
### APPENDIX IV

## RIVER AND RIVER BASIN FEATURES



# Appendix IV RIVER AND RIVER BASIN FEATURES

## Contents

| :  |      |                                                   | <u>Page</u> |
|----|------|---------------------------------------------------|-------------|
| 1. | Feat | ures of River and River Basin                     | . IV-1-1    |
|    | 1.1  | Catchment Area                                    | . IV-1-1    |
|    | 1.2  | River Length                                      | . IV-1-1    |
|    | 1.3  | River Cross Sections                              | . IV-1-2    |
| '  | 1.4  | River Profile                                     | . IV-1-3    |
| 2. | Trib | outaries and Sub-Basins                           | . IV-2-1    |
| 3. | Capa | city of River Channel                             | . IV-3-1    |
|    | 3.1  | River Survey in 1987                              | . IV-3-1    |
|    | 3.2  | Comparison of the Cross Sections in 1983 and 1987 | . IV-3-1    |
|    | 3.3  | Method of Analysis                                | . IV-3-3    |
|    | 3.4  | Capacity of Present River Channel                 | . IV-3-4    |
|    |      | 3.4.1 Downstream of Chosica                       | . IV-3-4    |
|    | •    | 2.4.2 Upstream of Chosica                         | . IV-3-4    |

## List of Table (Appendix IV)

## Table No.

#### Title

Table IV-3-1 Carrying Capacity of Existing River Channel

## List of Figure (Appendix IV)

| Figure No.  | <u>Title</u>                                  |
|-------------|-----------------------------------------------|
| Fig. IV-1-1 | Distance from River Mouth                     |
| Fig. IV-1-2 | Rimac River seen in Maps (1), Map of 1821     |
| Fig. IV-1-3 | Rimac River seen in Maps (2), Map of 1881     |
| Fig. IV-1-4 | Rimac River seen in Maps (3), Map of 1907     |
| Fig. IV-1-5 | Rimac River seen in Maps (4), Map of 1935     |
| Fig. IV-1-6 | Rimac River seen in Maps (5), Latest Map      |
| Fig. IV-1-7 | Longitudinal Profiles of the Rimac River and  |
|             | the Sta. Eulalia River                        |
| Fig. IV-3-1 | Longitudinal Profile of the Rimac River       |
| Fig. IV-3-2 | Characteristics of Existing River Channel     |
| Fig. IV-3-3 | Longitudinal Profile of Water Level and River |
|             | Channel                                       |
| Fig. IV-3-4 | Longitudinal Profile from the Confluence to   |
|             | Songos (around 8 km downstream of Matucana)   |

## APPENDIX IV RIVER AND RIVER BASIN FEATURES

#### 1. FEATURES OF RIVER AND RIVER BASIN

#### 1.1 Catchment Area

It is difficult to measure the total catchment area of the Rimac river basin since the basin's boundary in the downstream area is not clear by the maps available at present. However the total catchment area is measured by the map of 1/100,000 in scale by assuming basin's boundary of downstream area. The results are obtained as follows.

- (A) Total Catchment area: 3,230 Km<sup>2</sup>
- (B) At Confluence of the Rimac river and the Sta. Eulalia river: 2,250 Km<sup>2</sup>
  - (a) The Rimac river: 1,230 Km<sup>2</sup>
  - (b) The Sta. Eulalia river: 1,020 Km<sup>2</sup>

#### 1.2 River Length

In regard to the river length, it is also difficult to measure the accumulate length as the river meanders and the river channel course is frequently changed in some stretches with comparatively wide river course. However, the river length was measured by using the map of 1/25,000 in scale. The approximate river length from the river mouth at major points is shown in Fig. IV-1-1 and the distances at major points are as follows:

- (A) At Confluence of the Rimac river and the Sta. Eulalia river: Approx. 56 Km.
- (B) At Cocachacla: Approx. 71 Km.
- (C) At Surco: Approx. 84 Km.
- (D) At Matucana: Approx. 91 Km.
- (E) At San Mateo: Approx. 107 Km.
- (F) At Chicla: Approx. 115 Km.
- (G) Total length of the Rimac river
  - (a) Quebrada Antaranra 129 Km.
  - (b) Quebrada Pucacocha 132 Km.
- (H) At Confluence of the Sta. Eulalia river and the Acobamba river: Approx. 39 Km. (from the confluence with the Rimac river)

- (I) Total length of the Sta. Eulalia river (from the confluence with the Rimac river): Approx. 56 Km\*
  - \* Up to the outlet of the diversion tunnel from the Mantaro river.

#### 1.3 River Cross Sections

The river width is generally narrow except Chaclacayo-Atarjea stretch of about 20 Km long due to the comparatively high velocity of river flow. It is difficult to mention about the river width of every representative stretches as the river width changes distance by distance. However, the river width with the ordinary flow is roughly introduced as follows:

- (A) Upstream Stretch from Matucana: 3-10 m
- (B) Matucana Chosica: 10-40 m
- (C) Chosica Chaclacayo: 25-100 m
- (D) Chaclacayo Atarjea: 50-300 m
- (E) Atarjea River Mouth: 10-200 m

Note: The width shown above is not obtained by the drawings or calculation but by the judgement by sight.

The width of the Sta. Eulalia is not shown but similar to the upstream stretches from Chosica in the Rimac river.

The shape of river cross section is remarkably changed even in a short stretch. Where the river is wide, the banks are usually low and where the river channel is narrow, the banks are usually high. In other words, it seems that the river cross sections are generally balanced from the viewpoint of flow capacity. However, the remarkable variations of river cross section seem to be not desirable for the balance of sediments transportation and also for the flow capacity at the time of flood.

In Lima city, in the most downstream stretch of less than 15 km, there are some narrow stretches caused by natural force as well as actions of inhabitants. The typical case is seen at about 10 km from the river mouth. This gorge has the width of only 15-20 m between both banks and the steep cliffs on both banks have the height of about or more than 15 m.

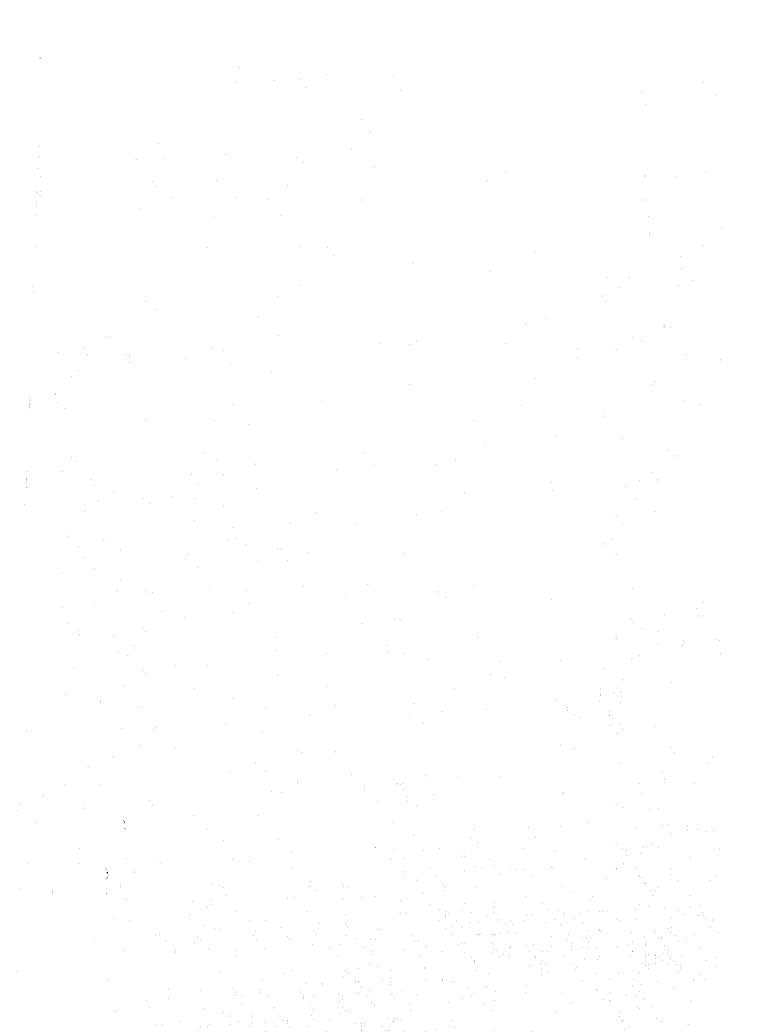
As far as seen in old maps, the Rimac river was pretty wide in the stretch of present city area. It can be imaginable that the people embanked the river channel little by little and consequently the river width became narrow. The deep cliffs were possibly created by the natural action of river flow. The action to make narrow the river channel seems to be continued even at present. Such case can be seen in some places where the

large piles of earths with rubbish are dumped to the river channel.

The Plans of river channel in Lima city area shown in some old maps as well as in the latest map are to be attached as follows:

(a) Map of 1821 (Fig. IV-1-2) (b) Map of 1881 (Fig. IV-1-3) (c) Map of 1907 (Fig. IV-1-4) (d) Map of 1935 (Fig. IV-1-5) (4) Latest map (Fig. IV-1-6)

#### 1.4 River Profile


The gradient of river bed is remarkably steep as upstream ends of river and tributaries are surrounded by the mountains of which top is higher than EL.5,000 m and the river length is only 130-140 Km at the longest stream. The gradient of river bed is not constant. That is, even in the mountain area there are stretches with comparatively gentle slope and in the downstream areas there are stretches with comparatively steep slope. However, the gradient is naturally steeper in the upstream stretches. The average gradient of river bed of the Rimac river obtained from the results of the past river survey is summarized as follows.

|     |      |    |      |    |           | and the second s |          |
|-----|------|----|------|----|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| (A) | 0    |    | 10   | Km | (Lima)    | 0.010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (=1/104) |
| (B) | 10   | -  | 20   | Km |           | 0.016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (=1/64)  |
| (C) | 20   | _  | 30   | Km |           | 0.016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (=1/61)  |
| (D) | 3.0  | _  | 40   | Km |           | 0.017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (=1/59)  |
| (E) | 40   | -  | 50   | Km |           | 0.018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (=1/55)  |
| (F) | 50   | -  | 60   | Km | (Chosica) | 0.026                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (=1/38)  |
| (G) | - 60 |    | 70   | Km |           | 0.031                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (=1/ 32) |
| (H) | 70   | _  | 80   | Km |           | 0.039                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (=1/26)  |
| (I) | 80   | -  | 90   | Km |           | 0.054                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (=1/19)  |
| (J) | :90  | Kı | n uj | 9  |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •        |
|     |      |    |      |    |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |

The river profiles obtained from the existing report are shown in Fig. IV-1-7. The detailed river profiles based on the drawings of river survey prepared in 1983 are to be attached in Section 3 as the data are used for hydraulic analysis of river channel.

As the gradient of river bed is steep, the river generally does not meander remarkably though the gentle meandering is seen in almost every stretch.

As one of the particular feature of the river basin, there are many lakes in the upstream areas, generally on the high land of EL. 4,500-5,000 m and some of them are the origins of the tributaries.



#### 2. TRIBUTARIES AND SUB-BASINS

As seen in the map of the Rimac river basin, there are many tributaries joining into the main stream. There are generally two kinds of tributaries classified by the size as follows.

- (a) Rio : Big catchment area with much discharge; generally there is flowing water all year long.
- (b) Quebrada: Small catchment area or big catchment area with less discharge; generally, there is no flow in the dry season.

There are only five tributaries which are called Rio.

- (a) Rio Sta. Eulalia +
- (b) Rio Acobamba (Rio Sacsa) ++
- (c) Rio Blanco
- (d) Rio Pillihua ++
- (e) Rio Suncha ++
  - + Main stream of Rio Sta. Eulalia changes its name at the upstream; Rio Macao and Rio Pallca.
  - ++ Tributary of Rio Sta. Eulalia.

Though the tributary with catchment area of almost two times of that of Rio Blanco flows into the Rimac river at the downstream stretch from the left bank, it is called as Quebrada Jicamarca due to its comparatively small discharge.

Among the above big tributaries, the Rio Sta. Eulalia, joining into the Rio Rimac at the upstream end of Chosica town, is the tributary of which catchment area is equivalent to the upstream basin of the Rimac river in scale.

The river basin can be divided by sub-basins of tributaries. However, it is difficult and too much complicated to divide the basin by the very small tributaries including gullies. Therefore it is decided to classify the basin into the following two types.

- (a) Tributary type area (Qda Area)
- (b) Mountain slope area (Spe Area)

The detailed descriptions for the classification are to be made in Appendix X as the division of basin is required for the study of structural plan including the estimation of probable disaster.

As shown in Appendix X, the division is made as follows:

(A) Qda Area: 76 areas (B) Spe Area: 71 areas

The features of Qda Areas as well as Spe Areas are also shown in Appendix X. However the distribution of main features is to be summarized as follows:

#### (A) Distribution of Catchment Area

| Range                 | Number of<br>of Oda Area | Number of<br>Spe Area |
|-----------------------|--------------------------|-----------------------|
| $CA < 5 \text{ km}^2$ | 11                       | 36                    |
| $5 \le CA < 10$       | 22                       | 22                    |
| $10 \le CA < 15$      | 12                       | 7                     |
| $15 \le CA < 20$      | 8 2 2 2 2 2 2 2          | 1                     |
| $20 \le CA < 25$      | 3                        | 2                     |
| $25 \le CA < 30$      | 3                        | 0                     |
| $30 \le CA < 50$      | 6                        | 0                     |
| 50 ≤ CA <100          | 5                        | 1                     |
| 100 ≤ CA              | 6                        | 2                     |
| Total                 | 76                       | 71                    |

## (B) Distribution of Height

| Range                 | Number of<br>Oda Area | Number of<br>Spe Area |  |
|-----------------------|-----------------------|-----------------------|--|
|                       |                       |                       |  |
| H < 500 m             | 0                     | 2                     |  |
| $500 \le H < 1,000$   | 7                     | 23                    |  |
| $1,000 \le H < 1,500$ | 15                    | 25                    |  |
| $1,500 \le H < 2,000$ | 14                    | 12                    |  |
| $2,000 \le H < 2,500$ | 23                    | 6                     |  |
| 2,500 ≤ H < 3,000     | 12                    | o                     |  |
| $3,000 \le H < 3,500$ | 3 %                   |                       |  |
| 3,500 ≤ H             | 2                     | <b>0</b>              |  |
| Total                 | 76                    | 68*                   |  |

## (C) Distribution of Slope

| Range                   | Number of<br>Oda Area | Number of<br>Spe Area |
|-------------------------|-----------------------|-----------------------|
|                         |                       |                       |
| s < 5°                  | 2                     | 0                     |
| 5 ≤ S < 10°             | 9                     | 0                     |
| 10 ≤ S < 15°            | 16                    | 0.                    |
| $15 \le S < 20^{\circ}$ | 20                    | 11                    |
| 20 ≤ S < 25°            | . 9                   | 15                    |
| 25 ≤ S < 30°            | 8 .                   | . 22                  |
| 30 ≤ S < 35°            | 6                     | 17                    |
| 35 ≤ S < 40°            | 6                     | 3                     |
| Total                   | 76                    | 68*                   |

<sup>\*</sup> Downstream 3 Spe Areas are not counted.

## (D) Distribution of Horizontal Length\* of River

| Range           | Number of<br>Oda Area |  |  |
|-----------------|-----------------------|--|--|
|                 | 20                    |  |  |
| L < 5 Km        | 30                    |  |  |
| $5 \le L < 10$  | 33                    |  |  |
| $10 \le L < 15$ | 4                     |  |  |
| $15 \le L < 20$ | 5                     |  |  |
| 20 ≤ L          | 4                     |  |  |
| Total           | 76                    |  |  |

<sup>\*</sup> From the confluence to the end of river-like section.

## (E) Distribution of Horizontal Length of Slope

| Range                 | Number of<br>Spe Area |  |
|-----------------------|-----------------------|--|
| L < 500 m             | 0                     |  |
| $500 \le L < 1,000$   | 4                     |  |
| $1,000 \le L < 1,500$ | 6                     |  |
| $1,500 \le L < 2,000$ | 12                    |  |
| $2,000 \le L < 3,000$ | 28                    |  |
| 3,000 ≤ L             | 18                    |  |
| Total                 | 68                    |  |

## (F) Distribution of Highest Elevation

| Range                  | Number of<br>Oda Area | Number of<br>Spe Area |
|------------------------|-----------------------|-----------------------|
| EL <1,000 m            | <b>o</b>              | 0                     |
| $1,000 \le EL < 2,000$ | 5                     | 16                    |
| $2,000 \le EL < 3,000$ | 11                    | 12                    |
| $3,000 \le EL < 4,000$ | 8                     | 18                    |
| 4,000 ≤ EL             | 52                    | 25                    |
| Total                  | 76                    | 71                    |

#### 3. CAPACITY OF RIVER CHANNEL

#### 3.1 River Survey in 1987

In accordance with the agreement on the condition of the undertaking by the Peruvian Government, a river survey of the Rimac river was carried out by the Peruvian side. Main purpose of this survey was to search the present river condition to establish a proper river improvement plan which would be formulated as a part of the Disaster Prevention Master Plan of the Rimac river.

The survey result consisting of 10 sheets of drawings (50 river cross sections in total) were handed over the Study Team at the end of August, 1987. Although the specification of the survey given by the Study Team instructed the survey range from the river mouth to Matucana, the location of cross sections prepared by the Peruvian side ranges from 3.5 km upstream of the river mouth to 1.5 km downstream of Pte. Los Angeles in Chacracayo.

While the Study Team stayed in Lima in September 1987 for submittal of the Interim Report, the Study Team requested to expedite the survey for remaining sections and time limit of handing over the survey result to the Study Team was discussed and accepted to be at the end of October, 1987. However, the drawings in the remaining stretch had not been taken over to the Study Team.

After checking the drawings, it was concluded that the river survey result in 1983 by P & V Ingenieros could be utilized for computation of carrying capacity and making river improvement plan. The reasons are as follows:

- (1) Number of cross sections and covering range of the river channel obtained by the survey in 1987 is judged insufficient to estimate the carrying capacity and to make a river improvement plan.
- (2) It was confirmed by the checking inspection in June and July 1987 that the result of survey in 1983 are still available to use except several sections where a disordered disposal of garbage/soil is seen.

## 3.2 Comparison of the Cross Sections in 1983 and 1987

The location of the cross sections in 1987 can be accurately identified on the topological maps of scale 1 to 5,000 because the coordinates (X, Y values) of the end points of respective line are noted on the drawings. On the other hand, the location of survey line on the drawings prepared in 1983 is shown in the same scale map without any description of coordinates.

Therefore, a strict comparison of the two results for cross sections at the same location is difficult.

However, the river bed elevations of two survey results can be compared each other by longitudinal profiles along the river channel. The result of the comparison is summarized as follows:

- (1) Upstream reach of La Atarjea intake site
  River bottom elevation between the both sections is
  more or less similar and the difference is within
  several ten centimeters.
- (2) From Pte. Ejercito to Pte. Huascar
  The difference of the elevations of the lowest river
  bed between the two surveys varies within 2.5 m.
- (3) From Pte. Dueñas to Pte. Ejercito
  This stretch includes narrow portion in the central
  part of Lima. The lowest river bed elevation by the
  survey in 1987 is higher than that in 1983 by around
  1.5 m to 3.0 m in this stretch. However, it can be
  said that large deposit in such a short period of some
  4 years can be hardly considered as flow velocity
  seems comparatively high in the narrow portion. Thus,
  it is deemed that a difference of the base point of
  the two surveys brought about such a discrepancy.
- (4) Downstream reach of Pte. Faucett
  (Around 1.5 km reach)
  The profile of 1987 is about 1.0 m to 2.0 m higher than that of 1983.

As a whole, it is considered that the river bed at downstream reach in Lima metropolitan area rose up about 2.0 m at the most. Although the result of two river surveys has differences as mentioned above, the carrying capacity of the main stream was estimated based on the cross sectional profiles in 1983. The reduction of the flow area due to the deposit in the stretch at downstream of Pte. Faucett was taken into consideration for the estimation of work quantity (for dredging work) described in Appendix XI, Supporting Report III.

The location of the survey line in 1983 and 1987 are shown in the Data Book. All the profiles of cross section is attached behind the location maps of survey line in the Data Book as well.

Anyhow, further detailed survey is recommendable for next stage planning of river improvement in the Rimac river. The periodical survey will be required to understand the deposit/erosion condition which is essential information for the planning.

#### 3.3 Method of Analysis

The carrying capacity of the Rimac river in the stretch downstream from Chosica to the river mouth is estimated by non-uniform flow calculation by using cross sectional profiles made by P y V Ingenieros in 1983.

Available cross sectional profiles cover the river channel from near Pte. del Emisor (1.1 Km upstream from the river mouth) to Moyopampa in Chosica and 199 profiles in total are available. The average interval of neighboring sections is approximately 200 m. Longitudinal profile along the main stream is shown in Fig. IV-3-1.

Within the second field investigation period in June and July 1987, the profiles were roughly checked and, as a result, the shape of some profiles were modified. Major changes were identified at some locations as below:

- (a) Downstream of narrow sections between Pte. Faucete and Pte. Universitario (at Section No. 25, 26 and 27, disordered disposal of garbage reduces the section).
- (b) Between Pte. Ejercito and Pte. Piedra (at Section No. 44 and 47, same condition as (a))
- (c) Between Pte. Piedra and Pte. Huascar (at Section No. 52, 53, 55, 57, 58 and 59, existing parapet wall is added in those sections).
- (d) At approximately 1 Km downstream of Pte. Peatonal (at Section No. 69, a large-scale disordered disposal of garbage at right bank can be seen).
- (e) Between La Atarjea intake weir site and Pte. Huachipa (at Section No. 86, 87, 88, 89, 90 and 91, a continuous levee has been constructed at right bank with extension of highway road).

For the upstream reach of Chosica town, typical cross sectional profiles are available at 12 locations between Pte. Ricardo Palma and Matucana town. The length along the river channel is approximately 35 Km. By means of the typical profiles, the carrying capacity along the stretch upstream of Chosica was estimated by uniform flow calculation. Longitudinal profile along the Rimac river from Chosica to Matucana is shown in Fig. IV-3-2. In the profiles above, the line of river bed was drawn based on the topographical map of 1 to 5,000 in scale.

Considering the condition of the river channel, roughness coefficient, n, was assumed at 0.035 for the sections between the river mouth and La Atarjea intake weir site, and at 0.040 between La Atarjea intake weir site and the upstream end in Chosica town. On the other hand, 0.06 was applied for the river channel of upstream of Chosica as comparatively large boulders lie in the river bed. It is deemed that average size of river bed materials in upstream reach is bigger than that in downstream reach of Chosica. At each section, same value was applied along the perimeter of low and high water river beds.

It is judged that the tidal fluctuation of the sea water level near the river mouth can be neglected for non-uniform flow calculation. That is, the back water calculation is not required in the Rimac river of which profile is very steep as about one to 100 even at the river mouth.

### 3.4 Capacity of Present River Channel

#### 3.4.1 Downstream of Chosica

Based on the non-uniform flow calculation, discharge - water level curves were prepared at all points where cross sections are available. By means of these curves, the carrying capacity along the main stream between the river mouth and Chosica was obtained. The results are tabulated in Table IV-3-1. Further, width, depth and the capacity in the channel are graphically shown in Fig. IV-3-2. The capacity can be approximately summarized as below.

|    | Stretches                             | Range of capacity (m³/sec) |  |  |
|----|---------------------------------------|----------------------------|--|--|
|    |                                       | 250* - 800 +               |  |  |
| 1. | River mouth - Pte. Piedra             | 250^ - 800 +               |  |  |
| 2. | Pte. Piedra - La Atarjea intake       | 570 - 800 +                |  |  |
| 3. | La Atarjea intake - Pte. Ñaña         | 400* - 800 +               |  |  |
| 4  | Pte. Naña - Pte. Huampani             | 350* - 800 +               |  |  |
| 5. | Pte. Huampani - Pte. La Cantuta       | 150* - 600                 |  |  |
| 6. | Pte. La Cantuta - Moyopampa (Chosica) | 150* - 400                 |  |  |

Remarks: \*, Including a short stretch having less capacity
+, Including a short stretch having more capacity

A water level profile in case of 100 year probable flood of  $660~\rm{m}^3/\rm{sec}$  at Chosica is shown in Fig. IV-3-3 with profiles of the river bed and profiles of right and left banks.

## 3.4.2 Upstream of Chosica

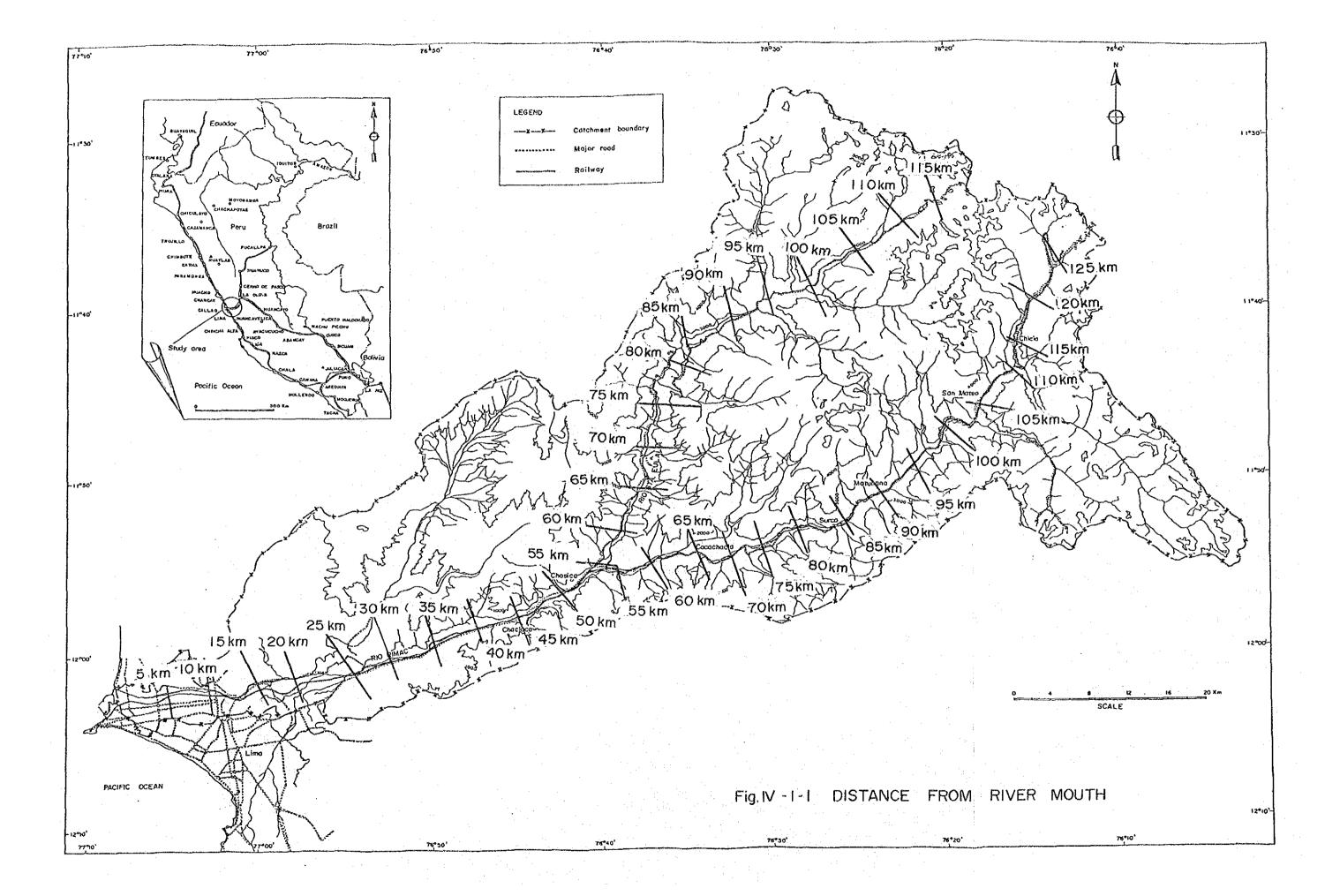
In the stretches upstream side from Chosica, the typical profiles at some representative stretches are available. Therefore, the capacity can be roughly confirmed by uniform flow calculation.

