport	Nu	mbers of A	irport	
	SCENAR I	0-A	SCENARIO)-В
	1994	2004	1994	2004
1.Land Airport			=	
Type-A/Cat-IV	-	1	-	-
Type-B/Cat-V	2 ·	2	1	1
Type-C/Cat-V	1	-		-
2.Hyro Airport				
Type-C	_	-	6	21

Table-7.3 Numbers of New Airports Required by Scenario

The specific name of the probable airports is listed in Tables-5.6, 5.7, 5.11 and 5.12 of Section 5 of Study Report and facility requirement of the respective type of airports is defined in Table-7.4.

Standard Scale of New Airports Facility, 2004 (AIRPORT CATEGORY/CLASS: IV and V, PIONEER AIRPORT) Table-7.4

De	Type of Facility scription	Cat/Class-IV, Type-A	Cat/Class-IV, Type-B	Cat/Class-V, Type-C	Renarks
:	Air Service Regularity	Don/Scheduled	Dom/Scheduled	Dom/Scheduled	. chartered flight available
	Air Service Formation	Tertiary & Access	Tertiary & Access	Access	. Radial and loop air routes.
Airport	Air Operation Area	Provincial & Municipal	Provincial & Municipal	Municipal	. by the civil aviation services.
Nev Al	Operation Aircraft	F-27/SIDL VIOL	F-27/STOL VIOL	DIC-6/STOL VIOL	. F-27, CN-235: 52 and 38 seats. . DKC-6: 18 seats. . STOL, VIOL: less than 18 seats.
n of	Land Size of Airport (ha)	100	100	50	. includes future expansion.
Condition	Elevation of Airport Reference Point (@)	X > 6	X > 6	x > 6	
1	Тородгариу	Flatly	Flatly	Flatly	, elev. difference < 3 m
General	Foundation of Natural Ground	Hardy/Soft	Hardy/Soft	Hardy/Soft	. field CBR > 6.0 (Ave.), silty clay.
e G	Ground Water Level (m)	X<-3	X<-3	X≪-3	
	Distance between Airport to City/town (km)	20 - 60	20 ~ 60	20 - 60	
				13.500	arrived by the air passenger demand
t.	Air Passenger (Annual) (man)	50,000	25,000	660	 assumed by the air passenger demand forecast of new air route. (max.) assumed by the minimum credit point
Forecast	Air Cargo (Annual) (t)	1,080	935		of airport.
	Air Craft Movement (Annual) (no.)	2,500	1,700	1,400	assumed by the minimum credit point o airport (take-off & landing)
Demond	Peak Hour Air Passenger (man)	76	38	19	. passenger time fluctuation + . aircraft time fluctuation
rt D	Peak Hour Aircraft Movement (no.)	1.9	1.3	1.1	. number of aircraft in peak hour
Airport	Airport Operation Hour (hr.)	6	6	6	. min. operation hour
٩	Hax. Operation Aircraft	F - 27	F - 27	DHC ~ 6	. (HS-748-2B, C-160/Non-Scheduled)/ Cat-IV . (CN-235, C-212/Non-Scheduled)/Cat-V
	Land Acquisition (ha)	100	100	50	, includes future expansion.
	Raxway, Length x Width (m)	1,600 x 45	1,600 x 45	800 x 23	. covers take-off & landing of IIS-748-28 & C-160/Cat-IV and CN-235 & C-212/Cat-V
	Runway Strip, Length x Width (m)	1,720 x 300	1,720 × 300	920 x 300	, includes future instrument runway
	Taxiway, Length x Width (m)	150 × 23	150 x 23	150 x 23	11
	Aircraft Parking Apron including reserve spot	1: C-160 1: F-27 1: CN-235	1: C-160 1: F-27 1: CN-235	1; 01-235 2: 0.16-6	. eccupation time of apron: 1. first flight 1.5 hr 2. scheduled flight 1.0 hr covers HS-748-28 and C-160/Cat-IV and CA-235 & C-212/Cat-V-
ents	(m²) Passenger Complex Builidng (m²)	1: DIC-6 (165×90) 1,400	(135x90) 700	(110x75) 350	
Requirements	Cargo Terminal Building (m ²)	250	200	150	 departure 6 arrival units, and boadin and handling equipments cargo; luggage, air mail units, and loading and lifting equipments.
		190	160	140	loading and lifting equipments.
cili	Supporting Ancillary Building (m ²)	280	160 20/700	10/350	
rt Pa	Car Parking Area (lot/m ²)	40/1,400			for passenger, airport staff, enployee and visitor.
Airport Pacility	Land-Side Service Road (m/lane)	1,000/1	1,000/1	500/1	. terminal area for passenger & cargo traffic.
	Rescue & Fire Station (Car/m²)	1/80	1/80	1/80	. air navigation aids required for aircraft operation.
	Aviation Fuel Supply (kl/m²)	-		-	. will be provided by fuel enterprise and airlines.
	Elect. Power Supply (kVA)	500	500	250	. for building, navaids and telephony (Includes generator)
	Water Supply (ton/month)	1.08	0.54	0.27	. water supply line and treatment plant
	Sanitary Waste (ton/month)	4.66	2.33	1.17	. sanitary sewer line and treatment plant.

7.02.3 Approximate Cost

(14)<u>Summary of Cost</u>: The approximate cost required for extension and overlay of the existing airports, and construction of a new airport in order to accommodate the future traffic demand is estimated for each Scenario as presented in Tables 7.5.

Description	SCENAR	RIO-A	<u>SCENAR</u>	<u>IO-B</u>
	1994	2004	1994	2004
Runway Extension	217	289	28	53
Runway Overlay	205	227	34	83
Const. of New Land Airport	45	58	19	19
Const. of New Hydroport	-	-	30	104
Grand Total	467	574	111	259

Table-7.5(1) Summary of Approximate Cost

Unit: Millions Rp. = 588,2 US.\$

Whereas, if the land acquisition cost which is likely to be covered by the budget of a local government concerned is disregarded, the cost will be reduced as follows.

Table-7.5(2) Summary of Approximate Cost

Description	SCENA	RIO-A	<u>SCENAF</u>	<u>RIO-В</u>
	1994	2004	1994	2004
Runway Extension	204	272	26	49
Runway Overlay	205	227	. 34	83
Const. of New Land Airport	43	55	18	18
Const. of New Hydroport		in u	26	91
Grand Total	452	554	104	241

Unit: Millions Rp.= 588.2 US.\$

Table-7.6 Specification of Runway Improvement (EXTENSION AND OVERLAY)

^

\sim	Assumed	-	-			(DESIGN DATE:	Feb.26,'88)	
, ,	Requested	Requested Run-	Max. T-0	Runway E	Extension (cm)		Similar	
	Seat	way, L x W (m)	Weight (t)	Conc. Slab	Base & Sub-Base Course	Conc. Slab	Aircraft	
ri	10	500 x 18	2.73	20	51	0	BN-2A	
2.	20	800 × 23	5.67	20	51	σ	DHC-6	
e.	35	1,100 x 30	14.40	20	51	σ	CN-235	
4	20	1,400 × 30	20.41	20	51	6	F-27	
ۍ ۲	0	1,800 x 45	. 28.00	(30)	51	(22)	(Future)	
÷	- 00I	2,000 x 45	. 40.00	(30)	51	(22)	(Future)	
	150	2,400 x 45	44.45	30	51	22	DC-9	
8	225	2,800 x 45	. 160.00	(35)	51	(27)	(Future)	
6	340	2,900 x 45	. 270.00	(35)	51	(27)	(Future)	
10.	510	2,900 x 45	377.84	38	51	30	B-747-300	
Genera	<u>General Notes</u> : 1)	Proposed seat and runway leng offered by SJAC (The Society	runway length The Society of	i without width I Japanese Aero	Proposed seat and runway length without width and designated (.) max. T-O weight offered by SJAC (The Society of Japanese Aerospace Companies, Inc.).	.) max. T-0 weight v Inc.).	will be	
	2)	Min. width of run	runway will be co	confirmed to ICA	ICAO Recommondation by the	the Consultant.		
		Criteria of concrete pavement the field CBR 2% and K75 = 1. Indonesia by the Consultant.	concrete pavement in step % 2% and K75 = 1.8 kg/cm ³ the Consultant.	· _	of this pre-master planning will be required to be supposed to the natural ground condition	g will be required b tral ground condition	d based on ion of	
	4)	An aircraft to be subjected,		s referred to c	is referred to current aircraft to be possessed in Indonesia	be possessed in Ir	ndonesía.	

(15)<u>Unit Cost</u>: The unit cost applied to the above cost estimate has been assessed based on the following procedures.

A. Unit Cost of Extension and Overlay

 Pavement structure has been assumed in relation with the subject load represented in numbers of seats of aircraft(see Table-7.6).

2) Based on the dimension of the pavement thus assumed, the unit work quantity per meter of extension and overlay of a runway has been estimated for each class of the runway. In this process, the width of landing area has been considered 300 meters for instrument landing and 150 meters for non-instrument landing.

3) The unit price of respective work, such as earth work, drainage work, pavement, etc., has been quoted by referring the price of similar work under construction. The unit cost has been given by quantity times unit price of the respective work as tabulated in Table-7.7.

Nos.of Seats	Extension	Overlay
340 <u><</u> S < 510	7,497	3,332
150 <u><</u> S < 340	7,290	3,135
50 <u><</u> S < 150	6,980	2,876
20 < S < 50	5,161	1,263
$10 \le S < 20$	3,475	893
S < 10	3,084	728
	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Table-7.7 Unit Cost of Extension & Overlay

Unit; Tousands Rp./meter

B. Unit Construction Cost of New Airport
1) Based on the facility requirements as discussed in 7.02.2, the work quantities of each type of airport have been calculated and, by applying the same unit price as that adopted in Item A above, the unit construction cost has been assessed as shown in Table-7.8 for a land airport and Table-7.9 for a hydro airport.

Table-7.8 Standard Cost of New Airport Faciliti non-mode dest Striburts Airport Striburts Airport Facilitie 0. Bastrering Construction Like Airport Striburts Airport Pac, 199-000 1. Exclusion Cast Striburts Airport Striburts Airport Pac, 199-000 1. Bastrering Construction Like Airport Pac, 199-000 By, 14,090 Doi: 00000 By, 14,090 Doi: 000000 By, 14,090 Doi: 0000000 By, 14,090 Doi: 0000000 By, 14,090 Doi: 0000000 By, 14,090 Doi: 000000000000000000000000000000000000	. y		Lend 1/4	. None ground improvement - 50 ha. cut & fill/ave.T. = 2.0 m/Gat-IV	. JU Ma, cut & fill/eve.r. = 2.0 m/Gat-Y Storm dreinage & distributions	. Thickness: 71 cm (± 28")/Cat-IV & V	. Puved road	. Рычед атев		. Mobilization & preparatory work	Mote: Civil vork will add following cost, if any.	 Ground Improvement, per m³: Rp.52,000 (STD) Sub-drainage system per m: Rp.120,000 (STD) 		. RC structures	. Metal.structures	. RC structures	. includes GSE			. except field lightings and tele-comm,	• (shts/mu)	CENERAL NOTES :	1) The study base of cost estimate has referred	projects in the south-east asig botween 1981	and 1987.	2) The fluctuating rate of unit price has accounted to 6% up per year.	3) The exchange rute as of Dec. 1987 has employed that U.S.\$ 100 is equal to Rp. 1,70000 and Ten 132.00.	 Air navigation equipments of air route and airport are excluded.
Table - 7.8 Standard and and and and and and and and and an	irport Facility	Airport Fac, Type-C/V			au.		52	Rp.			Rp.5,717,000			цъ.	Rp.	Rp.	.du	•	Rp.	Rp.	яр.	.qn	лр.	(by Fuel Enterprise)	Rp.		Rp.	Rp. 8,073,000
Table - 7.8 StAMPAUD COST ESTIMATION Airport Fac, 7. STAMPAUD COST ESTIMATION Airport Fac, 7. State of the state	M	Airport Pac, 1Type-B/IV	• 1.	1	Ro	d'a	Rp.	Rp.	Rp.	•	Rp.14,241,000			Чр.	Rp.	Rp.	, Rp		Rp.	Rp. J	Яр	Rp.		(by Fuel Enterprise)		Rp. 1,992,000	чъ.	1 · 1
STANDARD COST ESTDWATON Engineering Construction Item Engineering Construction Item Earth Works: Civil Norks: Civil Niscellaneous Nork Famourary Construction Vork Sub Total: Uter: Subporting And Installations: Usility Works and Installations: Subforde Collector and Subid		18			Ro	R. 9	Кр.	Rp.			Rp.14,763,000		•	.цл	Rp.	Rp.			Вр.		лр.	Rp.	Rp.	(by Fuel Enterprise)	Rp.	· •	Rp.	
	Tab	STANDARD COST ESTIMATION	Engineering Construction Item		Dreinede Vork	Pavement Vork	Land-Side Service Road Work	Car Parking Area Work	Civil Miscellaneous Vork		Sub Total!			Passenger Terminal Building	Cargo Terminal Building			Sub Total:	 Elect. Power Supply	Lightings and Communications		4. Sanitary Sever and Treatment Flant (ton/month)	Sanitary Sevage Collector and Solid Waste Incinerator	Fuel Supply and Storaged Tank		vervice Equipments Sub Total:	ţ.	Grand Total:

7-14

						:	
			·				
						:	
				etion	n Alexandria Martin	а. н	
		Table-7.9 Standard Cost & (Pre-Master Plan Pl	bea Air Si hase)	lation		e etti etti oyotti	
Ι.	Des	ign Requirement: (by the standard	of sea air s	tation)	• •		
	For	the rough cost estimate of sea ai	r station, th	ne design	require-		
		t will be specified preliminarily		· · · ·		: 	
	• `			60.000			•
	1)	Annual Passenger Demand	: less than (proposed		max. 50,	000)	
			(proposed	acmana i			
	2)	Classification of Sea Air Station	: Class-III				
	3)	Location of Air Station:					
	5)						
		Inland Sea, Depth of Water at 1		1. J m		i i	
		. Wind Coverage Target > 95	6		• .		
	4)	Aircraft Navigation System:				100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 	•
		. Method of Air Flight VFR	•	Air Navai	ds		NDB
		. Air Traffic System ADF	or VOR .	Landing A	pproach		VFR
	c \						
	5)	Operation Area:					
	:	a) Approached Water Surface for		•			•
		Lanidng and Take-off	1,000 m	x 450 m =	45 ha		
		b) Approached Water Surface for			:	· ·	
		Taxing	2,000 m	x 75 m =	15 ha		
		c) Terminal Area at Land-side .	150 m x	150 m = 2	.25 ha		
	-				•		
11.	Rou	gh Cost Estimate:			19 - 19 - 19 - 19 - 19 - 19 - 19 - 19 -	· · ·	
		(Work Item)	(Q'ty)	(Amou	int, 10 ³)		
	ι.	Civil Works:					
		1) Earth Work	33,000 m ³	Rp.	86,600		
		2) Drainage Work	22,500 m²	Rp.	12,000		
		3) Pavement Work	8,400 m ²	Rp.	868,600		
		4) Road Work	100 m	Rp.	6,400		1 5
		5) Car Parking Work	700 m ²	Rp.	69,000		
					· · ·	۰ •	
						· · · · ·	

(Work Item)	(Q'ty)	(Amount, 10 ³)
6) Civil Miscellaneous Work	l set	Rp. 52,000
7) Temporary Const. Work	l set	Rp. 33,000
Sub Total:		Rp. 1,127,600
2. Bldg. and Service Equipments:		
1) Passenger Term'1	950 m²	Rp. 1,337,500
2) Cargo Term'l	150 m ²	Rp. 95,000
3) Ancillary Bldg.	220 m²	Rp. 166,000
4) Interior and Exterior Equip't	l set	Rp. 113,000
Sub Total:		Rp. 1,711,500
3. Utility Work and Installations:		. :
1) Elect. Utility & Equipment	l set	Rp. 1,027,500
2) Mech. Utility & Equipment	l set	Rp. 467,000
Sub Total:		Rp. 1,494,500
4. Land Acquisition and Compensation:		
1) Sea-Side	600,000 m²	Rp. 589,800
2) Land-Side	22,500 m²	Rp. 22,200
Sub Total:		Rp. 612,000
5. Total Cost:		Rp. 4,945,600 (10 ³)

Note:

Air navigation equipment of air route and air station are excluded, these rough cost will be estimated by the air navids section. (16)<u>Assumptions</u>: Since the actual field investigation has not been made in this particular, several assumptions have been employed in cost estimate as follows.

- The natural conditions are assumed to be normal in general sense.

- Data and maps collected are used as much as possible for evaluation of site conditions.
- Recent data of airport and other engineering construction between 1981 and 1987 in the South-East Asia, are applied for the unit price estimate.
- Composition of construction work items for airport, are referred to FAA construction specification.
- Extension cost of terminal buildings related to upgrading of the existing runway is not included.
- Exchange rates on December 1987 are fixed at U.S.\$ 1.00 equivalent to Rp. 1,700 and Yen 132.00

(17)<u>Grand Total Cost</u>: Hence, the grand total cost to be required for expansion and overlay of the existing runways, and construction of the new probable airports to satisfy the demand of each SCENARIO as presented in Table-7.5 in Para.(15) will amount to 467.0 billions Rp. in 1994 and 573.7 billions Rp.in 2004 for SCENARIO-A and, 110.0 billions Rp.in 1994 and 258.4 billions for SCENARIO-B. The cost above just shows an approximate cost level and shall not be applied to any specific project without modifications necessary.

7.03 NAVAIDS AND AERONAUTICAL COMMUNICATIONS

7.03.1 Evaluation of Present Status

7.03.1.1 Navigation Aids

(18)<u>Inventories</u>: During the Study, the efforts has been paid to make a complete list of the existing equipment of Navaids. It is reported that there are about 284 Navaids inventoried for both en-route and terminal which are composed of ;

- VOR (VHF Omnidirectional Range)

- DME (Distance Measuring Equipment)

- NDB (Non-Directional Range)

- LLZ (Instrument Landing System Localizer)

- G/S (Instrument Landing System Glide Slope Indicator)

- OM (Outer Marker as a component of ILS)

- MM (Middle Marker as a component of ILS)

- PSR (Primary Surveillance Radar)

- SSR (Secondary Surveillance Radar)

- LOC (Compass Locator)

- RVR (Runway Visual Range Indicator) excluding,

VASIS (Visual Approach Slope Indicator System)

There are some other minor Navaids other than above 284.

(19) <u>VOR and/or VOR/DME</u>: Most of VOR and DME are reported as good. As a matter of fact, however, some stations of VOR and/or VOR/DME have been known under the limited status. Nature of problems of such facilities is likely to be caused

by; - Lack of spare parts

- Shortage of maintenance technicians

- Malfunction of the system

- Limited operation hour of airport where the

station be located

- Awaiting flight test (non-official on air)

(20)<u>NDB</u>: There are a bunch of NDB facilities which need to be replaced. Number of facilities needed for replacement is overwhelmingly bigger than that of VOR. Some of such NDBs are the ones made of the old tube circuit type, which has not been on the production any more. The percentage of NDB which needs to be replaced is as follows.

- Kanwil-l	83%
- Kanwil-2	5 4%
- Kanwil-3	74%
- Kanwil-4	86%
- Kanwil-5	37%
- Kanwil-6	68%

(21)<u>Terminal Navaids</u>: Terminal Navaids such as LLZ, G/S, OM and MM have been installed at the following major airports.

- Medan, 1984	- Palembang, 1984
- Jakarta- Halim, 1984	- Soekarno-Hatta, 1985
- Surabaya, 1985	- Banjarmasin, 1985
- Ujung Pandang, 1981	- Manado, 1986
- Ambon, 1986	- Biak, 1984
- Jayapura, 1985	- Bali, 1976

- * The years stated-above are the years of commissioning of facilities.
 - * Manado airport has had an aircraft operational problem because of existence of high peak on left side close to the ILS course

(22)<u>NDBs of Terminal</u>: NDBs of the terminal use are on similar conditions to NDBs of en-route use. These are some old type of low range of 100 watts and coverage length is 60 NM. It is desirable to be replaced by the new type of equipment.

(23)<u>VASIS</u>: Visual Approach Indicator System is better to be provided for approach to a runway, whether or not the runway is served by other visual aids or non-visual aids, as specified in ICAO, Annex 14.

The standard VASIS generally consists of the following.

- VASIS and AVASIS

- 3-Bar VASIS and 3-Bar AVASIS

- T-VASIS and AT-VASIS

- PAPI (Precision Approach Path Indicator System)

7.03.1.2 Communication System

(24)<u>Systems</u>: As to communication for aeronautical services, there are systems as follows.

- AFS (Aeronautical Fixed Service)

- * AFTN (Aeronautical Fixed Telecommunication Network)
- * ATS (Aeronautical Telecommunication System, Direct Speech Circuit)

- AMS (Aeronautical Mobile Service)

* VHF ER (Extended Range) Communications

* HF En-Route Communications

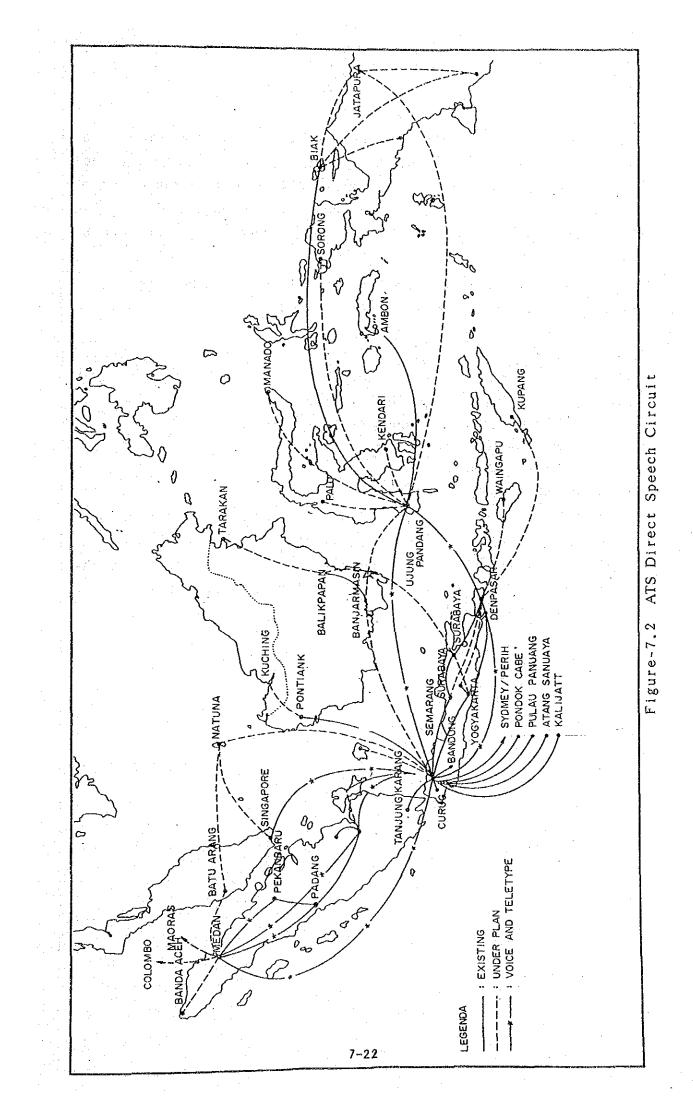
* Terminal VHF Communications

- MET (Meteorological Telecommunications)

(25)<u>AFTN</u>: AFTN has been operating through PERUMTEL Satellite and microwave leased channel. Some RTT(Radio Teletype)are still being operated on HF.

There exists AMSC (Automatic Message Switching Center) at;

- Jakarta, Soekarno- Hatta (WIIIYF)
- Medan (WIMMYF)

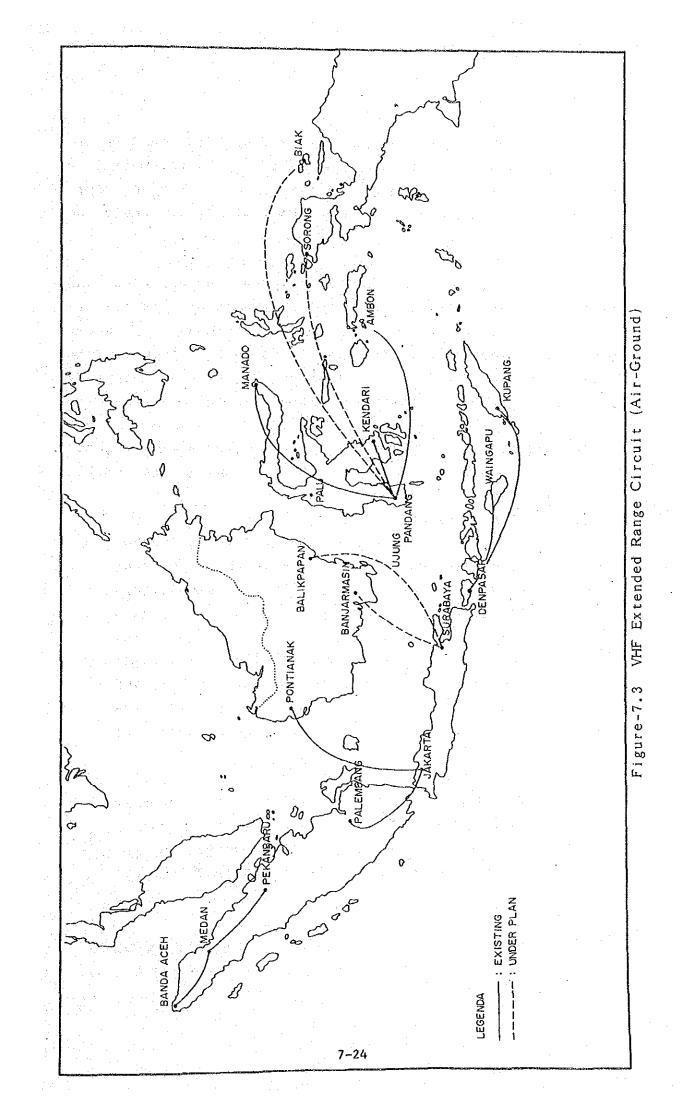

- Palembang (WIPPYF)

- Surabaya (WRSSYF)

- Denpasar (WRRRYF)

- Ujung Pandang (WAAAYF)

There were 16 landline circuits (LTT-2 CH) to connect with the local stations as of 1985 April. These have been increased up to 22 circuits. There are 4 more circuits under plan. (26)<u>ATS</u>: As to ATS Direct Speech Circuit, there are 9 Voice and Teletype circuits at present connecting major stations through Perumtel satellite and microwave leased channels as shown on Figure-7.2. There are 24 more circuits under plan.


(27)<u>VHF ER</u>: ATC-Pilot direct communication sometimes can not effectively be provided, because FIRs have not yet been fully covered by VHF. Where ATC direct communication with aircraft en-route can not be established, ATC instructions have to be given through HF air-ground channels.

There are existing stations of VHF-ER connecting between,

- Banda Aceh Palembang
- Jakarta Palembang
- Jakarta Pontianak
- Ujung Pandang Manado
- Ujung Pandang Ambon
- Ujung Pandang Kendari
- Bali Wingapu
- Bali Kupang

some of which are under construction.

DGAC is now planning to provide 4 VHF ER linkage between several stations to enable air-ground communication smoother as presented in Figure-7.3. There are also the Fixed Voice Network connecting small airfields/airstrips to the specified center.

(28)<u>HF</u>: HF communications to provide FIS for international en-route flight are available at Jakarta, Bali and Ujung Pandang. There are also FIS for domestic en-route flights. Improvement of these communications would be necessary.

