
		Riv	er Bed EL.	671.0m F	S.L. 680.	0 m
Overflow Head(ho)	m	1.0	1.5	2.0	2.5	3.0
Freeboard	m	2.2	2.7	3.5	3.7	4.2
Dam Hight	m	11.7	12.2	12.7	13.2	13.7
Dam Crest EL.	m	682.7	683.2	683.7	684.2	684.7
Dam'Vol.	m	233,000	268,000	306,000	345,000	383,000
Dam Cost	\$	1, 165, 000	1,340,000	1,530,000	1, 725, 000	1, 915, 000
Spillway Length	m	492	268	174	125	95
Spillway Vol. 1.	m³	1,662	1,179	735	309	212
Spillway Cost 1.	\$	265,900	188,600	117,600	49,400	33,900
-do-2	\$	141,300	100,200	62,500	26,300	18,000
Excavation Vol.	m	100,000	4,500	<u> </u>	·	_
- do - Cost	\$	4,000,000	180,000			
Total Cost 1	\$	5,430,900	1,708,700	1,647,700	1,774,500	1,948,900
- do - 2.	\$	5,306,300	1,620,200	1,592,500	1,751,300	1,933,000

%1 Concrete, %2 Stone Hasonry

Table	E	-1(2)	Dam	Cost	curve	
Chinyamatumwa	(11 -	-1 - 6)				
		R	iver Bed E	L. 735.0m	F. S. L.	751.0m
Overflow Head(ho)	m	1.0	1.5	2.0	2.5	3.0
Freeboard	m	2.2	2.7	3.2	3.7	4.2
Dam Hight	m	18.7	19.2	19.7	20.2	20.7
Dam Crest EL.	· m	753.7	754.2	754.7	755.2	755.7
Dam Vol.	m ³	152,000	166,000	179,000	194,000	211,000
Dam Cost	\$	760,000	830, 000	895,000	970,000	1,055,000
Spillway Length	m	96.0	53.0	34.0	25.0	19.0
Spillway Vol. 1.	m³	3,300	700	200	120	90
Spillway Cost 1.	\$	528,000	112,000	32,000	19,200	14,400
-do-2	\$	280,500	59,500	17,000	10,200	7,700
Excavation Vol.	m	80,000	34,800	34,800	34,800	34,800
- do - Cost	\$	280,000	121,800	121,800	121,800	121,800

Total Cost 1.

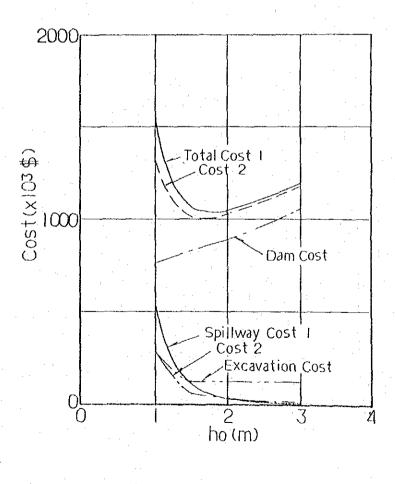
- do - 2.

\$ \$

%1 Concrete, %2 Stone Masonry

1,568,000 1,063,800 1,048,800 1,111,000 1,191,200

1, 320, 500 1, 011, 300 1, 033, 800 1, 102, 000 1, 184, 500


A ...

4

nün

%1

※2

	2 - 1	1 A A A A A A A A A A A A A A A A A A A	ver Bed EL	.648.0m F	.S.L. 664.	0 m
Overflow Head(ho)	m	1.0	1.5	2.0	2.5	3.0
Freeboard	m	2.2	2.7	3.2	3.7	4.2
Dam Hight	m	18.7	19.2	19.7	20.2	20.7
Dam Crest EL.	m	666.7	667.2	667.7	668.2	668.7
Dam Vol.	m	208,000	220,000	237,000	262,000	279,000
Dam Cost	\$	1,040,000	1, 100, 000	1, 185, 000	1, 310, 000	1, 395, 000
Spillway Length	m	134	73	48	34	26
Spillway Vol. 1.	m	865	435	245	135	65
Spillway Cost 1.	\$	138, 400	69, 600	39,200	21,600	10, 400
-do-2	\$	73,500	37,000	20,800	11, 500	5,500
Excavation Vol.	m	13,500	····	-		
- do - Cost	\$	540,000	-			
Total Cost 1.	\$	1, 718, 400	1, 169, 600	1,224,200	1,331,600	1, 405, 400
- do - 2.	\$	1,653,500	1, 137, 000	1,205,800	1, 321, 500	1, 400, 500

※1 Concrete, ※2 Stone Masonry

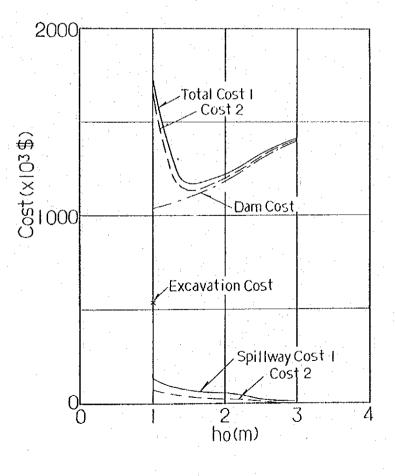
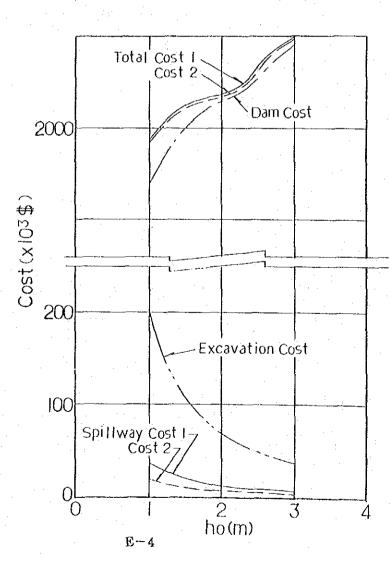
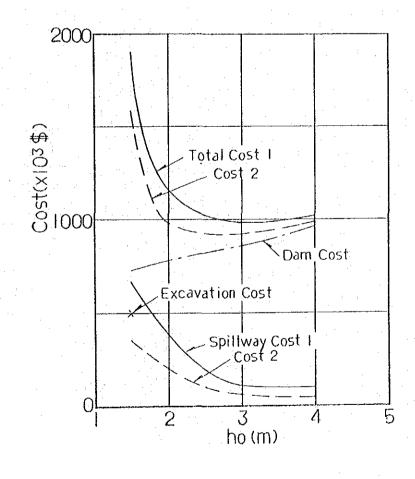



Table E-1(4) Dam Cost Curve

Muni	andan	12 (W	4 - 10)
MUNI	angan	. a (1v -	4 - 10 E

nanganga ti	•	Ri	ver Bed EL	. 1, 132. Om	F.S.L. 1,	149.0m	
Overflow Head(ho)	m	1.0	1.5	2.0	2.5	3.0	
Freeboard	m	1.1	2.6	3.1	3.6	4 1	
Dam Hight	m	19.6	20.1	20.6	21.1	21.6	
Dam Crest EL.	m	1,151.6	1, 152.1	1,152.6	1,153.1	1,153.6	
Dam Vol.	m³	340,000					
Dam Cost	\$	1, 700, 000	2,000,000	2,150,000	2,275,000	2,450,000	
Spillway Length	m	206	112	73	52	40	
Spillway Vol. 1.	· m²	233	125	83	58	45	
Spillway Cost 1.	\$	37,300	20, 000	13, 300	9,280	7,200	*
- do - 2	\$	19, 800	10,600	7, 100	4,900	3, 800	*
Excavation Vol.	m	56,400	30,700	20,000	14,200	11,000	
- do - Cost	\$	197, 400	107,500	70,000	49, 700	38,500	- -
Total Cost 1.	\$	1,934,600	2, 127, 500	2,233,300	2,334,000	2,495,700	:.
- do - 2.	\$	1, 917, 200	2, 118, 100	2, 227, 100	2, 329, 600	2,492,900	а. н.

%1 Concrete, %2 Stone Hasonry


 $\frac{\text{Table E-1(5)}}{\text{Magudu}(V-3-3)}$

Dam Cost Curve

River Bed EL.514.0m F.S.L. 529.0m Overflow Head(ho) m 1.5 2:0 2.5 4.0 3.0 Freeboard 2.7 3.2 3.7 4.2 5.2 m Dam Hight 18.2 18.7 19.2 19.7 20.7 m 532.2 Dam Crest EL. 532.7 533.2 533.7 534.7 m 146,000 Dam Vol. m 156,000 165,000 173,000 192,000 780,000 Dam Cost \$ 730,000 825,000 865,000 960,000 Spillway Length 133: 87 62 31 m 47 Spillway Vol. 1. 4,195 313 m³ 2,382 1,218 709 Spillway Cost 1. 671,200 381, 120 194,880 113,440 50,080 ×1 \$ - do ж2 356, 578 202,470 103,530 60,265 26,605 -2 \$ 12,500 Excavation Vol. m³ - do - C o s t \$ 500,000 978,400 1,010,100 Total Cost 1. 1,901,200 1,161,100 1,019,900 \$ 925,300 986,600 - do - 2. \$ 1,586,600 982,500 928,530

%1 Concrete,

%2 Stone Hasonry

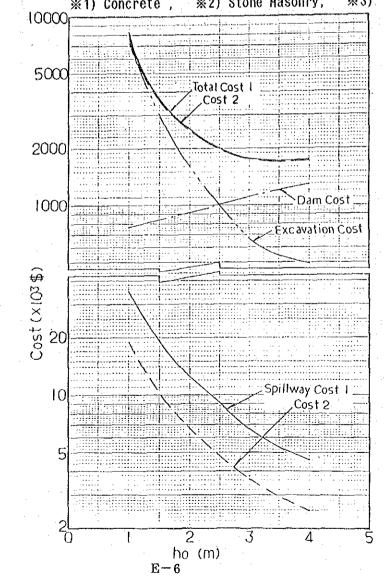


Table E-1(6) Dam Cost Curve

Mabvute (VI - 1 - 12)

River Bed EL.629.0 F.S.L. 644.0m

			ULACI D	Cu crive				
Overflow Head(ho)	m	1.0	1.5	2.0	2.5	3.0	4.0	
Freeboard	m	2.2	2.7	3.2	3.7	4.2	5.2	
Dam Hight	m	17.2	17.7	18.2	18.5	19.2	20.2	
Dam Crest EL.	 	646.2	646.7	647.2	647.7	648.2	649.2	
Dam Vol.	m	154,000	168,000	185,000	201,000	222,000	255,000	
Dam Cost	\$	770,000	840,000	925,000	1,005,000	1, 110, 000	1,275,000	
Spillway Length	m	202	110	72	52	39	29	
Spillway Vol.	m	222	121	79	57	43	29	
Spillway Cost 1.	\$	35,520	19,360	12,640	9,100	6,880	4,640	※ 1
do - 2	\$	18,870	10,290	6,720	4,850	3,660	2,470	×2
Excavation Vol.	m	375,800	150,400	80,400	50,000	33,200	24,900	
<pre>%3) - do - Cost</pre>	 			1,608,000	1,000,000	664,000	498, 000	
Total Cost 1.	\$						1, 777, 600	
- do - 2.	\$						1, 775, 500	
	1) Concrete) 40\$/dx0		

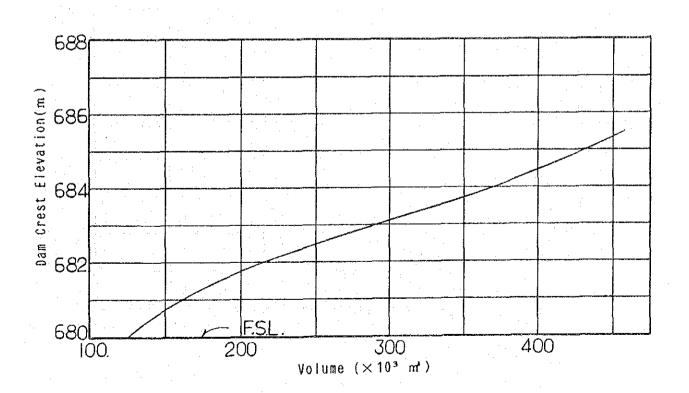

)

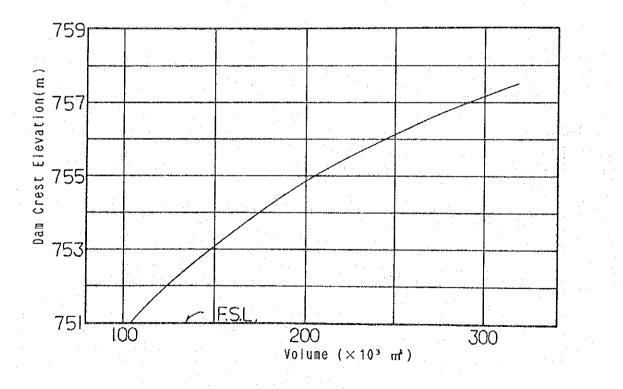
Table E - 2(1) Calculation of Dam Volume(tentative)

<u>No. I-2-1</u>	Musaverema	
River Bed Elevation	671.0	m (H ₁)
River Bed Width	215.0	m (L ₂)
Dam Crest Width	6.0	m (B)
F.S.L.	680.0	m (H ₂)
Upstream Slope 1:2.25 ·····	• (M) Downstream	Slope 1:2.20 (N)

 $V_p = 1/2 \cdot B \cdot H (L_1 + L_2) + 1/6 (M+N) \cdot H^2 \cdot (L_1 + 2L_2)$ $H = H_2 - H_1 + a$

:	Dam Crest EL.		m	679.5	681.5	682.5	683.5	684.5	685.5
	Dam Hight	Н	m	9	11	12	13	14	15
	Crest Length	Lı	m	930	1,216	1, 435	1, 740	1, 845	1,946
•	Dam Volume	Vp	X103 m ^a	109	188	250	336	402	456

E--7

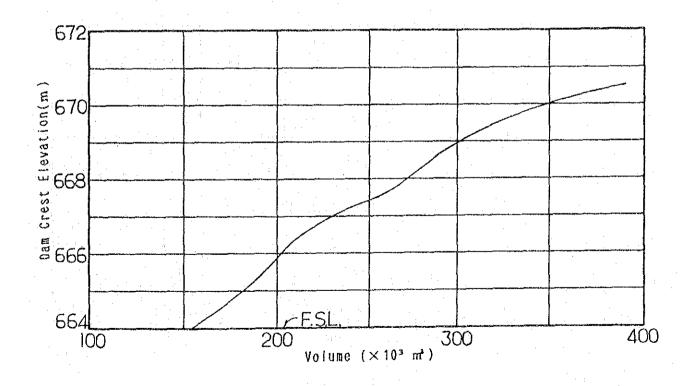

Table E - 2(2) Calculation of Dam Volume(tentative)

<u>No. II − 1 − 6</u>	Chinyamatumwa	
River Bed Elevation	735.0	m (H ₁)
River Bed Width	20.0	m (L ₂)
Dam Crest Width	6.0	т (В)
F. S. L.	751	m (H ₂)
Upstream Slope 1:2.25 …	··· (M) Downstream S	lope 1:2.0 (N)

 $V_{D} = 1/2 \cdot B \cdot H (L_{1} + L_{2}) + 1/6 (M+N) \cdot H^{2} \cdot (L_{1} + 2L_{2})$

 $H=H_2 - H_1 + a$

Dam Crest EL.		m	750.5	752.5	753.5	754.5	755.5	756.5	757.5
Dam Hight	Н	m	16	18	19	20	21	22	23
Crest Length	L ₁	m	383	442	479	512	560	615	681
Dam Volume	VD	X10 ³ m [*]	96	136	161	188	224	266	319


Table E - 2(3) Calculation of Dam Volume(tentative)

