Chapter XI. CONCLUSION AND RECOMMENDATIONS

11. Conclusion and recommendation

11-1. Conclusion

With respect to the expansion plan of El Dikheila Works of ANSDK, field survey was made and relevant data and information were collected. Based on data obtained from other sources later as well as those data and taking account of the actual result of construction of the existing Works, its operation condition and financial condition of ANSDK, an expansion plan of the Works was drawn up and financial and economic analysis of the plan were made.

The construction project of El Dikheila Works was completed within the period and budget as planned, and the Works is being operated very satisfactorily.

However, due to increase of repayment of foreign debts caused by fluctuation of exchange rate and decrease of the selling prices of products resulting from slowdown of the world steel market at the time of start-up, it seems the company is under difficult condition financially. If it is the case, it is considered that improvement of financial condition of ANSDK is prerequisite for implementation of the expansion plan and an important matter to be solved as soon as possible.

As a result of a study on the expansion plan based on the above consideration, it was judged that the expansion plan would be useful for the national economy and in a long run would contribute to improve the financial condition of ANSDK. The following are the results of study on major items.

 According to the result of market research, re-bars in Egypt will continue to be considerably short in supply in future even when expansion of production capacity of other steel mills is taken into account.

- 1257 -

- (2) El Dikheila Works has the most modern production facilities and shows high productivity, and its location is favorable. The expansion of the Works to increase rebar production will be effective to improve financial condition of ANSDK. And from the viewpoint of the national economy, it will have remarkable effects such as saving of foreign currencies, expansion or employment opportunity and progress of related industries.
- (3) The production scale of El Dikheila Works after the expansion is planned to be 1.1-1.2 million t/y in consideration of the existing infrastructure and facilities. The expansion of the main plants is to be as follows?
 - DRP: Another unit having capacity to produce 600,000 t/y of DRI is to be installed;
 - SMP: Two 70-t/heat EAFs, one ladle furnace and one
 4-strand CCM are to be added;
 - RMP: Another rod mill line of the scale same as the existing one is to be added.

Supporting facilities related to those plants are to be expanded in line with the implementation of the above main plants.

(4) Based on the above expansion plan, the construction cost was forecasted and financial analysis was made, the result of which is shown in Table 11-1 below.

- 1258 -

Selling price Production cost (1993)	\$250/ton	\$260/ton	\$270/ton	Remarks Natural gas price/ Million BTU
\$210.7/ton (Bar)	Case I-1	Case I-2	Case I-3	Case I
\$209.2/ton (Rod)	5.93%	8.17%	9.70%	\$2.3
\$200.7/ton (Bar)	Case II-1	Case II-2	Case II-3	Case II
\$199.3/ton (Rod)	8.77%	10.19%	11.55%	\$1.50
\$193.9/ton (Bar)	Case III-1	Case III-2	Case III-3	Case III
\$192.5/ton (Rod)	10.12%	11.42%	12.73%	\$1.0

Table 11-1 Result of Financial Analysis (IRR) (Without Escalation Case)

IRR of this project is affected by difference between product selling price and production cost, and the difference should be at least \$60/ton to secure IRR of about 10% which is considered necessary for making the project feasible.

Production cost of re-bar at the time of full operation after the expansion project was assumed to be \$210/ton (the case of natural gas price being \$2.3/Million BTU), and in this case the product selling price would be \$270/ton to secure IRR of 10%.

The present product selling price of ANSDK is about \$240/ton (or LE530/ton at LE2.2/dollar), and though a rise of the selling price may be expected in future, it must be considered difficult to maintain the price level of \$270/ton under the current circumstances. Consequently, reduction of production cost is indispensable for improvement of the present financial condition of ANSDK as well as for realization of the expansion project.

Natural gas, electric power and import duties on raw materials are considered as factors which have a large effect on production cost and which are controllable as domestic matters, but here comments will be made mainly on the price of natural gas.

- 1259 -

The price of natural gas supplied to ANSDK, \$2.3/Mil. BTU, is very high compared to the international price level. Price of natural gas supplied to domestic industries in oil producing countries range from \$0.3 to 1.0/ Mil.BTU and the export price by pipeline is about \$1.0/ Mil.BTU. Considering that the project was planned and realized from the viewpoint of effective utilization of natural gas available in Egypt, the price of gas needs to be lowered to the level of the international price. At present, due to depreciation of Egyptian pound against US dollar, the gas price in LE rose as much as 60% as compared to that in early 1987 when ANSDK commenced op-At least until the product selling price eration. reaches a certain satisfactory level and ANSDK's financial condition improves, the price of natural gas supplied to ANSDK should be held below \$1.5/Mil.BTU.

(5) The construction of El Dikheila Works made directly and indirectly a great contribution to the Egyptian economy and the same effect can be expected from its expansion. Furthermore ANSDK itself can improve its financial condition as discussed above.

A study was made on possibility of diversification of the products. But production of wire rods for cold heading, PC wire, electrode and steel cord, for example, calls for extensive modification of the existing rolling mill and the financial burden therefor is not so small. Besides, it is not certain whether their demand is enough to ensure their economic scale of production, and at this moment the above are considered infeasible.

However, as regards wire and wire products which can be produced from wire rods of ANSDK, a plan on its production was made and the production cost was also estimated, which is given in ANNEX.

- 1260 -

11-2. Recommendation

Essential conditions for realizing this project and factors which have a large effect on the economic viability of the project are discussed in the following.

- (1) In order to foster ANSDK who has the largest modern facilities in Egypt, into an integrated steel works that plays the central role in the production of re-bar in the country, the Government should provide it with the following assistance within the limits not inconsistent with the principle of sound market economy.
 - Necessary measures should be taken to improve the present financial condition of ANSDK as prerequisite for realization of the expansion project. For example, temporary takeover by the Government of shortterm loans or refinancing with low interest loans may be considered.
 - Against dumping export or unfair trade from foreign countries, countermeasures such as import restriction for a limited period or special duties should be taken to maintain reasonable selling prices.
 - The lowest possible prices should be applied to the domestic natural resources and utilities such as natural gas and electric power supplied to ANSDK. Particularly, the price of natural gas at present is at a level much higher than the international price and correction of the gas price is a key factor for realization of the project.
 - Measures should be taken to ensure smooth allocation of foreign currencies required by ANSDK.
 - Stable supply should be assured of electric power necessary for the expansion.
 - The utmost consideration should be given to the extension of ore storage yard necessary for the expansion and the charges for use of the mineral jetty, raw material storage and transportation facilities. In this F/S, cost from the mineral jetty to DR plant is assumed to be LE4.0/ton of pellet.

- (2) Adequate technical level for management and operation ... of the Works should be achieved before the expansion is completed.
- (3) To ensure early realization of the expansion project, early decision making and active approach to relevant organizations, at home and abroad, by the Government of Egypt are necessary.
- (4) Customs duties levied on imported facilities, equipment and materials impose a heavy burden on the construction cost and give an adverse effect on the profitability of the project. It is desirable that special measures are applied by the Government in this respect.

It is historically obvious that such assistances of the Government have been given to ensure early establishment of the steel industry in a number of countries and considered an inevitable matter for the take-off stage of the steel industry, one of key and capital-intensive industries. It must be emphasized again that strong assistance and consideration by the Government is essential in carrying out the expansion project of ANSDK.

- 1262 -

ANNEX

ANNEX I

Outline of Developing Countries' Measures to Foster the Development of Steel Industry

Historically it takes a number of years before a developing country develops a steel industry and the industry Therefore, it is obtains international competitiveness. usual for the government of a developing country to take measures to protect and foster the steel industry for a considerable length of time from the early days of progress of the industry. The general condition of such measures may be illustrated mainly by measures against import of competitive Namely, the protection and goods from third countries. assistance of the industry is given through establishment of regulatory policy and system on competitive imported goods and protective tariffs. Except the case where assembly cost of iron and steel making resources is low, there are often the cases in developing countries, where governmental assistance (low interest loan, development of infrastructure, and others) is indispensable even from the construction stage, and protective and fostering measures (import restriction of competitive goods, exemption from domestic taxes, etc.) are taken in fact for some years after the industry commenced Though this is also true of non-integrated steel operation. makers, such instances are numerous especially where integrated steel mills are involved because the capital invested is so large that it is advisable to take such measures early to facilitate viability of the project. As examples of such cases, there may be cited import restriction on competitive imported goods in Brazil, Venezuela, Malaysia, Thailand and indirect measures of developing infrastructure and supplying public utilities (electric power, etc.) at low cost in South Brazil and others. Korea.

In addition, in Indonesia, the Government granted P.T. Krakatau Steel a function to act as a coordinating body for import of certain rolled steel products, thus opening collective purchasing system, which became a kind of protective measures for that steel enterprise established to promote self-supply of steel in the country.

In developing countries generally, there are in force domestic industry protection laws such as "Industrial Promotion Law", "Pioneer Industry Law", "Steel Industry Promotion Law (Republic of Korea)" and others, under which import restriction measures such as prohibition of import or application of high tariffs and tariff quota system on competitive goods are taken when the problem of competition with imported goods occurs in starting domestic production of designated industries (almost always steel industry is included). A. Outline of Import Restriction Measures of Major Developing Countries on Bars and Rods

Country	Kind of Import Restriction	t Year Effected	Description	Object and Background	Other Remarks
Algeria	Collective	-	Steel products are collectively	Emphasis on delivery	Being a socialistic
÷	and central		purchased by SIDER, but from a	& quality control of	nation, there are
	purchasing		few years ago, other public cor-		limitations on q'ty
			porations began to buy some steel	rations themselves	and price (budget)
			items (subject to approval of	in particular	of import.
			Heavy Industry Ministry for direct		
			purchasing), such cases expected		
			to increase.		
	Preferential		Rolled steels produced by plants	Protection of home	Under 2nd 5-year
	purchasing		of former SNS and SONACOME are	industry	plan(1985-89),
	of domestic		used with priority over imported		substitution of
	products		steels (tenders for certain items		import is stressed
			are issued for domestic gcods		and will progress
			only). International tenders are		further in future.
			issued when import is approved.		•
Kenya	I/L system		Import is restricted of the items	Shortage of foreign	Degree of restric-
ı	•		which can be produced at home.		tion varies from
				of home industry	year to year.
South	Import	Sep.'85	Import surcharge 10% (on FOB)	Restraint of import	Degree of restraint
Africa	surcharge			and use of the charge	varies from year to
				as subsidy in unemploy-	year.
			•	ment measures.	
	Preferential		In projects involving the state,	Protection of home	For cars, local
	purchasing		about 12.5% preference is given	industry	contents of 66%(wt)
	of domestic		to domestic products and at tender		is obliged.
	products		evaluation, that much is reduced.		
Saudi	Customs	Rev., 79	Customs inspection based on Saudi		
	inspection		spec. for round bars and bar in	way of various goods	
			coil	thru quality check &	
				those main products	
				firstly standardized.	
	Preferential		Buy-Saudi policy. Bars and rods	Protection of home	
	purchasing		of HADEED have priority in buying		
	of domestic		in the government construction		
	products		tender in particular, and also		
			pressure from Job owner/consultant	t.	

Country	Kind of Import Restriction	Year Effected	Description	Object and Background	Other Remarks
Columbia	Prior approval system of I/L	End ' 83	For all imports of rolled steels prior approval system of I/L was	Protection of home industry and promo-	Import from nations whose trade balance
			effected. (I/L approved for FOB	tion of use of home	is bad becomes hard
			but not for CIF)	products	
				Measures for inter-	
				national payment	
Venezuela	Prohibition		Ttems prohibited import under I/L Protection of home	Protection of home	
	of import		svstem:	products in connec-	
			i) Items SIDOR can produce:	tion with start-up	
			Rod, plate & light plate (excl.of SIDOR (integrated	. of SIDOR (integrated	
			those for storage tanks of	steel mill)	
			Petroleum Corp.), hot coil &		
			sheet, C.R. coil & sheet,	· · ·	
·			coated sheet, seamless pipe		
			ii) Items import prohibited for	Protection of home	
			protection of home industry:	industry	
			G.I. sheet, welded pipe, wire		
			products (wire, G.I. wire)		
		Mar.'83	iii) Structural bar & section		
Brazil	Prohibition	176	In principle, items which domes-	Protection, assis-	No major change in the custem but it
	A JONUT TO		ere makets say similar dues all available are prohibited import	try and saving of	
			(except for reexport).	foreign exchange	year by year. Con-
			If domestic mills OK'ed, if the)	trol is strict.
			importer has no import quota,		
			7 / · · · · · · · · · · · · · · · · · ·		

2. Latin America (Cont'd)

Country	Kind of Import Restriction	Year Effected	Description	Object and Background	Other Remarks
rgentina	Argentina I/L system	May ' 82	i) Stricter investigation of I/L		
			by Economy Ministry	(except basic neces-	
				sities, import prohi-	
				bited in principle)	
	-		ii) Investigation of I/L by DGFM	Restraint of import	- :
				and protection of home	
				mills of bar, etc.	
	Preferential		Investigation by "Buy Argentine"	Protection of home	
	purchasing		Committee re import by state	industry	
	of domestic		agencies and enterprises	-	
	products	Mar.'80	Petroleum Corp. and private oil	Protection of domestic	
		•	companies operating under risk	oil country tubular	
			contract obliged to use domestic	goods	
			ocre		
Peru	I/L system	Apr.'82	I/L system reinstated in April	Rescue of SIDERPERU F	From Sept. '83,
			1982	whose business was hit coated sheet and	coated shéet and
				by surge of imported o	other processed
				steel	steel sheet added
				ц	to items covered
			-	Ω 	by the system.

.

3. Asia					
Country	Kind of Import Restriction	Year Effected	Description	Object and Background	Other Remarks
Taiwan	Preferential purchasing of domestic products	H.R.sheet Jul.'82 C.R.sheet Aug.'82	Attaching CSC's agreement obliga- ted in applying for I/L for rod and bars. Import of sizes made by CSC is practically prohibited.		
Thailand	Prohíbition of import Import surcharge		In principle, import of bar and rod (Tariff No.73.10, i.e. ¢5.5 -28 mm) is prohibited. Import surcharge collected	Frotection of home mill Restraint of import Protection of home	Matter of approval of Commerce and Industry Ministry
Malaysia	Prohibition of import I/L system	Nov. 25, 1982 Nov. 25, Aug. 15, 1985	<pre>Prohibition of import of round bar (ordianry steel) wire rod (ordinary steel), bar and rod (alloy steel), bar Billet</pre>	Under aggressive im- port due to slowdown of world market, to prevent weakening of competitiveness of domestic products and increase of inventory and also to protect domestic mills	

