CHAPTER 8 PRELIMINARY DESIGN FOR AIRPORT FACILITIES

22

CHAPTER 8 PRELIMINARY DESIGN FOR AIRPORT FACILITIES

8.1 Runway, Taxiway and Apron

(1) Taxiway Separation from Runway Centerline

The separation between runway and taxiway centerlines is planned to be 184m based on the following considerations:

- a. ICAO minimum separation for aircraft category E when the wing span is less than 60m is 180m based on total of 1/2 runway strip width (300m/2 = 150m) and 1/2 wing span (60m/2 = 30m).
- b. The wing span of the design aircraft, B-747-400 is approx. 65m. Minimum separation can therefore be calculated to be 182.5m (300m/2 + 65m/2). This figure may be rounded to 184m, which is the JCAB minimum separation.
- c. Although the preliminary design adopted 184m for the taxiway separation from the runway centerline, further study may be required in the detailed engineering design taking into account ICAO's requirements on this matter.

(2) Separation between Taxiway Centerlines

The separation between centerlines of parallel taxiways is planned to be 85m based on the following considerations:

- a. ICAO minimum separation for aircraft category E is 76.5m for aircraft with a wing span up to 60m. This based on a total of wing span (60m), 2 times maximum lateral deviation $(2 \times 4.5m = 9m)$ and an increment of (7.5m).
- b. For B-747-400, aircraft the separation becomes 81.5m (65m + 9m + 7.5m). This figure may be rounded to 85m which is the JCAB minimum separation. The turning radius of the cross over taxiway will be 42.5m, which allows B-747 to turn with less than a 40 degree steering angle.

(3) Stormwater Drainage

The planning criteria employed for the drainage facility requirements are summarized as follows:

a. Run off

Rational formula is utilized to estimate the run off.

$$Q = 1/360 \times C \times I \times A$$

Where, Q: Run off (m³/sec)
C: Run off coefficient
I: Rainfall intensity (mm/hr)
A: Catchment area (ha)

b. Run off coefficient

Pavement area : 0.95 Building area : 0.90 Sodded area : 0.30

c. Rainfall intensity

The rainfall intensity for a 10 year return period at El Alto airport is given by the following formula:

 $I_{10} = 718.6 \text{ x t}^{-0.802}$

where, I₁₀ : Average rainfall intensity for 10 year return period t : Inlet time (min)

(4) Pavement

Design of the aircraft pavement is carried out based on the airport pavement design manual of JCAB. Design load and design coverage of the pavement are based on B-747 class aircraft and 3,000 times/year respectively. The subgrade conditions are assumed as follows based on the results of the soil investigation undertaken at the site.

> Design CBR : More than 20% for cut and fill portion Design K-value : More than 7.0 kg/cu.cm

Pavement Type No.	Place	Design Aircraft	JCAB Design Load Classification	Remarks
Type no.	I LLCL CA CA			an ang ang ang ang ang ang ang ang ang a
Type-1	Runway Overlay	B747 Class	LA-1	
Type-2	Taxiway	B-747 Class	LA-1	
Туре-З	Taxiway	B-747 Class	LA-1	Reduced Thick-
	2 . : : : :			ness of Type-2
				by 10%
Type-4	Taxiway	C-141 Class	LA-12	
Type-5	Meat Carrier's	C-54 Class	LA-4	
	Taxiway and			
•	Apron			
Туре-б	Passenger and	B-747 Class	LA-1	
	Cargo Apron			
Type-7	Isolated Apron	B-747 Class	LA-1	Reduced Thick-
				ness of Type-2
m 0	A 1	CONTRACTOR		by 20%
Туре-8	General	COMMANDER-	LA-5	
m ò	Aviation Apron	690 Class		
Type-9	Shoulder	-	-	
<i>3</i> I	Blast Pad		- 1 m 1	Tourise Treater
Type-11	GSE Service	-	LT-1	Towing Tractor Load
ም	Road		ן ייטן	
Type-12	GSE Service	-	LT-1	Towing Tractor Load
	Road and			LUAU
	Parking			

The detailed conditions for the respective pavement areas are summarized below:

8.2 Access Road

The cross section of the underpass box-culvert designed for the aircraft load of L-144 is shown in Figure 8,2.1.

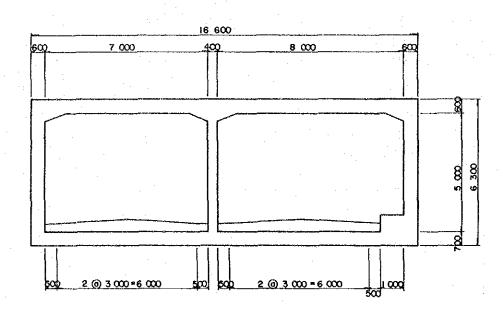


Figure 8.2.1 Cross Section of Box Culvert

8.3 Air Navigation Systems

The air navigation systems for the Phase-I development were planned based on the facility requirements indicated in Subsection 3.4 and the evaluation of the existing equipment and systems discussed in Subsection 4.5.

Table 8.3.1 shows the development items and their outlines in the Phase-I development.

Table 8.3.1 Outline of Air Navigation Systems for Phase-I Development

Equipment	Outline of Equipment	Quant:
A. RADIO NAVIGA TIONAL AIDS	<u>I</u>	:
TIONUT HEND		ļ
A-1 Replacement	-Conventional VOR, 100 watt, 115.7 MHZ,	1
of CVOR/	dual equipment	set
DME	-DME, 1 Kwatt, Channel 104X, dual	1 ·
•	equipment	
	-Pre-fabricated shelter	
	-Non breaking DC power supply equipment	
	-Remote control and monitor	
A-2 Replacement	-Locator, 330 KHz, 100 Watt, dual	1
of Locator	equipment, solid state	set
	-Antenna with tower	
	-Pre-fabricated shelter	
	-Non breaking DC power supply equipment	
A-3 Installatio	on -Approach azimuth with basic data	1
of Micro-	transmission	se
wave Landin	ng -Approach elevation	
System	-Precision DME	
	-Remote control and display equipment	
	-Non breaking DC power supply equipment	
A-4 Provision of		1
Spare Parts		101
and Mainter	!	
ance Tools		
for Items /		
through A-3		
A-5 Provision of		
Test Equipm		1ot
for Items A		
through A-3		
A-6 Installatio		
of Telecom-		1ot
munication		
Cables for		
Navaids		

Equipment	Outline of Equipment	Quantity
A-7 Installation of External Power Supply Cables and Airfield		Lump sum
Substations		
B. AIR TRAFFIC CONTROL AND AERONAUTICAL TELECOMMUNICA- TIONS SYSTEMS		
B-1 Replacement of VHF Air-Ground Transmitters	-FIC, TMA(1), TMA(2), TMA(3), APP, TWR, SMC, EMERG/eight frequencies -Solid state 50 Watt transmitter	16 sets
	-High gain antenna with change-over switch VHF antenna support tower Pre-fabricated shelter	
B-2 Replacement of VHF Air-Ground Receivers	-Frequencies: same as B-1 -High gain antenna with changeover switch -VHF antenna support tower -Pre-fabricated shelter	16 sets
B-3 Replacement of Multi-channel Transceivers	-Multi-channel transceiver complete with antenna -Two sets for control tower and approach control office	2 sets
B-4 Replacement of VHF FM Trans- ceiver for Vehicle Control	-VHF FM transceiver with antenna to be installed at control tower	l set
B-5 Replacement of VHF Links by UHF Links	-Three links: Achachicala - Huaricollo - Tapacari - Juno -UHF transmitter/receiver, Dual and hot- stand-by configulation, 50W, 6 sets -UHF Link Multiplexer, 24 channel, 2 sets -Parabolic antenna and tower, 6 sets -Solar cells with battery for TAPACARI Relay Station	Lump sum

17	Outline of Equipment	Quantit
Equipment		Quantit
B-6 Replacement	-For SAM-1, SAM-2 and National Circuit	7
of HF/SSB/ISB	HF/SSB/ISB transmitter, 1 Kwatt,	sets
Air-Ground	-TX antenna: Existing	
Transmitters	-Antenna changer	7
B-7 Replacement of	-HF/SSB/ISB receiver	7
SSB/ISB/Air-	-RX omni-directional receiver antenna	sets
Ground	with change over, 4 sets	
Receivers	-Remote controller	3
B-8 Replacement of	-Control tower console and communications	
Control	control unit, 3 control positions	sets
Consoles	-ACC console, 3 sectors without radar	
	-Console for VFR aircraft, 2 positions	
DOT 1111	with HF radio controls	1
B-9 Installation	-Console	set
of ATIS	-Tape-recorder and reproducer -VHF transmitter (dual) and antenna	Sec
P 10 Poplagmont	-Tape recorder, 24 channels	1
B-10 Replacement	-Reproducer	set
of Magnetic- Taperecorder	-kepi odučel	500
B-11 Replacement		2
of Traffic		sets
Light Gun		
B-12 Provision of		1
Spare Parts		lot
and Mainten-		
ance Tools for		
B-1 through		
B-10		
B-13 Provision of		1
Test Equipment		lot
for B-1		
through B-10		
C. ATC RADAR SYSTEM		
0 1 Delegation of	IRS-10/CESELSA	Lump
C-1 Relocation of	TUD-TO/ OE019104	sum
the Existing		อนแ