(29)<u>VHF of Local Airports</u>: VHF equipment for Approach and Aerodrome Control Services at some of the local airports is of an old tube-circuit type. Their serviceability seems better in comparison with that for en-route, because the equipment is not necessarily to have long range, and they are located at the airports easy to access for maintenance.

(30)<u>Common Status for Communication</u>: In general, in regards to the communication system, the following problematic points have been identified.

- AMS VHF coverage

low altitude flying aircraft cannot The establish communication with the VHF stations, except in the area such as eastern Sumetra, southwestern Kalimantan and southern The rest of area is generally Irian Jaya. and has the difficulty in commumountainous It might be ideal to install VHF nications. station on the higher terrain to provide the reasonable coverage with good access for maintenance

- Transmitting power

Transmitting power of many stations seems to be insufficient, especially in the eastern part of the country. In this connection, the unfavorable cases have been reported. (31)<u>Breakage of Cable</u>: Another problem is the breakage of communication cables underground and overhead.

The breakage is likely to be caused by the followings.

- Some of the buried cables are old and the insulation has deteriorated.
- The high underground water level causes short circuit when it rains.
- The old, rusty and loose connections of the terminal panels break the circuit flow.
- Careless road construction sometimes cut cables.
- The distance of the connections from an airport to the stations extends long.

To avoid the breakage due such causes, some airports have been served by a microwave link.

- The distance of the connections from an airport
 - to the stations extends long.

7.03.1.3 ATC Operation of Jakarta FIR/UIR

(32)<u>ATC Operation of Jakarta FIR/UIR</u>: ATC of Jakarta FIR/UIR and its operation are hereunder described. ACC at Chengkareng is divided into 2 sectors, Upper and Low. The former is further subdivided into as follows.

- UK, Upper Kalimantan

- US, Upper Semarang
- UP, Upper Palembang
- UT, Upper Tanjung Karang

The latter is composed of;

- LN, Low north
- LE. Low east

The actual peak day IFR movement is recorded at 473 on May 27 from the data between January through June, 1987. The peak hour movement of that day is recorded as 37 movements.

(33)<u>Common Status for Operation</u>: As stated in para-(31), the air-ground communication for long range and high altitude is likely to be one of the deficiencies for safety air transport operation. In case an air-ground communication is not adequately linked with ACC, Approach and/or Aerodrome Controls, a pilot flying from/to airports can hardly get ATC clearance.

7.03.1.4 Maintenance

(34)<u>Common Status</u>: The question of maintenance of Navaids and Telecommunication be summarized as follows.

- Insufficiencies of maintenance people

- Shortage of spare parts

- Shortage of fuel supply

- Cable breakage

- Long service age of the equipment and availability of spare parts

- Insufficient transportation

- Dependability of spare parts

7.03.1.5 Aeronautical Meteorology

(35)<u>Regional Center</u>: As to the aeronautical meteorology, the five regional centers are located at Jakarta, Medan, Ujung Pandang, Denpasar and Jayapura. Area meteorological watch for Jakarta and Bali FIRs is provided at Jakarta, while Ujung Pandang and Biak FIRs are done by Ujung Pandang. Based on ICAO Annex 3 standards and recommendations, briefing and flight documentation are provided at MET offices of the airports.

Flight Meteorological Services are available from;

- Main Meteorological Office (MMO): Class I Station
- Dependent Meteorological Station (DMO): Class II Station

- Supplementary Meteorological Station (SMO): Class III Station.

(36)<u>Forecast Area</u>: Forecast services are provided by MMO to the five Forecast Area, which are under the supervision of the respective MMO such as;

- Forecast Area I: Polonia, Medan

- Forecast Area II: Halim Perdana Kusuma, Jakarta - Forecast Area III: Ngurah Rai, Denpasar and

Juanda, Surabaya

- Forecast Area IV: Hasanuddin, Ujung Pandang

- Forecast Area V: Frans Kaisiepo, Biak

(37) Trend Type Landing Forecast: Meteorological reports for take-off and landing are prepared every half hour. Weather forecast for landing is in a form of Trend Type Landing Forecast, which is issued every half or one hour and limited to airports served by MMO The or DMO. meteorological informations are provided directly to Aerodrome Control Tower. The presentation modes vary, the depending on the equipment available at airport concerned.

(38)<u>In-Flight Services</u>: In-flight services on the meteorological information are available as requested through the Flight Information Center or the appropriate ACC to which MET office prepares and issues information (METAR & SPECI) every half or one hour.

SIGMET transmission and warning information are issued on the first priority. VOLMET broadcast of METAR, SPECI and AIREP are provided by Singapore to the specific airports. Chengkareng is now conducting VOLMET broadcast of METAR and SPECI. Some major airports have ATIS for broadcasting meteorological information.

(39)<u>Runway Visual Range</u>: RVR (Runway Visual Range) is measured by MET office at the airports as the horizontal visual guidance for a pilot on the critical landing phase. (40)<u>Common Status</u>: Several problems have been reported of the meteorological field as the followings.

- Equipment provided at meteorological stations are of minimum need with low accuracy hampering smooth operations.
- Meteorological information transmitted through AFTN is slow and sometimes does not reach the receiver.
- Meteorological stations are generally located far from the flight operation service section at airports, which makes communication unstable between flight service stations.

7.03.2 Basic Specifications

7.03.2.1 General Consideration

(41)<u>Navaids</u>: The existing NDBs be desirably replaced by precise VOR, DVOR (Doppler VOR) instead of conventional VOR. In the area where there are many military aircraft flying, TACAN (Tactical Air Navigation System) should be introduced to be collocated with VOR (VORTAC), instead of DME (VOR/DME).

TACAN can be also usable as the distance measuring equipment for civil aircraft, because its nature is the same as that of DME. To improve the present status of Navaids, the followings are conceivable.

- Civil and military joint committee should be organized to discuss the efficient use of Navaids, especially as to VOR and NDB.
- A small aircraft is desirable to be equipped with VOR airborne equipment. The VOR system accuracy is superior to that of NDB, thus make aircraft operationability higher when homing to destination airport.

- Conventional NDB of low range should be replaced by the new type of medium or higher range. Lt is, however, not necessary to replace all of them. because the provision of higher power of NDB makes radio fixes in conjunction with the existing NDB οf lower power so that a pilot can use the fixes as ង reference point to adjust his navigational deviation. - Some DVOR for airways transversing wide bodies of water should be installed. It is better to be located on landfalls than in islands in-between navigation aids which constitute the airway. It i s impractical from viewpoint of maintenance and security.
- VASIS better be replaced by PAPI (Precision Approach Path Indicator) when the existing VASIS come to need replacement. PAPI gives more precise guidance to a pilot than conventional VASIS.

(42)<u>Communication</u>: As to the communication system, the following are conceivable for improvement.

- Upgrading of the system control and facilities pertaining Aeronautical Fixed Service (AFS).
- Construction of VHF Extended Range station at several selected sites. These stations should be linked with each ACC via PERUMTEL channels to cover whole FIRs.
- SSB (Single Sideband) HF should be provided at the local small airports to solve the existing problem of RTB (Return to Base) flight caused by a stormy weather and/or a lost communication.
 - Provision of power generators.

i e st

7.03.2.2 Conceivable Flying Route

(43)<u>Direct Route</u>: The potential new air routes have been selected from the viewpoint of the magnitude of traffic demand and defined by the origin and the destination

The direct route connecting the airports could airport. airway. Given these new direct routes be not be the realized, a lot of NAVAIDS (VOR and/or NDB),AMS (Aeronautical mobile system) and AFS(Aeronautical Fixed System) and aeronautical personnel who take care of those system, are additionally needed, thus the tremendous budget needed. And, airliners that are going to operate the on likely air routes might not be compensated for flights non-payable services.

(44)<u>Facility Requirements</u>: Taking into account above conditions, the structure of the future air routes and the flight operation are tentatively assumed from the practical viewpoint as follows.

- The existing Navaids be utilized to constitute an air route as much as possible for a cost saving.
- For an air route needed to traverse over a wide body of water, power of NDB be increased, since the LOS(line of sight) of VOR is limited by the earth curvature.
- A direct fight, which flies on the shortest route between O-D airports, may be made if such flight navigationally possible and makes up for i s i s Whereas, if the direct flight operational cost. navigationally impossible, the detouring flight may be made by utilizing the existing without landing any airports. Landings at some airports, with passengers not changing their boarding aircraft, shall be considered as a kind of the direct flight. an airline can pick up more passengers at the Thus. cost landed airports to make the operational compensationable.
- ATC(air traffic controller) shall issue a direct route clearance to a pilot, if the traffic permits and aircraft is capable to conform navigationally (Inertia Navigation System-INS equipped) to such ATC clearance.

7.03.2.3 Cross Reference of Aeronautical Operation Facilities

(45)<u>Cross Reference</u>: Cross reference between each OD pair airports has been made up to 1994 and 2004 respectively for an easier access to understand the present status of aeronautical operation. Trunk routes are formed in between the existing airports. While, the Feeder air routes will be generated between the existing airports and possible new demand origin airports, either of which can be the origin and the destination. Tables-7.10 and 7.11 show the cross reference of the trunk route and the feeder route respectively. Table-7.10(1) Prospective Air-Route with Related Airports and Present Aeronautical Operation Status (Trunk Route)

REMARES: NC: NEED CHANGE X: EXISTS LAP: INDORESIAN AIR PORCE ?: UNKNOWN , ID: NAVAIDS IDENTIFICATION Y: POVER (VATTS) 4x: DUPLEX