(Cont'd)	
Isia	

Country Rind of Lmoort Vest Description Object and Background Other Femarks India Collection Free the viewpoint Mori Fernely, wat Mori Fernely, wat India Collection Free the viewpoint Mori Fernely, wat Mori Fernely, wat India Collection Free view of plate, part of ClR, sheet, strip, by SUL, steel, suppleter to expone to the view of plate, point Mori Fernely, and Mori Fernely, and purchasing Collection Free view of the view of section Free view of the view of section Free view of the view of section purchasing Collection Free view of the view of t	Country India	Asia (Cont'd)			•	
Collective Apr. 165 Pig from, samis, har, section, from the vieword of steel supple and central codi, part of late, part of hot by SAIL, steelmaker, indian purchasing coil, part of late, serviced sheet, strip, by SAIL, steelmaker, indian (coil), electrical sheet (non- the canalized agency of steel coil, part of striplate, GP was Shifted from SAIL purchas sheet, stainless plate, part of stain- tes strip cannot be imported if not pased through MMC, cana- lises strip cannot be imported if not pased through MMC, cana- lises strip cannot be imported if not pased through MMC, cana- lises strip cannot be imported if not pased through MMC, cana- lises strip cannot be imported if not pased through MMC, cana- lises strip cannot be imported if not pased through MMC, cana- lises strip cannot be imported if not pased through MMC, cana- lises strip cannot be imported if not pased through MMC, cana- lises strip cannot be imported if not pased through MMC, cana- lises strip part of the direct inport is part of the direct inported is consistents of MMC inported if inplate, part of stainlass strip, part of through the part of stainlass strip, part of chansels proted if not users apply through the part of stainlass strip, through the part of stainlass strip, through the part of stainlass strip, part of alloy steel, part of stainlass through the stainlass strip, through the part of stainlass through the stainlass strip, through the part of stainlass through the stainlass strip, through through through the strip through through through t	India	Kind of Import Restriction	i .	Description	Object and Background	Other Remarks
<pre>nearing not desirable, recet supplie nasing coil, part of c n, sheet, strip, NSML, steelandker, return black plate, electrical sheet, not desirable, return (coil), electrical sheet, other was shifted from SML purchas offeet, aluminized sheet, stiller the canalized agency of stee stand sheet, stainless plate, is not desirable, coated sheet, stainless plate, is not desirable, stainless sheet, part of stain- lass strip cannot be imported if not passed through MMC, Cana- lass strip cannot be imported if not passed through MMC, Cana- lass strip cannot be imported if not passed through MMC, Cana- lass strip control of export, objection certificate of MMTC is objection certificate of the speet of plate, part of C.R. strip, plate, part of strine, prover of stainless strip, plate, part of stainless strip, prover of stainless strip, prover of stainless strip, prover of stainless strip, prover of stainless strip, plate, part of stainless strip, prover of strinker, and of stainless ithition stainless strip, prover of strip, prover of stainless strip, prover of stainless strip, prover of strip, prover of stainless strip, prover of prover of prover of prover of prover of prover of pro</pre>		Collective	Apr. '85	iron, semis, bar	the viewpo	strongly
<pre>hasing coil, part of C.R. Sneet, strip, by SML; steelmaker, induan luck place, electrical sheet (non- coil), electrical sheet (non- sheet, aluminzed sheet, other sheet, aluminzed sheet, other sheet, aluminzed sheet, other sheet, stainless plate, stainless sheet, part of stain- less strip cannot be inported if not passed through MNC (in April '88. restrip stainless plate, not passed through MNC (not objection certificate) of MMC (not objection certificate) of MMC (not is obtained or avance i/1 is on hand for promotion of sapirt of reat, part of reat sheet, part of cirles), tinplete, part of stainless plate, part of stainless plate, part of stainless plate, part of stainless plate, part of cirles), tinplate, part of stainless plate, part of stainless tinplate, part of stainless tinplate, part of stainless tinplate, part of stainless tinplate, part of stainles plate, part of stainless tinplate, part of stainles tinplate, part of stainles tinplate, part of stainles tinplate, part of stainles tinplate, part of stainles part of stainless strip, part of stainless strip, part of stainless tot the part of stainles tinplate, part of stainles tinport casting are items, of which import is prohibited.</pre>		and central	÷	parto	that import of steel	to exp
<pre>costs fact a functual sheet (non- costs) is electrical sheet (non- priented), part of tinplate, GP was shifted from SMI purchas sheet, aluminad sheet, other to NMTC in April '65. coated agency. But if not stain- less strip cameot be inported if not passed through MMTC, Cam- lized agency. But if NoC (not objection cartificate) of NMTC is obtained or Advance I/L is on hand for promotion of export- direct import of SHIP, is on hand for promotion of export- direct inports of C.R. shrip, is part of tod, plate, part of SHIP, is thet, part of alloy steel can be in- ported if Indian users apply for and obtain for stainless steel, part of ported if Indian users apply for and obtain yeteel art of stainless steel, part of ported if indian users apply for and obtain for stainless steel, part of stainless steel, part of ported if indian users apply for and obtain for stainless steel, part of stainless steel, part of import is prohibited.</pre>		purchasing		sheet,	by SAIL, steelmaker,	Indian products in
<pre>(coil) electrical Sheet (nor the canalized agery of ste oriented), part of tinplate, GP was shifted from SAII purchas sheet, aluminized sheet, other to NMTC in April '65. coated sheet, stainless pair of too passed thur in NoC (not objection certificated of NMTC (and insed agery. But if NoC (not objection certificated of NMTC is obtained or Advance I/L is on hand for promotion of export. <u>alrect import is possible.</u> <u>alrect import is possible.</u> <u>alrect import is part of rod, plate, part of fund strip, part of tinplate, part of stainelss ported if Indian users apply tinplate, part of stainelss ported if Indian users apply ported if Indian users apply for and obtain I/L. mport stainless steel, part of import casting are items, of which import is prohibited. mport is prohibited. mport is prohibited. mport is prohibited. </u></pre>				black plate, electrical sneet	is not desirable,	
oriented), part of tupicate, ut was snurge urone suit purchas sets attainless sheet, part of stain- less strip cannot be imported if not passed through MMTC, cana- lized agency. Bat if MOTC, cana- lized agency. Bat if MOTC, cana- lized agency. Bat of MOTC, cana- lized agency. Bat of MOTC, cana- lized agency. Bat of MOTC solvetion certificate of MMTC is obtained or Advance I/L is on hand for promotion of export, direct inport is possible. Rate, inport is possible. C.R. sheet, part of C.R. strip, part of electrical sheet (oriented), inplate, part of stainless strip, part of alloy steel can be im- part of alloy steel can be im- ported if Indian users apply for and obtain I/L. Mport mport stainless strep, part of steel can in import is prohibited.	•			(coil), electrical sheet (non-	the canalized agency	or steel
<pre>sheet, aluminized sheet, other to WHU IH APTIL '05. coated sheet, stainless plate, stainless sheet, part of stain- less strip cannot be imported if not pagency. But if NOC (not objection certificate) of NMTC is objection certificate) hand for promotion of export, hand for promotion of export, cot, plate, hort coil; H.R. sheet, c.R. sheet, part of stainless tinplate, part of stainless plate, part of stainless strip, part of alloy steel can be im- ported if Indian users apply for and obtain I/L. mport stainless steel, part of can in import casting are items, of steel steel import is prohibited.</pre>				oriented), part of tinplate, GP		
and for part of fate, stainess plate, stainess sheet, part of stain- lets strip cannot be imported if not passed through MMTC (not objection certificate) of MMTC (not objection certificate) of MMTC (not objection certificate) of MMTC is obtained for part of exact part of				sheet, aluminized sheet, other		
stainless sheet, part of stain- less strip cannot be imported if not passed inrough MMTC, Cana- lized agency. But if NCC (not objection certificate) of MMTC is obtained or Avance I/L is on hand for promotion of export, direct import is part of rod, plate, hot coil, H.R. sheet, C.R. sheet, part of coil, H.R. sheet, c.R. sheet, part of call strip, electical sheet (oriented), timplate, part of stainless strip, part of late, part of stainless strip, part of alloy steel can be im- ported if Indian users apply ported if Indian users apply ported if Indian users apply port of alloy steel, part of stainless streil, or and ported stainles to the import is prohibited.				coated sheet, stainless plate,		
less strip cannot be imported if not passed through MMTC (ana- lized agency. But if NOC (not objection certificate) of NMTC is obtained or Advance I/L is on hand for promotion of export, direct import is possible. Flat bar, square bar, part of rod, plate, part of C.R. strip, cod, plate, part of calles c.R. sheet, part of stainless strip, part of stainless strip, part of alloy steel can be im- ported if Indian users apply ported if Indian users apply for and obtain I/L. mport stainless strel, part of calles part of steinless strip, part of alloy steel, part of calles the of the part of alloy steel, part of calles the of the casting are thens, of import casting are thense, of which				sheet, part		
not passed through MMTC, Cana- lized agency. But if MOC (not objection certificate) of MMTC is obtained or Advance I/L is on hand for promotion of export, direct import is possible. Fart of direct import is possible. C.R. sheet, part of C.R. strip, c.d, plate, hot coil, H.R. sheet, c.R. sheet, part of stainelss tinplate, part of stainelss tinplate, part of stainelss part of electrical sheet (oriented)) tintant part of stainelss ported of fuldian users apply for and obtain I/L. port of alloy steel, part of moort casting are items, of which import is prohibited.				cannot be imported		
lized agency. But if NOC (not objection certificate) of MWTC is obtained or Advance I/L is on hand Of promotion of export, direct import is possible. Bystem Apr.'65 Flat bar, square bar, part of rod, plate, port of C.R. strip, rod, plate, port of stainless C.R. sheet, part of stainless the part of stainless strip, part of alloy steel can be im- ported if Indian users apply for and obtain I/L. ported if Indian users apply for and obtain I/L. ported if Indian users apply for and obtain I/L. ported if mort import stainless steel, part of stainless steel, part of can in import casinless steel, part of stainless steel, part of import casinless steel, part of stainless steel, part of stainless steel, part of stainless steel, part of import				through MMTC.		
<pre>system Apr.'65 Flat bar, square bar, part of is obtained or Advance I/L is on hand for promotion of export, direct import is possible. Part of are of import is possible. rod, plate, hot coil, H.R. sheet, c.R. sheet, part of C.R. strip, clearical sheet (oriented), tinplate, part of stainless strip, plate, part of stainless strip, part of alloy steel can be im- ported if Indian users apply for and obtain I/L. mporte stainless steel, part of stainless steel, part of steel steel stalles, part of stainless steel, part of stalles, part steel stalless steel, part steel steel steel steel stee</pre>						
<pre>system Apr.'85 Flat bar, square of this on hand for promotion of export, and direct import is possible. Flat bar, square bar, part of rod, plate, port of C.R. strip, c.R. sheet, part of C.R. strip, c.R. sheet, part of C.R. strip, tinplate, part of failes plate, part of stainless plate, part of stainless ported if Indian users apply ported if Indian users apply ported if Indian users apply for and obtain I/L. ported if alloy steel can be im- ported if indian users apply for and obtain I/L. mport import casting are items, of which import is prohibited.</pre>				chinchion contificate) of WMTC		
<pre>system Apr.'85 Flat bar, possible. part of</pre>				VUJGCGLUOII CEL ULLITCGGE/ CE TELES		
<pre>system Apr.'85 Flat br promotion of export, direct import is possible. rod, plate, hot coil, H.R. sheet, c.R. sheet, part of c.R. strip, electrical sheet (or ented), tipplate, part of stainelss plate, part of stainelss part of ailoy steel can be im- ported if Indian users apply for and obtain 1/L. makers con in import stainless streel, part of stainless steel, par</pre>						
direct import is possible. direct import is possible. system Apr.'85 Flat bar, square bar, part of red, plate, part of th. R. sheet, multiplate, part of C.R. sheet, part of C.R. sheet, part of stainelss WTB, part of stainels c.R. sheet, part of stainelss Flat bar, square bar, strip, part of stainelss Part of ant of stainels plate, part of stainelss Strip, part of stainels Strip, strip, strip, part of stainels plate, part of stainels Strip, part of stainels Strip, strip, strip, part of stainels ported if Indian users apply for and obtain I/L. Strip, strip, strip, strip, part of alloy steel, part of steel moort stainless streel, part of steel part of steel, part of steel import steel, part of steel open ge import steel, part of steel open ge		•		hand for promotion of export,		
system Apr.'35 Flat bar, square bar, part of cod, plate, hot coil, H.R. sheet, met C.R. sheet, part of x. strip, c.R. sheet, bart of vienteds c.R. strip, part of electrical sheet (of crienteds) tinplate, part of stainless strip, plate, part of stainless strip, plate, part of stainless strip, ported of alloy steel can be im- ported indows apply for and obtain I/L. for and obtain I/L. pert of alloy steel, part of stainless steel, part of import casting are items, of which import is prohibited.						
rod, plate, hot coil, H.R. sheet, WFB, part of C.R. sheet, part of C.R. strip, electrical sheet (oriented), tinplate, part of stainless strip, plate, part of stainless strip, part of alloy steel can be im- ported if Indian users apply for and obtain I/L. Suply for and obtain I/L. A strip, for and obtain I/L. Suply for ant of alloy steel, part of stainless steel, part of stainless steel, part of stainless steel, part of steel can in importe casting are items, of which		I/L system	۰.			
C.R. sheet, part of C.R. strip, part of electrical sheet (oriented), tinplate, part of stainelss plate, part of stainelss plate, part of stainless strip, part of alloy steel can be im- ported if Indian users apply for and obtain I/L. for and obtain I/L. Part of alloy steel, part of stainless steel, part of steel casting are items, of steel casting are items, of which import is prohibited.			I			
electrical sheet (oriented), tinplate, part of stainelss plate, part of stainelss strip, part of alloy steel can be im- part of alloy steel can be im- ported if Indian users apply for and obtain I/L. Fart of alloy steel, part of stainless steel, part of stainless steel, part of stainless steel, part of steel casting are items, of which import is prohibited.			·	C.R.		ч О
timplate, part of stainelss plate, part of stainless strip, part of alloy steel can be im- ported if Indian users apply for and obtain I/L. Fart of alloy steel, part of stainless steel, part of steel stainless steel, part of steel steel steel stainless steel, part of steel steel steel s		-		sheet (oriente		part of H.R. sheet,
plate, part of stainless strip, part of alloy steel can be im- ported if Indian users apply for and obtain I/L. spply steel wakers an in ported part of steel part of stainless steel, part of steel casting are items, of which import is prohibited.			•			terne plate, plast
part of alloy steel can be im- ported if Indian users apply for and obtain 1/L. strip, strip, for and obtain 1/L. steel wmakers can in importe stainless steel, part of stainless steel, part of casting are items, of which import is prohibited.				ctoin] see		& vinvl coated sheet
per of alloy steel, part of stain [/L. makers apply for and obtain I/L. makers and steel, part of stainless steel, part of stainless steel, part of steel casting are items, of which import is prohibited.						shoot
ported if Indian users apply ported if for and obtain I/L. steel weakers for and obtain I/L. steel weakers can in importe stainless steel, part of steel part of steel casting are items, of which import is prohibited.				arloy.		())))))
for and obtain I/L. steel were steel weakers Fart of alloy steel, part of stainless steel, part of casting are items, of which import is prohibited.					•	
makers Part of alloy steel, part of stainless steel, part of casting are items, of which import is prohibited.						steel which Indian
Part of alloy steel, part of imported free stainless steel, part of casting are items, of which import is prohibited.						
Fart of alloy steel, part of Ration stainless steel, part of steel casting are items, of which import is prohibited.						can in principle be
Part of alloy steel, part of stainless steel, part of steel casting are items, of which import is prohibited.						imported freelv bv
Part of alloy steel, part of stainless steel, part of steel casting are items, of which import is prohibited.						open general licence
stainless steel, part of casting are items, of whi import is prohibited.		Dechibition		allow steel nent		
staintess steet, part of whi import is prohibited.				-toy avect, your		
are items, of s prohibited.		or import		steer, part of		
import is prohibited.				are items, of		•
		-		import is prohibited.		
						· · ·
						•
				•		
						•

- 1272 -

3. Asia (Cont'd)

A REAL PARTY OF A REAL PARTY O					
and and	Kind of Import Year	Year	Deconintion	Object and	Other Remarks
C TO INDOO	Restrictioon Effected	Effected	11242 44 12024	Background	
Pakistan	Pakistan Only direct		Round bar, rod (# 7.62 cm max),	Domestic production	
	import by		bloom & billet (3.81 cm max),	became possible with	
	government		pig iron, ingot, rail, tube	start-up of PASMIC.	
	offices and		blanks		
	agencies				

Note: The above table shows major import restriction measures of major developing countries and there are other various regulatory measures in other countries which vary from country to country.

B. Import Tariff on Selected Ordinary Steel Products in Several Countries

	Egypt	Nigeria	Kenya	Venezuela	Brazil	Argentina	itina
		;	,			Tariff	DGFM
Bars: Small bar	20%	78.75%	20 - 45%	Н. R. 30%	37%	48%	26%*
Others	30%	1	45%	F.S.* 1%	37%	48%	
Sections: H steel	20%	26.25%	25%	30%	37%	48%	
Others	20%	1	25 - 45%	۲% ۲	37%	48%	
Wire rods	20%	78.75%	25 - 40%	25%+BSI/kg	37%	48%	
Base for duty	CIF	CIF	CIF	CIF	C&F or CIF	CIF	
Remarks	*Nail, bolt and nut - 20% Barbed wire - 50% Needle, pin, spring - 30%			*F.S.= Steel forgings		* Note: 12 17 16 16 16 17	*Note: Tariff when I/L of DGFM is obtained. The tariff is imposed based on CIF VAL.

- 1274 -

	Iran	Iraq	Saudi Arabia	Kuwait	. U.A.E.	ы
Bars: Small bar	10%	0/6/8%	1	4%		4.4%
Others	10%	0/6/8%	I	4%	I	4.4%
Sections: H steel	10%	0/6/8%	ı	4%	1	4.4%
Others	10%	0/6/8%		4%	ŀ	4.4%
Wire rods	10%	0/6/8%	ı	4%	I	4.4%
Base for duty	CIF	CIF	CIF	CIF	CIF	CIF
Remarks		Tariff rate prepared by the govern- ment varies case-by-case in applica- tion.	Base for duty is specified by the Customs Law to be CIF, but in fact there are cases where duty is im- posed only on C&F.	The above tariff is applied when payment term is CIF-KWT. When the term is C&F-KWT, it is increased by 1% to 5%. (From July 1983)	Rolled steels used for con- struction of pused in public projects are duty free if copies of con- tracts are attached. Duties on raw materials used in plants of which 51% or more is GCC own capital are ex- empted.	Applied to import from non-EC coun- tries. Import from EC members e is duty free. The tariff is common to all EC members except Greece.

B. Import Tariff on Selected Ordinary Steel Products in Several Countries (Cont'd)

		Gre Tariff	Greece I Total	Spain	Taiwan General Rec	Taiwan General Reciprocal	China	Philippines	
Bars: Sn	Small bar	9.1%	36.1%	9.5%	26.5%	21.5%	15%	20%	
õ	Others	7.9%	34.6%	7.6%	26.5%	21.5%	15%	20%	
Sections: H steel	steel	6.3%	32.6%	8.3%	26.5%	21.5%	%6	20%	
ŭ.	Others	10.3%	36.2%	8.3%	26.5%	21.5%	9-15%	20%	
Wire rods		7.2%	33.7% 8.4-9.5%	.4-9.5%	24% F	HC 14% LC 19%	15%	20%	
Base for duty	cy.	D	CIF	CIF	ີ ວິ	CIF	CIF	C&F	
Remarks		Total is the su of import duty including stamp tax and other taxes and impos on CIF VAL.	Total is the sum of import duty including stamp tax and other taxes and imposed on CIF VAL.	Tariff over CIF VALUE will be none on EC products and lowered to common rates on non-EC pro- ducts during 7 years from admission to		Base for impoort duty is CIFX100%(from Feb. '86, before that it was 105%) Tariff includes port charge.			

B. Import Tariff on Selected Ordinary Steel Products in Several Countries (Cont'd)

10% 60% 40% F 10% 60% 40% F 10% 60% 40% F *2 10% 60% 40% F *2 10% 60% 40% F *2 10% 70% 40% H *2 10% 70% 40% H *2 10% 70% 40% H *2 10% Notes: *1 Auxiliary duty duty industry *2 Countervailing ex cold extro industry *2 Countervailing ex above three. includes zhigh Tariff varies partly weight. neet pile		Indonesia Tariff VAT		Tariff	India A.Duty*1	C.E.Dutv*2	
0-20% 10% 60% (S.P.)5% 10% 60% 20% 10% 60% 0-20% 2 10% 70% 0-20% 2 10% 70% *1 0% for industry use *2 0% for cold heading high carbon 12 mm (S.P.)= Sheet pile			%	60%	40%	RS 365/MT	
(S.P.)5% 10% 60% 20% 10% 60% 20%*2 10% 70% 0-20%*2 10% 70% C&F Notes: *1 0% for industry *2 0% for cold heading high carbon 12 mm (S.P.)= Sheet pile	Others	ц.	%	60%	40%	RS 365/MT	
20% 10% 60% 20%*2 10% 70% C&F Notes: *1 0% for industry use *2 0% for cold heading high carbon 12 mm (S.P.)= Sheet pile	Sections: H steel		%	60%	40%	RS 365/MT	·
0-20%*2 10% 70% C&F Notes: *1 0% for industry use *2 0% for cold heading high carbon 12 mm (S.P.)= Sheet pile	Others		%	60%	40%	RS 365/MT	-
C&F Notes: *1 0% for industry use *2 0% for cold heading high carbon 12 mm (S.P.)= Sheet pile	Wire rods		%	70%	40%	RS 365/MT	
Notes: Notes: *1 0% for industry use *2 0% for cold heading high carbon 12 mm (S.P.)= Sheet pile	Base for duty	C&F		-	CIF		
т ріле	Remarks	Notes: *1 0% for indust		es: *1 Aux *2 Cou	iliary duty ntervailing	excise duty	
		use *2 0% for cold heading high		Import above	: duty includ three.	es all the	
		carbon 12 mm		Tarifí	`varies part	ly depending on	
		(S.P.)= Sheet pi	le	5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	:	·	

.

ANNEX II

Production of Re-bar and Its Price Trend in the World

A Production of Re-bar in the World

a) U.S.A.

The newest steel production center in U.S.A. is in the South centering about Texas where a number of mini-mills based on electric arc furnaces were constructed and there is seen an increasing trend to set up steel mills in Texas that faces the Gulf of Mexico in preparation for import of sponge iron produced by direct reduction process (DRI) in future.

Though accurate statistics on the production of bars (mostly reinforcing bars, or re-bars, in U.S.) by type of steel mills are few, it can safely be said that a fairly large part is produced by medium and small enterprises and in particular, mini-mills are mostly to produce bars.

The three factors, (1) low cost scrap, (2) cheap power and (3) suitable market size, are said to be main factors enabling mini-mills to operate competitively and they can compete with big integrated steel mills by using ultra-high power electric arc furnace (EAF) and continuous casting (CC) In U.S. having many and broad markets, there facilities. are a number of factors to contribute toward the existence of mini-mills and continuation of their production activity. For example, labor cost varies considerably by different regions and the advantage of relative low labor cost in the country can be enjoyed by selecting plant locations. Power cost also varies by region and besides, there are cases that interstate movement of scrap is prohibited by interstate highway regulations, which makes EAF steelmaking advantageous in the region where scrap is available easily and at low cost. Steel mills in those regions have annual capacity of 50,000 -500,000 tons and mainly produce re-bars.

Thus in U.S., bars are produced by smaller-scaled steel companies mostly in the fields where big integrated steel companies are not operating or do not want to operate and the mini-mills can exist because of their adaptability in manpower, raw materials availability, production, sales, list price, customer service and regional demand.

Generally speaking, those mini-mills have almost no affiliation with big mills through raw materials or capital and they do not have much interest in integrated steel pro-When they have to compete with big steel mills or duction. mills of similar scale, they stress short delivery, specialization or processing of products and if necessary cut price. Also, emphasis is placed on quality rather than quantity and efforts are made not to lose customers. Therefore, they are willing to leave large lot orders to big steel mills and take mainly small lot orders of 10 tons or so. Such minimills keep contact with customers calling once a week. As seen from this, products are sold direct to users and the direct sale accounts for about 80% of the total and the sale to wholesalers the remaining 20%.

In general, the mini-mills keep their competitiveness for continuing production by pursuing that products of kind and shape which have largest demand in the region be made, that investment be limited to the minimum required for this, that employees are trained to the highest standard in such specific field jobs and that the plant facilities be used to the maximum.

The so-called "economies of scale" works advantageously to mini-mills also. Production cost per ton (excl. capital cost, but incl. raw material cost) of mini-mills is higher than that of integrated mills. But assuming prices of hot metal and scrap to be same, the operating cost is higher in EAF steelmakers, usually 10% or so because 25% of operating cost is power cost. But if capital cost is included, the total cost is considered almost same in mini-mills and big integrated mills. Therefore it is the most important thing in U.S. to ensure raw materials at lowest cost so as to make the best of the advantage in capital cost and overcome the disadvantage in operating cost. Bar makers keep this in mind and at the same time seek their markets within 100-mile radius from their plants as one of means to compete with big steel makers.