E	Squipment	Outline of Equipment	Quantity
	IRONAUTICAL GROUND LIGHTS		
	Installation of a Simple Approach Light-	-Installation of change-over switch of CCR, high tension cables, lighting fit- ting and bulbs with frames	Lump sum
D2	ing System Replacement of	-Replacement of CCRs, cables lighting fit-	
	Runway Edge Lights	tings and bulbs -Demolition of the existing cables and lights	sum
D-3	Replacement of Runway Thre-	-Category-I Layout -Replacement of cables and lighting	Lump sum
	shold and End Lights for both Thresholds and Ends	fittings and bulbs -Demolition of the existing cables and lights	
D-4	Replacement of Runway Wing- bar Lights	-Runway 09 only -Replacement of cables and lighting fixtures and bulbs -Demolition of the existing cables and lights	Lump sum
D-5	Replacement and Addition of Taxiway Edge Lights	-Installation and replacement of cables and lighting fixtures and bulbs -Demolition of the existing cables and lights	Lump sum
D-6	Installation of Taxiing Guidance System	-Installation of 3 sets of a taxiing guidance boards and cables	Lump sum
D-7	Installation of Apron Flood lights	-Installation of a high luminous lighting fixtures with poles for the passsenger terminal apron and the cargo apron	Lump sum
D-8	Replacement of Illuminated Wind Direction Indicator Lights	-Runway 09 and 27 touch-down areas -Replacement of cables and demolition of the existing cables	2 sets
D-9	Replacement of Aerodrome Beacon	-Replacement of new aerodrome beacon top on new control tower	1 set

Equipment	Outline of Equipment	Quantity
D-10 Replacement of Power Distribution and Control System	-Replacement of CCRs for ground lights, power distribution boards and cables -Installation of new control desk for ground lights -Demolition of the existing CCRs, power distribution boards and cables	Lump sum
D-11 Construction of Ducts and Manholes under Runway and Taxiways	-Installation of a suitable number of pipe under runway and taxiway	Lump sum
D-12 Construction of Substation for Lights	Installation of one set of cubicle type's substation in the administration building	Lump sum
D-13 Provision of Spare Parts and Mainten- ance Tools for D-1 through D-12		l lot
D-14 Provision of Test Equipment for D-1 through D-12		1 lot
E. METEOROLOGICAL SYSTEM		
E-1 Installation of Field Weather Observation Equipment	-Field weather equipment . Wind sensor (2 sets) . Thermo-hydro meter (2 sets) . Precipitation guage (1 set) . Transmissometer (2 sets) . Ceilometer (1 set) . Field junction converter (2 sets) . Barometer (1 set)	Lump sum
	-Automatic data collection and recording equipment	

•

8 - 9

· · · · · · · · ·

Equipment	Outline of Equipment	Quantity
(E-1 cont'd)	-Weather report desk -Branch LED display (QNH, Wind speed/ direction, RVR), 3 units -Branch video display (composite WX data display), 4 units	
E-2 Provision of Conventional Altimeter and Barometer		1 set
E-3 Replacement of HF receiver, Facsimile and Teletypewriter	-HF receiver complete with RX antenna -HF facsimile equipment (dual) -Teletypewriters (2 sets)	l lot
E-4 Replacement of APT Receiver E-5 Installation of Radiosonde Receiver and Hydrogen	-Multi-frequencies receiver with antennas and printers -Radiosonde receivers (dual) -Hydrogen generator for radiosonde -Radiosonde (800 sets for two year operation)	l lot l lot
Generator E-6 Provision of Spare Parts E-1 through E-5		l lot
E-7 Provision of Test Equipment for E-1 through E-5		l 1ot
E-8 Provision of Consuming Materials		l lot
F. OTHERS F-l Factory Training F-2 Site Training		Lump sum Lump
F-3 Ground Assist- ance for Flight calibration		sum Lump sum

8.3.1 Radio Navigational Aids

(1) ILS and MLS

The existing instrument landing system (ILS) and distance measuring equipment (DME) co-located with the glide path of the ILS which were installed in 1983, will require equipment replacement by around 1995. However, ILS will be replaced by a microwave landing system (MLS) by the year 1997 as shown in Table 8.3.2.

After a two (2) year transition period from ILS to MLS, ILS will no longer be considered standard landing guidance system of ICAO. Accordingly, the introduction of MLS in the Phase-I development was planned. The existing ILS must be well maintained in order to be operational up to the year 1997.

(2) NDB

AASANA has a plan to replace the existing non-directional beacon (NDB) with new equipment at the existing location in 1988. Accordingly, no replacement will be required in the Phase-I development.

(3) VOR/DME

The conventional VHF omni-directional range (VOR) and DME were replaced in 1982 and 1975, respectively. Replacement of this equipment will be necessary in Phase-I development at the same location. Although the existing VOR/DME are operated with AC power, a non breaking DC power supply of charger and batteries were planned in order to meet the ICAO requirements for power supply to navaids.

(4) <u>Locator</u>

The locator is an old piece of equipment installed in 1968. Although a locator is not mandatory for regular civil air transport, it will be replaced for guidance to small propellar-driven aircraft at El Alto airport.

	J		,												1	
2010				r o												CAO)
60		·		MLS is a sole ICAO Standard approach and												1985, ICAO)
08				roac											n tra Train	
07	;			арр												ing,
06				dard												Meet
05		Systen		Stan	sten						•					noi
04		y Sy		CAO	e sy											ivis
03		Primary		Le L	landing guidance system.											ns L
02		Ч		80 80	30.			• ,								atio
10				ъ Ч	ding		÷	·								Oper
2000	al	TRANSITION		MLS	lan										-	(Source; Communications/Operations Division Meeting,
66	Optional Menal	ISNA		i.s	. c	primary	system.	۲ ۲	- -	ų o	ILS IS	۲0- ۲0-	•			nica
93	d li	Ê		MLS is	the TCAO	pri	sys	Conti-	nued	use of	ILS	optio-	nal.			ommu
97																C.
96	System			ı	•											ourc
95				•	tem,) 1.										S
94	Primary	q		xist	Sys MIS		• :									
63	ц	Recommended		ds e	taary se of											
92				andaı	D pri	nded										
61		Re		Dual standards exist.	ILS ICAO primary syste increased use of MLSis	reconnended										
1990				Dua.	inc:											
89		2001 2003 2005 2005 2005		rds		ten,								_		
88		al		anda	Q	sys	ЯŢС	į								
37		Optional MMMMMMM		Dual Standards	exist. ILS ICAO	primary system,	Ч С	optional.								
36		Ċ.		Dua	exi ILS	Ц Д	use	opt								
Year	SII	NLS		Status												

Table 8.3.2 ILS/MLS Transition Plan

8.3.2 Air Traffic Control and Aeronautical Telecommunications systems

(1) Radar

The construction of a secondary surveillance radar (SSR) is underway at present and the radar operation will start in early 1988. The SSR is designated for terminal use for La Paz Terminal. Since the location of the SSR is to be developed as a cargo terminal area in Phase-I development, the re-location of the SSR will be required prior to the start of Phase-I construction work. The relocation of control consoles from the existing ACC room to the new Administration Building will also be required after completion of the Administration Building. The SSR will require replacement in Phase-II, preferably, by ASR/SSR.

(2) VHF Air-Ground Radios

Since there are communications problems on the existing VHF air-ground radios as explained in Subsection 4.5, transmitter and receiver antennas should be relocated to airside where an un-obstructed line of sight between airborne and/or parked aircraft can be obtained.

The following VHF air-ground radios will be replaced by complete-dual configuration equipment.

1)	FIC	"La Paz	Information"	127.1	MHz
2)	TMA	"La Paz	Control" - (1)	123.9	MHz
3)	TMA	"La Paz	Control" - (2)	128.205	MHz
4)	TMA	"La Paz	Control" - (3)	128,195	MHz
5)	APP	"La Paz	Approach"	119.5	MHz
6)	TWR	"La Paz	Tower"	118.3	MHz
7)	SMC			121.9	MHz
8)	Emer	gency		121.5	MHz

(3) HF Radios

The world wide tendency is for HF ground-ground radio to be replaced by common carrier systems such as UHF link, microwave link, satellite communications, etc., due to the low reliability of HF propagation characteristics. The same tendency is observed in Bolivia, thus all the HF ground-ground radios are considered to be replaced by AASANA UHF links or ENTEL public network. With respect to HF air-ground communications, the aeronautical satellite which is under development is the only alternative. HF air-ground communications is considered to be used for a while in South America, thus international (SAM-1* and SAM-2) and domestic circuits are planned with HF/SSB/ISB radios.

* : Frequencie	S	· · · · .
SAM-1	6,649	KHz
· · · .	10,024	KHz
SAM-2	3,479	KHz
	5,526	KHz
•	8,855	KHz
	10,096	KHz
La Paz National	3,425	KHz
	6,622	KHz
	8,912	KHz
	10,082	KHz

The HF transmitter site is planned to remain unchanged whereas the HF receiver site is planned at the same location as the VHF receiver site for easy maintenance.

Replacement of three HF/SSB/ISB transmitters and three receivers will be required for SAM-1 and SAM-2 in Phase-I. Replacement of two transmitters and two receivers will be required for domestic circuits, i.e., "La Paz National". No replacement of transmitter antennas will be necessary.

(4) <u>Control Consoles</u>

All the control consoles will be installed new at the administration building and control tower, except that the SSR radar control consoles being installed are to be relocated from the existing ACC room. The console will include the following:

- 1) Aerodrome control console
- 2) Area control console
- 3) VFR aircraft control console

(5) <u>UHF Links</u>

The existing VHF links connecting El Alto airport to the Juno relay station, where La Paz Control radio is located, will be replaced by UHF links in order to solve the radio interference from taxi radios and to ensure high reliability for the fixed telecommunications. At least four links will be required between El Alto airport and the Juno relay station based on the condition that the line of sight between each relay station is obtained.

Each transmitter/receiver will require two parabolic antennas of space diversity due to the relatively long link distance.

