SECTION 3 FIELD TRAFFIC SURVEY

SECTION 3 FIELD TRAFFIC SURVEY

3.01 OBJECTIVES OF THE FIELD TRAFFIC SURVEY

(01)Deficiencies of Existing Data: The existing obdata tained were inadequate for the comprehensive traffic demand forecast, since the Origin/Destination (hereinafter abbreviated as "OD") data were mixed up with gross and net moveof passengers and cargo. And, traffic flows i n some ment airports and ports are missing. Therefore, several assumptions had to be adopted to supplement these data. In addithe characteristics of passengers were also not tion. available.

(02)Objectives: In order to forecast the actual movements passengers and cargo, it was necessary to determine eiof ther the net movements of them or the correlation between existing gross movement data and the net movements. the this purpose, field traffic surveys for air For passengers termed 'the air passenger survey') and sea (hereafter passengers (hereafter termed 'the sea passenger survey') were planned and executed with the kind cooperation extended from agencies concerned. This section describes the several methods and results of these surveys.

(03) Importance: Up to the present, no actual field origin/ destination survey on air transport movements has been carried out in Indonesia. As stated in the Report, the role of transportation has been increasing yearly with the air detravel time and the gradual rise of t i me sire to saye The actual traffic flow must be known to plan the value. transportation system. In this regard, the actual future conducted for the Study provides information survey about the true origin/destination and characteristics of passengers, and gives an example of a survey to be carried out in the future.

3.02 SURVEY METHOD

3.02.1 Air Passenger Survey

(04)<u>Selection of Airport</u>: For the selection of airports to be surveyed, due consideration was paid to the number of passengers at each airport, the functional importance of airports in the current air transport network, the future potential for further development in each region, and the possible coverage of air routes by the survey. Conclusively, 19 airports, as indicated in Table-3.1, were selected for the air passenger survey.

Table-3.1 Airports Surveyed and Survey Schedule

		· · · · · · · · · · · · · · · · · · ·	
Region	City	Airport Name	Survey Date
Jawa/Bali	Jakarta Surabaya Denpasar	Soekarno-Hatta Juanda Ngurah Rai	22nd July (Wed) 4th & 6th August (Tue) & (Thu) 31st July (Fri)
Sumatera	Medan Padang Palembang	Polonia Tabing Talangbetutu	27th & 28th July (Mon) & (Tue) 29th & 30th July (Wed) & (Thu) 31st July (Fri) & 1st August (Sat)
Kalimantan	Banjarmasin Balikpapan Pontianak	Syamsudin Sepinggan Supadio	3rd & 4th August (Mon) & (Tue) 5th August (Wed) 6th & 7th August (Thu) & (Fri)
Sulawesi	Ujungpandang Palu Manado	Hasanudin Mutiara Sam Ratulangi	3rd & 4th August (Mon) & (Tue) 27th & 28th July (Mon) & (Tue) 29th & 30th July (Wed) & (Thu)
Nusa Tenggara	Kupang Mataram	El Tarì Selaparang	28th & 29th July (Tue) & (Wed) 29th July (Wed)
Maluku	Ternate Ambon	Babullah Pattimura	30th & 31st July (Thu) & (Fri) 5th, 6th & 7th August (Wed), (Thu) & (Fri)
Irian Jaya	Sorong Biak Jayapura	Jefman & Sorong Daratan Frans Kaisiepo Sentani	lst August (Sat) 2nd August (Sun) 3rd & 4th August (Mon) & (Tue)

(05)Design of Questionnaire: A questionnaire for the air survey was designed in a fashion to fit passenger to the direct interview method. The direct interview method was adopted for the air passenger survey, since some questions, especially origin/destination/transit locations of trips had to be answered correctly. In the design of the questionnaire, due considerations was paid to the following points.

- Questions should be easy to understand, both by passengers and interviewers.

- Questions related to the privacy of passengers should not be included.
- The questionnaire should be easy for interviewers to fill in, in order that the duration of passenger interviews is reduced to a limited time.
- Completed questionnaires must be directly used as coding sheets for the input of data into the computer.

(06) Contents of Questionnaire: The contents of the ques-

tionnaire are summarized below. Two kinds of questionnaires, one in Indonesian and one in English were prepared, since several airports were considered to serve a high proportion of foreigners.

- Origin/destination airports of flight.
- Trip purpose and travel frequency.
- Reason for travel by air transport.
- Past experience of traveling on the same route by another transport mode.
- Sex, occupation and address of passenger.
- Trip to the departure airport (origin, transit place, transport mode and travel time)
- Trip from the arrival airport (transit place, final destination, transport mode and travel time).
- Opinion for new air route.

(07)<u>Survey Team</u>: Since airports to be surveyed were spread across Indonesia, the air passenger survey was executed by 3 survey teams. Each survey team consisted of one or two Japanese experts and their Indonesian counterparts, and several interviewers.

airport, (08) Execution of Air Passenger Survey: each At directly interviewed passengers waiting for interviewers flights, either at waiting lounge(s) or the transit lounge, Military personnel and police officers in uniform if any. were excluded from the interview. Interviewers had been instructed not to force reluctant passengers to answer questions. Passengers of the following airlines were interviewed.

- PT. Garuda Indonesia (GA)
- PT. Merpati Nusantara Airlines (MZ)
- PT. Bouraq Indonesia Airlines (BO)
- PT. Mandala Airlines (QH)
- PT. Sempati Air Transport (VJ)
- PT. Deraya (DC)
- PT. Dirgantara Air Service (DS)
- PT. Sabang Merauke Air Charter (SM)
- PT. International Nickel Indonesia (INCO)

(09)<u>Number of Passenger</u>: In parallel with the direct interview of passengers, data related to the number of departing and transit passengers on each flight was collected either from airline offices or from actual counting. These data are essential to calculate sampling rate, load factors and expansion factors, used for analyses of both passenger characteristics and traffic demand forecasts.

3.02.2 Sea Passenger Survey

(10)<u>Objective</u>: The main objective of the sea passenger survey was to obtain data of trips and characteristics of sea passengers on several types of sea routes, which would be utilized for construction of the modal split model in the Study. Therefore, for the selection of ports to be surveyed, due consideration was paid to whether the sea routes from the ports were competitive with air routes to be surveyed by the air passenger survey and those sea routes were placed under different categories. As a result, 4 ports with 6 sea routes were selected, as shown in Table-3.2.

Table-3.2 Surveyed Ports, Routes and Survey Schedule

Port Name	Ship Type & Route	Survey Date
Merak	Ferry (Merak - Bakauheni)	24th July (Fri)
Tenau (Kupang)	 PT.PELNI (Km.KELIMUTU) *1 (Tenau - Ende, Waingapu, Bima) Ferry (Tenau - Larantuka) 	26th July (Sun) 27th July (Mon)
Lembar (Mataram)	<pre>1. PT.PELNI (Km.KELIMUTU) *1 (Lembar - Padangbai, Tg.Perak) 2. Ferry (Lembar - Padangbai)</pre>	30th July (Thu) 30th July (Thu)
Tg. Perak (Surabaya)	PT.PELNI (Km.KAMBUNA) *2 (Tg.Perak - Makasar, Balikpapan)	6th August (Thu)

Note *1 Ports of call by Km.KELIMUTU from Tenau are as follows; Ende, Waingapu, Bima, Makasar, Lembar, Padangbai, Tg.Perak, Banjarmasin and Semarang

*2 Ports of call by Km.KAMBUNA from Tg.Perak are as follows; Makasar, Balikpapan, Pantoloan and Bitung (11)<u>Design of Questionnaire</u>: By the same logic of the air passenger survey, questionnaires for the sea passenger survey were prepared both in Indonesian and in English. The contents of these questionnaires were similar to the questionnaires designed for the air passenger survey, as summarized below.

- Origin/destination ports of passengers.
- Trip purpose and travel frequency.
- Reason to travel by ship.

airplane.

- Sex, occupation and address of passenger.
- Trip to the departure port (origin, transit place, transport mode and travel time).
- Trip from the arrival port (transit place, final destination, transport mode and travel time).

(12) Execution of Survey: The sea passenger survey was executed, just similarly to the air passenger survey. Interviewers who carried out the air passenger survey also conducted the sea passenger survey. At each port, interviewers interviewed passengers directly, either at a waiting room or In addition, the survey team obtained the number on board. of departing and transit passengers on each ship f r om operators.

(13)Data Processing: The collected questionnaires were statistically processed. The data were checked manually, and respective codes, especially zone codes for origin, destination, transit places and address, were recorded on the questionnaires. The questionnaire data were then entered as data files into computer and logical checks were carried out to identify coding and data punching errors prior to finalization of the data files. The finalized data files of the air and the sea passenger survey results were then utilized for the air traffic demand forecast and the analyses of air sea passenger characteristics. and

3.03 SURVEY RESULTS

3.03.1 Air Passenger Survey

(14)<u>Sample Size</u>: The total number of air passengers on board the flights during the survey period were 17,687 in total, while 6,795 of them were picked up as samples by the air passenger survey. As a result, the average sample rate for all the surveyed airports was 38.4%, while the sample rates varied from 78.3% at Kupang El Tari Airport to 24.3% at Jakarta Soekarno-Hatta Airport.

(15)Load Factor: The load factors of flights by airline during the air passenger survey are assessed. Flight capacity is calculated based on the type of aircraft utilized for each flight in operation on the survey dates. In total, the average load factor for all flights is 63.2%. However, the load factors for Garuda flights (59.9%) is much lower than those for flights of other airlines (72.6%). This finding may be attributed to the fact that other airlines utilize smaller aircraft and also offer cheaper air fairs to passengers than Garuda.

(16) Trip Purpose: Trip purpose of air passengers is found that, as a whole, 28.8% of passengers took air transport for 'official' purposes, followed by 'go back home' (19.6%), 'social' (19.1%), 'tourism' (16.9%) and 'business' (14.0%). These composition rates, however, are much different at each In addition, from the viewpoint of the nature of airport. nearly half of the passengers on Garuda flights airlines, responded with 'official' or 'business' purpose. are Ιn contrast, 'go back home' and 'social' purposes, which are personal, accounted for more than half of the passenmore on other flights, while responses of 'official' and gers 'business' purpose were limited to about 30% of the passengers.

(17)<u>Travel Frequency</u>: Regarding the travel frequency of air passengers, 80.8% of passengers took airplanes on the same routes less than 5 times per year, while only 4.5% of passengers are classified as frequent air travelers flying more than 2 times a month. The average travel frequency of air passengers is cal ulated to be 4.5 times per year.

(18) Occupation: Air passengers' occupations total is i n government 25.8% of company staff, 22.9% of composed of officials, 17.2% of foreigners, 11.1% of housewives, and 9.7% of company executives. In contrast, the ratio of farmcomposition and workers is as low as 1.9%. However, ers rates differed greatly between airports, and tended toward similar distribution to that of trip purpose. In addiа tion, Garuda flights are found to carry more company execuand foreigners than other flights, while the proportives tions of housewives, students, farmers and workers are higher on other flights.

(19)<u>Change of Flight</u>: The majority of passengers (80.6%) took only one flight (through flight) to their destinations. The remaining 19.4% of passengers had to take more than two flights to reach their destinations, resulting in losses of some of their precious time waiting for connecting flights.

(20)<u>Access Mode</u>: Most passengers used land transport modes for access to/from airports; by private cars (36.9%), taxis (38.1%) and buses (20.7%).

3.03.2 Sea Passenger Survey

(21) Sample Size: The total number sea passengers of on board the ships/ ferries during the survey period were 4,354 in total. Out of which, 953 passengers were picked up as by the sea passengers survey. result, samples As a the average sample rate for all the sea routes surveyed i s 21.9%.

(22)<u>Trip Purpose</u>: In respect to the trip purpose of sea passengers, it is found that, in total, 36.6% of passengers took ships/ ferries for 'go back home' purpose, followed by 'social' (29.7%), 'business' (15.1%), 'official' (9.0%) and 'tourism' (8.0%).

(23)<u>Travel Frequency</u>: Regarding the travel frequency of sea passengers, 92.0% of passengers took ships/ ferries on the same routes less than 5 times per year. The average travel frequency of sea passengers is calculated to be 4.3 times per year.

(24)<u>Occupation</u>: Sea passengers' occupations is composed of 22.6% of farmers, 17.6% of students, 17.1% of company staff, 13.1% of housewives, and 10.1% of government officials. In contrast, the ratio of foreigners is low at 5.0%.

(25)<u>Access Mode</u>: The access modes taken by sea passengers to/from ports are found that 62.1% of passengers took buses, followed by taxis (18.1%) and ships (10.1%). In contrast, only 6.6% of passengers took private cars.

3.03.3 Comparison of Characteristics between Air and Sea Passengers

(26)<u>Trip Purpose</u>: About 40% of air passengers replied with 'official' and 'business' purposes, and 'go back home' and 'social' purpose also accounted about 40%. On the other hand, about 65% of sea passengers responded that 'go back home' and 'social' was the trip purpose, while 'official' and 'business' purposes accounted for only about 25%. In fact, the distribution of trip purpose for sea passengers is rather similar to that of the non-Garuda passengers.

(27)<u>Travel Frequency</u>: The majority of both air and sea passengers have traveled on the same routes less than 5 times per year, however, air passengers tend to travel more frequently than sea passengers. (28)Occupation: About 60% of air passengers are government officials and company executives/staff, while about 15% are foreigners. In contrast, the proportion of government officials and company executives/staff is limited to about 30% of the sea passengers, and farmers and workers accounts for about 30%.

(29)<u>Access Mode</u>: The majority of air passengers took taxis and private cars to/from airports, while 60% of sea passengers preferred buses, which are a cheaper transport mode than others.

3.03.4 Opinions for Conceivable New Air Routes

(30)<u>From Passengers</u>: During the course of the air passenger survey, the survey team queried passengers about desired new air routes. As a result, 368 passengers responded with ideas for 204 new air routes. These requests include direct connections, instead of existing through flights or connecting flights, and even completely new air routes to locations without existing airports.

(31)From Regional Officials: The survey team interviewed DGAC regional officers and airport officers for their opinion on the potential new air routes in their jurisdictions. As a result, 26 new air routes are suggested as potential new air routes in the future. In fact, the information both from passengers and regional officials conobtained sisted only of personal opinions, including some impossible requests. This information could be used as a reference to verify new air routes to be studied through traffic the demand forecast.