				F		111		_		-		·····	مىتىنى ئەشمە					-			UVER (VA				OUPLEX																			
1994	NEV ROU	<u>16</u>	· · · · · ·	DISTANC	E DEMANI	- 1	\vdash			NAVIGAT	ION AIDS		TION HOUR					CONT	ROLS/CO	HARING CA	TIONS IN	<u>HS)</u>		AE!	RONATICAL P	TIXED SE	RVICES (AF	si	**************************************		ME	TEOROLOG 1		TES					LIGHT	ING AIDS				PIRE
TRUN	NAME OF AIRPORT	CLAS	S ZONE	1 10	1 4777	RUNY		the second s	15		RANA	R }	VOR	DME	NDB		ACC THA	APP) TVR	- API	IS PIS	PSS	ATIS		CHANNEL		AFTN	OBSE	RIATION	857	ORTS	KiR 3	τ Ε(UIPHENT	OPERAT	TON	PP 1	THR RY	A LOPH	VASIS	OBST	FLOOD		PROTECT CATEGORY
				(ЮН)	2004	<u> </u>	<u>n l</u>	1.2	GP ()	<u>ભ ૦મ</u>	ļ			CB/V	<u>10/Y</u>	. <u>C</u>	and the second		-	_		<u></u>		LT	r RTT	RTP		E I	h s	YETN	SPECI			R SATEL	115		rr.		I Jacit	14315				
n	BLANG BINTANG BANDA ACER (BTJ)	11	2		124,5	1850x	45						C/100W		NZ/500V 00.00-11.00) GR/CL/ALL	X				VEPx 00.00-1	1.00)			. X		RPx2	1	x	x	x	X						x	x x	x x	x	x			۴I
	SUKARNO HATTA (Intn'1) JAKARTA (JKT) (248	u 1	43	(1803)	156,61	18 3660x 3050x	60 L1	5V 1	SV (24V	2 2	SSR/2.	SHV CR	1007 1/1007 (24R)	72/1KY 1	GL/CR/25V (24H)		TEPAS YEPAS		3 VHPX 24R)	5 VHFS	1 VRFx2		VRPx1 (24R)	dx	HFx14 dx HFx5	EPx 2	11	x	x x	x	x	X	x	x	241		ALS T I	x .		T VASI	x	x	x	IX
	SUKARNO BATTA (Inth'I) JAKARTA (JST) (248		43		119,89			4									• •			· .	•		•	dx	HPx14 dx HFx53		11		, , ,				I		248	. 81	ALS			T VASI		x	x	
۲2	PATIMURA (Into'l Entry AMBON (AMP) (12)		149	1304 (2404)	160,61	4 1850x	45 1	58 1	5V] {24B	V PXF			100W 1	02.1KV	OH/2.555 (24H)	x	(22.00-	THE	<u>a 1 VRFa</u> 22.00-0		10	1 HFx	<u>(</u> ,)	- dx	KFx6	BPx7	2			x	T X						T I X	x 1 2			x	+	╋╍╌┼	v1
	SUKARNO HATTA (IDID'I) JAKARIA (JKT) (245		1 43			3050x	60 1 60 1	5¥ 1 5¥ 1	EU T	12 1 20	PSR/J. SSR/2.	SMV CX SKV DK	t/100v	12/16Y	GR/CL/ALL GL/CR/25V (24H)		VHPx6 VHPx2	2 VRPA) VEPx				VHFx1	dx	HPx14		n	T	1 1	$\frac{1}{x}$		x	x	x	248	. 81	ALS	x x		T VASI	x	x	1	
T3	SAN RATULANGI (Into'l	Entry	1 114	1192 (2208)	106,10	24 2500x	45 1	.5V 1	5¥	1¥ 1V		TD	0/100V	8971EV 94/1KV	10/2.5KV SR/80V	X	VHPX		24R) VEPx	:1		EPx	(248) 5 VHPx1		dx HFx5; dx HFx6	<u>'</u>				- <u> </u>	+	- <u> </u>	-			- C.	TI		<u> </u>	3.25	-			 ¥11
	NALASG	11	1 65	i		2230x		(2)	.00-10	0.00)	1		(23.00-10	1.001	AR/1	+	(2).00-10	1 (00.0	23.00-1	0.00)		(23.	00-10.00)	1_	ar arxo	EFX4	3	X	x	X								x x	x x 				╞╧┥	
T4	NGURAH RAI (Ints'1)		1 67	159 (295)	90,91 107,12	2 2700x	45 1	OY 1	ov	1W DME	PSR/630	OXX DP	5/1001 1	02/1KV	DR/2.56V		C x4HV		1 VHPx		HPx8	-	VHPx1		HFx8	HPx3						x	x		248		-+	-					$\left \right $	п
	DENPASAR (DPS) [246 SIMPANG TIGA (Intr'i) PERANBARG (PKU) [11]			<u> .</u>		2150-	(2	4H)(23	-00-1 	7.00)	1	SKY PA	(248)	5871XV	(24H) XV/500V (00.00-11.00)	׾	(248) VHPx (00.00-1	1245	(23.0 VHFx	00-17.0	0) (248)	122.	00-11.00)	1.				-			x					·				<u> </u>		+	+	v1
т5	ADI SUCIPTO IOGIARARIA (JOG)	<u>kia</u> kia	P) 60	(1372)	90,40	121	ţ						<u>5.100V</u> (24B)	75/1KV	02/5001 (23.00-12.00a)	X)R)		1.00) (VHPx 23.00-1	2 1.00)				1	dx BPx4		2	x I	X				1									1	<u>†</u> †	VII
-	JUANDA (Into'l Entry) SURABATA (SUB) (18)	1	1 63	1	73.98	3000;	45 1	.5¥ 1.	5¥	17 17	1	SE	1/100¥		SB/500V VR/500V (246)	x	VEPx.	1	VHFX	1		1		1	dx HPx6 HFx2		3	ı	x	x	x	1							1					1117
46	TARAKAN (IDIN'I EDITY TARAKAN (IRK) (10		1 106	(1297)) 100,00	15203	30	* +			1	<u></u>	R7100V1 1 (2).00-09	13/18	07/5005	λ		1	· · · · · · ·	23.00-0	<u>ar</u>	+	_	~ 	dx HPx12	EPx3	1	X	х	x	x													٢
+7	HALANG NALANG (HLG)	11	P) 65	308	73.10	6 2250							M/Doov1	69/1FV	AR/?	-	VRPA		VHFx			HEFX	,			1													<u> </u>	ļ		<u> </u>	+	
<u> </u>	SANSUDIN NOOR BANJARMASIN (BDJ)		1 103	(571)	76,16	0 1870x	60 1	58 7	5	1V 1V 2V 2V	PSR/1	SKY LCK	G/100YE -	8371X¥ I	00/500V (23.00-12.00) GR/CL/ALL		(2).00-11	1.00) (23.00-1	1.00)		3.00-1	2] 1.00) VEFx1	+	dx HPx6	-ti	2		x	×	<u>x</u>						x	x x		x	X		++	vii
TB	SUKARNO HATTA (Intn'1 JAKARTA (JKY) (24	я)	I 43	861			.60 _1	5¥ 1	5V (24)	2¥ 2¥	SSR/2.	SKV DK	1/100V	72/18	GL/CR/25V (24H) OT/500V	₹.			24H)	VEF			(248)		HFx6 dx HFx5)	HPx2	12	x	XX	x	X									ļ			╄━━━┤	
	TARAKAN (LDVD') EDTTY TARAKAN (TRX) (10	8)1**	1 106	(1594)		1520x		58 1	38	28 28	PSR/3.	SW ICK	(23.00-09	1.00)	-GR/CL/ALL		PEPa6 VEPa	2 VRPx		23.00-0	9.00}	-	VEPal		HPx6	(xTB	1	· X	X	X	X	·								<u> </u>			++	
19	SUKARNO HATTA (lain'l JAKARTA (JKT) (24	E)	1 43	581	41,37 81,91	21	- 1	15¥ [1	5V (248	2 <u>v 2v</u> }	SSR/2.	557 08	T/100V {24R)	72/18	GL/CR/25V (24E) GA/500V	\mathbf{x}		-l (248) 21 VHFX				(24H)	1	dx HFx53	HPx2	1	x	XX	x	, x	X	x	x	248					<u> </u>			+	
	ANFENAN HATARAN (AMI)		1 68		, 01.51	16003	.30								(23.00-11.00) 01/500V 11/100V	ž		(23.00-1	1.00)						- <u> </u>		X	X	x	x	-					_		<u> </u>		1	1,	+	
TIC	B. SASTARANE GARA BUNDUNG (BDO)		(P) 51) 33,48 40,10	8		<u> </u>	<u> </u>	<u> </u>	Denvice		IOR & C	DR)	(OH & OR)		(23.00-1	1.00) (23.00-1	1.00)		<u> </u>			<u> </u>	UHFx2	1	I	X	X	X		1	<u> </u>			X	<u> </u>		X	^	<u> </u>	$\left \right $	
	NGURAS RAI (Inth')) DENPASAS (DPS) (24	a)	1 67	(000)	40,10	2 2700	45 1	1 (BE	0V 23.00	1V 1503 -17.001	PSR/65 SSR/2.	SEN DF	5/100¥ 1 (24H)		OR/2.58V		VEPx3 (248)		1 VEPa 1) (2).		日 2011(21日) 2011(21日)		VEP x 1 00-11.001	z5	HPx8	887:3	4	x	I	x	x	X	I	I	245		ALS TI	XX	ľ	3 BAR 3	I	I	x	11
Ta'	ble-7.10(2)	Air	port	tive s and on S	d Pr€	sent	e w Ae	ith rona	Rei	lateo Ical							REMAI		D: 14	TYNTERY	AN AIR PA IDENTIFIC	DECE	X: EXI ?: UNX dx: DUF																					
	the state of the second division of the	_		DISTANC	the second s	Contraction of the local division of the loc	- <u>-</u>				ON ATES	(OPERA)	ION HOUR	- 63(7)		T	····	CONTR	201.5/00)	CONTCA.	TIONS			AER	ONATICAL FI	LXED SER	TCES (APS				NET	EOROLOGIC	T SERAIC	as .					LIGHT	ING AIDS	· · · · · · · · · · · · · · · · · · ·	r		IBE
200	NEV PO	UIL		J DISTANC	L DEPLAN	1			²		1			DATE			1	TT	T				-T		CHANNEL		1	Dan man		1 1000		Kill S	1 10	ULENENT	OPERAT	10%			1	VISTS	1	PLOOD	F	ROTECT

	Ċ	perati	ion St	atus	(Fee	der	Rou	te)							¥: .POVI	R (FA110)																					- <u></u>	7
	NEV ROUT		DISTANC	And in case of the local division of the loc	1	T			ATION AIDS	(OPERATION	HOUR - GHT)		C	ONTROLS/COMM	NICATIONS			AERO	NATICAL F	IXED SER	TICES (APS			T			T SERVICE		0.0000000000000000000000000000000000000	 ,		LIGHT	MING AIDS		T	P	RE
2004		1 1	Straight	PAX.	RUNYAI		ILS		RADAS	202	DAG	NDB	100	тні	APP TVR	APIS PIS	TSS	ATIS		CRANNEL		APTN		VATIONS			Nation		IPREST	OPERATION HOUR	APP	THRF	NT REIL	VASIS	OBST	PLOOD		ROTECT ATEGORY
11000	NAME OF AIRPORT	CLASS NO	- (5%) - 198	2004	(0)2			1100	OH RAUKS	JD/V	CH/V	10/5 N.							L71	RTT	817		8 1	<u>s</u>	HETAR	SPECI	TREND	VX RADAR	3 SATELITE		<u> </u>	<u> </u>				<u>├</u> !		
	JUANDA (IDAD') EDITY) SURABATA (SUB) (188)	1 63		1	1650x30	15V	158	18	1¥		W 78/15			VEP x1	VEPal	~				da HPa6 da HPa14	FF 12	3	x	x	X	x	·											VIII
Th			_] 700 (1297)		1350x60	┼	├ ─	┼╌┼╴		KFG/100	N 59/18V	(248) 0%/300Y	+u		1 (23.00-17. EPx1 VEPx1	<u>.</u>	ERS		X		EPro	3	X	X	I	X		T				x	XX	X	X	X	x	VI
 	PENFUI (Into') Entry: KUPANG (KOE) (128) POLONIA (Into') Entry)			<u> </u>	1850x30	151			PSR/24W	(22.0 HDN/100 KV VYM/100	0-10.001 N 86/18V	08/300V		22.00-10.0	01-00-10.	<u>(2)</u>	2,00-11 HP12	VHPx1	da	da BPab BPa4	-[5	I	x	x	x	3	X		24E	x	x .	X X	3 BUR	ye x ∣	x	1	v111 ·
-	MENAN (HES) (178)		1055	66,356	2900x45	1,1			\$5R/2.5		12481	(248)	1_6		1 122.00-16.	01	L	9-16.001	1	da HPal6	1	3	x			I											\square	VIII
T12	JUANDA (Inta'l Entry) SURABAIA (SUB) (188)	1 63	(1954)		1650x30	15V	15¥	18 1	1¥			SB/500V X VR/500V X		VHPx1	VEPal		+	<u> </u>	<u> </u>	CA 10.411	+	<u> </u>	<u> </u>		1				+		+			+			i T	
	JUANDA (Into'l Entry) SURABAIA (SUB) (188)	1.1.			3000x45	15V	1.5V	1V 1	17	SBI/100	V 78/11V	SB/500V X VR/500V I (24H)		VEF x1	TEFx1	01				dx HPx6 dx HPx14	EPx2	3	X	X	X	I	X	X		246	I		1	3 BAR			X	, 111
.n>	V.HONGINSIDI	(147) 131	(1185)		1650x30				1	XD1/100	V 97/1EV	1 N1/500V X	1		i	VHPx1 00-08.00)			ļ	1	EFx2	1	×		I	X	ļ				<u> </u>		x	<u> </u>		Ļ!	<u> </u>	
[SUEARNO HATTA (Into'l)			1	3660x60 3050x60	15¥ 15¥	15¥ 15¥	28	2V PSR/3.5 2V SSR/2.5	NV CKG/100 KV KDT/100	N 83/16V N 72/16V	GR/CL/ALL GL/CR/25V		6 VEFx2 V	the second second second	VEFRI EPA12		YEF-1	i da	EFz6 dx EFx53	HP x2	n	x x		I	x	x	x	x	248								ц
714	JAKARTA (JET) (24B) V.MONGINSIDI		968 (1792)	58,950	1650=30		12	(8)	1248)	.1	(24H)	(24E) NI/500V I	+	TT	.(248)	Ville 1	+		t –		EFx2	1	X	X	x	X												2
	KENDARI (KDI)	(IAF) 131			1850x40		<u> </u>			100/100	Y 75/188	[0P/SOOV]			VHPx2		1	1	1	dx HFx4	1	1	X	X	T	x			1			x	X				X	117
T1 2	TOGTAKARTA (JOG) SEPINGGAN	(^(LLP) 11 60	552 (1032)	50,528	1800x30	+			_		(249) v 119/16v	23.00-12.00±0R 0L/500V X LL/25X 2		VEPx1	(23.00-11. VRPx1	<u>v.</u>			X		EPx?	2	x	X	X	r		<u> </u>	1		X	x	X X	X	X		i	411
-	BALIEPAPAN (BPN) MALANG	(1AF) 11 65	1	+	2259x40		<u> </u>	1			+	AR/?	1	-					ļ	ļ		_				ļ			+	·	┼──┤			+				VII I
T16	HALANG (MLG) SEPINGGAN	1 110	(890)	46,200	1800x30					F	V 119/1EV	1 1.1/27 1 (-	VEPal	VHPx1			VHPx1	x		EP12	2	X	X	T	x		<u> </u>			x	X	X X	X	X	X		
	RALIKPAPAN (BFN) POLONIA (Intr'l Entry)	1			<u> </u>	158	15¥	111	V PSR/20	(2).0 HDN/100 KV VNM/100	0-11.001 V 86/1EV	(23.00-11.00) 08/300V		23.00-11.00 1 VE2x1) (2).00-11. VEP.1	0		VEPal	dx	dx HFx0 HFx4		5	x	I	x	x.	2	x		24B	I	x	X X	3.19°,	70 X	X	X	VIII
117	HEDAN (HES) (178)	1 10	1233	41,724	2900x45		1	1 1	1		(243)	(248)			1 (23.00-16.		123.0	VEP.1	i	da EFal6 HFa8	HPx3	4		T	Ţ	J.	<u> </u>	+										ш
	NGURAH RAI(Inin'1) DENPASAR (DPS) (24H)	1 67	(2284)		2700x45	124811	21 00-	17.001		IV DFS/100	(248)	(249)	VEPx3		HPx1 VEPx2	HFx8 00) 124H ¹	122.9	<u>9-11-091</u>	-{	<u> </u>		<u> </u>			-		· ·				$\left - \right $	x	÷	3 BAR 3,19°,				7111
	POLONIA (Inta') Entry)	t 10	1	†	2900x45	15¥	159	11 1	IN PSR/26	NDS/100 EV 999/100	86/18V 77/18V	08/3005	VHPAI	VHPx1	VHP=1		EFx2	VHPx1	dx	dx HPx6 HPx4 dx HPx16		5	T.	x	<u> </u>	X	X	X		24E	1 1	1			1	ļ,		
118	NERUN (NES) (178) BRANTI	11 42	664	32,560	1520x30					TIC/100	(24H) 1 97/181	123.00-12.0040R) TP/5005 X		1. 1) [23.00-11. HPx1 VHPx1		1125-2	10.007	1	da HP12		1	X	X	1	X	ļ	ļ				<u>x</u>	XX	X	X	├ ──-!		
	BANDAR LARPANG (TGK) FOLONIA (Into'l Entry)			 	2900x45		15¥	1 1 1	PSE/201	MDN/100 EV 1901/100	86/181	(24E) 0N/300V		VEP x1	01(23.00-11. VHPx1			VHFEL		da EPx6 RFx4 da RFx16		5	X	X	X	x	X	X		245								
т19	NEDAN (MES) (178)		816 (1511)	29.646							(248)	(24H1 01/5005 X 11/1005 X			(23.00-11. (7.1 V8P-1	0)	123.0	X)-16.021	1	1	UHP#2	1	X	X	X	x												V1
	E.SASTARANE GARA RANDUNG (EDO)	(IAP) IJ 51	<u> </u>	ļ	1987x30			<u> </u>	_ <u>_</u>			(OE & OR)			01 123.00-11.	01		+	+				╋╌╬		†			1	-				1					
		(ARHT		1	1650x45					. 540/1001	84/189	0C/500V X		VHPx1	VHPx1					da HPAL	┦──・		<u> </u> ₹	- <u> x</u> -	<u> </u>	<u>x</u>	<u> </u>									<u> </u>	+	VI
T20	ACEULD LANT SERURUNG (SPG)	11 55		23,340	1150x45				55R/2.5		(241)	0C23.00-12,00] .(2	23,00-12.00) (23.00-12.	(0)				ļ	ļ	ļ	<u> </u>		<u> </u>	<u> </u>	 	<u> </u>	+		<u> </u>					1		<u> </u>
			514 (952)			<u> </u>				BPN/1001	119/1EV	PC00.00-12.00 0L/500V 2 UL/25V 1	<u> </u>	VHPx1	VHP x1		1	VEP x.1	x		HPx2	2	X.	X	x	T					X	I	X X	X	X	I I		VII
	SEPINGAN Baliepapan (BPN)	J 110	<u> </u>		1800x30					(23.00	0-11.001	123.00-11.001	1 (2		(2).00-11.	01	1(22.0	xi-11.00)	1	1		<u>}</u>	- ال دمينية			<u> </u>							*				**********	