(6) AFTN Exchange and Teletypewriters

The equipment at El Alto airport provides an international and domestic AFTN network in and outside Bolivia. Accordingly, the replacement of AFTN exchange and teletypewriters are to be planned by AASANA for a national network.

8.3.3 Aeronautical Ground Lights

Replacement and/or installation of additional aeronautical ground lights will be required as listed in Table 8.5.1 of Main Report in Phase-I development.

The existing precision approach category-II lighting system on runway 09 and PAPI can be utilized during Phase-I.

The other lights will require replacement of all components of the lighting system, i.e., replacement of constant current regulators, lighting fixtures and bulbs, sealed transformers, re-wiring of high and low tension cables, etc.

All the power supply systems including CCRs and control equipment for lights will be accommodated in the control tower and administration building for easy maintenance and operations.

8.3.4 Meteorological System

All equipment and office space for the meteorological services will require drastic renovation for the reasons described in Subsection 4.5.

Meteorological forecast and telecommunications offices will be accommodated in the administration building while a meteorological observation station will be located independently near the runway and between the sewage treatment plant and receiver site. A briefing room will be located in the new passenger terminal building so as to ensure easy access to the dispatcher.

The meteorological observation station will be a one storey building of about 160 sq.m and will have an observation room on the roof from which a clear and un-obstructed view of the runway and sky should be obtained. The meteorological station will also have a confined meteorological park where conventional observation sensors are to be installed.

Airport surface sensors will be located separately near the runway 09 and 27 touch-down areas and the observed surface data will automatically be transmitted to the meteorological observation station. The observed data will be collected and compiled at the meteorological station and distributed to branch displays in the aerodrome control tower, approach control office and meteorological office in the administration building.

A radiosonde launching pad and receiver together with a hydrogen generator will be installed in the meteorological observation station, while HF radio receiver, facsimile equipment, teletypewriters and multi-frequencies automatic picture transmitter (APT) receiver will be installed at the administration building for meteorological telecommunications and forecast.

8.4 Airport Utilities

(1) Power Supply System

Power supply system is planned based on the facility capacity shown in Table 8.4.1.

Load	Commercial <u>Electricity Only</u>	(Unit in With Stand-By <u>Generator</u>	KVA) Total <u>Supply</u>
Aeronautial		120	120
Ground Lights Navigational Aids		130	130
and Telecommunications Buildings etc.	770	980	1,750
Total	770	1,230	2,000

Table 8.4.1 Facility Capacity for Electricity Power Supply

Electrical power will be supplied from the Alto La Paz substation and Tarapaca substation of COBEE in order to provide a highly reliable source. The cost estimates include installation cost of these cables, but the transformer and distribution devices at these substations are not included.

Emergency power supply system consists of two generators. A new 1000 KVA 6.6 KV generator will be added to the existing 587 KVA (470 KW) 240 V generator.

(2) Sewer System

Wastewater treatment system is planned based on the following conditions:

a. Quality of Influent

BOD₅ : 200 mg/litre SS : 250 mg/litre

b. Quality of Effluent

BOD ₅	:	Less than 20 mg	/litre
SS	:	Less than 30 mg	/litre

CHAPTER 10 SUPPLEMENTARY CONSIDERATIONS

CHAPTER 10 SUPPLEMENTARY CONSIDERATIONS

10.1 Calculation of Aircraft Noise Contours

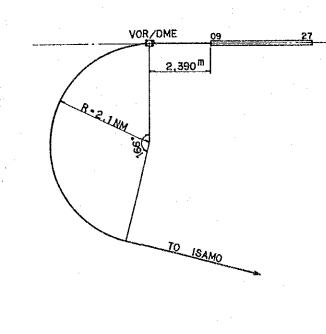
Aircraft noise contours were calculated based on the following assumptions:

(1) Number of Daily Flights

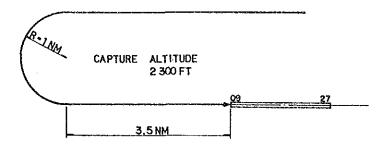
.

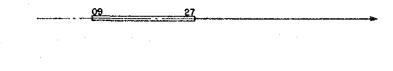
<u>Aircraft</u>	<u>Year 1987</u>	<u>Year 2005</u>
JJM (B-747M Class)	1	2
LJ (L-1011 Class)	-	9
NJ (B-727 Class)	8	20
SJ (B-737 Class)	10	12
P (F-27 Class)	7	8
Tota1	27	51

(2) Time Distribution of Flights

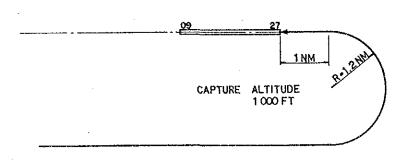

Day Time Evening Time Night Time	(7:00 (19:00 (22:00	~*	22:00)	: :	80 % 15 % 5 %	
Total					100 %	

(3) Ratio of Runway Use


Ť		Take-off Landing Take-off Landing	:	46 48	%
Total				100	%


(4) <u>Typical Traffic Patterns</u>

a. Runway 09 Takeoff



b. Runway 09 Landing

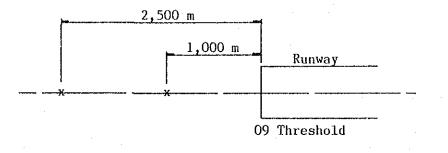
d. Runway 27 Landing

(5) Takeoff Profile

The take-off profile at sea level was utilized for the calculation due to the lack of aircraft take-off performance data at high altitude. This approximation gives a smaller noize level under the take-off path because the actual take-off climb angle at high altitude is lower than that at sea level and also because the aircraft require a longer takeoff run at higher altitude.

(6) Landing Profile

Landing profile is assumed to be the same as the actual glide path angle, i.e. 2.5° for 09 landing and 3.0° for 27 landing.


Appendix 10.1 Result of Aircraft Noise Measurement

1. General

The measurement of the aircraft noise level at El Alto airport was carried out in accordance with the request by AASANA because there is no data on the aircraft noise level at an altitude of 4,000 m above mean sea level.

2. Outline of Measurement

Measurement Point	:	Shown in Figure A.10.1.1
Date of Measurements	:	From 8th July to 14th August in 1987
Atmospheric Pressure	:	627 mb - 628 mb
Temperature	:	$12 - 16^{\circ}C$
Objective Aircraft	:	B747, B727-200
•		B727–100, B737
Instrument	:	Sound level meter

x : Measurement point

Figure A.10.1.1

3. Result of Measurement

The data collected is shown on pages 10-6 through 12.

Based on the data collected, the following significant points on the aircraft noise level at the altitude of 4,000 m above mean sea level are noted:

- In the case of take-off, aircraft noise level is a little higher than level at a sea level. This may be caused by a lower take-off profile than that at sea level.
- In the case of landing, the aircraft noise level is a little lower than the level at sea level. Landing profiles were not different from those at sea level. Therefore, a lower level is assumed to be caused by an approximately 40 percent lower atmospheric pressure compared with sea level.

1,1 B747	Landing	Location :	1,000m from	runway th	reshold O9
Date	<u>Time</u>	Maximum <u>Noise Level</u> (dB(A))	Slant <u>Distance</u> (m)	Flight <u>Number</u>	Origin
	12:49 ea 1evel	89 102	73 57)	LH 528	LIM

1.2 B747 Landing

Location : 2,500m from runway threshold 09

Date	Time	Maximum <u>Noise Level</u> (dB(A))	Slant <u>Distance</u> (m)	Flight <u>Number</u>	Origin
AUG 10	12:43 12:49	91 92	136 127	LH 528 LH 528	LIM LIM
(At s	ea level	95	122)		

1.3 B747 Take off

Location : 1,000m from runway threshold 09

Date	Time	Maximum <u>Noise Level</u> (dB(A))	Slant <u>Distance</u> (m)	Flight <u>Number</u>	Destination
JUL 22	14:35	96	204	LH 529	LIM
JUL 27	14:25	91	- .	LH 529	LIM
AUG 10	14:39	82	190	LH 529	LIM
(At s	ea level	87	550)		

1.4 B747 Take off Location : 2,500m from runway threshold 09

Date	Time	Maximum <u>Noise Level</u> (dB(A))	Slant <u>Distance</u> (m)	Flight <u>Number</u>	Destination
JUL 8	14:50	77	806	LH 529	LIM
JUL 13	14:28	75	_	LH 529	LIM
JUL 22	14:35	87	308	LH 529	LIM
JUL 27	14:25	71	-	LH 529	LIM
JUL 29	14:38	90 State		LH 529	LIM
AUG 10	14:39	78		LH 529	LIM
(At s	ea level	L 83	800)		

2.1 B727-200 Landing Location : 1,000m from runway threshold 09

Date	Time	Maximum <u>Noise Level</u> (dB(A))	Slant <u>Distance</u> (m)	Flight <u>Number</u>	Origin
JUL 22	11:54	97	155	LB 752	SRE
JUL 30	10:10	95	58	LB 918	CBB
AUG 11	13:19	89	65	EA 992	LIM
AUG 12	11:31	88	62	CB 752	SRE
(At	sea level	100	57)		

2.2 B727-200 Landing Location : 2,500m from runway threshold 09

Date	Time	Maximum <u>Noise Level</u> (dB(A))	Slant <u>Distance</u> (m)	Flight <u>Number</u>	Origin
JUL 30	10:10	97	110	LB 918	CBB
AUG 11	13:19	90	127	EA 992	LIM
AUG 12	11:31	93	126	LB 752	SRE
(At se	a level	98	122)		