SECTION 4 TRAFFIC DEMAND FORECAST

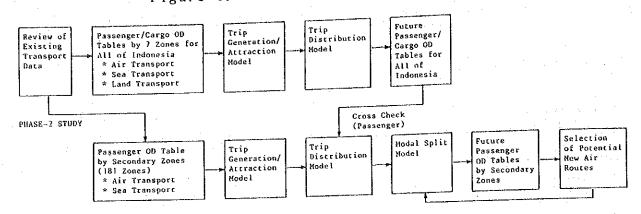
3a) Maina

SECTION 4 TRAFFIC DEMAND FORECAST

4.01 METHODOLOGY

(01)<u>Phasing</u>: The demand forecast of inter-island traffic for all of Indonesia was conducted in two separate phases as defined below:

- Phase-1 : Inter-Regional traffic demand forecast


- Phase-2 : Inter-Zonal traffic demand forecast

(02)<u>Definitions</u>: The terms "Regional or Region" and "Zonal or Zone" used herein are defined as follows:

- "Region" refers to a unit area defined by dividing all of Indonesia into 7 unit areas (Primary Zones). Unit areas are represented by one of the seven major islands in Indonesia, i.e. Sumatera, Jawa/Bali, Nusa Tenggara, Kalimantan, Sulawesi, Maluku and Irian Jaya. Thus, "Inter-Regional Traffic" refers to traffic movement between respective Regions.
- "Zone" refers to a unit area defined by dividing all of Indonesia into 181 unit areas (Secondary Zones). A unit zone largely corresponds to the administrative unit of a Kabupaten. Thus, "Inter-Zonal Traffic" refers to the traffic movement between respective Zones.

(03)Relation between Phases: The relationship between the and the Phase-2 studies is illustrated in a flow Phase-1 chart shown in Figure-4.1. The Phase-1 study o f the comparatively large 7 zones provided an approximate intertraffic demand volume, combined with the net regional and gross movements, which was employed as a reference indicator for the subsequent Phase-2 study, by examining the available The Phase-2 study of 181 zones determined the interdata. traffic demand with sufficient accuracy to allow zonal the identification of specific potential new air routes.

Figure-4.1 Relation Between Phases

(04) Inter-Region Traffic Demand: The inter-regional traffic forecast covers three modes of transport, air, sea demand and traffic existing based on and was land, and traffic survey was substantial No socioeconomic data. conducted in this step.

The projections for inter-(05)Inter-Zonal Traffic Demand: traffic demand were principally based on the results zonal traffic survey delineated in Section 3 actual of the The daily net movements of passengers air hereinbefore. air passenger survey was expanded to obtained by the а basis to provide the present net movement yearly origin/destination (hereafter referred as "OD") table of air The study mainly focused on air transport and passengers. zonal demand forecast was designed to assess potential the new air routes.

(06)<u>Base Year</u>: In considering the availability of data, especially air and sea transport data, 1984 was established as the base year, and the OD data for land transport was calibrated to the base year values. Each demand forecast was made in 10 year intervals from the base year; i.e. 1994 and 2004.

(07)<u>Concerned Authorities</u>: In the course of the Study, concerned authorities summarized in Table-4.1 provided valu-

able data, information and advice in respect to each mode of transport.

Table-4.1 Agencies Concerned with Each Transport Mode

Agency	Transport Mode
Directorate General of Air Communications (DGAC)	Air Transportation
Directorate General of Sea Communications (DGSC)	Sea Transportation Ferry Boats
Directorate General of Land Communications (DGLC)	Railway Ferry Boats Inland Waterway Transport
Directorate General of BINA MARGA (BINA MARGA)	Road
Indonesian State Railways (PJKA)	Railway

4.02 WORK FLOW

(08)<u>Work Flow</u>: As shown in Figure-4.1, the final results of the traffic demand forecast for the Study were obtained by conducting the Phase-2 study, which was supported or verified by the outcomes of the Phase-1 study. Thus, we will mainly focus on the Phase-2 study here. Figure-4.2 presents the work flow for the Phase-2 study, which may be broadly itemized as follows:

- Actual air and sea passenger survey
- Zoning
- Preparation of present air passenger OD table
- Preparation of present sea passenger OD table
- Forecast of future trip generation/attraction volume
 - Preparation of future OD table combined with air and sea passenger volume
 - Construction of Modal Split Models
 - Identifying potential new air routes goes hand in hand with the demand forecast

- Forecast of future air and sea passenger demand

- Sensitivity analysis

- Preparation of present and future air cargo OD tables The first of these work items, the actual air and sea passenger surveys, was dealt with in the previous Section 3. The other items will be described hereafter.

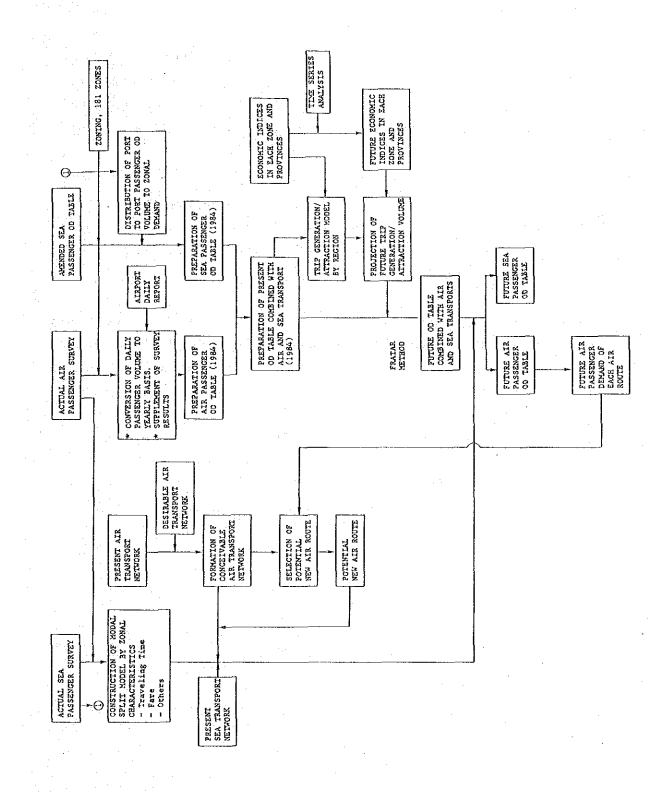
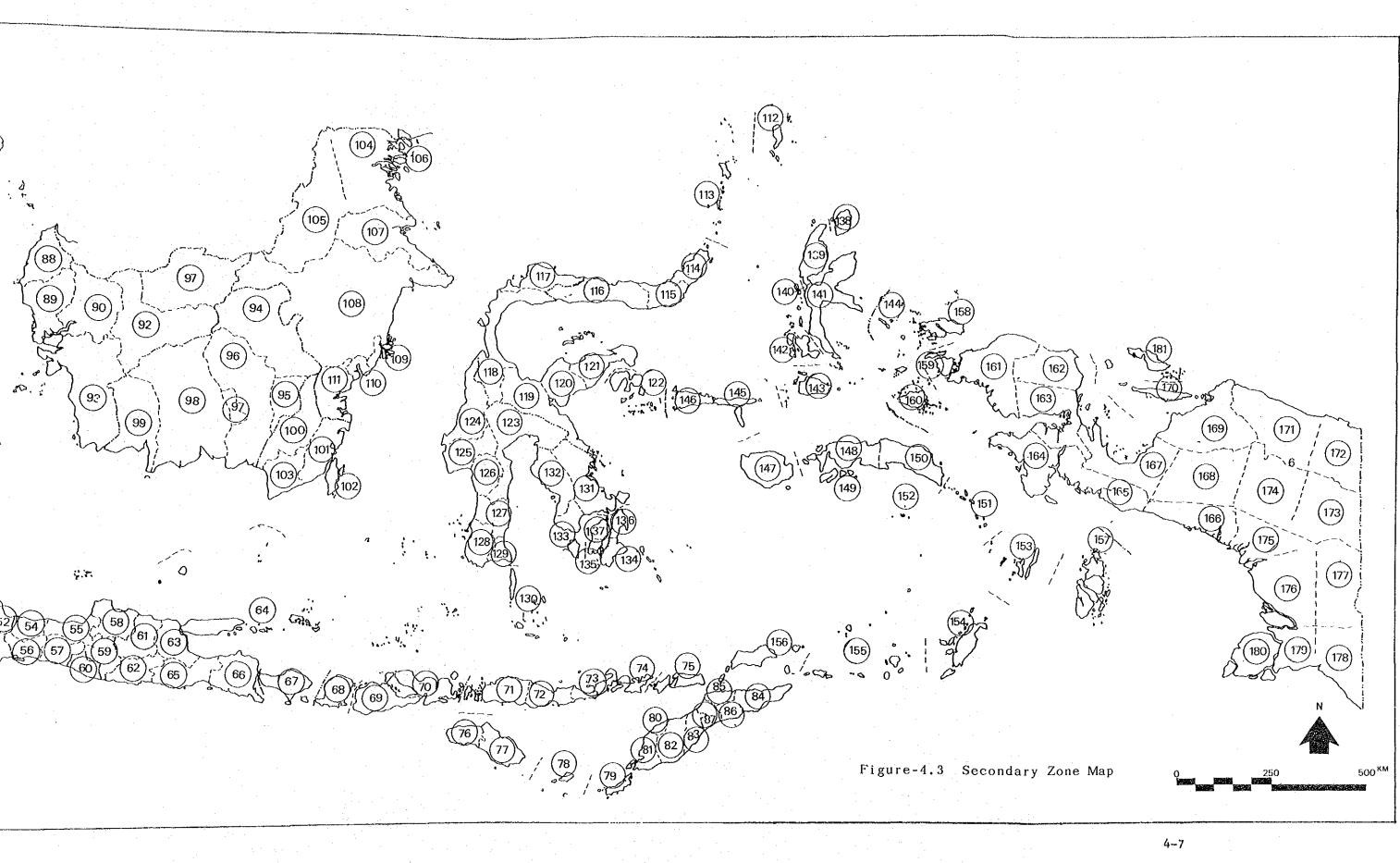


Figure-4.2 Work Flow of the Inter-Zonal Traffic Demand Forecast

4.03 ZONING


181 The whole Indonesia was divided tο (09)Unit Zone: Basically, a kabupaten is considered as a minimum zones. unit of a zone due to the availability of socioeconomic data. For the final determination of zones, however, three factors were taken into account; i.e., the accessibility to airports, the development potential of zones and the compo-Consequently, several sition of the transport network. kabupatens had to be combined or split in the extreme areas and Irian Jaya, ressuch as Jawa and south Sulawesi, pectively,

(10)<u>Zoning</u>: Figure-4.3 illustrates boundaries of secondary zones applied for the inter-zonal traffic demand forecast, while the number of zones in each region are summarized in Table-4.2.

Region	No. of Secondary Zone
Sumatera Jawa/Bali Nusa Tenggara Kalimantan Sulawesi Maluku Irian Jaya	42 25 20 24 26 20 24
Total	181
Foreign Countries	1

Table-4.2 Number of Secondary Zones in each Region

4.04 PRESENT AIR PASSENGER OD TABLE

(11)<u>Key OD Tables</u>: Passengers of more than 80% of all air routes, including most trunk air routes and secondary air routes, were picked up as samples by the survey. Thus, the results of the air passenger survey were considered to be valid and reliable to use as the bases for the present net movement OD Table.

(12)<u>Processing of Surveyed OD Data</u>: The following tasks were required to prepare the present net movement OD table of air passengers based on the results of the air passenger survey:

- Conversion of daily passenger volume to yearly basis.

- Supplement of survey results, mainly for OD pairs not covered by the survey.

- Conversion of the 1987 OD table to 1984 level, in order to keep pace with other transport modes.

(13)<u>Conversion of Daily Passenger Volume to Yearly Basis</u>: The conversion of daily passenger volume to yearly basis was carried out in three steps.

- Samples of transit passengers were examined in detail, and samples which appeared to have overlap with samples from another airport were deleted from the original data file.

- The daily passenger volume obtained from the air passenger survey conducted at each airport was expanded to weekly passenger volume. In this case, expansion factors were determined individually at each airport for flights to the same direction, under considerations of sample rates of flights, frequencies of flights per week and coverages of flights by the survey.

These weekly passenger volume data at each airport were converted to 2 months' volume and then to a yearly basis by using expansion factors calculated from the seasonal fluctuations in the number of air passengers at major airports. (14)<u>Supplementation</u>: Yearly passenger volume data at every airport was then combined to form a tentative net movement OD table based on the survey results. To supplement the OD pair blank not covered by the survey, two kinds of gravity models were constructed, in order to insert reasonable number of passengers. The basic formula of these gravity models is shown below.

 $Tij = K \frac{(Pi * Pj)^{X}}{Dij^{Y}}$

where Tij : Trip distribution between i and j zones
Pi : Population in i zone
Pj : Population in j zone
Dij : Distance between i and j zones
K, X, Y, : Parameters

(15) Conversion of 1987 OD Table to 1984 OD Table:

The formulation of the net movement OD table of air passengers in 1987 was followed by converting it to the 1984 OD table, because most OD data for other transport modes are only available up to year 1984. To carry out this operation, a conversion factor from 1987 OD volume to 1984 OD volume was determined based on the annual growth rate in the number of passengers at 9 major airports between 1984 and 1987.

(16)<u>1984 OD Table</u>: The net movement OD table of air passengers in 1984 was generated by using this conversion factor. Then, in order to verify the reliability of this OD table, it was converted into a gross movement OD table by traffic assignment, and compared with the OD table prepared in the Phase-1 study. Since OD patterns of these two tables were found to be similar, the net movement OD table of air passengers in 1984 was finalized.

(17) Present Air Passenger OD Table: Table-4.3 shows the net movement OD table of air passengers between provinces i n 1984. The total net movement demand of air passengers i n 1984 was projected as approximately 6,869,000 trips. This table shows that the greatest traffic demand is related to Jakarta (about 25% of the total demand) with major destinations (more than 100,000 trips) such as Jawa Timur (including Surabaya), Sumatera Selatan (including Palembang), Jawa Tengah (including Semarang and Solo), Sumatera Utara (incluand Riau (including Pekanbaru). ding Medan) Other than Jakarta, large traffic demand is related to Jawa Timur (9.8%), Sumatera Selatan (5.9%), Bali (4.8%) and Kalimantan Timur (4.6%) with more than 300,000 trips annually and respectively.