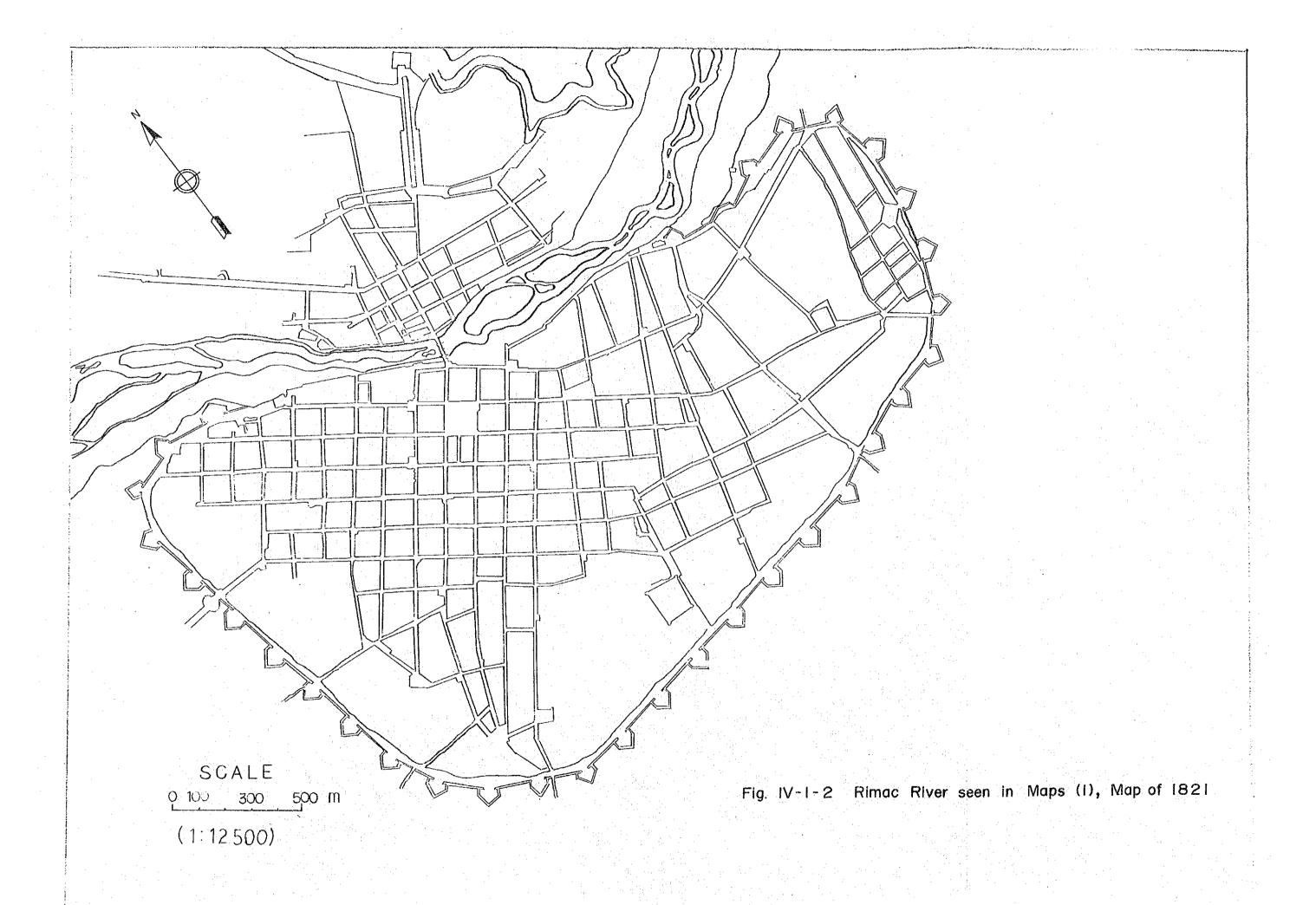
The water levels of 100 year probable flood (Q =  $310~\text{m}^3/\text{sec}$ ) are calculated in the stretches where the typical cross section is available. The results are shown in Fig. IV-3-4. The capacity in the channel is summarized as follows:

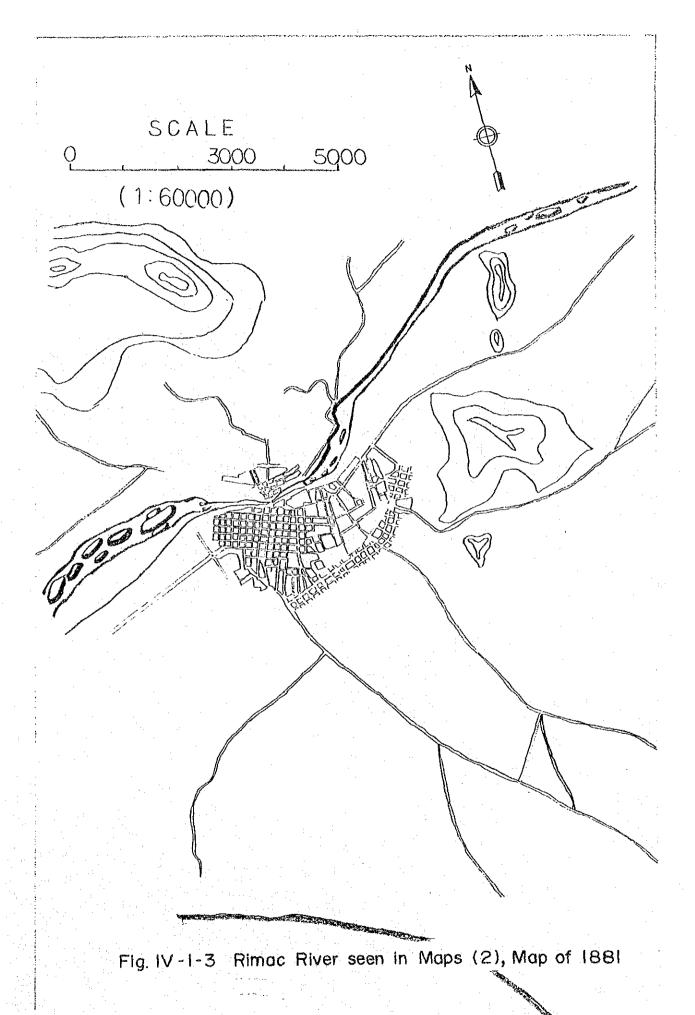
|       | Distance from      | Range of                   |
|-------|--------------------|----------------------------|
| No.   | Pte. Ricardo Palma | carrying capacity (m3/sec) |
| 1.    | 0.1 - 2.0  km      | 800 +                      |
| 2.    | 6.0 - 7.5  km      | 800 +                      |
| 3.    | 7.5 - 8.0 km       | 800 +                      |
| 4.    | 8.0 - 9.0  km      | 330                        |
| 5.    | 9.0 - 10.5  km     | 800 +                      |
| 6.    | 15.0 - 16.5 km     | 650                        |
| 7.    | 25.0 - 26.5 km     | 800 +                      |
| . 8., | 26.0 - 27.0 km     | 800 +                      |
| 9.    | 27.0 - 29.0 km     | 800 +                      |
| 10.   | 32.8 - 33.0 km     | 560                        |
| 11.   | 33.0 33.6 km       | 800 +                      |
| 12.   | 34.0 - 35.0 km     | 800 +                      |

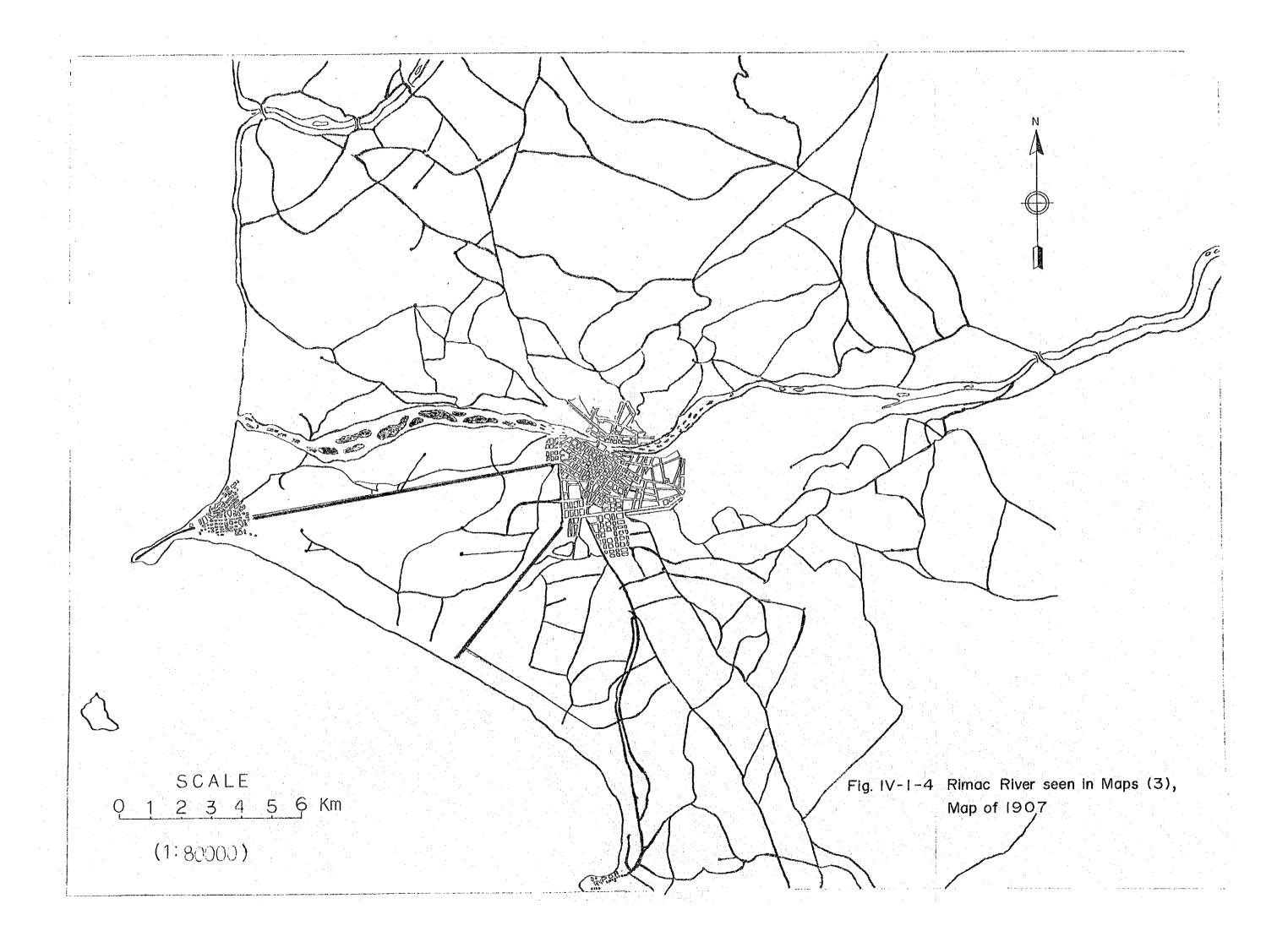
Remarks: +, Having capacity over 800 m<sup>3</sup>/sec.

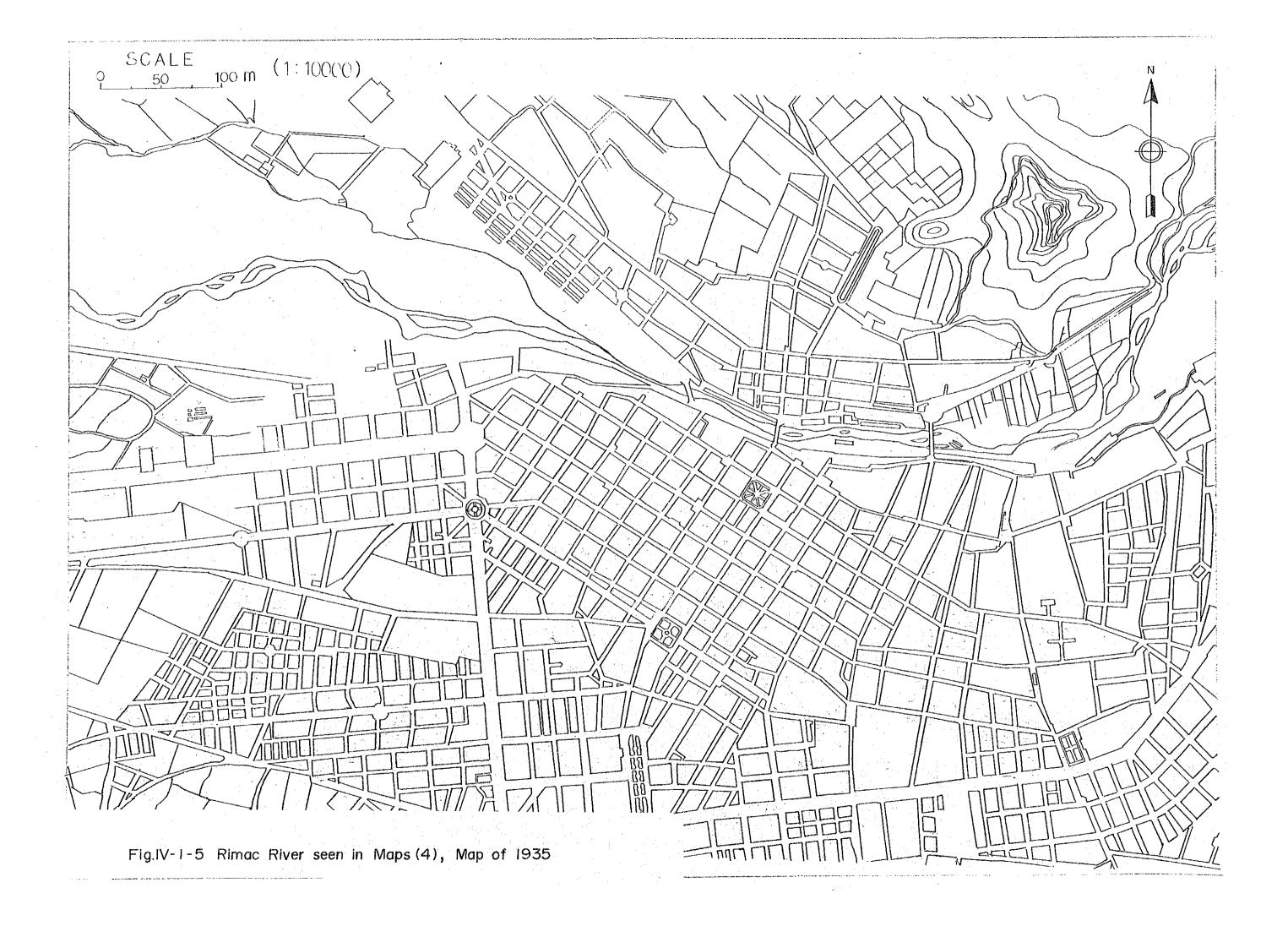
## Tables

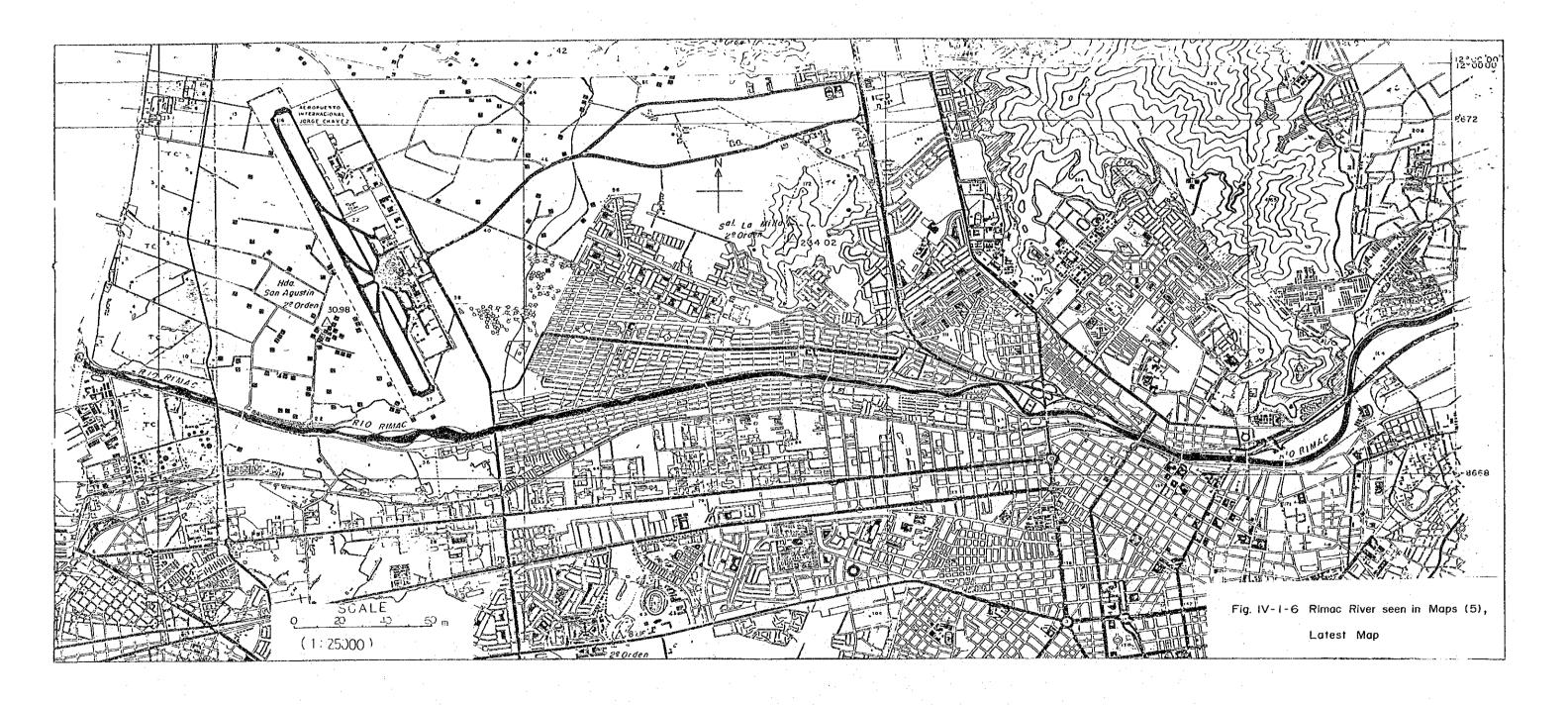

Table IV-3-1 CARRYING CAPACITY OF EXISTING RIVER CHANNEL (1/2)