<u>No. II-2-1</u>	Mashoko		
River Bed Elevation	648.0	m	······· (H ₁)
River Bed Width	10.0	m	(L ₂)
Dam Crest Width	6.0	m	(B)
F.S.L.	664.0	m	(H ₂)
Upstream Slope 1:2.25	(M) Downstream	Slope	1:2.0 ····· (N)

 $V_{D} = 1/2 \cdot B \cdot H (L_{1} + L_{2}) + 1/6 (M+N) \cdot H^{2} \cdot (L_{1} + 2L_{2})$

 $H=H_2 - H_1 + a$

Dam Crest EL.		m	663.5	665.5	666.5	667.5	668.5	669.5	670.5
Dam Hight	Н	m	16	18	19	20	21	23	24
Crest Length	Lı	m	590	663	702	725	743	753	792
Dam Volume	VD	X10 ³ m ³	139	193	214	255	286	342	389

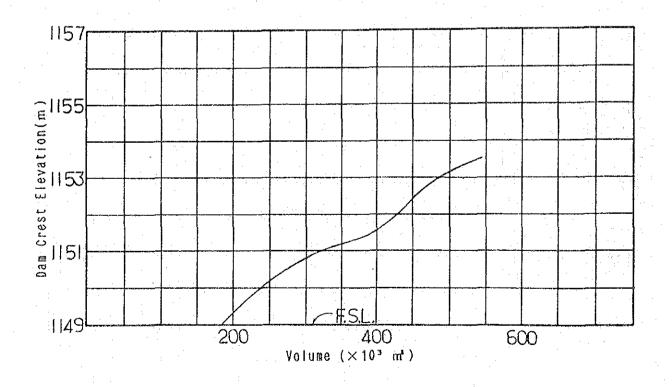


Table E-2(4) Calculation of Dam Volume(tentative)

No. $IV - 4 - 10$	Munjanganja	
River Bed Elevation	1,132.0 m	(H ₁)
River Bed Width	15.0 m	(L. ₂)
Dam Crest Width	6.0 m	(B)
F.S.L.	1, 149.0 m	(H ₂)
Upstream Slope 1:2.25 …	(M) Downstream Sic	pe 1:2.0 (N)

 $V_{p} = 1/2 \cdot B \cdot H (L_{1} + L_{2}) + 1/6 (M+N) \cdot H^{2} \cdot (L_{1} + 2L_{2})$ $H = H_{2} - H_{1} + a$

Dam Crest EL.	:	m	1148.5	1150.5	1151.5	1152.5	1153.5
Dam Hight	Н	m	17	19	20	21	22
Crest Length	L	m	610	850	1, 123	1, 180	1,300
Dam Volume	V _D	X10 ³ m [*]	163	274	395	453	543

Table E-2(5) Calculation of Dam Volume(tentative)

No. V-3-3 Mag	udu
River Bed Elevation	514.0 m (H ₁)
River Bed Width	30.0 m (L ₂)
Dam Crest Width	6.0 m (B)
F.S.L.	529.0 m ······ (H ₂)
Upstream Slope 1:2.25 (M)	Downstream Slope 1:2.0 (N)

 $V_{D} = 1/2 \cdot B \cdot H (L_{1} + L_{2}) + 1/6 (M+N) \cdot H^{2} \cdot (L_{1} + 2L_{2})$

 $H = H_2 - H_1 + a$

Dam Crest EL.		m	528.5	530.5	531,5	532.5	533.5	534.5	535.5
Dam Hight	Н	m	15	17	18	19	20	21	22
Crest Length	Lı	m	407	430	447	456	463	471	477
Dam Volume	Vo	X103 m*	94	124	142	160	178	197	218

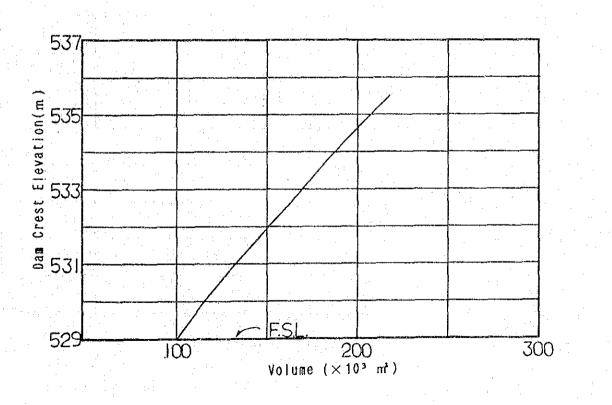


Table E = 2(6) Calculation of Dam Volume(tentative)

<u>No. VI-1-12</u>	Mabvuti	
River Bed Elevation	6 29.0	m (H ₁)
River Bed Width	20.0	m (L ₂)
Dam Crest Width	6.0	m (B)
F.S.L.	644.0	m (H ₂)
Upstream Slope 1:2.25 ····	·· (M) Downstream (Slope 1:2.0 (N)

 $V_{p} = 1/2 \cdot B \cdot H (L_{1} + L_{2}) + 1/6 (M+N) \cdot H^{2} \cdot (L_{1} + 2L_{2})$

 $H=H_2-H_1+a$

Dam Crest EL.		m	643.5	645.5	646.5	647.5	648.5	649.5	650.5
Dam Hight	Н	m	15	17	18	19	20	21	22
Crest Length	L	m	356	492	540	592	635	680	730
Dam Volume	V _D	X103 m²	80	135	163	196	231	269	313

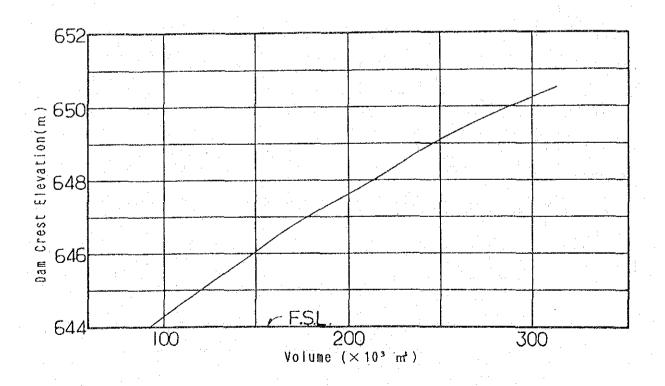


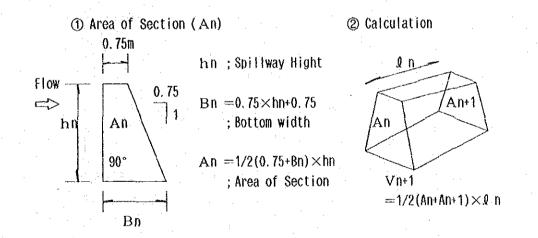
Table E-3(1) Calculation of Spillway Volume(tentative)

No. I-2-1 Musaverema

1. Relation between Crest Length and Overflow Head of weir

 $Q = C \cdot L \cdot H^{3/2}$

Q; design flood (835 m³/sec) C; coefficient (C=1.7) L; crest length


H; overflow head

H	(m)	1.0	1.5	2.0	2.5	3.0	5.0	
L	(m)	492	268	174	125	95	44	

2. Volume of Spillway

Spillway Crest Elevation

EL. 680.0 m

Calculation of Volume

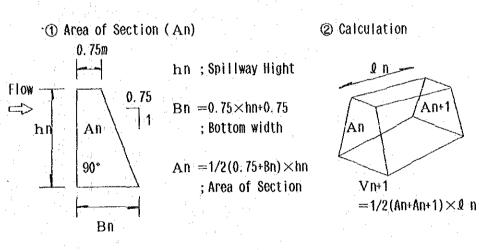
	- 1			1		· · · · ·	<u></u>		
n		1	2	3	4	5	6	1'	2
hŊ	m	1	1	2.9	3.6	4.2	4	1	1
An	ฑ้	1.1	1.1	5.3	7,6	9.8	9.0	1.1	1.1
ΣQ	m	0	44	95	125	174	215	268	492
2 n	m	0	44	51	30	49	41	53	439
Vn+1	m	0	48.4	163.2	97.5	426.3	385.4	58.3	482.9
Σ٧	m	0	48.4	211.6	309.1	735.4	1120.8	1179.1	1,662



Table E = 3(2) Calculation of Spillway Volume(tentative)

No. II−1−6 Chinyamatumwa

1. Relation between Crest Length and Overflow Head of weir


 $Q = C + L + H^{3/2}$

- Q; design flood (163 m²/sec)
- C; coefficient (C=1.7)
- L; crest length
- H ; overflow head

			· · · · · ·		<u></u>		
H (m)	0.5	0.75	1.0	1.5	2.0	3.0	5.0
	271	148	96	53	34	19	9

2. Volume of Spillway

Spillway Crest Elevation EL. 751.0 m

Calculation of Volume

· · ·	1.1	1					
n		1	2	3	4	5	6
hn	m	. 0	0.6	1.2	3,1	6.1	9.2
An	៣	0	0.6	1.4	5.9	18.5	38.6
ΣĮ	m	0	10	20	50	100	150
ln	m	0	10	10	30	50	50
Vn+1	'n	0	3	10	109.5	610	1, 427. 5
Σv	mª	0	3	13	122.5	732.5	2,160

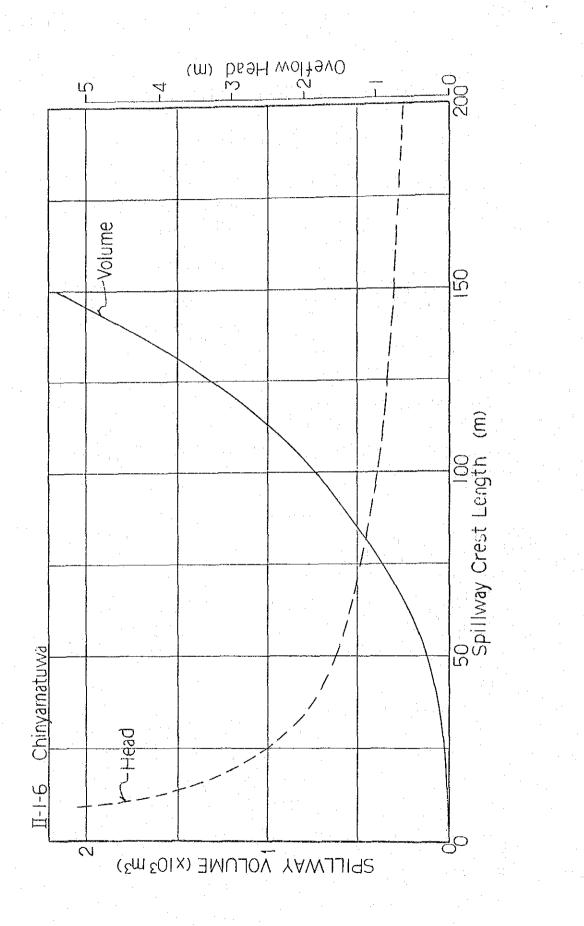
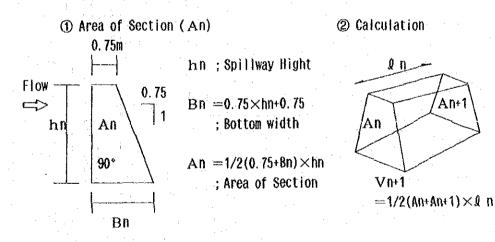


Table E = 3(3) Calculation of Spillway Volume(tentative)

No. II – 2 – 1 Mashoko

1. Relation between Crest Length and Overflow Head of weir


 $Q = C \cdot L \cdot H^{3/2}$

Q; design flood (228 m²/sec) C; coefficient (C=1.7) L; crest length H; overflow head

<u></u>	1							
H	(m)	0.5	1.0	1.5	2.0	3.0	4.0	5.0
L	(m)	379	134	73	48	26	17	12

2. Volume of Spillway

Spillway Crest Elevation EL. 664.0 m

Calculation of Volume

n		1	2	3	4	5	6	
hn	m	0	3.6	3.6	3.6	3.6	3.6	
An	'n	0	7.6	7.6	7.6	7.6	7.6	
Σl	m	0	33	50	75	100	125	
0 n	m	0	33	17	25	25	25	
Vn+1	mª	0	125.4	129.2	190	190	190	
Σv	mª	0	125.4	254.6	444.6	634.6	824.6	

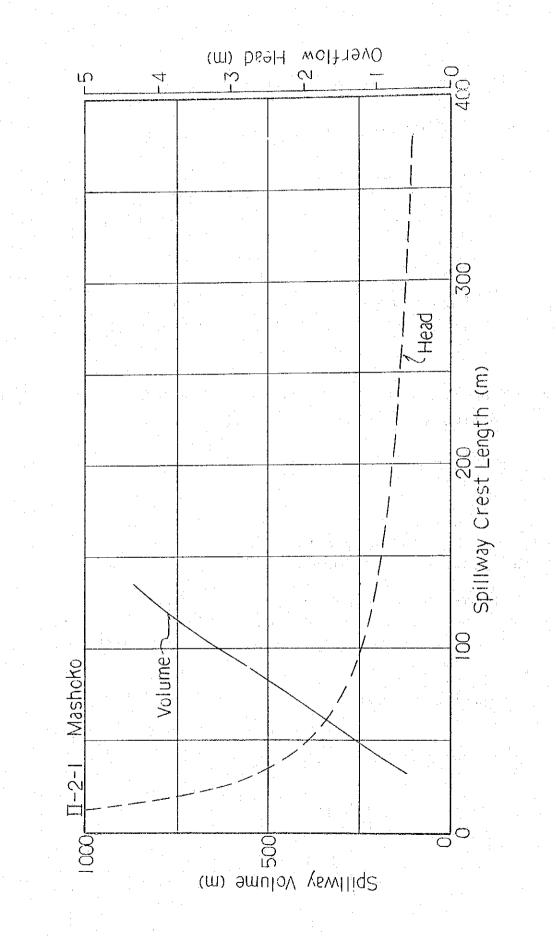
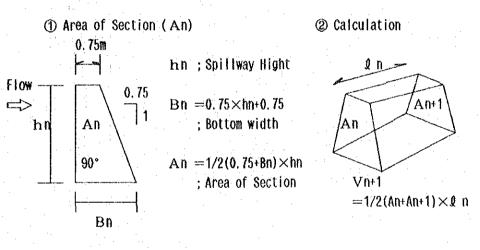
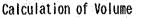


Table E - 3(4) Calculation of Spillway Volume(tentative)

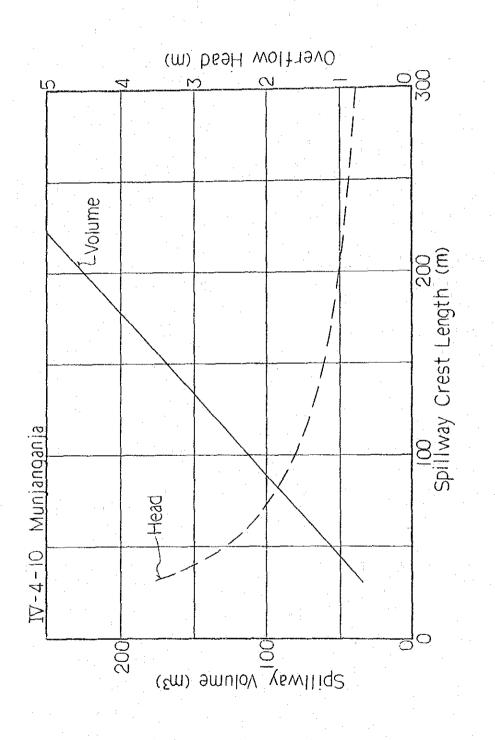
No. IV-4-10 Munjanganja

1. Relation between Crest Length and Overflow Head of weir


 $Q = C + L + H^{3/2}$


- Q; design flood (349 m³/sec) C; coefficient (C=1,7)
- L; crest length
- H : overflow head

	1 					· · · ·	÷	
H	(m)	0.5	1.0	1.5	2.0	2.5	3.0	3.5
L	(m)	581	206	112	- 73	52	40	32