TOTAL	121625 289142 166591 223830 87344	579500 31167 88671 1571457 218531	242769 163701 626421 555977 98059	163808 42843 214499 116992 232395	707682 145187 103692 721995 721995	162679 295621	6868316	· .	•		
Z7. 1 IRIAN	00000	347 347 0 14672 5726	3143 3537 9651 5955 182	ဝဝဝဠဝ	0 8772 1155 24639 24639	10697 208426	295620	•		÷	
26 MALUKU	00800	22182 2117 5117	2323 389 13888 6781 6781	1683	851 16308 3577 19439 4252	44990 10697 2	162679 2			1	
SUL. TR M	2906 109 0	3218 7778 7087	7087 7087 13506 5334	34470 0 50330 5033	11236 11236 117563	4252: 371i	100638.				
SUL.SE 51	289 4542 4505 2058 1010	5025 342 666 50178 8556	3761 3761 2239 49587 44620 2105	10921 1889 5747 3249 8581	11480 11560 19520 8122 17363	19439 24639	321993 1	i i s		•	
SUL-TE S	1600 735 0 735 0 735 0	1455 0 10235 1624	306 8855 4300	1577 3993	2757 8564 21526 19520 11911	3577 1155	103692			·	.
22 SUL.UT SI	267 2595 287 1214 1214 299	2177 2177 540 20566 4899	5727 400 4993 664 981	4628 1256 2497 2374 4597	7563 22223 8564 11560 11236	16308 8772	145187 1		- "	1	
21 KAL. TH S	180 4365 2747 2663 663	3725 3725 54309 10357	12001 8063 77602 4423	3108 385 385 12684 11824 25058	49536 7563 2757 11480	851 0	303681				
ZD KAL.SE K	3599 4645 4645 2586 3193 1536	4525 516 1032 34988 34988	9355 9355 1391 55796 2787 2787 2787	6648 6648 4959 20910 11932	25058 4597 3993 8581 5035	00	: 32395		1 v.		
19 KAL TE K	2518 2424 1653	3296 3296 18474 2130	3543 271 271 20788 4085 4085	348 0 13534 5224 20910	11824 2374 3249 0 3249	347	116992	•			
18 KAL.BA K	2304 6432 5631 1563 1454	5565 459 881 89179 11481	2328 2328 2715 2396 1113	3651 874 21612 13534 4959	12684 2497 1577 5747 5447 5447	00	214499		÷		
17 TIM.TM K	00000	2000-40 204-000 204-000	2540 6562 6562 8510 2090	11472 874 1518	385 1256 1889 1889	00	42845				÷
16 NT.TM T	00000	10871 1740	1935 1012 21084 20609 10640	53460 11472 3651 348 6648	3108 4628 4628 10921 10921	1681 0	63808	·			
15 NT.BA	2 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	16865 2081	1664 1663 12290 28989 14899	10640 2090 1113 2202	2105 2105 2105	- 187 1	98059				
14 Bali	4205 12356 4873 4873	3761 615 1985 75195 19325	6889 6889 41176 41176 28989	20609 8310 2396 4085 2787	4423 664 4300 44620 5334	6781 5955	355977		:		
13 MT. MAC	3919 7696 3147 3408 2319	11283 600 3850 205756 23809	13727 4709 1731 41176 12290	21084 1539 9715 20788 55796	77603 4993 8855 49589 13506	13888 9652	626428				
12 YOCYA	14523 7255 2462 0	2068 2068 75606 75606	4709 4709 22489	1012 6562 2328 271 1391	8063 8063 2239 2239 2239	389 3537	163701				
11 JAH, TE	1568 4568 3668 986 840	4880 4880 138365 11945	840 13727 6889 1664	1935 2540 5416 3543 9353	72001 3727 3727 3761 7087	2323 3145	242769	•			
10 JAW.BA	5635 5635 5312 5318 6206 6206	17095 2924 3982 21720 2735	11945 6428 23809 19325 2081	1740 304 11481 2130 11017	10357 4899 1624 8556 7087	5117 3726	218531				÷
JAKARTA	35652 35652 87362 121843 55644	205548 9459 38789 10113 21720	138365 75606 205756 75195 16865	10871 4104 89179 18474 34988	54309 20566 10235 50178 7778	32182 14672	1571457				
LAMPUN J		2844 1023 38789 3982	3850 1985 0 1985	1032 1032 1032 1032	000090	00	88671 1.				
BENKUL L	7114 1880 1028 2476 2	6731 6731 9459 2924	600 610 610 610	559 559 510	000000 X	60	31167				
sum.se B	10571 10841 7502 14353 9070	43621 6731 6731 2844 205548 17095	4880 2068 11282 3761	5565 5565 3296 4525	3725 2177 2177 5025 3218 3218	340	379500				
JAMBI S	3045 2423 1627 2237	9070 9070 2887 55644 2 1178	840 2319 1777	1454 1454 1536	299 1010	00	87344 3	. '			
RIAU	14199 24020 8324 1164 2237	14352 2476 6935 121843 6206	986 2462 3408 4873	1563 1653 3193	663 663 1214 0 2058 2058	00	223829				
5 SUM.BA	5001 9921 1886 8324 1627	7502 1028 5058 87362 5318	1668 7255 7147 4266	0 3631 2424 2586	2747 287 735 4505 109	207 207	166591 2				
SUN.UT S	13155 5097 9921 24020 2423	10841 1880 6648 126004 20112	4568 4568 14523 7696 12356 235	6432 6432 2518 4645	4365 4365 2595 4542 4542 2906	00	289142 16				
ACEH S	3375 5001 5001 5001 5001 3043	10571 3114 11551 35652 1 5635	1568 3917 4205	2304 2304 3599	180 267 289 289	00	121623 26				
0	ACEH SUM. UTA SUM. BAR RIAU JAMBI	SUM. SEL BENGKUL LAMPUNG JAKARTA JAW.BAR	JAW.TEN JAW.TEN JAW.TIM BALI WT.BAR	NT. TIM TIM. TIM KAL. BAR KAL. TEN KAL. TEN KAL. SEL	KAL TIM SUL UTA SUL TEN SUL SEL SUL SEL	MALUKU IRIAN	TDTAL 12				

4.05 PRESENT SEA PASSENGER OD TABLE

(18)<u>Influence Area of Sea Port</u>: In the Phase-1 study, existing data of sea passenger movements were modified to generate the OD table of sea passengers in 1984. Since this OD table is based mainly on trips between ports, it was necessary to distribute OD volume to zonal demand. These distributions were carried out by each ship type.

(19)<u>Distribution of Passengers</u>: In the case of the RLS, Local, Rakyat and Pioneer ships, projections of zonal demands were based on the zonal distribution of populations in the hinterland of each port. The zonal demands of ferry passengers were projected by a gravity model (shown below) developed from the results of ferry passenger surveys at Merak and Tenau Ports.

$$Tij = K \frac{(Pi \times Pj)^{X}}{Dij^{Y}}$$

where Tij : Trip distribution between i and j zones

Pi : Population in i zone

Pj : Population in j zone

Dij : Distance between i and j zones

The projected zonal demands of sea passengers on all ship types were combined to obtain the present OD table of sea passengers.

(20) Present Sea Passenger OD Table: The present sea passenger OD table between provinces in 1984 is given in Table-4.4. The total net movement demand of sea passengers in 1984 projected as approximately 18,566,000 trips. As clear is this table and figure, the trip distribution volume of in sea passengers in Jawa Timur is highest at 40% of the total sea passenger demand in Indonesia, followed by Jawa Barat (14.0%) and Jawa Tengah (11.3%). Most of these passengers are thought to be ferry passengers.

Table-4.4 Present Sea Passenger OD Table Between Provinces - 1984

JUTAL	425508 680641 504742 276577 155291	489473 71855 368528 546024 2596445	2098929 247291 7582226 1173147 369036	40383 4203 49603 23267 76308	157104 104133 35908 423841 47260	116353	18565510
IRIAN	77000	56 7000 1009 118 118	2534 2534 12761 71	Ύασνζ	7726 7726 14217 3604	11157 43812	101035
26 MALUKU	18 273 218 218	0 1554 6337	2848 0 15435 24 321	629 44 755 1168	0 7854 43 14109 14884	38214 11157	116353 101035
SUL.TR M	2212 222 228 228 228 228 228 26	0 893 3857	1765 0 7674 1223 16	0000 <u>95</u>	1830 690 8788 726	14884 3604	47260
50155 SI	126 926 2993 233	129 0 31987 75183	7509 2 50896 1291 578	1934 933 11 1864 9820	45384 14547 5670 134393 8788	14109 14217	423843
SUL.TE SI	512 512 640 641	0 394 1730	2942 18 1523 550	122 122 122	2845 5757 5470 5670 400	ηo	35908
SUL.UT SI	44 959 111 959 959	538 0 6369 18396	1707 0 14264 0 0	0 17 3488 3488	10485 11189 5757 14547 690	7854 7326	104133
N. 17 SI	61 529 405 4105 194	1295 0 5621 11935	4829 46101 1829 128	0 850 1330	17326 10485 2845 45384 1830	00	157105
55 (85	848 848 86 84 84 84 84 84 84 84 84 84 84 84 84 84	1558 1558	5112 5112 11 1249 1249 268	16 44 2113 948 948	1330 3486 1122 9820 556	1168 37	76289 1
Г. 17 Г. 7	- 15 00 ¢ −	114 262 362 1032	4906 35 8915 65	14 2 2 2 2 1 13 2 13	850 378 121 1864 60	70	23267
18 1. 8A KA	297 297 356 356	533 533 9466 19300	14696 1323 50	28 2574 143 42	85°5°	735	49622
M.TM KA	00000	ందలస్శి	17 1 2252 106	6 10 0 10 00 10	000000	-3 00	4203
16 NT.TM TI	000000	2000 201 200 201 200 200 200 200 200 200	89 0 1939 14 6260	18384 708 28 16		629 53	40383
NT.BA N	00000	789 00 v v	145 0 4556 122961 232395	6260 50 268 268	128 578 16	321 71	369036
BALI N	28 28 21 21 21 22 25 25 25 25 25 25 25 25 25 25 25 25	1075 1075 44689 251934	235962 29351 29351 29351 29351 122961 2	1269 1269 1269	1829 550 1221	25 75	1173147 3
UT. MAC	50895 50895 61063 52051 52051 36518	103042 18923 90628 220775 254588	1244381 153649 5429579 480817 4556	11939 2252 1325 8915 42469	46100 14264 11525 50894 7674	12760	7582219 1
YOCYA	5587 5587 6824 5740 4154	11292 2211 10762 5 1	29 1 29 1 29351 29351	000%5	000000	00	247291 7
JAW, TE	46664 46664 57276 50098 35169	97193 18569 91574 275 30808	244381 29 235962 145	14696 17 14696 24906 5112	4829 1707 2942 7509 1765	2848 2534	<u>ي</u>
JAW BA	67980 67980 250488 123421 90354 54388	157975 25675 141514 126 586	30808 5 1254588 251934	203 44 19300 1032 4461	11935 18396 1730 75183 3857	6337 4118	71855 368928 546024 2596445 209892
	13122 61773 55244 55244 72649	4896 4896 28455 62 126	275 275 220775 44689	77 15 362 1558	5621 5621 5529 394 31987 893	1554 1009	46024 2
JAMBI SUM SE BENKUL LAMPUNJAKARTA	0400%	5956 5956 28455 141514	91574 10762 90628 2	00000	00000	00	68928 5
enkul Li	104 104 104 104 104	25675 1	18569 2211 18923 0 0	00000	00000		71855 3
UM. SE 81	9096 9096	52091 5956 5956 40134 57975	97195 11292 103045 1075 789	5330 5330 114	1295 538 0 129 0	560	
JAMBI SI	103 295 101 1291 1291		35169 4154 36518 10 26518 10 22	000-5	194 194 247 220	67 0	55291 4
RIAU	7787 7787 34877 958	5098 5098 0 24514 90354		35 356 394	4105 44 333 22	218 0	76578 1.
	1	2073 1439 35244 2 23421 5	57276 6824 61063 0	000 <i>0</i> %	405 111 640 2993 116	573 0	34742 21
ACEH SUM.UT SUM.BA	4171 32311 4148 7787 295	956 0 01773 50488 1	141483 17619 155206 315 315	29100 345 345	529 559 512 926 122	110 223	10641 31
ACEH SL	235034 4171 1408 1408 103	13122 6 67980 25	46664 14 5587 14 50897 15 0	0011-3	23085 23085	18 43	425510 680641 304742 276578 155291 489473
- -	ACEH Z SUM.UTA SUM.BAR RIAU CAMBI	SUM. SEL BENN. SEL LANPUNG JAKARTA JAW.BAR	JAW. TEN YDGYA JAW. TIM BALI NT. BAR	NT. TIM TIM. TIM KAL.BAR KAL.TEN KAL.SEL	KAL. TIM SUL.UTA SUL.TEN SUL.TEN SUL.SEL	MALUKU IRIAN	TOTAL 4

,

4.06 FORMATION OF FUTURE OD TABLE COMBINED WITH AIR AND SEA PASSENGERS

(21)<u>Combined Air and Sea Passenger OD Table</u>: The generated present air and sea passenger OD tables were combined in order to forecast the future OD volume of air and sea passengers.

(22)<u>Forecast of Future Trip Generation/Attraction Volume</u>: In order to forecast the future trip generation/ attraction volume, it is necessary to consider various future economic indices in each zone. However, the current economic indices in each zone could not be obtained, except population. Therefore, the following procedure was adopted to ensure the reliability of the forecast demand of each zone:

- To project future economic indices in provinces and population in zones.

- To project trip demand in provinces.

- To project trip demand in zones.

- To finalize trip demand in zones by using demand in provinces as control totals.

Future economic indices were projected by using a moderate annual growth rate of GDP, i.e. 5% from 1989.

(23)<u>Correlation Analysis</u>: Correlational analyses were then performed between traffic demand and economic indices in provinces, and multiple regression models were constructed in order to project the future trip generation/attraction volume in each province. By using these multiple regression models, trip generation/attraction volume in each province was projected. These projected demands were used as control totals of projected demand by zone. Another correlational analysis was carried out between traffic demand and population in each zone, and several types of regression models were developed with population as an explanatory variable.

(24)<u>Model for Projection of Traffic Demand in Provinces</u>: The model formulae developed for the projection of traffic demand in provinces are shown below. The results of this projection were utilized as control totals of zonal demands projected by the above mentioned formula.

~ Model for provinces with large population cities

Y = 0.81211E-01 + 0.54778 X1 + 0.034269 X2

(R = 0.99)

where, 👘

Y : Passenger demand in each province (person)

X1 : Total number of workers in each province (person)

X2 : Total GRDP in each province (mill. Rp.)

- Model for other provinces

Y = 0.10498E-06 + 49.299 X1 + 0.02675 X2 + 0.66508 X3

(R = 0.987)

Y : Passenger demand in each province (person)

X1 : Population in each province (person)

- X2 : Total number of workers in each province (person)
- X3 : GRDP of tertiary industry in each province (mill. Rp.)