2.3 B727-200 Take off Location : 1,000m from runway threshold 09

Date	Time	Maximum <u>Noise Level</u>	Slant <u>Distance</u>	Flight Number	Destination
		(dB(A))	(m)		· · · · · ·
1.	· · ·				
JUL 22	13:07	106	103	LB 775	TJA
JUL 23	11:05	109	-	LB 918	LIM
JUL 24	10:59	104	130	LB 771	SRE
JUL 27	10:00	110		LB 753	SRE
JUL 28	10:43	95	· _ ·	LB 907	ARI
JUL 30	10:14	105	131	LB 918	SCL
JUL 30	11:05	104	132	LB 918	LIM
AUG 11	14:08	99	67	EA 992	ASU
AUG 12	12:07	96	181	LB 775	TJA
JUL 29	10:54	98	203	LB 751	
(At sea leve	el 98	350)		

2.4 B727-200 Take off

Lacation : 2,500m from runway threshold 09

Date	Time	Maximum <u>Noise Level</u> (dB(A))	Slant <u>Distance</u> (m)	Flight <u>Number</u>	Destination
JUL 8	12:30	85	340	LB 775	ТЈА
JUL 22	13:07	94	177	LB 775	TJA
JUL 23	11:05	97	268	LB 918	LIM
JUL 24	10:59	103	153	LB 771	SRE
JUL 28	10:43	95		LB 907	ARI
JUL 29	10 : 54	98	149	LB 751	
JUL 30	10:14	103	143	LB 907	SCL
JUL 30	11:05	107	150	LB 918	
AUG 11	14:08	103	251	EA 992	ASU
AUG 12	12:07	94	135	LB 775	TJA
(At	sea level	93	550)		

3.1 B727-100 Landing Location : 1,000m from runway threshold 09

Date	Time	Maximum <u>Noise Level</u> (dB(A))	Slant <u>Distance</u> (m)	Flight <u>Number</u>	Origin
JUL 22	11:36	89	181	LB 635	
JUL 30	14:28	89	70	SC 880	SAO
JUL 30	15:31	96	67	LB 917	LIM
AUG 10	13:10	91	55	LB 637	TDD
AUG 11	10:07	93	64	LB 801	
AUG 12	11:42	92	68	LB 635	
AUG 13	12:38	96	61	LB 918	
AUG 13	13:22	90	75	SC 880	SAO
(At s	sea level	100	57)		

3.2 B727-100 Landing

Location : 2,500m from runway threshold 09

Da	ite	Time	Maximum <u>Noise Level</u> (dB(A))	Slant <u>Distance</u> (m)	Flight <u>Number</u>	Origin
JUL	13	13:37	95	119	LB 637	TDD
JUL	30	14:28	91	125	SC 880	SAO
JUL	30	15:31	86	150	LB 917	LIM
AUG	10	13:10	98	109	LB 637	TDD
AUG	11	10:07	94	125	LB 801	
AUG	12	11:42	95	131	LB 635	
AUG	13	12:38	92	127	LB 918	
AUG	13	13:22	92	136	SC 880	
	(At s	sea level	98	122)		

3.3 B727-100 Take off Location : 1,000m from runway threshold 09

۰.

Da	te	Time	Maximum <u>Noise Level</u> (dB(A))	Slant <u>Distance</u> (m)	Flight <u>Number</u>	Destination
JUL	23	14:02	95	83	LB 943	ARI
JUL	27	11:22	98		LB 636	TDD
JUL	27	14:37	95	- · .	LB 773	TJA
JUL	28	10:18	95		LB 801	CBB
JUL	29	12:19	98	147	LB 638	TDD
JUL	30	14:40	92	168	LB 943	ARI
JUL	30	15:17	98	165	SC 881	SAO
AUG	10	11:10	91	211	LB 636	TDD
AUG	10	14:20	98	104	LB 773	TJA
AUG	11	10:25	94	153	LB 907	ARI
AUG	11	11:10	101	68	LB 918	LIM
AUG	12	13:02	91	96	LB 638	TDD
AUG	13	13:07	102	59	LB 918	LIM
AUG	13	14:21	97	105	SC 881	SAO
	(At	sea level	98	350)		

3.4 B727-100 Take off Location : 2,500m from runway threshold 09

Date	Time	Maximum <u>Noise Level</u> (dB(A))	Slant <u>Distance</u> (m)	Flight <u>Number</u>	Destination
JUL 8	15:20	92	200	LB 638	TDD
JUL 9	14:09	86	111	LB 943	ARI
JUL 9	14:21	.96	178	SC 881	SAO
JUL 13	9:37	97	· · <u> </u>	LB 753	SRE
JUL 13	11:02	94	202	LB 636	TDD
JUL 22	12:12	87	130	LB 638	TDD
JUL 23	14:02	82	118	LB 943	ARI
JUL 27	11:22	71		LB 636	TDD
JUL 27	14:37	76	-	LB 773	TJA
JUL 28	10:18	94		LB 801	CBB
JUL 29	12:19	96	161	LB 638	TDD
JUL 30	15:17	98	240	SC 881	SAO
AUG 10	11:10	92	164	LB 636	TDD
AUG 10	14:20	84	80	LB 773	TJA
AUG 11	10:07	93		LB 801	CBB
AUG 11	10:25	96	169	LB 907	ARI
AUG 11	11:10	101	124	LB 918	LIM
AUG 13	13:07	103	151	LB 918	LIM
AUG 13	14:21	101	144	SC 881	SAO
AUG 14	11:16	104	149	LB 775	SRE
(At s	sea level	93	550)		

4.1 B737 Landing Location : 1,000m from runway threshold 09

Date	Time	Maximum <u>Noise Level</u> (dB(A))	Slant <u>Distance</u> (m)	Flight <u>Number</u>	Origin
JUL 24	12:20	84	~~	LA 118	ARI
JUL 31	12:35	95	61	LA 118	ARI
AUG 14	12:30	83	67	LA 118	ARI
(At	sea level	L 100	57)		

4.2 B737 Landing

Location : 2,500m from runway threshold 09

Date	Time	Maximum <u>Noise Level</u> (dB(A))	Slant <u>Distance</u> (m)	Flight <u>Number</u>	Origin
JUL 13	12:53	82	156	LA 118	ARI
JUL 24	12:20	88	123	LA 118	ARI
JUL 31	12:35	77	125	LA 118	ARI
AUG 14	12:30	84	123	LA 118	ARI
(At	sea level	98	122)		

4.3 B737 Take off

Location : 1,000m from runway threshold 09

Date	Time	Maximum <u>Noise Level</u> (dB(A))	Slant <u>Distance</u> (m)	Flight <u>Number</u>	Destination
JUL 24	13:16	97	115	LA 119	ARI
JUL 27	13:58	95		LA 119	ARI
JUL 31	13:30	99	189	LA 119	ARI
AUG 14	13:26	97	151	LA 119	ARI
(At	sea leve	1 93	550)	· .	

4.4 B737 Take off Location : 2,500m from runway threshold 09

Date	Time	Maximum <u>Noise Level</u> (dB(A))	Slant <u>Distance</u> (m)	Flight <u>Number</u>	Destination
JU1 10	13:18	97		LA 119	ARI
JUL 13	13:42	91	232	LA 119	ARI
JUL 24	13:16	96	183	LA 119	ARI
JUL 27	13:58	83	-	LA 119	ARI
JUL 31	13:30	85	270	LA 119	ARI
AUG 14	13:26	96	185	LA 119	ARI
(At	sea level	88	800)	2	
ABBREVIATI	ONS:				·
ARI :	ARICA	ASU :	ASUNSION	CBB :	COCHABAMBA
LIM :	LIMA	SAO :	SAO PAULO	SCL :	SANTIAGO
SRE :	SUCRE	TDD :	TRINIDAD	TJA :	TARIJA

CHAPTER 11 IMMEDIATE IMPROVEMENT

CHAPTER 11 IMMEDIATE IMPROVEMENT

11.1 Preliminary Design for Immediate Improvement

11.1.1 Improvement of Runway Pavement

The existing runway pavement located 1,740 m from runway 09R threshold is seriously deteriorated. This is assumed to be caused by the minimum pavement thickness as described in Chapter 4. The existing cement concrete pavement is therefore planned to be partially replaced with an asphalt concrete pavement with the required thickness.

The pavement thickness has been planned as follows based on the JCAB (Japan Civil Aviation Bureau) method.

Design aircraft	:	B-747	class
Repetition of design load	:	3,000	times
Subgrade CBR value	:	20%	
Component	<u>T</u>	hickne	<u>88</u>
Surface course		4 cm	
Binder course		5 cm	
Ditto		5 cm	
Base course		25 cm	
Sub-base course		15 cm	
Total		54 cm	_

At the interface between the proposed asphalt concrete pavement and the existing cement concrete pavement, an approach slab will be constructed in order to prevent the asphalt concrete pavement from causing any differential in level.

11.1.2 Construction of Runway Shoulders and Blast Pads

Based on the JCAB method, a 27 cm thick asphalt concrete pavement (5 cm thick surface course and 22 cm thick base course) is required for the runway shoulders and blast pads. The area required for runway shoulders and blast pads is estimated to be 57,500 sq.m and the estimated cost is high.

It is essential for the immediate improvement to be implemented by MDA/AASANA as soon as possible. The pavement of runway shoulders and blast pads for the immediate improvement has therefore been planned to be surface course of 3 cm thickness considering the economy and minimum thickness required for the construction.