2. Volume of Spillway

Spillway Crest Elevation EL. 1, 149.0 m

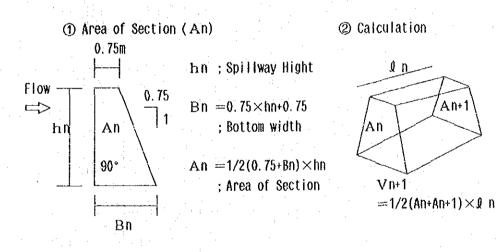
n		1	2	3	4	5	6	7
hn	m	1	1	. 1 .	1	. 1	1	1
An	m	1 1	1.1	1.1	1.1	1.1	1.1	1.1
Σl	m	0	30	50	100	150	200	250
g n	m	0	30	20	50	50	50	50
Vn+1	m	0	33	22	55	55	55	55
Σ٧	m	0	33	55	110	165	220	275

20

Table E-3(5) Calculation of Spillway Volume(tentative)

1. Relation between Crest Length and Overflow Head of weir

 $Q = C \cdot L \cdot H^{3/2}$


Q; design flood (415 m³/sec) C; coefficient (C=1.7) L; crest length

H ; overflow head

				1. S. 1. S. 1.		
H (m)	1.0	1.5	2.0	2.5	3.0	4.0
L (m)	245	133	87	62	. 47	31

2. Volume of Spillway

Spillway Crest Elevation EL. 529.0 m

Calculation of Volume

÷ .							· .	
n	[1	2	3	4	5	6	7'
hn	m	0	6.4	7.9	9.2	11.1	11.1	1.0
An	ាំ	0	20.2	29.3	38.6	54.5	54.5	1.1
ΣĮ	m	0	31.0	47.0	62.0	87.0	120.0	133.0
2 n	m	0	31.0	16.0	15.0	25.0	33.0	13.0
Vn+1	m	0	313.1	396	509.0	1,164	1,799	14.0
ΣV	m*	0	313.0	709	1,218	2,382	4, 181	4,195

E = 21

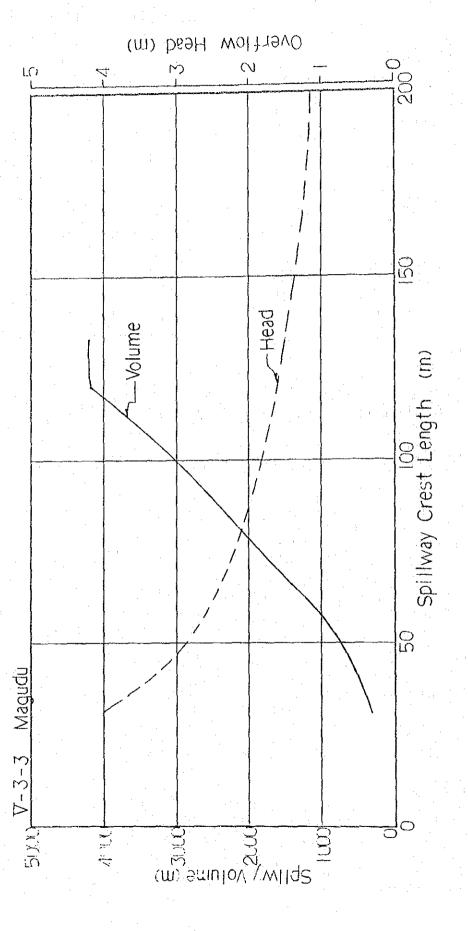


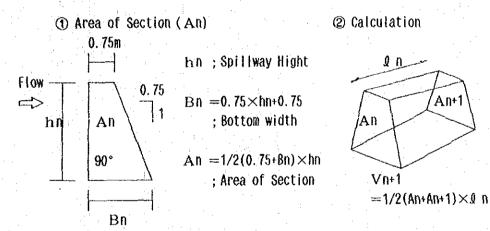
Table E-3(6) Calculation of Spillway Volume(tentative)

No. VI-1-12 Mabvute

1. Relation between Crest Length and Overflow Head of weir

 $Q = C \cdot L \cdot H^{3/2}$

Q; design flood (343 m³/sec)


- C; coefficient (C=1.7)
 - L; crest length
- H; overflow head

	je je	1.1.1		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	1.00		·		2 - 2 - 2	· .
•	Н	(m)	0.5	1.0	1.5	2.0	2.5	3.0	4.0	5.0
	L	(m)	571	202	110	72	52	39	26	19

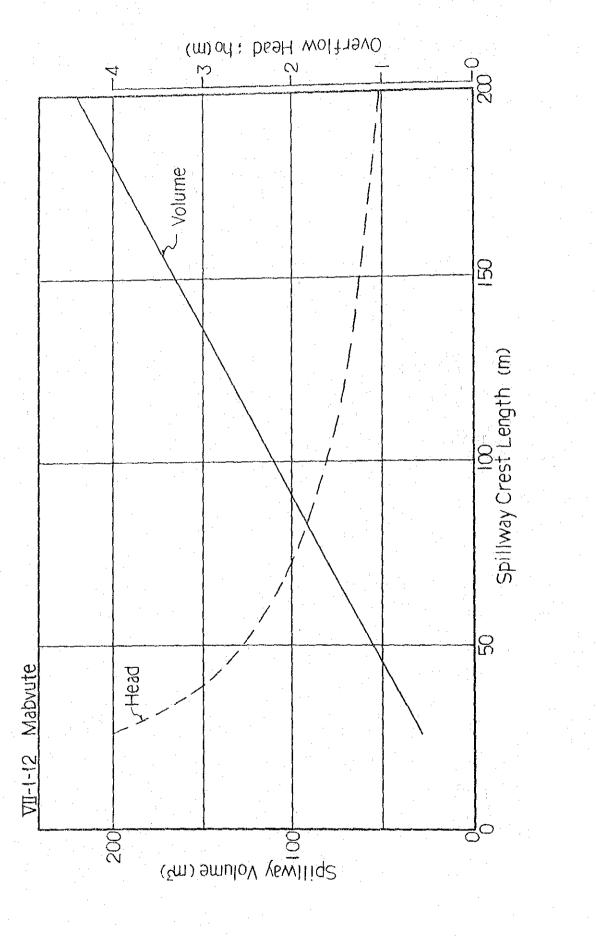
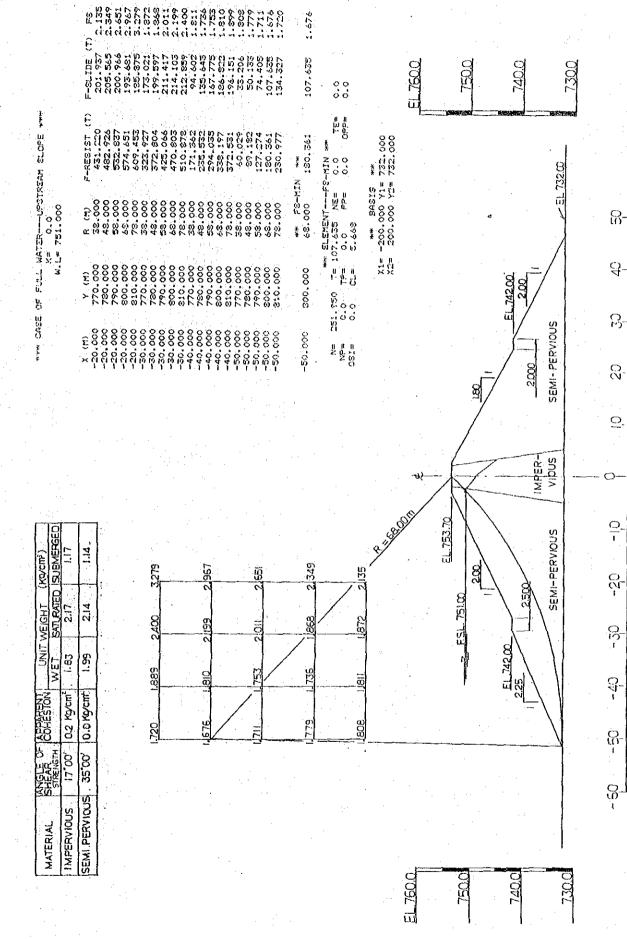
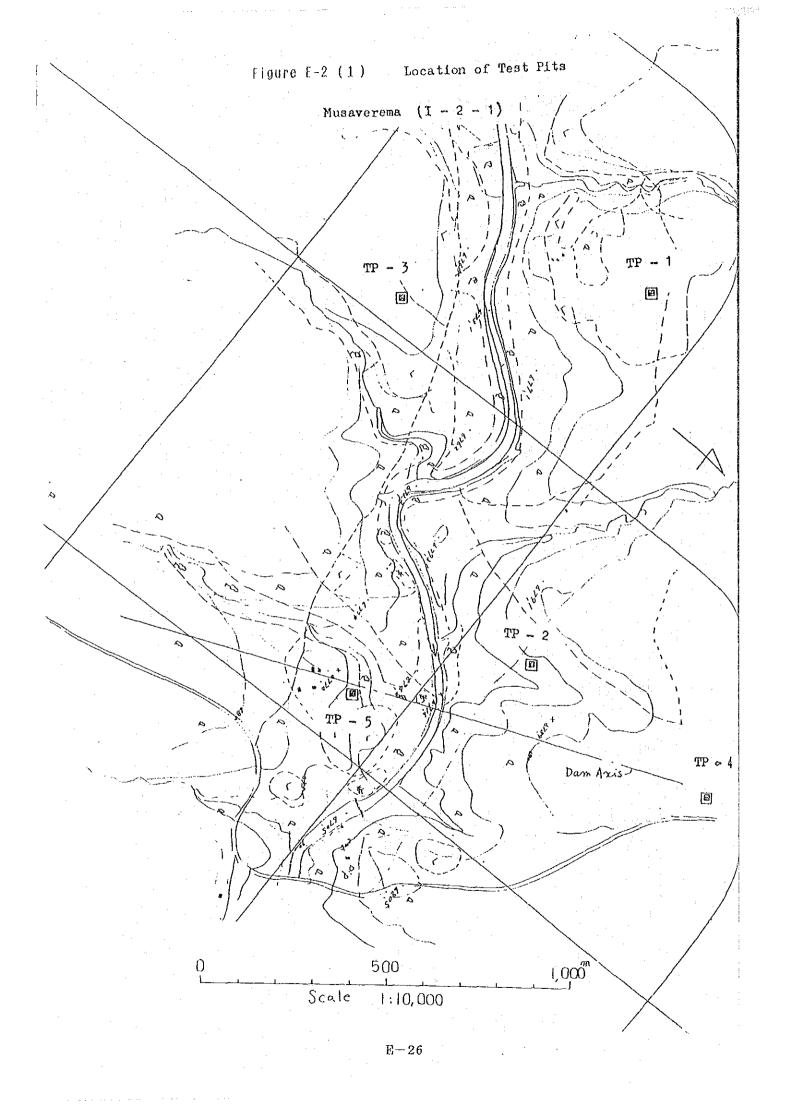
2. Volume of Spillway