(25)<u>Model for Projection of Traffic Demand in Zones</u>: The following linear model formulae are trip generation/attraction models developed to project the future zonal traffic demands based on population in each zone. Projected zonal trip generation/attraction demands were amended and finalized using the demands in provinces as control totals.

- Model for zones in Sumatera Y = 0.09706 * X + 26018.489 (R = 0.890) - Model for zones in Jawa/Bali Y = 0.08637 * X + 37740.132 (R = 0.904) - Model for zones in other regions Y = 0.13769 * X + 2025.270 (R = 0.730)

4--15

where,

Y: Traffic demand in each region (person) X: Population in each region (person)

(26)<u>Total Trips</u>: The future traffic demand of air and sea passengers are projected as approximately 42,455,000 trips by the year 2004. Traffic demand in year 1994 is also projected as approximately 32,750,000 trips. The future passenger OD table combined with air and sea transport were then formulated by the Frater method (the present pattern method).

4.07 CONSTRUCTION OF MODAL SPLIT MODEL

(27)Selection of Model: The present and future OD tables produced in the Study are based on different sources of data; i.e., field traffic survey results for the air passenger OD table, and existing data for the sea passenger OD table. Therefore, the utilization of a popular 'aggregate behavioral model as a modal split model may result in modal split differences between the actual situation and the foresituation. To overcome this problem, a disaggregate cast behavioral model was used as a modal split model in the Study. The details of this disaggregate behavioral model is 1. described in the Section 3 of the Study Report Part

(28)<u>Modal Split Model</u>: Three types of modal split models were generated in the Study; i.e., a Sumatera and Jawa/Bali regions model, an intra-region model other than these two regions, and an inter-region model other than between Sumatera and Jawa/Bali. The basic model formulae of the disaggregate behavioral model are presented below, while parameters of each type of model are summarized in Table-4.5.

$$Pn(i) = \frac{1}{1 + e^{V_{jn} - V_{in}}}$$

Vin = A * Xin + B * Yin + C
Vjn = A * Xjn + B * Yjn
where,
Pn(i) : Choice probability of air transport
e : Exponential
Xin : Travel time by air transport
Yin : Travel cost by air transport
Xjn : Travel time by sea transport
Yjn : Travel cost by sea transport
A, B, C : Parameters

Table-4.5 Parameter of Modal Split Models

Turne of Model		Parameters		Goodness-of- Fit Measure
Type of Model	A	В	C	rit neasure
Jawa/Bali Sumatera Model	-0.13948E-02	-0.12064E-05	-0.25724	0.229
Intra-Region Model	-0.2573187E-02	-0.1879735E-04	-0.3943310	0.2752
Inter-Region Model	-0.2652544E-02	-0.8245695E-05	-0.4862035E+01	0.4769

4.08 FORECAST OF FUTURE AIR AND SEA PASSENGER DEMAND

(29)<u>Methodology</u>: The main objective of the Study is to forecast the future air transport demand under conditions of competition with sea transport. In the Study, it was necessary to conduct future traffic demand forecast of air and sea passengers in parallel with the selection of potential new air routes, since openings of new air routes will generate new air passenger demands. The details of selection of potential new air routes is described in the following Section 5. (30) Future Air and Sea Passenger Demand: Table-4.6 summarizes the future traffic demand of air and sea passenger movements and the expected modal split between air and sea transports. The air passenger demands in 1994 and 2004 are expected to be 8,953,000 trips and 12,060,000 trips, respectively, while the expected annual growth rate of air passengers is 2.8%. In addition, the share of the air transport is expected to be increased from 27.0% in 1984 to 28.1% in 2004. The future net movement OD tables of air and sea passengers are shown in Tables-4.7 and 4.8.

Year		Total Demand		Excluding U	jng-Kamal Fei	ry Pax.
	Air Passengers	Sea Passengers	Total	Air Passengers	Sea Passengers	Total
1984	6,869	18,566	25,435	6,869	13,729	20,598
	(27.0%)	(73.0%)	(100.0%)	(33.3%)	(66.7%)	(100.0%)
1994	8,953	23,794	32,747	8,953	17,534	26,487
	(27.3%)	(72.7%)	(100.0%)	(33.8%)	(66.2%)	(100.0%)
2004	12,060	30,848	42,908	12,060	22,739	34,799
	(28.1%)	(71.9%)	(100.0%)	(34.7%)	(65.3%)	(100.0%)

Table-4.6 Future Traffic Demand of Air and Sea Passenger

Note : Figures in () are Modal Splits

0 0	ACEH ACEH SUM. UTA SUM. BAR RIAU JAMBI	SUM.SEL SUM.SEL LAMPUNG JAW.BARTA JAW.BAR	DAW. TEN YOGYA JAW. TIM SALI IT. BAR	VT.TIM VT.TIM CAL.BAR CAL.BAR CAL.TEN CAL.SEL	KAL. TIM SUL. UTA SUL. TEN SUL. TEN SUL. SEL SUL. TER	AAL UKU IRIAN	10101
1 ACEH SL			2013 2013 4982 4661		1	i.	1004274 ANYONA 224477 144754 445317 542901
2 SUM.UT SU	17025 6979 1 52740 1 32740 1 2987 1	15571 1 2156 8716 8716 86501 12 27648	1			1.	17016 23
3 SUM.BA	I	10438 2 1141 6423 6423 23525 16 7116	1.1	1	1 ·	1	11111
RIAU J		22526 1 2794 8947 83398 7 83398 7	1 .		!	1	0750 11
JAMBI SU	1 · ·	12339 6 3399 73718 31	1	1	749 749 1078 0		2717 54
M. SE 8E) .	65860 8106 3915 15862 24741	1 .	1	1	1	
6 7 8 SUM.SE BENKUL LAMPUN JAKARTA		8106 8106 1123 11550 3269					1.02633
WPUN J		5916 1123 55053 5362	L · · · ·		1	00	1857A 7
9 AKARTA	49479 49479 186501 123525 183398 73718	315862 11550 55053 15699 31804	200199 102688 290655 93862 23029	11550 3203 119639 24097 54524	83151 50542 15030 61922 9509	41601 19678	749477 94948474 9994944 969474 74944
9 10 4	7535 7535 7116 8399 1380	24741 24741 3269 31804 3686	16339 8235 31794 23665	1655 204 14686 2575 16168	14942 7626 1935 9967 8125	6344 4706	202570
11 JAW. TE	2013 6209 2182 1318 1025	6830 6830 0 200199 16339	1116 18089 8015 2109	1876 1840 6701 4297 13688	16946 4840 4211 4211 8055	2725 3838	170460
12 YOGYA	20223 9166 3257	2708 2708 0 102688 8235	5823 5823 24560 1987	941 9481 2704 306 1893	10706 492 340 2418 2418	438 4136	207482
13. ЈАн, ТМ	4984 11107 4228 4739 3259	15692 667 5174 290655 31794	18089 5823 2225 49878 15291	20247 1086 11922 24719 24719	107864 6597 10204 56585 15217	16064	875497
14 BALI	4661 14491 14491 4844 5644 1875	4644 604 2229 93862 23665	8015 24560 49878 17876 31816	17596 5212 2559 7492	5422 750 4402 5242 5242	7009	196323
15 NT.8A	012000 80 80	23029 25029 2673	2109 1987 15291 31816 17837	9887 1428 1291 1291 3004	22680 22680 000	500	
16 NT.TM 1	00000	11550	1876 941 20247 17596 9887	38480 6076 5308 7079	3229 4441 9194 0	1462	114419 137321
TIM.TM	00000.	200 200 200 200 200	1840 4481 1088 5212 5212	6076 580 580 1188	294 885 1168 168		9764B
18 KAL-BA	2713 8058 4383 1902 1628	7333 479 1042 119639 14686	6701 2704 11922 2559 1291	3308 580 24594 15086 6598	16457 2994 1718 6064 3605		268D44
79 KAL TE 9	3079 3079 2872 1990	4227 4227 0 24097 2575	4297 306 24719 4283 0	300 0 15086 5706 27368	15036 2799 3351 3351	387	147478
KAL.SE	4975 6787 5654 4581 2017	6958 633 1447 54524 16168	13688 1893 79313 3492 3004	7079 1188 6598 27368 18650	38148 6481 5095 10631 6177	00	330555
21 KAL.TH 5	236 6191 3780 926 0	5570 [°] 0 83131 [°] 14942	16946 10706 107862 5422 5422	3229 294 16457 15036 38148	73446 10379 3419 13775 0	1070	430965
22 SUL.UT S	3582 3582 3582 3582 356	3131 5131 683 30342 7626	4840 492 6596 750 1210	4441 886 2994 2799 6481	10379 28237 9850 12857 12857 12857	18947	182669
SUL. TE S	1907 846 0	1828 0 13030 1935	10204 10204 4402	1718 5095	3419 9850 22432 19610 11929	3739 1263	113547
.24 3UL.SE 5	308 5244 5064 2346 1078	6117 332 739 61922 9967	4211 2418 56583 442295 2268	9194 1168 6054 7351 10631	13775 12857 19610 7978 16857	19825 25980	350182
25 SUL.TR. M	119 00 00 00 00 00 00 00	3885 0 9509 8125	8055 0 15217 5242 5242	0 3605 6177	12426 11929 16857 16857	4294	109141
26 MALUKU	06900 N	41601 6344	2725 438 7009	76000 77 76 70000	1070 18947 3739 19825 4294	47698	183240
27 IRLAN	89888	442 0 19678 4706	3838 4136 12071 5397 202	000 <u>0</u> 000	0 10513 1263 25980 25980	11788 238537	340319
TOTAL	158376 403806 225136 319758 319758	562903 562903 56230 118575 2229248 292579	334460 207482 825487 395323 114419	137321 27648 268044 142478 330555	47096 11354 35018 7018	183240 340321	8953216

Future Air Passenger OD Table between Provinces - 2004

Table-4.7

	TOTAL	206254 554261 303293 4,35871 140859	817244 41988 41988 153408 3051472 404135	457960 264527 264527 1146879 531574 531574	166413 20340 359573 182481 457180	609853 240777 240777 240777 139364 453555 123756	237248 427481	12059911
	27 IRIAN	00000	609 609 26164 6422	5019 5091 75329 7358	00000	13450 15450 1542 33395	14783 297168	427479 1.
je je star	26 MALUKU	00800	55971 55971 8660	3585 542 20869 8113 0	50000 1-138	1467 25570 4592 25753 4767	60474 14784 2	237247 4
	25 SUL, TR /	3870 3870 2570 2570	4728 0 11231 9641	9384 0 17251 5159 5159	4092 6988 6988	14066 12880 19145 19145	4767 419	123756 2
	SUL.SE	396 7512 6694 3134 1306	8670 375 946 84759 14025	5669 3065 73114 52460 2919	11566 1721 8013 4268 14187	19164 16940 24662 10552 19145	25753	453590 1
~ #	L. 75	2457 1065 00	2465 0 16956 2534	414 414 12587 4957	2157 2157 6383	4559 12342 26812 24662 12880	4592 1542	139364 4
2004	22 SUL.UT	428 4833 458 2097 421	4421 0 869 41371 10810	6633 621 8582 885 1555	5570 998 3939 3548 8722	14573 37077 12342 16940 14066	25570 13450	240777 1
ı م	AL 7M	322 8925 5299 1310	8398 8798 0 120768 21837	24292 24292 149327 6902 0	4312 355 23034 20345 53263	107018 14573 4559 19164	1467	609851 2
nce		6377 9181 4814 6098 2432	9816 711 1841 74424 22246	18349 2388 2388 102895 4172 5854	8877 8877 1540 8674 54690 24458	53263 1 8722 6583 14187 6988	00	437180 6
Province	19 Kal. TE	4014 4014 3652 2556 2556	5761 5761 31719 3413	5567 575 30693 4884	563 563 19169 6988 34690	20345 3547 4268 4268	478 478	182480
		3486 5787 5787 2535	10370 540 1329 163434 20427	9007 3422 3422 3425 5025 1663	4171 659 32420 19169	23034 3939 2157 8015 4092	00	
between	17 TIM. TM	00000	5753 240	2119 4862 1323 5283 1568	6521 659 659 1340	353 998 1321 0	00	30340 359572
	z	00000	15050 2170	2402 1135 24711 19827 12063	45880 6521 4171 363 8877	4312 5570 11566	1795	166413
Table	15 NT.BA	04000 04000	30713 3585	2764 2453 19239 36687 22272	12063 1568 1568 1663 7854	1553 1553 2919 2919	252	142119
E CO	S S	5376 5376 5737 6737 6750 2031	5896 5896 610 2551 115013 29397	9661 27874 124431 18959 36687	19827 5283 3025 4884 4172	6902 885 4957 52460 5159	8113 7358	531575
د د د	155	5561 5580 5480 6172 3849	22035 734 6451 388024 42788	23758 7200 2802 124431	24711 1523 15357 30693 102895	149329 8583 12587 73118 73118	20871 15330	1146895 531575 142119 166413
a e u e	YDCYA	25765 11616 4142	3676 3676 0 134636 10869	7200 27874 2453	1135 4862 3422 373 2388	14383 621 414 3065 0	542 5091	
a S S S S S	11.1	2552 8122 2939 1792 1263	9649 9649 0 278805 22900	1529 0 23758 9661 2764	2402 2119 9007 5567 18349	24292 6633 5669 9384	3585 5019	457960.26452
s S S	50	10107 39902 9947 11681	37272 3843 7134 45319 5287	22900 10869 42788 29397 3585	2170 240 3413 22246	21837 10810 2534 14025 9641	8660 6422	404135 4
. *	<u>_</u>	65911 65911 261259 168974 168974 253285 92276	463206 13484 72766 22221 45319	278805 134656 388024 115013 30713	15050 3753 37719 31719 74424	120768 41371 16956 84739 11231	55971 26164	153408 3051472 404135
F uture	C NUGMAL	17819 11404 8205 11540 3972	5356 5356 1225 72766 7134	2551 2551 2551	1329 1329 1841	898 869 846 846	00	53408 30
	BENKUL LU	3710 3710 1288 3182 3182 0	9794 9794 1225 13484 3843	00 42 20 400	000055	00050	00	41986 1
е - 4 •	SUM. SE BE	19829 22579 14812 31904 15986	99872 9794 5356 463206 453206	9849 3676 22033 5895 0	10370 5761 9816	8398 4421 2465 8670 4728	609	817241 4
Table	JAMBI SI	4161 3700 2331 3425 0	15986 3972 92276 4(1263 3849 2031 2031	1967 2432	4 2 1 1 3 0 6 0 0 0 0 0 0	00	40859 8
-	4 RIAU	23505 44196 14493 2080 3425	31904 3182 3182 11540 253285	1792 4142 6172 6750 6750	2535 2535 6098	1310 2097 3134 3134	00	435877 140859
	SUM.BA	8069 17999 3194 14493 2331	14812 1288 8205 168974 2 9947	2939 2939 5480 5737 5737	5787 5787 3652 4814	5299 458 1065 6694 135	50	03293 4
	SUM.UT St	22442 9679 17999 44196 3700	22579 2492 11404 261259 39902	8122 8122 15325 15323 17577 534	10896 4014 9181	8925 4833 2457 7113 3870	00	54262 3
	ACEH SI	5203 5203 8069 23505 4161	19829 3710 17819 65911 2 10107	2552 2558 6558 5376 5376	3486 3486 6377	522 428 596 0	00	206251 554262 303293
	0	ACEH SUM. UTA SUM. BAR RIAU JAMBI	SUM. SEL BENGKUL LAMPUNG JAKARTA JAW. BAR	JAW.TEN YOGYA JAW.TIM BALI NT.BAR	NT. TIM TIM. TIM KAL. BAR KAL. TEN KAL. SEL	KAL TIM SUL UTA SUL TEN SUL SEL SUL TER	MALUKU IRIAN	TOTAL 2

illus-(31)Desire Line of Air Passenger Demand: Figure-4.4 trates the future desire lines of air passenger demand between provinces in the year 2004. Strong desire lines can observed for intra-region OD pairs of the Jawa/Bali rebe gion, and inter-region OD pairs between Jawa/Bali, and Suma-Although about 74% of traffic demand tera and Kalimantan. air passengers will still be related to Jawa and Sumaof traffic demands in other regions will gradually intera, The future especially in Sulawesi and Maluku. crease, traffic demands for each region in 2004 are illustzonal The major findings f r om rated in Figures-4.5 to 4.11. these figures by region are as follows:

- Sumatera :

The majority of demand in Sumatera is inter-region traffic with Jawa. Most of intra-region traffic demands are limited, except Medan-Pekanbaru and Palembang-Jambi pairs.