Change in Production Capacity by Product between Big Integrated Steel Mills and Mini-Mills in U.S.A.

r

	(U	nit:	1,000	NT)
·····				7
170	1000	۰ I	000	

	1970	1980	1986
Hot rolled bar			
Integrated mills Mini-mills Total	7,560 2,720 10,280	6,870 5,050 11,920	5,660 5,800 11,460
Structural bar			
Integrated mills Mini-mills Total	3,010 3,010 6,020	1,630 6,320 7,950	680 6,525 7,205
Bar Sections			
Integrated mills Mini-mills Total	1,130 280 1,410	310 1,240 1,550	165 1,575 1,740
Structural section (Small size)			
Integrated mills Mini-mills Total	2,150 - 2,150	1,490 540 2,030	1,640 760 2,400
Wire rod			
Integrated mills Mini-mills Total	6,370 1,270 7,640	3,750 3,605 7,355	1,965 4,915 6,880
Total of above 5			
Integrated mills Mini-mills Total	20,220 7,280 27,500	14,050 17,455 31,505	10,110 19,575 29,685

Source: Richard M. Blassy, Growth Patterns of the U.S. Mini-Mill Steel Industry, Iron and Steel Division, Basic Industries, Trade Development Department of Commerce U.S. Government, December 1986

Original source: Iron Age, April 1984

b) EC countries (Incl. Turkey)

Almost no accurate data about production of bar in EC countries are available. Statistically, simply large and small long products (80 mm being dividing point) are shown. And the general condition can be known about EC only. There are some countries whose demand/supply condition of bar can be known, but it is difficult to grasp the condition in a fairly large number of countries.

In the present EC countries, in particular 6 former member countries and U.K., location of steel plants moved to seaside regions. The reason is the regional change in steel demand in Europe and the shift of raw material sources from Saar (coal) and Alsace-Lorraine (iron ore) to overseas. The weight of seaside steel mills increased from year to year.

The above shift of big integrated steel mills induced new or additional construction of mini-mills based on EAFs and modernization of the existing smaller steel mills in the inland regions of Europe. Those mills are mostly of annual capacity of 600,000 tons or less. In fact, expansion of mini-mills was remarkable from around 1972 mainly in France and Italy and a number of mini-mills are in operation or planned. Those mini-mills have the target on users within 100 km distance and provide many services.

Major small-scaled steel mills belong to European Independent Steelworks Association and their steelmaking capacity in the aggregate totals a little more than 18 million tons, accounting for about 10% of the western European total. Particularly in Italy, emphasis is placed on export to EC member countries and 60 or more steel mills are concentraded in the northern Italy.

In Spain, SIDERINSA is engaged in production coordination and marketing measures of re-bars, but as a result of becoming a member of EC, export subsidy was stopped and the competitiveness was greatly lowered.

c) Asia (excl. Japan)

Except India where integrated production system was established in part many years ago and Republic of Korea and Taiwan where full-scale integrated steel mills began to be constructed in 1970s, the progress of steel industry in Asia was mainly through the so-called backward integration process. Typical type in early days was the mills who produce concrete reinforcing bar or small bars from imported billets or scrap from shipbreaking. This is because demand for the products was biggest in early days of economic development and also because the demand quantity was generally appropriate for production at the initial stage. However, in recent years, production of those products was mostly by mills who engage in both steelmaking and rolling and there is seen a trend to move to this pattern of integrated production. The steel industry in Republic of Korea and Taiwan is now in the stage of progress to full-scale integrated production.

In an early stage of development of steel industry in various countries in Asia, long products were the first to be produced because of demand structure at the time. The major part of the demand depends on building and civil engineering works sector. Since there are not many countries who pay special attention to the damage by earthquake and their buildings are of reinforced concrete or reinforced bricks, consumption of rolled steels is mainly re-bars. And recently consumption and also production of deformed bars is increasing, but still plain bars are mainly used in sizes 8 to 24 mm.

Majority of bar producing companies in ASEAN countries are established by local capitalists (mainly Chinese origin) and some of them receive technical assistance from overseas, but there are a few which are joint venture companies with foreign capital. Moreover, in an early days of economic development, even EAF steelmaking is considered to have equal footing with big integrated steelmaking in developed nations and the EAF mills are established as state companies or joint government-private companies and for some time after their establishment enjoy assistance from the governments under laws such as Industrial Promotion Law, Infant Industry Law, etc.

However, stable availability of iron source is a matter common to EAF steelmakers, rollers and rerollers in this area. Though some makers purchase scrap in the world market competing with OHF and EAF steelmakers in developed nations, there are instances where shipbreaking industry is promoted or DR process introduced (as in Indonesia and Malaysia) as solution of this problem.

Such being the case, though the industry in this area enjoys advantage of low wage rate, because of instability in scrap supply, its cost of bar production is not always lower than that in developed nations. In addition, there are cases as in Indonesia that high repair cost of private power plant, high transportation cost of domestic scrap and low operation technique hinder its competitiveness.

Therefore, there are cases where the government, while considering the limitation of modernization and rationalization of the existing EAF steelmakers, rollers and rerollers, plans to construct state integrated steel mills to supply semi-finished products (mainly billet) to such existing mills in order to modernize the steel industry. Pohang Iron and Steel in South Korea and China Steel Corp. in Taiwan are examples of such case.

- 1284 -

d) Middle East and Africa

Steel industry in those areas started with production of mainly steel bars and small dia. pipes after World War II. The first production was by Delta Steel in Cairo who used Egyptian and imported scrap, and then came National Metal Industries and Egyptian Copperworks (both in Egypt). At present, four countries, Egypt, Iran, Algeria and Tunisia, have integrated steel mills and all of them produce mainly non-flat, or long, products. Steelmaking facilities exist in Algeria, Egypt, Iran, Israel, Morocco, Tunisia and Lebanon. Those steelmaking facilities are almost always followed by rolling mills of long products and size of small bars is mostly 30 mm max. (mainly 8 - 13 mm).

The first full-scale (BF) integrated steel mill in the area was completed in Egypt in 1958 and the second one in Tunisia in 1966 and the third in Algeria in 1969. On the other hand, there are numerous rolling mills which produce bars from imported billets. Those mills show a sign of progress, but the full-scale progress of steel industry in the area is expected to come in future.

As regards Arab area, as of early 1973, there were integrated steel mills, steelmaking and rolling mills, and rerollers who produce bars, but because of short supply of scrap and billets, their operating rate is generally lower than 50%. As a result, production of small non-flat products was small and their demand had to be met by import.

In Iran, a new plan showed marked progress and in particulr, there was an ambitious plan to construct integrated steel mill including DR plant. Planned product mix includes steel sheet.

- 1285 -

In Qatar, Kobe Steel (Japan) constructed an integrated steel mill based on DR process. The mill has annual production capacity of 400,000 tons of bars, 10 - 32 mm, and began full operation in 1980s.

Demand for bars in those areas are mainly from building and civil engineering construction sector and related oil drilling sector. Though industrialization of the area was promoted with oil dollars, recent decrease of oil prices resulted in decreased foreign exchange income and the demand in the area may not be expected to show a rapid increase as once expected, but it is certain that the demand will show continuing growth in future.

In West Africa area, Niger Steel's bar mill is at Emene close to Engu, Nigeria, and operates as EAF steelmaker and roller. In Ghana, Tema Steel Works Co., Tema, produces some merchant bar and is making efforts to become the central steel mill in Ghana by expansion to an integrated mill.

In Central Africa, an integrated steel mill produces non-flat products and others in Zimbabwe while Steel Corp. of East Africa is EAF steelmaker and has a small capacity to produce small bars at Jinja, Uganda. In Tanzania, National Steel Rolling Mill produces bars and in Ethiopia, a small bar mill operates at Akaki district in the suburb of Addis Ababa.

In South Africa, South African Iron & Steel Industries Corp. (ISCOR) is engaged in full-scale production with BF process and its product mix covers wide range of products.

In the countries in Africa, the majority of steel mills are of small scale, but with a view of effective utilization

of iron resources, contemplate BF integrated process. As preparatory steps, development of EAF steelmaking & rolling industry and other processing type industry with backward integration process (started with tinplate, G.I. sheet, and steel pipe, etc.) has been observed and the industry often proceeds gradually to integrated one while the existing one acting as nucleus. As regards EAF steelmakers and rerollers, often availability of scrap and billet is limited, which induces integration to solve the matter. Construction of integrated steel mills requires vast amount of funds. As measures to cope with the problem, a movement to construct joint mills through regional cooperation was seen once mainly at UN Economic Commission for Africa and others. Such plan generally reflects demand pattern in the region and almost all projects included small non-flat products (mainly bars).

B Trend of Price of Re-Bar

Trend of export and import prices of re-bars may be shown by average unit price obtained from external trade statistics or customs clearance statistics of each country in the world. Domestic prices of different countries cannot be compared generally as they are because distribution channel and price system vary from country to country and it is possible to grasp only general trend. In the following will be shown the trend of prices published in Metal Bulletin magazine which is considered as worldwide standard export prices and average price trend in Japan.

Basic General Export Prices on European Continent

			· · · · · · · · · · · · · · · · · · ·	
			Concrete bar	Wire rod
	<u></u>		(12 mm min)	(5.5 mm)
1984			180 - 205	225 - 255
1985			170 - 215	225 - 235
1986			220 - 230	230 - 250
Jan.	30,	'87	240+	250 - 255+
Feb.	27,	11	240 - 245+	255+
Mar.	31,	11	240 - 245+	255 - 260+
Apr.	3	11	240 - 245+	255 - 260+
Jun.	2,	11	245+	255 - 260+
11	30,	, u	245 - 250+	255 - 260+
Jul.	2,	11	245 - 250+	255 - 260+
. U	30,	. 0	245 - 250+	255 - 260+
Aug.	17,	11	250+	265+

Notes: 1. Annual price shows the highest and lowest during the year.

> Date is issuing date of Metal Bulletin and + shows commission included.

2. FOB US\$/M.T.

Source: Metal Bulletin

*The above prices are those M.B. editorial dept. gathered from main traders in Europe by telephone and standardized based on such interview on price trend. Export Tendency from Japan on Deformed and round Bar

	XXXXXXXX	. :	Def	Deformed Bar				Sma	Small round Bar		
-	Monthly	Total Weight	Total Va	Value	T•M∕\$SU	1. J	Total	Total	Total Value	Unit Price	90
	Average Yen/US\$	(M/T)	1,000 Yen	\$SN	1,000 Yen /M.T	T-M/\$SU	Weight (M/T)	1,000 Yen	ţsŋ	1,000 Yen /M.T	T-M/\$SU
1984		1,732,300	94,894,168	398,855,484	55	230	594,914	35,379,072	148,060,121	59	249
1985		2,323,325	2,323,325 126,085,561 52	522,727,424	54	225	546,527	32,180,597	132,313,699	59	242
1986		1,320,582	50,789,239 29	298,036,929	38	226	352,911	15,073,895	88,456,202	43	251
1986/85		57%	40%	57%			65%	478	67%		
1986.1.	202.01	71,860	3,259,525	16,134,666	45	225	27,182	1,545,751	7,651,474	57	281
• ف	169-07	154,829	5,732,021	33,903,243	37	219	44,807	1,823,394	10,784,849	41	241
12.	162.77	24,782	900,215	5,530,594	36	223	17,238	728,933	4,478,301	42	260
1987.1.	158.43	30,686	1,061,008	6,697,014	35	218	9,799	382,185	2,412,326	39	246
2.	152.83	72,243	2,315,902	15,153,452	32	210	9,262	339,898	2,224,027	37	240
'n	153.43	47,545	1,573,301	10,254,195	е С	216	25,387	1,196,675	7,799,485	47	307

Source: Ministry of Finance Japanese Government

Note: Price: 1. Based on FOB Price

2. Export price on yen Basis is decreasing strougly (Causes by yen Re-valuation)

- 1289 -

ANNEX III

Characteristics and Price Trend of Scrap

A Characteristics of scrap and DRI

1. Return scrap

Return scrap generated within steel works is gradually decreasing as years passed. Needless to say, this reflects the efforts made to improve yield of rolled steels, but the biggest contributing factor is introduction of continuous casting (CC) process and it can be expected that the return scrap will decrease further as CC process gains popularity.

It is generally believed that decrease of return scrap leads to increased purchasing of market scrap, but in fact if production of final rolled steels is constant, the decrease of return scrap only means the quantity of recylced scrap and does not lead to increased purchasing of market scrap. Advantages of return scrap in use are high and pure quality and grade identifiable. High reputation given to scrap sold by BF integrated steel mills may reflect this.

2. Market scrap

Statistics of market scrap in strict sense do not exist even in Japan where many steel statistics are well prepared. This is because scrap is not product but reject and because scrap industry consists of a small number of dealers and a great number of small-scale collectors. The condition of scrap is surprisingly similar in every country and so the unsatisfactory condition of scrap statistics. Consequently the quantity of scrap generated has to be estimated from the statistics of purchased scrap, export and import statistics and the quantity of return scrap sold by BF steelmakers. Market scrap or purchased scrap may be divided into prompt industrial scrap and dormant scrap. Prompt industrial scrap is generated by steel users in making their products. Namely it is generated in the process of manufacture of cars, ships and electric home appliances in the year that rolled steels are supplied to those manufacturers. In many cases, scrap is pressed at steel-consuming plants and returned to the steel mills.

On the other hand, dormant scrap consists of obsolete, worn out or broken products such as cars, ships, electric home appliances & buildings as their lives (duration) end and they are generated with some time lag from the time when the steel was produced and sold. In Japan, the years of duration is said to be 7.5 years of cars, 8 of electric home appliances and 35 of buildings, but it varies according to the level of economic activities. In the year of economic slowdown as at present, the duration extends and in Japan, it is now considered to be 13 years for all rolled steels included. Automobile scrap which is expected to increase in future includes a variety of materials, but it is shredded to remove foreign matters and processed to shredded scrap containing least foreign matters and recycled to steel mills.

The quantity of industrial scrap generated tends to decrease as process yield at steel consuming industries also is being improved. It decreases also when crude steel production shows slow growth and even if the growth is high, increase in generation of prompt industrial scrap may be not much.

On the other hand, dormant scrap is expected to increase considerably for at least ten years in Japan as full-scale recycling of rolled steels consumed in the past will take place from now on. Generally it is natural that the scrap generation tends to increase in countries who have a long history of steel consumption.

3. Quality of scrap and direct-reduced iron (DRI)

The problem of deterioration of purchased scrap was so far solved mainly by efforts on users' side such as intensified segregation, selective use of scrap by kind of steel, secondary refining in ladle, and dilution of impurities in purchased scrap by addition of return scrap or pig iron. However, common to every steelmaking country is the knowledge that as the demand for rolled steel which is the mother of scrap shifts to that of special steel, coated or thinner products, the scrap will inevitably deteriorate.

BOF can dilute the scrap by highly pure hot metal, but EAF depends on scrap for almost 100% of oxide material and the effect of poor quality scrap is remarkable. Because the demand for high grade steel is increasing, the measures to cope with the problem is very important. Of the conventional measures, use of iron source with least impurities as diluting agent is most important to solve the problem. Then, it can be expected that demand for high grade scrap increases and price differential from ordinary scrap expand further. If it goes too far, it is possible for DRI to substitute the high grade scrap.

DRI is cold oxide source containing solid Fe more than 90% which is directly reduced from iron ore by reformed reducing gas (CO, H_2) of natural gas and used in EAF and other steelmaking furnace. It is virgin oxide source produced from iron ore, and though it contains such gangue as SiO_2 , Al_2O_3 , it is highly pure cold oxide source containing almost none of detrimental elements such as Cu, Sn, Cr, Ni, Mo, etc.

While DRI's qualitative merits are appreciated, there are also demerits. Availability of low cost and abundant natural gas is essential; it is easily reoxidized and needs special precaution in its storage and transportation (the risk of spontaneous ignition may be avoided by making it hot briquet); and gangue contained results in lower yield, increase in power consumption and operation loss.

- 1292 -

DRI is generally consumed in the integrated steel mills where it is produced (the mills consisting of DR plant, EAF and RM) and sold outside only when there is any surplus. Commercial DRI plant specialized in selling its product is liable to be directly influenced by scrap market condition and so, commercialization is rare except in the countries where natural gas can be obtained at exceptionally low price. FIOR in Venezuela which exports hot briquet type DRI which is not easily reoxidized is one of successful examples, but it can be said that availability of abundant and low price scrap hinders growth of DRI trade. It is seen, however, that necessity of DRI as quality oxide source is increasing as available scrap deteriorates. If DRI is traded for reasons of its quality in future, the export from integrated steel mills with DR plant in oil producting countries blessed with abundant natural gas is expected to account for the greater part of such DRI.

Forecast of Dormant Scrap of Ordinary Steel Generated by Sector in Japan

5,198,1 c. (Unit: 1,000) 2.9 2.8 9 ດ. ເຈ з**.**1 8.2 38.7 ۍ و 9.61 4 .9 16.3 8. S 7.1 16.6 33.4 % Collected 585 3,653 1,319 3,090 1,089 855 708 466 960 18,599 (83 2 6,208 796 3,037 521 7,193 1.520 1990 F.Y Uncol-14 706 3,748 304 304 440 65 201 885 lect-973 409 11 82 337 4 2,615 able 1,012 006 1,400 650 3,854 22,347 3,374 3,143 1,100 5,904 1,769 086 1,360 480 Input 9,808 2.375 6,635 4,304*1_00.0 0 4 F 3.3 19.0 4.3 18.0 о**.**е 8.2 17.8 о. С 28.8 0. 0 6.1 (%) 42.7 Collected 495 2,883 15,142 82.9) 1,248 647 2,727 448 2,688 594 456 368 262 926 4,368 1,400 6,470 1985 F.Y 3,115 156 156 303 352 788 ഗ 424 55 120 665 ဓ္က 2.273 47 243 Uncol-791 Notes: *1 Figures in parentheses show average collection rate. Input lectable 3,030 2,188 8,743 600 480 526 550 3,003 800 1,287 270 1,350 1,438 2,735 4,903 18,257 4,611 4.0 25.0 പ പ 24.8 100.0 4 0 0 7 0 7 2.4 о. С 4.4 8° ∿ 35.5 6.1 42.8 13.1 21.7 % Collected 3,268₄₁ 9,203¹3 (83.6) 126 215 198 398 2,300 272 407 560 1,203 256 754 217 2,297 3,937 1,997 1978 Uncol-24 18 25 255 214 315 50 133 352 394 1,810 თ ing rate Input lect-9 1,2<u>83</u> ø 486 able 89.2_{*1} 3,662 83.6^{*1}11,013 (m*) 2,315 2,555 486 420 875 1,228 259 133 307 1,106 241 884 202 5,220 2,131 collect-75.4*2 98.0 0.06 56.0 70.0 68.2 99.2 45.0 90.0 96.9 98.8 94.7 93.8 64.0 97.1 8 Est. eng. works *4 Wire products Elec. machine Home & office Private civil Bldg.(Eq.95%) for building Sub-total Gas & water motorcycle) appliances G.I. sheet Bolt, nut, Cars (incl Elec. home Industrial Heavy scrap: machinery Sub-total Sub-total Light scrap: Tin cans utensils C.R.bar Others Others: Total

*2 Figures in Estimated collecting rate (sub-total) show average collecting rate in 1978.