11.1.3 Renovation of Existing Passenger Terminal Building

The renovation shown in Figure 11.2.3 of the Main Report has been planned considering the cost efficiency and minimum requirements to resolve the serious congestion in the existing passenger terminal building, particulary in the international arrival area. CHAPTER 12 PROJECT IMPLEMENTATION SCHEDULE AND COST ESTIMATES

CHAPTER 12 PROJECT IMPLEMENTATION SCHEDULE AND COST ESTIMATES

12.1 Project Cost Estimates

The estimated costs are based on the following assumptions:

- a. Construction cost is estimated based on the unit construction prices existing in 1987.
- b. Exchange rates are fixed at US\$1.00 = Bs1.95 = ¥150
- c. The following facilities which will be constructed and/or supplied by other related authorities are not included in the cost estimates.
 - Fuel yard and fuel hydrant system
 - Catering building
 - Airlines' storage facilities
 - Airlines' staff office to be located outside passenger terminal building
 - Maintenance shop and gas station for airlines' ground service equipment
 - Airlines' ground service equipment
 - Building for cargo agents
- d. Foreign currency portion of the project cost includes the following items:
 - Procurement cost for the imported materials and equipment
 - Procurement cost for the imported construction equipment
 - The general expenses and profit for the foreign contractors and engineering firms
 - Wages for foreign staff
- e. Bolivian currency portion of the cost includes the following items:
 - Operation cost of the construction equipment including fuel and lubricants
 - Procurement costs of the construction materials which are available in Bolivia such as cement, aggregate and others
 - Transportation costs for materials and laborers procured, employed in Bolivia
 - The contractors' expenses and profits, for both foreign and local, for the amounts paid in Bolivian currency
 - Wages for Bolivian laborers

Note:

The cost shown in Appendix 12.1 which is based on the preliminary design is different from the cost of TC-3 shown in Table A.6.1.6 which was estimated for the evaluation comparison before the preliminary design.

Appendix 12.1 Estimated Project Cost for the Phases I and II Development

Cost estimate based on 1967 price Unit: US\$1,000										
	Phase I				Phase II			Total		
	Item	Bolivian Portion	Foreign Portion	Total	Bolivian Portion	Foreign Portion	Total	Bolivian Portion	Foreign Portion	Total
	Runway Overlay and Turning	690	7,140	7,830	190	1,900	2,090	680	9,040	9,920
	Pad Taxivays	1.550	6,250	7,810	-	-	-	1,550	6,260	7,810
	Passenger Terminal Apron	2,220	3,880	6,100	310	620	930	2,530	4,500	7,030
5	Road and Car Parking Area	360	1,220	1,580	90	410	500	450	1,630	2,080
HOTES	Security Fance and Perimeter/	120	310	430	100	460	560	220	770	990
ivíl	Maintenance Road	790	1,290	2,080	160	330	490	950	1,620	2,570
Civíl	Cargo Terminal Apron General Aviation Apron, Cargo		1,270	2,000						<u> </u>
	Apron for Small Carrièrs and Isolated Apron	380	1,940	2,320	10	50	60	390	1,990	2,380
	Sub Total Passenger Terminal Building	6,110	22,040	28,150	860	3,770	4,630	6,970	25,810	32,780
5	including Flight Information System and Airport Security System	8,470	20,660	29,130	4,250	10,390	14,650	12,730	31,050	43,780
HOLKS	Fire Station	200	460	660	40	[,] 80	120	240	540	780
ter:	Administration Building and Control Tower	1,870	4,370	6,240	-	-	-	1,870	4,370	6,24(
urch i to cture l	Meteorological Observation Building	130	290	420	~	-	· _	130	290	42(
chit	Cargo Terminel Building	1,650	4,040	5,690	1,120	2,750	3,870	2,770	6,790	9,560
ž	Airport Maintenance Shop and Storage	340	790	1,130	-	-		340	790	1,130
	Sub Total	12,660	30,610	43,270	5,420	13,220	18,640	18,080	43,830	61,910
	Aeronautical Ground Lights for Runway	170	3,320	3,490	. 40	1,360	1,400	210	\$,680	4,890
C IPI	Secondary Surveillance Radar	20	60	80	40	5,460	5,500	60	5,520	5,580
System	Aeronautical Ground Lights	100	1,440	1,540	10	1,540	1,550	110	2,980	3,090
	for Taxiway and Apron Radio Navigational Aida	90	6,340	6,430	20	2,110	2,130	110	3,450	8,560
Navigation	Air Traffic Control and Aeronautical Telecommuni- cations System	210	7,690	7,900	50	4,900	4,950	260	12,590	12,850
Air Y	Meteorological System	10	3,060	3,070	10	2,180	2,190	20	5,240	5,260
4	Sub Total	600	21,910	22,510	170	17,550	17,720	770	39,460	40,230
	Fower Supply System	110	2,650	2,760	30	1,330	1,360	140	3,980	4,120
ties	Water Supply System	140	550	690	-	~	-	140	550	690
Vcilicies	Telecommunications	0	100	100	10	70	80	10	170	180
	Sevage Treatment System	490	1,950	2,440	340	1,370	1,710	830	3,320	4,150
hirport	Incinerator	20	180	200	20	150	170	40	330	370
Ŕ	Sub Total	760	5,430	6,190	400	2,920	3,320	1,160	8,350	9,510
Rescu	a and Fire Fighting Vehicles	0	1,890	1,890	-	670	670	0	2,560	2,560
	Boarding Bridges	. 0	3,300	3,300		650	660	Q	3,960	3,960
Other Facilitie	Lighting for Car Parking Area	30	650	690	20	480	500	50	1,140	1,190
Paci.	and Access Road Sub Total	30	3,960	3,990	20	1,140	1,160	50	5,100	5,150
	of Construction Cost	20,160	85,840	106,000	6,870	39,270	46,140	27,030	125,110	152,140
Soil	Investigation and Topographi-	400	0	400	200	0	200	600	0	600
cal Survey Engineering Services		1,000	6,000	7,000	500	3,000	3,500	1,500	9,000	10,500
Construction Supervision		2,000	10,000	12,000	1,000	5,000	6,000	3,000	15,000	18,000
Sub 1		23,550	101,840	125,400	8,570	47,270	55,840	32,130	149,110	181,240
	ingency (approximately 10%)	2,440	10,160	12,600	430	4,730	5,160	2,870	14,890	17,760
		[··	112,000	138,000	9,000	52,000	61,000	35,000	164,000	199,000
iotal	of Project Coat	26,000	***,000	135,000	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	11,000	01,000			

Exchange Rate: US\$1.00 - Bs1.95 = ¥150 (As of March 1987) Cost estimate based on 1987 price

Appendix 12.2 Principal Unit Prices of Construction Works

As of March 1987

Exchange Rate : US\$1.00 = Bs1.95 = \$150

1. Unit Price for Civil Works

(1) Unit Price of Materials

		and the second		
Item	Unit	Unit Price in Bolivia	Producing Country	Unit Price in Japan
Straight asphalt	t	US\$350	Brazil	US\$270
	-	(¥53,000)		(¥40,000)
Portland cement	t	US\$120	Bolivia	US\$93
		(¥18,000)		(¥14,000)
Aggregate for asphalt				
concrete mix or cement	_m 3	US\$15 ^{*1}	Bolivia	US\$21
concrete mix		(¥2,300)	· · ·	(¥3,200)
Aggregate for base	3	US\$14 ^{*1}	Bolivia	US\$22
course		(¥2,000)		(¥3,300)
Aggregate for	_m ³	US\$11 ^{*1}	Bolivia	US\$18
sub-base course		(¥1,700)		(¥2,700)
Reinforcing steel	t	US\$1,000	Argentine	US\$240
-		(¥150,000)	-	(¥36,000)
Gasoline	liter	US\$0.25	Bolivia	US\$0.87
		(¥88)		(¥130)
Asphalt concrete mix	t	US\$43		US\$47
-		(¥6,500)		(¥7,000)
Cement concrete mix	т ³	US\$79		US\$93
(flexural strength		(¥12,000)		(¥14,000)
45 kg per sq.cm)		-		

Note *1 : Unit price at the project site

(2) <u>Labor</u>

		Rate	Rate
Item	Unit	in Bolivia	in Japan
Skilled labor	day		US\$73
	2		(¥11,000)
Common Labor	day	US\$3.6	US\$63
· · ·	2	(¥540)	(¥9,400)
Operator of heavy machine		US\$9.7	US\$87
r		(¥1,500)	(¥13,000)
Driver of truck	day	US\$6.0	US\$67
		(¥900)	(¥10,000)
Foreman	day	(*****)	US\$87
	22)		(¥13,000)
(3) Unit Price of Works			(110,000)
(3) <u>one needs</u>		Rate	Rate
Item	Unit	in Bolivia	in Japan
Excavation	<u>m</u> 3	US\$0.4	US\$1.7
		(¥60)	(¥260)
Hauling of 10 km	_m 3	US\$3.0	US\$9.0
		(¥450)	(¥1,300)
Spreading and grading for	_m 2	US\$0.06	US\$0.07
earth work		(¥9)	(¥10)
Compaction of earthwork	m ²	US\$0.08	US\$0.17
compaction of carement		(¥12)	(¥25)
Distribution of pavement	m ²	US\$0.38	US\$0,17
material		(¥57)	(¥25)
(Layer of 20 cm thick)		(157)	(123)
Compaction of pavement	_m 2	US\$0.42	US\$0.17
compaction of pavement	114	(¥63)	(¥25)
Grading and compaction of	m ²	US\$0.4	US0.5
subgrade	10	(¥60)	(¥80)
Sub-base course (20 cm	_m 2	US\$3.0	US\$5.9
thick)		(¥450)	(¥880)
Base course (15 cm thick)	m ²	US\$2.7	US\$6.3
base course (15 cm thicky	111	(¥410)	(¥940)
Asphalt concrete (5 cm	m ²	US\$5.1	US\$8.0
thick)	111	(¥770)	(¥1,200)
Prime coat	_m 2	US\$3.3	US\$0.7
(1.5 liter per sq.m)	113	(¥500)	(¥100)
Tack coat	_m 2	US\$1.2	US\$0.3
(0.5 liter per sq.m)	111	(¥180)	(¥80)
Cement concrete slab	_m 2	US\$77	US\$73
	ш		
(38 cm thick including	;	(¥12,000)	(¥11,000)
wire mesh and dowel bar)			