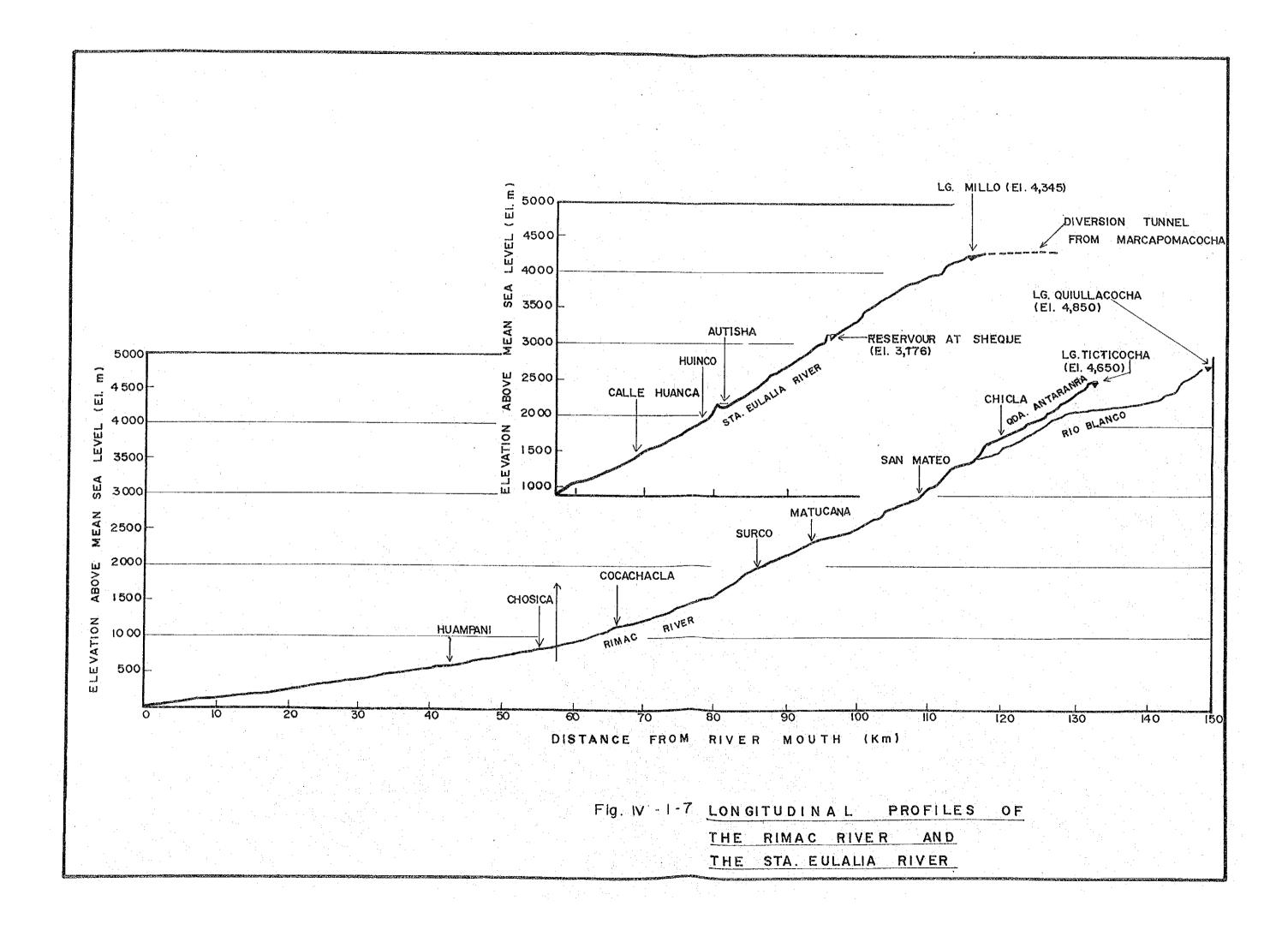

| e n      | listance       | Width    | Depth      | Elevat.<br>bookfu |                | Carrying capacity | Con        | Distance | Width      | Destile      | Elevat:<br>bookful | U (m)          | Carrying            |
|----------|----------------|----------|------------|-------------------|----------------|-------------------|------------|----------|------------|--------------|--------------------|----------------|---------------------|
| No.      | (m)            | (n)      | (m)        | left              | Right          | (m3/sec)          | lb.        | (m)      | (m)        | Depth<br>(m) | left               |                | camcity<br>(m3/sec) |
| 1        | 0              | 50       | 5.8        | 13.0              | 13.0           | 1008              | 51         | 115/0    | 78         | 7.9          | 154.3              | 15/1.3         | 100)                |
| 2        | 270            | 64       | 2,9        | 13.0              | 12.3           | 400               | 52         | 11760    | 41         | 4.0          | 153.3              | 153.3          | £004                |
| 3        | 615            | 67       | 4.6        | 16.2              | 16.2           | 933) F            | . 53       | 15103    | 50         | 5.1          | 158,7              | 159.7          | 4003                |
| 4        | 920            | 62       | 2.5        | 16.5              | 18.7           | 350               | 5/         | 12255    | 100        | 8.4          | 164.8              | 164.8          | 1003                |
| 5        | 1050           | 60       | 4.0        | 22.2              | 19.0           | 1003              | 55         | 12515    | 46         | 3.0          | 162.0              | 164.6          | 570                 |
| 6        | 1205           | 26       | 3.5        | 22.5              | 19.9           | 330               | 56         | 12675    | . 89       | 7.7          | 163.2              | 163,2          | 4003                |
| 7        | 1480           | 102      | 3.1        | 21.3              | 26.2           | 260               | 57         | 12825    | 63         | 3.9          | 165.8              | 165.7          | 4003                |
| 8        | 1765           | 35       | 3.5        | 25.4              | 24.2           | 480               | 53         | 13115    | 70         | 3,9          | 163.3              | 173.8          | 1003                |
| . 9      | 2000           | 113      | 2.6        | 26.0              | 25.8           | 330               | 59         | 13515    | 60         | 4.1          | 172.4              | 178.1          | 1003                |
| 10       | 2200           | 141      | 2.1        | 28.0              | 27.0           | 450               | ω          | 13925    | 78         | 5.8          | 179.0              | 179.0          |                     |
| 11       | 2515           | 126      | 2.9        | 31.1              | 30.2           | 1003              | 61         | 14435    | 75         | 3.8          | 18/4.1             | 189.2          | 10.0                |
| 12       | 2800           | 125      | 3.0        | 35.5              | 33.0           |                   | 62         | 14695    | 73         | 3.9          | 183.8              | 183,3          | 800a                |
| 13       | 3030           | 130      | 2.5        | 33.3              | 36.3           | 1003              | . 63       | 15150    | 70         | 4.0          | 194.1              | 196,7          | 1003                |
| 16       | 3215           | 120      | 4.3        | 40.1              | 41.2           | 800F              | 6/1        | 15/65    | 74         | 4.0          | 193.5              | 200.2          | 1003                |
| 15       | 3/20           | 97       | 3.6        | 43.4              | 42.0           | 1000              | 65         | 15715    | 8)         | 5,4          | 202.9              | 202.9          | 9001                |
| 16       | 3655           | 82       | 3.3        | 47.4              | 43.1           | 610               | . 66       | 16065    | 72         | 6.8          | 210.5              | 208.6          | 830F                |
| .17      | 37/45          | 62       | 2.9        | <i>U</i> 1.7      | 44,7           | 220               | 67         | 16365    | 71         | 7.9          | 213.6              | 214.2          | 800 <sub>F</sub>    |
| 18       | 3350           | 59       | 4.0        | 47.4              | 47.4           | 4008              | 63         | 16575    | 49         | 4.1          | 212.7              | 215.0          | 4008                |
| 19       | 3330           | 47       | 1.2        | 49.5              | 45.8           | 150               | 69         | 16790    | 55         | 7.2          | 220.0              | 225.0          | 1003                |
| 20       | 4220           | 82       | 5.0        | 51.3              | 52.4           | 1008              | 70         | 16935    | 63         | 8.3          | 225.4              | 226,7          | 800 F               |
| 21       | 4395           | 65       | 5.0        | 56.0              | 53.1           | 1008              | 71         | 17585    | 70         | 7.3          | 230.0              | 231.4          | $8\mathfrak{D}_{F}$ |
| 22       | 4630           | 93       | 4.4        | 55.6              | 55.7           |                   | 72         | 17835    | 62         | 8.3          | 237.0              | 236.0          | 1008                |
| 23       | 4920           | 64       | 5.3        | 61.3              | 59.0           |                   | 73         | 18155    | 90         | 5.8          | 2/0.0              | 238.8          | 4008                |
| 24       | 5160           | 57       | 5.5        | 64.0              | 62.0           | 800⊦              | 74         | 18395    | 104        | 5.4          | 2/2.0              | 2/14,5         | 800t                |
| 25       | 5/30           | 47       | 8.6        | 67.7              | 69.7           |                   | : 75       | 18685    | 163        | 7.0          | 2/19.0             | 249.0          | 4003                |
| 26       | 5665           | 35       | 6.2        | 67.0              | 67.8           |                   | 76         | 18785    | 203        | 5.4          | 2/8.4              | 249.0          | 1008                |
| . 27     | 5970           | 55       | 7.3        | 70.6              | 70.6           | 1000 F            | 77         |          | 163        | 5.1          | 2/19,4             | 2/19.1         | 1003                |
| 28       | 6110           | 33       | 5.6        | 71.7              | 71.1           | 4008              | 78         | 18955    | 206        | 7.1          | 260.7              | 252,4          | £001+               |
| 29       | 62/0           | 45       | 7.3        | 77.2              | 75.5           | 1003              | 79         | 19050    | 209        | 6.2          | 262.0              | 252.2          | 800F                |
| 30       | 6530           | 53       | 9.8        | 80.5              | 80.7           | 1000              | . 80       | 19145    | 147        | 7.3          | 257.2              | 254.8          | 830r                |
| 31       | 6870           | 41       | 9.5        | 83.6              | 84.0           | 800⊦              | 81         | 19240    | 91         | 5.8          | 258,0              | 251.8          | 8.00⊩               |
| 32       | 7140           | 23.      | 13,1       | 87.9              | 83.7           |                   | 82         | 19350    | 90         | 6.1          | 261.0              | 259.0          | 1003                |
| 33       | 7410           | 46       | 7,0        | 90.7              | 90.7           |                   | 83         | 19,00    | 70         | 7.6          | 26/1.6             | 264.6          | 8X0+                |
| 3/1      | 7690           | 36       | 9.0        | 93.1              | 9/.1           |                   | 84         | 19555    | .81        | 6.0          | 265.0              | 265,4          | 800r                |
| 35       | 8075           | 17       | 11.9       | 99.5              | 100.2          |                   | 85         | 19365    | 79.        | 3.1          | 265.8              | 264.0          |                     |
| 36       | 8230           | 27       | 14,5       | 103.0             | 103.2          |                   | 86         | 20165    | 237        | 2.3          | 275.1              | 269.5          | 570                 |
| 37       | 8510           | 31       | 15.1       | 105.7             | 107.4          |                   | 87         | 20065    | 235        | 3.3          | 283.6              | 277.8          | 1003                |
| 33       | 8720           | 18       | 15.9       | 103.5             | 109,2          |                   | 83         |          | 300        | 2.6          | 285.0              | 285.2          | £000+               |
| 39       | 9120           | 25       | 19.3       | 114.8             | 114.8          |                   | 89         |          | 232        | 2.3          | 291.2              | 292.0          | 800 F               |
| 40       | 9′00           | 16       | 17.6       | 115.3             | 115.3          |                   | 90         |          | 200        | 2.8          | 302.0              | 301.8          | 4003                |
| 4)       | 9700           | 31       | 2/18       | 126.8             | 126.8          |                   | 91         |          | 229        | 3.4          | 312.0              | 308.4          |                     |
| 42       | 9785           | 29       | 21.0       | 124.4             | 124.4          |                   | 92         |          | 243        | 3.7          | 323.1              | 318.2          | 800r                |
| 43       | 9965           | 50       | 4.8        | 127.8             | 127.8          |                   | 93         |          | 2/16       | 3.1          | 330.1              | 326.1          | 1003                |
| 44       | 10145          | 26       | 2.3        | 131.6             | 127.6          |                   | 93         |          | 315        | 1.2          | 338.9              | 331.7          | 530                 |
| 45       | 10365          | 27       | 3.0        | 131.4             | 131.0          |                   | :95<br>:96 |          | 300<br>320 | 1.2          | 3/1.0<br>3/0.0     | 3/0.2<br>3/8.8 | 5/10<br>150         |
| 46       | 10690          | 26       | 2.9        | 135.7<br>143.3    | 133.6<br>143.8 |                   | . 90<br>97 |          | 123        | 1.0<br>1.2   | 351.0              | 300.0          |                     |
| 47       | 11025          | 53<br>27 | 8.6        | 140.8             | 193,8          |                   | 98         |          | 97         | 2.9          | 368.5              | 363.5          | 520                 |
| 48<br>49 | 11155<br>11350 | 47       | 4.3<br>3.1 | 141.4             | 147.2          |                   | 99         |          | 209        | 2,2          | 379.0              | 375.0          | 6/0                 |
| 50       | 71220          |          | 3,1        | 7.17.4            | 41.44          | O.A.              | 100        |          | 166        | 4.1          | 384.0              | 383.8          | 4008                |
| - 30     | . 1.           | 4.5      | 1.00       |                   | 1000           |                   | ***        | ~~~~     | 100        |              | J. 71.0            |                |                     |


Table IV-3-1 CARRYING CAPACITY OF EXISTING RIVER CHANNEL (2/2)


| C. T  |                |              | D            | Elevat<br>banktu |                | Carrying             |       | N. 1            | 111 141      | N .1                                    | Elevati<br>bankful |                  | Corrying |
|-------|----------------|--------------|--------------|------------------|----------------|----------------------|-------|-----------------|--------------|-----------------------------------------|--------------------|------------------|----------|
| No.   | istance<br>(m) | Width<br>(m) | Depth<br>(m) | leít             | Right          | capacity<br>(m3/sec) | Sec 1 | Distance<br>(m) | Width<br>(m) | Depth<br>(m)                            | left               | Right            | (m3/sec) |
| 101   | 27630          | 151          | 4.4          | 393.0            | 392.4          | 1008                 | 151   | 46695           | 25           | 1.2                                     | 731.0              | 731.3            | 150      |
| 102   | 28100          | 172          | 1.7          | 404.5            | 399.5          |                      | 152   | 46390           | 25           | 3.0                                     | 734.8              | 734.9            | 190      |
| 103   | 28675          | 197          | 1.4          | 410.5            | 407,3          |                      | 153   | 47075           | 25           | 3,0                                     | 737,2              | 737,2            |          |
| 104   | 29175          | 257          | 2.6          | 419.7            | 418.2          |                      | 154   | 47270           | 35           | 1.0                                     | 738.3              | 739.1            |          |
| 105   | 29665          | 259          | 2.7          | 426.5            | 426.0          |                      | 155   | 47430           | 40           | 3.0                                     | 745.4              | 746.0            |          |
| 106   | 30155          | 220          | 1.4          | 439.0            | 434.0          |                      | 156   | 47955           | 25           | 1,1                                     | 754.3              | 752.5            |          |
| 107   | 30655          | 23/1         | 2.6          | 447.8            | 444.0          |                      | 157   | 48115           | 25           | 1.9                                     | 756.6              | 756.6            |          |
| 109   | 31145          | 103          | 1.5          | 451.8            | 452,0          |                      | 158   | 4830            | 25           | 1.0                                     | 7(0,8              | 760.0            |          |
| 100   | 31665          | 175          | 2.8          | 463.1            | 460.0          |                      | 159   | 48416           | 45           | 1.9                                     | 762.5              | 762.8            |          |
| 110   | 32165          | 261          | 43           | 470,0            | 470.0          |                      | 160   | 48464           | 50           | 1.2                                     | 763,8              | 765.5            |          |
| 111   | 32665          | 319          | 1,3          | 480.0            | 476.9          |                      | 161   | 48515           | 30           | 2.6                                     | 765,8              | 766.0            |          |
| 112   | 33165          | 283 -        | 1.5          | 439.9            | 486.6          |                      | 162   | 48561           | 30           | 1.9                                     | 766.2              | 767.6            |          |
| 113   | 33775          | 160          | 1.5          | 495,9            | 495.9          |                      | 163   | 48610           | 50           | 1.8                                     | 767.0              | 767.6            |          |
| 114   | 3/12/10        | 126          | 2.1          | 505.0            | 505.0          |                      | 164   | 48659           | ω            | 2.1                                     | 770,5              | 768.2            |          |
| 115   | 3/650          | 167          | 1.5          | 510.0            | 510.0          |                      | 165   | 48711           | 50           | 2.2                                     | 769.1              | 770,6            |          |
| 116   | 35130          | 100          | 1            | 518.1            | 518.1          |                      | 166   | 43762           | 50           | 1.8                                     | 770.6              | 769.1            |          |
| 117   | 35630          | 167          | ī            | 525.0            | 524.9          |                      | 167   | 48818           | 40           | 2.0                                     | 772.0              | 771.0            |          |
| 118   | 36160          | 114          | 1.3          | 535.0            | 535.0          |                      | 168   | 48331           | 50           | 1.2                                     | 772.8              | 771.8            | 160      |
| 119   | 36650          | 76           | 1.8          | 5/4.7            | 5/4.6          |                      | 169   | 48937           | 40           | 1.1                                     | 772.8              | 772,8            |          |
| 120   | 37120          | 60           | 2            | 553.2            | 560.3          |                      | 170   | 48991           | 40           | 1.1                                     | 775.3              | 774.3            | 220      |
| 121   | 37570          | 120          | 2.1          | 561.1            | 562.9          |                      | 171   | 49014           | 70           | 1.3                                     | 776.7              | 775.5            |          |
| 122   | 36070          | 120          | 1.2          | 572.5            | 568.1          |                      | 172   | 49097           | 70           | 1.4                                     | 778.8              | 777.3            |          |
| 123   | 39770          | 130          | 2.4          | 584.4            | 587.6          |                      | 173   | 49149           | 70           | 2.7                                     | 780.4              | 780.7            |          |
| 124   | 39039          | 151          | 3.2          | 589.5            | 592.4          |                      | 174   | 49198           | 40           | 1.3                                     | 779.5              | 779.5            |          |
| 125   | 39280          | 140          | 0.8          | 590.7            | 595.7          |                      | 175   | 49238           | 25           | 3.6                                     | 781.8              | 789.6            |          |
| 126   | 39360          | 110          | 2.5          | 594.4            | 599.0          |                      | 176   | 49291           | 30           | 4.8                                     | 78/1.3             | 794.5            |          |
| 127   | 39520          | 100          | 1.2          | 597,2            | 602.0          |                      | 177   | 49333           | 30           | 4.8                                     | 785,8              | 785.2            |          |
| 128   | 39820          | 100          | 1.5          | 602,7            | (07.8          |                      | 178   | 49392           | 40           | 2.2                                     | 78/1.4             | 785.3            |          |
| 129   | 40040          | 90           | 2.5          | 605,5            | 609.5          |                      | 179   | 49430           | 40           | 2.8                                     | 789.5              | 786.1            |          |
| 130   | 40240          | 110          | 2.8          | (09.1            | 612.6          |                      | 180   | 49475           | 30           | 1.3                                     | 786.3              | 787.0            |          |
| 131   | 40530          | 90           | 2.2          | 614.5            | 615.2          |                      | 181   | 49507           | 20           | 2.3                                     | 783.4              | 787.7            |          |
| 132   | 40730          | 110          | 1.3          | 619,3            | 619.0          |                      | 182   | 49544           | 20           | 2.2                                     | 789,3              | 789.9            |          |
| 133   | 409/15         | 100          | 0.8          | 623.7            | 622.8          |                      | 183   | 49585           | 25           | 1.5                                     | 789.4              | 789.7            |          |
| 135   | 41165          | 60           | 1.3          | 626.5            | 625.1          |                      | 18/   | 49629           | 25           | 1.2                                     | 769.4              | 789.0            |          |
| 135   | 41275          | 80           | 0.7          | 629.9            | 628.2          |                      | 185   | 49678           | 25           | 3.8                                     | 792.4              | 793.7            |          |
| 136   | 41485          | 40           | 2,5          | 635.1            | 635.4          |                      | 186   | 50'68           | 25           | 1.0                                     | 803.2              | 803.0            |          |
| 137   | 41930          |              | 1.2          | 6/2.5            | 642.5          |                      | 187   | 50783           | 50           | 3.0                                     | 816,6              | 818.4            |          |
| 133   | 43090          | 40           | 1.8          | 662.6            | 665.5          |                      | 188   | 50973           | 70           | 1.3                                     | 818.3              | 818.7            |          |
| 139   | 43190          | - 40         | 1.1          | 666.3            | 663.1          |                      | 189   | 51113           | 70           | 3.1                                     | 822.1              | 822.7            |          |
| 140   | 43375          | 30           | 1.1          | 6.6.5            | 668.7          |                      | 190   | 51233           | 25           | 1.5                                     | 825.5              | 830.2            |          |
| 141   | 43475          | 25           | 1.1          | 667.2            | 663.0          |                      | 191   | 515/3           | 25           | 2.7                                     | 830.6              | 830.9            |          |
| 142   | 44085          | 25           | 3.1          | 631.1            | 680.2          |                      | 192   | 51973           | 20           | 2.1                                     | 838.3              | 837.8            |          |
| 143   | 44560          | 45           | 1.1          | 690.0            | . 690.1        |                      | 193   | 52193           | 20           | 2.4                                     | 849.0              | 815.9            |          |
| 143   | 44820          | 20           | 2.2          | 695.1            | 695.0          |                      | 191   | 52443           | 25           | 1.9                                     | 849.5              | 8/9.5            |          |
|       |                | 20           | 1.8          | 699.5            | 698,0          |                      | 195   | 526/13          | 25           | 2.0                                     | 854.9              | 853.5            |          |
| . 145 | 44960          | 20           | 1.8          | 703.4            | 706.0          |                      | 195   | 52853           | 35           | 1.2                                     | 859.6              | 858.1            |          |
| 146   | 45455          | 20<br>15     | 2.7          | 710.5            | 710.4          |                      | 197   | 53193           | 20           | 0.8                                     | 862.6              | 863.8            |          |
| 147   | 45640          |              |              |                  |                |                      | 197   | 53713           | 20           | 2.0                                     | 876.6              | 878.8            |          |
| 148   | 46070          | 20<br>20     | 2.2          | 717.4            | 716.3<br>722.4 |                      | 193   | 5/003           | 30           | 2.5                                     | 837.6              | . 875.6<br>826.7 |          |
| 149   | 46290          | 20<br>30     | 1.8          | 722.4            | 724.5          |                      | 177   |                 |              | د, ــــــــــــــــــــــــــــــــــــ | 037,0              | JC9,"            | ·        |
| 150   | 46435          | JJ           | 1.0          | 723.8            | 1Z4.3          | 177                  |       |                 |              |                                         |                    |                  |          |


# Figures

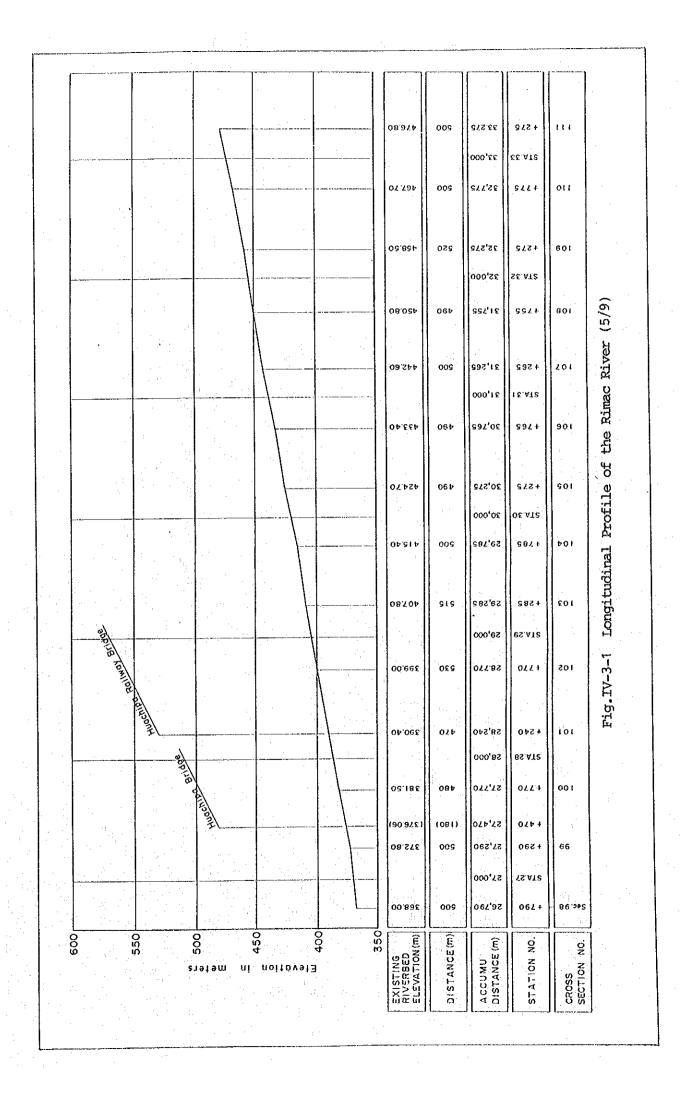




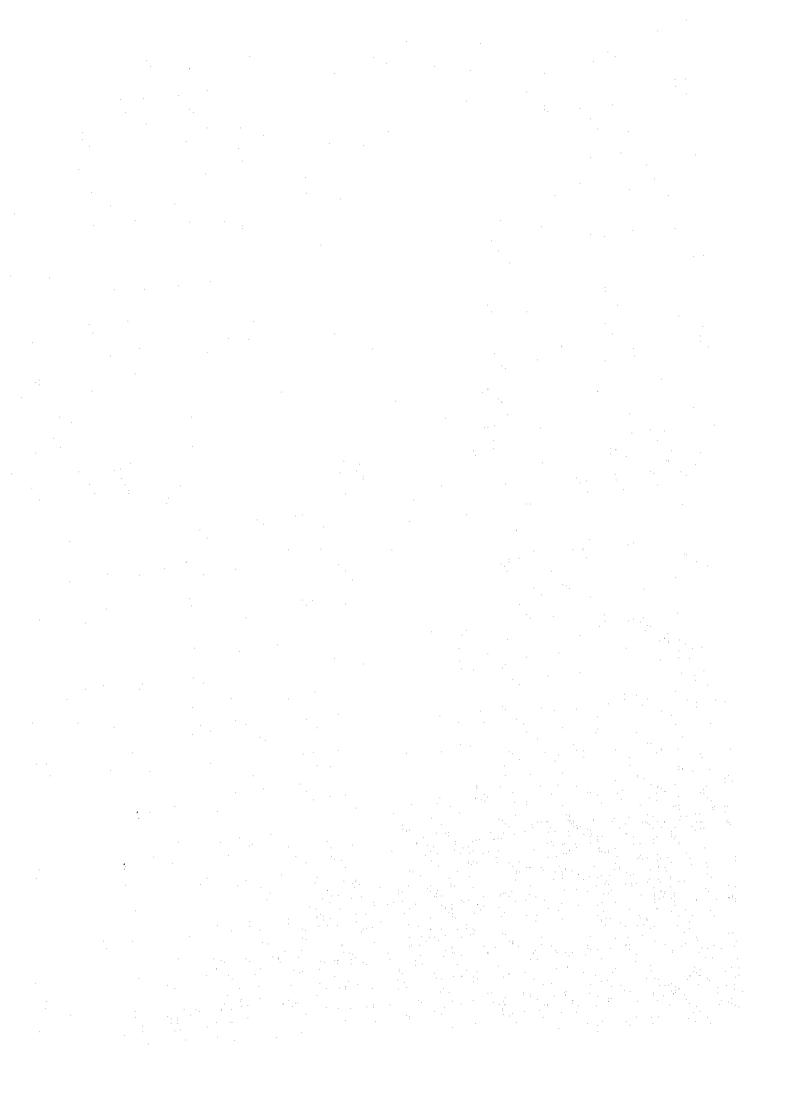







|      | i i i i i i i i i i i i i i i i i i i | Septing of printing |          |           |                     | 68,30                                | S02        | 6,480                   | 0964                 | 7 S                  |                 |      |
|------|---------------------------------------|---------------------|----------|-----------|---------------------|--------------------------------------|------------|-------------------------|----------------------|----------------------|-----------------|------|
|      |                                       |                     | 51       | -         | -                   | 08 09                                | 592        | 27S,8                   | 4575                 | 56                   |                 | ļ    |
|      | <u></u>                               |                     |          |           |                     | 60 6\$                               | 07.5       | 6,000<br>6,000          | 3 A72                | gz                   |                 |      |
|      |                                       |                     |          |           |                     | p3.83                                | S40        | OLL'S                   | OTT+                 | 5.5                  |                 | <br> |
|      |                                       |                     |          |           |                     | 19.53                                | 230        | 068,8                   | 029+                 | 53                   |                 |      |
|      |                                       |                     |          |           |                     | PS.13                                | 295        | 2,300                   | 006+                 | 3.5                  | :               |      |
|      |                                       | 2)                  |          |           |                     | 61.84                                | 230        | 4,830<br>000,8<br>000,8 | 028+<br>3 AT2        | 20                   | (1/9)           |      |
|      |                                       | age is a second     |          |           |                     | 44.63                                | 061        | 003,4                   | 0094                 | 61                   | i               |      |
|      |                                       | 89                  |          |           |                     | 67 1P<br>85.5P                       | 901<br>06  | 655,P                   | 09 <del>5</del> +    | 11                   | Rive            |      |
|      |                                       |                     |          |           |                     | 29.62                                | 205        | 4.030                   | + 30                 | 16                   | the Rimac River |      |
|      |                                       |                     |          |           |                     | 35.82                                | 261        | 3,825<br>4,000<br>4,030 | 258+<br>6.AT2<br>05+ | b1                   | K<br>Ki         |      |
|      |                                       |                     |          |           |                     | 97. <b>ξ.ξ</b>                       | 220        | 0£9,£                   | 1 630                | εŧ                   |                 |      |
|      |                                       |                     |          | ļ<br>     |                     | 00.05                                | 585        | 3'410                   | 4410                 | 15                   | Profile of      |      |
|      |                                       |                     |          |           |                     | 8S TS                                | 522        | 3,000                   | 5 AT2                | 11                   | Prof:           |      |
|      |                                       |                     |          |           |                     | 24.93                                | 280        | 2,890                   | 0684                 | οι                   |                 |      |
|      |                                       |                     |          | . :       |                     | 23.16                                | 235        | 5'610                   | 019+                 | 6                    | ngitudinal      |      |
|      |                                       |                     | :<br>    |           | -                   | ¢9.0s                                | 582        | ετε,s                   | g1€ t                | 9                    | ongi            |      |
|      |                                       |                     |          |           |                     | 81.61                                | 275        | 2,000<br>2,090          | S.AT2<br>06 +        | 1                    | 3               |      |
|      |                                       |                     | <u>.</u> |           |                     | a£.a1                                | gg I       | SIB'I                   | 518+                 | 9                    | V-3-            | .    |
|      |                                       |                     | Bolle    |           |                     | 00.41                                | 305        | 1'220                   | 088+                 | g<br>tr              | Fig.IV-3-1      |      |
|      |                                       |                     | Emisor   |           |                     | 19.11                                | 342        | 1,225                   | +552                 | ε                    | Į.i.            |      |
|      |                                       |                     |          |           |                     |                                      |            | 900,1                   | 1.ATE                |                      |                 |      |
|      |                                       |                     |          |           |                     | 9.36                                 | 012        | 088                     | 088+                 | z                    | ·<br>  ·        |      |
|      |                                       |                     | #)       |           |                     | 61.7.                                | 019        | 019                     | 019+                 | ı                    |                 |      |
|      |                                       |                     | Sall la  |           |                     |                                      |            |                         |                      |                      |                 |      |
|      |                                       |                     | Dus Sid  |           |                     |                                      | 0          | 0                       | o.AT2                | 0.562                |                 |      |
| 250. | 0                                     | ) (                 | }        | )         | o<br>o              | (E) Z                                | (E)        | Œ,                      | Š<br>Š               | N<br>O               | * .             | · .  |
|      |                                       | 1.5                 | atam nt  | Elevotion | n Magalla<br>Barana | EXISTING<br>RIVERBED<br>ELEVATION(m) | STANCE (m) | ACCUMU<br>DISTANCE(M)   | ATION                | CROSS<br>SECTION NO. |                 |      |
|      |                                       |                     |          |           |                     | E SE                                 | 018        | AC                      | STS                  | SEC                  |                 |      |