ð,

Table-7.11(1) Prospective Air-Route with Related Airports and Present Aeronautical

Operation Status (Trunk Route)

REMARKS: NC: NEED CHANGE LAF: INDONESIAN AIR PORCE ID: NAVAIDS IDENTIFICATION Y: POVER (VAIDS) X: EXISTS ?: UNKNOWN

da: DUPLER

DISTANCE DEMAND Straight PAL. M 1994 (RH 2004 NEV BOUTE 1994 ETTER KANE OF ATRPORT NAME OF CITI (OP. RR) NAVIGATION AIDS (OPERATION HOUR - GHT) AERONATICAL PIXED SERVICES (APS) CONTROLS/COMMUNICATIONS ES LAPSI APTN OBSERVATIONS REPORTS INTERNATIONS REPORTS INTERNATIONS REPORTS INTERNATIONS REPORTS INTERNATIONS SATELITE CLASS 20ME VOR DEC RUNVAT ILS LLZ GP HM CM NDB PADAR ACC THL APP 7n/R APIS FIS CRANNEL **7**55 ATIS 10A CR/V 10A (p) LTT RTT RTP
 SE/500V
 X

 100,00-07.00)
 100,00-07.00)

 100,00-01.00)
 100,00-11.00)
 SIBOLGA 11 14 69.068 1400x30 94.766 2150x30 159 (295) SFil x x x PI SIMPANG TIGA(Iptn'i Entry) (PERANBARU (PRU) (118) 125 (PERANBARU (PRU) (118) 47 88 1 X VHPx1 VHPx1 (00.00-1).001 (00.00-11.0 SS8/2.5EV x 2) X x 17 88 STREEAVANG 970x30 66 (123) 61,990 83,498 2150x30 P2 SUPADIO(Intn'1 Entry) FONTIANAK (PNX) (11H) 25X/100V 79/1KV AT/500V HFx6 VHFx1 123.00-100.00-10.001 04.001 VHPx1 VHE x1 I 89 х EPx4 2 x I x x (23.00-10.00) (23.00-10.00) (23.00-10.00) (23.00-10.00) (IAP) 61 MADTIM 50.856 1800x30 82 (151) (IAF) (IAF)(83 HILLING \$7,408 2250x40 AR/? MALANG (HLG) RN/? 1500x30 8Pr1 247 (458) x (x (X X SATUNA 40,234 F4 PNK/100V 79/1KV AT/500Y VHPal VHPRI RFx6 VHFx1 23.00- (00.00-53,574 1655x30 SUPADIO(Into'l Entry) FONTLANAE (PNK) (118) 1 89 BFx4 x x 5 x (23.00-10.00) (23.00-10.00) (23.00-10.00) (23.00-10.00) 1 x 10.00) 04.00) BA/5001 X 0C/5001 X PC/2 3 BAD0.00-14.00 0C23.00-12.00 FC00.00-12.00 ARMT) 11 55 ACTOLAD LANI SEMARANG (SRG) (23.00-12.00) (23.00-12.00) 1650x45 35,468 1150x45 65,498 SSR/2.5KV SHG/100V 84/1KV (24E) dx HFx1 x X 25 2 Ìr. lπ 115 (212) - 62 TEDIRI
 15N
 15V
 2V
 2V
 PSB/3
 5KV
 CEG/100V
 83/1EV
 68/CL/ALL

 15N
 15V
 2V
 2V
 SSR/2
 SKV
 DET/100V
 83/1EV
 68/CL/ALL

 15N
 15V
 2V
 2V
 SSR/2
 SKV
 DET/100V
 83/1EV
 68/CL/ALL

 (24B)
 (24H)
 (24H)
 (24H)
 (24H)
 3550250 SF2)4 VHPx6 VHPx2 VHPx3 VHFx5 VHPx1 EPt12 VEPx1 SUKARNO BATTA (LEGE'1) JAKABTA (JET) (248) d z 1 43 da Fila53 EFa4 050x60 11 XXX X r x x x (248) **7**6 145 (269) 30.340 (24E) 39,436 KOTA BUNI - 41 ____ PANDEGLANG 11 44 1800.30 84 (155) 29.640 40,268 1987x30 EXD/100V 117/1EV 01/500V TT/100V (OF 4 0R) (OF 4 0R) 87 H.SASTRA NEGARA BANDUNG (BDO) (IAP) 11 VHFx1 UPEs2 x x I 1 x (23.00-11.00) HUARA ENIH rv | 36 28.072 900x30 40,266 1520x30 900x30 127 (236) TKG/100V 97/1EV TP/500% (24H) (24H) 78 VRFAL VHFAL BRANT I da MPa2 11 42 1 | 1 | | X | X | X (23.00-11.00)(23.00-11.00) BANDAR LAMPUNG (TGK) £₽×1 MUABA BUNGO IV 31 850x30 146 (271) 27.686 VHPx2 VHPx1 (23.00-14.00) (23.00-14.00) 14.00) 110.5 029.6 15V 15V 1V 1V SSR/2.5EV 07/500 HPx6 VHPx1 23.00- {23.00-14.00} 14.00} **P**9 21.8/100V 120/1KV 0V/500V VV/25V (248) (21,00-14,00) 33,556 A da EPalé EPas 1 | 1 x TALANG RETURN(Into'l Entry) PALENBANG (PLN) (15E) 1 I x x x 2200x45 26,458 750x30 33.786 2150x30 17 15 PADANG SIDENPULN 132 (244) SSR/2.5EV PKU/100V 58/1EV NV/500V (00.00-11.00) 100.00-11.0 VHPx1 VHPx1 (00.00-11.00) (00.00-11.00) **P**10 SIMPANG TIGA (Int. Entry) FERAMBARU (PEU) (118) 11 25 2 X X X X X

Table-7.11(2) Prospective Air-Route with Related Airports and Present Aeronautical

X: EXISTS ?: UNIDADAN REMARIS: NC: NEED CHANGE LAF: INDORESIAN AIR FORCE ID: NAVAIDS IDENTIFICATION V: ROVER (VATIS) dx: DUFLEX

	, C	pera	tior	Sta	atus	(Feed	ler l	lout	e)		فطعاده ورجوع والعالي							NIZA (<u> </u>				وي الم										and a local difference		27-DAADADADaarainah				
1994	NEV BOU	n.	D	ISTANCE	DEMAND		L			TION ALDS	OPERATION		1			<u> </u>	DNTRO1	S/CORHUN	ICATIC	<u>540</u>		····			DED SERV		OBSEN		Inn	<u>NETE</u>	DROLOGICAL TLANDING PORECAST	SERVICES	IP:ENI_	OFERATIO		T T	T	SHTING ALL		- <u> </u>	<u> </u>	FIRE
	TR NAME OF AIRPORT	CLLSS	ZONE ^{S'} NO.	NH (XH)	PAX. 1994 2004	RUNTAL			XM 07	_ <u>81</u> 00	LB TOA	DHE CH/V	NDB 1D/V	k.c 4	.cc	יואד	LFP	TVR	APIS	P1 5	PSS	AT15	LTT	CHANNEL RTT	-1	AFTN	RI		METAR				R SATELITE	-	APP	TER	RVT RE	EIL VASI	S 085	ST 71.00	0 1BN	CATEGORY
ļ	LUBUX SILAPING						Street of the local division of the local di	01	- <u>773 - 8</u> 2											1	T					1			1	1		1	T		1							
P11	SINPANG TIGA (Into') E	100	25	91 (168)	23,514	1300x30 2150x30	†—			S5R/2.	51V PKU/10	5871X	NV/500V	X	(m)	VHPx1 00-11.00	600	VEPAL					I			2	x	X	x	x												VI
	PEKANBARU (PRU) (118 SUPADIO	++	<u>+</u> +-			1655x45				+		0¥ 79/1E				/HPx1		VEPx1	<u> </u>	23	(Px6	YHPx? (00.00-	x	1	EPx4	2	x	x	I	x	-				x	1	x x	x x	x			17
P12	FONT LAKAR (PNK)	I I		130	23,320 30,866	·	_		L		(2).	0-10.00)	23.00-10.00		123.0	0-10.00	(2).	00-10.00			0.00)	04.00)		[-{		+-+-		+		<u> </u>	[- <u> </u>		+	+			-		+	<u> </u>
1	BATANG TARANG (SANGGAU) -	90	(240)	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	900x30	ļ				1 756/10	18 97/18	TP/500				2-1	VEPal						1		+,-		+			<u> </u>	 				┢╌╾┾						VI
P13	BRANTI BANDAR LAMPUNG (TGK)	n		136	21,854	1520x30	 					(24H)	124H		. (23.	<u>.00-11.00</u>	<u>) (2).</u>	<u>00-11.00</u>	<u>n </u>					dx HPz1	+	·	┼┼	- <u></u>	<u> </u>							┢━┽				- <u>†</u>		
	SURA BUHI		49	(252)	29,212					1		1		┽┈┦┈			<u> </u>	1					1000	TICH N	INED SERV	1	shi		1	NETEC	ROLOGICAL	SERVICES			<u> </u>	Land	!	HTING AL	<u>_</u>			FIRE
2004	NEV ROD		D	STANCE	DEHAND		┝		_	1	OFERATION VOR	ROUR - GH	NDB	-{}			1	S/COHONIUN	1				ALAUA.	CHANNEL	TALD DELT	APTK	OBSERV				FORECAST			OPERATIO	APF	TUR		IU VASI	1	st 1100		INOTECT CATEGORT
EEIS	R NAME OF AIRPORT NAME OF CITI		ZONE	NP4 (104)	PAX. 2004	RUNVAT	LLZ		Her CH	BADA	B 10/			N.C					1915		PSS	ATIS	LTT	RTT	RTP		<u>I P i b</u>	<u> </u>	NETAR	SPECT	TREND	VX PADA	R SATELITE	EOUR						_		511
	SANSUDIN MOOR					1870x45	158	15¥	18 1	r	BDM/10 (23.0	0-12.09)	00/5001		123.0	HFx1 X0-11.00	(23.	1187.11 00-11_03	,]	<u>[23.0</u>	Fx5 0-11.0	20)	X	da BPa6	HPx J		-{x			<u> </u>		<u>}</u>			+	┝─┼╴						
P]4	BANJARMASIN (BDJ) TANAR GROGOT	IV	111	(220)	42,292	640x30												·									┼╌┼╼		+	<u>. </u>				1	 	┢╍┾╸						·
	SUKARNO BATTA (Into'1)					3600x60	15¥ 15¥	15¥ 15¥	21 21 21 21	/ PSR/3. / SSR/2.	5H CKG/10 5KV DKT/10	N 38/10 N 72/16	GR/CL/ALL GL/CR/255	VIII VIII	Px6 1	EP22 VI			IPal	HPx12	İ	VHPx]			HFx?	1 1	x	X	x	I				1								<u> </u>
P15	JAKARTA (JKT) (24H	<u> </u>		125	32,042	3050x60		(24	<u>R)</u>			(24)	(249)			[(249	<u>'ŕ</u>	T						1															·	.	L
	TASTE HALATA	- i	~~		<u> </u>	1200x30								╉━╁╍	-+							 ~		1																		
P16	BANTU VARGI AMPERAN	11		126 (233)	32,014								G1/500¥	x				VHP×1							1		T	<u>, x</u>	x	X			<u> </u>		I			х				1
	MATARAM (AMI)	111	68			1600x30	+		┝╼╍╂╍╴			{	23.00-11.00 75/389				(23.)	00-11-00	<u>KP11</u>						HPx2	2	X	x	X	X			1	<u> </u>				1				1 1
817	RANARUNG PALANG KARATA (PET)		97	138 (256)	25,538		+					+	(23.00-11.0	<u>n </u>				<u>(23.0</u>	<u>0-09.0</u>	<u>>>)</u>		<u>i</u>																				<u> </u>
	RUMBUS BANPANG	-	101			1300x30					<u></u>		TR/80V	+					HPx1					1	RPx4	1	1	X	<u> </u>	X			ļ	248	<u> </u>					<u> </u>		v
218	BABULLAR TERNATE (TTE)	111		55 (88)	18,346					+			(22.00-08.0	<u></u>					0-08.0		{								<u> </u>				\	<u> </u>	ļ'	\downarrow					<u> </u>	<u> </u>
	BULI SERANI		141	(00)	ļ	-	<u> </u>						122.00-08.00	<u>~</u>					Í			<u> </u>							<u> </u>				<u></u>		ļ'							ļ
	LUBUE LINGGAN	IV		110	17,910	1000x30		329.6	┝┼	PS2/65	08V 1-0 430		01/5001	+ $+$		<u> </u>	IPx2	VHPx1	-		Pxt	VHFx1	x	da HPal	6 HPx5	1	x	x	x		x	x	1	243	BIALS		xx	τ <u>38</u> , 2.96°,3		:	x	¥11
819	TALANS BETUTU(IDID') PALENBANS (PIN) (15H	intry)	34	(176)		2200x45	154	15V	17 15	SSR/2.	5KV PLB/10	08 120/1K	W/25V (2).00-14.0		Į.	23.00-14	.00}	23.00-	ļ	123	.00-	YHFx) 23.00- 14.001				!			<u> </u>	<u></u>				<u> </u>		<u>I</u>						;
	parcherer (1917		<u> </u>		<u></u>						· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·																						7.	-34							

	r			LIGHT	ING AIDS				PIRE
OPERATION HOUR	▲PP	TER		REIL		OBST	11.000	ARN	PROTECT CATEGORT
					Ì				v
	x	x	x	x	x	x			VI
					}	 	}		17
	x	I	. ۲	x	x	I			۲ĩ
	x	I	x	x	x	x	x		VI ;
248							·		ц
				i 				<u> </u>	
								Í	VI
			ļ						
									¥1
24H	RIALS		x	x	3 BAR 2.950,2.999	x		X	VII
		<u>x </u>	X	<u>~ i</u>	X				17

.