Item	Unit	Unit Price in Bolivia	Rate Price in Japan
Grading and compaction of		US\$0.4	US\$0.5
subgrade		(¥60)	(¥80)
Sub-base course	2	US\$2.3	US\$4.4
(15 cm thick)		(¥350)	(¥660)
Base course (25 cm	m ²	US\$4.5	US\$10.7
thick)		(¥680)	(¥1,600)
Prime coat	m ²	US\$3.3	US\$0.7
	-	(¥500)	(¥100)
Asphalt concrete course	m ²	US\$24.0	US\$22.7
(14 cm thick (3 layers))		(¥3,600)	(¥3,400)
Tack coat (2 layers)	m ²	US\$2.4	US\$0.7
		(¥360)	(¥100)
Total	2	US\$37	US\$40
		(¥5,600)	(¥5,900)

(4) Unit Price of Asphalt Concrete Pavement

(5) Unit Price of Cement Concrete Pavement

Item	Unit	Unit Price in Bolivia	Rate Price in Japan
	<u> </u>		· · · · · · · · · · · · · · · · · · ·
Grading and compaction of	m ²	US\$0.4	US\$0.5
subgrade	0	(¥60)	(¥80)
Base course (15 cm thick)	m2	US\$2.7	US\$6.3
	_	(¥410)	(¥940)
Asphalt intermediate	m ²	US\$4.1	US\$6.4
course (4 cm thick)		(¥620)	(¥960)
Cement concrete slab	m ²	US\$77	US\$73.3
(38 cm thick including wire mesh and dowel bars)		(¥12,000)	(¥11,000)
Total	m ²	US\$84 (¥13,000)	US\$87 (¥13,000)

2. Unit Price for Architectural Works

Since useful information for estimating the cost of the architectural works in Bolivia has not been available, the following unit prices for this project have been assumed:

(1) <u>Unit Prices of Structure including Electrical and</u> <u>Mechanical Facilities</u>

Item	Unit	Unit Price in Bolivia
	<u> </u>	
Passenger terminal building	m ²	US\$1,470
		(¥220,000)
Cargo terminal building	0	· · · ·
Handling area	m ²	US\$1,000
		(¥150,000)
Office area	m ²	US\$1,330
		(¥200,000)
Administration building	m ²	US\$1,400
		(¥210,000)
Control tower	m ²	US\$3,000
		(¥450,000)
Airport maintenance shop	m ²	US\$1,130
-		(¥170,000)
Fire station	m ²	US\$1,200
		(¥180,000)
Meteorological station	m ²	US\$1,400
-		(¥210,000)
Energy center	m ²	US\$1,330
- ·		(¥200,000)

		Unit Price
Item	Unit	in Bolivia
Visual sign	m ²	US\$31
	(Floor area)	(¥4,700)
Furniture	m ²	US\$20
	(Floor area)	(¥3,000)
Elevator	Unit	US\$98,000
		(¥15,000,000)
Escalator	Unit	US\$130,000
		(¥20,000,000)
Departure Conveyor L∞6Om	Unit	US\$130,000
-		(¥20,000,000)
Arrival Conveyor		
L = 70 m	Unit	US\$150,000
		(¥23,000,000)
L = 50 m	Unit	US\$110,000
		(¥17,000,000)
Check-in scale	Unit	US\$9,150
		(¥1,400,000 $)$
X-ray explosive detector	Unit	US\$190,000
		(¥29,000,000)
		(,,

(2) <u>Unit Prices for Special Equipment for the Passenger Terminal</u> <u>Building</u>

(3) Unit Prices for Special Equipment for the Cargo Terminal Building

		Unit Price
Item	Unit	in Bolivia
Weighing scale, 5 ton	Unit	US\$98,000
		(¥15,000,000)
Cold storage	Unit	US\$32,700
		(¥4,900,000)
Freezer	Unit	US\$45,800
		(¥6,900,000)

The unit prices shown in sections (1) through (3) above include the indirect cost, i.e. overhead of the contractor (supplier).

CHAPTER 13 ECONOMIC AND FINANCIAL ANALYSES

CHAPTER 13 ECONOMIC AND FINANCIAL ANALYSES

13.1 Economic Analysis

13.1.1 Methodology

The economic analysis evaluates all inputs and outputs for the project at economic prices as the existing price is considered to be influenced by things like import and export taxes and subsidies, minimum wage laws, and monopoly elements. One way to compute economic prices is Little and Mirrlees method. In this study, a simplified Little and Mirrlees method will be adopted, i.e. foreign currency portion of all benefits and costs will be dealt with as "tradeable goods" and be valued at the C.I.F. (cost, insurance and freight) price. The Bolivian currency portion will be considered as "nontraded goods" and a standard conversion factor (SCF) will be applied.

Standard Convertion Factor (SCF)

SCF was calculated by using the following formula and data:

SCF =
$$\frac{M + X}{M(1 + tm) + X(1 - Tx)}$$

= $\frac{27790 + 30928}{27790(1 + 0.334) + 30928(1 - 0.055)}$
= 0.886

Where, M : Imports in 1986 expressed in million pesos at 1980 prices

> X : Exports in 1986 expressed in million pesos at 1980 prices

tm: Import tariff at 33.4% as of July 1987

tx: Export tariff of 5.5% as of July 1987

By applying this formula as well as data collected during a field survey, the SCF has been calculated to be 0.886.

13.1.2 Project Costs

(1) Construction Cost

The construction cost for the Phase I development project is estimated to be disbursed as summarized in Table 13.1.1. SCF is applied to the Bolivian currency portion.

Table	13.1.1	Disbursemen	nt Schedule	of
		Investment	Costs	

(Unit : 1,000 US\$)

Year	1989	1990	1991	1992	1993	Total
Foreign Currency	3,420	6,120	16,070	45,840	40,550	112,000
Bolivian Currency	921	1,037	4,412	8,435	8,231	23,036

(2) Operation and Maintenance Costs

Operation and maintenance costs comprise personnel cost and materials and equipment costs.

a) Personnel Cost

Additional personnel cost for the Phase I development project has been calculated by multiplying the number of additional personnel by salary and social charges at 1987 prices for each department, as presented in Table 13.1.2. SCF has been applied to salary and social charges.

Table 13.1.2 Additional Personnel Cost

Department	1994	1995	1996	1997
Personnel Regional El Alto	26	28	28	28
Administrative Dept.	.31	35	35	35
Operating Tech. Dept. Civil Work Section Facilities Section Electronics Section Operation Section	8 35 26 41	8 38 28 45	11 42 28 48	14 46 28 50
Total	167	182	192	201

(Unit: 1,000 US\$)

b) The additional materials and equipment costs on an annual basis for the modernized facilities are estimated as follows:

Civil and Buildi	ing		
Facilities	:	1% of the construction Foreign currency Local currency	a cost of facilities US\$518,000/year US\$163,000/year
Equipment	:	be fully replaced ever	cost of the equipment, to y 10 years JS\$1,700,000/year US\$79,000/year

13.1.3 Project Benefits

(1) Accommodation of Overflowing Domestic Passengers

For the "Without Project" case, overflowing domestic passengers cannot satisfy their desire or necessity for air travel. The implementation of the project, therefore, will give benefit to the overflowing domestic Bolivian passengers. This benefit will be evaluated by their willingness to pay for their trip. It is considered reasonable that their willingness to pay for their trip is equivalent to the airfare and airport tax. SCF has, therefore, been applied to this benefit. The accommodation of overflowing foreign passengers on domestic routes will lead to earning foreign exchange for the Bolivian economy. The earned foreign exchange is equivalent to the airfare and airport tax minus aircraft operation cost. Marginal operation cost of aircraft for gaining foreign exchange from foreign passengers is negligible however because the share of foreign passengers for all domestic passengers is very low (around 10%). The benefit was calculated by air route, multiplying the number of overflowing domestic passengers by airfare plus airport tax. SCF was applied to Bolivian passengers who were estimated at 90% of all domestic passengers. The benefit due to accommodation of overflowing domestic passengers is summarized in Table 13.1.3.

Table 13.1.3 Benefit due to accommodation of Overflowing Domestic Passengers

Year	1995	2000	2005	2010
La Paz - Santa Cruz - Cochabamba - Trinidad - Sucre - Tarija - Puerto Suarez	5,320 2,343 508 635 978 422	11,123 4,878 1,067 1,321 2,054 928	18,042 7,902 1,727 2,134 3,293 1,435	22,766 9,968 2,159 2,692 4,140 1,857
Total	10,206	21,371	34,533	43,582
At Economic Prices	9,159	19,178	30,990	39,110

(Unit: 1,000 US\$)

Year 1995			• •
	With-Without	Air fare	
	No. of Pax.	Airport tax	Amount
Route	(1,000 pass.)	(US\$)	(<u>1,000 US\$)</u>
	140		- 000
La Paz - Santa Cruz	143	37.2	5,320
- Cochabamba	110	21.3	2,343
- Trinidad	20	25.4	508
- Sucre	25	25.4	635
- Tarija	30	32.6	978
- Puerto Suarez	5	84.4	422

Total

10,206

At Economic Prices

10,206 x 0.9 x 0.886 + 10,206 x 0.1 = 9,159 (Share of (SCF) Bolivian Pax.)