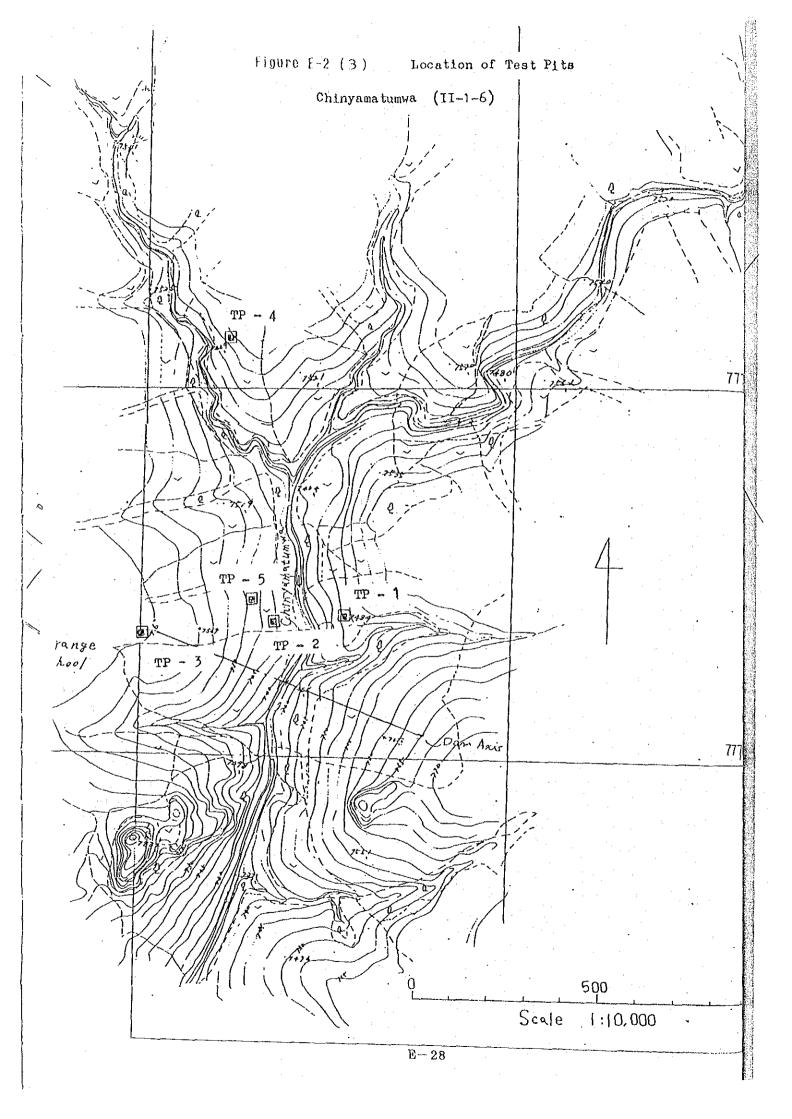
Spillway Crest Elevation

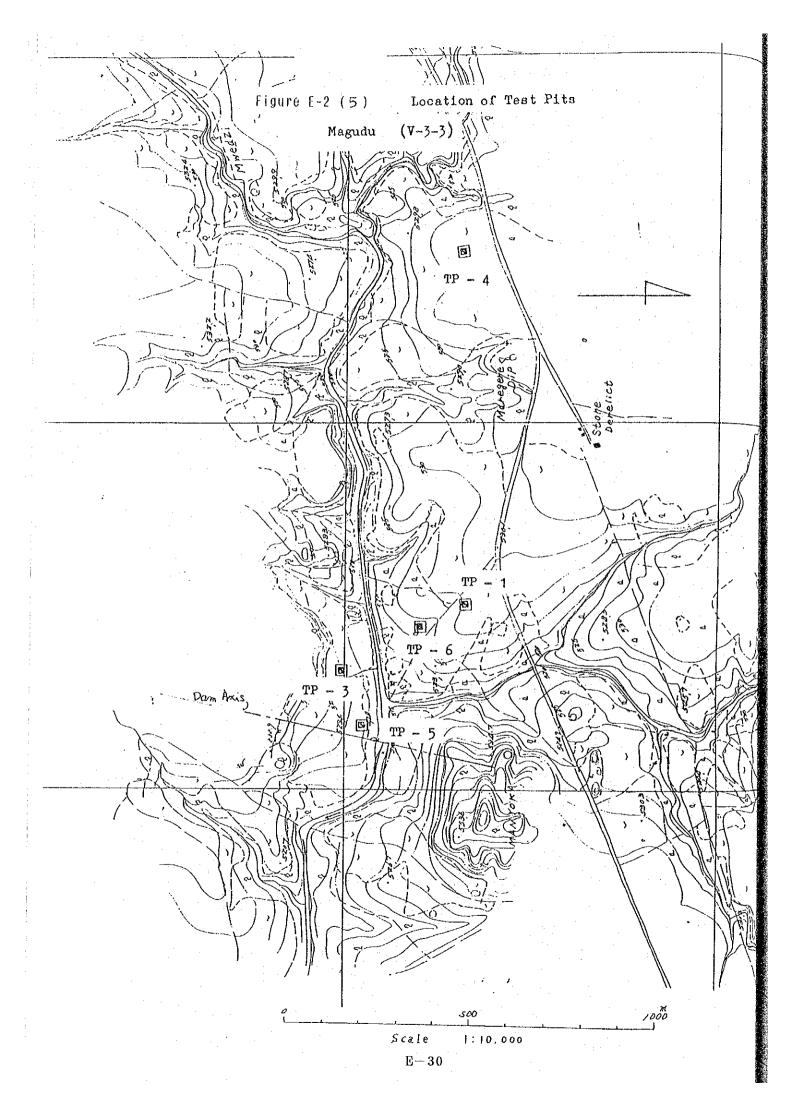
EL. 1,149.0 m

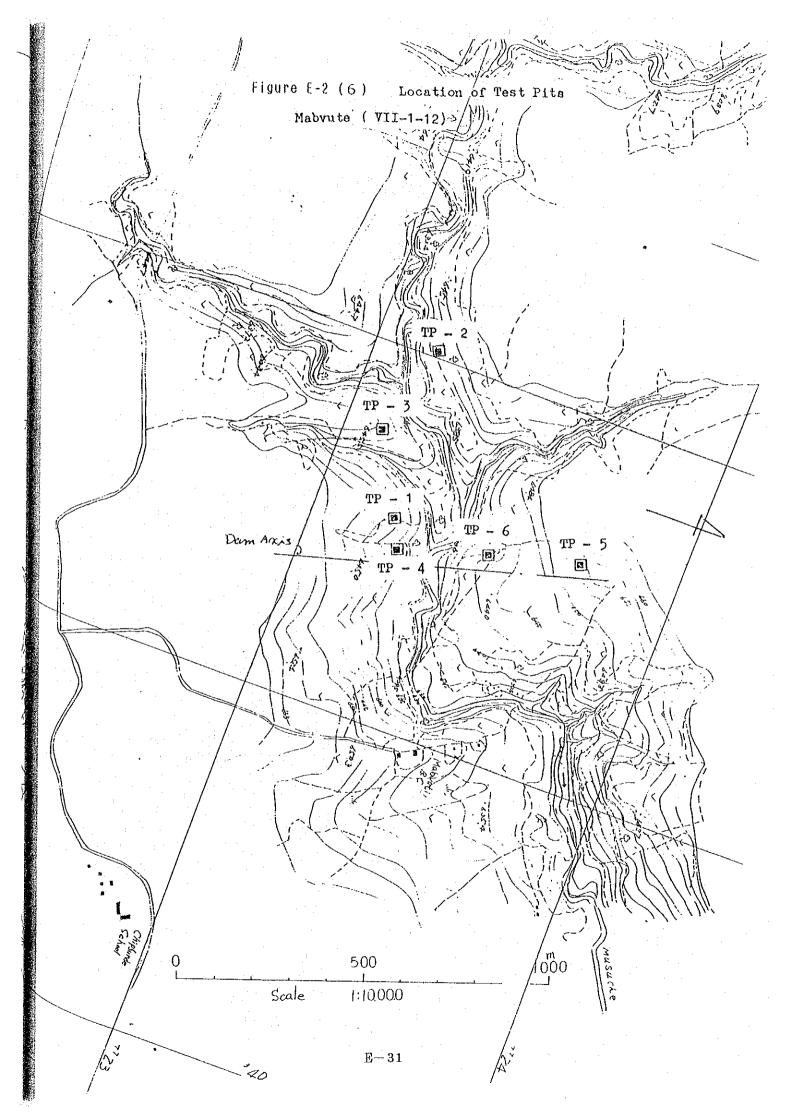
Calculation of Volume

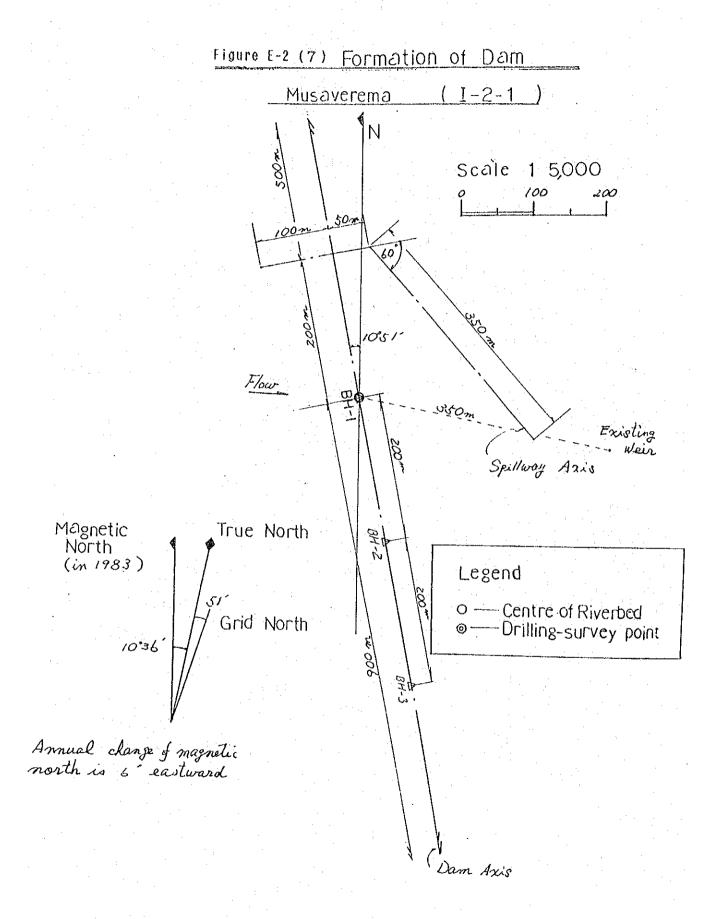
	i Maria. Nga	3. 1911 -	1		a di serie	1.1.1				
Ì	n		1	2	3	4	5	6	7	8
	h١	m	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
	An	m	1.1	11	1.1	1.1	11	1.1	1.1	1.1
	ΣQ	m	0	19	26	39	52	72	110	202
	2 n	m	0	19	7	13	13	20	38	92
	Vn+1	mª	0	20.9	7.7	14.3	14.3	22	41.8	101.2
	Σv	m²	0	20.9	28.6	42.9	57.2	79.2	121.0	222.2