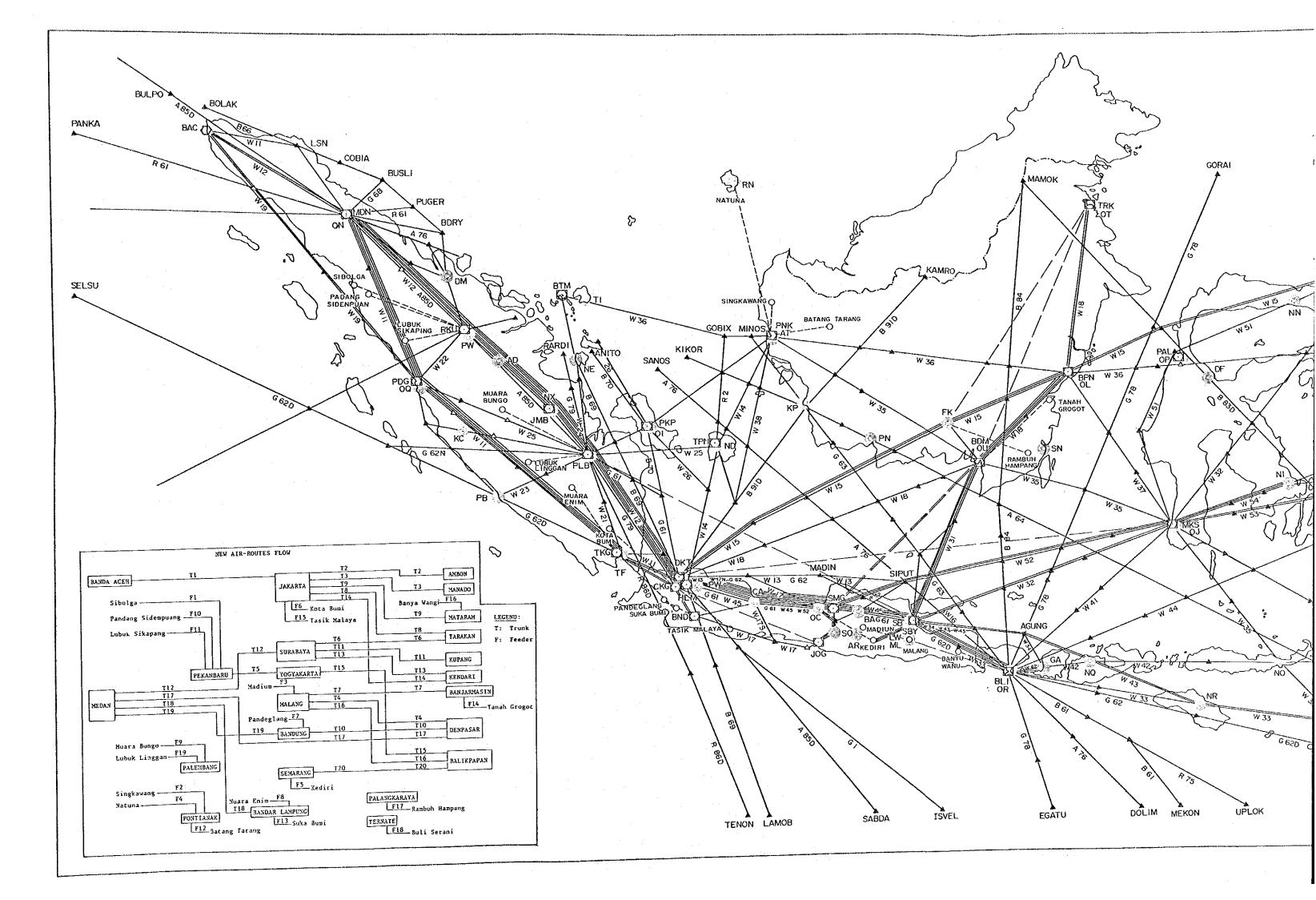
(46)Distance Comparison: Table-7.12 shows the prospective trunk routes to link OD airports by the aid of the existing Navaids on the existing airways. Differences between direct route distance and substantial flight distance connecting the existing Navaids are not much.

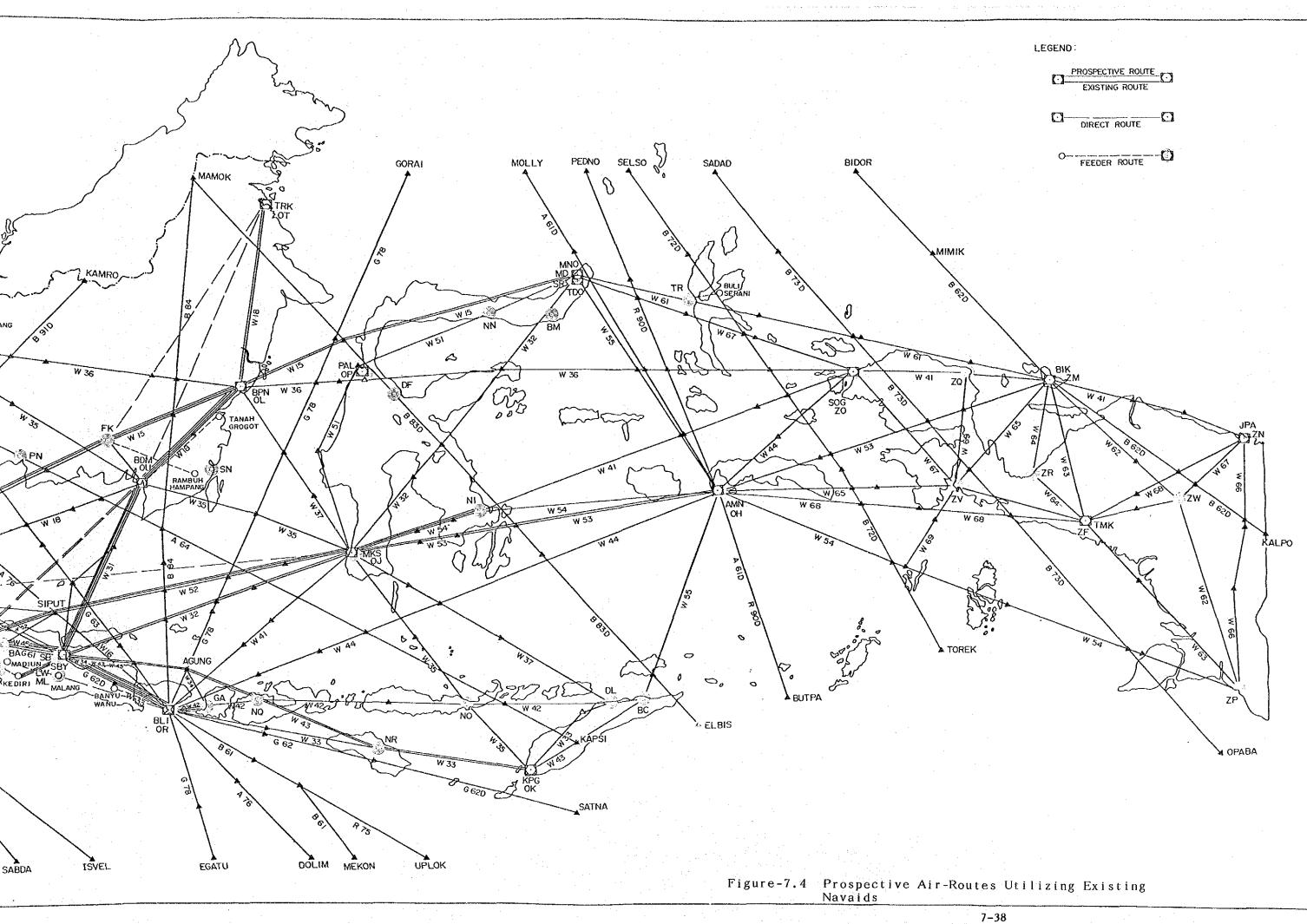
Also, it shows the recommendable replacement of Navaids along the proposed routes, which have been reportedly necessary to change to new ones as shown in the Table.

Table 7.13 is for the Feeder routes.

New airports at the new demand rising areas are better provided with VOR or NDB of low power, if a good flight probability is to be kept for those new airports.

However, flight under VFR (Visual Flight Rule) might be feasible since the flight distances of these Feeder routes are short. It would be more realistic and economical to operate flight services under VMC condition at beginning and provide Navaids when a necessity comes afterwards. Deriving from Tables 7.12 and 7.13, the realistic routes are superimposed on the current Airway Chart, as shown on Figure-7.4.


		(a) nov- vin ()	1911					INS (Inertial Navigation System)
H	TRUNK	ORIGIN - DESTINATION	63	NEEDED OR NOT	PROPOSED ROUTE (NAVAIDS & AIRWATS)	ROUTE DISTANCE (NM)	ANCE (NM)	NAVAIDS NEEDED TO BE REPLACED BY NEW ONE
ŀ			OEEN -	NO NEED		DIRECT	FLIGHT	
· · · ·	đ	BANDA ACEH - JAKARTA	-	ĸ	BAC W19 PDG W11 JKG W11 CKG	976	980	NZ/5004, 02/5004, TZ/5004
				x	(or, BAC W12 MDN W12 FLB W12 CKG)		(266)	NW/500W
	12	JAKARTA - AMBON		x	CKG W45 OC W52 MKS W53 AMN	1304	1326	Γ.
	ដ	JAKARTA - MANADO		×	CKG WIS PK WIS BPW WIS MNO	1192	1206	OL/50002KW or more, MD/2KW or more
L	† f≠	MALANG- DENFASAR	x		LW-2-(thru WR(R)-1) BLI	159	153	
				×	(or, LW (ML) D-SBI W33-BLI)		(283)	BA/5004, SB/5004
۰ ۱	15	PEEANBARU - IOGJAKARTA		x	FXU WI2 FLB WI2 CKG W45 OC PURMO SO JOG	741	826	0C/500H, S0/500H
l			x		(or, " * " CKG - JOG thru WI(R)-8)		(267)	0F/500W:
By	T 6	SURABAIA - TARAKAN		x	TRE WIL BIN WIS BUN WIS IEK	100.	792	OL/500#2KW or more, OU/ 2KW or more, OT/500W
			×		SET WIL BDM (or, D. TRK) 445NM		(106)	01/500%
<u>د</u>	17	MALANG - BANJARMASIN		×	MUE TEN JESH	308	295:	
4	18	JAKARTA - TARAKAN	¥.		CKG W15 FE B-TRK 510NM 410NM	861	915	or/500#
				×	(or, CKG WIS FK WIS BPN WIS TRK)		(086)	OL/500k2KW or more, OU/2KW or more, OT/500%
	51	JAKARTA - MATARAM		×	CKG W45 CA SMG SBI W33 BLI W42 GA	581	608	CA/500K, OC/500W, BA/500W, SB/500W, GA/500W
L	TIO	BANDUNG - DENPASAR		X .	BND & CA W45 SMG SBI W33 BLI	475	483	CA/500W, OC/500W, BA/500W, SB/500W
·								
ł	ILT	SURABAYA - KURANG		к	SBT W43 AGUNG W43 NO NE W33 EFG	002	659	SB/500W, NR/500W ZKW OF BOTE
				×	MON WIL FDG VIL TKG PW W45 SBI			- ZKV of B
	112 112	MEDAN - SURABAIA		×	MDN W12 FLB W12 CKG HIM W45 SBI	1055	1143	CA/500W
			X (INS)		(or, MDN 412 FLE D SEI) 560NM		(8801)	W/5004, SB/5004
	e e		· · ·			· `-		
	3	~ t		×		640	609	NI/500W-2KW or more
	114	JAKARTA - KENDARI		x	CKG W45 OC W52 MKS W41 NT	968	1094	CA/500W, OC/500W, NI/500W-2KW or more
61			(SNI) X		(or, CKG D MKS W41 NI) 780NM	-	(196)	NI/500W2EW or more
	TIS	YOGTAKARTA - BALIKPAPAN	x		NGE SIM HUE - SHE OS DOC	552	585	02/500%, S0/500%, 01/500%-2K% or more
	T16	MALANG - BALIKPAPAN		×	NGE SIA WIE TEA IES	481	479.	SE/500W, OL/500W-2KW or more, OU/2KW or more
	117	MEDAN - DENFASAR		x	MDN W12 PLB W12 CKG HLM W45 SBT W33 BLI		1309	WW/500W, CA/500W, 0C/500W, BA/500W, SB/500W
·! ·	T18	MEDAN - BANDAR LAMPUNG		x	MDW WII PDG WII TKG	644	. 673	NQ/500%, TE/500%
	119	MEDAN - BANDUNG		×	MDN WIZ PLB WIZ CKG 2- BND	816	830	WV/500K, 01/60K (LOC)
f					(or. MDN W11 PDG W11 TKG CKG = BND)		(828)	
	T20	SEMARANG - BALIKPAPAN	×		SNG - BDM WIS BPN	514	519	0C/500%, 0U/2KF or more, 0L/500%-2KW or more