(2) Accommodation of Overflowing International Passengers

In the "With Project" case, the overflowing Bolivian international passengers will receive the same benefits as the overflowing Bolivian domestic passengers, which can be evaluated by their willingness to pay for their trip. It is also considered that their willingness to pay is equivalent to the airfare and airport tax. Except for LAB, however, the airfare paid by the overflowing Bolivian international passengers to foreign airlines leads to an outflow of foreign exchange from the Bolivian economy which is considered a disadvantage for the project. In this case, the benefit is offset by this disadvantage. SCF is applied to this benefit. The airfare paid by the overflowing foreign international passengers to LAB as well as airport tax will lead to an increase of foreign exchange for the Bolivian economy. The operation cost of LAB aircraft means consumption of the resources in the Bolivian economy. The net benefit, therefore, is the difference between the airfare paid to LAB as well as airport tax and the operation cost of LAB aircraft for carrying the overflowing foreign international passengers. The benefit was calculated by air route, multiplying the number of overflowing international passengers who will use LAB by airfare plus airport tax. Then, aircraft operating cost which was estimated to be 0.08 US\$/pass-km on the basis of data provided by LAB was deducted from this benefit.

Airport tax to be paid by overflowing international foreign passengers who will use foreign airlines was included in this benefit as gain of foreign exchange to the Bolivian economy.

SCF was applied to Bolivian passengers who were estimated at 30% of all international passengers. Table 13.1.4 shows the benefit due to accommodation of overflowing international passengers.

		(0047
Year	1995	2000	2005	2010
La Paz - Miami	242	2,902	6,047	9,675
- Rio de Janeiro	0	340	851	1,531
- Buenos Aires	.0	554	1,247	2,078
- Santiago	0	264	594	989
- Arica	0	439	880	1,382
- Lima	95	1,435	2,870	4,593
Airport Tax (except LAB)	201	477	775	1,137
Total	538	6,411	13,264	21,385
At Economic price	516.	6,039	12,479	20,111

Table 13.1.4 Benefit due to Overflowing International Passengers

(Unit: 1,000 US\$)

Year 1995

	With-					
	Without	Air			Aircraft	
	No. of	fare &			Operation	Net
	Pax(1,000	Airport	Amount	@0.08\$	/pass-km	Benefit
	_pass.)	Tax(US\$)	(1,000US\$)	<u>(km)</u> (1,000US\$)	(1,000US\$)
LPB – MIA	1	486.2	486	3,054	244	242
- RIO	0	306.2	0	1,701	0	0
- BUE	0	250.2	0	1,396	0	0
– SCL	0	160.2	0	1,178	0	0
- ARI	0	78.2	0	192	0	0
- LIM	1	149.2	149	669	54	95
Airport	35	8,205		70%		201
Tax (exce		·		(Share	of	
LAB)	•			Foreig	n Pax.)	
Tota	11		635		298	538

At Economic Prices

635 x 0.3 x 0.886 + 635 x 0.7 + 201 - 298 = 516 (Share of (SCF) Bolivian Pax.)

(3) Accommodation of Overflowing Foreign Tourists

The implementation of the project can increase foreign exchange consumed by the overflowing foreign tourists in Bolivia. According to the information from AASANA, foreign exchange consumed by foreign tourists in Bolivia is, on average, US\$160 per person. The estimated increase in foreign exchange from foreign tourtists is presented in Table 13.1.5.

Table 13.1.5 Benefit due to Accommodation of Overflowing Foreign Tourists

(Unit: 1,000 US\$)

Year	1995	2000	2005	2010
No. of Tourists (1,000 persons)	13	44	. 79	121
Foreign Exchange (1,000 US\$)	2,080	7,040	12,640	19,360

(4) Accommodation of Overflowing Aircraft of Foreign Airlines

a) Landing Charge, Navigation Services, etc.

By accommodating overflowing aircraft of foreign airlines, the Bolivian economy can increase its foreign exchange in terms of landing charge, night surcharge, navigation services, etc. Landing charge is calculated based on type of aircraft. Other revenues from foreign airlines such as navigation services and night surcharge were 95% of the landing charge in accordance with the 1985 profit and loss statement of AASANA. It is assumed that this tendency will continue in the future. Landing charge and other revenues from foreign airlines are summarized in Table 13.1.6.

Table 13.1.6 Landing Charge, Navigation Services, etc. Received from Foreign Airlines

(Unit:	1,000	US\$)
--------	-------	-------

Year	1995	2000	2005	2010
JJM	289	482	674	704
IJ	236	456	675	739
SJ (SC)	43	43	43	65
NJ	37	37	66	66
SJ (AR)	30	30	54	-54
SJ (LA)	30	70	70	92
Landing Charge	665	1,118	1,582	1,720
Total Revenues	1,297	2,180	3,085	3,354

b) Selling of Jet Fuel to Foreign Airlines

Selling of jet fuel to foreign airlines leads to the gain of foreign exchange to the Bolivian economy. This benefit was estimated based on aircraft movement of overflowing aircrafts of foreign airlines and average fueling cost paid by each foreign airlines at El Alto airport. This estimation was made using the data in August 1987 as shown in Table 13.1.7.

Table 13.1.7 Selling of Jet Fuel to Foreign Airlines

(Unit: 1,000 US\$)

· · · · · · · · · · · · · · · · · · ·	· · · ·			
Year	1995	2000	2005	2010
JJM	591	986	1,380	1,441
LJ	486	937	1,388	1,518
SJ (SC)	53	53	53	81
NJ	12	12	22	22
SJ (AR)	17	17	30	30
SJ (LA)	2	4	4	- 5
Total	1,161	2,009	2,877	3,097

Year	1995	
		With-Wi

	With-Without		Fuel	:
	No. of	Fueling Volume	Cost	Amount
	Landing	(1,000G/Landing)	<u>(US\$/G)</u>	<u>(1,000US\$)</u>
JJM	78	8.215	0.923	591
LJ	112	4.7		486
SJ (SC)	56	1.031		53
NJ	39	0.338		12
SJ (AR)	39	0.462		17
SJ (LA)	39	0.047		2
Total	· · · · · · · · · · · · · · · · · · ·			1,161

(5) Reduction of Passenger Processing Time at Airport

For the "With Project" case, the passenger processing time at the airport is expected to be reduced by 0.5 hour per passenger compared with that in the "Without Project" case by introducing a more efficient check-in and baggage handling procedure and equipment. This benefit, however, will only be enjoyed by Bolivian passengers in the "Without Project" case and will not exit for the overflowing Bolivian passengers as they do not use air transport in the "Without Project" case.

The time value of the Bolivian passengers is estimated by using the AASANA payroll and the average number of working hours. Air passengers, in general, can be said to belong to a rather high income group. The estimated time value of Bolivian air passengers is US\$2.4 per hour at 1987 constant prices. Increase in time value in the future is assumed to be the same as the real growth of GDP. The purpose of trip by air is estimated according to the information and data gathered during the field survey, as presented in Table 13.1.8. Time value of non-business trip is assumed to be one third of that of business trip in line with World Bank practice.

The calculation of time benefit is presented in detail below. The number of Bolivian air passenger in the "Without Project" case was estimated as follows:

	A11	Share of	
	Passengers	Bolivian	Passengers
Domestic (1000 pass.)	554	x 0.9 =	= 499
International (")	213	X 0.3 =	• 64
Total (")		······	563

The value at 1987 prices was estimated by using the data on average monthly income, working hours and purpose of trip.

Average Income of Air Passengers	US\$ 460/m
Average Working Hours	192 h/m
Time Value of Working Hours	US\$ 2.4/h
Time Value for Non-business	US\$ 0.8/h

According to the assumption on trip purpose of air passengers, time value of Bolivian air passengers expressed at 1987 prices was estimated as follows:

1987 Time Value

(Share of							
	Business trip)						
Domestic : 2.4	$x 0.9 + 0.8 \times 0.1 = US$2.24/h$						
International : 2.4	$x 0.03 + 0.8 \times 0.97 = US$0.848/h$						
Average	US\$2.08/h						

2010 Time Value

		. (Shar	e c	of .				
	Business trip)								
Domestic	: 2	.4 x	0.8	+	0.8	х	0.2	=	US\$2.08/h
International	: 2	.4 x	0.1	+	0.8	x	0.9	=	<u>US\$0.96/h</u>
Average									US\$1.95/h

Average Time Value 1994 - 2018 (2.04 + 1.89)/2 = US\$1.965/h 1994 2018

Time value will raise in accordance with increase in real growth of GDP as estimated for traffic forecast.

Year	Growth Rate
1987 - 1990	3.0%
1990 - 1995	4.0%
1995 - 2018	3.5%

Table 13.1.8 Purpose of Trip by Air

(Unit: %)

Year	198	17	2010		
Purpose	Business	Other	Business	Other	
Domestic	90	10	80	20	
International	3	97	10	90	

The expected time reduction benefit to the Bolivian passengers in the "Without Project" case is calculated as summarized in Table 13.1.9.

Year	1995	2000	2005	2010
Time Value (US\$/0.5h)	1.306	1.551	1.842	2.188
No. of Passengers (1,000)	563	563	563	563
Time Benefit (1,000 US\$)	735	873	1,037	1,232
At Economic Prices (1,000 US\$)	651	773	919	1,092

Table 13.1.9	Benefit due to Reduction of Passenger
	Processing Time at Airport

13.2 Financial Analysis

13.2.1 Methodology

When carrying out a financial analysis, it is necessary to identify an entity that undertakes a project in question. In this study the Central Office and Regional El Alto, AASANA, is identified with the entity that will implement the Phase I development project.

The financial internal rate of return (FIRR) is calculated to see at what interest rate the project can yield financial profit. Income and funds statements are also prepared for 30 years from 1989 to 2018 in order to clarify the financial outcome of the project. All revenues and expenditures are valued at market prices. General inflation has not been taken into consideration in this study.