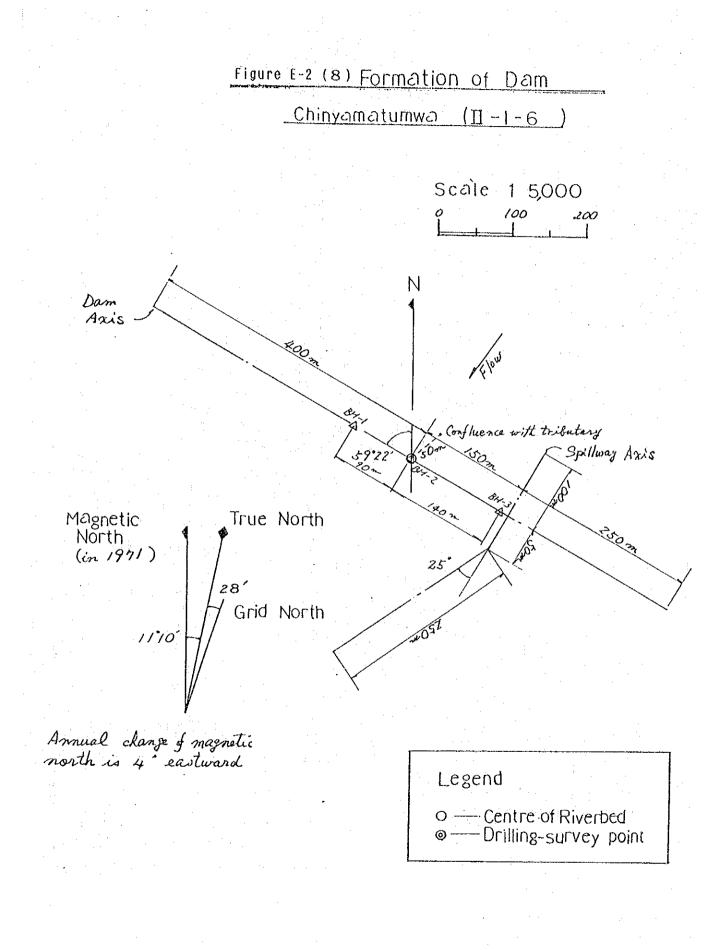




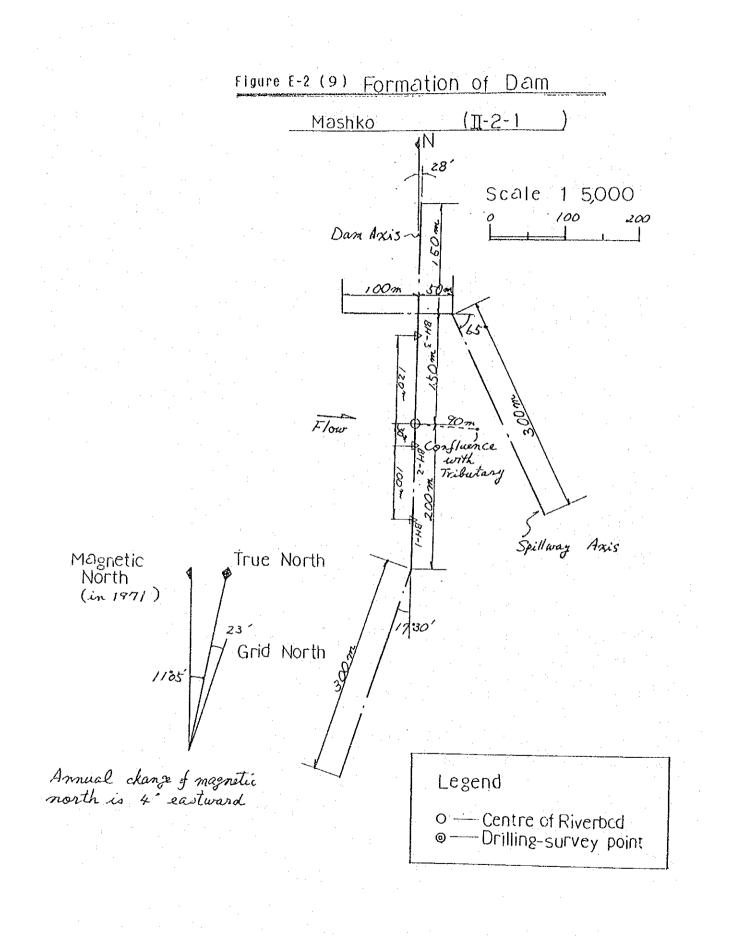

Figure E-1 RESULT OF STABILITY CALCULATION

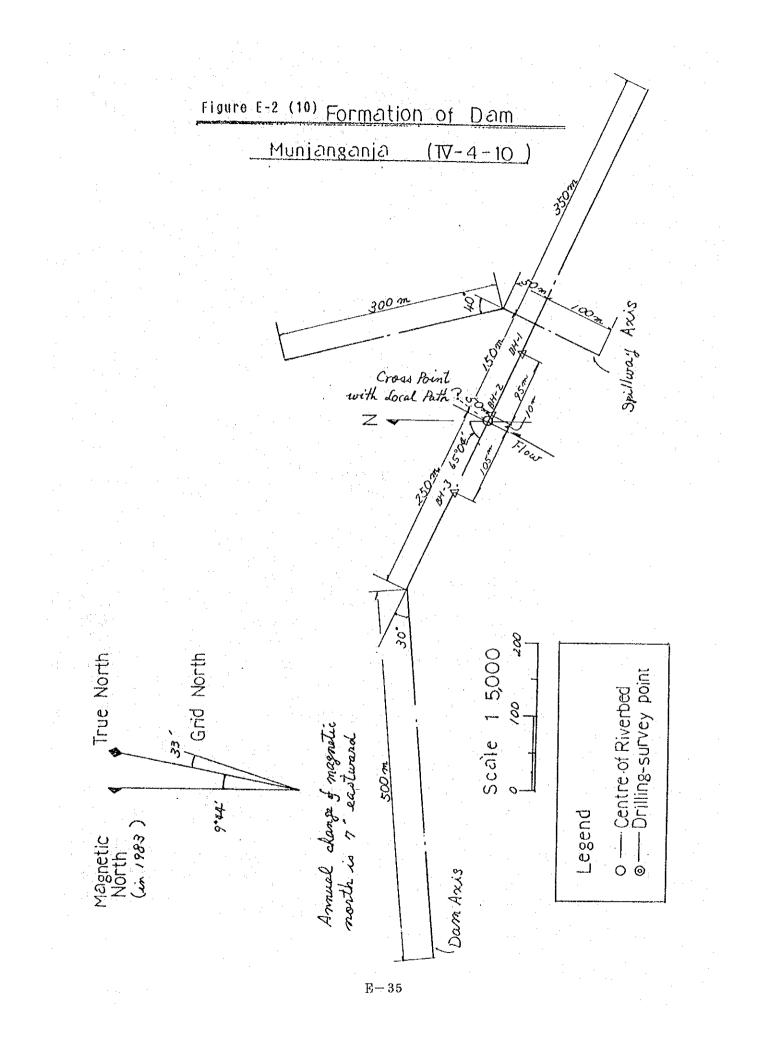

E - 25

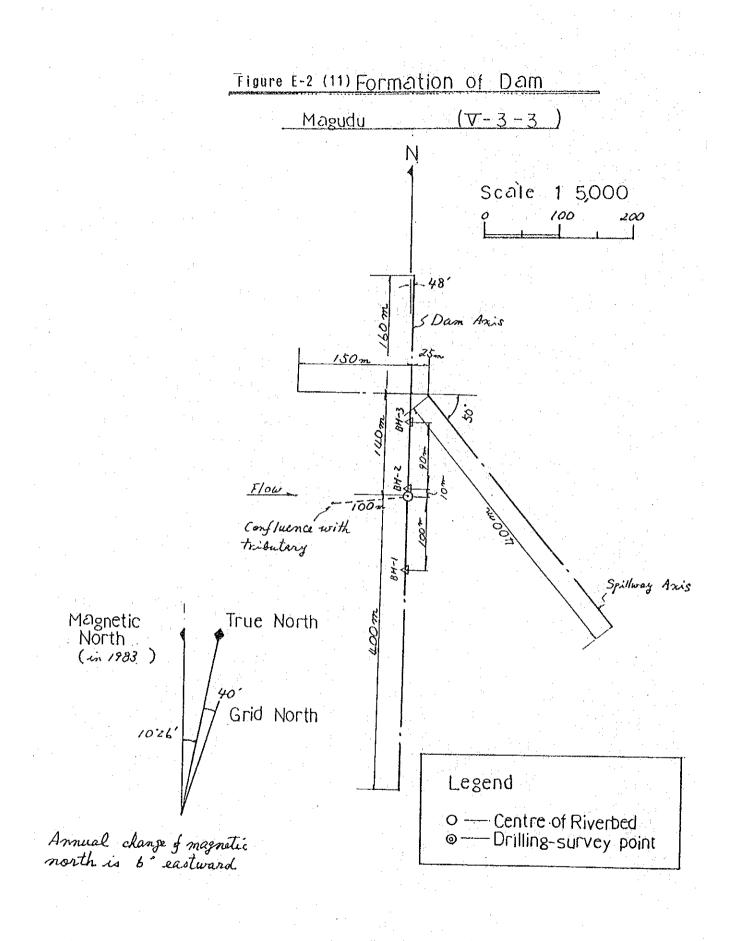












E - 36

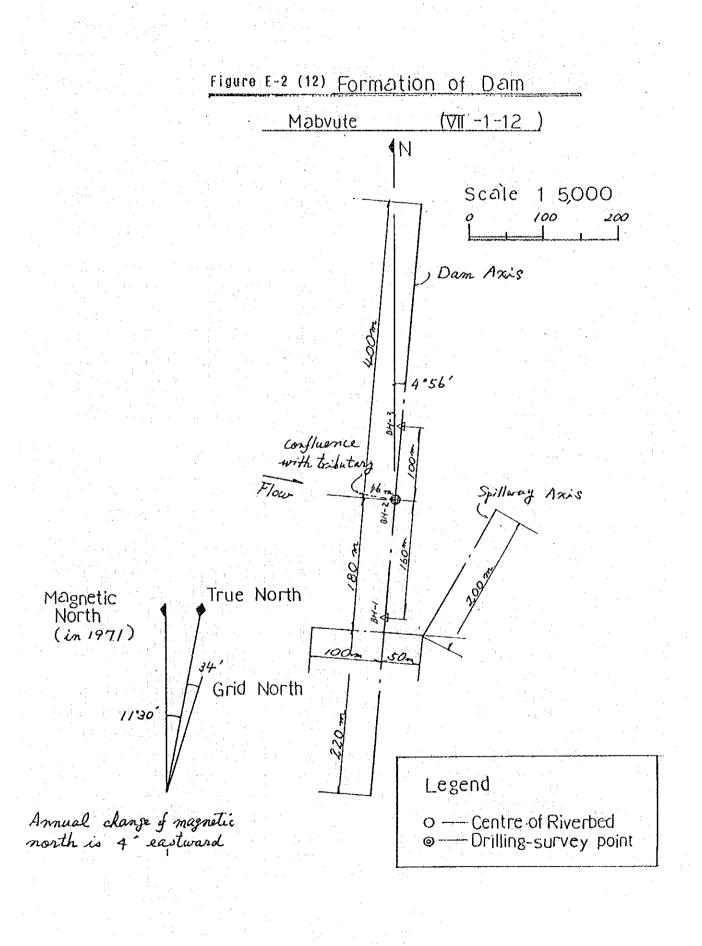
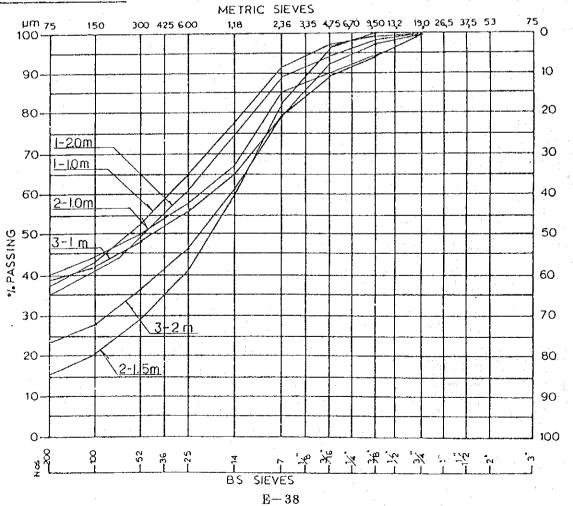


Figure:E-3 (1) GRADING ANALYSIS


CLIENT: GEOTECHNICAL SERVICES (1980) (PVT) LTD.

JOB No: _____

PROJECT:	PROJECT: MUSAVEREMA 1-2-1 DATE: 31 AUGUST											
SAMPLE NO. TP		1	2	2	3	3						
DEPTH	1	2	1	1.5	1	2						
GRAVEL	9	11	15	17	21	21						
COARSE SAND	26	27	27	41	23	33						
MEDIUM SAND	17	18	11	18	11	14						
FINE SAND	9	9	7	7	5	7						
SILT CLAY	. 39	35	40	17	40	25						

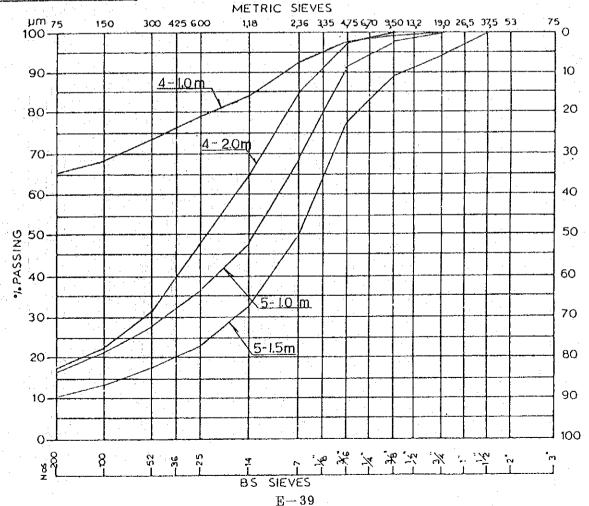
SOIL CONSTANTS (on material passing No. 425 µm sieve)

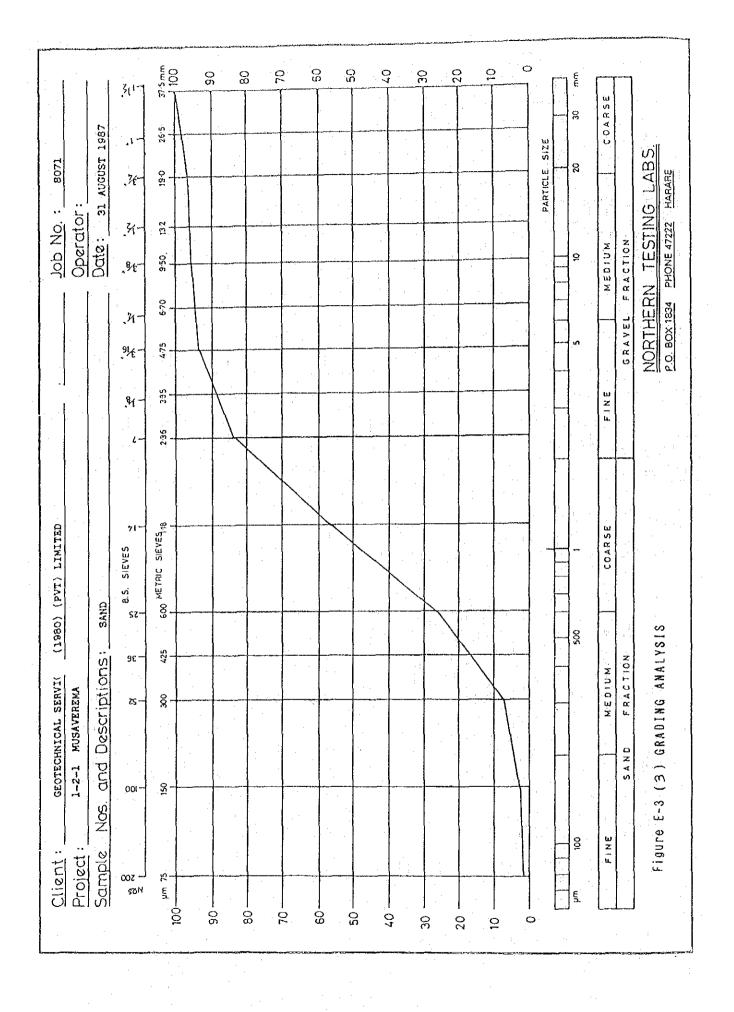
LIQUID LIMIT	37	35	48	34	- 44	32	:	
PLASTIC INDEX	19	19	24	14	21	12		
LINEAR SHRINKAGE %	7	9	10	4	8	5		
PLASTICITY PRODUCT	740	665	960	240	840	300		
COARSENESS INDEX	3	11	15	17	.21	21		
CLASSIFICATION	SC	SC	SC	SC	SC.	SC		
• • • • • • • • • • • • • • • • • • •					*			

Figure E-3 (2) GRADING ANALYSIS

GEOTECHNICAL SERVICES (1980) (PVT) LTD.

JOB NO: 8071

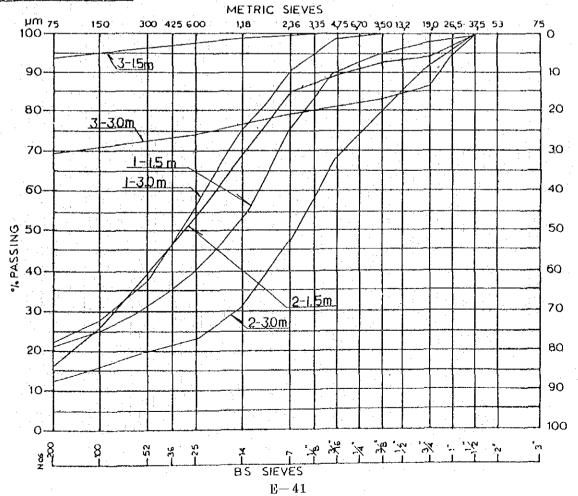

PROJECT:	MUSAVEREN	4A 1-2-1	· · · · · · · · · · · · · · · · · · ·		D	DATE: 31 AUGUST '8				
SAMPLE NO. TP	4	2	5	5	·····			1		
DEPTH	1	2	1	1.5		· · · · · · · · · · · · · · · · · · ·		·		
GRAVEL	7	15	30	49		·····				
COARSE SAND	14	38	34	27	<u> </u>	······				
MEDIUM SAND	9	21	12	9		······	· · · · · · · · · · · · · · · · · · ·			
FINE SAND	4	8	6 .	4		·····				
SILT CLAY	66	18	18 .	11						


SOIL CONSTANTS (on material passing No. 425 µm sieve)

LIQUID LIMIT	52	. 39	32	26				T
PLASTIC INDEX	15	19	16	10				
LINEAR SHRINKAGE %	11	7	7	3		·		1
PLASTICITY PRODUCT	990	340	290	110				
COARSENESS INDEX	7	15	30	49		•·		
CLASSIFICATION	мн	SC	SC	GCGM			: .	

GRADING ANALYSIS

CLIENT:



CLIENT:	, f	igure E-3	3 (4) GR	ADING AN	ALYSIS	IOP	No:	
PROJECT:	<u>∐-1-6</u>						ATE:	
SAMPLE NO.		1	2	2				
DEPTH	1.5	3.0	1.5	3.C	1.5	3.0	in an	
GRAVEL	24	9	15	52	<u></u>	21		
COARSE SAND	36	35	31.	25	·	<u> </u>		
MEDIUM SAND	12	23	21	5	3	2		
FINE SAND	7	10	16	5		3		
SILT CLAY	21	23	17	13	94	69		

SOIL CONSTANTS (on material passing No. 425 µm sieve)

LIQUID LIMIT	33	34	_	35	70	53	
PLASTIC INDEX	15	18	N.P	16	33	23	
LINEAR SHRINKAGE */.	5	9		3	13	1:3	a Villian
PLASTICITY PRODUCT	315	415	15	210	3100	1585	
COARSENESS INDEX	24	9	15	52	1	2	
CLASSIFICATION	SC	SC	SM	GC	МН	МН-СН	

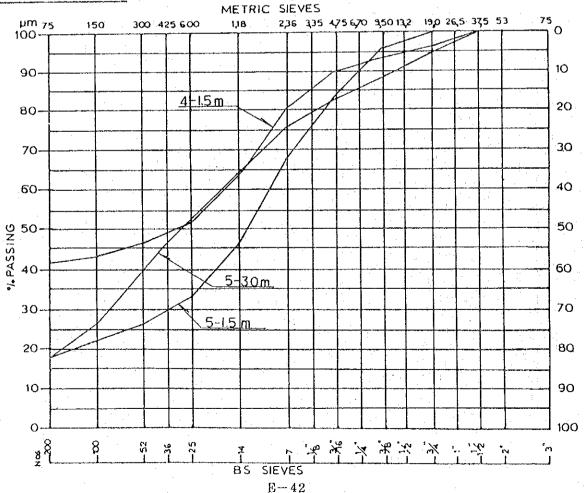


Figure E-3 (5) GRADING ANALYSIS

JOB No: CLIENT: DATE: PROJECT: II-1-6 SAMPLE No. 5 4 5 DEPTH 1.5. 1.5 3.0 GRAVEL 32 19 24 COARSE SAND 36 29 22 MEDIUM SAND 7 8 20 FINE SAND 5 3 15 SILT CLAY 42 19 19

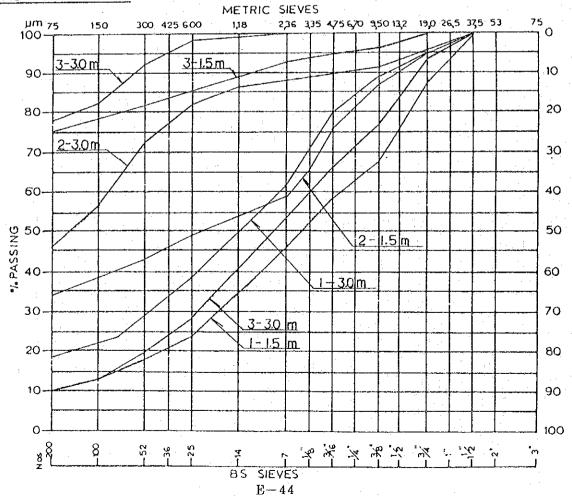
SOIL CONSTANTS (on material passing No. 425 µm sieve)

LIQUID LIMIT	56	20	35			
PLASTIC INDEX	29	4	20		 10 g	
LINEAR SHRINKAGE %	9	2	6			· · · · · · · · · · · · · · · · · · ·
PLASTICITY PRODUCT	1220	75	380			
COARSENESS INDEX	19	24	32			
CLASSIFICATION	SC	SW	SC			

	1 132 19-0 26-5							PARTICLE SIZE	10 20 30 mm	COARSE		NORTHERN TESTING LABS. P.O. BOX 1834 PHONE 47222 HARARE
33	6 4.75 6.70										GRAVEL F	NORTHERN TE
N-PLASTIC RIVER	600 METRIC SIEVES									COARSE		8 I S
-1-6 nd Descriptions :									500	M I Gui	SAND FRACTION	Figure E-3 (6) GRADING ANALYSIS
Client : Project : 1 Sample Nos. 0				3		Dr. G	0,		0 <u>0</u> 			figure E

FIGURE E-3 (7) GRADING ANALYSIS CLIENT: GEOTECHNICAL SERVICES (1980) (PVT) LIMITED

JOB No: 8071


PROJECT: MASHOKO II-2-1

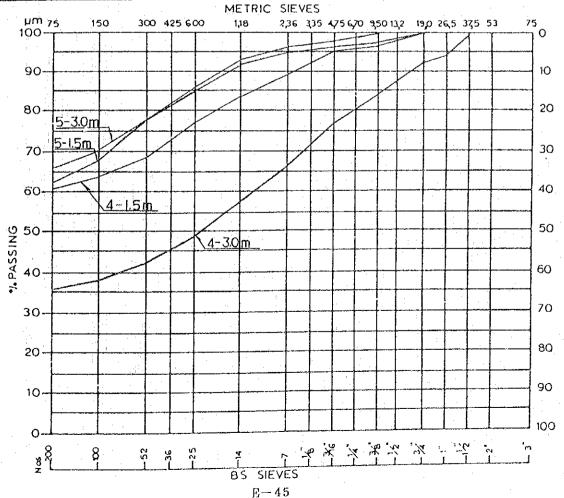
DATE: AUGUST 1987

SAMPLE No.	1	1	2	2	3	- 3.	3	
DEPTH	1.5	**************************************	1.5	3.0	1.5	3.0	3.0	
GRAVEL	54	38	42	11	7	46		
COARSE SAND	22	24	10	7	9	26	2	
MEDIUM SAND	9	15	8	18	5	12	11	
FINE SAND	5.	5	6	18	3	6	9	
SILT CLAY	10	18	34	46	76	10	78	

SOIL CONSTANTS (on material passing No. 425 µm sieve)

LIQUID LIMIT	26	26	59	<u>4</u> 4	69	29	45	
PLASTIC INDEX	11	10	32	19	41	13	13	
LINEAR SHRINKAGE %	3	5	16	7	17	5	9	
PLASTICITY PRODUCT	110	130	1 090	875	3 115	130	1 015	
COARSENESS INDEX	. 54	33	42	11	···· 7	46		
CLASSIFICATION	GC	SC	GC	SC	СН	GC	MI	