|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.1                                     | n 1             |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-----------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Z +   RG                                |                 |
| 66.881 000, E1   E1, 000, E1, E1, E1, 000, E1, E1, E1, E1, E1, E1, E1, E1, E1, E1                                                                                                                                                                                                                                                                                                                                                                                              | b +                                     |                 |
| 66.861 06.061 061 66.51 28<br>02.061 061 061 66.51 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2+ 99                                   |                 |
| SS [13, 125] 260   158.99   SS [15] 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1+   99                                 |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | :               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 23 +4                                   |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                         |                 |
| 00. apri 02 021;21 07  32.2pri 02S 07E,21 07  43.2pri 22S 07E,21 07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 22 + 3                                  |                 |
| 05. per   266,111   26<br>62. per   266,111   26<br>06. aer   261   036,111   26<br>000,21   21,000<br>000,21   20,000<br>000,21   20,0 | 1 + 1 6                                 |                 |
| 06.851 201,000,21 21,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 64 86<br>ATS                            | (6,             |
| 20 11,765 150 136.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 24 86                                   | (2/9)           |
| OY.PEI   SPE   SEB.11   SE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 9 + 26                                  | Ja              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3                                       | Riv             |
| 00.051 215 005,11 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 46 +2                                   | ည္ထ             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | are                                     | Zi m            |
| 20.951 220 000,111 11.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6 1   3 P                               | the Rimac River |
| 37   37   37   37   37   37   37   37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2+   ++                                 | 1               |
| 100.801 081 272,01 87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5+   5+                                 | of              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 45 43                                   | 116             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                         | Profile         |
| 01.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ATE OP                                  |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Z+ 66                                   | Longitudinal    |
| P\$ 26 004 0057,6 05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2+    61                                | L L             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                         | ıgi             |
| 9,330 210 9,530 013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | E +   9c                                | Ĭ               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 14 22                                   | -               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8 +   9£<br>AT2                         | ς.<br>-         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9 4   5 2                               | l di            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                         | Fig.IV-3-1      |
| 90.28 082 000,8 (0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | £ +   }£                                |                 |
| 99 'E8 022 030'8 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                         |                 |
| 99 68 0000 8 9 66 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | AT2                                     |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                         |                 |
| 18.67 (25.51) Oct. 7 Oct.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 32                                      |                 |
| 70.4Y   04E   089,Y   08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | b +     1£                              |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                         |                 |
| 39.07   09s   OPI,7   OP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 20 + 1                                  |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 715                                     |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8+ 62.348                               | <b>i</b>        |
| SOO 2500 EXISTING ELEVATION (m) DISTANCE (m) DISTANCE (m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | STATION NO.                             |                 |
| TANO Elevotion in meters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | SS SS                                   |                 |
| D I ST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CROSS<br>SECTION                        |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                         | J               |

|       | Atarieo intone                           | • .         |                       |                                                                                                                                                                                                                                  |      |                                       |             |                            |                        |                      |   |
|-------|------------------------------------------|-------------|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------------------------------------|-------------|----------------------------|------------------------|----------------------|---|
|       | S. S |             |                       |                                                                                                                                                                                                                                  |      | 260.90                                | 011         | 20,275                     | 4515                   | 98                   |   |
|       | 1 10 10                                  |             |                       |                                                                                                                                                                                                                                  |      | 00.685                                | \$6         | 50,165                     | 991+                   | b8                   |   |
|       | 1 El 41-F                                |             |                       |                                                                                                                                                                                                                                  |      | 257.00                                | 011         |                            | 07 +                   | ខ្ព                  |   |
|       | ž/ /                                     |             |                       |                                                                                                                                                                                                                                  |      | 521.90                                | 110         | 036,81<br>000,05<br>050,05 | 0964<br>05.AT2<br>07 + | 85                   | 1 |
|       | Sollies                                  | <b></b>     |                       |                                                                                                                                                                                                                                  |      | 24900                                 | 96          | 026,61                     | +820                   | 18                   | 1 |
| 1     | 뒿                                        |             |                       |                                                                                                                                                                                                                                  |      | 06.71.5                               | 96          | 897,81                     | 6.654                  | 08                   |   |
|       | 0                                        |             |                       |                                                                                                                                                                                                                                  |      | 246,00                                | 96          | 099'61                     | 099+                   | 67                   |   |
|       |                                          |             |                       |                                                                                                                                                                                                                                  |      | 244.00                                | 102         | 999'61                     | 999+                   | 87                   |   |
| 1     |                                          |             |                       |                                                                                                                                                                                                                                  |      | 243.00                                | 001         | 965,61                     | 962+                   | 92                   |   |
|       | ·                                        |             |                       |                                                                                                                                                                                                                                  |      | 242.00                                | 065         | 265,61                     | +502                   | 27                   |   |
|       |                                          |             |                       |                                                                                                                                                                                                                                  |      | 236.63                                | S+0         | 500,61                     | er.AT2<br>2 +          | 51                   |   |
|       |                                          |             |                       | 1.                                                                                                                                                                                                                               | ***  |                                       |             | 000.61                     | e1.AT2                 |                      | ٠ |
|       |                                          |             |                       | ·                                                                                                                                                                                                                                |      | 233.00                                | 320         | 397,81                     | 992+                   | ٤٢                   |   |
| ľ     |                                          | .           |                       |                                                                                                                                                                                                                                  |      |                                       |             |                            |                        |                      |   |
| 1     |                                          | \           |                       |                                                                                                                                                                                                                                  |      | 227.69                                | 520         | 18'442                     | 9,000                  | 27                   |   |
|       |                                          |             |                       |                                                                                                                                                                                                                                  |      |                                       |             |                            |                        |                      |   |
|       |                                          | <b>\</b>    |                       |                                                                                                                                                                                                                                  |      | 222.65                                | 009         | 261,81                     | 961+                   | 12                   |   |
| [     |                                          |             |                       |                                                                                                                                                                                                                                  |      |                                       | 1           | 000,81                     | BI.AT2                 |                      |   |
|       | }                                        |             |                       |                                                                                                                                                                                                                                  | 10.0 |                                       |             |                            |                        |                      |   |
|       | }                                        |             |                       |                                                                                                                                                                                                                                  |      | .                                     |             |                            | 1                      |                      |   |
| .     |                                          |             |                       |                                                                                                                                                                                                                                  |      | 60.712                                | 961         | 265,71                     | 565+                   | 02                   |   |
|       |                                          |             | :                     |                                                                                                                                                                                                                                  |      | 00218                                 | 30.         | 303 2.                     | , ,,,,,                | 02                   |   |
|       |                                          | , <u> </u>  |                       | ·                                                                                                                                                                                                                                |      | 18.212                                | 315         | 00P, Y1                    | 00++                   | 69                   |   |
|       |                                          | -           |                       |                                                                                                                                                                                                                                  |      | 89.802                                | 510         | 881,71                     | 4182                   | 89                   |   |
|       |                                          |             |                       |                                                                                                                                                                                                                                  |      | 205.65                                | 300         | 246,81<br>000,11           | 276+<br>71.AT2         | <b>19</b>            |   |
|       |                                          | 1           | 5.                    |                                                                                                                                                                                                                                  |      |                                       | ]           |                            |                        |                      |   |
|       |                                          | 1           |                       |                                                                                                                                                                                                                                  |      | 10.102                                | 320         | 678,81                     | 679+                   | 99                   |   |
|       |                                          | :           |                       |                                                                                                                                                                                                                                  |      | ,                                     | 0.5.2       | 1 23 31                    | 1 2231                 | 133                  | ı |
|       |                                          |             | 4 4 1                 |                                                                                                                                                                                                                                  |      |                                       |             |                            |                        |                      |   |
|       |                                          |             | 7.8%                  |                                                                                                                                                                                                                                  |      | 03.581                                | 520         | 16,325                     | +252                   | 59                   |   |
|       |                                          |             |                       |                                                                                                                                                                                                                                  |      | 03 20.                                | 030         | 301 31                     | 3021                   | 33                   |   |
| 1     |                                          |             |                       | 1. 1.                                                                                                                                                                                                                            |      | Dt. t. C.                             |             | 0.000                      |                        | 1                    |   |
|       | * ; ;                                    |             |                       |                                                                                                                                                                                                                                  |      | 86 661                                | 315         | 000,81<br>810,00           | 31.AT2                 | b9                   |   |
|       |                                          | •           |                       | 1.                                                                                                                                                                                                                               |      |                                       |             |                            | 1 .                    |                      |   |
|       |                                          |             |                       |                                                                                                                                                                                                                                  |      | 19013                                 | 926         | 097,81                     | 092+                   | £9                   | Ì |
|       |                                          | **          | A 1                   |                                                                                                                                                                                                                                  |      |                                       |             |                            |                        |                      |   |
|       |                                          |             |                       |                                                                                                                                                                                                                                  |      |                                       |             |                            |                        |                      | 1 |
| 1     |                                          |             | <u> </u>              |                                                                                                                                                                                                                                  |      |                                       |             |                            | '                      | 1                    |   |
|       |                                          | ŧ           | \                     | <del></del>                                                                                                                                                                                                                      |      | 05.481                                | 560         | 605,61                     | 1305                   | 59                   | l |
| •     |                                          |             | 1                     |                                                                                                                                                                                                                                  |      | ! !                                   |             | ** **                      |                        |                      |   |
|       |                                          |             | \                     |                                                                                                                                                                                                                                  |      | 180.26                                | 019         | 950'91                     | CP 4                   | 19                   |   |
|       | 8/                                       | <del></del> |                       |                                                                                                                                                                                                                                  |      |                                       |             | 15,000                     | SI ATS                 |                      |   |
| 1     | abplua                                   |             |                       |                                                                                                                                                                                                                                  |      |                                       |             |                            |                        | 1                    |   |
| -     | 100                                      |             |                       |                                                                                                                                                                                                                                  |      |                                       | ,           |                            |                        |                      |   |
| . [   | j                                        | χ           | \                     |                                                                                                                                                                                                                                  |      |                                       |             |                            |                        |                      | ļ |
|       | 1                                        | <u></u>     |                       |                                                                                                                                                                                                                                  |      |                                       |             |                            |                        |                      | 1 |
|       |                                          |             |                       |                                                                                                                                                                                                                                  |      | 51.671                                | 015         | 364,41                     | \$£6#                  | 09                   | l |
|       |                                          |             |                       |                                                                                                                                                                                                                                  |      | 1 1                                   |             | •                          |                        | 1.                   |   |
| 10.00 |                                          | a,•         |                       |                                                                                                                                                                                                                                  |      | 168 30                                | 400         | 14,125                     | +152                   | 69                   |   |
|       |                                          | 4.0         |                       |                                                                                                                                                                                                                                  |      |                                       |             | 14,000                     | P1.AT2                 |                      |   |
|       |                                          |             |                       |                                                                                                                                                                                                                                  |      |                                       |             |                            |                        |                      |   |
|       |                                          |             |                       |                                                                                                                                                                                                                                  |      | 1.                                    |             | , 3                        |                        |                      |   |
|       |                                          |             | السا                  |                                                                                                                                                                                                                                  |      | PP.P81                                | 290         | 827,81                     | 1725                   | 85,562               |   |
| 0     | 200                                      | 2           |                       |                                                                                                                                                                                                                                  | 3 8  | EXISTING<br>RIVERBED<br>ELEVATION (m) | Ē           | =                          |                        | -                    | ί |
| 7     | הֿ הֿ                                    | i . č       | i ÷                   |                                                                                                                                                                                                                                  | - 47 | MO N                                  | DISTANCE(m) | ACCUMU<br>DISTANCE (m)     | STATION NO.            | CROSS<br>SECTION NO. |   |
|       |                                          | \$1         | in mete               | Elevation                                                                                                                                                                                                                        |      | X B C                                 | ν           | 5 2                        | S S                    | Z                    |   |
|       |                                          |             |                       | 10 May 12 Ma<br>1 May 12 May |      | ZER A                                 | ₹.          | 15 A                       |                        | SS                   |   |
|       |                                          |             |                       |                                                                                                                                                                                                                                  |      | lä\$‼l                                | Sic         | AC.                        | t-                     |                      |   |
| 1     |                                          |             | 2.241                 |                                                                                                                                                                                                                                  |      | 1012 10                               | لتبسيا      |                            | V                      | 1                    |   |
| 1     |                                          |             | and the second second |                                                                                                                                                                                                                                  |      |                                       |             |                            |                        |                      |   |



|      |          |       |   |                     |     | 00.788<br>00.088<br>00.588           | 310<br>80   | 069,65<br>066,65<br>079,65<br>000,09     | 069+<br>068+<br>0764<br>04.412 | 126<br>126           |                                         |
|------|----------|-------|---|---------------------|-----|--------------------------------------|-------------|------------------------------------------|--------------------------------|----------------------|-----------------------------------------|
|      |          |       |   | <del></del>         |     | 08.588                               | 001         | 088,68                                   | 086+                           | 521                  |                                         |
|      |          |       |   |                     |     |                                      |             | 000,65                                   | ee ate                         |                      |                                         |
|      |          |       |   |                     |     | 00.588                               | 009         | 089'8¢                                   | 089+                           | 221                  |                                         |
|      |          |       |   |                     |     | 260 00                               | OG+         | 39,180                                   | 85.AT2<br>081 +                | 121                  | (6/9)                                   |
|      | 960      |       |   |                     |     | 05.053                               | 014         | 0E7,7E                                   | 0.67 +                         | 021                  | River:                                  |
|      | d        | Embin |   | \.\.\.\.\.          |     | 042.50                               | 019         | 092,78                                   | +560                           | 611                  | Longitudinal Profile of the Rimac River |
| ·    |          |       |   | <del>\</del>        |     |                                      |             | 000,75                                   | TE.AT2                         |                      | of the                                  |
|      |          |       |   | \                   |     | 07.552                               | 015         | 081,88                                   | 087 +                          | 811                  | cofile                                  |
|      |          |       | : | : \                 |     | 259.50                               | 009         | 0+2'9£                                   | + 240                          | 211                  | inal B                                  |
|      |          |       |   | \                   | :   | 09 91 5                              | 081-        | 047,2 <i>&amp;</i><br>000,2 <i>&amp;</i> | 047 ±                          | 911                  | ngitud                                  |
|      |          |       |   |                     |     |                                      |             |                                          |                                |                      |                                         |
|      |          |       |   |                     |     | 00.605                               | 016         | 35,000                                   | 6£.AT2<br>03S+                 | 112                  | Fig.IV-3-1                              |
|      |          |       |   |                     |     | 202.80                               | <b>59</b> 6 | 34,850                                   | 058+                           | 411                  | •ਜ<br>ਇ                                 |
|      |          |       |   |                     |     | 01.864                               | 019         | \$6£,4₹                                  | 365+                           | £ţI                  |                                         |
|      |          |       |   |                     |     | 0.7001                               | 000         | 000,48                                   | P.C. AT.2                      |                      |                                         |
|      |          |       |   |                     |     | 02.284                               | 009         | 817,55                                   | 527+                           | Sti                  |                                         |
| 7007 | <u> </u> |       | 0 | Ç                   |     | 08.971                               | 200         | 272,25                                   | +512                           | 111 205              |                                         |
|      | 000      |       |   | aoitbyst3<br>c<br>C | 450 | EXISTING<br>RIVERBED<br>ELEVATION(M) | DISTANCE(m) | ACCUMU<br>DISTANCE(m)                    | STATION NO.                    | CROSS<br>SECTION NO. |                                         |

|     | 100           |                                       |         |             |          | 01.417                                | 240         | 009'91                     | 0891           | នាក់រ            |              |   |  |
|-----|---------------|---------------------------------------|---------|-------------|----------|---------------------------------------|-------------|----------------------------|----------------|------------------|--------------|---|--|
|     | 881 18        |                                       |         | -           |          | 08,115                                | 061         | 01-4'94                    | 064            |                  |              |   |  |
|     | P. Salabelles | · \                                   |         |             |          | 09.505                                | 981         | 46,250                     | 1520           | 761              |              |   |  |
|     | end &         |                                       |         |             | **       | 07.107                                | 261         | 990'91                     | 34 AT2         | 914              |              |   |  |
|     | 80,1          |                                       | <b></b> |             |          | (69.93)                               | (180)       | 097,34                     | 092+           |                  |              |   |  |
|     |               | ٠.                                    |         |             |          | 00.8ea                                | 140         | 05 P, 3 P                  | 0564           |                  |              |   |  |
|     |               |                                       |         |             |          | 00209                                 | 096         | GEV GV                     | 0.04           | 144              |              |   |  |
|     |               |                                       |         |             |          | 02.68a                                | 97.6        | 000'96                     | 64.AT2         | 591              | (6)          |   |  |
|     |               |                                       |         |             |          |                                       |             |                            |                |                  | (6/L)        |   |  |
|     |               |                                       | \       |             |          | 02.778                                | 019         | \$69 <b>*</b> ++           | 269+           | 145              | ver          |   |  |
|     | :             |                                       | -       |             |          |                                       |             |                            |                |                  | . E          | • |  |
|     |               |                                       | -\      |             |          |                                       |             |                            |                |                  | Rimac River  |   |  |
|     |               |                                       |         |             |          | 08.833<br>08.733                      | 100         | 286,54<br>000,44<br>380,44 | 586+<br>586+   | 061<br>161       | the R        |   |  |
|     |               |                                       | -       |             |          | 00.599                                | 001<br>06S  | 007, EP<br>008, EP         | 000+           | 8£1<br>6£1       | of<br>t      |   |  |
|     |               |                                       | \       | ,           |          | 00159                                 | 003         | 002 80                     | 0021           | 9 € 1            |              |   |  |
|     | -             |                                       |         |             |          |                                       |             |                            |                |                  | Profile      |   |  |
|     | as a          |                                       |         | <u> </u>    |          | 01-159                                | 018         | 011,59                     | 011+           |                  |              |   |  |
|     | 86 LE         |                                       | • .     |             |          |                                       |             | 900'£6                     | EA.AT2         |                  | ina          |   |  |
|     | luoduo        |                                       |         |             |          |                                       |             |                            |                |                  | Longitudinal |   |  |
|     | 1             | <u></u>                               | · .     |             |          | 00.168                                | 442         | 45,540                     | 4 240          | <b>7</b> £1      | ibuc         |   |  |
|     |               |                                       |         |             |          |                                       |             |                            |                |                  | Ă,           |   |  |
|     |               | ·                                     |         | _           |          | 00.888                                | ors         | 42,090<br>42,095           | SP.AT2<br>88 1 | 381              | ب<br>1       |   |  |
|     | 350116        |                                       |         |             |          | 623.80<br>628.55                      | 110         | 617,14<br>686,14           | 247+<br>288+   | PET<br>BET       | Fig.IV-3     |   |  |
|     | ŭ             | 2                                     |         |             |          | 622.00                                | SIS         | 355,1 P                    | 9994           | 551              | Fig          |   |  |
|     |               | OSDLIS                                | *       |             |          | 617.45                                | 500         | 0+5,14                     | 01-6+          | 381              |              |   |  |
|     |               | Salosarios Sori                       |         | \ <u>-</u>  | ļ        | 612,30                                | 068         | 041,14                     | 0+1+           | 121              |              |   |  |
|     |               |                                       |         |             |          |                                       |             | 000,11                     | 1 Þ.AT2        |                  |              |   |  |
| 100 |               |                                       |         |             |          | 007.88                                | 500         | 038'01                     | 058+           | 061              |              |   |  |
|     |               |                                       |         |             |          | 09 209                                | 220         | 059'01                     | 099+           | 129              |              |   |  |
|     |               |                                       |         |             |          | 09 009                                | 300         | 40,430                     | 066+           | 128              |              |   |  |
|     |               |                                       |         |             | <u> </u> | 00.963                                | 091         | 061,04                     | 051+           | 751              |              |   |  |
|     |               |                                       |         |             | \        | 00.588                                | 08          | 078,8£<br>000,01           | 076+<br>04.AT2 | 921.262          | •            |   |  |
|     | 800<br>250    | , , , , , , , , , , , , , , , , , , , | , C     | }***        |          | Ê                                     |             | E E                        |                |                  |              | • |  |
|     | <b>.</b>      |                                       |         | Elevalion ( |          | EXISTING<br>RIVERBED<br>ELEVATION (m) | DISTANCE(M) | MU.                        | STATION NO     | ON NO            |              |   |  |
|     | we the second |                                       |         | · ·         |          | XIST<br>IVER<br>LEVA                  | ISTA        | ACCUMU<br>DISTANCE(        | TATI           | CROSS<br>SECTION |              |   |  |
|     |               |                                       |         |             |          | គេជា                                  |             | 4 0                        | [ in ]         | 88               |              | - |  |



|     | , ,              |                  |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                                      |               |                            |                                |             |              |       |
|-----|------------------|------------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--------------------------------------|---------------|----------------------------|--------------------------------|-------------|--------------|-------|
|     |                  |                  |             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       | 02.120                               | 003           | 23'52                      | 1523                           | 561         |              |       |
|     | % /              |                  | \           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | 848.00                               | 520           | 53,053<br>53,053           | 56 A12<br>56 1                 | 184         |              |       |
|     | Spire ou         |                  | \           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | 02.548                               | 550           | 25'803                     | €08+                           | £61         |              |       |
|     | Argentino Bridge | <u> </u>         | -           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | 00.958<br>(0).858)                   | 107 )         | 25,583<br>52,583           | (£594)                         | 195         |              |       |
|     | . Ž\             |                  | - \         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       | (822.20)                             | (580)         | 152,400)                   | 1363                           |             |              |       |
|     |                  |                  | \           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | 928.00                               | se <i>r</i> ) | 52,153                     | £61+                           | 161         |              |       |
|     |                  | -                |             | **************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       | 00.450                               | 021           | 51,893                     | £ 68 t                         | 190         |              |       |
|     |                  |                  | \- <u>-</u> | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ļ ——— | 00.026                               | 0+1           | 51,723                     | 1723                           | 68 t        | (6/8)        |       |
|     |                  |                  |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | 00.718                               | 381           | 582.13                     | 5831                           | 881         | L (S         | -:    |
|     | الو              |                  |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | 813 20                               | 005           | 865,13                     | 8661                           | 181         | River        |       |
|     | 80               |                  |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | ∞.108                                | 018           | 860,12<br>800,12           | 12.AT2<br>86.4                 | 981         | Rimac 1      | ٠     |
|     | o.               |                  |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1:    |                                      |               |                            |                                |             |              |       |
|     |                  | ٥١/              |             | \\·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       | (0S.ZeV)                             | (2962)        | ₽85,02                     | <b>₽8</b> 84                   |             | of the       |       |
|     | •                |                  |             | \                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       | 15.807                               | 134           | 50,288                     | +288                           | 192         | le           |       |
|     |                  | -                | ٠.          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | 05.587<br>05.587                     | 511<br>511    | 050,02                     | #\$1+<br>0#+                   | 185         | Profile      |       |
|     |                  |                  |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | 25.877<br>86.087                     | \$6<br>68     | 000'05<br>000'05<br>606'60 | 848+<br>846+<br>08 A18<br>04 + | 221<br>921  |              |       |
|     |                  |                  |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | 05.577                               | 105           | 687,64                     | 685+                           | 171<br>271  | ngitudinal   |       |
|     |                  |                  |             | \-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       | 28.171                               | 611           | 148.64                     | 1547                           | 691         | tud          |       |
|     |                  |                  | 1.          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | v     | 06.997<br>02.077                     | 101           | 155,9P                     | 1321                           | 291<br>791  | ngi          |       |
|     |                  |                  |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | 08.597                               | 651<br>66     | 49,125<br>49,220           | +152                           | 191<br>£91  | ß            | · · . |
|     |                  |                  |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | 00.637<br>60.637                     | 222           | 026,81<br>000,61           | 036 +<br>64.AT8                | 851<br>851  | 3-1          |       |
|     |                  |                  |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | 00.685                               | 160           | 6.57,84                    | 4725                           | 121         | Fig. IV-3-1  | .•    |
|     |                  |                  |             | \                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       | 08.187                               | 671           | \$ 9 <b>\$</b> '8\$        | 595+                           | 951         | بأغ          |       |
|     |                  |                  |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | \[    | (02.847)                             | 900           | 065,84                     | 062+                           |             |              |       |
| -   |                  |                  | ·           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | 02.597                               | 510           | 000,81                     | 8 P AT 2<br>0 E 1              | 991         |              |       |
|     |                  | ; · · · ·        |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | \     | 05.757                               | \$61          | 088,74                     | 088+                           | ÞS (        |              |       |
|     |                  |                  |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -     | 73430                                | ទី១៖          | ₹89,7₽                     | \$89+                          | £8 i        |              |       |
|     |                  |                  |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | \     | 08.15.7                              | 961           | 47,500                     | +200                           | SSI         |              |       |
|     |                  |                  |             | # t <sub>1</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | \     | 02.7.57                              | 510           | 608,74                     | 1305                           | 191         |              |       |
| _   |                  |                  |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | 722.00                               | 961           | 47,005<br>60,74            | TP.ATZ<br>ZU 1                 | 120         |              | ;     |
|     |                  |                  |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | 09617                                | 220           | 006,34                     | 006+                           | St L        |              |       |
| 0   |                  |                  |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | 01.417                               | 540           | 089'9+                     | (8+1)<br>(8+1)                 | B41.302     |              |       |
| 950 | 000              | and the state of |             | 11 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8 8   | EXISTING<br>RIVERBED<br>ELEVATION(m) | DISTANCE(m)   | ACCUMU<br>DISTANCE(m)      | Š<br>Š                         | NO          | <u>.</u><br> |       |
|     |                  | L.S.             | ətəm ni     | Elevation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       | STIN                                 | TAN           | LANC                       | STATION NO.                    | CROSS       |              |       |
|     |                  |                  |             | e de de la companya d |       | Z S G                                | Sig           | ACC                        | STA                            | CRO<br>SECT |              |       |

|      |                    |  |                                       |              |                        | 09.AT2          |                      | ·                                             |
|------|--------------------|--|---------------------------------------|--------------|------------------------|-----------------|----------------------|-----------------------------------------------|
|      |                    |  |                                       |              |                        |                 |                      |                                               |
|      | <br>               |  |                                       |              |                        | ea.AT2          |                      |                                               |
|      |                    |  |                                       |              |                        |                 |                      | er (9/9)                                      |
|      |                    |  |                                       |              |                        | B& AT&          |                      | Rimac Riv                                     |
| .1.  |                    |  |                                       |              |                        | Y& AT&          |                      | e of the                                      |
|      |                    |  |                                       |              |                        |                 |                      | al Profil                                     |
|      |                    |  |                                       |              |                        | 98.AT2          |                      | Longitudinal Profile of the Rimac River (9/9) |
|      |                    |  |                                       |              |                        |                 |                      | · —                                           |
|      |                    |  |                                       |              |                        | ce ate          |                      | Fig. IV-3                                     |
|      |                    |  | 00.278                                | oss          | 64,323                 | +323            | 861<br>661           |                                               |
|      |                    |  | 08,138                                | 240          | 508,53<br>000,42       | £08 +<br>A& AT2 | 261                  |                                               |
|      |                    |  | 05.128                                | 200<br>210   | 53,253<br>534,52       | +523            | 961<br>961           |                                               |
| 050, | ietem ni<br>u<br>v |  | EXISTING<br>RIVERSED<br>ELEVATION (m) | DISTANCE (m) | ACCUMU<br>DISTANCE (m) | STATION NO.     | CROSS<br>SECTION-NO. | ·                                             |