13.2.2 Evaluation of the Project by FIRR

(1) Expenditures

a) Investment Costs

The investment costs are disbursed in accordance with the disbursement schedule from 1989 to 1993. Equipment will be replaced every ten years.

b) Operation and Maintenance Costs

i) Personnel Cost

Personnel cost for El Alto airport including social charges is estimated to be US\$650,400 per year in 1987 according to the data provided by AASANA. The personnel cost for the Central Office is estimated to be US\$490,000 at 1987 constant prices based upon the 1985 profit and loss statement of AASANA.

With the implementation of this project, the number of personnel for El Alto airport will be increased in accordance with an airport organization plan. The future personnel cost for the Central Office and El Alto airport is estimated as shown in Table 13.2.1, assuming that the number of personnel for the Central Office is constant in the future.

Table 13.2.1 Estimated Personnel Cost

(Unit :	1,000US\$)
(OULC -	T,0000000

Year	1994	1995	1996	1997
Central Office	490	490	490	490
Personnel Regional El Alto	83.	85	85	85
Administrative Dept.	68	71	71	71
Operations Technical Dept. Director Civil Work Section Facilities Section Electronics Section Operation Section	9 85 133 168 286	9 85 137 170 290	9 89 142 170 293	9 92 146 170 296
Total	1,322	1,337	1,349	1,359

ii) Costs for Materials, Supplies and Equipment

The costs for materials, supplies and equipment for the Central Office was 55.7 percent of the personnel cost in 1985. Assuming that this tendency does not change in the future, the costs for materials and others for the Central Office are estimated to be US\$273,000.

The annual costs for materials and others for the modernized El Alto airport are estimated as follows:

Civil and Architectural Facilities	:	1% of the construction cost for facilities US\$702,000/year
Equipment	:	5% of the purchasing cost of the equipment US\$1,789,000/year

(2) <u>Revenues</u>

a) Air Passenger Service Charge

The revenue from air passenger service charges is calculated by multiplying the number of air passengers by US\$0.769 for domestic passengers and US\$8.205 for international ones. The results are summarized in Table 13.2.2.

Year	1995	2000	2005	2010
Domestic No. of Passengers (1,000) Revenue (1,000US\$)	444 341	625 481	840 646	987 759
International No. of Passengers (1,000) Revenue (1,000US\$)	125 1,026	170 1,395	220 1,805	280 2,297
Total	1,367	1,876	2,451	3,056

Table 13.2.2 Revenue from Air Passenger Service Charges

b) Aircraft Landing Charge

The revenue from air landing charge is calculated based on each type of aircraft using the unit charge published on July 8, 1986. The revenue from navigation services and night and holiday surcharge is estimated to be the same as that from aircraft landing charge considering the actual figures for El Alto airport in 1985. The estimated revenue from aircraft landing charge, navigation services, etc. is summarized in Table 13.2.3.

Table 13.2.3 Revenue from Aircraft Landing Charge, Navigation Services, etc.

(Unit : 1,000US\$)

Year	1995	2000	2005	2010
Aircraft Landing Charge				
Domestic				
LJ	0	0	275	902
NJ	0.1	285	505	203
SJ	633	568	307	337
Р	5	. 5	7	9
General Aviation	77	97	102	117
Meat Transport	67	97	56	52
International				
JJM	771	963	1,156	1,186
LrJ .	658	878	2,304	2,511
NJ	1,379	1,724	1,231	1,260
SJ	280	320	360	388
Sub-total	3,870	4,901	6,303	6,965
Navigation, Surcharge	3,870	4,901	6,303	6,965
Grand Total	7,740	9,802	12,606	13,930

c) Rent on Concessions in Terminal Building

The space for concessions in the new terminal building is estimated to be 1,500 sq. meters for shops and restaurants and 1,200 sq. meters for airlines. The annual rental charge is established to be US\$360 per sq. meters for shops and restaurants and at US\$300 per sq. meters for airlines totalling US\$900,000, based on data available for rental charges at Viru-Viru Airport.

In addition, revenue is anticipated from vehicle parking charges, rental charge for VIP rooms, etc. The annual revenue in this category is assumed to be US\$300,000.

13.2.3 Evaluation of the Project by Income and Funds Statements

(1) Income Statement

a) Revenues

Operating revenue is the same as that mentioned in section 13.2.2.

Other revenue will be from interest receivable as determined in this analysis. The interest rate is set at 0.5 percent based on a consideration of the rates for ordinary deposit.

b) Expenditures

Expenditures correspond to those mentioned in section 13.2.2.

c) Depreciation

Depreciation is calculated for the civil and architectural facilities as well as equipment procured for the Project, using a straight-line method. The useful life is established to be 45 years for the civil and architectural facilities and 10 years for the equipment. Scrap value is set at 5 percent of the asset values for both the civil and architectural facilities and the equipment.

(2) Funds Statement

a) Capital and Subsidy

In this analysis, it is assumed that capital and/or subsidy is available for 50 percent of the Bolivian currency portion of the investment cost of the project.

b) Long-term Debt

Long-term debt is appropriated for the shortage of the investment cost for the project.

c) Bank Loan

A bank loan is obtained for the shortage of funds for one year.

d) Repayment of Long-term Debt (1)

The long-term debt (1) will be repaid in 20-years with a 10-year grace period. The interest rate is set at 3.50 percent.

e) Repayment of Long-term Debt (2)

The long-term debt (2) will be repaid in 10-years with no grace period. The interest rate is set at 8.75 percent.

f) Repayment of Bank Loan

A bank loan is obtained for the shortage of funds for the year. This bank loan will be repaid in less than one year.

Appendix 13.1 Definition of the Internal Rate of Return

1. Efficiency or adequateness of a project is measured or evaluated through the comparison of an outflow (costs) with an inflow (benefits). The outflow consists of costs for the construction of the facilities and management of the project, while the inflow consists of benefits which are acquired from the operation of the facilities.

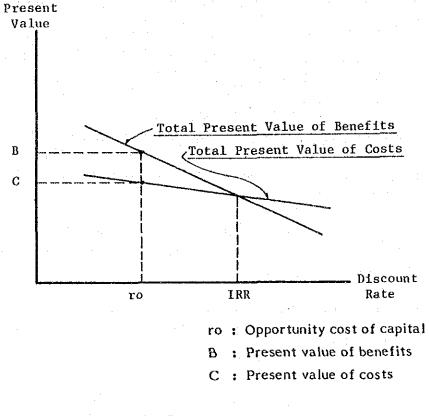
Benefit Cost Ratio (B/C Ratio), Net Present Value (NPV) and Internal Rate of Return (IRR) are used as indices for the economic assessment.

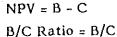
2. Timing of the outflow and inflow are different. The construction cost of the facilities are generated in the early stage of the project evaluation period, while the benefits are generated after the completion of the facilities.

All costs and benefits should be discounted and compared at a fixed time, i.e., the present value of costs and the present value of benefits.

3. Definition of the indices (B/C Ratio, NPV and IRR) is as follows: B/C Ratio: Ratio of the present value of benefits to that of costs, i.e., B/C

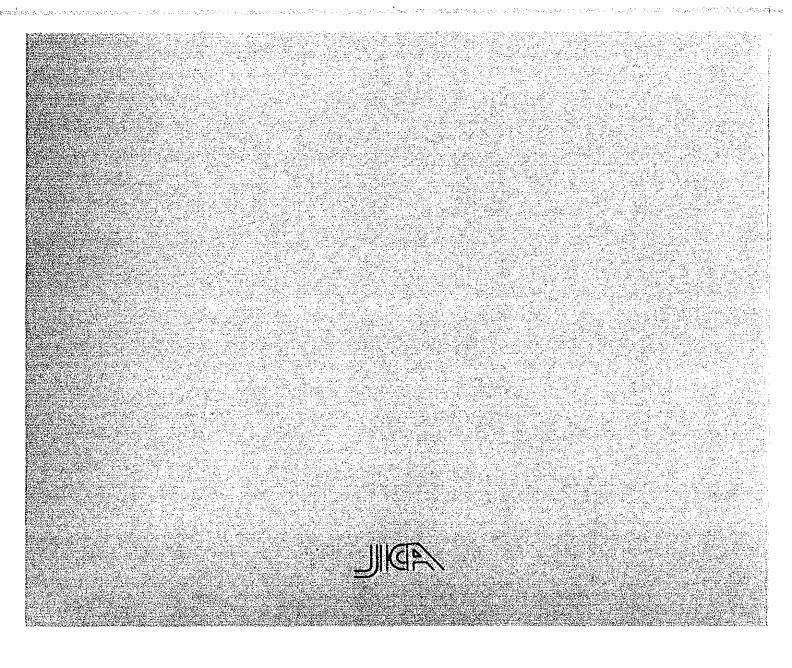
Present v	value of	benefits	B = Σ		
Present v	value of	costs	Τ C = Σ	It	+ 0t


Where;


- Yt: Benefits in year t
- It: Capital expenditure in year t
- Ot: Operation and maintenance costs in year t
- ro: Opportunity cost of capital of the country concerned (Maximum profit rate which would be anticipated when the fund is used for other projects)
- T : Project life

NPV: Difference between the present value of benefits and that of costs i.e., B-C. This represents the net contribution of the project to the national economy.

IRR:


A discount rate to make a present value of the benefits equal to a present value of the cost. An iteration calculation method is used to calculate the discount rate, i.e., r on condition of B=C.

4. Economic Assessment

- (1) When NPV = 0 or B/C = 1, the project is judged to be economically feasible.
- (2) When the IRR exceeds the opportunity cost of capital for the country concerned, the project is judged to be economically feasible.