*3 Input means increment of accumulated stock of steel consumed t years ago assuming the duration of t yrs.
*4 Excl. mining and public works
Source: Tekkokai, JISF September 1983 pp.33

Forecast of Prompt Industrial Scrap Generated by Sector in Japan (Unit: 1.000 t, %)

							5	21 t: 1,C	(Unit: 1,000 t, %)
	19	1978 F.Y		Г	1985 F.Y.		10	1990 F.Y.	
		Gener-			Gener-			Gener-	
	Q'ty	Q'ty rate	%	Q'ty	ating rate	%	Q'ty	Q'ty ating	».
Ordinary steel:									
Cars (incl. motorcycle)	2,722	29.8	44.5	2,929	28.5	39.5	2,989	27.8	36.1
Industrial machinery	941	20.9	15.4	1,263	19.6	17.0	1,574	19.5	19.0
Elec. home appliances	223	16.0	з. 6	286	15.4	0°0	341	15.0	4.1
Elec. industrial equip.	392	22.2	6.4	610	21.3	8.2	827	20.7	10.0
Shipbuilding	206	8 . 6	11.0	396	ຕ . ຜ	5°3	441	8.1	5.3
Building	674	4 0	а. 2 С	839	4.6	11.3	940	4.5	11.3
Civil eng. works	196	ຕ ູ ຕ	2.6	217	3.1	0.S	241	3.0	ۍ.م
Wire & bar products	160	4°3	6 . 6	173	4.2	ი კ	180	4.1	2.2
Others	565			697		9 . 6	753		9.1
Total	6,113	11.1	100.0	7,410	10.5	100.0	8,286	10.3	100.0
Special steel:	1,724	24.0		2,019	23.0		2,240	22.4	
Steel casting & forging	1.22	16.3		148	15.6		160	15.2	
Iron casting	413	11.1		487	10.7		521	10.4	
Total	2,259			2,654			2,921		
Grand total	8,372	12.3		10,064	11.8		11,207	11.5	
						-			

Source: Tekkokai (Monthly Bulletin of JISF) September 1983 pp.30

•

Steel Scrap Import to Japan by Origin Countries

(Unit: 1,000M.T)

Hongkong India USSR Canada Australia Others Unstralia UssR Critical 10 85 434 81 7 269 96 5242 15500 1 11 55 345 75 35 458 15100 1 12 51 345 75 358 14000 1 1 12 52 345 124 12 245 1500 1 1 1 12 51 124 12 245 5550 1500 1 1 1 13 51 124 12 440 55 5500 1 1 1 14 57 280 162 0 5500 2 0										Total		k
X (g)		ŝ		Honekone	5	С. С.	Cenada		Othere	12101	FI Ce	1 . M /
9 65 2270 700 65 454 81 7 245 755 4560 45 9 6 3082 754 47 15 75 3687 15500 4 9 6 3082 756 55 345 157 15 16700 4 9 6 4685 746 62 482 157 140 157 140 4 9 6 4685 746 62 482 1670 4 4 9 7 14516 7 410 328 637 5600 4 4 9 7 4,515 785 11 57 245 124 471 95 5360 15,000 4 9 7 4,516 78 450 16700 27 2306 15,000 4 9 7 4,52 757 78 550 16,000 56 16,000 4 9 7 4,516 750 160 162 490 520 16,000 4 9 7 2,	• •		(%)			2 2		•		Import		S
9 6 6 3.082 754 47 404 132 16 245 1657 15,100 4 9 6 7 2.868 7.38 55 3.45 75 3.45 175 3.5 4.78 7.5 3.887 14,000 3.5 9 6 7 4.200 785 7.5 3.45 174 4.10 32 5.357 14,000 4.4 9 7 0 4.228 78 7.5 3.45 17.4 4.1 3.5 5.50 15,100 4.4 9 7 1 1.515 657 5 4.7 4.1 5 5.350 15,100 4.4 9 7 1 1.515 657 5 4.5 5.7 3.501 16,700 4.4 9 7 2 3.593 740 57 2.80 15,100 4.4 9 7 4 4.72 782 782 782 16,700 4.4 9 7 5 3.593 710 17 279 4.4 27 2.306 15,100 4.4 9 7 4 1.204 60 97	\$	5			-	81	. 7	Ŷ,		4	5,8.0	
9 67 2868 738 53 53 436 73 5897 14,000 4 9 6 4,485 74.6 62 482 167 147 328 5387 14,000 4 9 7 1 1515 53 53 5350 545 15,000 4 9 7 1 1515 55 345 124 124 471 954 5350 21,600 4 9 7 1 1515 55 54 17 279 94 5520 21,600 4 9 7 3593 782 78 55 11 57 280 162 45 55 14700 4 9 7 3593 782 167 106 162 44 27 2306 15,100 4 9 7 3593 749 55 116 17 279 2605 14700 4 9 7 1204 642 60 97 126 162 1470 16 127 14700 10<	~0	3,082	ហ	•	-		16	4		œ	co	
9 6 8 4.85 7 3.4.6 6.2 4.82 169 147 410 328 6.285 16.900 4 9 7 1 1.315 6.57 5.45 12.4 42 471 95 5.350 16.900 4 9 7 1 1.315 6.57 5 43 372 197 143 125 491 55 5.350 16.900 4 9 7 1 1.315 6.57 5 43 372 23.06 14.700 4 9 7 5 5.357 782 782 782 74 57 23.06 14.700 4 9 7 5 1.379 782 782 78 3.261 14.700 4 9 7 5 1.379 749 57 280 16.700 4 4 9 7 5 1.379 749 57 280 16.700 4 4 9 7 5 1.379 749 57 2700 14 17 270 14 10 9 7 6 1.204 64 2.3 1.17 2.90 <td>-</td> <td>\$</td> <td>ы</td> <td></td> <td></td> <td></td> <td></td> <td>ю</td> <td></td> <td>80 80</td> <td>4,0.0</td> <td></td>	-	\$	ы					ю		80 80	4,0.0	
9 6 7 4200 785 75 545 124 42 471 95 5350 16200 4 7 7 1515 657 51 197 143 125 482 94 5.320 21600 6 7 7 1.515 657 5 11 57 236 17 279 43 5.320 21600 6 7 7 3.577 782 11 57 236 17 279 45 5.360 16.200 4 7 7 2.752 723 106 15 116 0 544 57 2300 17 7 4 2.752 723 116 15 140 162 490 50 4300 40 7 6 1204 642 55 116 0 236 15 110 7 7 988 636 27 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12<	\$	Ø	7 4.6			-		***	2	28	\odot	
9 7 0 4.228 780 51 197 143 125 482 94 5.320 21,600 4 9 7 1 1,515 657 5 43 372 0 544 27 2366 15100 4 9 7 2 5593 785 57 106 15 7 2366 15100 4 9 7 3 5573 782 11 57 280 17 279 43 53.61 11.700 4 9 7 3 5751 723 106 15 15 0 544 27 2360 14.700 9 7 4 2752 749 55 116 0 643 5300 10 10 9 7 5 11204 642 55 1140 16 192 5600 11 11 9 7 7 988 646 57 12 260 56 5500 10 10 9 7 8 5200 842 57 12 26 17 10 236 5500 11 </td <td>\$</td> <td>0</td> <td>ൽ</td> <td></td> <td>-</td> <td></td> <td></td> <td>\sim</td> <td></td> <td>ທ</td> <td>6,2 0</td> <td></td>	\$	0	ൽ		-			\sim		ທ	6,2 0	
9 7 1 1,515 657 5 45 372 0 544 27 2306 15,100 4 9 7 2 3,577 782 11 57 286 17 279 45 3,261 14,700 4 9 7 5 3,757 782 116 15 155 162 490 50 4807 22000 8 9 7 5 1,879 749 55 1,879 75 560 14,700 4 9 7 5 1,879 749 55 1,875 5,000 10 9 7 6 1,204 642 55 17 20 4807 2,500 10 9 7 6 1,204 642 55 116 0 623 156 5600 10 9 7 9 1,204 642 55 116 0 230 156 55,000 10 9 7 9 1,204 642 55 112 140 16 190 55,600 10 9 7 9 1,204 645 1,204 12 <td>7</td> <td>2</td> <td>0.</td> <td></td> <td></td> <td></td> <td></td> <td>æ</td> <td></td> <td>2 2</td> <td>1,6 0</td> <td></td>	7	2	0.					æ		2 2	1,6 0	
972 3,593 795 9 34 286 17 279 43 3,261 14,700 8 973 3,757 782 11 57 280 162 490 50 4807 22000 8 973 3,757 782 116 15 15 15 15 15 4807 22000 8 975 140 14 15 15 15 15 51 116 10 976 1204 642 55 1875 5,000 10 977 988 536 27 120 140 16 17 250 157 2500 171 978 1300 842 53 97 129 16 17 2500 16 17 979 2302 815 51 51 179 19 25 5300 16 16 979 2302 815 140 16 192 50 155 55,00 16 16	1971	-	ហ	Ś		\sim	0	4		G	5,10	
973 3757 782 11 57 280 162 490 50 4807 22000 8 974 2752 723 106 15 15 0 623 158 5805 45800 14 975 1879 749 55 51 116 0 408 19 2500 10 976 1204 642 60 97 179 0 408 19 2500 10 977 988 636 27 12 260 0 217 50 1554 2300 16 977 988 636 25 9 140 16 17 50 1554 2300 16 979 2302 842 53 9 140 16 19 560 16 16 979 2302 842 51 12 21 18 29 55600 16 979 2302 84 17 231 18 29 516 16	r	5	0	\$		တ		r		v	4,7 0	
974 2.752 723 106 15 15 0 625 158 5805 45800 10 975 1,879 749 35 51 116 0 408 19 2508 32500 10 976 1,204 642 60 97 179 0 408 19 2508 32500 10 977 988 63.6 27 12 260 0 280 55 1,875 5.000 8 978 3300 84.2 53 9 140 16 192 190 5800 25,800 16 979 2302 81.5 29 2 129 16 17 280 6,4 2800 25,600 16 979 2302 81.5 29 21 17 20 16	~	3,757	യ			ß		\$		C	2,0 0	81
9 7 5 1879 74.9 35 51 11.6 0 408 19 2.508 3.2500 10 9 7 6 1.204 64.2 60 97 179 0 280 55 1.875 3.0800 10 9 7 7 988 63.6 27 12 260 0 280 55 1.875 3.000 10 9 7 8 3.200 84.2 53 7 12 2.60 0 2.80 55 1.875 3.000 11 9 7 8 3.200 84.2 53 7 12 2.60 0 2.80 5.500 11 9 7 9 2.302 84.2 53 7 12 140 16 172 190 3.800 2.5300 16 9 7 9 2.462 82.4 51 7 2 141 17 2 1 1 2 3.500 16 1 1 1 1 1 1 1 1 1 1 1 1 1 1	~	ŝ	Ś				° O,	2		0 8	3,8 0	4
97 6 1204 642 60 97 179 0 280 55 1,875 30800 10 97 7 988 636 27 12 260 0 217 50 1,554 23000 8 97 7 988 636 27 12 260 0 217 50 1,554 23000 8 97 9 2300 842 53 9 140 16 192 190 3800 23,500 11 97 9 2,302 81.5 29 2 129 17 280 64 2,825 5,600 16 98 0 2,462 82.4 31 2 17 231 118 2,990 3,700 14 98 1 935 60.1 50 1 412 2 2 3,700 14 98 2 1,672 645 57 54,00 3,700 12 98 2 2,582 580 1 4 2 2,700 12 98 2 <td< td=""><td>2</td><td>1</td><td>4</td><td></td><td>-</td><td></td><td>0</td><td>o</td><td></td><td>0</td><td>2,50</td><td></td></td<>	2	1	4		-		0	o		0	2,50	
977 988 636 27 12 260 0 217 50 1,554 23,000 8 978 3200 842 53 9 140 16 192 190 5,800 23,300 11 978 3200 842 53 9 140 16 192 190 5,800 23,300 11 979 2,302 84.5 53 2 129 16 16 2,90 5,580 16 16 980 2462 82.4 51 2 129 17 231 118 2,990 36,500 16 981 935 601 50 1 412 2 236 16 16 16 2,990 36,500 12 982 1,672 645 54 1 412 2 286 16 2,922 29,00 12 985 2,565 637 1 412 2 2 2 2 2 2 2 2 2 2 <td>2</td> <td>0</td> <td></td> <td></td> <td></td> <td>~</td> <td>0</td> <td>ω</td> <td></td> <td>5</td> <td>0,8 0</td> <td></td>	2	0				~	0	ω		5	0,8 0	
978 3200 842 53 9 140 16 192 190 5800 23,500 11 979 2302 815 29 2 129 19 5800 23,500 15 980 2462 815 29 2 129 17 231 118 2,990 3,500 16 980 2462 824 51 2 129 17 231 118 2,990 3,500 16 981 935 601 50 1 412 2 286 164 2,592 3,700 12 982 1.672 64 2,592 54 1 412 2 264 7,69 3,600 72 983 2,582 581 1 412 2 2 264 759 3,714 32,000 12 984 2,366 63 1 492 2,57 2,7100 12 985 2,113 5,81 56 1,64 759 3,714 3,2000	1977	ω	NÓ			-0	0	-		ŝ	3,0 0	
9 7 9 2.302 8 15 29 2 129 19 280 64 2825 55,800 16 9 8 0 2.462 8 2.4 31 2 129 17 231 118 2,990 36,500 16 9 8 1 9 35 60.1 50 1 156 1 234 181 1,557 31,700 14 9 8 1 9 35 60.1 50 1 412 2 266 164 2,592 28,700 12 9 8 2 1,672 64.5 54 1 412 2 266 164 2,592 28,400 12 9 8 2 2,582 58,2 62 2,86 164 2,592 28,400 12 9 8 4 2,366 637 66 1 492 132 28,400 13 9 8 4 2,366 637 66 1 492 3,714 3,2000 13 9 8 5 2,113 581 1 1 492 132 281 61 16 </td <td>~</td> <td>0</td> <td></td> <td></td> <td>\$</td> <td></td> <td>16</td> <td></td> <td></td> <td>0</td> <td>3,3 0</td> <td></td>	~	0			\$		16			0	3,3 0	
9 8 0 2.462 82.4 31 2 129 17 231 118 2.990 36.500 14 9 8 1 935 60.1 50 156 1 234 181 1,557 31,700 14 9 8 2 1.672 645 54 1 412 2 286 164 2,592 29,700 12 9 8 2 1.672 645 54 1 412 2 286 164 2,592 29,400 12 9 8 3 2,382 581 56 1 412 2 264 759 3,714 32,000 13 9 8 4 2,366 637 66 1 492 132 281 759 3,714 32,000 13 9 8 5 2,113 581 564 759 3,714 32,000 13 9 8 5 2,113 581 16 160 472 2,722 18,700 12 9 8 6 1,184 435 37 472 2,722 18,700 11	~	2,302			7		19	œ		2	5,8 0	
9 8 1 9 35 60.1 50 156 1 234 181 1,557 31,700 14 9 8 2 1,672 64.5 54 1 412 2 286 164 2,592 29,700 12 9 8 2 1,672 64.5 54 1 412 2 286 164 2,592 29,700 12 9 8 5 2,382 69 323 62 280 907 4,023 28400 12 9 8 4 2,3566 63.7 66 238 20 264 759 3,714 32,000 13 9 8 5 2,113 5,91 54 1 492 132 281 502 3,714 32,000 15 9 8 6 1,184 435 37 132 281 502 3,714 52,000 15 9 8 6 1,184 435 27 213 137 502 3,714 57,100 12 9 8 6 1,184 435 264 772 2,7100 </td <td>œ</td> <td>~0</td> <td>ŝ</td> <td>31</td> <td>7</td> <td></td> <td>17</td> <td>N)</td> <td></td> <td>0</td> <td>ó,5 0</td> <td></td>	œ	~0	ŝ	31	7		17	N)		0	ó,5 0	
9 8 2 1.672 64.5 54 1 412 2 286 1.64 2.592 29700 12 9 8 5 2.382 592 69 323 62 280 907 4.025 29400 12 9 8 4 2.366 637 66 323 62 280 907 4.025 28400 12 9 8 4 2.366 637 66 238 20 264 759 3.714 32.000 13 9 8 5 2.113 591 54 1 492 132 281 502 3.575 2.7100 12 9 8 6 1,184 435 37 839 10 180 472 2.722 18,700 11 Source: Ministry of Finance, Japanese Government 10 180 472 2.722 18,700 11		3	Ö				*	÷Ô.		ß	1,7 0	141
985 2382 592 69 323 62 280 907 4,023 28,400 13 984 2,3566 637 66 238 20 264 759 3,714 32,000 13 985 2,113 59,1 54 1 492 132 281 502 3,714 32,000 13 986 1,184 435 37 839 10 180 472 2,722 18,700 11 Source: Ministry of Finance, Japanese Government 839 10 180 472 2,722 18,700 11	ŝ	2	র্ন		t	، -	7	Ð		0	9,70	
984 2,366 637 66 238 20 264 759 3,714 32,000 13 985 2,113 5,11 54 1 492 132 281 502 3,575 2,7100 12 986 1,184 435 37 839 10 180 472 2,722 18,760 11 Source: Ministry of Finance, Japanese Government Government 10 180 472 2,722 18,760 11	ŝ	2,382	ο.			3		ø	0	^N	8,40	
985 2,113 5,1 5,4 1 4,92 1,32 2,81 5,02 5,575 2,7100 12 986 1,184 4,35 3,7 83,9 10 180 4,72 2,722 18,700 11 Source: Ministry of Finance, Japanese Government	တ	2,366	кń			N)		-0	ŝ	7	2,0 0	
986 1,184 435 37 839 10 180 472 2,722 18,760 11 Source: Ministry of Finance, Japanese Government	œ	-	ς.		r-	\$		æ	0	57	7,10	
Ministry of Finance, Japanese G	8 6	ω	ъ			H)		æ	5	2	8,7 G	
	Sourc		of O	Ι.	6	rnment						

Notes: Unit price is C.I.F. Of "Others" in 1986, U.K. is 81,000 t, Vietnam 71,000 t, South Africa 69,000 t and Saudi Arabia 59,000 t.

B World demand and supply of scrap and U.S. scrap

The regions in the world where scrap is surplus are North America, mainly U.S.A. which has the largest accumulated stock of steel consumed in the past throughout the world, Australia, U.S.S.R. and some countries in East Europe. On the other hand, the countries characterized by shortage of scrap are the countries in the Southeast Asia, Italy and Spain. Japan imports some scrap, but supply of domestic scrap increased recently and the shortage tends to decrease. The country who holds the key position in the world scrap demand/supply condition is the largest exporter, U.S.A. Though further growth of mini-mills who depend on scrap can be expected, rapid recovery of steel production in the whole industry in U.S. may not be expected and the recovery will be very slow or a moderate growth at the best. With the accumulated stock of steel consumed of 2.5 billion tons, it can be expected that U.S. export of scrap will keep the level in the past years. However, with a view of preventing price rise of scrap for domestic EAF steelmakers, the Government often took measures to restrict export of scrap. Such policy measures of U.S. may have an effect on the world scrap demand/supply condition with possibility of adding factors of quantitative instability and price increase.

Supply and Consumption Balance on Steel Scrap in USA

(345) 27,636 1,073 9009 9,213 72,378 35,300 2250 63954 (7.3) 5,831 80.0.68 44,220 2,186 13,932 (Unit: 1,000 M-T) 1.985 (588) 47,070 522 : (33.9) 27,167 (31.6) 26,559 7,675 855 8,617 4775 68,944 14,920 30,305 555 3,378 2,471 59,604 83,9,40 41,330 1984 562 47,920 28,457 (52.2) 24,718 5268 (315) 24145 (61.5) 47,220 2835 6,945 806 56,048 6,843 37,886 63,185 27,777 (7.0) 5399 76763 14714 1983 2,971 581 (364) 24,609 6,648 880 51,153 6206 5,822 12754 25214 2,402 (82) 5543 (608) 41104 31,602 3,255 (31.0) 21,009 56,641 1982 67,656 430 (358) 39,245 7365 5,923 21,118 8267 1,379 77,199 (60.6) 66,435 83,763 35,963 3,670 1981 (11.1) 12,204 (283) 30,976 44,008 510 6,802 109,615 7,274 75,942 10,173 8,564 1054 36428 3,312 (57.7) 38289 506 86,124 6,754 19,830 (11.6) 11,843 (60.5) 61,340 (279) 28274 47,329 1980 101,457 7,914 (38.3) 47,374 10,130 1,342 52,735 39,513 3,736 11,589 89,722 (14D) 17,380 (61.1) -75530 735 9,506 24,037 (249) 30,779 100,844 1979 123,689 (380) 47,250 8417 7,509 1,722 90016 98,219 10,676 23,593 12,771 (235) 29,245 37,457 3,797 50,212 (15.5) 19,332 (60.9) 75,736 757 1978 124313 (39.5) 44,920 8,494 12,996 83,642 5,602 10,058 1,421 (16.0) 18,183 (223) 25295 89,223 22711 33035 3,421 (61.8) 70,224 113702 43,643 660 1977 (39.1) 45383 ÷ 12,103 1,846 81,565 29,303 11,192 23,772 3,3,49 7,367 (184) 21,292 (624) 72,502 534 1976 22,328 116,122 44,924 90,841 (19.2 (39.5) 41,769 (61.6) 65.138 (19.5) 338 27,080 3,566 10,659 1,478 84276 10,687 8,827 ÷ ഗ (190) 105,817 42,169 21,221 20,575 74,691 20104 197 (37.9) 50,123 7,888 4,135 14,189 1,848 (55.9) 73,984 (197) 26009 224 4 (244) 32205 54,459 17,381 24,144 33,998 95,695 : 132,198 104,806 1974 (264) 36088 (383) 52,437 (18.4)24,783 3,852 10,211 (552) 75553 32,072 11,837 783 50,773 18,649 93,976 1973 25,183 36,804 354 103,564 : Inventory (end of Electric Furnace **Prucased Scrap** for Converter Retern Scrap for Others for Cupora Open Furnace Total Total Total Crude Sterric Production Production Productric Protal Total ы Ш for B.F for O.F each year) Import for Export noiiqmuanoO **Atqqus** Balance

and Consumption Balance of Steel scrap in USA" Notes to Table "Supply

Notes: 1. Figures in () in "Crude steel production" show share of each process (\$).