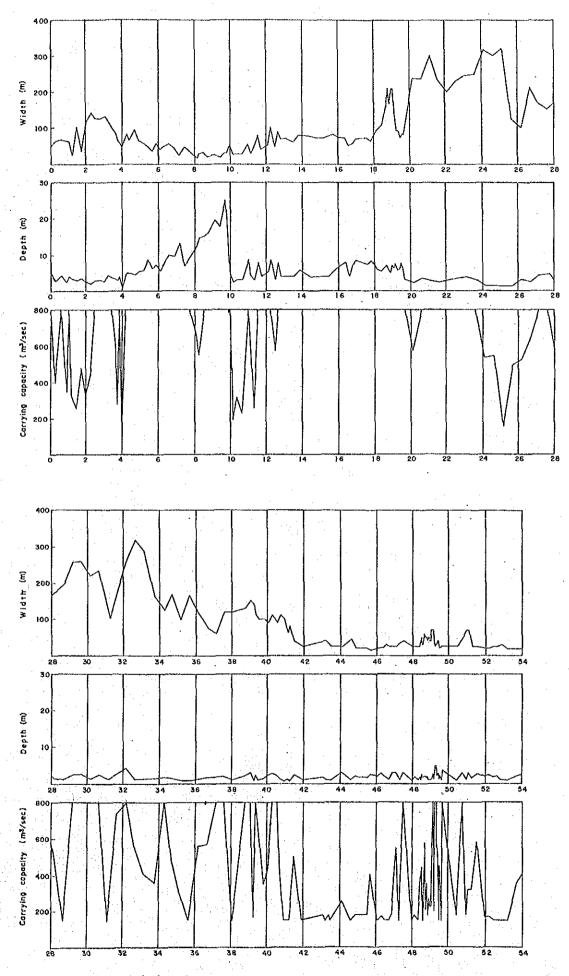
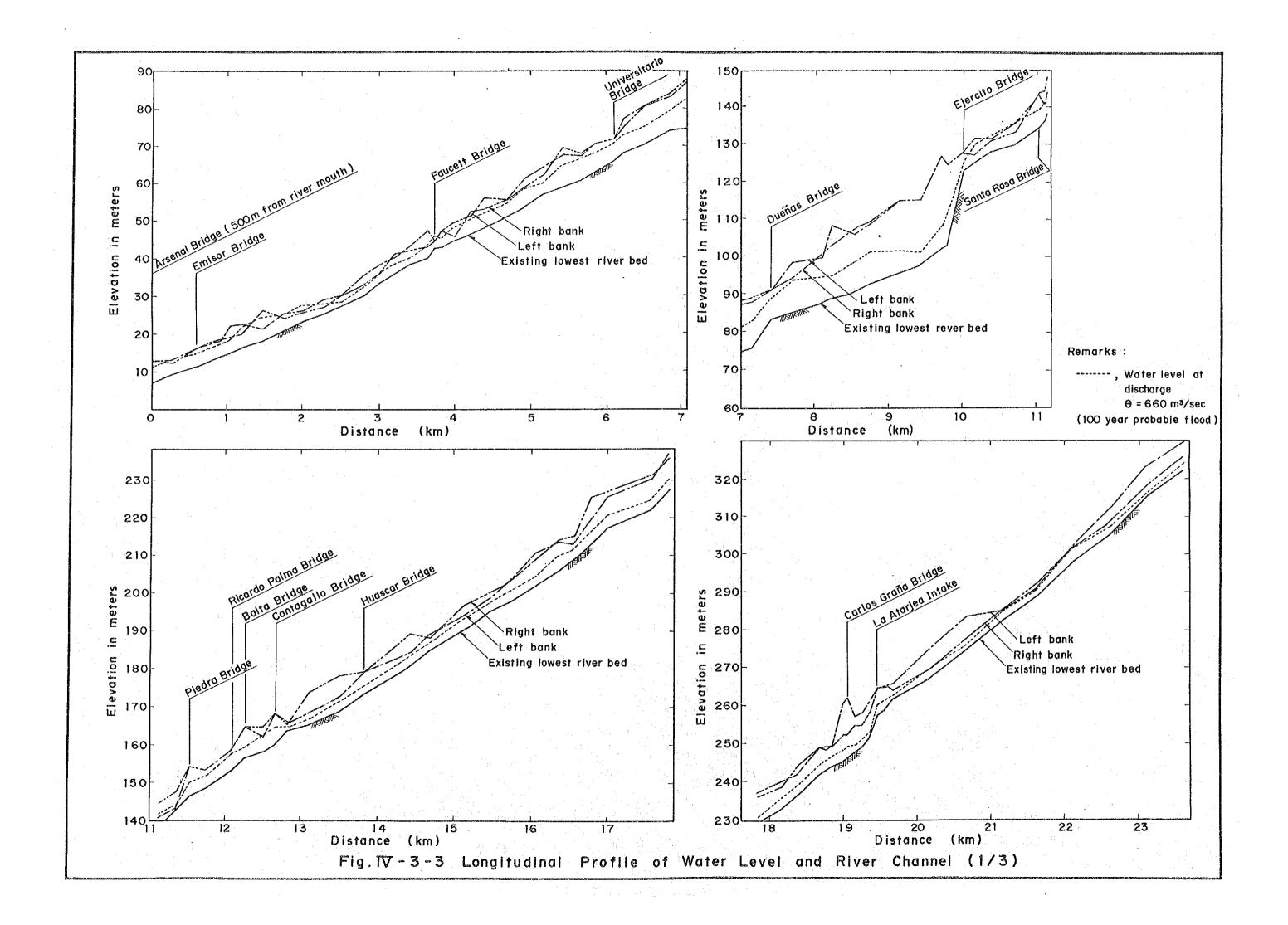
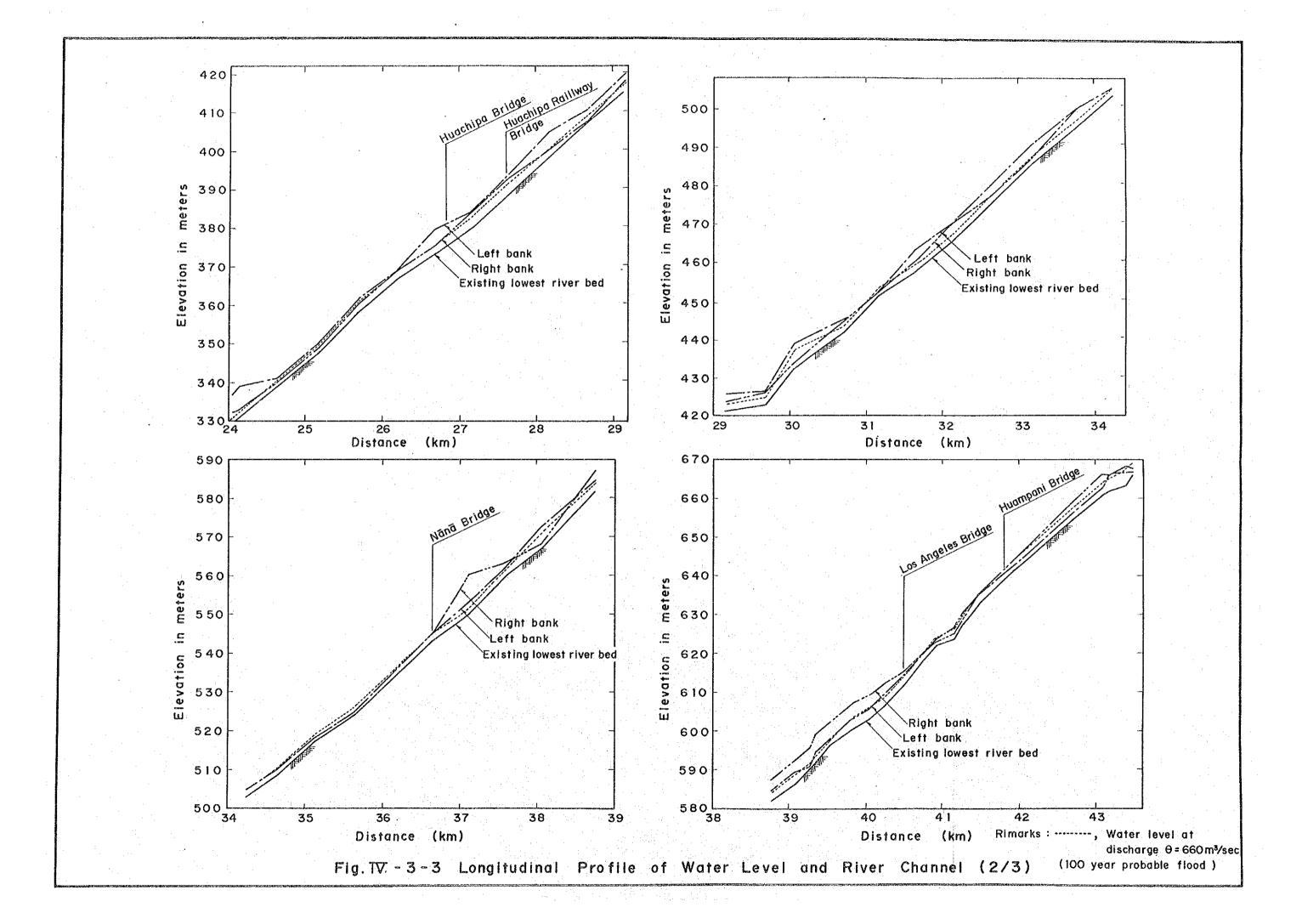





Fig. IV-3-2 Characteristics of Existing River Channel





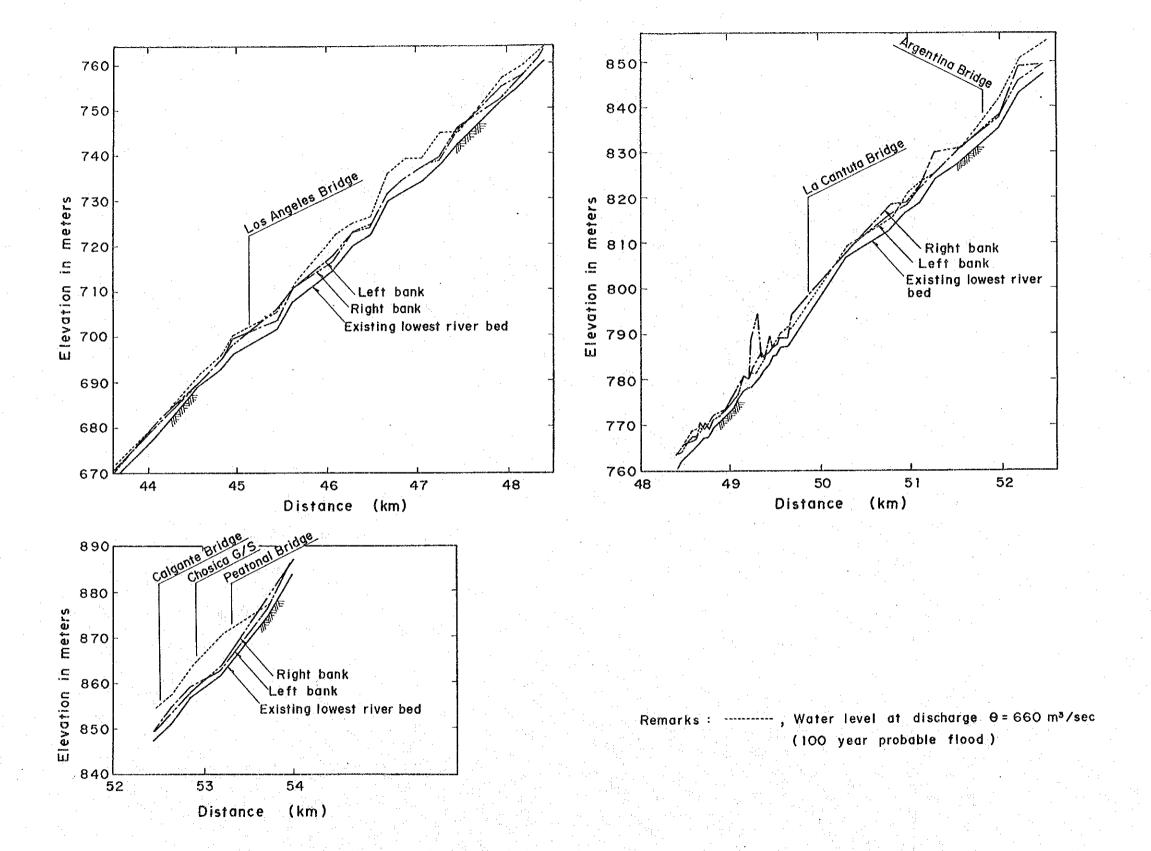
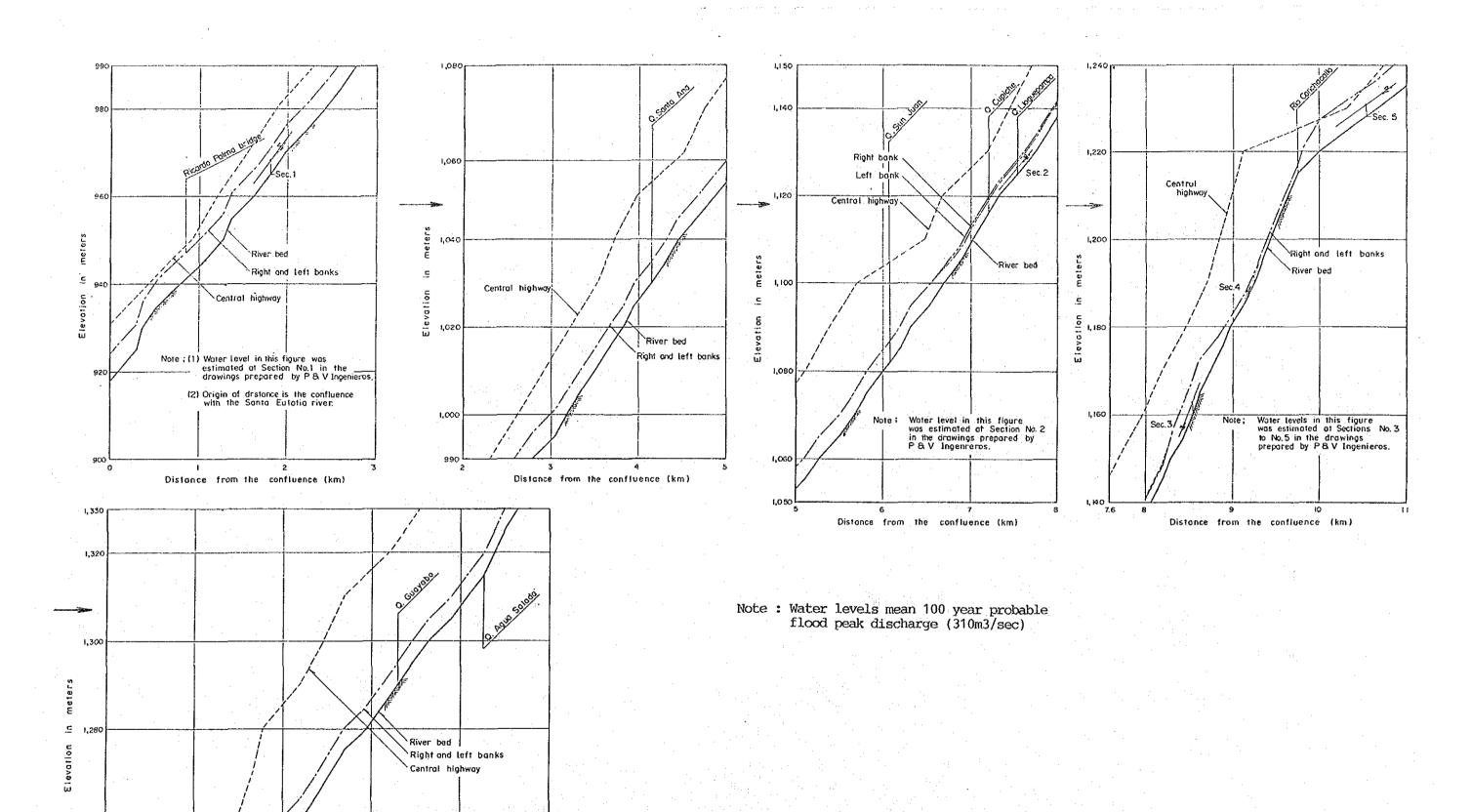
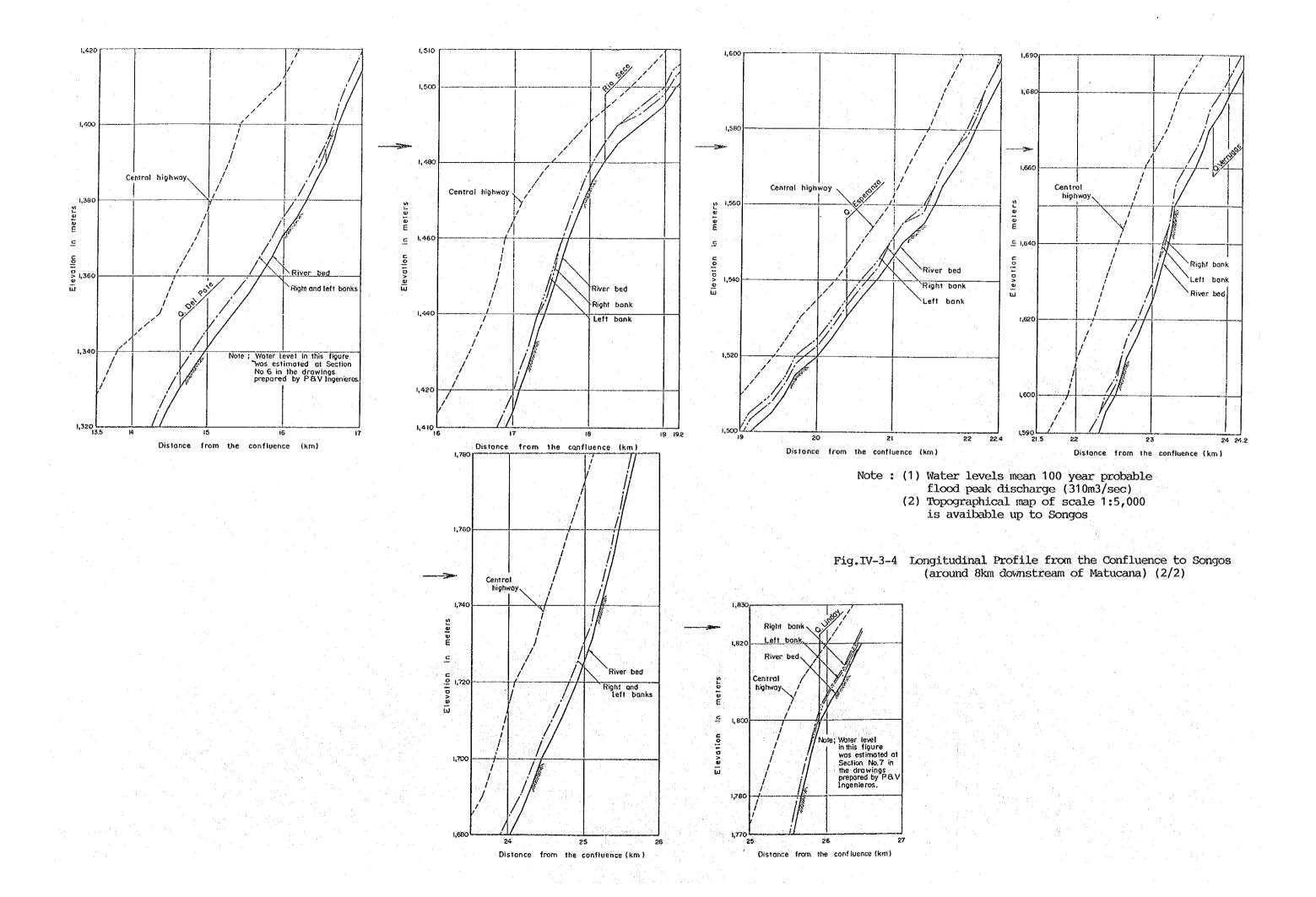




Fig. IV - 3 - 3 Longitudinal Profile of Water Level and River Channel (3/3)




1,240

1,230 L...

Distance from the confluence (km)

Fig.IV-3-4 Longitudinal Profile from the Confluence to Songos (around 8km downstream of Matucana) (1/2)



## APPENDIX V

# CONDITIONS OF RELATED STRUCTURES

# Appendix V CONDITIONS OF RELATED STRUCTURES

# Contents

|     |                                   | <u>Page</u> |
|-----|-----------------------------------|-------------|
| 1.  | General                           | V-1- 1      |
| 2.  | Road and Roadway Bridge           | V-2- 1      |
| 3.  | Railway and Railway Bridge        | V-3- 1      |
| 4.  | River Improvement Works           | V-4- 1      |
|     | 4.1 General                       | V-4- 1      |
|     | 4.2 Channel Works                 | V-4- 1      |
|     | 4.3 Revetment                     | V-4- 1      |
|     | 4.4 Levee                         | V-4- 1      |
|     | 4.5 Parapet Wall                  | V-4- 2      |
|     | 4.6 Ground Sill                   | V-4- 2      |
|     | 4.7 Groin                         | V-4- 2      |
| 5.  | Intake Weir for City Water Supply | V-5- 1      |
| 6.  | Intake Structure for Irrigation   |             |
|     | Water Supply                      | V-6- 1      |
| 7.  | Intake and Outlet Structures for  |             |
| 2.5 | Powr Generation                   | V-7- 1      |
| 8.  | Other Structures                  | V-8- 1      |

# List of Table (Appendix)

# Table No. Title

Table V-2-1 Main Features of Major Roadway Bridge

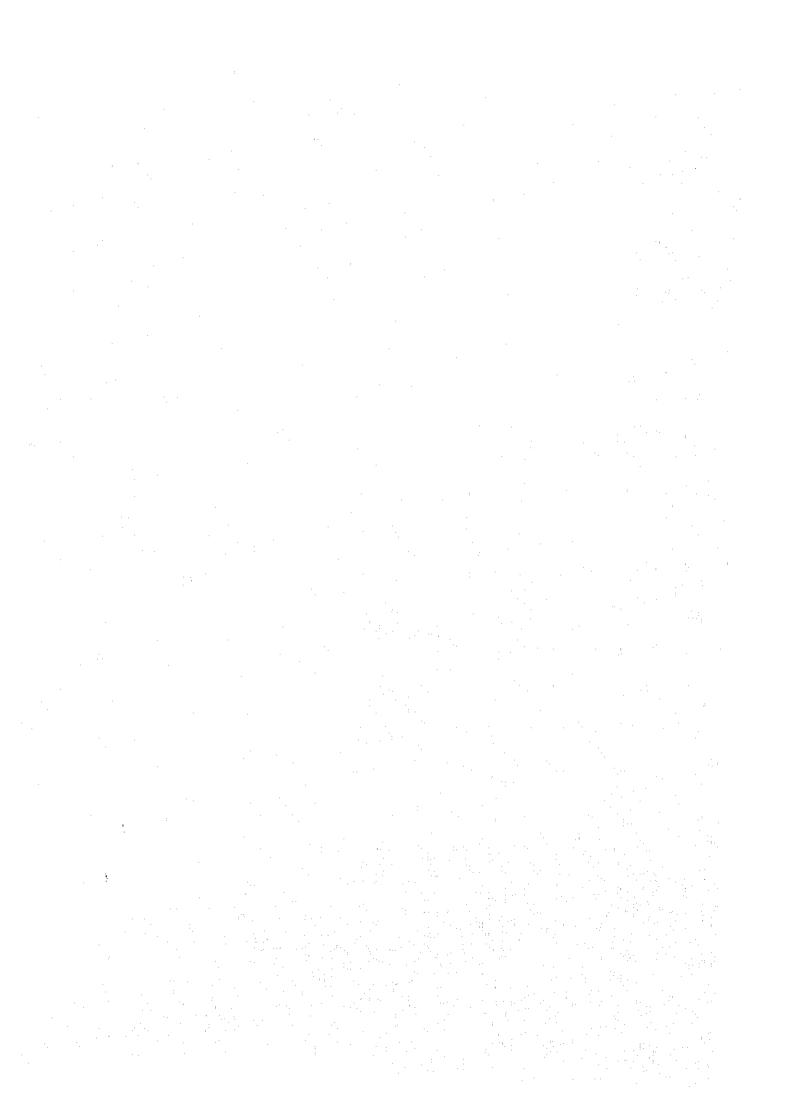
# List of Figure (Appendix)

| Figure No.            | Title                                           |
|-----------------------|-------------------------------------------------|
|                       |                                                 |
| Fig. V-1-1            | General Location Map of Major Structures        |
| Fig. V-2-1            | Location of Road Along Main Stream and Major    |
|                       | Roadway Bridges                                 |
| Fig. V-2-2            | Typical Sections of Roadway                     |
| Fig. V-2-3            | Plan, Elevation and Cross Section of Roadway    |
|                       | Bridge (Pte Ejercito)                           |
| Fig. V-3-1            | Plan and Profile of Railway                     |
| Fig. V-3-2            | Elevation and Section of Railway Bridge         |
|                       | (Carrion Bridge)                                |
| Fig. V-4-1            | Examples of Gabion Works                        |
| Fig. V-4-2            | Typical Sections of Levee                       |
| Fig. V-4-3            | Typical Sections of Parapet Wall                |
| Fig. V-5-1            | Plan and Profile of Intake Weir at Atarjea      |
| Fig. V-6-1            | Location of Irrigation Intake                   |
| Fig. V-6-2            | Plan, Profile and Section of Irrigation Intake  |
|                       | at Bocanegra                                    |
| Fig. V-7-1            | System of Hydroelectric Power Generation        |
| Fig. V-7-2            | Plan and Sections of Waterway for Power         |
|                       | Generation (Tanboraque Intake)                  |
| Fig. V-7-3            | Plan and Typical Cross Section of Sheque Dam    |
| Fig. V-7-4            | Plan and Typical Cross Section of Huinco Dam    |
| Fig. V-8-1            | Transfer System of Water from the Mantaro River |
|                       | to the Rimac River                              |
| Fig. V-8-2            | Typical Sections of Revetment                   |
| Fig. V-8-3            | Typical Sections of Retaining Wall              |
| and the second second |                                                 |

# APPENDIX V CONDITIONS OF RELATED STRUCTURES

#### 1. GENERAL

There are various kind of structures in or along the Rimac river. They are classified generally as follows:


- (a) Bridges (Road bridge and Railway bridge)
- (b) Road
- (c) Railway
- (d) Levee
- (e) Parapet wall
- (f) Channel work (including revetment and ground sill)
- (g) Intake structure for city water supply
- (h) Intake structure for irrigation water supply
- (i) Intake and outlet structures for power generation (including dam)
- (j) Others (groin, intake for water supply to refinery plant, pile of excavated materials, etc.)

The detailed survey for structures could not be carried out for this time as there are so many structures in the river basin. However, the inspection was carried out for major structures such as some main bridges, intake weir for city water supply, intake and outlet structures for power generation and levees in disaster areas. In addition, the data in respect of structures were collected from the government offices concerned. The general location of representative major structure is shown in Fig. VII-1-1.