- Jawa/Bali :

There are very strong desire line for inter-region traffic demands with Sumatera. Jakarta-Surabaya, Jakarta-Yogyakarta, Jakarta-Semarang and Jakarta-Bali pairs have high intra-region traffic demand.

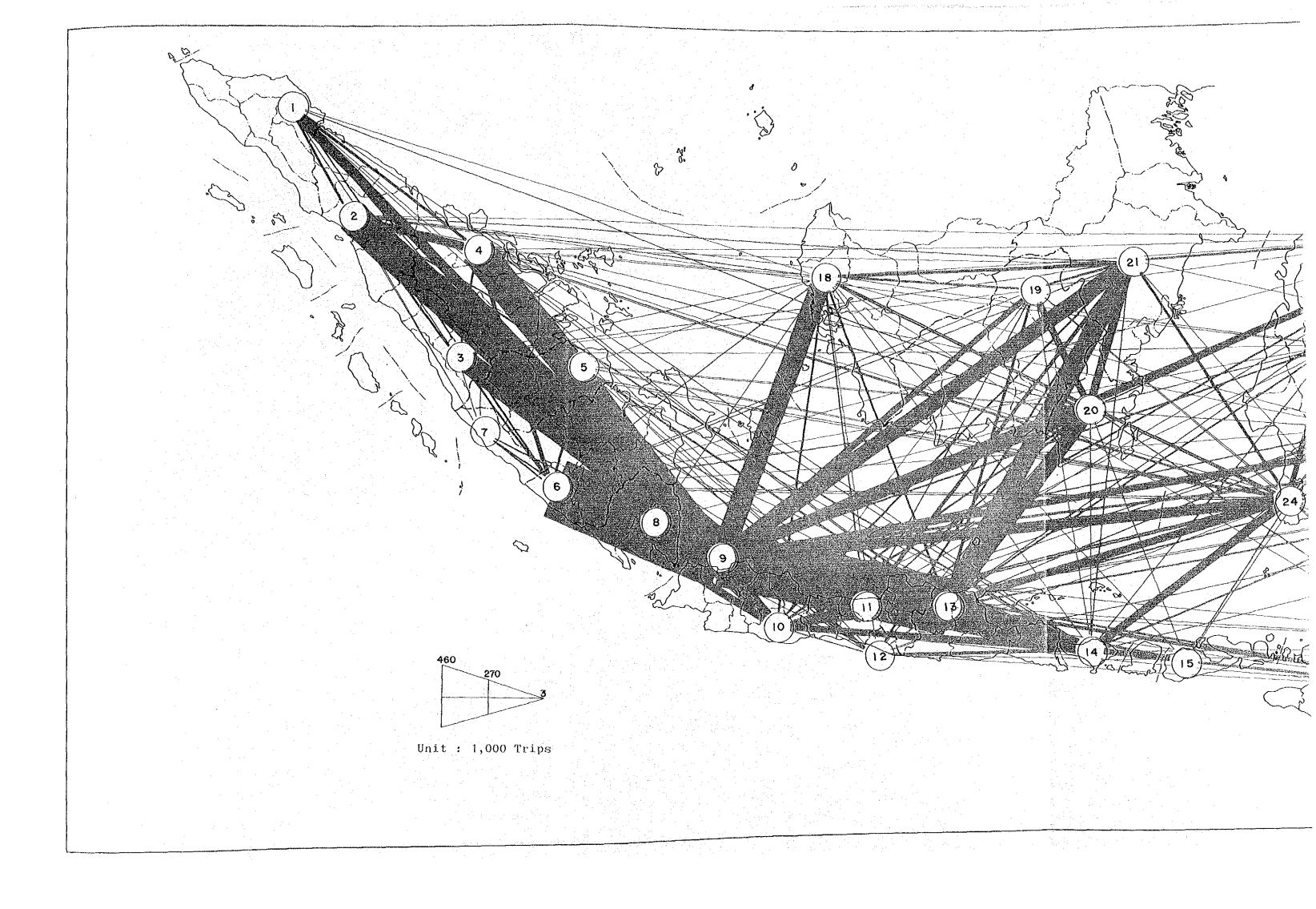
- Nusa Tenggara :

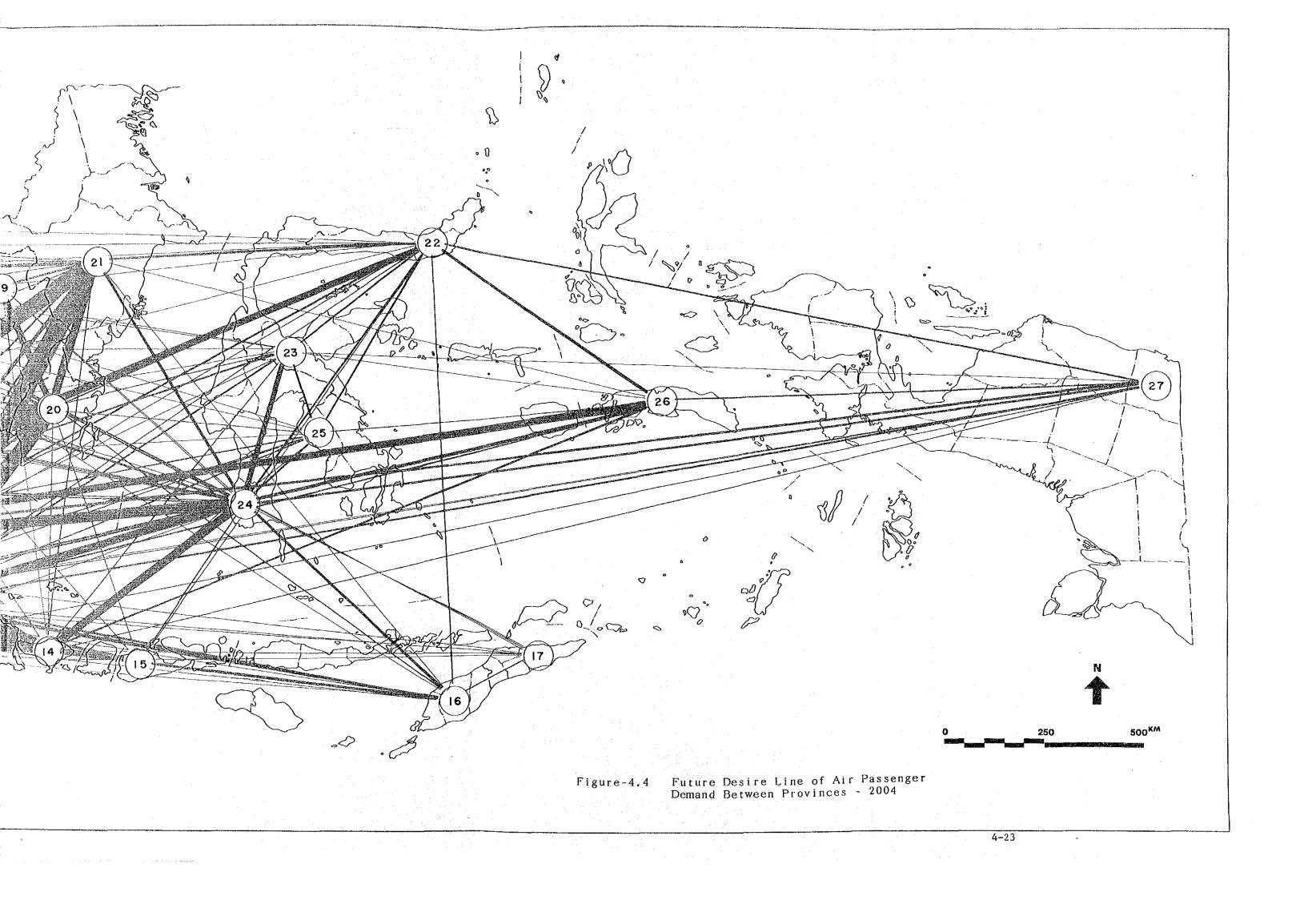
The majority of demand in Nusa Tenggara is concentrated on inter-region traffic with Jawa/Bali to/from Mataram and Kupang, while inter-region traffic demands are limited.

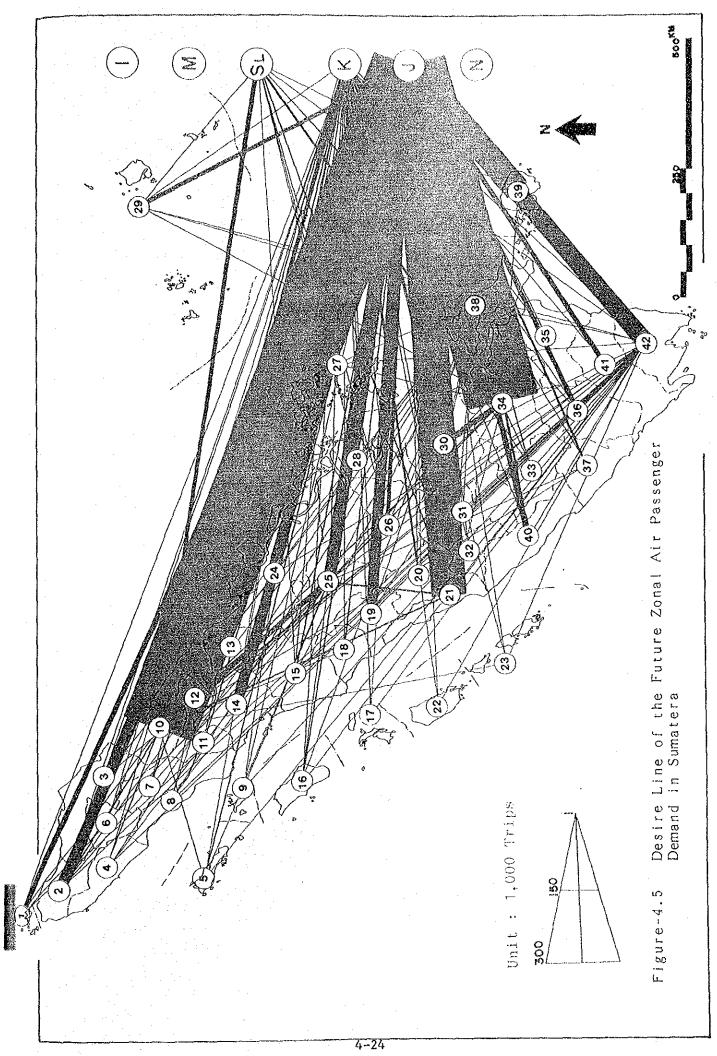
- Kalimantan :

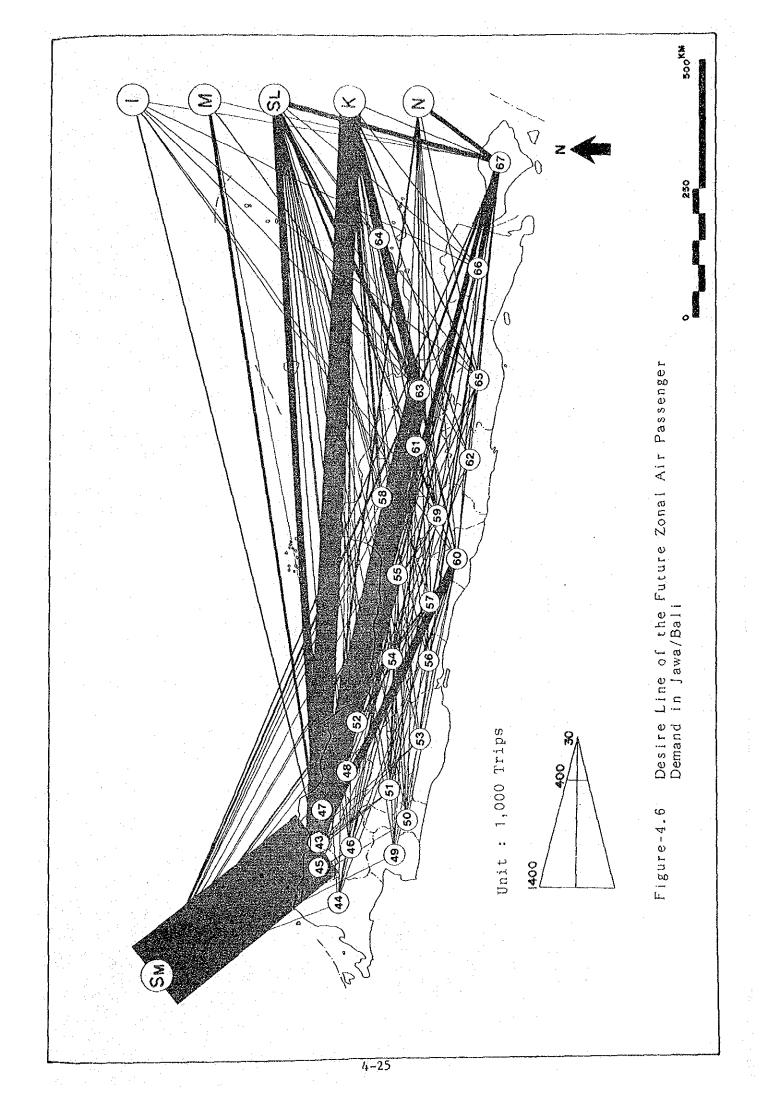
Balikpapan-Tarakan, Balikpapan-Banjarmasin, Balikpapan-Samarinda and Banjarmasin-Kotabaru pairs have high intra-region traffic demands, however the majority passenger trips are related to inter-region traffic with Jawa/Bali.