2. Figures in () in "Supply: Return Scrap" show @ against crude steel (%). Sources: The Japan Iron and Steel Federation, U.S. Bureau of Mines, U.S. Bureau of

Census Figures for 1985 from FACTS

- 1298 -

Tendency on Steel Scrap Price in USA

	·											·	
F.y Month		4	5	6	7	· 8	9	10	1 1	1 2	1	2	3
	FOB	30.00	30.50	29.00	29.75	3 1.0 0	3 3.5 0	3 1.2 5	3 1.5 0	31.50	3 2.5 0	3 3.7 5	3 2.7 5
1968	COMPOSITE	26.20	2.1.9.6	2 3.5 0	2 3.2 4	2 3.5 0	2 3.9 0	2 3.5 0	2 4.0 4	24.90	27.25	28.00	26.70
	FOB	33.45	3825	4 0.5 0	4 3.0 0	4 4.2 5	4 5.7 5	47.00	46.00	4 6.0 0	5 2.2 5	5 8.0 0	5800
1969	COMPOSITE	26.07	29.25	29.43	3 0.1 7	3 2.4 2	3 5.8 3	3 4.0 0	33.50	.36.76	4 0.3 7	46.17	44.50
	FO B	5 5.5 0	5 2.5 0	50.00	1 9.2 5	48.00	4 2.2 5	4 4.5 0	4 1.0 0	40.50	4 0.2 0	4 0.0 0	37.00
1970	COMPOSITE	4 1.1 0	4 3.0 8	4 3 5 8	4 0.5 0	39.71	4 2.5 0	4 0.6 7	3 5.6 7	3 5.8 3	40.17	39.50	-3 6.1 7
	FOB	3 5.0 0	3 4.7 5	3 2.2 5	3 2.5 0	3 2.0 0	3 3.2 5	3 2.5 0	31.50	31.00	3300	3 5.5 0	3 5.5 0
1971	COMPOSITE	3 4.1 7	34.50	3317	3 2.1 7	3 1.8 3	3 3.1 7	3 2.1 7	31.00	3 0.8 4	3 2.8 4	3 5.3 3	3 4.8 3
	FOB	36.75	3 6.0 0	3 5.2 5	3 6.2 5	4 1.5 0	4 2.0 0	4 5.0 0	49.00	60.00	6300	65.00	67.00
1972	COMPOSITE	3 6.5 0	36.50	3 5.1 7	3 6.1 7	37.83	38.50	38.17	:3 6.9 0	4 3.8 3	48.50	50.83	48.17
	FOB	69.50	7 1.0 0	7 3.5 0	78.00	83.00	87.00	9 3 0 0	9800	100.00	125.00	140.00	14000
1973	COMPOSITE	47.17	50.50	54.17	5 3.8 3	5 6.5 0	6 0.8 3	6983	8 1.8 3	77.83	9 2.5 0	1 1 2.5 0	131.00
	FOB	. 1 5 0.0 0	150.00	1 5 5.0 0	16000	155.00	155.00	1 3 5.0 0	12000	100.00	8 2.0 0	90.00	95.00
1974	COMPOSITE	12771	99.04	1 1 0.2 1	1 2 8 2 1	117.10	114.42	119.16	101.17	8 0.2 5	77.76	79.25	8 5.1 7
	FOB	105.00	9 5.0 0	9 3.0 0	88.00	8 5.0 0	8 3.0 0	7 1.0 0	69.00	77.00	8800	97.00	10300
1975	COMPOSITE	86.00	8 2.3 7	69.08	5820	6 0.5 8	7 4.8 3	6323	58.50	63.70	7 2.1 7	78.08	8 5.0 9
	FOB	103.50	89.00	9 0.0 0	9 1.5 0	8 4.5 0	7 4.5 0	64.50	70.00	7 3.0 0	7 5.0 0	7 5.0 0	7 5.0 0
1976	COMPOSITE	9 2.3 7	83.75	8 3.2 5	87.77	8 1.0 0	7 0.5 7	64.00	63.17	6817	7 2.1 7	7 2.1 7	7 3.3 6
	FOB	70.00	6 5.5 0	6 3.5 0	6 2.0 0	6 1.5 0	6000	57.00	56.00	7 0.0 0	7 5.0 0	8 2.5 0	86.00
1977	COMPOSITE	7 1.9 2	66.00	6203	6 1.2 5	6 1.5 0	59.23	4992	47.83	59.16	70.33	7 1.5 0	7 4.1 6
	FOB	86.00	8 2.0 0	8 5.0 0	8800	88.00	8800	102.50	107.00	113.00	130.00	136.50	131.00
1978	COMPOSITE	76.08	7 2.0 9	7 3.5 0	7 7.8 3	86.49	7 2.9 2	7 3.2 5	8 2.9 6	89.91	96.08	108.08	118.76
	C & F	104.00	102.00	106.00	108.50	109.50	110.50	1 2 5.0 0	130.50	136.50	152.50	159.50	157.00
	FOB	1 1 5.3 0	111.00	112.00	110.00	107.00	104.00	110.00	119.00	12000	126.00	129.00	1 2 4.0 0
1979	COMPOSITE	101.66	98.83	110.83	96.91	90.83	88.09	86.91	9 1.7 6	93.41	99.10	105.00	1 0 2.0 8
	C & F	1 4 3.5 0	145.00	150.00	147.00	1 4 2.0 0	139.30	147.20	156.50	158.00	161.00	167.00	163.00
	FOB	108.00	96.00	9 5.0 0	104.00	110.00	106.50	104.50	104.50	103.50	98.50	96.00	9 5.0 0
1980	COMPOSITE	9 5.9 1	78.56	6 9.3 3	7 5.1 0	8 4.4 1	9 4.0 0	9 5.9 2	98.50	102.08	:98.25	99.50	10509
	C & F	152.00	140.00	137.20	146.00	149.50	1 4 5.5 0	145.50	148.00	146.50	137.00	135.00	13300
	FOB	9 2.0 0	89.80	83.00	8 2.5 0	8 1.5 0	79.00	76.00	79.00	83.00	90.00	9 1.0 0	8800
1981	COMPOSITE	102.57	95.42	89.17	90.17	9 5.3 3	91.33	8 2.5 7	7 5.6 6	7 6.2 3	8 4.3 3	8 2.1 7	77.75
1701	CC&F	127.00	125.80	119.00	115.00	111.50	10800	106.00	10550	10800	1 1 5.0 0	1 1 3.0 0	113.00
	FOB	83.00	80.00	7 3.0,0	76.00	80.00	7 5.0 0	7 0.0 0	67.00	7000	7 3.0 0	80.00	8 5.0 0
1982	COMPOSITE	71.70	62.67	58.33	56.16	5 5.7 4	56.23	5 2.9 0	5 1.2 5	5 2.3 0	59.92	67.91	7 3.4 9
	C & F	111.00	108.00	98.00	98.00	98,00	9 3.0 0	90.00	8 8.0 0	9 1.0 0	98.00	1 0 5.0 0	110.00
	FOB	8 1.00	78.00	8 1.0 0	8 2.0 0	8 2.0 0	8 5.0 0	87.00	88.00	93.00	100.00	1 0 5.0 0	100.00
1983	COMPOSITE	7 1.00	67.00	7 0.7 6	7 1.7 5	7 5.0 3	77.17	77.66	80.09	8670	93.17	9 5.1 7	9 1.8 3
		10800	103.00	1 0 5.0 0	102.00	102.00	105.00	108.00	110.00	115.00	120.00	126.00	1 2 2.0 0
	FOB	97.00	98.00	97.00	9 6.0 0	97.00	100.00	97.00	93.00	93.00	94.00	9 4.0 0	9 3.0 0
1984	COMPOSITE	90.17	89.24	83.16	8 2.1 7	82.10	85.00	8 2.9 0	79.08	78.75	8 0.8 3	8 3 1 6	8 6.7 5
	C & F	117.00	119.00	117.00	115.00	117.00	121.00	117.00	114.00	114.00	114.00	113.00	1 1 2.0 0
	FOB	8200	8 1.0 0	80.00	8 5.0 0	85.00	8 4.0 0	8 5.0 0	8 5.0 0	86.00	8800	8800	88.00
1985	COMPOSITE	80.17	70.97	6 6.3 4	6 8.4 1	7 3.5 7	7 2.7 5	7 1.1 7	68.83	69.75	7 3.3 4	7 5.5 0	7 4.0 8
1703	C & F	108.00	100.00	98.00	102.00	101.00	99.00	102.00	103.00	104.00	105.00	104.00	102.00
	FOB	· 87.00	8 2.0 0	8 2.0 0	8 3.0 0	8 4.0 0	83.00	80.00	80.00	8 1.0 0	8 0.0 0	79.00	7800
1986	COMPOSITE	7 3.4 2	7 1.5 0	7 0.8 3	7 1.7 0	7 5.0 8	7 4.5 0	7 3 1 7	74.17	7 4.2 3	7 6.0 0	77.09	7 4.5 6
1700	C & F	100.00	95.00	94.00	95.00	96.00	97.00	96.00	96.00	96.00	9 6.0 0	94.00	94.00
		100.00	, , , , , , , , , , , , , , , , , , , ,	7 4.00	L 70.00	,	////	1	L	L.,	L		•

Source : The Japan Iron and Steel Federation

Note : Price Based on No.1 HMS.

(Unit : US\$/M·1	(Unit	:	US	\$ /	·M٠	т)
------------------	---	------	---	----	------	-----	---	---

- 1299 \sim 1300 -

Steel Scrap Export by USA to World

С. У	1969	1970	1971	1972	1973	1974	1975	1976	1977 -	1978	1979	1980	1981	1982	1983	1984	1985	1986
Country										· · · · · · · · · · · · · · · · · · ·								
	3,827	4,736	1,587	2,110	4,2 4 8	2,703	2,181	1,141	947	2,894	2,651	2,575	1,080	1,388	2,358	2,4 3 1	1,915	1,565
Japan	(64.0%)	(50.4%)	(24.1%)	(31.5%)	(41.6%)	(34.2,%)	(24.7%)	(15.5%)	(16.9%)	(34.4%)	(26.2%)	(25.4%)	(18.2%)	(22.4%)	(34.6%)	(28.2%)	(21.3%)	(14.8%)
·	503	775	269	412	778	691	717	867	1,397	1,364	1,287	1,575	1,126	1,381	1,340	1,663	1,795	2,7 1 2
S · Korea	(6.0%)	(8.2%)	(4.1%)	(6.2%)	(7.7%)	(8.7%)	(8.1%)	(11.8%)	(25.0%)	(16.2%)	(12.7%)	(15.5%)	(19.0%)	(22.3%)	(19.6%)	(19.3%)	(19.9%)	(25.5%)
	89	137	392	399	745	495	. 276	276	405	357	575	898	324	319	453	367	375	604
Taiwan	(1.1%)	(1.5%)	(6.0%)	(6.0%)	(7.3%)	(6.3%)	(3.1%)	(3.7%)	(7.2%)	(4.2.%)	(5.7%)	(8.8%)	(5.5%)	(5.1%)	(6.6%)	(4.3%)	(4.2%)	(5.7%)
	938	1,047	554	659	1,024	813	1,566	1,695	715	675	1,269	1,055	393	787	323	552	825	611
Spain	(11.3%)	(11.1%)	(8.4%)	(9.8%)	(10.1%)	(10.3%)	(17.8%)	(23.0%)	(12.8%)	(8.0%)	(12.5%)	(10.4%)	(6.6%)	(12.7%)	(4.7%)	(6.4%)	(9.2%)	(5.8%)
	820	447	534	650	321	439	556	657	189	595	1,076	827	31	11	59	278	279	277
Italy	(9.9%)	(4.8%)	(8.1%)	(9.7%)	(3.1%)	(5.6%)	(6.3%)	(8.9%)	(3.4%)	(7.1%)	(10.6%)	(8.1%)	(0.5%)	(0.2%)	(0.9%)	(3.2%)	(3.1%)	(2.6%)
	559	646	807	821	737	858	628	808	474	939	883	717	764	279	489	707	405	333
Canada	(6.7%)	(6.9%)	(12.3%)	(12.3%)	(7.2%)	(10.9%)	(7.1%)	(11.0%)	(8.5%)	(11.1%)	(8.7%)	(7.0%)	(12.9%)	(4.5%)	(7.2%)	(8.2%)	(4.5%)	(3.1%)
· · · · · · · · · · · · · · · · · · ·	546	775	529	564	954	850	1,187	540	311	409	739	1,052	820	344	380	439	541	288
Mexico	(6.5%)	(8.2%)	(8.0%)	(8.4%)	(9.3%)	(10.8%)	(13.5%)	(7.3%)	(5.5%)	(4.9%)	(7.3%)	(10.3%)	(13.8%)	(5.5%)	(5.6%)	(5.1%)	(6.0%)	(2.7%)
	_	5	57	209	237	135	312	82	115		• 7	-	-	-	-	_	-	
Argenchin		(-)	(0.8%)	(3.1%)	(2.3%)	(1.7%)	(3.5%)	(1.196)	(2.0%)		(0.1%)							
	1,0 4 2	835	1,8 5 4	873	1,167	904	1,404	1,3 0 1	1,0 4 9	1,184	1,643	1,474	1,3 8 5	1,697	1,4 2 0	2,180	2,874	4,2 2 8
	(12.5%)	(8.9%)	(28.2%)	(13.0%)	(11.4%)	(11.5%)	(15.9%)	(17.7%)	(187%)	(14.1%)	(16.2%)	(14.5%)	(23.5%)	(27.3%)	(20.8%)	(25.3%)	(31.9%)	(39.896)
		9,403	6,583	6,697	10,211	7,888	8,8 2 7	7,367	5,602	8,417	10,130	10,173	5,9 2 3	6,206	6,822	8,617	9,009	10,618
Total	(100.0%)	(100.0%)	(100.0%)	(100.0%)	(100.0%)	(100.0%)	(100.0%)	(100.0%)	(100.0%)	(100.0%)	(100.0%)	(100.0%)	(1000%)	(100.0%)	(100.0%)	(100.0%)	(100.0%)	(100.0%)

Source : U.S. Department of Commerce-Mineral industry report

Steel Scrap Export on Grade by USA

(Unit: 1,000M · T)

			······	·					
Grade	1978	1979	1980	1981	1982	1983	1 9 8 4	1985	1986
Stainless steel scrap	104	102	107	160	119	73	149	163	167
Nal heavy melting scrap	2,1 4 3	2,4 4 7	2,637	1,457	1,708	1,719	2,2 7 9	2,509	2,651
No.2 heavy melting scrap	759	1,0 1 3	968	561	567	653	797	696	723
Nal baled steel scrap	134	132	108	37	139	187	70	168	141
Ma2 baled steel scrap	296	591	285	247	164	199	259	277	256
Shredded steel scrap	2,435	2,703	3,015	1,745	1,870	1,841	2,5 1 7	2,311	3,170
Borings shovelings and turnings	672	807	698	441	523	483	726	. 794	663
Other steel scrap	1,480	1,762	1,645	820	763	1,390	1,285	1,487	1,857
ľron acrap	394	573	710	455	353	277	535	604	990
Total acrap	8,417	10,130	10,173	5,9 2 3	6,206	6,829	8,617	9,009	10,618

Source; U.S. Department of Commerce

.

(Unit: 1,000M·T)

- 1301 \sim 1302 -

C World scrap prices

There is no data for universal comparison of scrap price in the world. There are many patterns according to scrap grades and distribution channel varies among different countries. Therefore it should be kept in mind that the standard, average price trend shown in attached sheet shows only a general trend.

The trend of import price of semi-finished products is also given in attached sheet, but basically selling price of semis is not determined by the factor including the sum of production cost. It is determined inversely from the price of product which is produced from the semis by taking into consideration the yield of the final products, and so it is characterized by the fact that the price so determined will not necessarily be higher than the production cost of the semis.

Likewise, export price is naturally affected greatly by international market price level and there are many cases where export is viewed as coordinating factor or buffer of overall production flow (material balance) of steelmakers in many countries.