In the following Sub-sections, the conditions and features of existing structures are to be described. Though the available data for each structure are different and generally insufficient, the following items are to be summarized for the major structures;

- (a) Location
- (b) Type/Kind
- (c) Name
- (d) Main dimensions
- (e) Materials
- (f) Present conditions
- (g) Effect on disaster prevention
- (h) Administrator
- (i) Operation and maintenance method
- (i) Others (function, using condition, etc.)

As the drawings of some major structures are obtained, the basic features are to be shown in the figures.



#### 2. ROAD AND ROADWAY BRIDGE

In general, there are two major routes of road along the river as follows:

- (a) Road along the Rimac river
- (b) Road along the Sta. Eulalia river

The road, National Road No. 20, along the Rimac river is one of the most important trunk roads in Perú as it connects the metropolitan area of Lima-Callao and the eastern area of the mountain range which clearly separates the eastern area of Peru from the developed areas along the western coast. The traffic volume is comparatively large as many heavy big trucks run on the road even at night. This road comes to the highest point EL.4,840 m at Ticlio pass which is located about 131 Km from the center of Lima and then directs to the towns located in the eastern plateau such as La Oroya, Tarma, Junin and Huancayo. Most parts of this road in the Rimac river basin are paved with asphalt. There are some towns and villages along the road. They are Chaclacayo, Chosica, Cocachacla, Surco, Matucana, San Mateo, Chicla, etc.

On the other hand, the Road along the Sta. Eulalia river does not have much traffic. For example, when the Study Team carried out field reconnaissance from the upstream end of the Sta. Eulalia river to the downstream direction, the Study Team met only four or five cars until coming to the downstream end stretches of about 10 Km between Chosica and Callahuanca Power Station though the downstream stretch has more or less frequent The road is not yet paved except the section of downstream some kilometers and the width is only for one lane as the road is constructed on the steep slope of deep valley. seems that the road along the Rimac river has very important function for the country of Peru, however, the road along the Sta. Eulalia is also important for the development of the upstream areas and for the access to the public structures such as the outlet of diversion tunnel from the Mantaro river and the structures for power generation. In addition, there are some villages along the river such as Laraos, San Juan de Iris, San Lorenzo de Huachupampa, San Pedro de Casta, etc. Though the road is connected to the towns of Marcapomachocha, Junin, etc. located on the high plateau, the road is important preferably for the inhabitants living along the Sta. Eulalia river and also for the supply of electric power to the Metropolitan area of Lima-Callao.

The routes of main roads along the main stream and typical section of road are respectively shown in Fig. V-2-1 and V-2-2.

In regard to the roadway bridge, there are so many bridges across the river as the main roads are running along the river. The number of road bridge crossing the main stream was counted as follows:

#### (A) Along the Rimac river

- River mouth Atarjea intake: 12 nos.
- Atarjea Chosica: 7 nos. (b)
- Ricardo Palma Ticlio: 15 nos. (c)

Note: The number excludes the temporary or low grade bridges and also the bridge only for pedestrians.

Along the Sta. Eulalia river: 6 nos.

There are also many bridges across the tributaries.

The location of bridges across the main stream are shown in Fig. VII-2-1 together with the route of main road. The main features of the major bridges are summarized in Table VII-2-1. Then the plan and section of a representative bridge are shown in Fig. V-2-3.

Besides the bridges, there are some other structures on the road. The following structures will be available for the disaster prevention against rock falling.

- (a) Bypass of road (b) Rockfall shed tunnel

There are some roads which will be available as the bypass at the time of traffic block, though the most of them would not be constructed only for the function of bypass.

There are two rockfall shed tunnels on the road between Surco and Matucana.

#### 3. RAILWAY AND RAILWAY BRIDGE

There is a railway running along the Rimac river. This railway connects the metropolitan area of Lima-Callo and some central towns in the districts of high plateau. The railway has the branch at la Oroya. One of them directs to north-east and reach to Cerro de Pasco. Another way direct to south-east and reach to Huancayo. The total length of railway between Lima-Callao and Huancayo is approximately 346 km. This railway is famous in the world as it passes the highest point at Ticlio pass of which elevation is about 4,840 m and the highest point of railway in the world. The Ticlio pass is located at about 171 km from Lima by railway length and on the boundary line of the Rimac river basin.

The schematic plan and profile of railway line are shown in Fig. V-3-1.

On the way to Ticlio, the railway runs almost along the Rimac river and passes through some towns and villages. However, the railway is not so much used for the passengers. It is informed there is generally only one train for one way a day for the passengers. The railway is rather used for the transportation of minerals from mines located in the mountain areas.

The railway passes the main stream of the Rimac river at several portions where bridges are provided. The typical section of a representative railway bridge is shown in the Fig. V-3-2.

Further, the railway runs on the steep slope of mountains and crosses many tributaries where the bridge or tunnel is usually provided. However, it seems to be very fearful to take this train as the possibility of rockfall and debris flow to the railway will be not low, specially at the time of rainfall.

### 4. RIVER IMPROVEMENT WORKS

#### 4.1 General

The structures for river improvement works are seen in a lot of places in and along the river. The river improvement works are generally classified as follows:

- (a) Channel works
- (b) Revetment
- (c) Levee
- (d) Parapet wall
- (e) Ground sill
- (f) Groin

The data of river improvement works are collected from some different offices and the field reconnaissance confirmed the actual conditions. As it is hard to confirm the small scale structures at this stage of study, the Study Team paid attention with much priority of investigation on the major structures which regulate, more or less, the river flow. The general locations of major river improvement works are shown in Fig. V-1-1.

#### 4.2 Channel Works

The channel works which protect both river bed and bank slopes are seen in a stretch of Lima city and up and downstream portions of some weirs and bridges. The channel works are not seen in tributaries except some tributaries where the crossing points with railway or road are protected by the channel works. Generally it seems that the channel work are not taken so much as the measures for river improvement works.

#### 4.3 Revetment

The typical type revetment which protects the slope of river bank is generally seen in the comparatively limited portions such as at up and down stream sides of bridges, at the confluence portion of tributaries to the main stream and at the stretches where the road runs along the stream and the height of road surface is low above the stream surface. In such portions, dry masonry revetment which simply piles up stones on the slope is generally used. In the stretch of about 18 Km from Chaclacayo, the revetment by gabion is seen on the left bank. The examples of gabion works in this stretch are shown in Fig. V-4-1.

#### 4.4 Levee

It seems that the levee construction is one of the most commonly used method for the flood control. Most of the levees seen in the basin are made of stones, earths and sands which are

obtained nearby places. The representative places of levee are listed below.

- (a) Left bank at Matucana
- (b) Left bank at Corcona
- (c) Left bank at Naña district
- (d) Right bank at Huachipa district

All the above levees were constructed after 1983 when the inundation due to flood happened in these areas. The typical sections of representative levees are shown in Fig. V-4-2.

### 4.5 Parapet Wall

The parapet wall are generally used in town areas though the partial wall are constructed at many places along the main streams. The representative places of parapet wall are listed below.

- (a) San Mateo town
- (b) Matucana town
- (c) Chosica town
- (d) Chaclacayo town
- (e) Lima city
- (f) Callao city

The parapet wall is generally constructed in the areas where the space for levee can hardly be found. Most of the parapet wall are made of reinforced concrete. However, it seems that the foundation of wall at some portions is not protected well. As the representative feature, the typical sections of parapet wall are shown in Fig. V-4-3.

### 4.6 Ground Sill

The ground sill is seen in some places. However, they are generally constructed as a part of structures such as irrigation intake, city water supply intake and intake or outlet for power generation water supply. It seems that the ground sill seen in the river channel of Lima city was also constructed for the protection of bridge foundation, though it is not yet confirmed.

#### 4.7 Groin

The series of groin in large scale is not seen in the river. However, during the field reconnaissance the Study Team found some groins provided in the curved portion of river where the road runs along the river side and in the comparatively gentle and wide river stretch with the houses beside the river. The groins are constructed by wet-masonry, gabion or concrete.

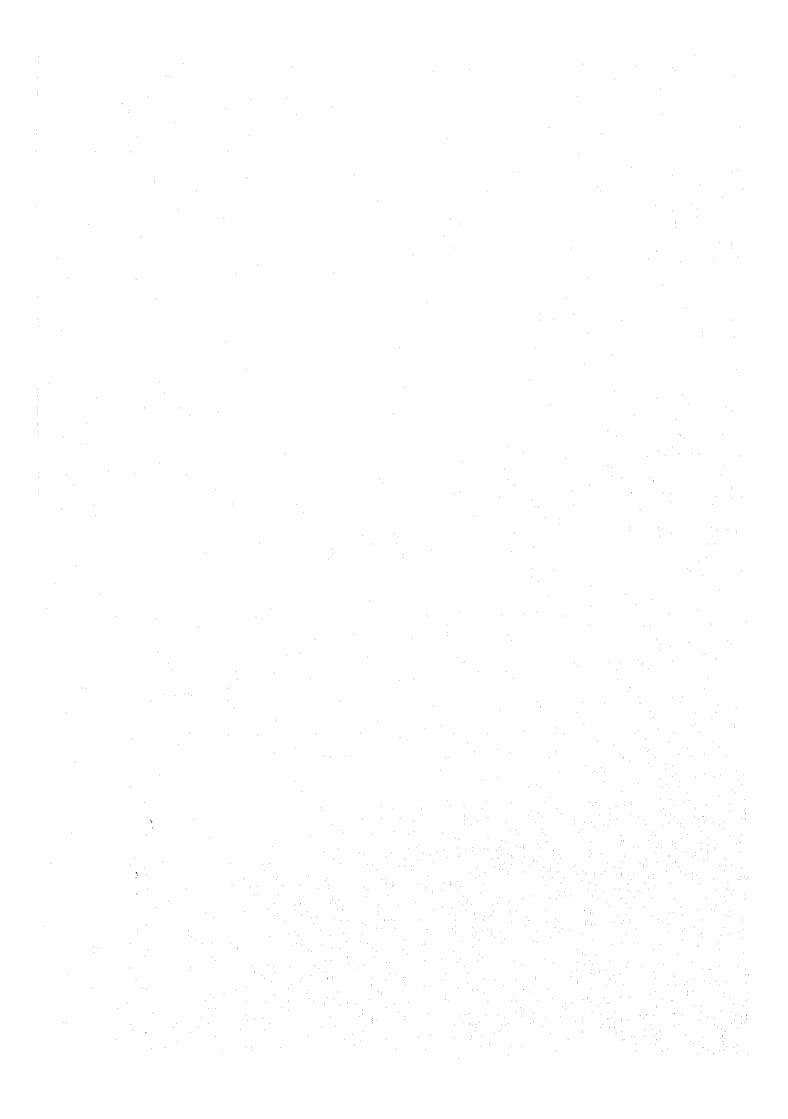
#### 5. INTAKE WEIR FOR CITY WATER SUPPLY

As the most representative structure in the river, there is a gated intake weir for city water supply in Atarjea district which is located at about 21 Km from the river mouth. The infiltration facilities are located beside the weir. The weir is equipped with seven (7) tenter gates. Five (5) of them are 10 m wide and 4 m high and two (2) of them are 5 m wide and 4 m high. The water is taken from the upstream pond stored by the gate operation. No function against flood is expected by this intake. The plan and typical section are shown in Fig. V-5-1.

### 6. INTAKE STRUCTURE FOR IRRIGATION WATER SUPPLY

On the both sides of the Rimac river, the agricultural lands are developed. As the rainfall is very limited and short for agriculture specially in the downstream stretches from Chosica district, the intake of water from the river is important. There are more than twenty intakes for irrigation water supply in the Rimac river. Among them, the downstream twenty (20) intakes are administrated by Ministry of Agriculture. The total maximum intake discharge of the twenty intakes is about 18 m³/s for approximately 19,400 ha in total irrigation area.

The location of irrigation intake is shown in Fig. V-6-1 and the basic design of a representative intake is shown in Fig. V-6-2.


### 7. INTAKE AND OUTLET STRUCTURES FOR POWER GENERATION

There are 5 hydro-electric power stations in the Rimac river basin. Three (3) stations are located in the Rimac river basin and two (2) stations in the Sta. Eulalia river. Each power station takes the water from the intake structure located in the upstream stretch through the waterway tunnel. As the river gradient is very steep in the mountain area, it is possible to get high head for the power generation. The present power stations are listed as follows:

- (A) The Rimac river
  - (a) Pable Boner Matucana (120,000 kW)
  - (b) Carosio Moyopampa (63,000 kW)
  - (c) Bianchini Huampaní (30,000 kW)
- (B) The Sta. Eulalia river
  - (a) Huinco (260,000 kW)
  - (b) Carosio Callahuanca (67,000 kW)

The location and system of hydro-electric power at present condition is shown in Fig. V-7-1. The intake and outlet structures are located in or beside the river. The main features of a intake , Sheque dam and Huinco dam are respectively shown in Fig. V-7-2, 3 and 4.

It seems that the Rimac river as well as the Sta. Eulalia river are utilized much for the power generation. And consequently, ELECTROLIMA practically control according to the electric demand in the Metropolitan area.



## 8. OTHER STRUCTURES

There is a weir with low height less than 1 m at about 150 m upstream of Huachipa bridge. The river width at this portion is approximately 100 m. The infiltration facilities with ponds are located at right bank of the weir. The intake structure with two gates located at the right end of weir controls the water level for intake.

The water after infiltration is transported to the refinery plant for Cajamarquilla mine.

At the upstream of the Santa Eulalia river, there is the outlet of tunnel from the Mantaro river, the tributary of the Amazon river. At present, it is informed that the discharge is about 4 m<sup>3</sup>/sec, however, it will be increased up to 16 m<sup>3</sup>/sec in the future if the Mantaro transfer project is completed.

The present and future system to transfer the water from the Mantaro river to the Rimac river basin is schematically shown in Fig. V-8-1.

There are many natural lakes in the valley of high mountain at EL.4500-5000 m. Some of these lakes have outlet facilities with gate(s) which control(s) the water level and outlet discharge.

There are waterway tunnels in the main stream as well as in the tributaries in the upstream stretches. In the stretch between Matucana and San Mateo, there are two tunnels from which very rapid flow is flushed out. In the very narrow valley at Autisha bridge in the Santa Eulalia river, there is tunnel passing below the valley. In addition, there are some tributaries of which water is guided by tunnel or culvert to the main stream. Usually the mining company constructs such tunnel in tributary.

There are big piles of excavated materials from mine at Qda. Sta. Rosa and Qda. Tacpin located at the upstream stretch of the Rimac river. The piles look like high earth dam and almost completely bury the valley of the tributaries. There are water way tunnels to divert the water from the tributary to the main stream.

It is not a structure, however, the piles of excavated materials from road construction are seen in the middle reach of the Rimac river, specially in the stretch of Surco and Matucana. In the downstream stretch, specially in the city area of Lima, piles of earth and rubbish are seen in the river channel. The flow capacity in such stretches will be much reduced and the sedimentation from the pile will rises the river bed height in the downstream stretches.

For the additional references, typical sections of revetment and retaining wall used at some places in the basin are respectively shown in Fig. V-8-2 and 3.

# Tables

TABLE V-2-1 MAIN FEATURES OF MAJOR ROADWAY BRIDGES (1/2)

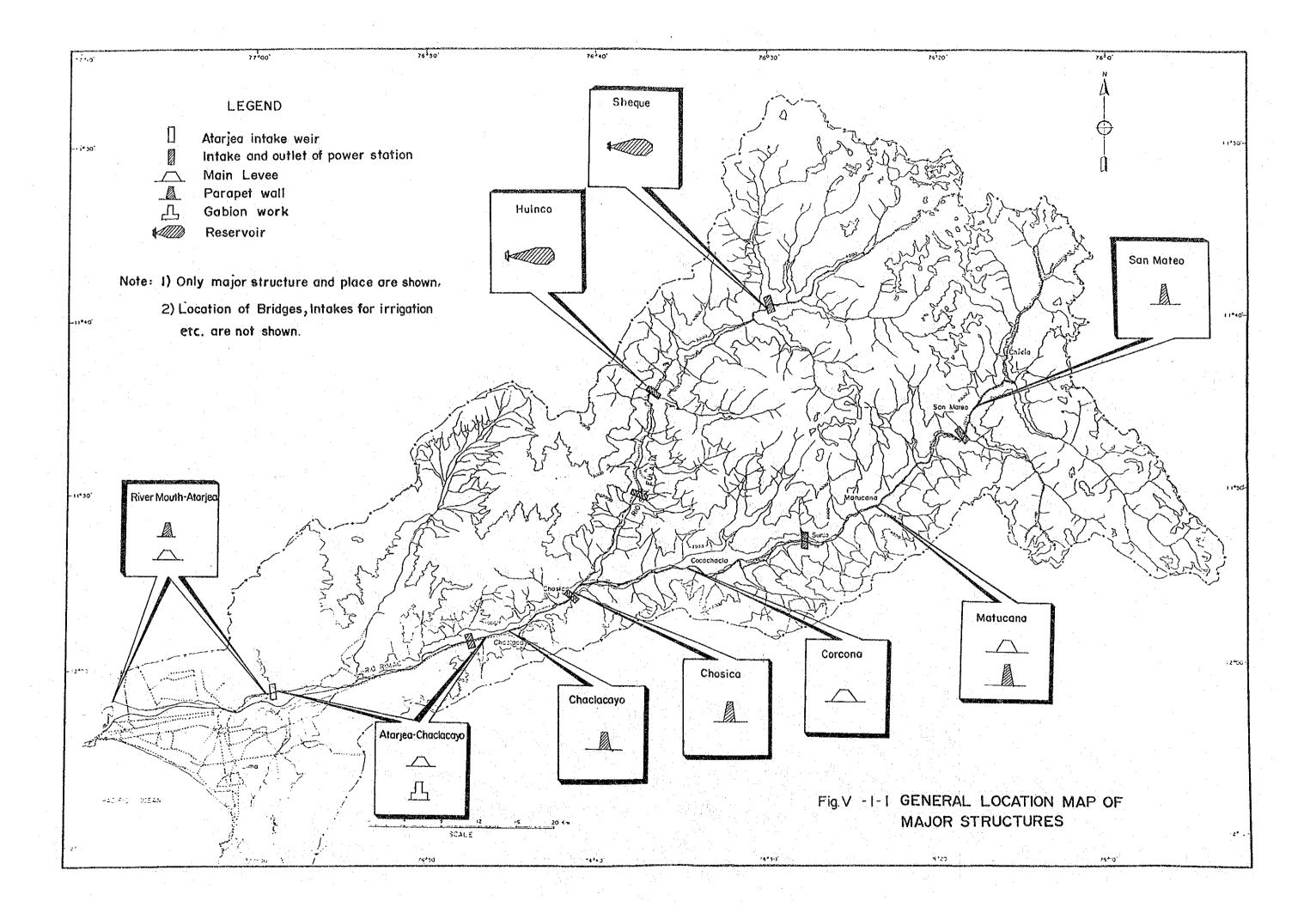
| No.      | Name of bridge | Loca-<br>tion |               | Width             | Height<br>from a<br>girder<br>to ri- | Type       | Year<br>of con-<br>struc-<br>tion        |
|----------|----------------|---------------|---------------|-------------------|--------------------------------------|------------|------------------------------------------|
|          |                | (Km)          | (m)           | (m)               | verbed                               |            |                                          |
|          |                |               |               |                   |                                      |            | e <sup>*</sup>                           |
| 1.       | Arsenal        | 0.59          | 50.0          | 8.0               | -                                    |            | . ~                                      |
| 2.       | Emisor         | 1.81          | 50.0          | 6.0               | _                                    | C.G.       | :                                        |
| 3.       | Elmer Faucett  | 4.94          | 55.0          | 16.0              | -                                    | C.G.       | <del>-</del>                             |
| 4.       | Universitario  | 7.31          | 70.0          | 20.0              | 2.5                                  | C.G.       | 1966                                     |
| 5.       | Dueñas         | 8.65          | 71.8          | 20.6              | 4.0                                  | C.G.       | 1965                                     |
| 6.       | Ejercito       | 11.16         | 92.5          | 26.8              | 6.5                                  | C.B.C      | . 1964                                   |
| 7.       | Santa Rosa     | 12.22         | 140.0         | 22.6              | 2.8                                  | C.G.       | -                                        |
| 8.       | Piedra         | 12.74         | 50.0          | 12.0              | <b>-</b> ; .                         | <b></b> 1. | - · · · · · -                            |
| 9.       | Abancay        | 13.30         | 55.0          | 25.0              | <u>-</u> '                           | C.G.       | er e |
| 10.      | Balta          | 13.45         | 90.0          | 12.0              | -                                    | C.G.       | -                                        |
| 11.      | Cantagallo     | 13.87         | 90.0          | 20.2              | 7.5                                  | C.G.       | -                                        |
| 12.      | Huascar        | 15.32         | 198.0         | 32.8              | 7.0                                  | С.В.С      | -                                        |
| 13.      | Carlos Graña   | 20.20         | 220.0         | 35.0              | 4.5                                  | C.G.       | 1985                                     |
| 14.      | Huachipa       | 28.03         | 78.0          | 9.2               | 3.0                                  | C.G.       | _                                        |
| 15.      | Ñaña           | 37.82         | 82.5          | 8.0               | 3.5                                  | .G.        | · <u>-</u>                               |
| 16.      | Los Girasoles  | 41.73         | 126.5         | 3.9               | 2.0                                  | C.G.       | -                                        |
| 17.      | Huanpani       | 42.98         | 47.0          | 4.0               | 2.0                                  | т.         | -                                        |
| 18.      | Los Angeles    | 46.30         | 63.0          | 11.6              | 10.0                                 | C.A.       | _                                        |
| 19.      | La Cantuta     | 51.23         | 41.0          | 4.0               | 2.5                                  | C.G.       | _                                        |
| 20.      | Argen          | 52.99         | 23.0          | 4.0               | _                                    | C.G.       | -                                        |
| 21.      | Ricado Palma   | 57.71         | 60.0          | 7.2               | 10.0                                 | C.A.       | 1950                                     |
| A COLUMN | Baritina*      | 69.16         |               |                   |                                      | C.G.       | · -                                      |
|          | Agua Salada    | 71.49         |               |                   | •                                    |            | 1984                                     |
| 1.5      | Esperanza      | 77.44         |               |                   |                                      |            | 1984                                     |
| 100      |                | 78.84         |               |                   | 12.0                                 |            |                                          |
| . 11     | Verrugas       | 80.44         | 1 15 E. F. F. | The second second | 8.0                                  | 4 1        | 1984                                     |
| 27.      | San Juan       | 88.6          | 48.0          | 2 1 4             | and the second                       | Т.         |                                          |
| 2 P.     |                |               |               |                   |                                      |            |                                          |

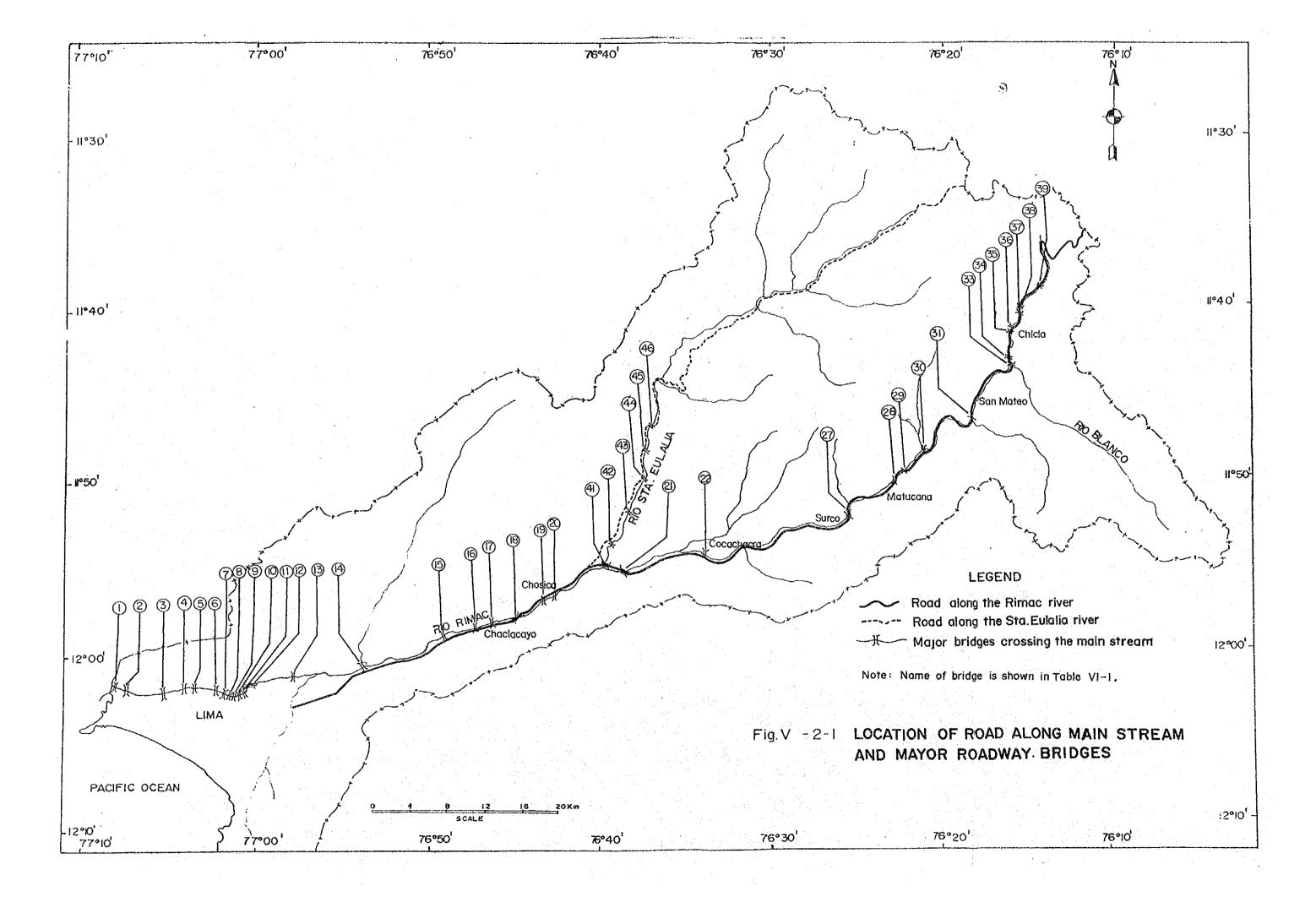
(to be continued)