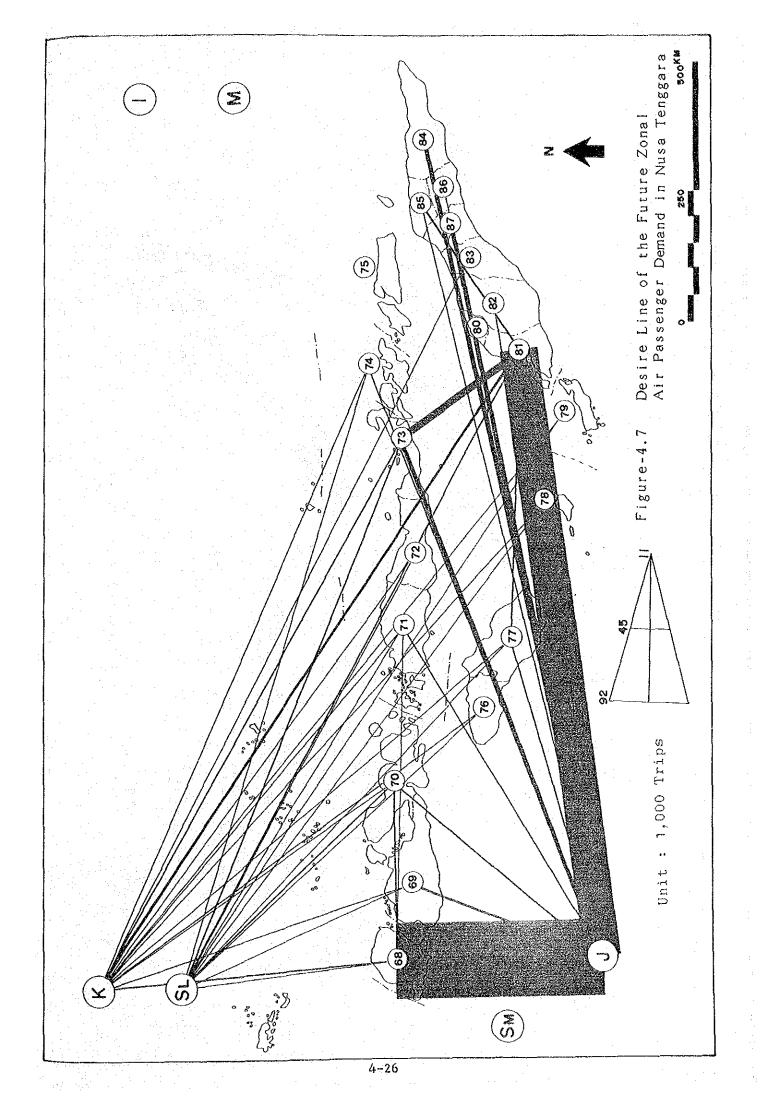
- Sulawesi :


Strong desire lines can be observed for Ujung Pandang-Jawa/Bali, followed by Manado-Jawa/Bali, Ujung Pandang-Kalimantan, Kendari-Jawa/Bali, Ujung PandangSumatera.

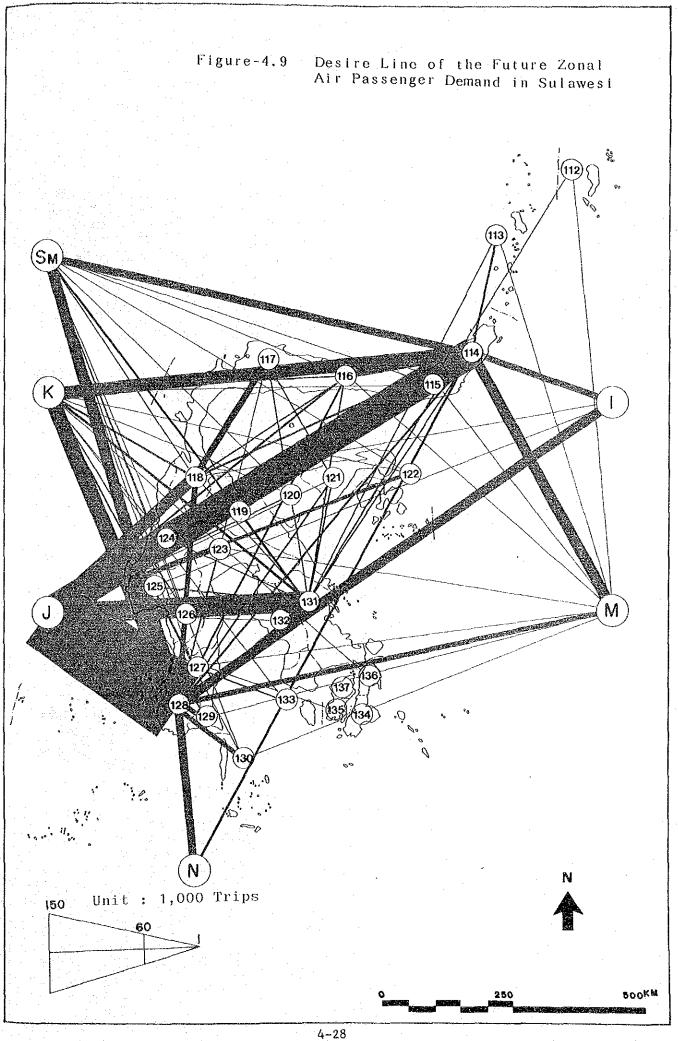

- Maluku :

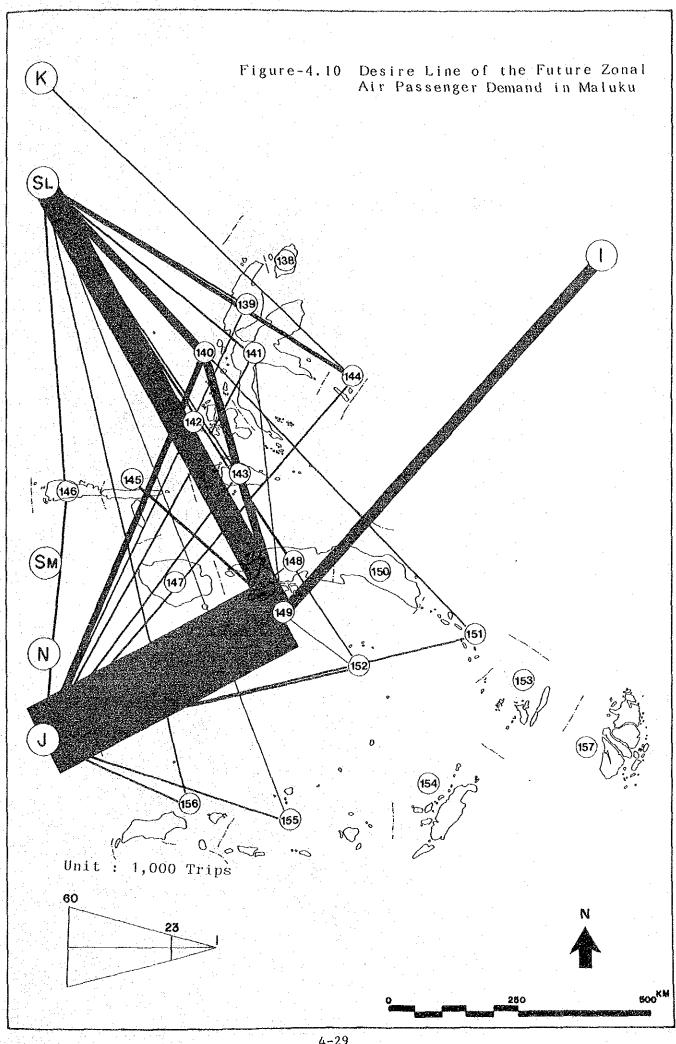

Ambon-Ternate and Ambon-Mangole are relatively high demand OD pairs in this region, however, the majority of passenger trips are related to Jawa/Bali.

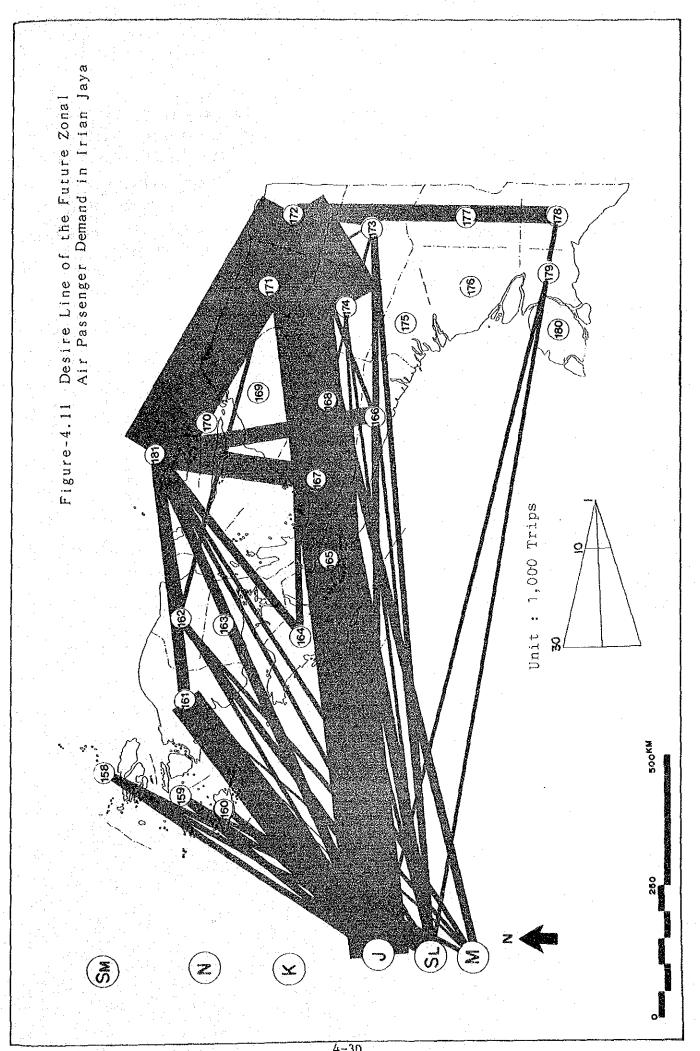

- Irian Jaya :

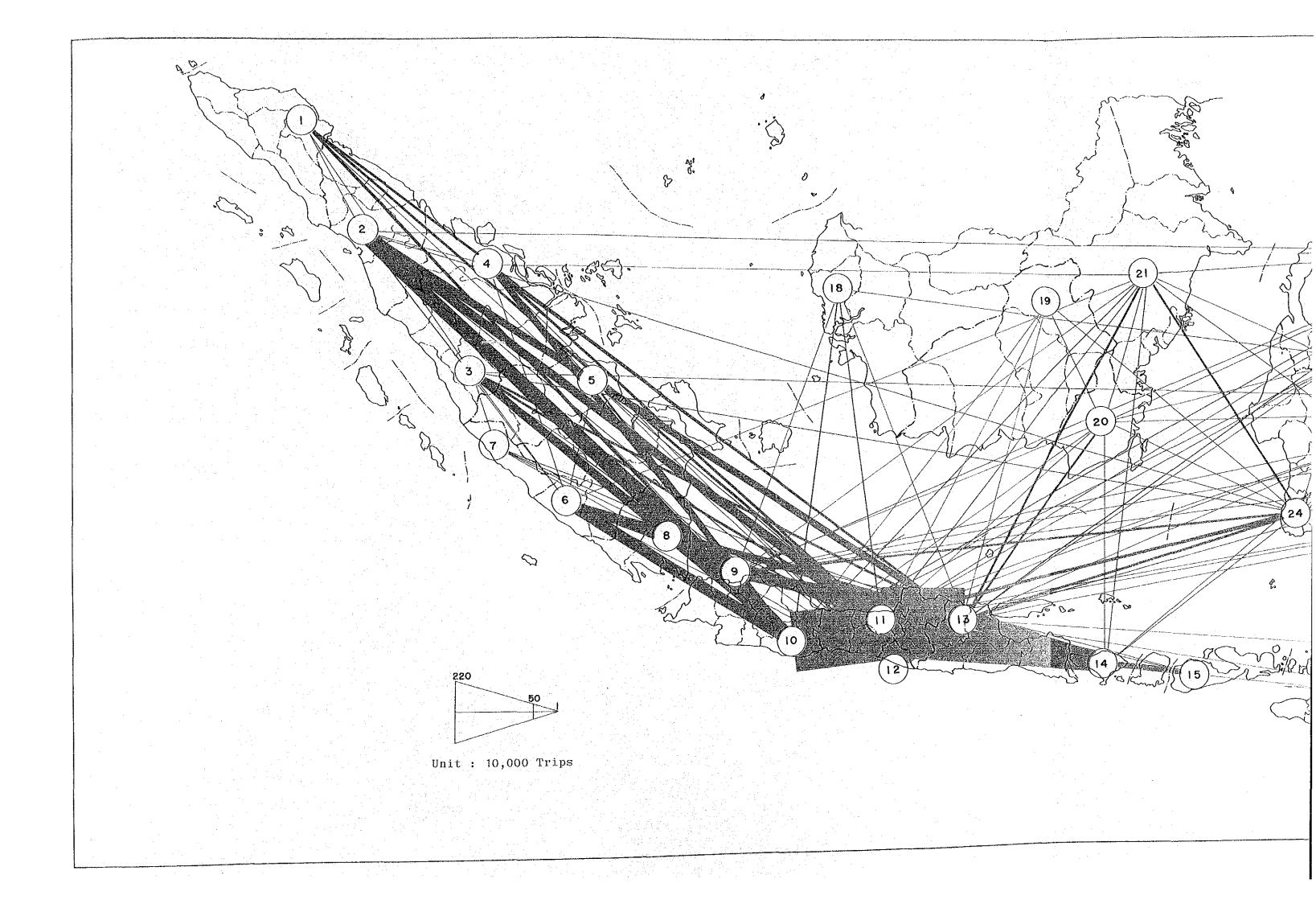

Strong desire lines for intra-region traffic demands appear for Jayapura-Wamena and Jayapura-Biak pairs, followed by Biak-Timika, Jayapura-Merauke, Biak-Sorong and Biak-Nabire pairs.