- 1303 -

Steel Scrap Price on Selected Countries

System King dom 53,6 5,4,4 2,1,8 53,6 5,4,4 2,1,8 53,75 5,4,4 2,1,8 53,75 5,4,4 2,1,8 53,74 2,1,5 5,1,5 53,74 3,1,5 5,1,5 53,74 3,1,5 5,1,5 53,74 3,1,5 5,1,5 53,74 3,1,5 5,1,5 53,7 5,1,5 5,1,5 53,7 5,1,5 5,1,5 53,7 5,1,5 5,1,5 53,6,0 3,1,5 5,1,6 53,6,1 3,1,5 5,1,6 53,6,1 3,1,5 5,1,7 53,6,1 3,1,5 5,1,4 53,6,1 3,1,5 5,1,7 53,6,1 3,1,1 3,1,1 53,6,1 3,1,1 3,1,1 53,6,1 3,1,1 3,1,1 53,6,1 3,1,1 3,1,1 54,6 3,1,1 3,1,1 55,2 3,1,1 3,1,1 55,2 3,1,1 3,2,2 55,2 3,1,1 3,2,5 55,2 3,2,1 3,4,5 55,2 3,4,1 4,4,5 7,6,6 3,4,1						W Germany	11111	talv	
Y Jopinser yen S <th< th=""><th>۲l</th><th>erag</th><th>ice</th><th>igh L</th><th></th><th></th><th>K ingdom</th><th>1 1 1</th><th>2</th></th<>	۲l	erag	ice	igh L			K ingdom	1 1 1	2
5 5 1850 551 24500 5100 5100 510 2222 - 41 5 17010 473 18500 235 44 215 - 41 5 18200 21300 18500 535 440 515 - 41 5 18200 534 1800 18500 535 440 515 - 41 6 12040 413 1710 14300 537 440 515 - 41 6 15240 510 265 279 540 510 515 - 540 6 15240 7110 71100 1710 257 520 510 510 510 510 510 510 510 510 510 510 510 510 510 510 510 510 510 520 520 510 510 510 510 510 510 510 510 510 510 510 510 510 510 510 5	ι	apanese ye	€9	apanese ye	÷	\$	69	₩	69
5 22310 611 35500 22500 520 405 272 - 41 5 17010 412 3500 12300 315 515 - 42 5 17010 41300 374 315 515 - 41 5 1800 377 374 315 - 40 5 1500 1800 357 350 315 - 41 6 1520 542 20700 1800 357 350 315 - 41 6 1520 544 1700 21100 256 250 <td>n</td> <td>9,85</td> <td></td> <td>$4,300 \sim 15,10$</td> <td>o.</td> <td>4</td> <td>21.8</td> <td>1</td> <td>1</td>	n	9,85		$4,300 \sim 15,10$	o.	4	21.8	1	1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ഹ	9.18	÷	$5,300 \sim 23,50$	ю	d	\sim	1	
58 17.0110 47.5 16.500 15.200 37.5 44.1 31.5 - 5.4 61 19.203 56.2 20.700 18.600 35.7 37.5 5.5 44.0 5.6 62 19.203 58.2 20.700 18.600 35.7 37.5 44.0 5.6 63 15.940 58.2 27.700 18.600 35.7 37.9 5.15 4.40 63 15.940 40.1 18.100 2.6 35.1 2.90 31.0 37.0 37.0 63 16.670 45.0 15.500 35.6 36.0 31.5 4.0 37.0 2.6 35.0 35.0 35.0 36.0 35.0 26.0 35.0 26.0 35.0 36.0 35.0 36.0 35.0 36.0 35.0 36.0 35.0 36.0 35.0 36.0 35.0 36.0 35.0 36.0 36.0 35.0 40.0 36.0 36.0 35.0 40.0 36.0 36.0 36.0 36.0 36.0 36.0 36.0	ഗ	5,63		4,900 ~ 14,30	Ś	¢,	ς.	1	
59 20,200 19,100 19,100 52,4 35,5 - 54 61 19,220 58,4 20,700 18,000 32,4 35,5 50 35,5 50 35,5 50 36,5 62 14,400 52,100 14,000 32,1 20,00 35,5 500 35,5 500 36,5 63 16,270 45,2 17,100 35,10 20,00 35,1 24,00 36,0 63 16,670 45,2 17,500 16,470 35,10 31,0 20 36,0 63 16,670 47,0 15,470 35,4 31,0 20 20 64 16,670 47,0 54,70 35,4 31,0 41,0 20 65 16,670 47,0 54,70 35,4 41,0 20 20 67 17,650 48,0 15,470 25,4 31,0 34,0 20 20 21,0 21,5 20 21,0 21,5 20 21,0 21,0 21,0 21,0 21,0 <td>ഗ</td> <td>7,01</td> <td>1</td> <td>$8,500 \sim 15,20$</td> <td>~</td> <td>ন্দ</td> <td>÷</td> <td>1</td> <td>4</td>	ഗ	7,01	1	$8,500 \sim 15,20$	~	ন্দ	÷	1	4
6 18220 534 20300 18000 18000 18000 18000 18000 557 390 515 440 53 6 1450 401 18100 18000 557 390 515 580 530 6 14520 452 17550 15200 550 510 510 440 53 6 14520 452 17550 15200 551 540 510 200 56 510 200 26 510 200 26 200 26 200 26 200 26 200 26 200 26 200 26 200 26 200 26 200 26 200 26 200 26 <td>ŝ</td> <td>0,2 3</td> <td>ò</td> <td>$0.700 \sim 19.10$</td> <td>\$</td> <td>2</td> <td>÷</td> <td>1</td> <td>-vi</td>	ŝ	0,2 3	ò	$0.700 \sim 19.10$	\$	2	÷	1	-vi
61 2.9.960 58.2 2.5.700 18.000 51.5 44.0 53.5 62 15.430 44.1 18.100 17.100 27.8 56.0 51.5 54.0 54.5 65 15.270 45.2 17.300 55.1 2.90 51.0 44.0 2.6 65 15.270 45.2 17.500 55.1 2.90 51.0 4.0 2.6 65 15.670 45.2 17.500 5.1 2.90 51.0 4.0 2.6 67 17.653 4.90 19.170 15.470 2.2.4 3.0 5.10 4.0 2.6 67 15.630 4.91 15.400 2.5.4 3.0 5.10 4.0 2.6	1960	9.2.2	хċ	$0,300 \sim 18,50$	N	N	<u>ئ</u> ے	· 1	÷
6.2 14450 40.1 18.100 11.100 2.28 5.60 5.15 4.50 5.4 6.5 15.230 4.5.2 17.550 15.50 5.60 5.15 5.80 5.0 6.5 17.230 4.5.2 17.550 7.5.50 5.5.10 5.10 4.70 2.8 6.5 17.650 4.5.4 17.610 5.6.1 5.10 5.10 4.0 2.8 6.5 17.650 4.6.1 15.6.20 5.0.1 5.10 5.10 5.10 2.8	1961	0,9 6	ထံ	$3,700 \sim 18,80$	ທ່	ς.	÷	4 4.0	o:
6.3 15940 44.3 17100 14,000 26.7 510 515 580 50 6.4 17,250 45.2 17,550 53.0 53.1 290 51.0 26 6.5 17,650 45.0 15,650 53.1 290 51.0 47.0 25.6 6.5 17,650 47.0 18,170 15,450 53.4 54.0 54.0 25.6 6.5 14,430 40.1 18,170 15,470 25.4 54.0 54.0 25.6 7 17,550 57.0 712,510 57.0 54.6 54.7 26.6 54.6 54.0 54.6 54.7 54.6 55.6 54.6 55.6 54.6 54.6 54.7 54.6 55.6 54.6 54.7 54.6 55.6 54.6 55.6 55.6 54.6 54.7 54.6 55.6 55.6 54.6 55.6 55.6 55.6 55.6 55.6 55.6 55.6 55.6 55.6 55.6 55.6 55.6 55.6 55.6 55.6 55.6 <td>1962</td> <td>₩ 1</td> <td>ď</td> <td>$100 \sim 11,10$</td> <td>N</td> <td>Ś</td> <td>, i</td> <td>43.0</td> <td>- 🕈</td>	1962	₩ 1	ď	$100 \sim 11,10$	N	Ś	, i	43.0	- 🕈
64 16,270 452 17.350 \sim 15,970 3.31 2.80 3.10 4.00 2.8 6 16,690 44.4 17.500 \sim 15,970 5.3.8 2.90 5.10 4.00 2.8 6 16,690 44.4 17.500 \sim 15,970 5.3.8 3.00 5.10 4.00 2.5 6 16,690 44.0 17.70 \sim 15,470 2.7.2 2.90 5.10 4.00 2.5 6 14,430 401 15,420 \sim 14,020 5.3.6 3.00 5.10 4.00 2.5 7 15,510 5.70 5.40 5.70	1963	94	4	100.~ 14.80	Ś	\$	*	യ്	റ്
65 17,250 47,9 18,090 15,790 53,8 28,0 54,0 47,0 26,6 6 16,650 46,4 17,500 15,50 50,4 51,0 51,0 51,0 26,6 6 14,450 4,64 17,500 15,50 50,4 51,0 51,0 51,0 51,0 26,5 6 14,450 4,01 19,100 15,420 71,6,50 50,0 51,0 51,0 51,0 26,5 26,5 7 15,700 54,8 24,250 71,0 54,6 24,5,0 54,0 26,5 50,0 51,0 51,0 54,6 26,5 2	1964	6,27	ഗ	$350 \sim 15,20$	ю	ο.	, '	CC (~ó
6 16.690 44.4 17.500 15.650 50.4 51.0 31.4 41.0 22.6 6 17.650 4.90 19.717 15.470 22.6 31.0 31.0 31.0 31.0 31.0 41.0 23.6 7 17.650 4.90 19.717 15.470 22.5 31.0 31.0 31.0 31.0 41.0 23.6 7 17.650 54.8 24.500 7.6010 30.6 31.0 31.0 31.0 31.0 31.0 31.0 32.6 28.6 28.6 32.6 <th< td=""><td>1965</td><td>7,2.3</td><td>~</td><td>$090 \sim 15,79$</td><td>м</td><td>\$</td><td>ي الم</td><td>~</td><td>ൽ</td></th<>	1965	7,2.3	~	$090 \sim 15,79$	м	\$	ي الم	~	ൽ
δ 11.5.5.0 4.8.0 19.170 15.470 2.7.2 2.8.0 5.1.0 4.0.0 2.3.4 6 14.3.0 4.0.1 15.4.70 2.5.4 3.1.0 3.1.0 4.0.0 2.5.4 7 15.3.10 5.7.0 4.2.9.0 5.2.0 5.4.5 5.4.5 2.5.5 7 15.3.10 5.7.0 5.4.8 2.4.2.50 5.3.6 3.1.0 3.1.0 3.1.0 3.5.5 2.5.4 3.5.6 2.5.5 2.5.5 2.5.5 2.5.5 2.5.5 2.5.5 2.5.5 2.5.5 2.5.5 3.5.5 3.5.6 3.5.6 3.5.6 3.5.6 3.5.6 3.5.6 3.5.5 3.5.6 </td <td>1966</td> <td>69</td> <td>۰ċ</td> <td>500 ~ 15,63</td> <td>c</td> <td>÷</td> <td>***</td> <td>41.0</td> <td>Ś</td>	1966	69	۰ċ	500 ~ 15,63	c	÷	* **	41.0	Ś
6 14.450 4.01 15.420 $-12,990$ 25.4 51.0 31.0 41.0 55.5 28.6 28.5 28.5 28.5 28.5 28.5 28.5 28.5 28.5 28.5 31.0 35.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 32.6 35.6 31.0 35.7 41.6 35.5 31.6 35.6 34.5 34.5 34.5 34.5 34.5 34.5 34.5 34.7 35.7 44.6 35.5 34.7 34.6 35.6 36.6 36.6 35.7 44.6 55.7 32.6 <td>1967</td> <td>80</td> <td>\$</td> <td>$170 \sim 15,47$</td> <td>Ν.</td> <td>б.</td> <td>31.0</td> <td>d</td> <td>ъ</td>	1967	80	\$	$170 \sim 15,47$	Ν.	б.	31.0	d	ъ
6 14,920 470 18,060 14,020 50.3 51.0 54.5 28.5 7 1 13,310 54.8 24,250 15,010 40.5 53.6 50.0 51.6 44.8 54.5 7 1 13,310 54.8 24,550 15,010 40.5 53.6 50.0 51.6 44.8 54.5 7 1 13,310 54.5 16,250 17,890 56.2 50.0 51.6 44.8 54.5 7 4 55.0 17,890 56.2 44,10 76.6 53.7 44.6 55.2 7 4 56.0 132.5 44,100 76.6 84.7 55.1 76.6 54.7 7 5 25,000 77.4 90.3 64.8 57.2 77.4 56.5 7 7 6 53.5 74.8 76.6 57.4 71.4 57.6 57.4 71.4 57.6 57.4 71.4	\$	43	പ	$420 \sim 12.99$	íΩ,	÷	÷	÷	ഗ
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Ś	92	2	9,060 ~ 14,02	ರ	÷	÷.	Ś	ൽ
7 i 13,310 3.70 16,230 \sim 9,560 3.56 300 5.71 41,6 3.5 7 2 15,700 44,5 16,250 \sim 17,830 5.73 41,9 5.10 5.22 7.8 40 7 4 35600 132.5 4,410 \sim 2,6640 10.68 112.1 5.51 9.64 76 7 5 24,200 81,6 2,9200 \sim 1,700 7.0,8 44 55.2 12.66 8,4 7 5 24,200 81,6 2,9200 \sim 1,6200 7.0,8 44 55.2 12.66 8,4 7 7 2,1000 7.76 2,830 7.0,7 6,48 55.2 12.66 8,5 7 7 2,1000 7.76 2,5300 \sim 2,500 \sim 2,500 \sim 2,600 7.66 8,1 76,6 8,1 76,6 5,4 7 8 2,500 81,6 2,9200 \sim 2,500 \sim 2,600 7,4 9,03 6,7 74 71,4 5,4 7 9 0.3 2,500 12,46 3,500 \sim 2,500 \sim 2,500 \sim 2,200 \sim 7,66 8,1 72,0 8,1 76,6 5,4 8,1 76,6 5,4 8,1 76,6 5,4 8,1 76,6 9,5 1 72,6 8,1 76,6 9,5 1 72,6 8,1 76,6 9,5 1 72,6 8,1 76,6 9,5 1 72,6 8,1 76,6 9,5 1 72,6 8,1 76,6 9,5 1 72,6 8,1 76,6 9,5 1 72,7 7,6 1 72,6 9,5 1 72,7 7,7 2,1000 13,5 6 5,4 9,0 7,2 6,2 9,0 7,4 9,0 7,6 6,9 9,1 76,6 7,4 76,6 7,7 7,0 10,6 10,8 2,6 100 \sim 2,5 00 9,6 3 1,2 00 10,6 7,4 9,4 8 2,4 100 \sim 2,5 00 9,6 3 1,3 2,0 6,7 9,1 2,2 7,6 6,5 4 8,1 1,4 3 8,2 2,5 00 \sim 2,2 9,0 0 8,9 9 1,3 2,0 6,6 9,9 1,2 2,5 6,5 6,5 4 8,1 1,4 3 8,2 2,5 00 \sim 2,2 9,0 0 8,4 8 1,3 2,0 6,6 9,9 1,2 2,5 6,5 6,5 4 8,1 1,4 3 8,2 2,5 00 \sim 2,2 9,0 0 8,4 8 1,3 2,2 0,0 7,2 2,5 00 9,0 1 1,5 0,5 6,5 4 8,1 1,4 3 8,2 2,5 00 \sim 2,2 9,0 0 8,4 8 1,5 0,5 6,5 4 8,1 1,4 3 8,2 2,5 00 \sim 2,2 9,0 0 8,4 8 1,5 0,5 6,5 4 8,1 1,4 3 9,5 6,5 6,5 4 8,1 1,4 3 9,5 6,5 6,5 4 8,1 1,4 3 9,5 6,5 6,5 4 8,1 1,4 2,4 10 0 \sim 2,2 9,0 0 \sim 2,2	~	73	4	$4,250 \sim 1501$	Ċ,	ൽ	÷	4	4
7 2 13/700 445 16.250 12.590 56.3 41.9 51.0 37.6 22 7 5 24,500 87.8 34,530 7.8,50 57.0 56.2 53.5 37.8 40.0 7 5 24,500 87.8 34,530 7.6,630 56.2 53.5 40.0 76.4 74.4 74.4 74.4 74.4 74.4 74.4 74.4 74.4 74.4 74.4 74.4 74.4 74.4 74.4 74.4 74.4 55.2 12.5,60 74.4 74.4 74.4 55.2 12.5,60 84.7 55.2.2 12.5,6 84.7 55.2.2 12.5,6 56.8 57.4 74.4 56.8 56.8 57.4 74.4 56.8 57.4 74.4 56.8 57.4 74.4 56.8 57.4 74.4 56.8 57.4 74.4 56.8 57.4 74.4 56.8 57.4 74.4 57.4 74.4 57.4 74.4 57.4 74.4 57.4 74.4 57.4 74.4 57.6 57.4 74.4	Ņ	5	N	6,230 ~ 9,56	N)	đ	м		้่งว่
7 3 24,500 89.8 34,530 ~ 178,50 ~ 178,50 57.0 56.2 33.5 57.8 40 7 4 38.600 132.5 44,100 ~ 26.640 106.8 112.1 53.1 96.4 76 7 5 24,200 81.6 28,900 ~ 16,200 70.7 64.8 52.2 126.6 84.7 7 7 21,000 77.6 84.7 57.4 71.4 54. 7 8 25,300 86.5 25,300 ~ 19,700 77.4 90.3 67.3 77.4 54. 7 8 25,300 110.3 25,300 ~ 19,700 62.2 83.1 49.0 76.6 51. 7 8 25,300 110.3 25,300 ~ 19,700 62.2 83.1 49.0 76.6 51. 7 9 27,300 113.5 55.00 ~ 19,700 62.2 83.1 10.0 76.6 51. 7 9 27,300 124.6 32,500 88.9 13.20 89.9 13.20 89.3 12.12 71.4 55. 8 1 24,000 124.6 32,500 88.9 13.20 89.3 13.20 89.3 12.12 71. 8 2 25,600 94.8 25,000 ~ 22,900 84.8 13.20 89.7 56.6 53.8 12.0 10.6.7 114.5 56.6 53.8 13.1 10.5 12.4 10.0 70.6 10.2 2.9 00 88.9 13.2 0 10.6.7 114.5 56.6 53.8 13.1 10.5 12.4 10.0 70.6 10.0 10.5 10 10.6 7 114.5 10.0 10.5 10.0 10.6 10.0 10.6 10.0 10.5 10.0 10.6 10.0 10.0	~	3,70	4	6,250 ~ 12,59	<u>۰</u> ۵	•	-	o,	2
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	~	4,50	\$	4,530 ~ 17,83	57.0	Ś	м	~	ದ
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	8,60	2	6,100 ~ 26,64	10 6.8	0	ю	0	ൽ
7.6 $26,300$ 885 $29,200 \sim 21,600$ 7.66 84.7 57.4 71.4 54.7 7 $21,000$ 7.76 $25,300 \sim 18,700$ 6.22 83.1 49.0 76.6 51.766 7 $23,400$ 110.3 $25,500 \sim 19,700$ 7.74 90.3 6.73 72.7 58 7 $23,500$ 124.6 $32,500 \sim 25,500$ 96.3 1200 114.3 82 8 $23,900$ 135.6 $32,500 \sim 25,500$ 96.3 1200 106.7 114.3 82 8 $24,000$ 135.6 $32,500 \sim 25,500$ 90.1 78.6 68.8 1212 71.6 8 $24,000$ 135.6 $32,100 \sim 22,100$ $22,100$ 72.7 92.6 62.8 121.2 71.6 8 $23,600$ 94.8 $25,100 \sim 22,000$ 82.4 91.2 60.9 91.2 60.9 62.6 82.6 62.7 62.8 62.8 62.6 62.6 62.6 62.6 62.6 62.6	1975	4,20	÷.,	9900 ~ 1620	70.7	4	N.	Ś	শ
7 21,000 77.6 25,500 14,900 77.6 55,00 14,900 76.6 51. 7 25,400 110.5 25,200 19,700 77.4 90.5 6.7.5 72.7 58 7 27,500 112.6 32,500 25,500 96.5 112.0 114.5 58 7 50,900 112.46 32,500 25,500 96.5 152.0 16.7 114.5 58 8 30,900 112.46 32,500 25,500 90.1 72.4 90.5 67.5 71.4 8 21.000 12.4.6 32,500 25,500 90.1 72.4 92.5 92.5 92.5 8 24,000 13.5.6 36,900 22,100 52.4 94.8 12.12.0 91.2 71.4 8 23,600 94.8 25,400 22,400 22,700 82.4 94.8 60.9 91.2 62.6 62.8 62.4 55.6 55.6 55.6 55.6 55.6 55.6 55.6 55.6 55.6 55.6 5	-	6,30	ø	9,200 ~ 21,60	76.6	4	r.	.	
78 23,400 1103 25,200 ~ 19,700 77,4 90.5 673 727 58 23,00 1246 32,500 ~ 25,300 96.5 120.0 106.7 114.5 83 85 24,000 135.6 34,900 ~ 25,500 89,9 15,20 89,9 15,20 89,5 14,21 9,2 85 2,4000 108.8 26,100 ~ 25,000 90.1 79,6 69,8 121.2 71,8 85 25,600 99,4 24,100 ~ 22,900 90,1 79,6 60,9 91.2 62,9 71,8 2,4,00 $90,1$ 79,6 60,9 91,2 62,9 71,8 2,4,00 $90,1$ 72,7 70,5 65,4 55,6 38 8,1 24,00 $99,4$ 24,00 $90,1$ 72,7 70,5 65,4 91,2 71,8 8,2 25,600 99,4 24,100 ~ 22,900 84.8 9,1,3 6,5,2 81,1		1,00	~	5,300 ~ 16,90	62.2	ю	ο:	v	ي.
7 9 $2,7,300$ 124.6 $32,500$ $25,300$ 96.3 120.0 106.7 114.3 83 8 $30,900$ 135.6 $36,900$ $25,500$ $8,99$ 132.0 $89,3$ 169,1 92. 8 $24,000$ 135.6 $36,900$ $25,500$ $8,99$ 132.0 $89,3$ 169,1 92. 8 $24,000$ 94.8 $26,100$ $22,100$ $62,4$ 94.8 $60,9$ 91.2 $62,6$ $62,6,6$ $62,6$ 62	~	3,40	ö	$5,200 \sim 19,70$	77.4	Ċ	673	N	ಯ
8 0 $30,900$ 135.6 $36,900 \sim 25,500$ 8.99 132.0 8.93 16.91 9.2 8 1 $24,000$ 106.8 $26,100 \sim 22,800$ $9.0.1$ $79,6$ 6.98 12.12 $71,6$ 8 2 $23,600$ $9.4.8$ $25,400 \sim 22,100$ $6.2.4$ 94.8 $6.0.9$ 91.2 6.2 8 3 $23,600$ 99.4 $24,100 \sim 22,900$ 72.7 70.5 65.4 55.6 38.6 8 4 $24,800$ $105,0$ $26,900 \sim 22,900$ 72.7 70.5 65.4 81.1 \cdots 8 5 $23,600$ 98.5 $27,100 \sim 22,900$ 72.7 70.5 65.4 81.1 \cdots 8 6 $14,300$ 98.5 $27,100 \sim 20,000$ 72.7 70.5 65.4 81.1 \cdots \cdots 36 1 $14,300$ 82.2 $18,800 \sim 12,000$ 72.5 \cdots \cdots \cdots \cdots \cdots \cdots 36 1 $14,300$ 82.2 $13,800 \sim 12,000$ 72.5 \cdots \cdots \cdots \cdots \cdots \cdots 36 1 $14,300$ 82.2 $13,800 \sim 12,000$ 72.5 \cdots \cdots \cdots \cdots \cdots \cdots 36 1 $14,300$ 82.2 $13,800 \sim 12,000$ 72.5 \cdots \cdots \cdots \cdots \cdots \cdots 36 1 $14,300$ 82.2 $13,800 \sim 12,000$ 72.5 \cdots \cdots \cdots \cdots \cdots 36 1 $14,300$ 82.2 $13,800 \sim 12,000$ 72.5 \cdots \cdots <td>~</td> <td>7,30</td> <td>4</td> <td>$2,500 \sim 25,30$</td> <td>Ś</td> <td>ö</td> <td>106.7</td> <td>4</td> <td>ъd</td>	~	7,30	4	$2,500 \sim 25,30$	Ś	ö	106.7	4	ъd
81 24,000 108.8 26,100 ~ 22,800 90.1 79.6 69.8 12.1.2 71. 8.2 23,600 94.8 25,400 ~ 22,100 62.4 94.8 60.9 91.2 62.8 8.2 23,600 99.4 24,100 ~ 22,900 72.7 70.5 65.4 55.6 38 8.4 24,600 99.4 24,100 ~ 22,900 72.7 70.5 65.4 55.6 38 8.4 24,600 98.5 27,100 ~ 22,900 72.7 70.5 65.4 55.6 38 8.5 25,600 98.5 27,100 ~ 22,900 72.7 70.5 65.2 81.1	ω	0,90	ນ	6,900 ~ 25,50	\$	¢,	89.3	ς.	
8 2 23,600 94.8 25,400 22,100 62.4 94.8 60.9 91.2 62.8 8 3 23,600 99.4 24,100 22,900 72.7 70.5 65.4 55.6 38 8 4 24,800 10.50 26,900 72.7 70.5 65.4 55.6 38 8 4 24,800 10.50 26,900 22,900 84.8 94.3 65.2 81.1 8 5 23,600 98.5 27,100 20,000 73.2	œ	4,0.0	ω	6,100 ~ 22,80	Ċ	ο.	0	.	
8 3 23,600 99,4 24,100 22,900 72.7 70.5 65.4 55.6 38 8 4 24,800 105.0 26,900 22,900 84.8 91.3 65.2 81.1 8 5 23,600 98.5 27,100 20,000 73.2 <t< td=""><td>œ</td><td>3,60</td><td>4</td><td>$5,400 \sim 22,10$</td><td>\$</td><td>4</td><td>റ്</td><td>***</td><td>2</td></t<>	œ	3,60	4	$5,400 \sim 22,10$	\$	4	റ്	* **	2
8 4 24,800 105.0 26,900 ~ 22,900 84.8 91.3 65.2 81.1 8 5 23,600 9.85 27,100 ~ 20,000 73.2 8 6 14,500 82.2 18,800 ~ 12,000 73.2 Japan Average of price of prime grade ordinary carbon steel for melting delivered to plants in Tokyo, Gaaka and Nagoya areas. (Source: Japan Scrap Importers' Association) 7.2.5 U.S.A. Annual average of prime grade ordinary carbon steel for melting delivered to plants in Tokyo, Gaaka and Nagoya areas. (Source: Japan Scrap Importers' Association) 0.5.3 <	¢	3,60	б.	$4,100 \sim 22,90$	Q,	Ö	ທ່	ഗ്	ൽ
8 5 2 3,600 9 8.5 2 7,100 20,000 7 3.2 8 6 14,500 8 2.2 18,800 12,000 7 2.3 Japan Average of price of prime grade ordinary carbon steel for melting delivered to plants in Tokyo, Osaka and Nagoya areas. (Source: Japan Scrap Importers' Association) 7 2.3 <t< td=""><td>ø</td><td>4,80</td><td>ດ. ບ</td><td>6900 ~ 22,90</td><td>4</td><td>***</td><td>ഹ</td><td>÷</td><td>:</td></t<>	ø	4,80	ດ. ບ	6900 ~ 22,90	4	***	ഹ	÷	:
8 6 14,300 8.2.2 18,800 ~ 12,000 72 Japan Average of price of prime grade ordinary carbon steel for melting delivered to plants Tokyo, Gsaka and Nagoya areas. (Source: Japan Scrap Importers' Association) U.S.A. Anuel average of price of No.1 Neary melting scrap Importers' Association) U.S.A. Anuel average of price of No.1 Neary melting scrap Annuel Issue) Micego and Philadelphia areas. (Source: Iron Age Annuel Issue) 2 from '77, Class O from '74 and Class O from '77	œ	3,60	ൽ	7,100 ~ 20,00	ы		:	:	;
Japan Average of price of prime grade ordinary carbon steel for melting delivered to plants Tokyo, Gsaka and Nagoya zreas. (Source: Japan Scrap Importers' Association) U.S.A. Annual average of price of No.1 Aeary melting scrap delivered to plants in Pittsburgn. Chicago and Philadelphia action (Source: Iron Age Annual Issue) W. Germany Statiches Jahrbuch (Jass 03 from '72, Class 0 from '74 and Class 02 from '77	œ	4,30	N	800 ~ 12,00	N		••••		:
Voryov vesses and ways areas. Noutrer uspan scrap A. Annual average of price of No.1 hasyy melting scrap Chicago and Philadelphia areas. (Source: Iron Age) ermany Statiches Jahrbuch, Class 03 from '72, Class 0 from		of price	grade	carbon steel for melting	to plants	· ·	:		
Chicago and Philadelphia areas. (Source: Iron Age Annual Issue) ermany Statiches Jahrbuch, Class 03 from '72, Class 0 from '74 and Class 02 from	U.S.A.	5	í M	Iting scrap	in Pittsburgn,			÷.,	
	W. German)	Chicago and Statiches J	Class 03 from	: Iron Age Annual Issue) Lass O from '74 and Class 02	51, mo				