	6			r	1909-191-201	-	Formation			Sta 3-14-											
	NAVAIDS NEEDED POR	LIKELI NEW AIRPORT	SIBOLGA has already	No need at beginning	H	NATUNA DES already at RANAI	No need at beginning	Ŧ	H	=	¥	£	£	E	-	=	Ŧ	ž	Ŧ		2
	NAVAIDS NEEDED	TO BE REFLACED	SX/500W	AT/500W		AT/500W ⁻	0C/500W		01/500% (LOC) 11/100% (LOC)	TP/500W		NW/500W	NW/500W	AT/500W	TP/500W	0U/2.5KW		GA/500W	-	TR/80W	
	ANCE (NM)	FLIGHT	159	66	83 83	247	115	145	84	721 [.]	146	132	. 16	130	136	119	125	146	138 -	55	011
-	ROUTE DISTANCE (NM)	DIRECT	159	99	82	247	115	145	84	12T	146	132	51	130	136	119	125	126	138	55	οτι
nents for Proposed Air-Routes Route)	(STAUET & SATATAN GATO GEORGE	ERGEOSED SOOTE (SHAFTOS & FILEFAS)	PKU Dr SK	Z/V-& XMA	A/Y-E (AT 10) IM	PKK D RN	SMG = A/P	CKG B A/P.	BND 2 -4/2	TKG Dr A/P	PLB W25 A/P	PEU D-A/P	PKU D'A/P	PNK #-4/2	TKG D-A/P	BDM W18 A/P	CKG & A/P	GA W42 BLI W33 D A/P (or, GA W42 BLI D)	FK H-A/P	TR D A/P	FIM D'A/P
roposed	NEEDED OR NOT	NO NEED	-													-					
s for l te)	NEW ROUTE	NEED	х	X	х	х	х	×	x	х	х	х	ĸ	x	к	x	ĸ	к	×	х	×
Table-7.13 Requirements (Feeder Route	NOTE NEWSOL NEVIOL	NOT TAN'I TOTO - NTOTOO	FEKANBARG - SIBOLGA	PONTLANAK - SINGKAWANG	MALANG - MADIUN	FONTIANAK - NATUNA	SEMARANG - KEDIRI [*]	JAKARTA - KOTA BUMI*	BANDUNG - PANDEGLANG	BANDAR LAMFUNG - NUARA ENEM	PALENBANG - MUARA BUNGO	PEKANBARU - PANDANG SIDENPUAN	PERANAARU - LUBUE SIKAPANG	PONTIANAK - BATANG TARANG	BANDAR LAMPONG - SUKA BUMI*	BANJARMASIN - TANAH GROGOT	JAEARTA - TASIK MALATA	MATARAM - BANTU VANGI	PARANGKARAIA - RAMBUH HAMPANG	ternate - buli serani*	PALEMBANG - LUBUK LINGGAN
able	مديده	-	71	. F2	E3	54	P5	Fó	F7	84 4	64	Olq	IIZ	21a	E13	포14	FL5	816 81	F14	18 18	F19
		4		-		•			7661	By I	**********************		-		THO DELO			\$661		7007	-

Note: Airports with mark * have not existed, totaling 4 airports

.

.

7.03.2.4 Navaids for New Air Routes

(47) NDB/VOR: Newly inaugurated flights should follow in line with implementation of replacing NDBs. New flights without or a few stopovers would make not only traffic flow congestion different from the existing ones, but also traffic volume rise on the Trunk routes. NDBs being installed have been collocated with VORs to give an aircraft no-directional beacon signal, having an independent function. When either of NDBs or VOR comes inoperative because of maintenance shutdown or other natures of cause, the both pay a supplemental role to each other to give a navigational guidance to an aircraft, though the signal accuracy of the former is inferior to that of the latter. Therefore, the replacement of NDBs has to precede the inauguration of the new routes.

(48)<u>Navaids for Water Base Airport</u>: Installation of LLZ, G/S and MM is not realistic. VOR may be provided if suitable land terrain is available at an appropriate distance on the extension line of runway centerline. DME is better to be located with VOR, because Decision Height will often subject to change due to the fluctuation of water surface. VFR flight is desirable for this type of airport.

7.03.2.6 Communication System for New Routes

(49) <u>Trunk Route(1)</u>: Banda Aceh, Tarakan and Kendari have no TWR(control tower), but have FIS(Flight Information Service) with one VHF transmitter and receiver.

A FIS gives an aircraft just an information services but not positive control clearance. To cope with increasing aircraft traffic, it is important that they are provided with TWR to give more positive control.

Therefore, FIS should be switched to TWR and TMA (Terminal Approach Control) in the TWR collocated with Aerodrome Control Console, for which one more VHF frequency is needed at each airport;

-Banda Ad	ceh	(1994)	TWR,	1	VHF(30W)
			TMA,	1	VHF(50W)
-Tarakan	(19	94)	TMA,	1	VHF (50W)
-Kendari	(20	04)	TMA,	1	VHF (50W)

These VHFs shall be provided with at least one set of transmitter and receiver.

(50)<u>Trunk Route(2)</u>: Ambon, Mataram, Bandung, Kupang and Bandar Lampung have TWR with one VHF transmitter and receiver, but not have TMA.

Among these airports, Ambon and Kupang are recommended to be provided with TMA with one VHF frequency, since Ambon is the key station for Irian Jaya and international overflights and Kupang is the gateway for Australia.

Mataram, Bandung and Bandar Lampung are recommended to provide one more VHF frequency in Aerodrome Control Console so as to be a backup frequency.

- Mataram (2004), 1 VHF (30W) in TWR
- Bandung (1994), do -
- Bandar Lampung (2004), do -

(51)<u>Feeder Routes</u>: The existing airports to be linked with likely new feeder airports are not necessary to provide new frequency, except Mataram. Mataram is to be provided with 1 VFR (30W) frequency in the TWR by the year 2004.

Some airports such as Tarakan and Kendari are (52)AFS: equipped with only 2 RTF(Radio Telephony), and Bandung with They should be provided with 1 duplex RTT 2 UHF RTF. (Radio Teletypewriter). Needless to say, most of new feeder airports have not equipped with AFS, except Sibolga and Natuna (Ranai). They should be provided with commercial telephone circuits to link with the existing airports. 1 I f no commercial line is available or its operability is deemed to be unreliable, RTT of 100W is recommended to be provided.

(53)Questions for Installing AFS: RTF is the system using HF-1SB (Independent Single Band), functionability of which by nature. Leased LTT(Landline Teletypewriter) is poor circuits or microwave circuits on VHF is better to improve AFS status and the services will be provided at reasonable price. The present AFS, however, are still being operated on HF at many places. If the ceno-developing airports are provided with VHF LLT or microwave circuits, it will be inharmonious for the fore-running airports. Thus, it i s recommended to be provided at Tarakan and Kendari that RTT (Radio Teletypewriter) on SSB (Single Side Band) so devised to have reciprocal functions of radio telephony and teletype writer. Another scrutiny is needed for AFS network all over the country so as to make it harmonious.

(54)<u>ERAG</u>: ERAG (Extended Range Air-Ground) system have been under plan to install at Banjarmasin and Baikpapan. If these plans are materialized, VHF AMS coverage will be so much improved to cover the existing communication blind area in Kalimantan, leaving Irian Jaya. The problem of ERAG will supersede the demand forecast, therefore, its coverage should be extended more by installing at Biak which is now under construction, and Sorong as planned in Phase III Project.

(55)<u>Air Navigational System</u>: Directorate General of Air Communication has been implementing a Development Plan of Air Navigational and Telecommunication Facilities, focusing on development, rehabilitation and improvement of the airport facilities based on Plan of Navigational Aids System/Pancangan Sistem Navigasi Udara (PSNU), as listed below.

- Improvement of new NDBs of the airports C.A II through C.A V.
- Improvement/upgrading of new DVOR
- Improvement and development of ATC facility by developing ATC VHF Communication and ATC Radar

coverage of the whole air space of Indonesia.
Development of Aeronautical Fixed Services by Integrated Satellite Communication System.

(56)<u>Replacement Schedule</u>: Table-7.14 shows the list of existing NDBs and Table-7.15 presents NDB's Improvement Program prepared by DGAC. According to the Program, NDBs of 26 airports out of 53 Classes I, II and III airports are scheduled to be improved in four years from 1987 to 1991 and NDBs of all Classes IV and V airports will also be bettered within the period from 1989 to 1994. As to this Program, the followings are commented.

- Kendari is better powered up to 1 KW for more navigational reception over the wide body of water to

- Waingapu is also better powered up to 1 KW for a likely one way flow of traffic in future, which might necessitate a double track airway structure.
 Pangkalan Bun should be powered up to 1 KW to make routes for pioneer airfields scattered in the
 - northern area of Kalimantan Barat.(See para.(03) of Appendix to Section 6 of Study Report).
- Ternate being the Locator is better powered up to 1 KW that can be also used for un-route in between Manado and Biak.

NDB APPARATUS

	ЦH	**		MR	****		1 LR	*****
	KANVIL VI	DENFASAR KUPANG		XANNIL VI	MATARAM MADNERE VAINGAPU DILLI SUNBAWA BESAR SUNBAWA		KANVIL VI	BIMA BIMA BAU CAU WAIKA BUBAK RUTENO LARANTUKA MAINULA MAINULA IABUHAN BAILANA LUNYUK BALANA LUNYUK BALANA LUNYUK BALANA LUNYUK VI QUEQUE VI QUEQUE
	92	พ่ง		NO.	HUW4N		ON	- NW 4 N N N N N N N N N N N N N N N N N
	H	××		MR.	*****		A I	*****
	KANWIL V	BLAK MERAUKE		KANWIL V	JATAPURA TIMITKA SORONG MANOKVARI YAMENA NABIRE FAK - FAK		KANWTI, V	MAGHETE MULIA ENAROTALI TANAK MERAH SERUI SERUI SERUI SERUI SERUI SERUI KKKWATAN KEPI MIDIFTANAH MUNIAHANI WASIOR BOKONDINI OKABA KOKONAO MOANAHANI WASIOR BOKONDINI SIEENKUL SIEENKUL SIEENKUL SIEENKUL SIEENKUL SIEENKUL SIEENKUL SIEENKUL SIEENKUL SIEENKUL SIEENKUL SIEENKUL SIEENKUL SIEENKUL
	.0X	<u>н N</u>		Q	-1004001-		NO	444446666644444666666666666666666666666
	띮	×××		Ę	× × × ⁴ A A		81	*****
1 KW	KANWIL IV	UJ. PANDANG MANADO AMBON	(MR) 500 H	KANWIL IV	PALU GORONTALO KENDARI LANGGUR BULA TAPIR TAPIR			MANADO *) TEENATE FOSO KOLAKA MAMUJUT MAKALE/TORAJA MAKALE/TORAJA MAKALE/TORAJA MAKALE/TORAJA MASAHBA MANANA KOLI - TOLI LUNUK TOLI - TOLI LUNUK TOLI - TOLI LUNUK KOO KOTA MOBAGO KAO KAO MALLEA MANLAK SAUMA
(H) (H)	9	400	RANGE (Ň		(a1)	. 6	
RANGE	ЯH	XªX	MEDIUM R.	Ŕ	хахаххаа			*****
NDB. HIGH RANGE	KANNIL III	BAKJARMASIN BALIKPAPAN FLK. RAYA	NDB. MEI	KANVIL III	SULABAYA BANJARMASIN BALLKPAPAN SEKARANG YOGYAKARPA SUTAKARPA SUTAKARTA FARAKAN FARAKAN FANCKALAMBUM	NTR TOU BANGE		SUFALBAYA *) BALIKFAPAN *) SEMARANG *) SEMARANG *) SAMARINDA ANDIXALANBUN EJANAH GROGOT TANAH GR
	NO.	ANN	· · ·	N	-NUARDO		NO.	
	Η	ይይ		MR	*******		LR.	*****
	KANWIL II	POKTLANAK PK. PINANG TG. PANDAN		KANWIL II	PALEMBANG PONTIANAK FK. PIKAHG BD. LAMPUNG JAMBI BANDUNG BANDAN BENGKULU JKT - HPK KIDON PURWAKARTA		KANWIL II	FALEMBANG *) JXC - SOETA BENGKULU SINGKAWANG II PUTUSIBAU KETAPANG FALAFUNGAPING FALAFUNGAPING FALAFUNGAPING KUALA TUNGAPING KUALA TUNGAAN KUALA TUNGAAN KUALA TUNGAAN BUNGO TEBO CIREBON FBNDOFO
	No	3.5.		ž	1904000000		NO.	10040000000000000000000000000000000000
· .	H	ХА	-	W	*****		LR	N X 1. FAL X X 3. JXG 3. X X 3. JXG 3. X X 5. BBR X 3. X X 5. BBR X 3. JXG X X 5. FAL BBR X 5. BBR X X 5. FAL 1.1 SUN 5. FAL X 11. X 3. MUN SUN 1.1 1.1 SUN 1.1 1.1 SUN 1.1 1.1 SUN 1.1
	KANWIL I	MEDAN BANDA ACEH		KANWIL I	BANDA ACEH PADANG PEKANBARU P. BATAM RENGAT TC. PINANG STBOLCA NATUNA		KANWIL I	PADANG *) MEULABOH T.B. KKRIMU SINABANG GN. SINABANG GN. SIDBART LHUK SEUMAH LHUK SEUMAH LHUK SEUMAH LHUK SEUMAH LHUK SEUMAH TEBING TING SIFORA SIFORA DUMAT
	<u>ş</u>	ri (N		ġ	400400100		NO.	

.