Figure E-3 (8) GRADING ANALYSIS CLIENT: GEOTECHNICAL SERVICES (1980) (PVT) LIMITED


PROJECT: MASHOKO II-2-1

JOB No: 8071

PROJECT:	MASHOKO I					. (DATE: AU	GUST 1987
SAMPLE NO.	4	-	5	-5	T	1		Υ <u>·····</u>
DEPTH	1.5	3.0	1.5	3.0				
GRAVEL	10	33	4	5				
COARSE SAND	15	18	10	10	· · · · · · · · · · · · · · · · · · ·	- 	-	
MEDIUM SAND	10	9	14	12		<u> </u>		4
FINE SAND	4	4	9	7		·}		
SILT CLAY	61	36	63	66				

SOIL CONSTANTS (on material passing No. 425 µm sieve)

LIQUID LIMIT	56	68	24	42	1 :		T	1
PLASTIC INDEX	31	44	9	25	<u>+</u>	·····		
LINEAR SHRINKAGE "/.	13	15	1	9	1		· ·	· · · · · · · · · · · · · · · · · · ·
PLASTICITY PRODUCT	1 890	1 585	565	1 650			<u>+</u>	
COARSENESS INDEX	10	. 33	4	5				
CLASSIFICATION	СН	GC -	CL	CI				

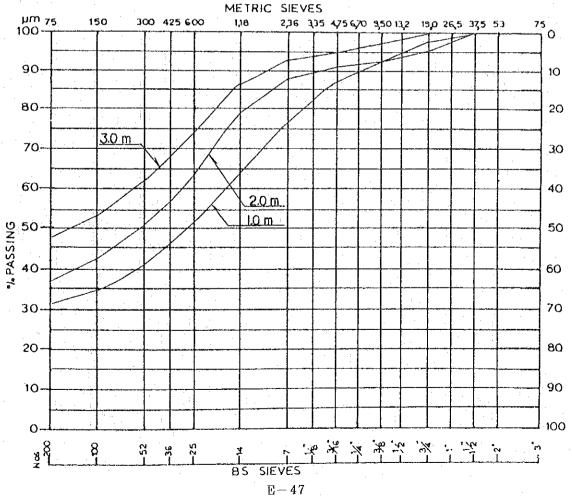
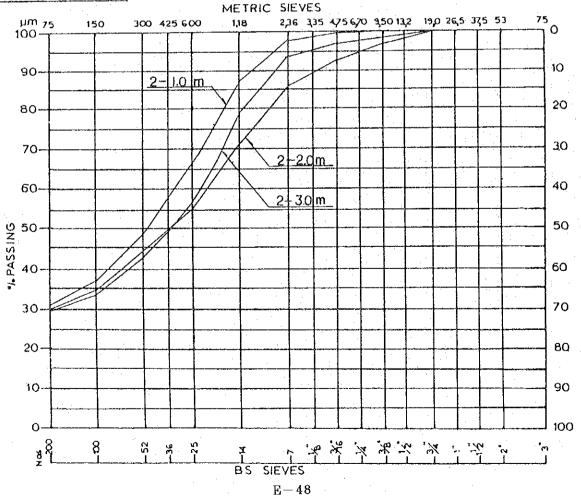
	÷ .	:	۲ ^{۱–}				5 5									56 57	COARSE		
8071		1987	.1- .%-	19-0 26-5 1	\									CLE SIZE	{	50	ບ ບ		ABS.
	ttor:	AUGUST 1987	31-	13-2									 	PARTICLE					TING L
Job No.	Opero	Date: Aua	. ⁹ ⁄t	9-50 1					:							2: ;	MEDIUŃ	FRACTION	PHONE 47:
			.મ [−]	6-70				 								c.		GRAVEL F	NORTHERN TESTING LABS. P.O. BOX 1834 PHONE 47222 HARARE
			,9!⁄t	5. 4.75													11	G R A	
. 1			91 - 1-	236 335			. 										FINE		
		SAND	· .				$\left \right $								· · ·			{ 	
ED		RIVER SA	71- S	IEVES,48	 											-	COARSE		•
VT) LIMITED		NON PLASTIC RIVER	B.S. SIEVES	600 METRIC SIEVES													00		
(TV4) (081		ļ	52 32	425 6(1												200		N	ANALYSIS
RVICES		Descriptions:	75-					 		 							MEDIUM	FRACTION	GRADING AN
GEOTECHNICAL SERVICES	11-2-11		:															ONVS	(9) GRA
GEOTECI	MASHOKO	Nos. and	00X	<u>8</u> -				1								-		S.	н- - З
Client :	Project :		007 ~	<u>ه</u> ر-												100	WN IL		Figure
Clie	Pro	San	- 500 50N		06	80	107	60	20	07	06	07 07	2 ·			En.			

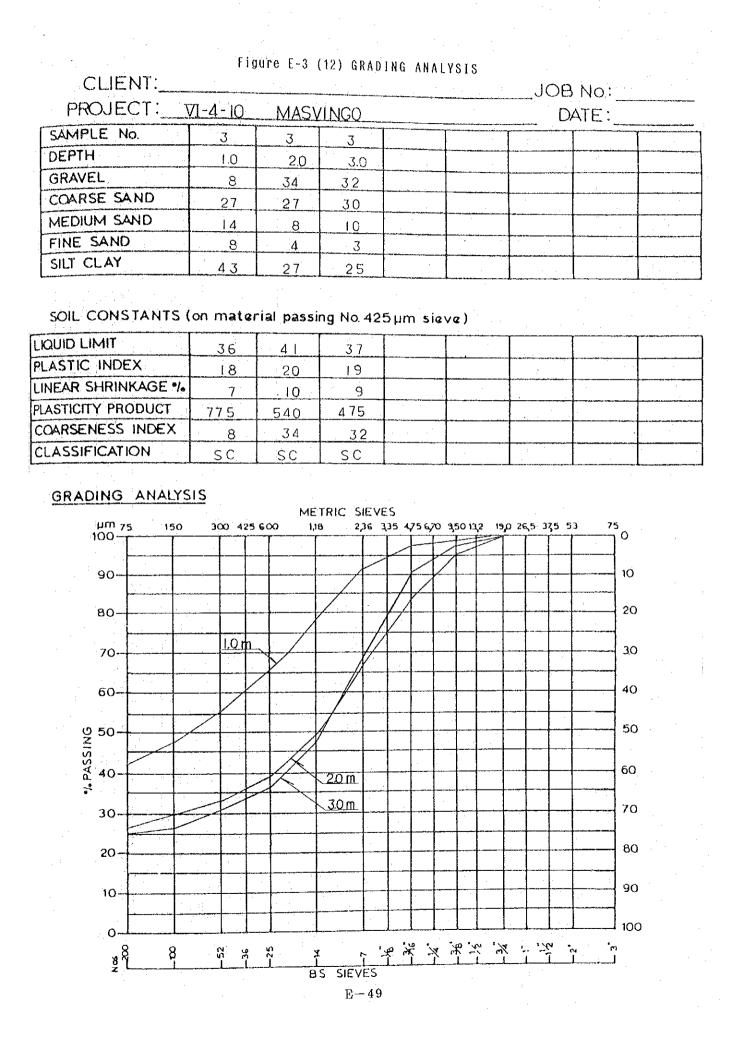
Figure E-3 (10) GRADING ANALYSIS

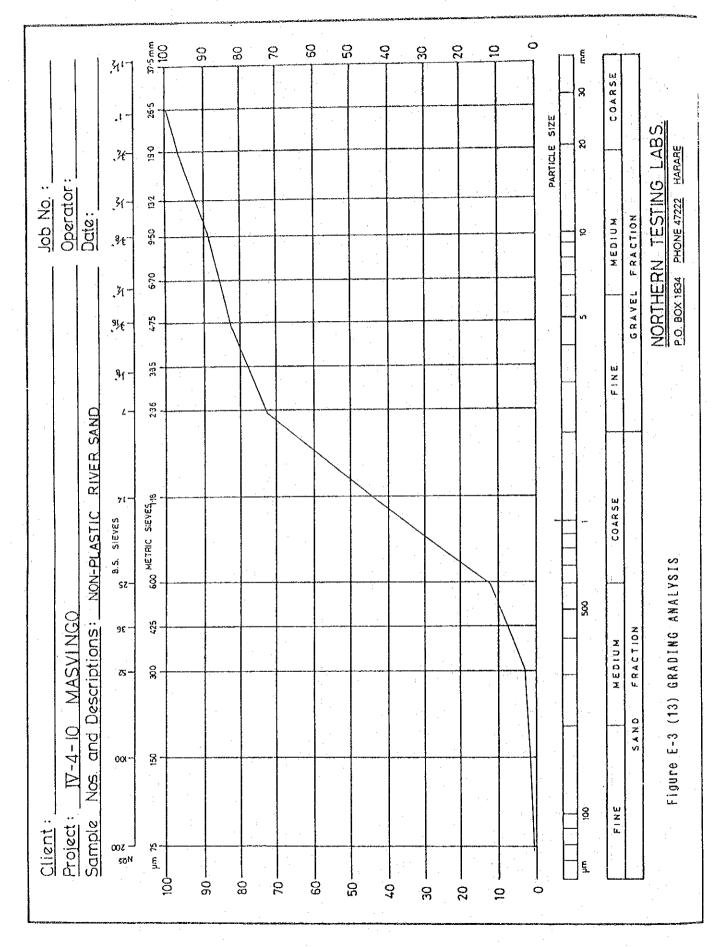
CLIENT:				- -		~	JOE	No:	· • .
	<u>V-4-10</u>	MAS	<u>/INGO</u>	·		·		ATE :	······································
SAMPLE No.	I	1		Í		<u> </u>			
DEPTH	1.0	2.0	3.0	†	·	·····	······································		
GRAVEL	23	12	7	<u> </u>		<u> </u>		: 	
COARSE SAND	26	24	19	<u> </u>					
MEDIUM SAND	13	17	16	 					
FINE SAND	6	9	9	†					
SILT CLAY	32	38	49	<u>}</u>				· · · · ·	

SOIL CONSTANTS (on material passing No. 425 µm sieve)

LIQUID LIMIT	52	41	52				· · · ·	 ן
PLASTIC INDEX	30	24	30			· · ·	· · · · · · · · · · · · · · · · · · ·	 1
LINEAR SHRINKAGE */.	13	· -	13					 1
PLASTICITY PRODUCT	960	910	1470					
COARSENESS INDEX	23	12	7		·····			 ł
CLASSIFICATION	SC	SC.	SC	 				

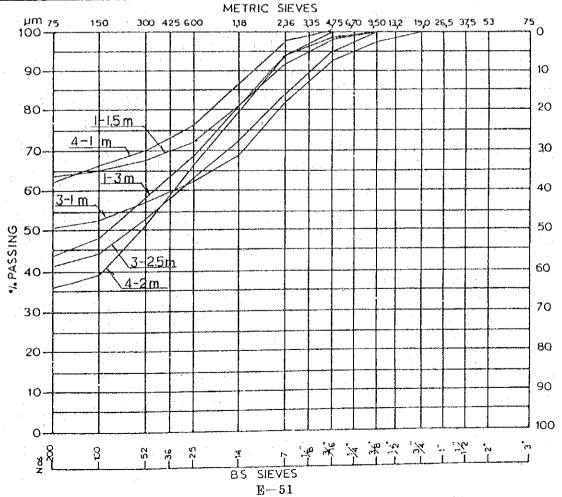

Figure E-3 (11) GRADING ANALYSIS


CLIENT:	riyu	TU E-0 1			JOE	8 No:	
PROJECT	71-4-10	MAS	VINGO	 · .	D	ATE :	
SAMPLE NO.	2	2	2				
DEPTH	1.0	2.0	3.0	 			
GRAVEL	2	6	14	 	<u></u>		·
COARSE SAND	31	36	30	 			
MEDIUM SAND	25	20	17	 			
FINE SAND	10	9	9	 			
SILT CLAY	32	29	<u>30</u>	<u> </u>			L

SOIL CONSTANTS (on material passing No. 425 µm sieve)

LIQUID LIMIT	36	36	34				
PLASTIC INDEX	20	1.9	19	 	· .		i.
LINEAR SHRINKAGE %	9	8	8				ļ
PLASTICITY PRODUCT	640	550	570	 : 	 		
COARSENESS INDEX		6	14		: 		
CLASSIFICATION	SC	SC	SC			1	

Figure E-3 (14) GRADING ANALYSIS


GEOTECHNICAL SERVICES (1980)(PVT) LIMITED CLIENT: JOB No: V-3-3 PROJECT: DATE: 1.9.87 SAMPLE NO. TP 1. -3. <u>م ا</u> DEPTH 1.5 2.5 Ż GRAVEL COARSE SAND MEDIUM SAND FINE SAND SILT CLAY

SOIL CONSTANTS (on material passing No. 425 µm sieve)

LIQUID LIMIT	56	33	53	34	53	31		
PLASTIC INDEX	31	14	28	16	26	11		
LINEAR SHRINKAGE %	12	6	12	7	13	3	····	••••••••••••••••••••••
PLASTICITY PRODUCT	1 985	615	1 430	670	1 640	405		
COARSENESS INDEX	7	- 4	18	16	3	5		
CLASSIFICATION	СН	SC	Сн	SC	СН	SC		

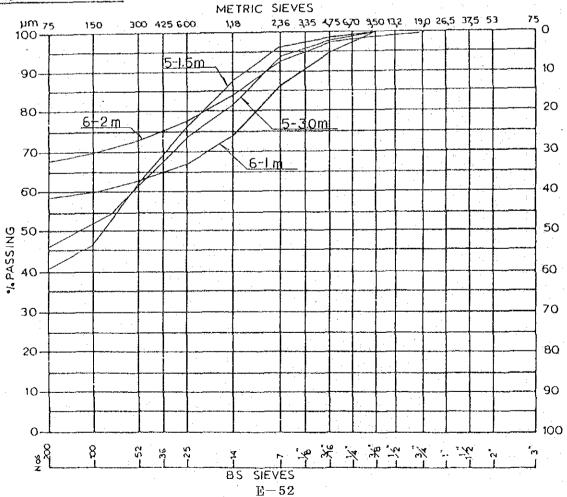
GRADING ANALYSIS

·. •

Figure E-3 (15) GRADING ANALYSIS

CLIENT: GEOTECHNICAL SERVICES (1980) (PVT) LIMITED

JOB No: 8071


PROJECT: V-3-3 DATE: 1.9.87

SAMPLE NO.	- s	<u>`~5</u>	· · · 6	6		
DEPTH	1.5	3	1	2		
GRAVEL	4	7	4	8		
COARSE SAND	20	19	19	14		
MEDIUM SAND	22	19	6	7		
FINE SAND	13	9	2	3		
SILT CLAY	41	46	59	68		

SOIL CONSTANTS (on material passing No. 425 µm sieve)

LIQUID LIMIT	34	40	54	54		
PLASTIC INDEX	.20	23	25	26	. :	
LINEAR SHRINKAGE %	11	7	12	13	1	
PLASTICITY PRODUCT	820	1 060	1 475	1 770		
COARSENESS INDEX	4	7	. 4.	8		
CLASSIFICATION	SC	SC	СН	СН		

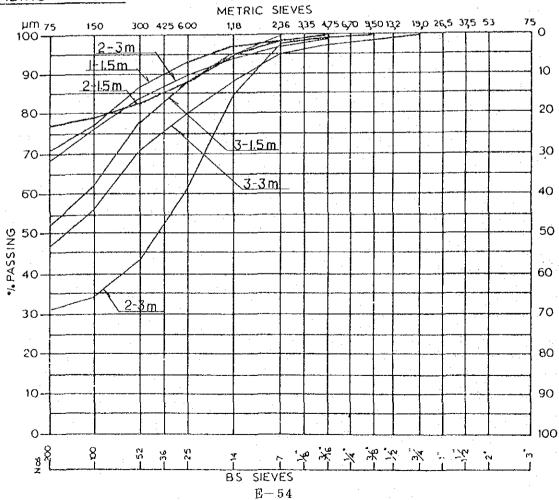
300 100 100 000 8 20 80 20 97 o g 30 9 311 Ę COARSE Date: 1 SEPTEMBER 1987 8 26-5 .1-PARTICLE SIZE NORTHERN TESTING LABS. P.O. BOX 1834 PHONE 47222 HARARE 19.0 JOD NO. : 8071 X-ន Operator: 3-13-2 FRACTION MEDIUM 05.6 _%= ç 6.70 Й GRAVEL 4.75 91₁-ហ 335 4 FINE 2:36 6. 600 METRIC SIEVES 18 CILIMIT (LAA) (0861) 71 COARSE B.S. SIEVES Figure E-3 (16) GRADING ANALYSIS SAND 52-200 and Descriptions: 425 98 FRACTION GEOTECHNICAL SERVICE' MEDIUM 8 ZS -SAND V--3-3 001-<u>3</u> 80 N FINE õ Project : Client : Sample µт. 75 ωz SON Ē ł - 09 ğ ò 90ģ 40 0 20 20 õ g