•

Figures up to 1984 are those collected by JISF based on statistics of respective countires.

- 1304 -

.

Semi-Products Import to Japan by Years and its Price Trends

(Unit:M.T 1,000J. yen)

	Bloom	E	Bille	e t	S 1 r	ą	
F • Y	Import	Price	Import	Price	Import	Price	rotal import
1972	29,703	2 3	3,958	31	140	€ 0	33,801
1973	1 5,008	5 8	4.6 3 2	4 3	3,589	47	23,229
1974	24,034	69	8	171	o .		24,045
1975	19,944	5 2	27,343	50	6 0	101	47,347
1976	128,374	4 2	109	62	0		128483
1977	95,065	3 8	1,023	3 6	36,763	4 7	1 3 2, 8 5 1
1978	52,221	36	119,755	4 6	45,770	3.5	217,746
1979	170,279	5 4	193,030	59	135,427	2 2 2	496,736
1980	89,854	6 1	73,966	59	237,692	5 6	401,512
1981	0	I	53,269	ស	124,608	<u>с</u> 2	177,877
1982	ĸ	1	30,746	49	63,906	5 3	94,655
1983	7427	4 9	91,599	4 6	20,749	4 0	119,775
1984	37,721	4 7	42,805	5 0	161,131	47	241,657
1985	28,744	4	43,785	t t	347,108	4 2	419,637
1986	51,420	28	18,893	3.7	206,312	30	276625

Source : Ministry of Finance of Japanese Government
Note : Unit Price (Semi-Product/M-T) is CIF Price.

	AINICA IV Development		Patterns and Their reamics of Steel Industry in Developing Countries	
Development stage	Pattern	Feature	Remarks	Actual Examples
	Import satisfies steel demand.	Import of finished steel products	As the economy progresses, steel demand increases in quantity and kinds. Import acts as market study and when it reaches a level, it motivates home production.	Majority of developing countries up to a certain period after the second World War and Guatemala, Honduras, Nicaragua, Nepal, Sin- gapore, Costa Rica, Malaysia in 1950s.
Т	Import and partly home production satisfy demand.	<pre>y Start of pro- duction of final (processed) products and rerollers lead to EAF & rolling mills.</pre>	Production begins of tin- plate, G.I.sheet, small pipe, wire drawing, re- rolled bars (some flat bars) and progresses to EAF & rolling mills making mainly bars. Import of cold pig for EAF and pencil ingot for rolling begins. Also import of black sheet (for tin- plate and G.I. sheet)	Nepal, Indonesia, Thailand, Phi- lippines Malaysia in 1960s.
н н 	Import and pro- duction of major steel products in demand (Full scale production of crude steel)		It is difficult to distin- guish II-1 from II-2. Pattern varies according to demand level, forecasted growth and available do- mestic resources. At this stage, developed	Indonesia, Philippines, Mexico, Venezuela in 1970s and Saudi Arabia from end of 1970s to early 1980s.
		IOFWARD METROD, EAF, DR OF B.F. based process to be selected. Primary object is substitution of import.		

Argentina: B.F. based steel mill South Korea: Kwangyang project Taiwan: 3rd phase expansion of Venezuela: DR based steel mill Mexico: B.F. based steel mill Brazil: 3 major state steel Brazil: 3 major state-owned companies and CST Actual Examples steel companies China Steel Co. By progress from II to III, S. Korea: Pohang Steel ANNEX IV Development Patterns and Their Features of Steel Industry in Developing Countries (Cont'd) Taiwan: China Steel lability of favorable fund struction depends on avai-Generally success of conbackward method intensiment rises condiserably. Expansion of integrated selection of forward or other factors enable DR steel mills is now pos-sible domestically and Economic progress takes rate of domestic equipcountries with takeoff fies. Natural gas and from seen in developed period already behind. based steel mill. Remarks form abroad. resources (Tubarao) steel) demand forecasted in the near changing from submills with optimal mills, its object add value to home Basically to fill the world market. One mil.t. (crude semis) begins to Integrated steel demand is mostly integrated steel import to export (if iron & steel Export of steel home demand and appear and home lable at home). products (incl. Construction of resources avaicapacity scale Feature stitution of future. iron sponge iron but other grades are in full pro÷ gradually moving to high grades. High grade prohome production ducts imported, guantity, and duction with start of pig Pattern expansion of in kind and production. Import and Development stage HHH 엄

- 1307

covered.

South Korea: Pohang & Kwangyang newly industrialized developing countries fall in this pattern. Most integrated steel mills in oil-producing with ample fund available directly enter into the stage of construction of an integrated ANNEX IV Development Patterns and Their Features of Steel Industry in Developing Countries (Cont/d) Actual Examples Note: The above historical development patterns show standard model patterns in the past, and some China: Baoshan the economy, home demand market) (export friction) With progress of expansion, necessity of difficult to markets in facing developed steelthey become protective. making countries (envideveloped countries as Jeveloping own technoconmental, labor, and appear and difficulty diversifies and needs Technologically, much with existing technohigh quality. Export logies, but problems progreas in catch-up steel mill based on DR process without treading the above stages. in export-dependent Remarks • <u>7</u> 60 Full-fledged steel Competition likely industry based on countries who are integrated steel from developing late comers in Feature steel. mills. making countries developed steelsteel products produced as in All grades of Pattern Development stage ₽

Sources: H. Toda, Steel Industry in Asia, 1970; Steel Industry in Latin America, 1972; Steel Industry in Africa, Aug. 1972; Institute of Developing Economies, and author's experience and results of interviews with local officials when he participated in study missions such as Southeast Asia Steel Study Mission and West Asia Steel Study Mission of UN ECAFE (now ESCAP) and various studies by the Japanese Government (JICA)

- 1308 -

ANNEX V Cold Drawing Plant

Introduction

A study was made about products which can be added to the present product mix by the expansion project of ANSDK's El Dikheila Works.

At present, ANSDK produces bar and rod (re-bar). Therefore, any kind of products which can be added to the present product mix is confined to that produced by using the existing facilities, or the so-called secondary processed products of wire rod.

Sufficient data on demand structure, needs and market price of the secondary processed products of wire rod could not be obtained by the F/S mission. Therefore the product mix indicated in this ANNEX is only a base for discussion and does not reflect the market condition. The price of the product is assumed on sliding scale based on Japan's market price. Economic analysis shows the result of such analysis according to the above premises.

Therefore, decision on the construction of the wire drawing plant should be made based on the full-scale market research prior to the basic engineering study.

(1) Premises

In studying a wire drawing plant for ANSDK, the following conditions were made premises in the study.

1) Kinds of products produced by ANSDK

Generally, the secondary processed products of wire rod (drawn wire) are often closely related to the production of subsequent processed products (final products).

Though the secondary processing is of relatively massproduction type, the subsequent processing is small-lot production and requires special equipment.

Table 1 shows the production flow of wire rod products. The products to be produced by ASNDK are to be mainly the secondary processed products ((A) Process) with the subsequent processed products ((B) Process) excluded so that they can be produced by simple manufacturing method.

As mentioned above, Table 2 shows recommendable steel grade of ANSDK and gives the problems in improving the guality of steel.

2) Ladle furnace and low oxygen and Si control

In order to prevent blow holes on the surface of billet, the total oxygen in steel needs to be kept below 50 ppm. In addition, si is an element to decrease drawability. For this reason, it is desirable to hold si content in low carbon steel at 0.10% or less.

For this composition control, ladle furance must be installed.

3) EMS (Electromagnetic stirrer) for CC-Mold

Mold EMS is effective for preventing surface blow holes of billets; namely, by rotating molten steel horizontally in a mold, occurrence of blow holes is reduced.

- 1310 -

4) CC-Seal casting

CC-Mold size is of small cross section of 130x130 mm. Therefore it is difficult to use submerged nozzle for the mold. When submerged nozzle is not used, shrouded casting should be employed to prevent oxidation of molten steel during casting.

5) Low nitrogen and impurities control

Nitrogen is a detrimental element to lessen drawability. Nitrogen in molten steel which is produced in EAF from 100% scrap charge is 90-100 ppm, which makes the steel poor in drawability.

Therefore, elements such as Al, Ti and B are added to change free nitrogen to stabilized nitrogen (AlN, TiN or BN), thus reducing free nitrogen to 40-50 ppm.

Besides, existence of impurities such as Cu, Ni and Cr, if high percentage, is detrimental and in general scrap with least impurities is selected and used.

When DRI is used 80% or more in EAF of ANSDK, the pure chemical contents as shown below has been obtained.

Such figures should be kept for rod for cold drawing in future as well.

_	Total nitrogen	· ==	50.5	ppm	(n=12)
	Cu	=	0.035	00	(n=282).
-	Ni	=	0.019	8	(ditto)
_	Cr	==	0.012	ę	(ditto)
	n = Number of a Study period =				

- 1311 -

6) Billet surface conditioning

It is desirable to avoid installation of large equipment for billet surface conditioning.

As such facilities, torch gas scarfing instrument (hand scarfing) is to be installed and simple sampling inspection through check scarfing should be comployed for inspection.

Namely, of about 35 pieces of billets (70 t/heat divided by 2 t/billet = 35 billets/heat), 4 billets are sampled and inspected for blow holes by check scarfing.

The result is used for determining quality of billets cast from the heat, and the billets from rejected heat are directed for re-bar production.

The reason why such simple inspection is employed is that the use of the product, billet, is confined to rod for general use. If the product is used for wire rod and bar (diameter 20 mm or more) with severe specification, then full-scale billet conditioning equipment must be installed. Namely, shot blast, magnetic particle inspection facility, and machine grinding facility must be installed on-line and also a building for those facilities built.

7) Installation of descaler in Rod mill line

A descaler should be installed between the reheating furnace and No.l stand of roughing train to remove scale.

8) Cold drawn minimum size

Cold drawn minimum size is to be 2 mm. Wire with diameter smaller than this is considered to cause breaking during drawing operation. 9) Control cooling on Stelmor conveyor

For coil of C content 0.4% or more, proper controlled cooling should be applied on Stelmor conveyor.

10) Study of literature of other companies

The following literatures will provide significant information to ANSDK.

- a) Wire Journal International Sept. 1982
 "Raritan Rivers approach to producing quality rods"
 EAF = 140 t, CC-Billet = 130 x 130 mm
 AISI = 1006 High carbon Dia. = 5.5 17 mm
- b) Iron and Steel Engineer March 1987
 "Laclede Steel A resilient special steel producer"
 EAF = 225 t, Ingot & CC-Billet = 180 x 180 mm
 AISI = 1008 1080 Size = 5.5 15 mm ø

(2) Market research

Secondary processed products of wire rod involve rather complicated processing and the kind of final products is many and varied. Namely, it is necessary to conduct market research on names of users, uses, quantity, price, kind of steel and required quality (specification) of the final products.

Also it is necessary to study actual condition of their production including processing companies, their production, cost, processes employed, kind of steel, level of quality and suppliers of material (import or domestic production).

Those information could not be obtained during the F/S this time. They should be fully studied in considering construction of the facilities.

- 1313 -

(3) Production plan

1) Product mix

Table 2 shows the product mix.

As mentioned before, the product mix may not conform to the market demand and it is necessary to conduct detail study of the market and revise Table 2.

2) Annual working time

Table 3 shows annual working time.

In principle, the plant is to be operated on 3 shifts with meal time concurrent for all the workers.

3) Calculation of production capacity

Capacity of each equipment is calculated and shown in the following table.

- 3-1 Coil surface treatment facilities
- 3-2 Wire drawing machine
- 3-3 Pot annealing furnace
- 3-4 Galvanizing line
- 3-5 Nail machine
- 3-6 Barbed wire machine

(4) Plant layout

Fig. 1 shows the layout of plant.

(5) Construction cost

Outline of the construction cost is as follows:

5-1) Equipment cost (CIF)	\$5,529,450
5-2) Inland transportation & installation cost	\$1,122,000
5-3) Civil eng. & building works cost	\$3,500,000
5-4) Engineering cost	\$ 500,000
5-5) Contingency cost	0
Total	\$10,651,450

- 1314 -

(6) Personnel

Table 5 shows the number of personnel required.

- (7) Estimation of cost
 - Base consumption units of operation (Consumables)
 Table 6 shows unit consumption of operation.
 - 2) Production cost

Based on the study, the production cost will be estimated as follows. (full operation base, 1993)

Cold drawn wire	\$233.2/ton
Annealed wire	\$266.5/ton
Wire for spring,rope	\$239.9/ton
Nail	\$270.2/ton
Galvanized wire	\$320.2/ton
Barbed wire	\$333.5/ton

3) Selling price

The selling prices in Egypt could not be obtained. For reference the selling prices of the products are shown on Table 7.

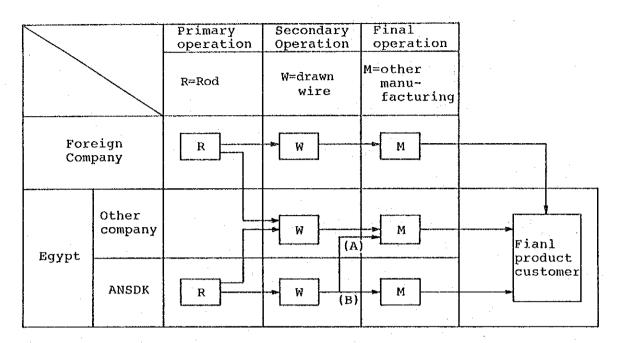


Table 1. Production flow of wire rod products

Products of (A) process

- 1) Cold drawn low C% wire
- 2) Cold drawn high C% wire
- 3) Galvanized wire

Products of (B) process

- 1) Annealed wire
- 2) Nail
- 3) Barbed wire

								· .		·		ng line	X/T	er	furnace	ath h	bath	th	th	bath r bath	 Barbed machine	100	· · · · · · · · · · · · · · · · · · ·	Barbed wire	÷ 0.078	3,000	2¢ = 3,000			0		
			-						-			Galvanizing	2,000	Un-coiler	° Heating	• Water bath • HCL bath	ែង	• Flux bath	· Zinc bath	o water b • Coiler] 		Galvanized wire	ta 0.078	4,000	11	$3\phi = 2,000$	l	 Fence net, Barbed wire 		
	• • •												- <u>-</u>				•				 Nail machine	1,000 T/Y		Nail	0.07 0.20%	1,000	11	II	5φ = 200	o		
coil		treatment	Т/Ү		 bath	സ	a dire and	vina	η/٧							<u>.</u>					 			Wire for spring, rope	1, 0.60 %	1,000	2¢ = 1,000			 Bed, chair car seat spring Wire rope 		
Hot rolled		Coil Surface 1	20,000	°НСL Datn °Water bath		<pre> Phosphite b Coil druind </pre>		e Cold drawing	20.000 7											-	Pot furnace	L n L	 30	Annealed wire for binding	≐, 0, 078	1,500	$2\phi = 800$	$3\phi = 700$		O		
																. :	-				 L	J		Cold drawn wire	ta 0.078	9,500	2¢ = 3,000	$2\phi = 3,000$ $4\phi = 1.500$		 General General structual Welded Chain Electrode Bolt, Nut 		
														:								•		Wire	C% content	Quantity (T/Y)				Final Usage (O=final product)	Price (1,E/T)	Price (LE/T)

.