[T			1	· · · · · · · · · · · · · · · · · · ·	
NO.	LOCATION	PLAN FOR INSTALLATION	CLASS	OUT PUT POWER (WATT)	REMARKS
1.	Banda Aceh	1988/1989	HR	1 KW	HR: High range
2.	Padang	1989/1990	MR	500 W	MR: Medium range
3.	Bandar Lampung	1989/1990	MR	500 W	LR: Low range
4.	Pekanbaru	1989/1990	MR	500 W	
5.	Semarang	1989/1990	MR	500 W	
6.	Ambon	1989/1990	HR	1 KW	
7.	Balikpapan	1988/1989	HR	1 KW	
8.	Manado	1988/1989	HR	1 KW	
· · · 9. ·	Solo	1989/1990	MR	500 W	
10.	Yogyakarta	1989/1990	MR	500 W	
11.	Banjarmasin	1988/1989	MR	500 W	
12.	Tarakan	1990/1991	MR	500 W	
13.	Cirebon	1989/1990	LR	100 W	
14.	Blora	1990/1991	MR	500 W	
15.	Surabaya	1989/1990	MR	500 W	
16.	Mataram	1990/1991	MR	500 W	
17.	Pangkalan Bun	1990/1991	MR	500 W	
18.	Kendari	1988/1989	MR	500 W	-
19.	Kupang	1989/1990	HR	1 KW	
20.	Waingapu	1989/1990	MR	500 W	
21.	Sumbawa	1989/1990	MR	500 W	
22.	Bandung	1989/1990	MR	500 W	
		1989/1990	LR	100 W	
23.	Pontianak	1989/1990	HR	1 KW	
					· · · · · · · · · · · · · · · · · · ·
24.	Ternate	1989/1990	LR	100 W	
25.	Sibolga	1989/1990	MR	500 W	
26.	Natuna	1987/1988	MR	500 W	
	All Class IV & V Airport	1989 - 1994	LR	100 W	

Table-7.15 NDB's Improvement Program

7.03.3 Approximate Cost

(57)<u>Assumptions</u>: Approximate cost estimate herewith is related with Navaids (NDB), Aeronautical Mobile Services (AMS) and Aeronautical Fixed Services, which are needed to be replaced or newly installed. Cost estimates are based on the following assumptions.

- All the costs have been determined in 1987 Dec. prices and in Rupiah.

Exchange rate are set U.S.\$ 1 = Rp 1,700 = ¥ 132.00

- Prices of NDB and VHF transmitter & receiver include equipment itself, antenna and instruments materials needed.
- AFS such as RTT (Radio telephony) includes equipment itself, transmitter & receiver, antenna and instruments materials needed, but excluding control console and power supply.

(58) Approximate Cost: DGAC's improvement plan of NDBs depicted in Table-7.14, is scheduled to be implemented in 1987 - 1991. The cost is approximately estimated by item and year, derived from the said Table-7.16, and is presented The cost estimated amounts to about 18,500 Table-7.17. millions Rupiah for the trunk routes and 4,500 millions Rupiah for feeder routes, totaling to about 23,000 million While, the other facilities of AMS and AFS for Rupiah. trunk route are to be implemented by 1994, for which the cost will come up to about 3,900 millions Rupiah for trunk route and 3,300 millions Rupiah for feeder route by 2004,totaling 7,200 millions Rupiah approximately. Besides, it should be noted that the provision of aeronautical equipment requires a further scrutinization at site by site, because they are often subject to the conditions of geography, topography, meteorology, power supply, etc.

LEGEND:

1 KW

500 KW 🧑

lde

Table-7.16 Navaids (NDB) Replacement Plan (Tentative)

										100 KW				100) W 15) W 6
	RELATED ROUTES	NAVAIDS(NDB) LOCATION	IDENT.	PRESENT POWER(W)	1987/1988	1988/1989	1989/1990	1990/1991			REMAI	RKS		= #n= ⁼⁼ **********	₩₽₩₩₽₩₩₽₩₽₩₽₩₽₽₩₽₽₩₽₽₩₽₽₩₽₽₽₽₽₽
1	Tl	BANDA ACED	NZ	500							<u>, , , , , , , , , , , , , , , , , , , </u>	<u></u>			<u></u>
2	Tl	PADANG	QO	11					* KENDARI is better			for u	ore navigati	ional ree	ception o
	T1.4.14.16.20	PEKANBARU	NW	n					the wide body of * WAINGAPU is also			ol KW	for a like.	ly one w	ray flow o
<u> </u>	$\frac{F1 \cdot 11 \cdot 15}{T1 \cdot 17}$	BANDAR	TF	11					traffic in future						
	<u>F4.10</u> T2.4.10.12	LUMPUNG SEMARANG	ос	n			-		* PANGKALANBUN show	-					
<u> </u>	<u>T14.16</u>	AMBON	ОН	2.5 K					scattered in the refer to APPENDLI		rea of Ka	liman [.]	tan Barat.	in this	connectio
1	T2 T3·5·8·15	· · · · · · · · · · · · · · · · · · ·	<u> </u>		· · · · · · · · · · · · · · · · · · ·				* MANADO($SR - 80$ W)		s a sugge	stion	to be repla	ced by 1	LOO ¥.
	<u>T18·19</u>	BALIKPAPAN	OL	500							<u>.</u>				
8		MANADO	MD	2.5 K					Numbers of NDE	3 to be repla	ced, and A	MS and	AFS to be new	ly instal:	led
9	Ť3	11	SR	80(LOC)					BY 2004 :	·	NDB		VHF(AMS)	RTT(A	FS)
10	T4.15	YOGYAKARTA	OF	500	· · · · · · · · · · · · · · · · · · ·				Facilities	Power (W)	No.of St	ation	50W or 30W	dx 500W Station	100W
	T4·15	SOLO	S0	11					Routes Trunk	1K	7		7	5	
12	T5.8.18.19 F17	BAJARMASIN	ου	2.5 K						500	13	23			
13	T5·8	TARAKAN	ОТ	500					Product	100 1K -	3	1		·	19
14	T6.7.10.14	CIREBON	CA	100			. 📀		Feeder	500	3	5			
15	$\frac{T16}{T6 \cdot 7 \cdot 10 \cdot 14}$	BLORA	SB	500					Total	1K	- 9	<u> </u>			19
16	T16 T6.7.10.13	SURABAYA	BA	11						500 100	16 .3	28	7	5	
17	T14·15·18 T6·F4	MATARAM	GA	11						100		<u> </u>			1
	Fl	SIBOLGA	SK	11					KRUNK + FEEDE	R BY YEARS					
	F2.5.13	PONTIANAK	AT	11		-			Facilities	Power (W)	NDB		VHF(AMS) SOW or 30W	RTT(A dx 500W	100W
		NATUNA (RANA I) RN	n					Years	1K 500 100	No.of St	ation	No.of	Station	
20	F5								1987/1988 1988/1989		6		Ϋ́α ΄	4	10
21	T11	KUPANG	OK	2.5 K					1989/1990	5 10 2	17		25 27 27 3	1	9
22	T11.12	KENDARI	NI	500					1990/1991	1 3	4		A 7	5	19
23	T13·14	WAINGAPU	NR	11					Total	10 15 3	28			<u>I</u>	<u> </u>
24	T17	SUMBAWA	NQ	"									eed RTT (100W) in PART II Ta		
25	T20 F8	BANDUNG	OY	11					better	phased into	1995-2004	. Whil	e, 5.airports	related t	to feeder
26	T20.F8	11	YY	100(LOC)									ling 9 airport 04. NATUNA is		
27	F18	TERNATE	TR	80(LOC)					-	led with RTT (ST. MERCHART.	_ ,	.,
	APPENDIX See 2(03)	PANGKALAN BUN	ON	100						• •				46	

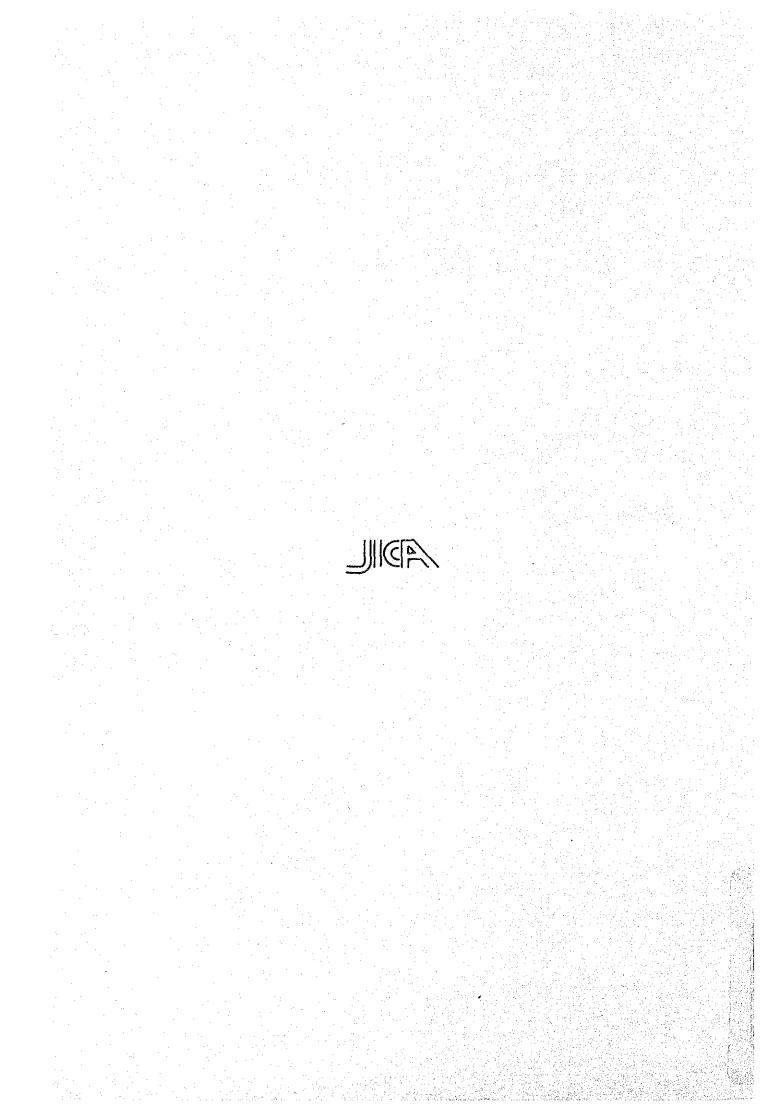
NOTE:

eal	Coverage	1 KW	200 NM
	9	500 W	150 NM
		100 W	60 NM

n over

- w of ucture. er airfields ction,

Table-7.17 Cost Estimate


Note: Exchange Rate @ Dec., 1987 U.S.\$1.00=Rp.1,700=¥132.00

			**************************************	NAVAIDS (1	NDB)		RONAU BILE S	FICAL SERVICES	AERONAUT FIXED SE		
1	(AME	OF LOCATION	IDENT.	WATTS (W) REPLACED TO	UNIT PRICE (Rupiah)	Vł (50	IFxl Wor W)	PROVIDED FOR	dx RTT (500w)	RIT (100w)	REMARKS
	1	BANDA ACEH	NZ	1K	633.2		69.3	TMA(50W)			NDB Power:
	2	u PADANG	00	500	607.2		69.3	TWR(30W)			1 kW (HR: High Range) 500W (MR: Medium Range)
	3	BANDAR LAMPUNG	TF	500			69.3	TWR(30W)			100W (LR: Low Range)
	4	PEKANBARU	NW	500			09.5	(WJC)MW1			
	5	SEMARANG	00	500	11						VHF Power:
	6	AMBON	OH	11K	632.2						50W(TMA) or 30W(TWR) Price is same
	7	BALIKPAPAN	OL	1K	11						
	8	MANADO	MD	1K	п						
	ľ	11	SR	100	132.0						· •
-	9	SOLO	so	500	607.2						
HE	10	YOKGAYKARTA	OF	500	H	4					
ROUTE	11	BAJARMASIN	ou	500	11	1994					
TRUNK	11 12	TARAKAN	or	500	13	Å	69.3	TMA(50W)	· 554.4		dx RTT (500W)
TRU	12	CIREEON	CA	100	132.0			111(301)			may be substituted by
	13	BLORA	BA	500	607.2						150W, which is cheaper price
		SURABAYA	SB	500	11						Need site evaluation
	15		GA	500	1		69.3	TWR(30W)	554.4		NDBs of KENDAR, WAINGAPU
	16	MATARAM	NI	1K	633.2		69.3	TMA(50W)	554.4		TERNATE and PANCKALANBUN better be powered up
	17	KENDARI	OK	1K	00012						to 1 kW (See Replacement
	18	KUPANG	NR	1K	п						Schedule)
	19	WAINGAPU		IK	11						
	20	SUMBAWA	NQ	500	607.2		69.3	TVR(30W)	554.4	}	
	21	BANDUNG	OY	100	132.0			111(5017			
			YY	100	1.52.0		<u> </u>				
	Ì	TOTAL		·····	12,748.0		485.1		2,217.6	<u> </u>	= 15,450.7
	22	PONITIANAK	AT	١ĸ	633.2				554.4		
	23	TERNATE	TR	1K	"	U					
Б.		SIBOLGA	SK	500	607.2	800 r					
POINT	2 25	NATUNA (RANAI)	RN	500	n						
au au	26	PANGKALAN BUN	NO	1K	633.2	2000	ţ				4 out of 19 feeder airports have not
FERDER.		Other 19 likely				ç				66.0x19	existed. They will be
۴ ۲	' .	feeder airports								· .	phased to after 1995 till 2004
:		TOTAL			3,114.0				554.4	1,254.0) = 4,922.4
-	(11)	B TOTAL	-	<u> </u>	15,862.0		485.1	· · · · · · · · · · · · · · · · · · ·	2,772.0	1,254.0	0 = 20,373.1
-		scellaneous	<u>-</u>	<u></u>	7,137.9		218.3	3	1,247.4	564.	3 = 9,167.9
		AND TOTAL			22,999.9		703.4	4	4,019.4	1,818.	3 = 29,541

7-47

47

•