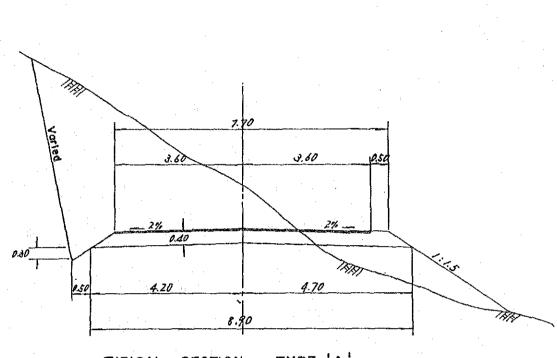
TABLE V-2-1 MAIN FEATURES OF MAJOR ROADWAY BRIDGES (2/2)

| No.        | Name of bridge   | Loca-<br>tion<br>(Km) | Length<br>(m) | Width<br>(m) | Height<br>from a<br>girder<br>to ri-<br>verbed | Туре         | Year<br>of con-<br>struc-<br>tion |
|------------|------------------|-----------------------|---------------|--------------|------------------------------------------------|--------------|-----------------------------------|
| ********** |                  |                       |               |              |                                                |              |                                   |
| 28.        | Huaripachi       | 93.2                  | 38.8          | 9.7          | 4.0                                            | C.G.         | 1963                              |
| 29.        | Llican           | 94.5                  | 30.0          | 9.7          | 7.5                                            | C.G.         | 1960                              |
| 30.        | Chacahuaro       | 98.8                  | 20.2          | 10.8         | 8.0                                            | C.G.         | 1960                              |
| 31.        | Tamboraque No.3  | 107.9                 | 45.0          | 8.8          | 12.5                                           | C.G          | 1959                              |
| 32.        | Rio Blanco       | 116.5                 | 12.0          | 9.0          | 7.0                                            | C.G.         | 1958                              |
| 33.        | Young Bazo       | 116.6                 | 19.2          | 9.4          | 10.0                                           | C.G.         | 1964                              |
| 34.        | Anche            | 116.9                 | 24.5          | 11.3         | 5.0                                            | C.G.         | 1959                              |
| 35.        | Chicla No.1      | 121.8                 | 20.5          | 9.5          | 7.5                                            | C.G.         | 1954                              |
| 36.        | Chicla No.2      | 122.6                 | 18.2          | 10.4         | 6.0                                            | C.G.         | 1957                              |
| 37.        | Bellavista No.1  | 124.3                 | 14.0          | 11.8         | 5.0                                            | C.G.         | 1958                              |
| 38.        | Bellavista No.2  | 124.5                 | 14.8          | 9.3          | 4.8                                            | C.G.         | 1958                              |
| 39.        | Tablachaca       | 128.1                 | 14.0          | 11.6         | 4.5                                            | C.G.         | 1959                              |
| 40.        | Chinchan         | 136.2                 | 14.6          | 11.4         | 4.5                                            | C.G.         | 1960                              |
|            | (Along the Santa | Eulalia               | river)        |              |                                                |              | and the second                    |
| 41.        | Palomar          | 57.3                  | 20.0          | 6.0          |                                                | <del>-</del> | <u></u>                           |
| 42.        | Parca            | 60.1                  | 20.0          | 5.0          |                                                |              | _                                 |
| 43.        | Juan Carossio    | 65.4                  | 24.0          | 6.0          | -                                              | _            |                                   |
| 44.        | Santa Rosa       | 67.0                  | 20.0          | 8.0          | -                                              | where        | · -                               |
| 45.        | Verde            | 72.7                  | 20.0          | 4.0          | -                                              | _            | -                                 |
| 46.        | Huinco           | 75.2                  | 15.0          | 6.0          | <del>-</del> .                                 |              | -                                 |

Note: C.A.: Concrete Arch


C.C.: Concrete Girder


C.B.G.: Concrete Box Girder


T. : Truss

\* : Private Bridge

# Figures









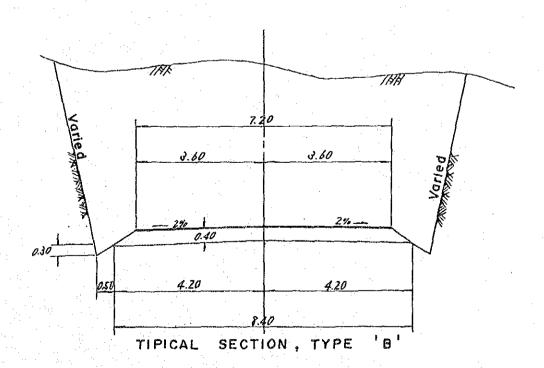
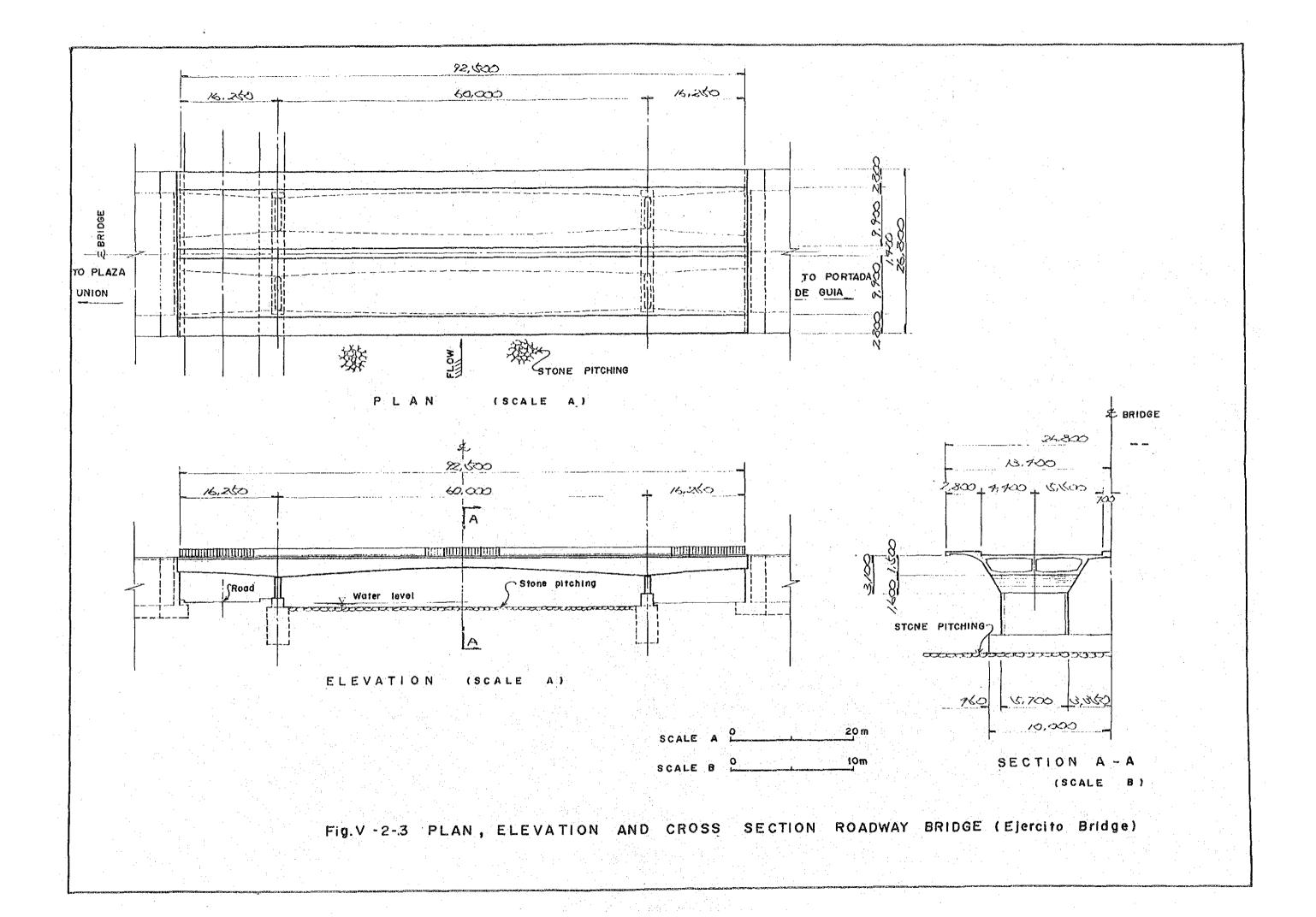
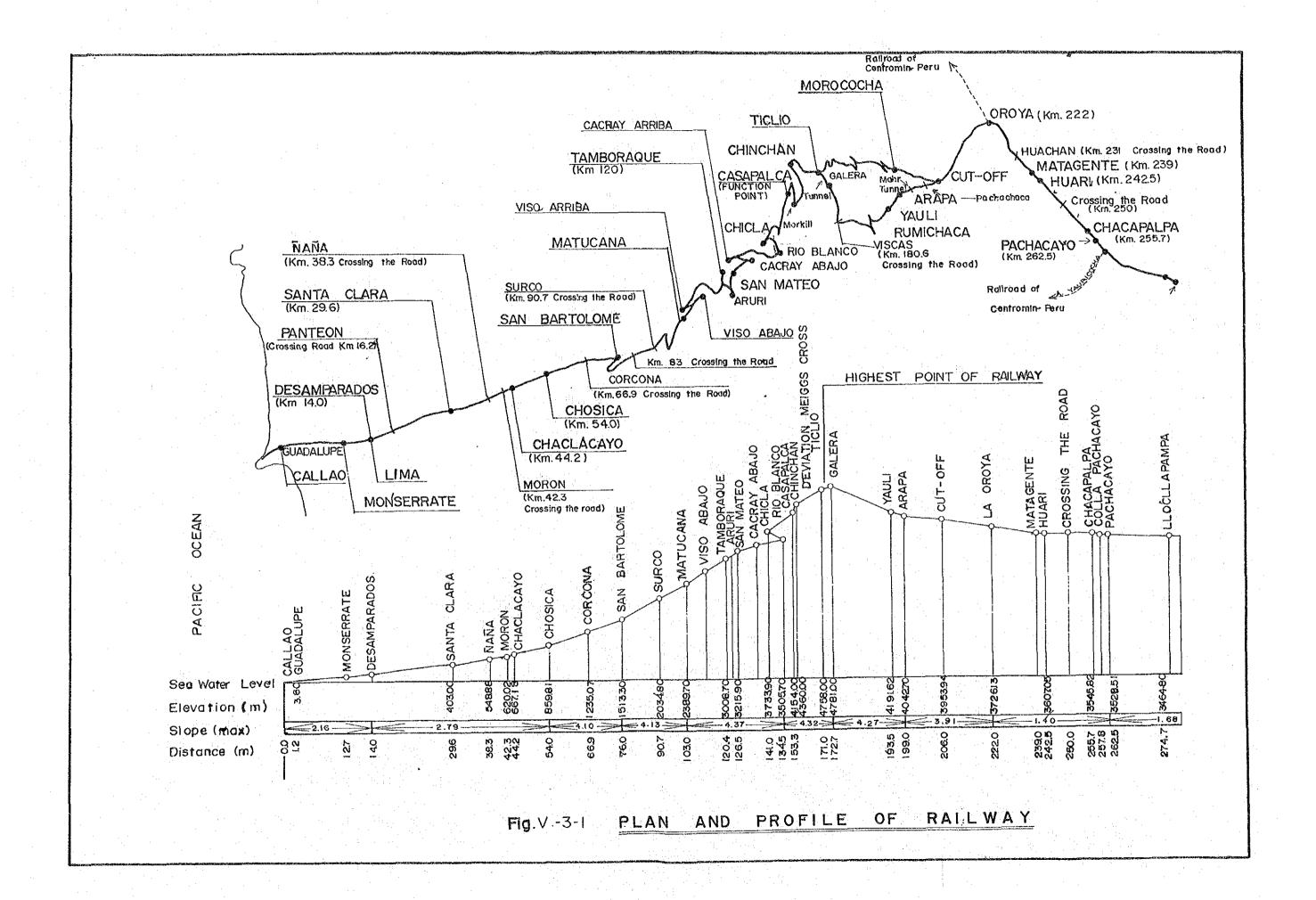





FIG. V - 2-2 TIPICAL SECTIONS OF ROADWAY





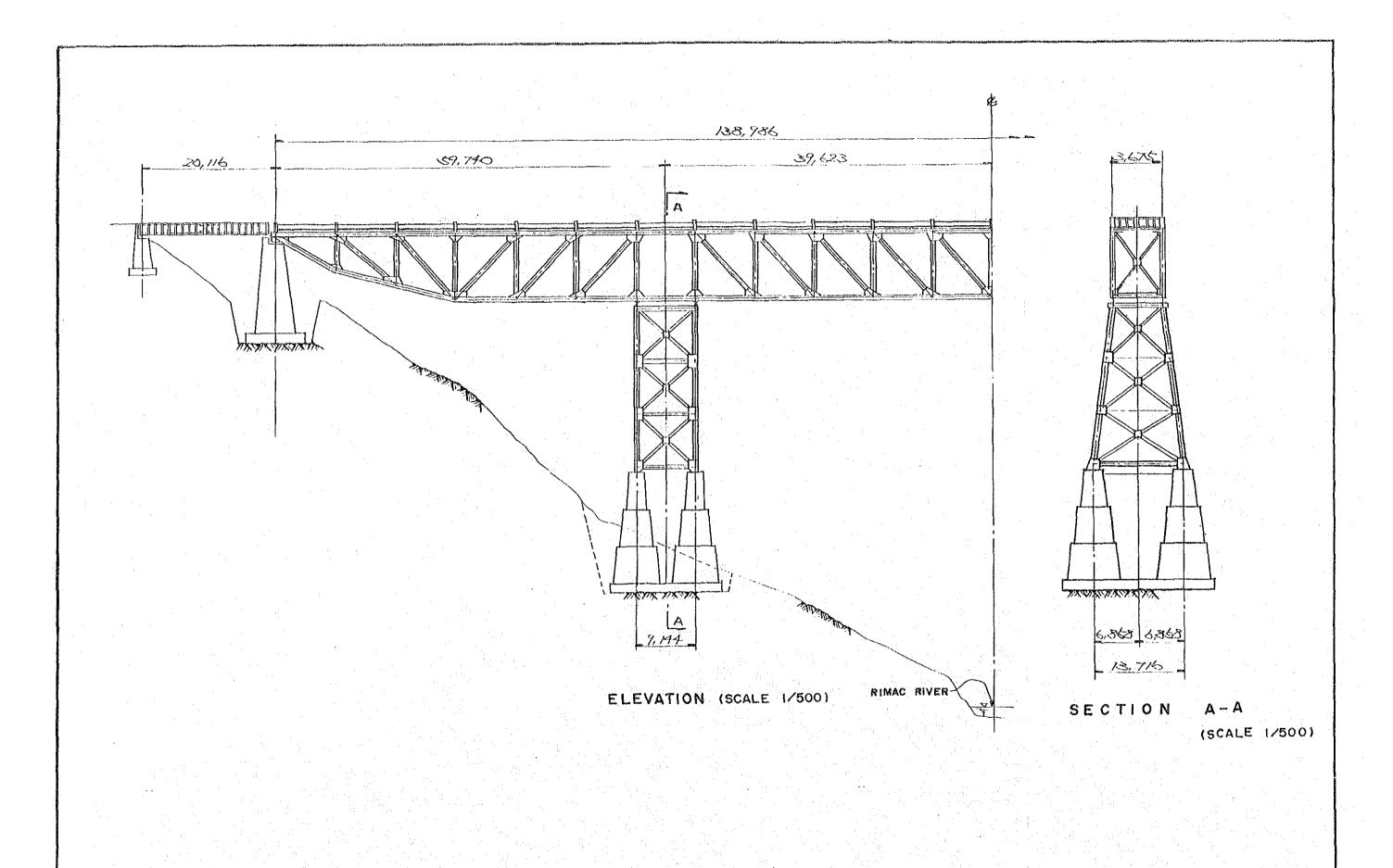
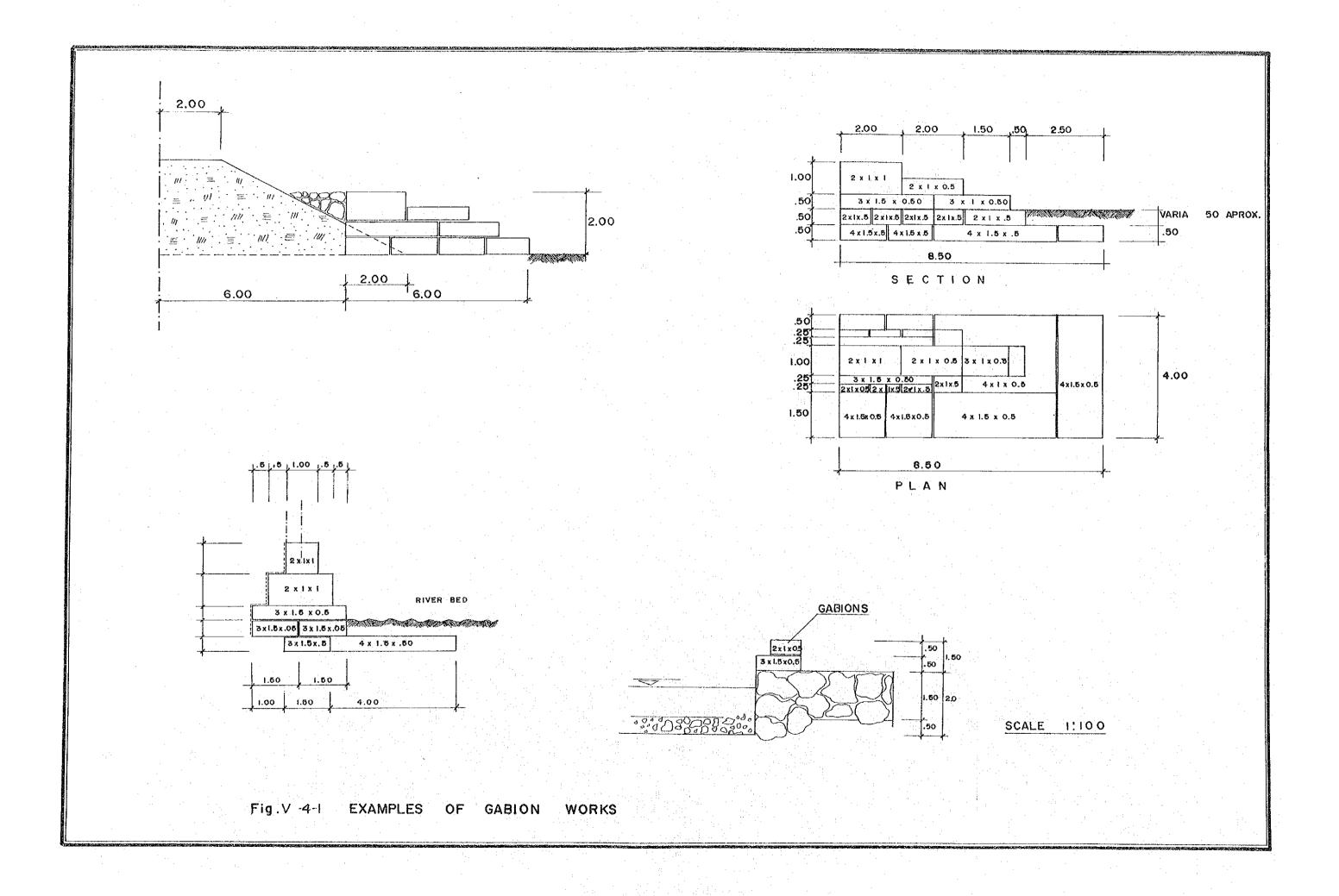
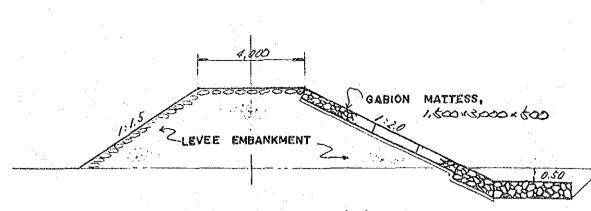
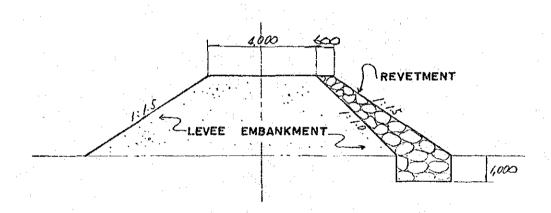
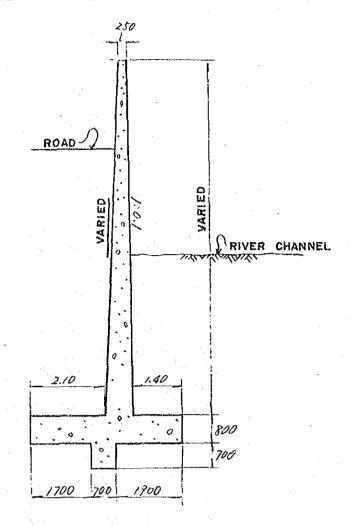
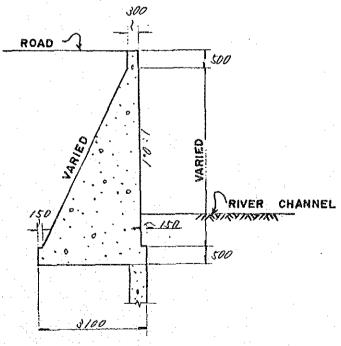






Fig. V - 3-2 ELEVATION AND SECTION OF RAILWAY BRIDGE (Carrion Bridge)