E - 53

Figure E-3 (17) GRADING ANALYSIS

CEOTECHNICAL SERVICES (1980) (PVT) LIMITED

JOB No: 8071 DATE : 1.9.87

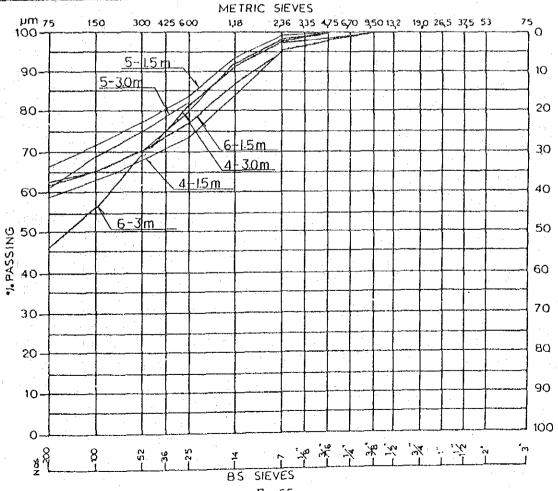

PROJECT:	V11-1-12			· · · · · · · · · · · · · · · · · · ·		D.	ATE : 1.9	9.87
SAMPLE NO. TP		1	200	-8	3	3		
DEPTH	1.5	3	1.5	3	1.5	3		
GRAVEL	1	Э	1	2	1	5		
COARSE SAND	6	8	11	37	12	15		
MEDIUM SAND	. 11	10	7	23	17	17		
FINE SAND	11	10	4	7	17	16		
SILT CLAY	71	69	77	31	53	47		

SOIL CONSTANTS (on material passing No. 425 µm sieve)

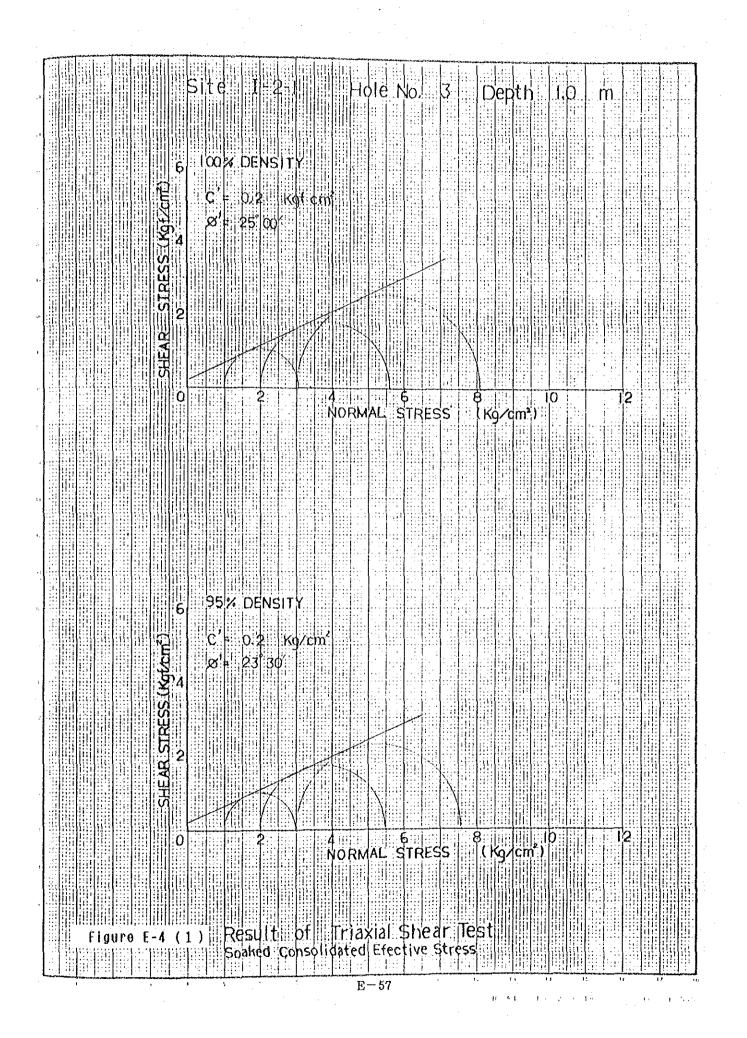
LIQUID LIMIT	46	43	60	43	39	39	
PLASTIC INDEX	21	15	31	19	19	19	
LINEAR SHRINKAGE %	11	7	13	7	10	10	
PLASTICITY PRODUCT	1 490	1 035	2 385	590	1 005	895	
COARSENESS INDEX	1	. : 3	1	2	1	- 5	
CLASSIFICATION	CI	MI	СН	SC	CI	CI	

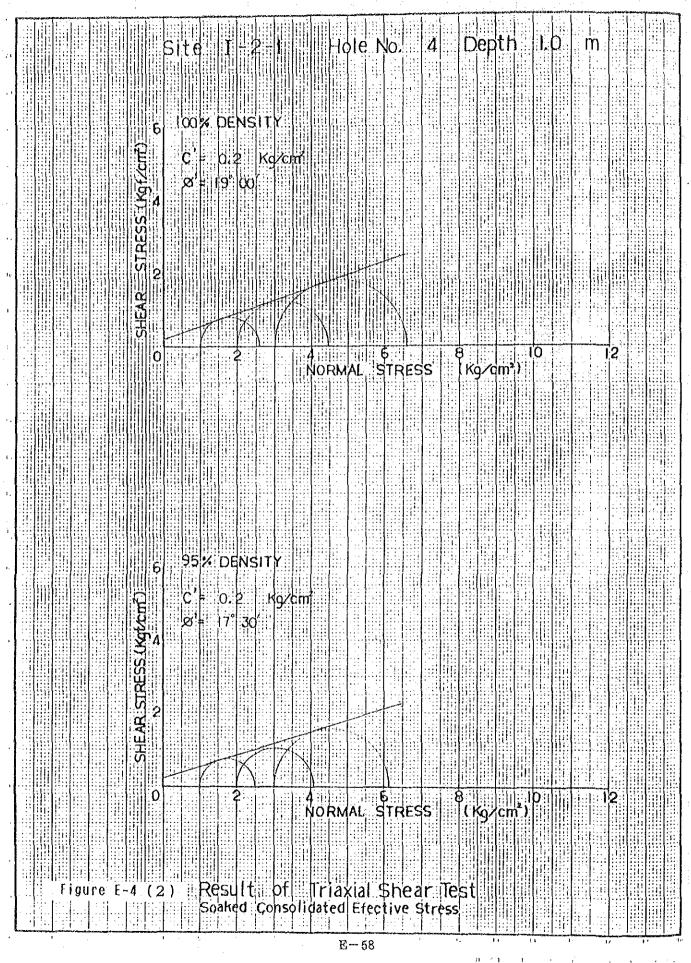
GRADING ANALYSIS

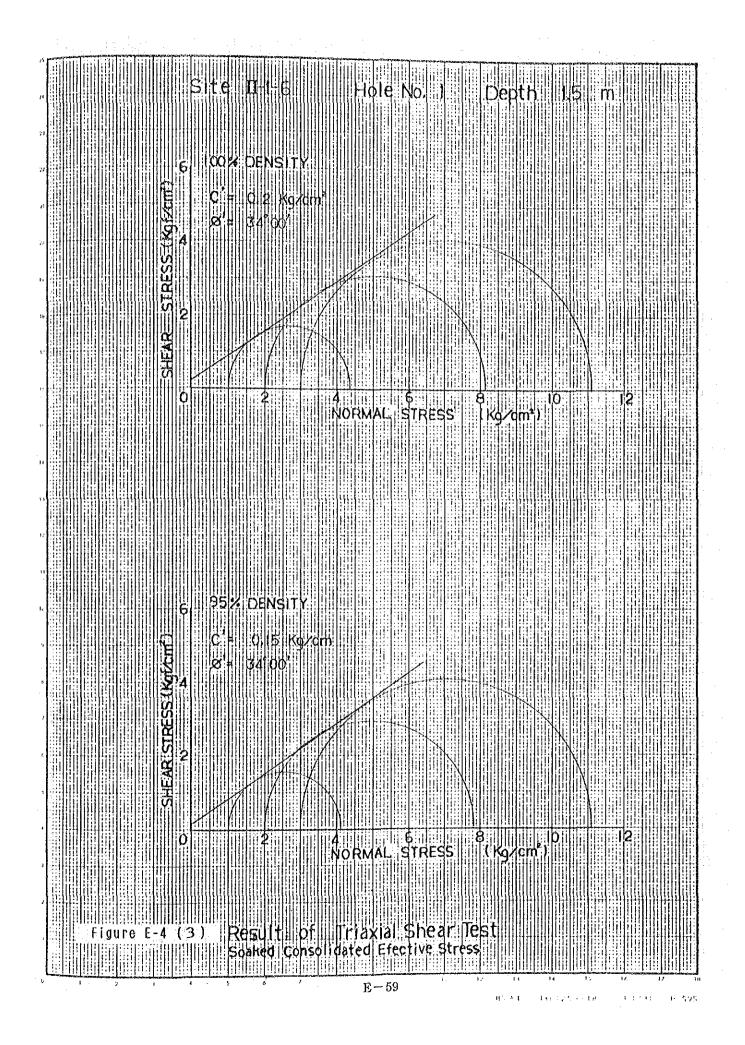
CLIENT

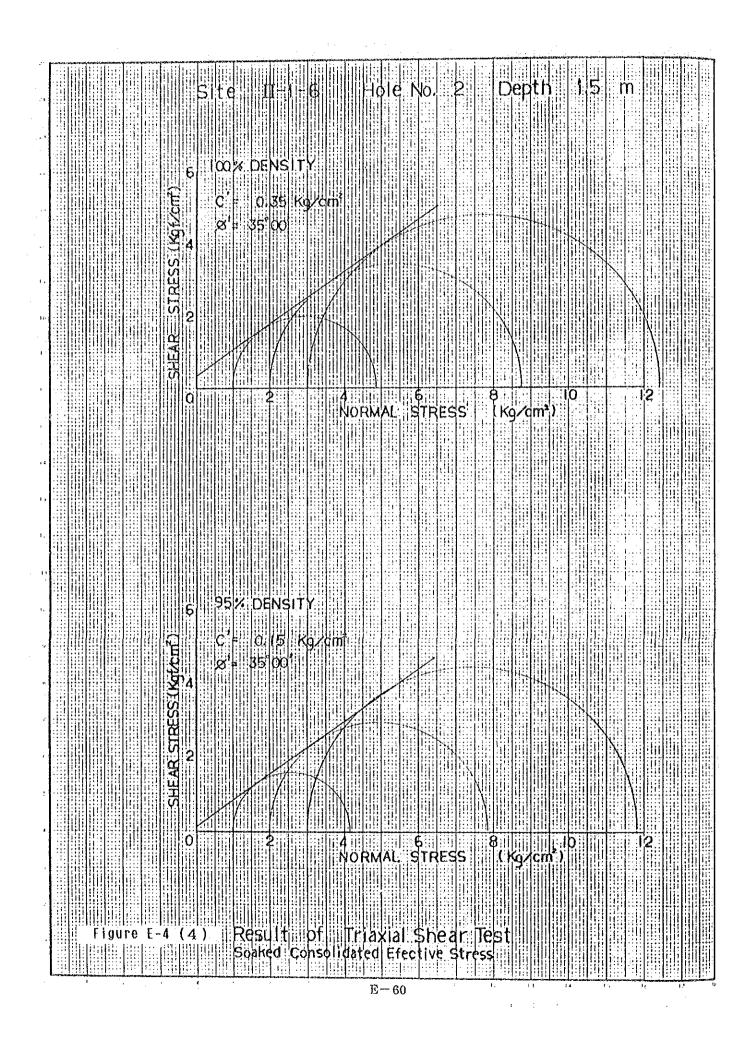

Figure E-3 (18) GRADING ANALYSIS

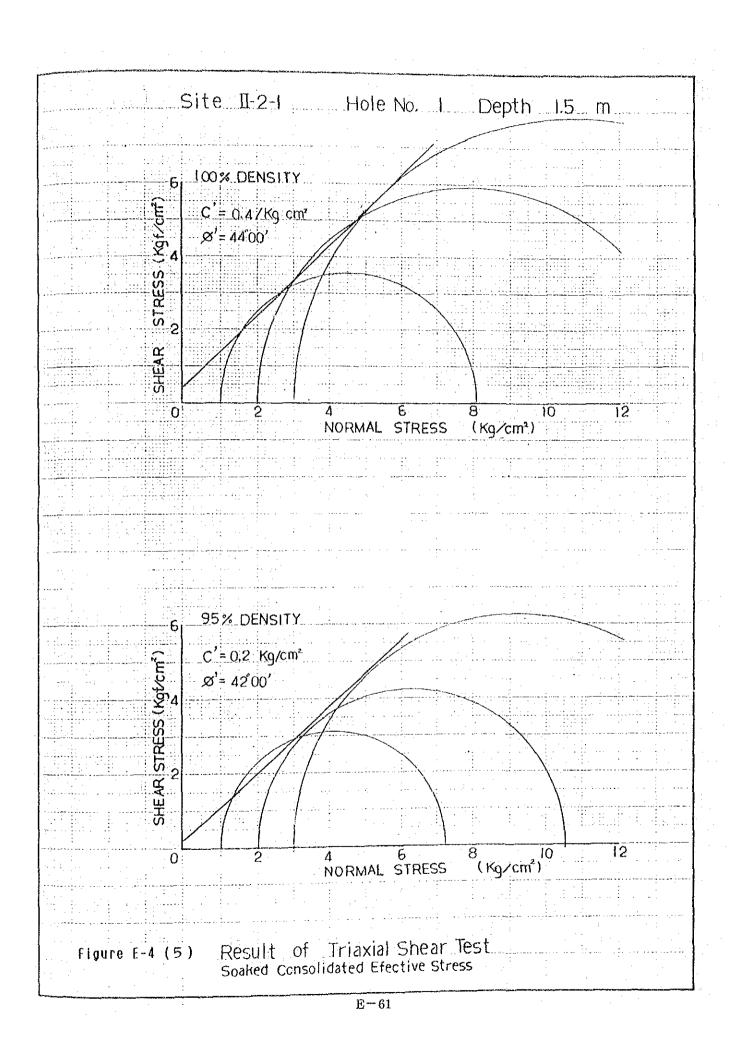
GEOTECHNICAL SERVICES (1980) (PVT) LIMITED CLIENT: 8071 JOB NO: PROJECT: V11-1-12 DATE: 1.9.87 SAMPLE NO. 17 4 4 5 -5. ·-6 -6 DEPTH 1.5 Э 1.5 Э 1.5 3 4 1 GRAVEL 2 2 6 2 COARSE SAND 23 20 15 16 17 17 8 12 MEDIUM SAND 9 11 10 18 FINE SAND 6 5 8 11 4 16 59 SILT CLAY 62 68 60 63 47