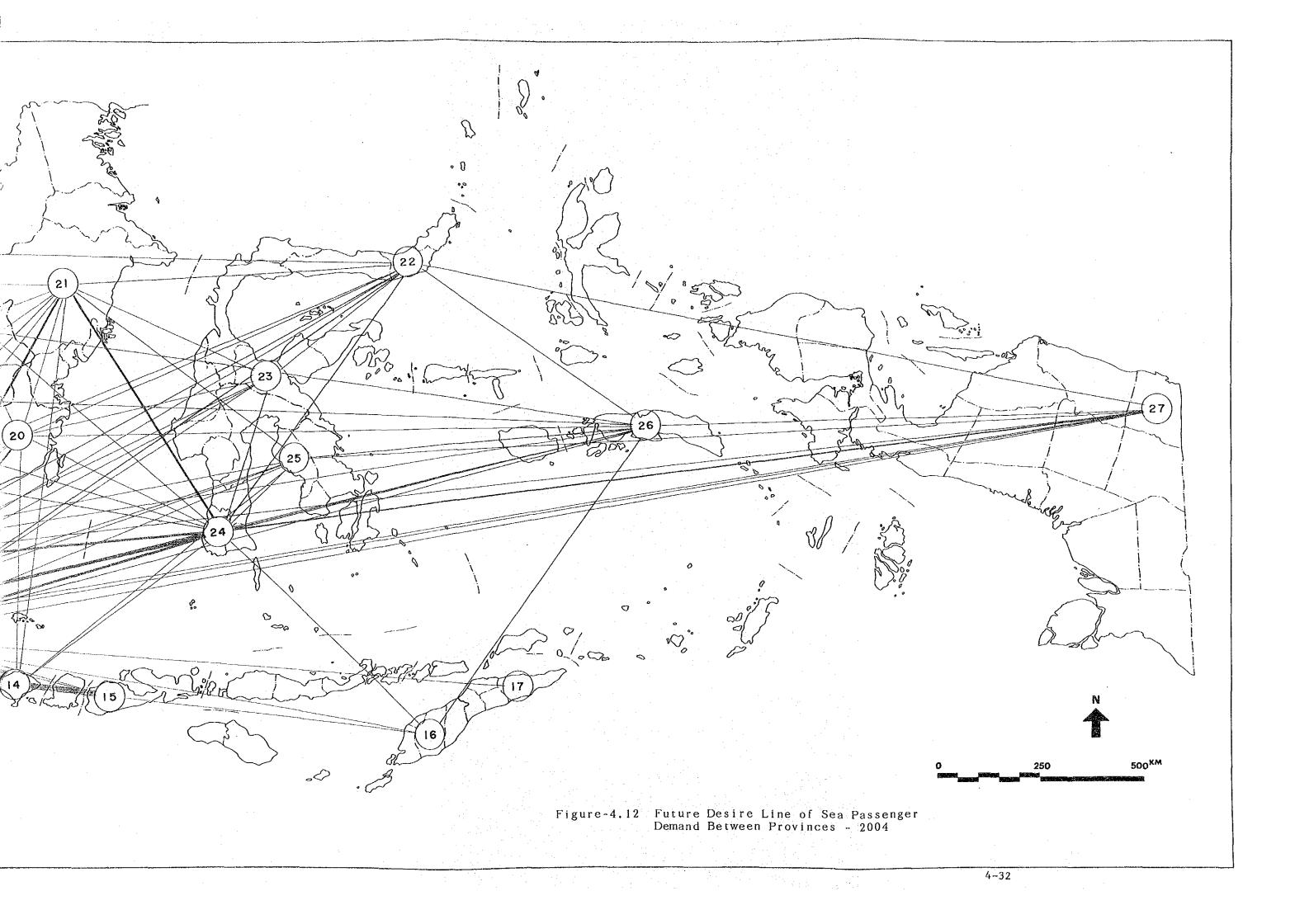




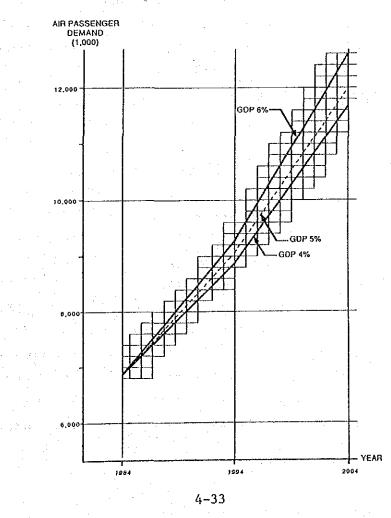








(32)Desire Line of Sea Passenger Demand: Figure-4.12 illustrates the future desire line of sea passengers between provinces in 2004. Since the majority of sea passenger demand will still be generated by ferries, especially Tg.Perak-Madura, Merak-Bakauhuni and Jawa-Bali ferries, the major trip patterns in 2004 will be similar to the present.



4.09 SENSITIVITY ANALYSIS

(33) Change of GDP Growth Rate: In order to examine the sensitivity of the results of forecast traffic demand with GDP growth rate, forecasts of trip generation/attraction volume were also carried out in the case of a lower GDP growth rate of 4% per annum and a higher rate of 6% per annum. In this stage, only direct effects of changes in GDP growth rate were taken into consideration. Figure-4.13 show differences in forecasts of future passenger volume for each GDP growth rate. This figure reveals that passenger in 2004 will vary between 0.962 (4%), 1 (5%) volume and 1.044 (6%) depending on GDP growth rate, indicating that a 1% difference in GDP growth rate will result in а 3 - 4% fluctuation in forecast passenger volume.

Figure-4.13

Fluctuation of Forecast Air Passenger Demand by Changing GDP Growth Rate

(34)<u>Change of Time Value</u>: Assuming that, in Indonesia, time value will increase at the same rate as GDP growth, the future air passenger demand in 2004 is projected to be 15,090,000 trips, which is 25.2% more than the case projected using present time values. The share of air transport in 2004 is estimated to reach 35.2%.

4.10 FORECAST OF PRESENT AND FUTURE AIR CARGO DEMAND

Forecast of present and future air (35) Air Cargo Demand: cargo demands was carried out using the unit cargo volume per passenger calculated from 1984 air transport statistics. The large differences in cargo volume per passenger i n internal trips in Irian Jaya led to distinctions between two of unit cargo volume: one type was employed for types evaluating all of Indonesia, except internal trips in Irian and the other for analyzing internal trips in Irian]aya; These unit cargo volumes were multiplied by the laya. passenger volume of each OD pair to obtain the present and future air cargo demands in 1984, 1994 and 2004, which are presented in the Study Report.

4.11 INTER-REGIONAL TRAFFIC DEMAND FORECAST

The inter-regional traffic demand forecast (36)Objective: conducted to obtain reference materials for crosswas checking with the results of the inter-zonal traffic demand presented herein. The forecast was previously forecast on existing statistics, data and principally based of transport processed in the inter-Modes information. regional traffic demand forecast include air transport, sea transport including ferry services, and land transport, including road, railway and inland waterway. The traffic demand was projected according to each mode of transport.

(37)<u>Study Method</u>: The basic study method of the interregional traffic demand forecast is shown in Figure-4.14. As seen in this Figure, the major work items include:

~ Zoning

- Collection and review of existing traffic data

- Supplementary arrangement of collected data

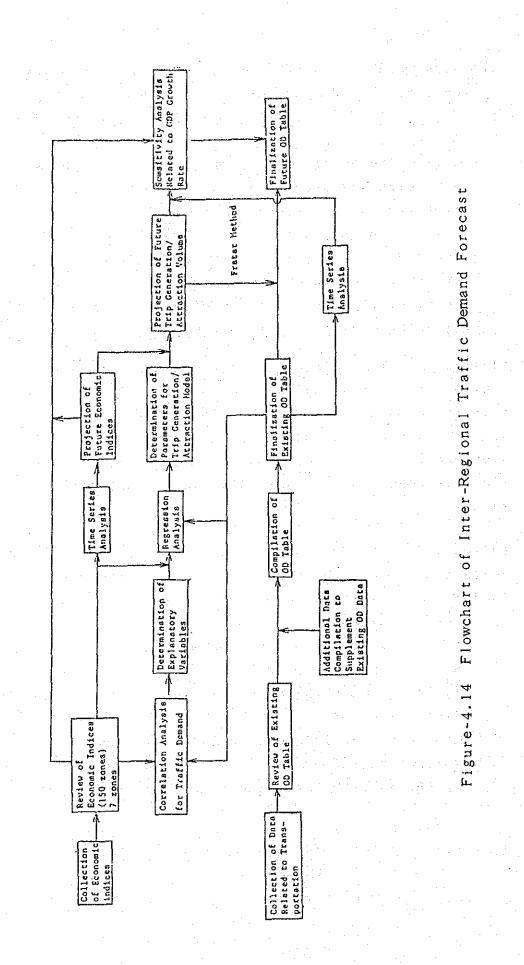
- Finalization of present OD table

- Collection and review of economic indices

- Construction of trip generation/attraction model

- Projection of future economic indices

- Forecast of future trip generation/attraction volume


- Finalization of future OD table

(38)Zoning: The Phase-1 study divided Indonesia into 7 (primary zones) in order to project inter-region regions traffic demands. For the determination of zoning, а province was considered as the minimum unit, and either one province or a combination of several provinces was considone zone. Table-4.9 shows details ered as of primary zones.

(39)<u>Basic Data</u>: The data related to the Study have been collected from the various authorities concerned. The followings are the fundamental existing available data for the traffic forecast.

Air passenger OD between major airports, 1976-85
Sea passenger OD between ports by RLS fleet, 1981-84
Sea cargo OD between ports by RLS, Local & Rakyat fleet, 1983-84

Road passenger/cargo OD between 215 zones, 1982
Railway passenger/cargo OD between stations, 1981
Inland waterway passenger/cargo volume, 1981-86

Zone No.	Name of Zone	Province
1	Sumatera	D.I.Aceh, Sumatera Utara, Sumatera Barat, Riau, Jambi, Sumatera Selatan, Bengkulu, Lampung.
2	Jawa/Bali	D.K.I.Jakarta, Jawa Barat, Jawa Tengah, D.I.Yogyakarta, Jawa Timur, Bali.
3	Nusa Tenggara	Nusa Tenggara Barat, Nusa Tenggara Timur, Timor Timur.
4	Kalimantan	Kalimantan Barat, Kalimantan Tengah, Kalimantan Selatan, Kalimantan Timur.
5	Sulawesi	Sulawesi Utara, Sulawesi Tengah, Sulawesi Selatan, Sulawesi Tenggara.
6	Maluku	Maluku.
7	Irian Jaya	Irian Jaya.

Table-4.9 Details of Primary Zones

(40)<u>Similarity</u>: Fundamentally, the study method is mostly similar to that applied in Phase II, except the works concerning preparation of the present OD tables. However, the outcomes of traffic demand of this study show the demand mixed with the net and the gross movements from the nature of used OD table. The detailed processing and procedure of this works are given in Main Report.

SECTION 5 POTENTIAL NEW AIR ROUTES AND FUTURE AIR NETWORK

SECTION 5

POTENTIAL NEW AIR ROUTES AND FUTURE AIR NETWORK

5.01 CONCEPT OF IDENTIFICATION OF POTENTIAL NEW AIR ROUTES

(01)<u>Concept</u>: One of the major targets of the Study is to identify potential new air routes in the future, which will certainly be beneficial not only individual passenger but for the further development of regions. The method and the task for identification and selection of potential new air routes applied in the Study are described in this Section. The identification of potential new air routes has been elaborated not only from air passenger demand standpoint, but also from the realistic viewpoint.

5.02 BASIC METHOD FOR SELECTION OF NEW AIR ROUTES

(02)<u>Basic Method</u>: A network analysis has been employed as the basis for the selection of potential new air routes. The present air transport network is first classified into trunk routes and feeder routes. Then, air traffic demand is forecast through a process of steps illustrated in Figure-5.1. It should be noted that the selection of new feeder routes is carried out first in order to determine generated traffic demand by passengers who presently have to travel for a long time to make an access to airports, because of lack of scheduled flights.

5~1

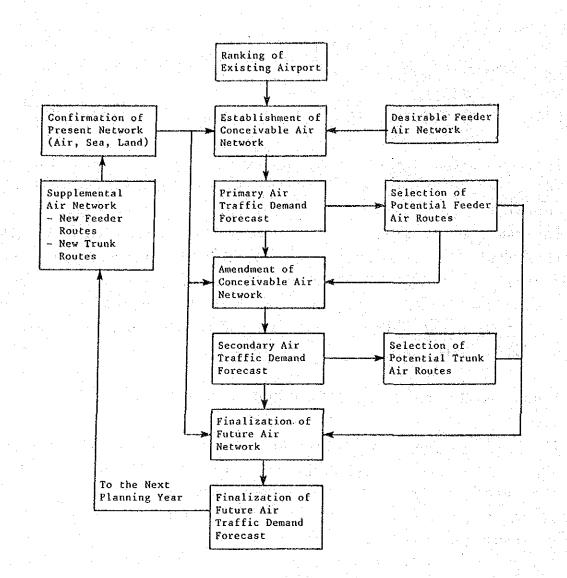


Figure-5.1 Process for the Selection of Potential New Air Routes

(03)<u>Steps for Selection</u>: In the Study, potential new air routes are selected in two steps for years 1994 and 2004; i.e., for feeder air routes and trunk air routes, by the procedure described below:

- New feeder air routes for 1994 are selected by the procedure described in the following five paragraphs.

- The conceivable air transport network is amended by adding the new feeder air routes to the present air transport network and desirable trunk air transport network in order to select new trunk air routes.

- New trunk air routes are then selected through the same procedure.

- The future air transport network is finalized by adding new trunk air routes to the conceivable air transport network.

The future air traffic demand in 1994 is forecast on the basis of the finalized future air transport network.
Selection of potential new air routes and forecast of air traffic demand for 2004 are carried out in the same way based on the results of calculation for 1994.