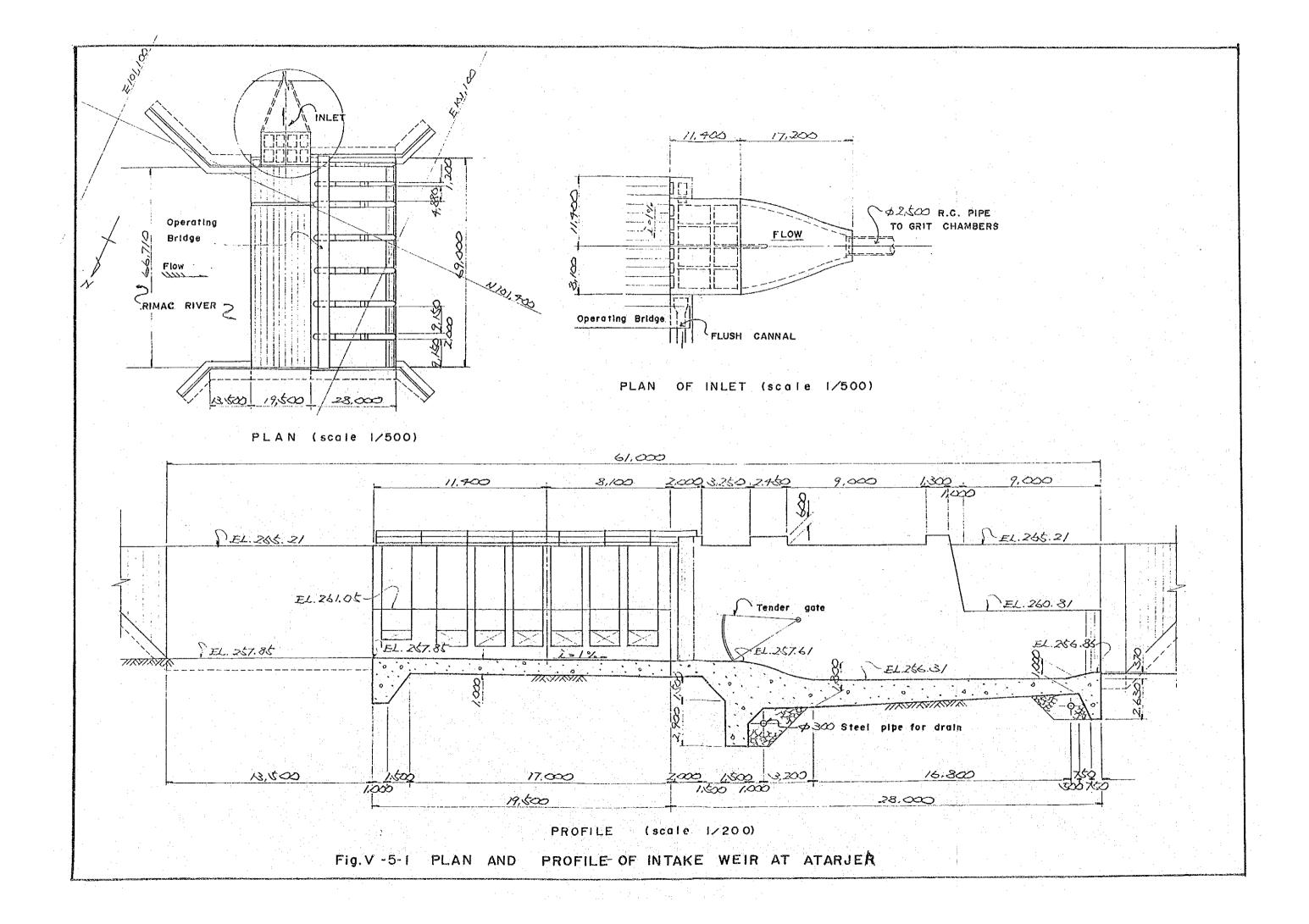


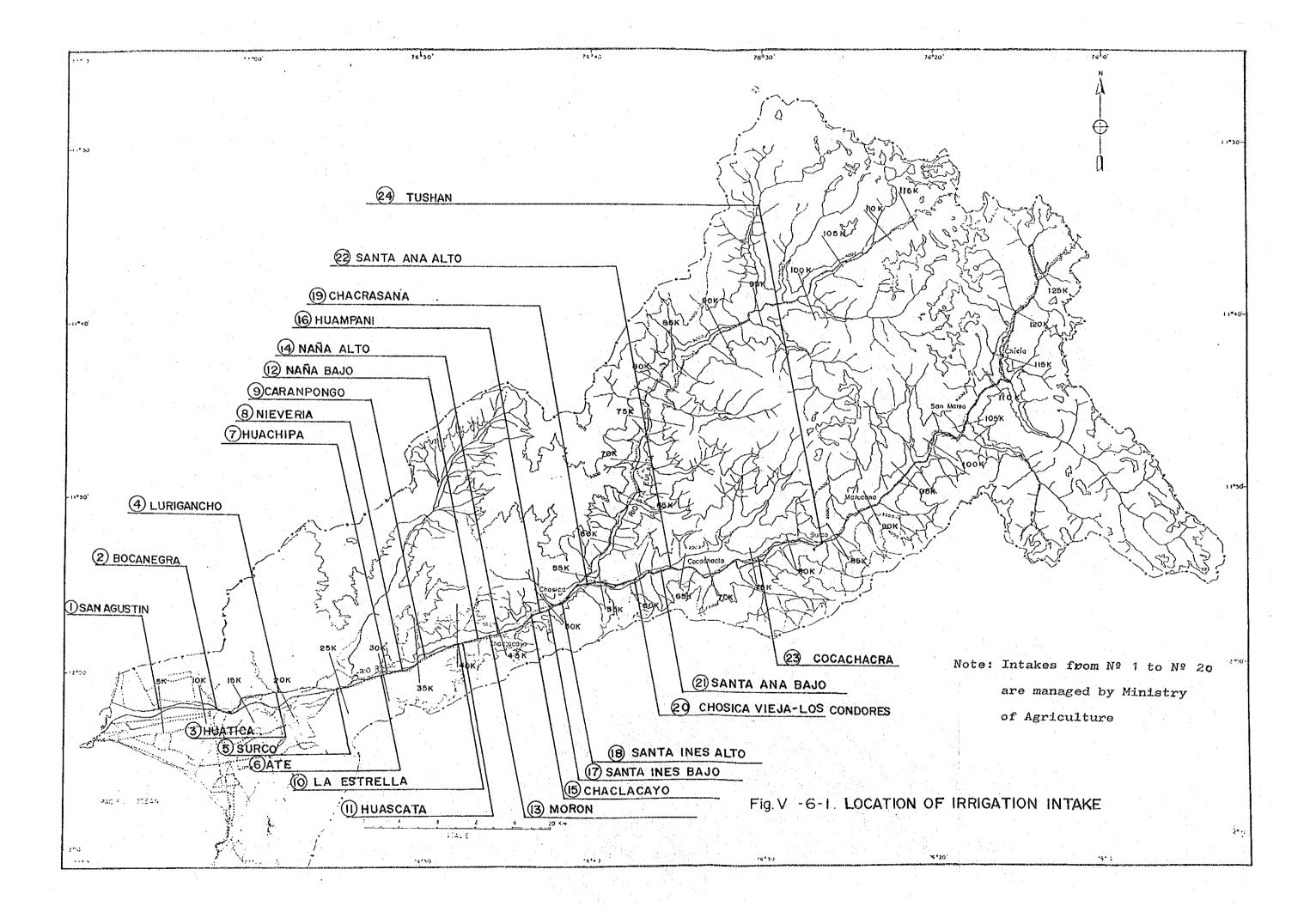

TIPICAL SECTION , TYPE A

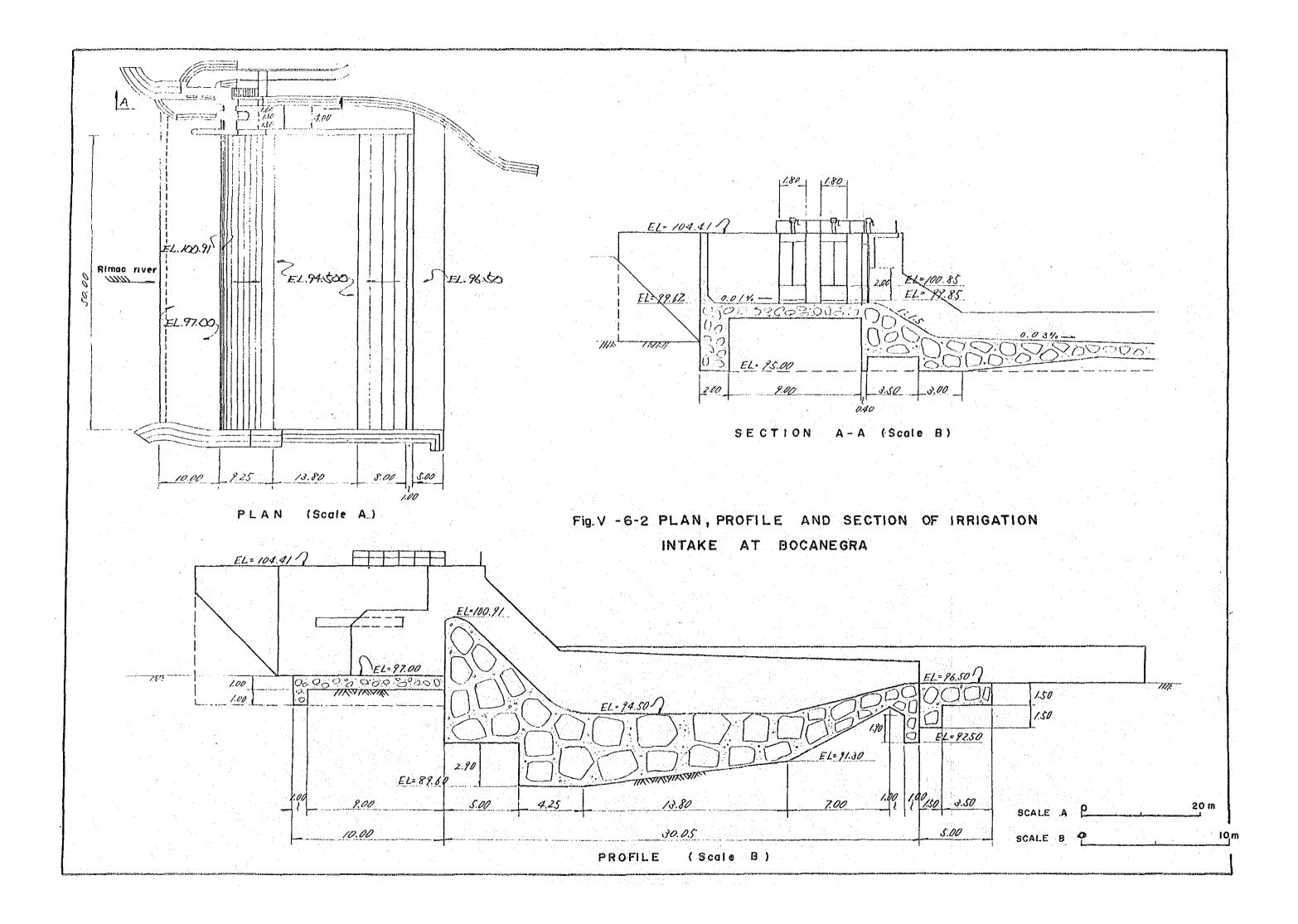


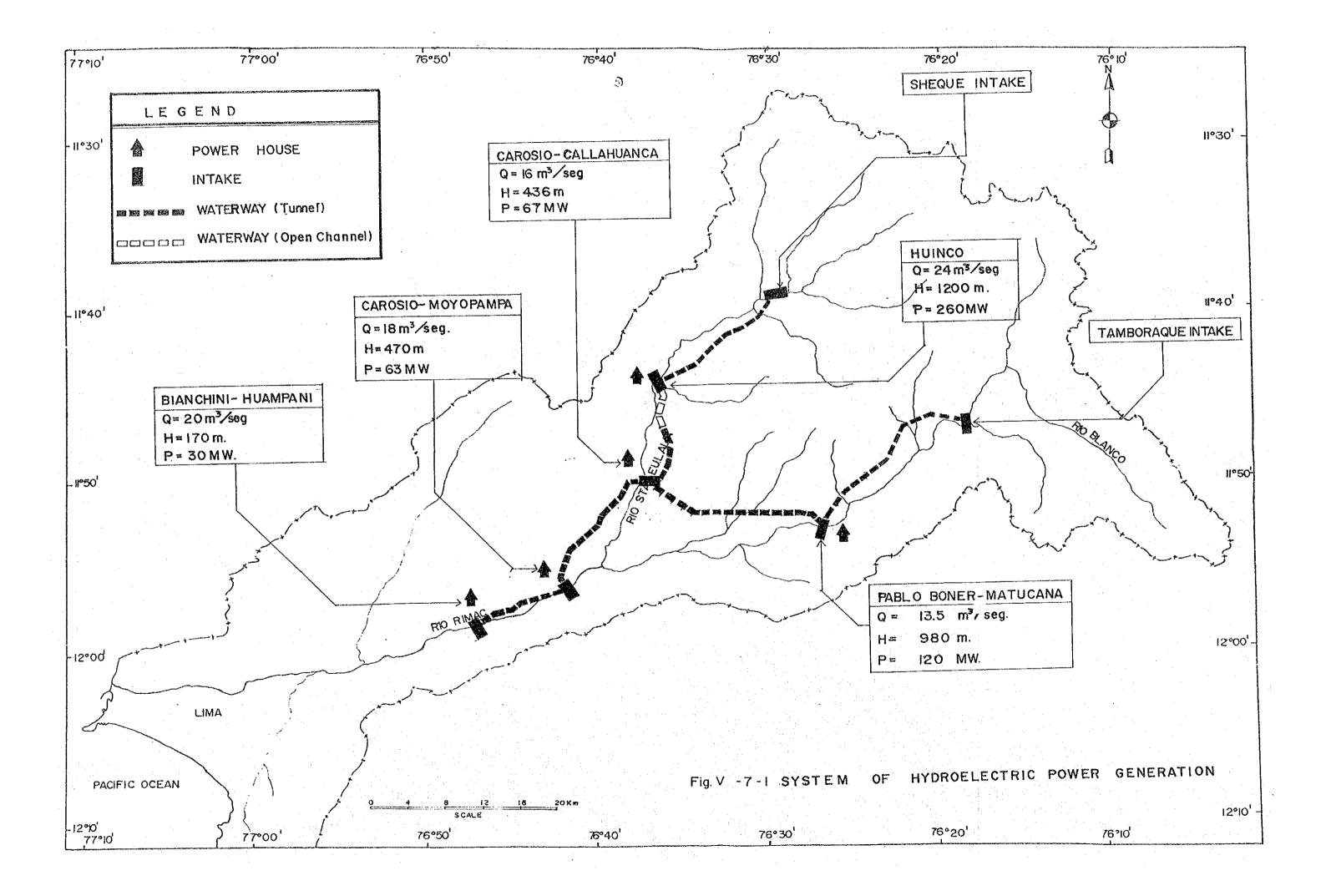

TIPICAL SECTION, TYPE 'B'

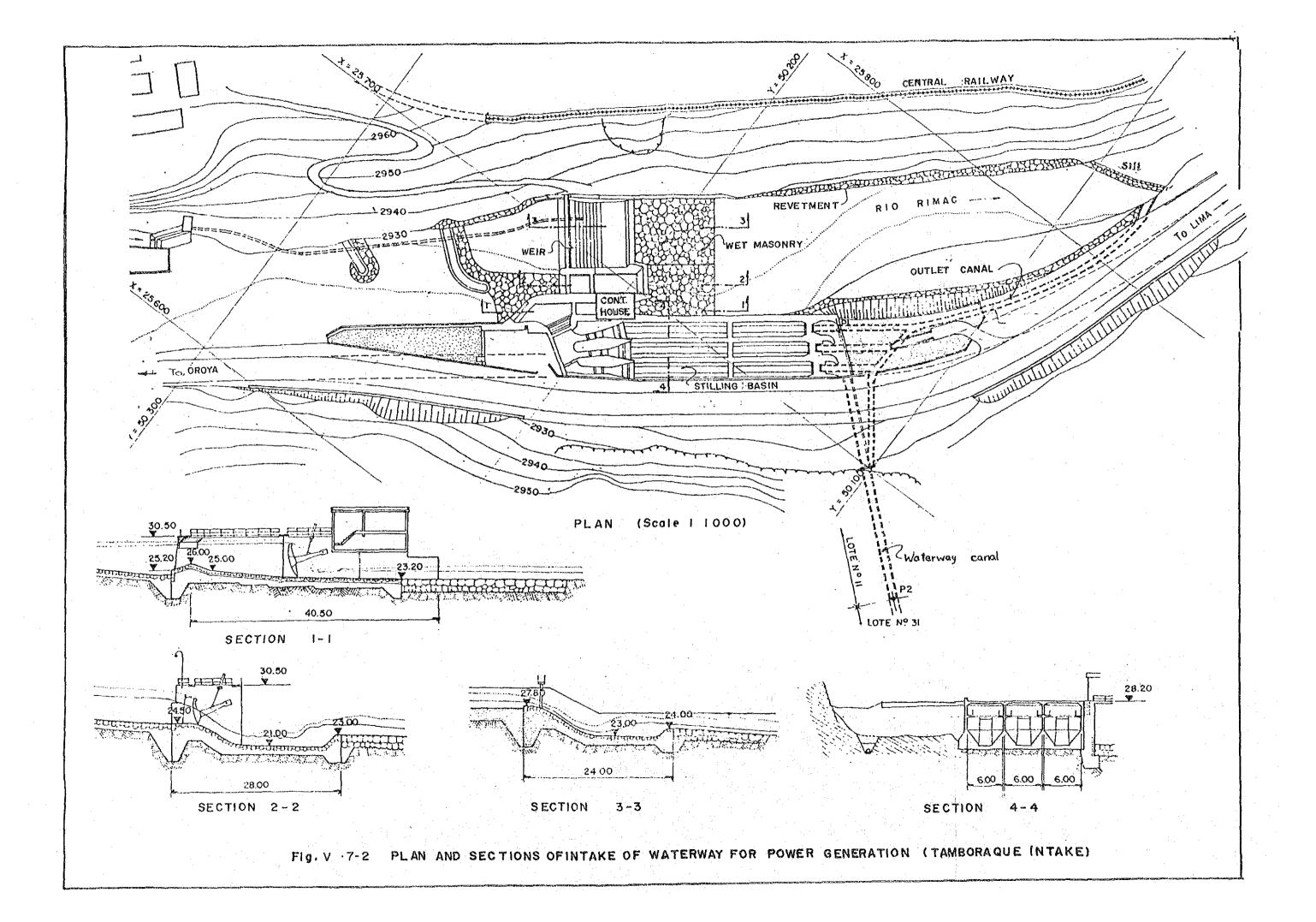
FIG.V-4-2 TIPICAL SECTIONS OF LEVEE

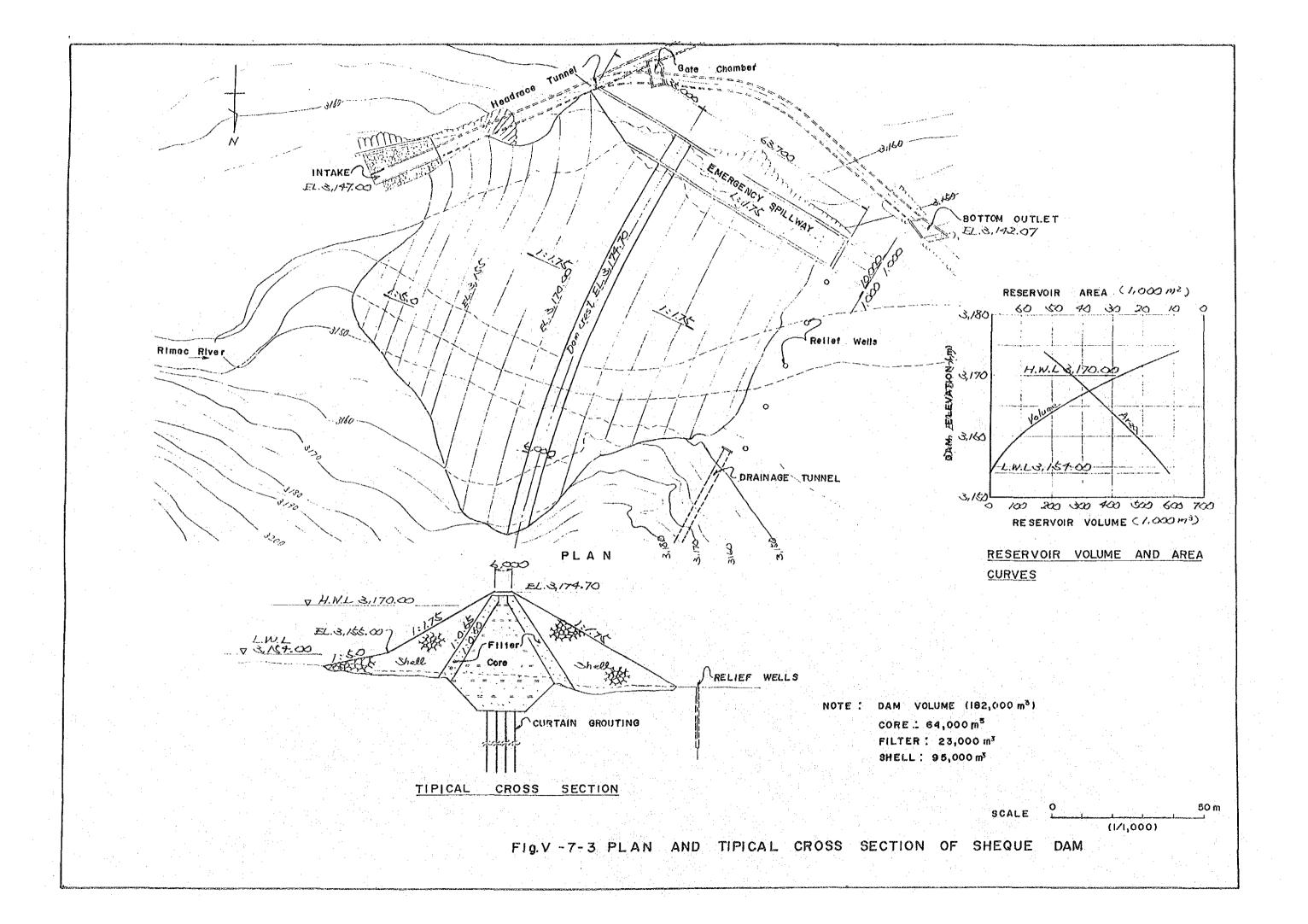


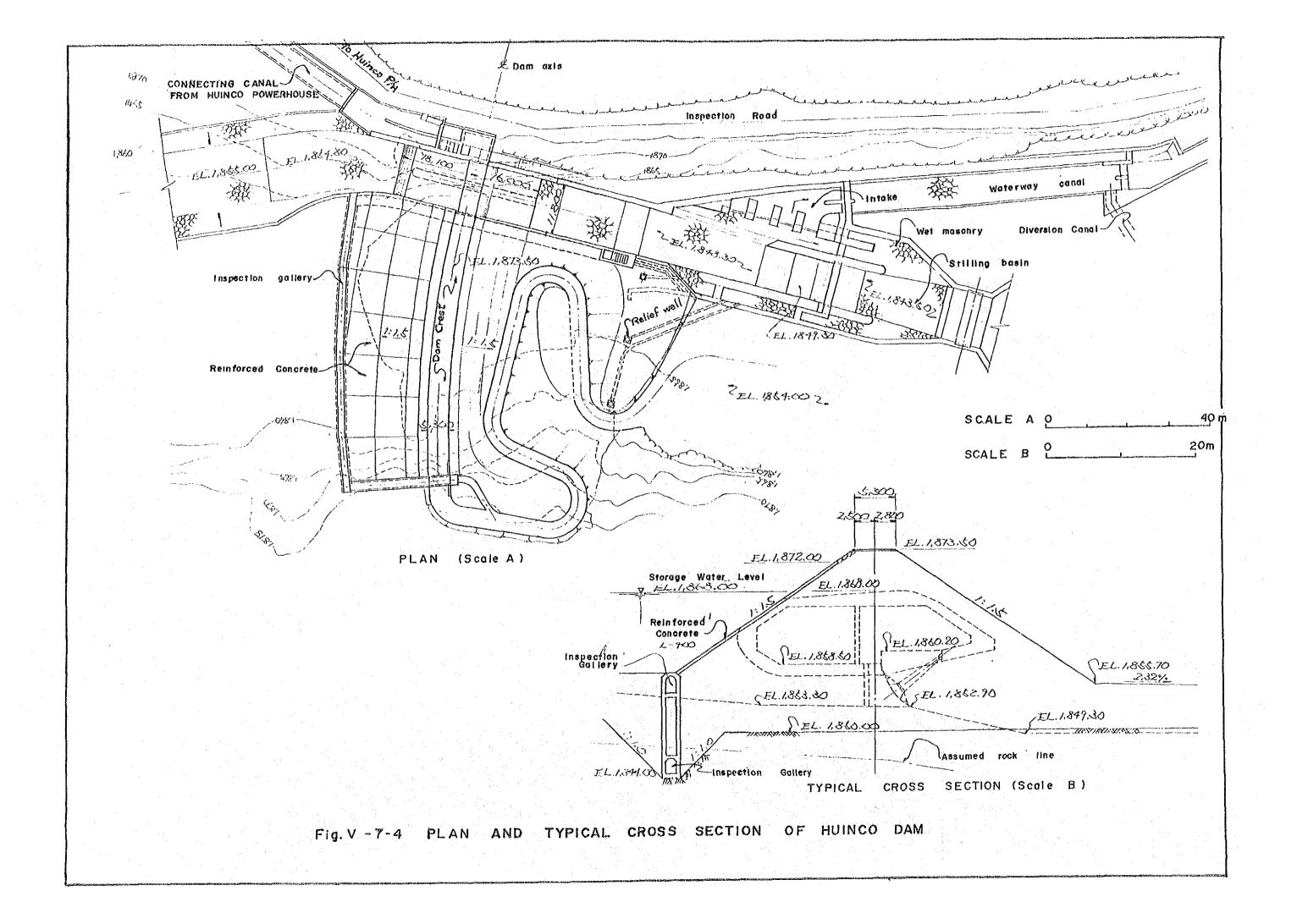


TIPICAL SECTION , TYPE A

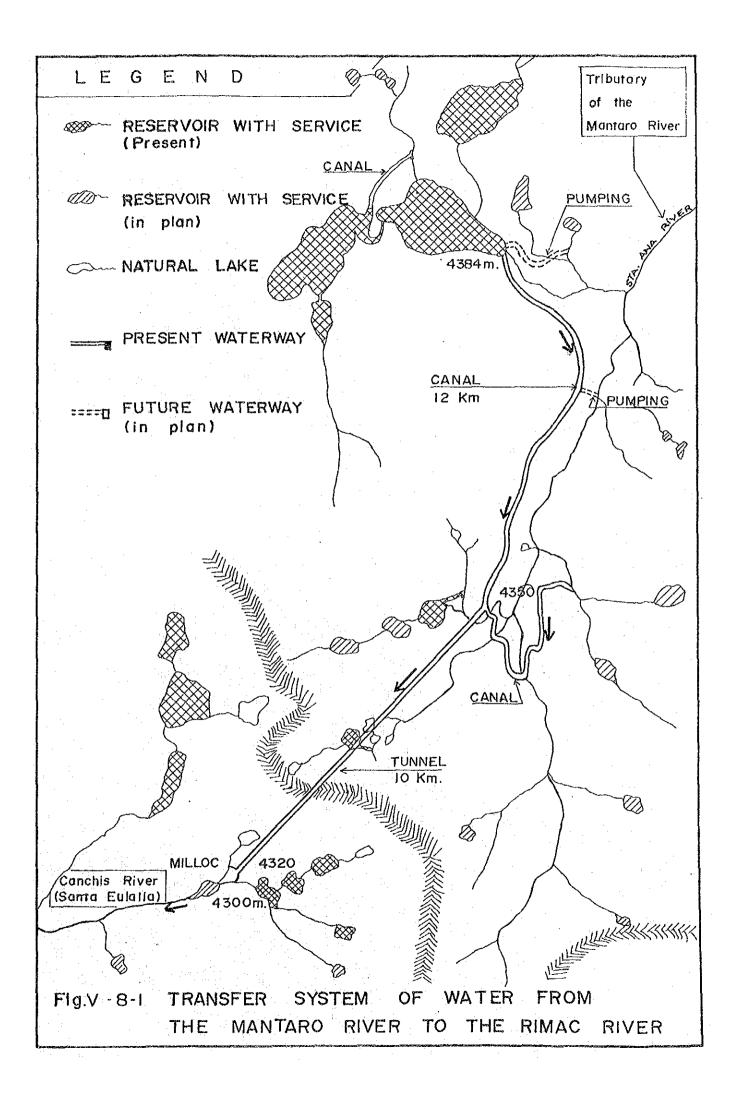


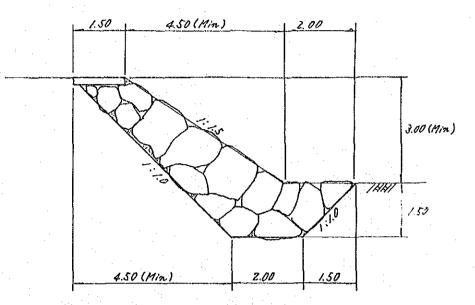


TIPICAL SECTION, TYPE B


FIG.V -4-3 TIPICAL SECTION OF PARAPET WALL

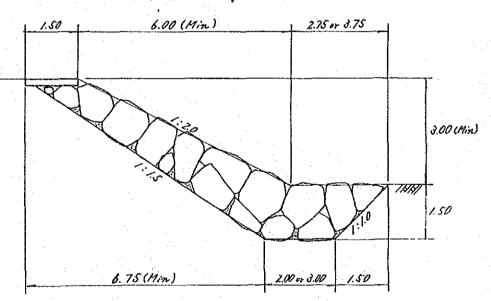


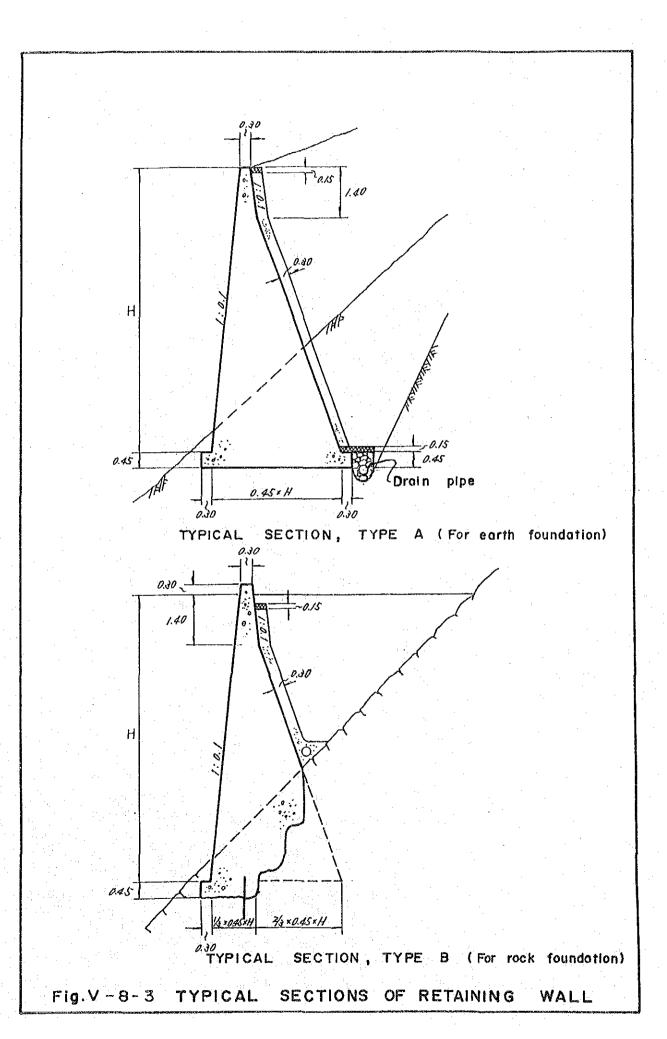










TYPICAL SECTION, TYPE A



TYPICAL SECTION, TYPE B

Fig. V -8-2 TYPICAL SECTIONS OF REVETMENT