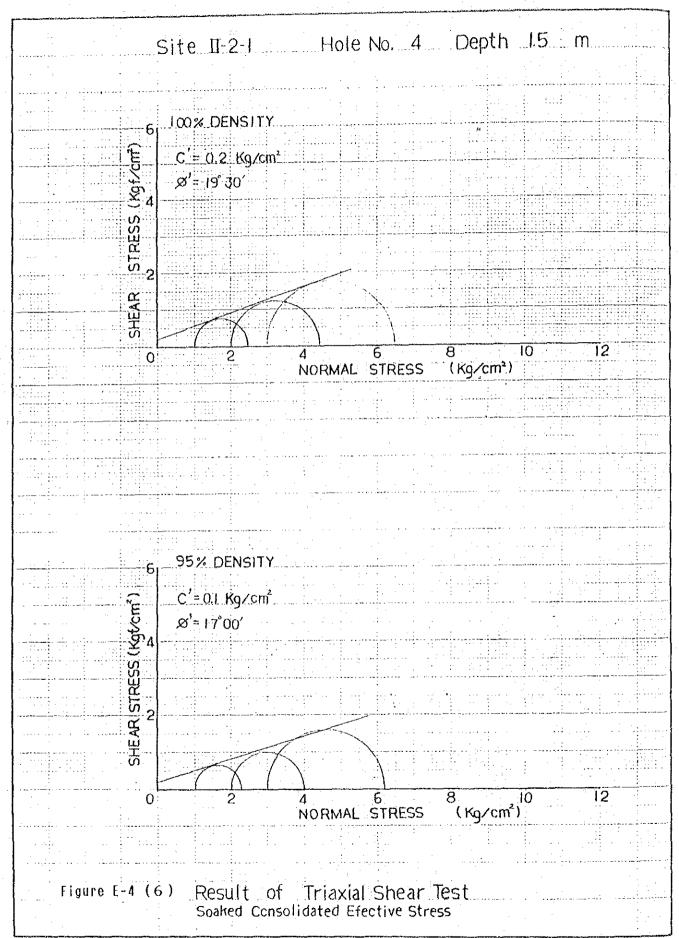

SOIL CONSTANTS (on material passing No. 425 µm sieve)

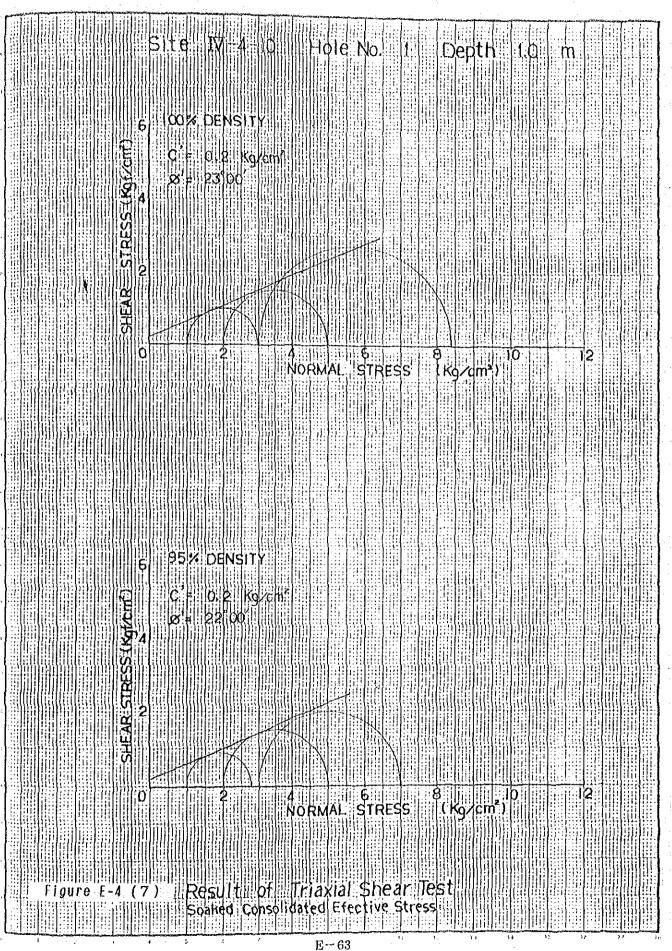

LIQUID LIMIT	61	56	47	48	57	48	1	1
PLASTIC INDEX	32	25	21	23	28	15		
LINEAR SHRINKAGE %	15	12	11	11	13	- 5		
PLASTICITY PRODUCT	1 890	1 550	1 385	1 380	1 765	705		
COARSENESS INDEX	4	1	2	2	6	2	<u>}</u>	1
CLASSIFICATION	СН	MH	CI	CI	СН	MI		1

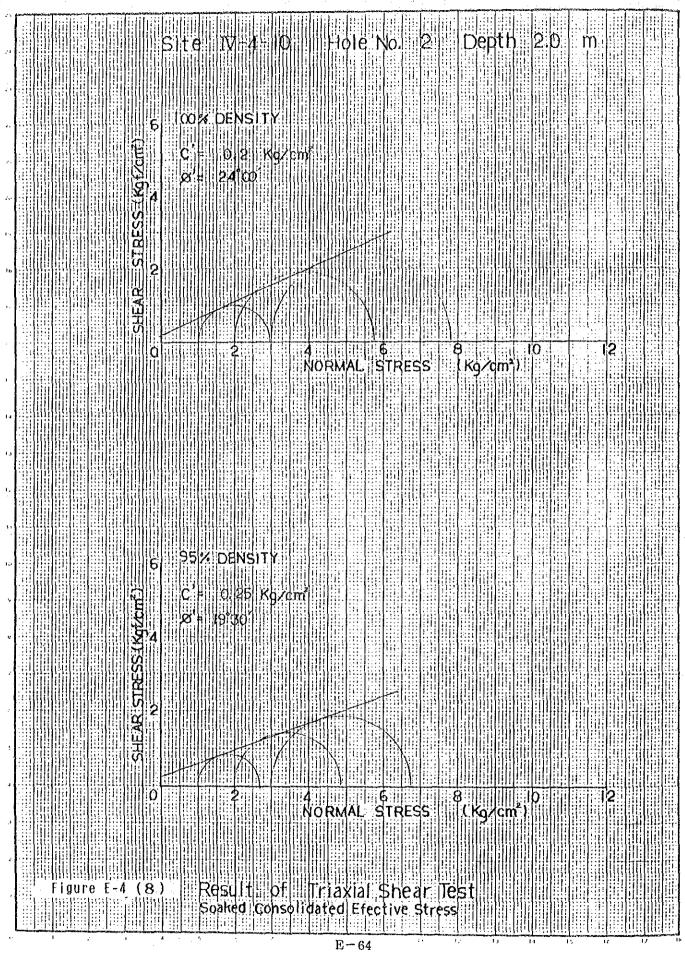

GRADING ANALYSIS

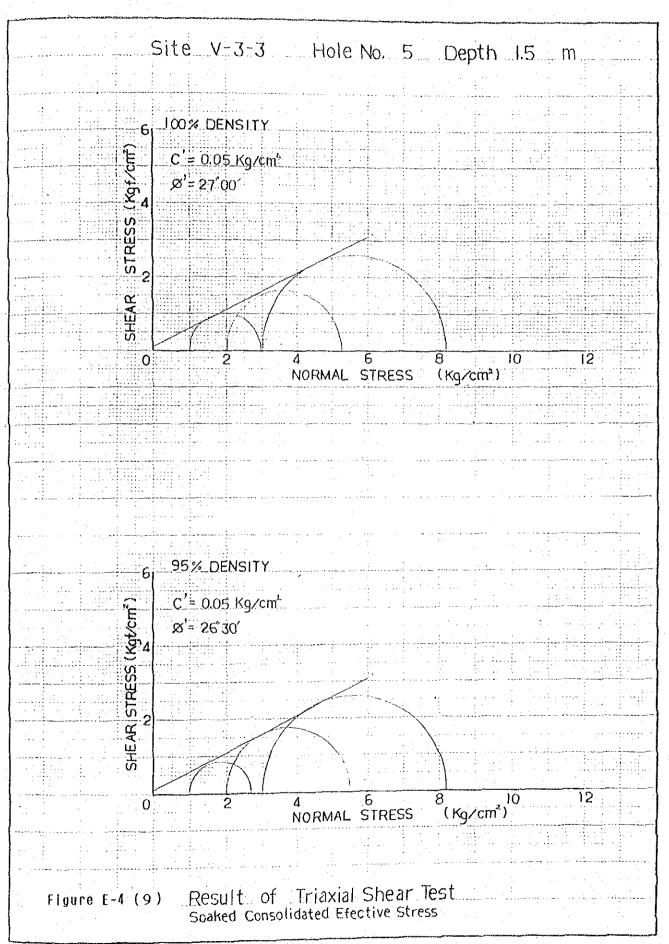


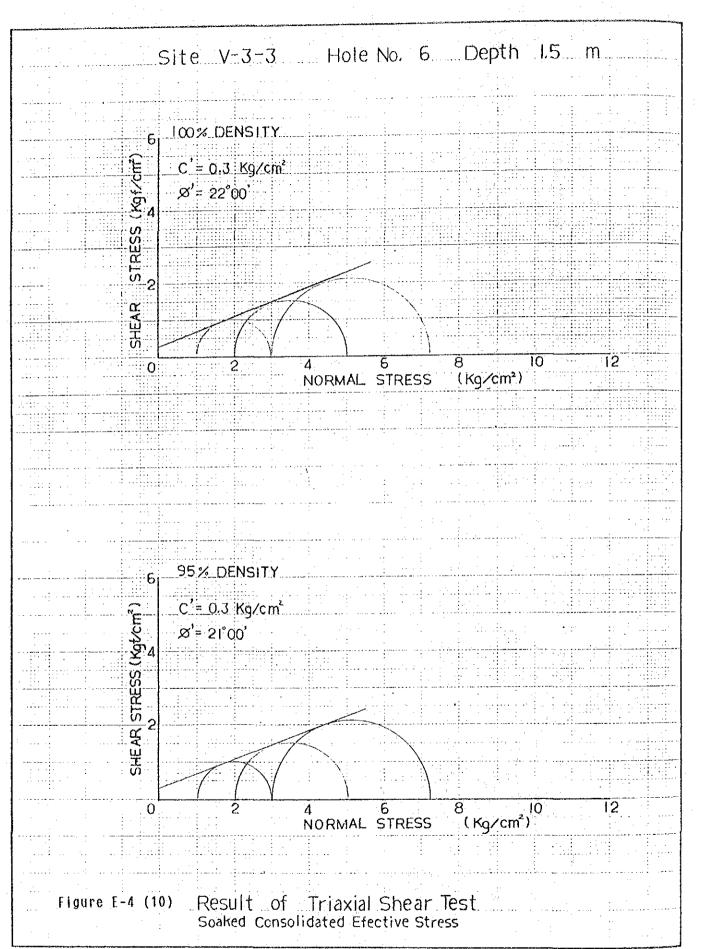

			,51 ¹⁻	37-5 mm 1 100	5 8	2	8	2	00	C u	3 5			2 '	Э]	90 00	2 S E -		
		3ER 1987	, I	26-5 1											SIZE		COARSE		S.
		SEPTEM	.76-	0.61											PARTICLE	8			G LAE
	Operator:	Date: 1 SEPTEMBER 1987	31-	9-50 , 13-2 1 L	+											õ	N N I	LION	NORTHERN TESTING LABS. P.O. BOX 1834 PHONE 47222 HARARE
31 	õ	ات ا		6-70 9- I						:			:		-	-	MEDIUM	FRACTION	PHON
			.31- .91⁄t-	1												ນາ		GRAVEL	NORTHER P.O. BOX 1834
			.¥(335 1		$\overline{\mathbf{h}}$. : 				FINE		Z a1
			٤	2.36								 <u> </u>					F		
						· .													
			າເ- ເດ	SIEVES,18					\geq		-	 					OARSE		
		ē	B.S. SIEVES	600 METRIC						·							00		Ś
		: SAND	sz-	425 60 1						······						200		2	ANALYSIS
		ptions	9E-	7 000											-	 	MEDIUM	FRACTION	GRADING A
		Descriptions:								• •						·	W		
	V11-1-12	and	001-	<u>8</u>							· ·				-	۰.	i	SAND	E-3 (19)
		NSS.								•						 100	FINE		Figure
	Project :	Sample	007	tm 75								 			-	Ē	L.		

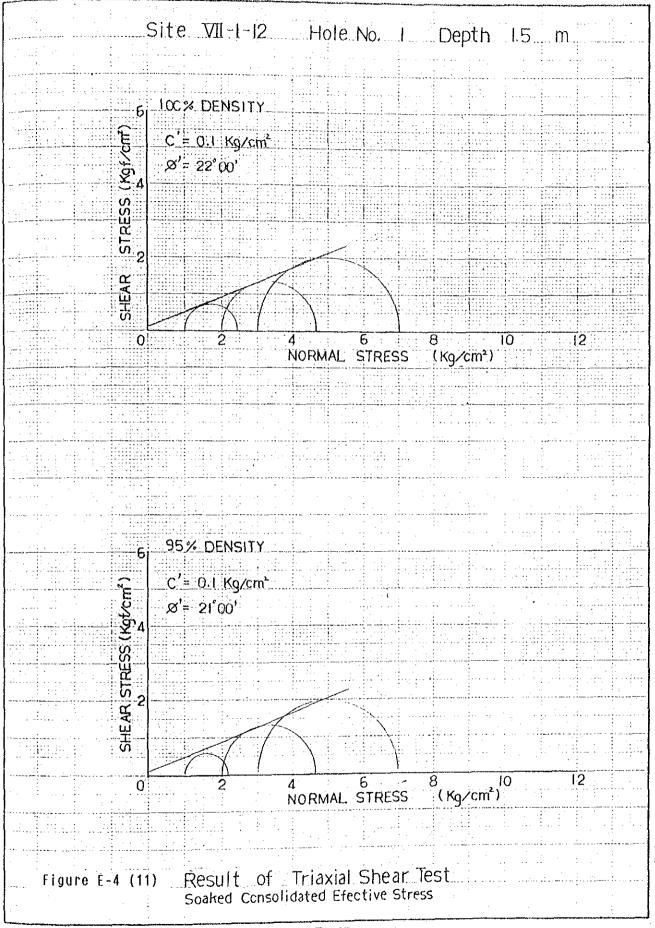




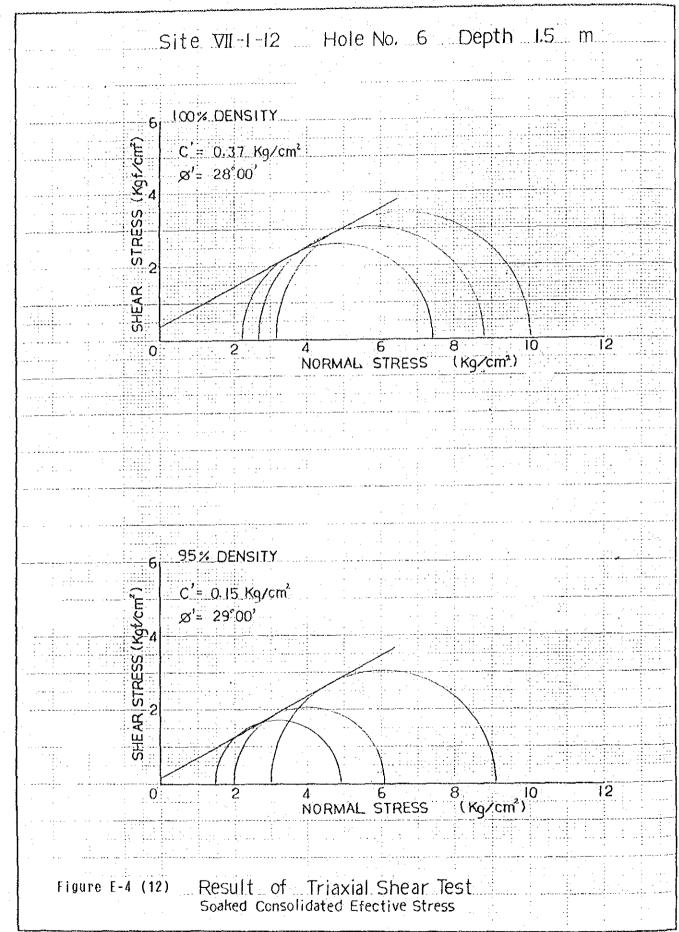








n 5.1 3 1.0



E - 67