(04)<u>Classification of Air Routes</u>: At the first step, existing airports were classified into major airports and other airports. Major airports are defined as airports served by daily flight of such an aircraft with a capacity of more than 44 passengers, as HS-748 and F-27. Air routes between major airport pair are then considered as trunk routes, while other routes, other airport pair and majorother airport pair, are regarded as feeder routes.

(05) Establishment of Conceivable Air Network: Based on the present air transport network, the conceivable air transport network is established taking into account the desirable feeder air transport networks between major airports and nearby zones without scheduled flights, including zones without airports, unless these zones are within a 60km range from airports with scheduled flights.

(06)Formation of Transport Network: The forecast future air traffic demands has been conducted under the competitive condition with sea transport. As such, the conceivable air transport network and present sea transport network are combined together with land transport (as an access mode between airports/seaports and zone centers) to formulate the transport network for selection of potential new air routes. The transport network is formulated from nodes (such as airports and seaports) and links (such as air, sea and road routes).

(07)Forecast of Future Passenger Demand: The future passencombined with air and sea transport for the ger demand transport network with desirable feeder are projected using passenger OD table combined with air and sea the future Then, OD volumes of both air and sea transport transport. obtained on the basis of these results and developed are modal split models. In this case, the modal split of air passenger is varied depending on difference of required and fares result from the opening of new feeder air times Air passenger demand for each air route is calcuroutes. lated through the minimum required time search method of the air OD volume on the conceivable air transport network.

(08)<u>Criteria for Selection of New Air Route</u>: New feeder air routes are selected by a criterion of minimum passenger demand of about 20,000 trips per year. On the other hand, 10 new trunk air routes are selected for each of the years 1994 and 2004 only from the standpoint of traffic demand. In addition, air routes less than 120 km in distance, if there is any road connecting two locations, are excluded from selection because air transport cannot compete with land transport on these routes, even at present.

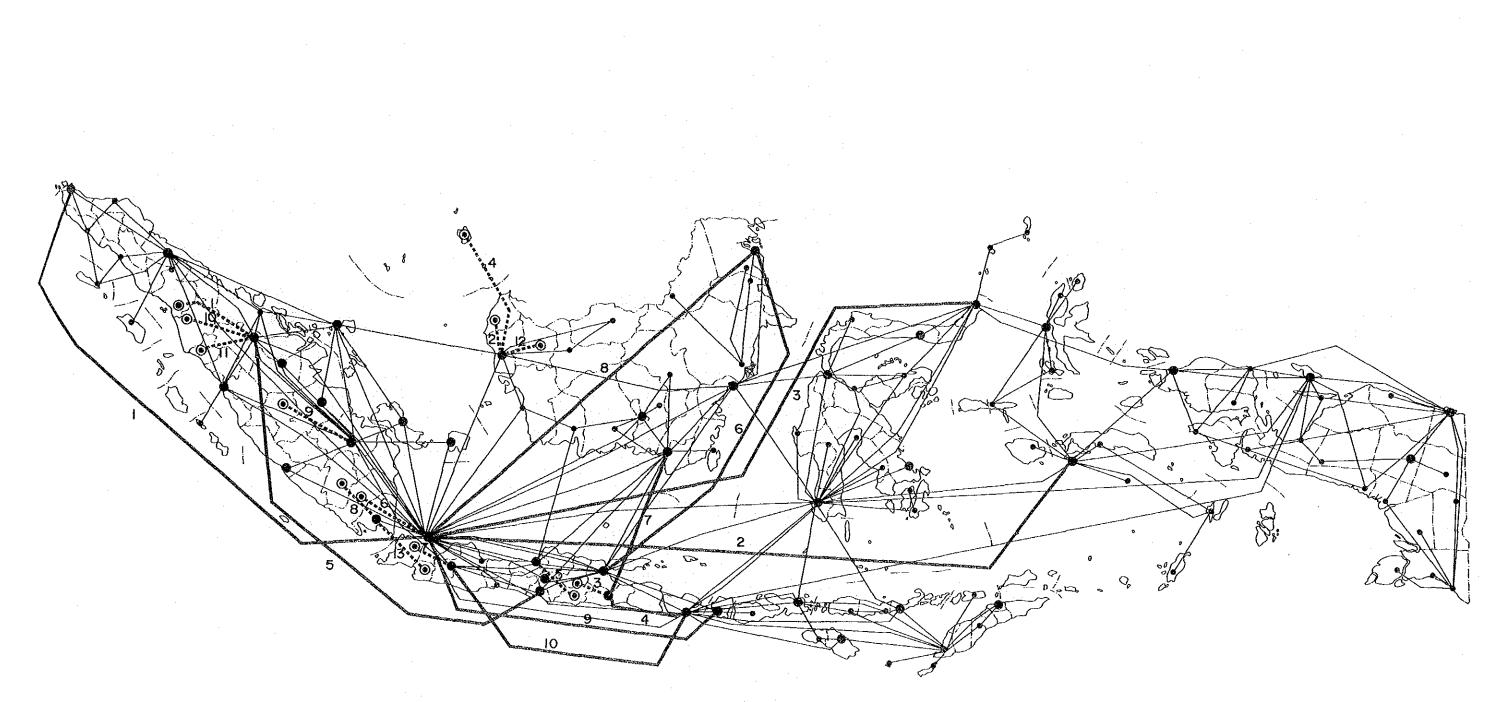
5.03 SELECTED POTENTIAL NEW AIR ROUTES

(09)<u>Selected New Air Routes</u>: Tables-5.1 and 5.2 show the selected potential new feeder routes and trunk routes, respectively. Potential new air routes for years 1994 and 2004 are illustrated in Figures-5.2 and 5.3, respectively. A total of 19 feeder routes (13 routes for 1994 and 6 routes for 2004) and 20 trunk routes (10 routes each for 1994 and 2004) were selected as potential new routes. It should be noted that the passenger demands shown in these Tables are demands on each route (similar to the gross movement demands).

5.04 FORMATION OF THE FUTURE AIR NETWORK

(10)<u>Future Air Network</u>: Based on the results of selection of new potential air routes, the future air networks in 1994 and 2004 were finalized by adding these selected new air routes to the present air network. These future air networks in 1994 and 2004 were utilized for the aircraft analysis.

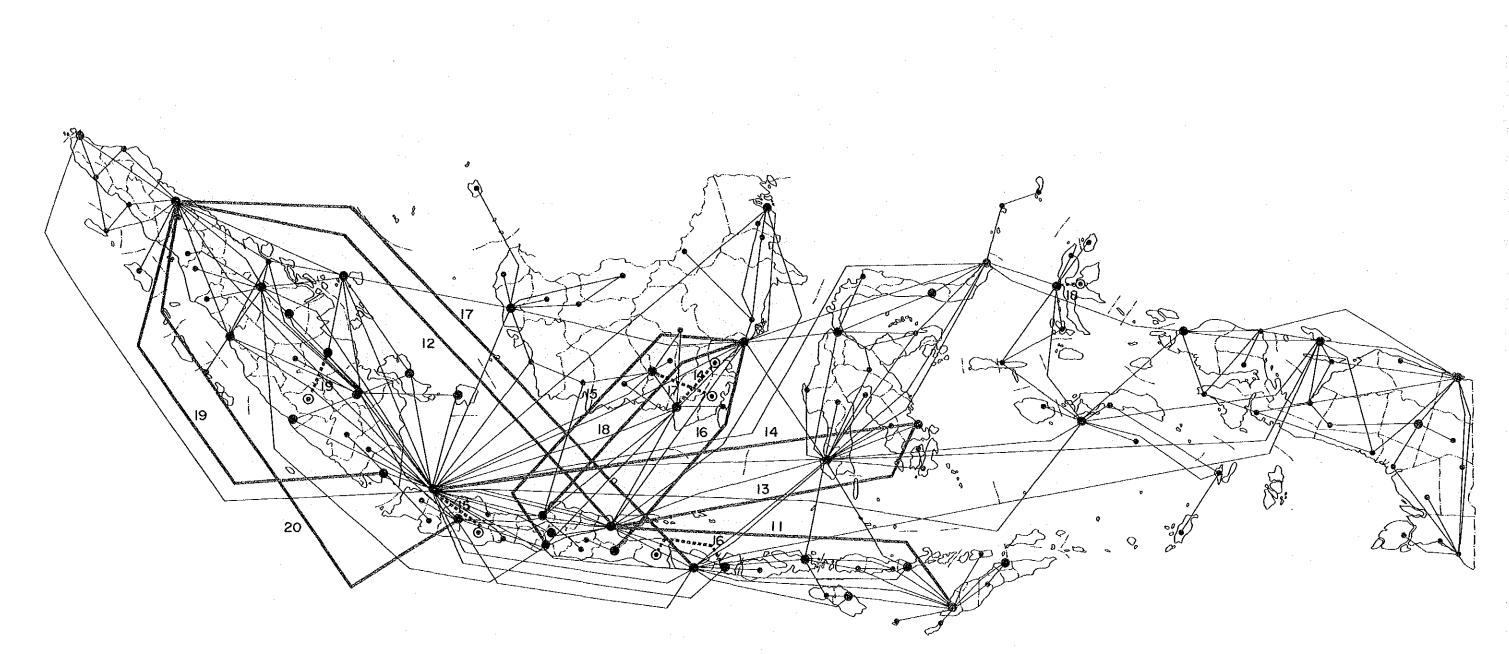
Year		New Fe	eder	Routes		Distance	Passenger Demand **
	No. *	City Name (Airport Name)	Zone No.	City Name	Zone No	(Km)	(Trips)
• - • • • •	1	Pekanbaru (Simpang Tiga)	25	Sibolga	14	295	69,068 94,766
	2	Pontianak (Supadio)	89	Singkawang	88	123	61,990 83,498
		Malang (Malang)	65	Madiun	61	151	50,856 87,408
	4	Pontianak (Supadio)	89	Natuna	29	458	40,234 54,574
· .	5	Semarang (A. Yani)	55	Kediri	62	212	35,468 65,498
	6	Jakarta (Soekarno Natta)	43	Kotabumi	41	269	30,340 39,436
1994	7	Bandung (H. Sastranegara)	51	Pandeglang	44	155	29,640 40,268
	8	Bandar Lampung (Branti)	42	Muara Enim	36	236	28,072 40,266
	9	Palembang (Talangbetutu)	34	Muara Bungo	31	271	27,686 33,556
	10	Pekanbaru (Simpang Tiga)	25	Padang Sidempuan	15	244	26,458 33,786
	11	Pekanbaru (Simpang Tiga)	25	Lubuk Sikaping	18	168	23,514 30,892
	12	Pontianak (Supadio)	89	Batang Tarang	90	240	23,320 30,866
		Bandar Lampung (Branti)	42	Sukabumi	49	252	21,854 29,212
	14	Banjarmasin (Samsudin Noor)	103	Tanah Grogot	111.	220	42,292
2004	15	Jakarta (Soekarno Hatta)	43	Tasik Malaya	53	232	32,042
	16	Mataram (Selaparang)	68	Banyuwangi	66	233	32,014
	17	Palangkaraya (Panarung)	97	Rabuh Hampang	101	256	25,538
	18	Ternate (Babullah)	140	Buliseraní	141	88	18,346
	19	Palembang (Talangbetutu)	34	Lubuk Linggan	33	176	17,910


Table-5.1 Potential New Feeder Air Route

Note * : Each new air route number can be referred on Figures-4.2 & 4.3 ** : Passenger demand shown in the upper and lower rows represent demand in 1994 and 2004, respectively.

Table-5.2 Potential New Trunk Air Route:

Year		New Trunk	Distance	Passenger Demand **			
	No. *	City Name (Airport Name)	Zone No.	City Name (Airport Name)	Zone No.	(Km)	(Trips)
	1	Banda Aceh (Blang Bintang)	2	Jakarta (Soekarno Hatta)	43	1,803	124,584 156,618
	2	Jakarta (Soekarno Hatta)	43	Ambon (Patimura)	149	2,414	119,894 160,614
	3	Jakarta (Soekarno Hatta)	43	Manado (Sam Ratulangi)	114	2,208	106,160 142,794
	4	Malang (Malang)	65	Denpásar (Ngurah Rai)	67	295	90,938 107,122
1001	5	Pekanbaru (Simpang Tiga)	25	Yogyakarta (Adi Sucipto)	60	1,372	90,402 103,510
1994	6	Surabaya (Juanda)	63	Tarakan (Tarakan)	106	1,279	73,982
	7	Malang (Malang)	65	Banjarmasin (Samsudin Noor)	103	571	73,106 76,160
	8	Jakarta (Soekarno Hatta)	43	Tarakan (Tarakan)	106	1,594	55,412 77,992
:	9	Jakarta (Soekarno Hatta)	43	Mataram (Selaparang)	68	1,075	41,372 81,910
	10	Bandung (H.Sastaranegara	51	Denpasar (Ngurah Rai)	67	880	33,488 40,102
*##2#2	11	Surabaya (Juanda)	63	Kupang (El Tari)	81	1,297	74,078
l	12	Medan (Polonia)	10	Surabaya (Juanda)	63	1,954	66,356
	13	Surabaya (Juanda)	63	Kendari (W.Monginsidi)	131	1,185	64,290
	14	Jakarta (Soekarno Hatta)	43	Kendari (W.Monginsidi)	131	1,792	58,950
2004	15	Yogyakarta (Adi Sucipto)	60	Balikpapan (Sepinggan)	110	1,023	50,528
	16	Malang (Malang)	65	Balikpapan (Sepinggan)	110	890	-46,200
	17	Medan (Polonia)	10	Denpasar (Ngurah Rai)	67	2,284	44,724
	18	Semarang (A. Yani)	55	Balikpapan (Sepinggan)	110	952	43,340
	19	Medan (Polonia)	10	Bandar Lampung (Branti)	42	1,229	32,560
	20	Medan (Polonia)	10	Bandung (H.Sastaranegara	51	1,511	29,646


Note * : Each new air route number can be referred on Figures-4.2 & 4.3 ** : Passenger demand shown in the upper and lower rows represent demand in 1994 and 2004, respectively.

LEGEND

ØØ	New Trunk Air Routes	
(2) NE GANNES (2)	New Feeder Air Routes	
•	Existing Air Routes	
•	Major Airports	
۵	Existing Airport with Scheduled Flight	
۲	Zone without Scheduled Flight Airport	

Figure-5.2 Potential New Air Routes for 1994

LEGEND

(francisco and francisco and f	New Trunk Air Routes
@:##########@	New Feeder Air Routes
e •	Existing Air Routes
•	Major Airports
٠	Existing Airport with Scheduled Flight
۲	Zone without Scheduled Flight Airport

Figure-5.3 Potential New Air Routes for 2004