- 1317 v 1318 -

No.	Item			Remarks
1	Calender time	Hr	8,760	365D x 24H
$\dot{2}$	Scheduled shut-down time			
	Weekly maintenance	Hr	1,248	52D x 24H
	Annual maintenance	Hr	312	13D x 24H
	Meal	Hr	. 900 -	300D x 3H
	Total		2,460	
3	Working time	Hr	6,300	1 - 2
4	Effective working ratio	96	70	
(5)	Effective working time	Hr	4,410	(3) x (4)

Table 3 Annual working time

Table 4.1 Coil surface treatment

				1			
	. <u></u>	HCL bath	Water bath	Lime bath	Hot Water bath	Phos- Phate bath	Drying furnace
Capacity	T/bath	2	2	2	· 2	. 2	2
Unit Working Time	Min/ bath	40	3	5	10	10	20
Number of Facilities	No	2	2	1	1	· 1	1
Productivity	т/н	6	40	24	12	12	6
Production	т/Ү	20,000	20,000	20,000	20,000	20,000	20,000
Total Work- ing Time	н/у	3,333	500	833	1,666	1,666	3,333
Total Work- ing Day	D/Y	300	300	300	300	300	. 300
Number of Shift	Shift	3,333 * (7x300)					
Required		=1.6 ⇒ 2	2	2	2	2	2

- 1319 -

Table 4.2 Wire Drawing Equipment

By Type Af	Machino		A(H.C)xl	B(L.C) x3		•	ד × י	S
No. of Machine Calculation		$(4) \div ((3) \times 4,410)$	9,100÷(0.887x4,410)=2.37	6,000÷(1.331x4,410)=1.02 4	2,700÷(1.478x4,410)=0.41	1,200÷(0.924x4,410)=0.29	1,000÷(1.264x4,410)=0.18	Ŋ
Produc- tion	T/Y	(4)	9,100	6,000	2,700	1,200	1,000	20,000
Efficiency	H/I	(1) X (2) X K(**) = (3)	3.141x600x471x10 ⁻⁶ =0.887	7.065x400x471x10 ⁶ =1.331	12.56 x250x471x10 ⁻⁶ =1.478	19.62 x100x471x10 ⁻⁶ =0.924	28.26 x 95x471x10 ⁻⁶ =1.264	
ber of Drawing ss Speed	m/min.	(2)	600	400	250	100	95	
Number of Pass	(*)		9 (H.C)		3 (I.C)	2 (L.C)	2 (L.C)	
Sectional Area	mm ²	(1)	3,141	7,065	12,56	19.62	28.26	
Diameter Product Material	ШШ		5.5	ທີ່ ທີ່	5-5	6.0	8.0	
Diameter Product Mate	ШШ		2.0	3-0	4.0	5.0	6.0	

Notes: (*) H.C = High carbon steel, L.C = Low carbon steel

(**) K = Sectional area of product (mm^2) x drawing speed (m/minute) x specific gravity (T/mm^3) $x 7.85 \times 10^{-9} (T/mm^3)$ 60 x 10³ (mm/hour) 1 (mm²) x 11

 $= 471 \times 10^{-6} T/H$

- 1320 -

Table 4.3 Pot annealing furnace & slow cooling furnace

No.	Item	Specification
11	Capacity	2 T/pot
2	Hours/cycle	8 hours
	• Heating	2.0 hours
	• Soaking	4.0 hours x 780°C
	• Slow cooling	1.5 hours
	 Transfer to slow cooling pot & next coil charging 	0.5 hours
3.	Working efficiency	2 T/pot ÷ 8 h/pot = 0.25 t/h
4	Annual working time	4,410 h/y
5	Products Q'ty	1,500 t/y
6	Number of pots required	1,500 t/y ÷ (0.25t/hx4,410t/y) = 1.4 = 2 pots
7	No of slow cooling pits	2 pits

Table 4.4 Galvanizing Line

Number of running wires = 50 wires

[]	Are	3					
Dia	Single wire	a 50 wires	Runni	ng speed	Product- ivity	Quant- ity	Working hours
mm	mm²	mm 2	m/Min	mm/H	т/н	т/ч	н/ч
		1		2	$(3)=(1)\times(2)\times G$	4	(4) ÷ (3)
2	3.141	157.0	19	1140x10 ³	1.404	4,000	2,849
3	7.065	353.2	11	660x10 ³	1.830	2,000	1,092
4	12.56	628	8	480x10 ³	2.366	1,000	422
						7,000	4,363

$G = 7.85 \times 10^{-9} \text{ T/mm}^3$

No of line

4,363(T/Y) ÷ 4,410(T/Y) ≃ 0.99 → 1 line

- 1321 -

Table 4.5 Nail Machine

Dia	Production	Productivity	Number of Nail Mach		
mm ·	т/Ү	т/н	Calculation	Total	
	1	2	(1)÷ (2)x 4,410H)	TOCAL	
5	200	0.160	200*(0.16x4,410)=0.3	1	MTG-F
4	200	0.120	200÷(0.12x4,410)=0.4	. 1.	MTG-D
3	300	0.070	300÷(0.07x4,410)=1.0	. 1	MTG-C
-2	300	0.020	300÷(0.02x4,410)=3.4	3	MTG-B
Total	1,000			6	

(1) Nail Machine

(2) Polishing Machine 1

2.5 Hr/bbl ÷ 1.4 T/bbl = 1.8 T/Hr 1,000 T/Y ÷ (1.8 T/Hr x 4,410 Hr/Y) = 0.1

Table 4.6 Barbed wire machine

	i sa sa sa <u>sa sa sa sa sa sa sa</u>	
1.	Production rate	150 kg/h (2.0 mm)
2.	Products Q'ty	3,000 t/h
3.	Annual working time	4,410 h/y
4.	No of machine	3,000 t/y ÷ (0.15t/h x 4,410h/y) = 4.5 = 5 machine

- 1322 -

No.	Job	Per shift	No of shift	Relief	Sub- total
1	Rod surface cleaning line, (1 line) Receiving & stock control Pickling (HCl bath) Water bath Lime bath Phosphate bath Drying	2	2		4
2.	Wire drawing equipment (5 units)	5	3		15
3	Annealing furnace (2 pots)	. 1	3		3
4	Galvanizing line (1 line)	5	3		15
5	Nail machine (6 units)	3	3		9
6	Barbed wire machine (5 units)	4	3		12
7	Product shipping & stock control	2	3	1	6
8	Foreman	1	1		1
9	Relief			2	
	Sub-total	25		2	69
	Total				71

Table 5 Number of Personnel Required

-	د محصف مترقت						
			Unit Comsı	mption	Unit Price		Consump- tion Q!ty
	No.	Item		Unit/t	¥/Unit	t/y	1,000 ¥/y
			1		2	3 .	1 x 2 x 3
	1	Rod surface treatment					
		• Hydrochloric acid	25	kg	17	20,000	8,500
		• Water	3 -	m ³	14	20,000	840
		• Lime	1.5	kg	39	20,000	1,170
		• Phosphate	4.0	kg	250	1,000	1,000
		• Heavy oil for rod drying	15.0	l	25	20,000	7,500
		• Lime (for waste neutralization)	5	kg	39	20,000	3,900
	2	Wire drawing					
		° Electric power	100	kWh	17	20,000	34,000
		° Water	1	m ³	14	20,000	280
		• Lubricant (dry)	0.5	kg	400	20,000	4,000
ľ	3	Pot annealing f'ce					
		• Heavy oil for combustion	85	L	25	20,000	4,250
ſ	4	Galvanizing line					
		• Heavy oil for wire heating	45	kg	25	7,000	7,875
		• Water	3	т ^э	14	7,000	294
		• Hydrochloric acid	20	kg	17	7,000	2,380
		• Flux					
		• Zinc	62	kg	140	7,000	8,400
ſ	5	Electric power in common	50	kWh	17	20,000	17,000
		Total				= 67	101,389 5,927 \$/y

Table 6 Consumable

	Jap	an
	Ex-mill Price	Delivered Price
Data source	Hearing to mill Sales Dept. A	Tekko shinbun August-6-87
	¥/t (Ave)	¥/t
Defomed bar SD30 10 mm	36,000 - 37,000 (36,500)	39,000 - 40,000
Drawn wire 4.0 mm	65,000 - 75,000 (70,000)	81,000 - 82,000
Annealed wire 3.2 mm	64,000 - 67,000 (65,500)	77,000 - 79,000
High carbon steel C=0.60 3.0 mm	120,000 - 125,000 (122,500)	187,000 - 195,000
Nail N75=75x3.40	67,000 - 70,000 (68,500)	85,000 - 87,000
Galvanized wire 3.2 mm	84,000 - 85,000 (84,500)	121,000 - 124,000
Barbed wire 2.0 mm	114,000 - 115,000 (114,500)	164,000 - 168,000

Table 7 Products price in Japan

w 52 w 52 Polishing machine [1,000 TPY] Coil transfer car [80,000 TPY] [7,000 TPY] [3,000 TPY] E.ON Τ£ οN JΕ ⊚ □ 6 000000 (7) (8) Nail machine [1,000 TPY] 0000000 Plant Area = $9,250 \text{ m}^2$ 9 TE S.ON Galvanizing line 5 machines 6 machines Barbed wire \odot -170 m (10m x 17) 3 200 m (10m x 20) -00 00 © () () Annealing pot furnace & slow cooling ୭ 0 • lime x . 0 0 0 • Hot water x 1, Phosphate x 1 00 Rod Storage Yard [20,000 TPY] Drawing machine [20,000 TPY] [20,000 TPY] 0 0 Neutralizer for Waste Hcl • HCLX2, • Water x 2, 00 4 pots 2 3 4 5 6 7 8 4 \odot drying f'ce x 1 . oN 6 <u>T</u>£ Ş Pot 1,500 TPY **Pickling Line** New HCl Tank TE LON Θ Θ \odot **(T**) 6 6 0

Fig. 1 General Layout of Cold Drawing Plant

- 1326 -

ANNEX VI Results of Study on the Memorandum

The results of study with respect to the memorandum of discussion between JICA Mission and the Egyptian counterparts which took place during October 18 to 21, 1987, (See Chapter 1) are enumerated in the following. Item numbers correspond to those of the memorandum.

1. Market demand

The basis of estimation was incorporated in Chapter 3 of the Report.

2. Expansion plan

(1) Excess DRI

If another 600 module DR plant is installed, ANSDK will have surplus DRI for sale as shown in material balance sheet in Fig. 6.2.2-1.

It is expected that demand and supply of domestic scrap in Egypt will be tight in future, resulting in increase of scrap price. Assuming the scrap price to rise close to the present price of imported scrap, US\$100/ton, it is possible to gain profit of about 1 million dollars a year by selling about 100,000 t/y of DRI.

In the climate of Egypt, except a certain winter period, it is considered possible to transport DRI by truck, rail and others. But as ANSDK already has the facilities for cold briquetting, it is advisable to sell the briquets produced by the facilities. Since briquets have higher bulk specific gravity, are more solid and less susceptible to powdering than DRI, the briquets are superior to DRI in transportation and use in EAFs.

- 1327 -

As the capacity of ANSDK's briquetting facilities and ANSDK's surplus DRI available for outside sales are almost equal, it is believed advantageous to consider selling briquets instead of DRI.

(2) & (8) Alternative plan of 4 EAFs and 2 LFs

As regards the merits of production increase through introduction of ladle furnaces, as discussed in Section 6-1-3 (2) 2) of the Report, ANSDK's EAFs are designed originally for production of steel for rebars and a big reduction of tap-to-tap time cannot be expected. But referring to the recent operation records of ANSDK and the data provided by ANSDK, the production which can be expected will be calculated in the following. In the calculation, the following formula will be used.

Liquid steel (t/heat) x $\frac{1440 \text{ (min/d)}}{\text{Tap-to-tap time (min/heat)}}$ x Net working days (d/y) x 4 EAFs = Annual liquid steel production (t/y)

(a) Liquid steel (t/heat)

The average production of liquid steel during the latest six months, namely from April to September, 1987, was 72.8 t/heat and so the figures of 73 t/heat is used.

(b) Tap-to-tap time (min/heat)

In Fig.-1 is shown a diagram of On-to-tap time by DRI blending ratio from the start-up of SMP, namely May 1986, to September 1987. Tap-to-on time could not be obtained due to the unavoidable irregular operation at the start-up, but is considered to be about 30 minutes and the steelmaking time (tap \pm to \pm tap time) is calculated to be about 140 minutes.

However, this is the case where a LF is not used. It is planned to reduce the steelmaking time by use of a LF, but the reduction is through refining time. The refining time during the six months (April to September, 1987) was 25.5 minutes. Assuming that about 10 minutes is required for attaining a certain tapping temperature and adjustment of chemical composition in the EAF, the refining time may be cut by 15 minutes. In other words, when a LF is utilized, the steelmaking time is estimated to be 125 minutes.

(c) Net working days (d/y)

Net working days in a year is 314 d/y as calculated by ANSDK.

(d) Annual liquid steel production (t/y)

Consequently, annual liquid steel production will be 73 (t/heat) x $\frac{1440 \text{ (min/d)}}{125 \text{ (min/heat)}}$ x 314 (d/y) x 4 EAFs = 1,056,246 \ddagger 1,056,000 (t/y) and

this alternative plan is not appropriate for production of 1,200,000 t/y of liquid steel, which is 50%more than the present production of 840,000 t/y.

(e) Scrap handling facilities

In addition to the inadequate capacity of production with the existing 4 EAFs and new 2 LFs, the capacity of the existing scrap handling facilties also is not adequate for handling scrap required for production of 1,200,000 t/y of liquid steel (with scrap blending ratio being 35%).

(f) Material balance

As the above study showed that production of liquid steel under the alternative plan to use the existing 4 EAFs and new 2 LFs is 1,056,000 t/y and the plan is not practicable, the calculation of material balance in the plan is omitted.

- 1329 -

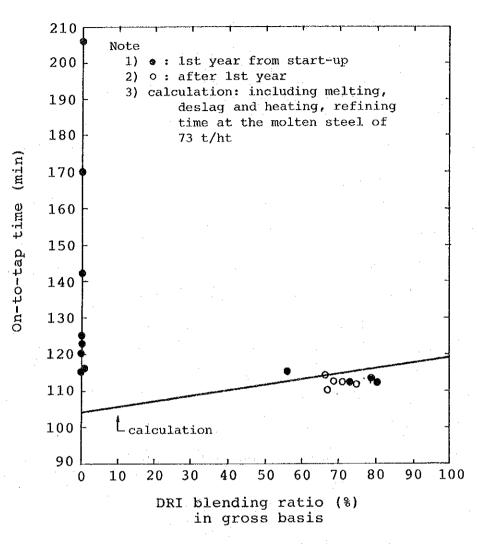


Fig.1 On-to-tap-time

(3) Scrap ratio of 50% for new EAFs

If scrap ratio is made 50%, scrap consumption per heat will be about 39 tons and about 800 tons of scrap will be used a day, for which installation of 2 new scrap cranes is adequate as in the Report.

When 39 t/heat of scrap is used, one bucket charging is difficult and two bucket charging is necessary, which means moving about 40 buckets a day. Since the capacity of two scrap transfer cars in the existing indoor scrap

- 1330 -

yard is about 45 buckets a day, two more scrap transfer cars will have to be installed. This is one unit more than the plan in the Report. In addition, it will be necessary to extend the building by one span both at the indoor scrap yard and the furnace yard. Three more scrap buckets are also necessary.

As a result, the construction cost of scrap handling facilities will be increased by about US\$1.6 million as compared to that in the Report.

(4) Changeable mould of new CCM

In Section 6-1-2 of the Report, it is concluded that mainly because the size of billet is 130 mm square, production of such products as low carbon steel wire rods for cold heading, PC wire, piano wire, high carbon steel wire rods for valve spring, carbon steels for machine structural use and structural steel with specified hardenability bands is not recommended. In the following, a study will be made on changeable mould type CCM which can produce large billets for sale used for the above products in addition to conventional 130 mm square billets. The billets length are to be 16 m long in this case.

In order to produce billets with sound internal and surface quality as discussed in Section 6-1-2 of the Report, it is necessary not only to give large cross sectional area to the billet of course but also to make bending radius of secondary cooling zone of a CCM as large as possible so as to prevent occurrence of inner cracks at the straigtening point. On the premise that the height and span of building, the level of casting floor and billet transfer line, and position of billet cutter are to be same as those of the existing facilities, the bending radius of the CCM will be about 7.5 m and it is desirable to make the cross sectional size of the billet 180 mm square. By increasing the billet size, it is possible to use a submerged nozzle in a mould and taking reduction ratio of 6 it is possible to produce maximum 80 mm ϕ finished products.

Therefore the CCM will be of curved mould bending type with bending radius of 7.5 m. The outline of facilities is as follows:

To prevent metal stream from picking up oxygen during casting, a long nozzle is installed to a ladle and a submerged nozzle to a tundish. The tundish is equipped with a stopper to facilitate smooth start of casting of the tundish with submerged nozzle. Of course they are used exclusively for casting 180 mm square billets. Different No. 1 apron and dummy bar are necessary for 180 mm square billets and 130 mm square billets, but No. 2 and 3 aprons, withdrawal straightening roll and billet cutter can be used in common though adjustment according to size is required. Billet transfer and subsequent facilities are used in common. As regards EMS, it is provided to M and F for production of higher grade steel billets of 180 mm square.

The construction cost of the above CCM facilities is about US\$2.5 million higher than that of CCM facilities planned in the Report.

Incidentally this study does not include facilities for surface conditioning and inspection of billets because such conditioning and inspection of billets are usually performed by users in accordance with their optimal standard which is set up by considering their rolling facilities and the needs of the final users.

(5) Further information obtained in the meeting

They are reflected in the Report.

- 1332 -

(6) Possibility of quality steel production

Please see Section 6-1-2, ANNEX 5 and ANNEX 6 2 (4).

(7) DRP capacity

Please see Section 6-1-3 of the Report.

(9) Personnel requirement

It is incorporated in the Report.

(10) Utilization of excess capacity

It will be required to consider in detail the utilization of excess capacity of the existing facilities at the time of implementation of the expansion project.

3. Financial Analysis

(1), (3) through (11)

They are incorporated in Chapter 9 of the Report.

(2) Unit consumption of DRP

in remet.

(a) Unit consumption of raw material for DR

Base consumption unit of raw material which is generally expected of Midrex DR plant is 1.43-1.45 t/t of DRI. Actual unit consumption of raw material at ANSDK from December 1986 to September 1987 is higher than the above figures, but it is considered that this results from production of semi-finished product called "remet" and high powder rate of raw material. The reason why so much remet is produced may be explained by the fact that operation of ANSDK's DR plant was commenced only in November 1986 with high

frequency of plant shut-down and start-up resulting

- 1333 -

The high percentage of fines in raw material is considered to reflect the condition of raw material being purchased by ANSDK at present.

Once the above unfavorable factors are eliminated, the unit consumption of raw material may be improved to at least 1.45 t/tDRI. Therefore in this F/S, the unit consumption of raw material of 1.45 t is used.

(b) Unit consumption of electric power for DR plant

The actual operation result of ANSDK DR plant from December 1986 to September 1987 shows an average unit power consumption of 118 kWh/t, which is higher than 110 kWh/t adopted in the Report. This reflects that not many days passed since the start-up of the DR plant with inevitable results of low operating rate and high frequency of repeated shut-down and start-up. Incidentally, the average of unit power consumption in April, July and September, 1987, that showed relatively high operating rate is 108.7 kWh/t and the figures below 90 kWh/t was already achieved at the time of high production.

Though continued operation with the consumption less than 110 kWh/t can be expected in future, the figure of 110 kWh/t will be adopted in this F/S as before.

(c) Unit consumption of natural gas for DR plant

The actual operation result at ANSDK DR plant from December 1986 to September 1987 shows the average unit consumption of natural gas was 294 Nm^3/t which is higher than 270 Nm^3/t adopted in the F/S Report. This is caused by low operating rate and frequent occurrence of shut-down and start-up of the plant as it began operation only last year.

Once the operation becomes more stable, much lower unit consumption than at the present can be expected and already the operation with a little more than $240 \text{ Nm}^3/\text{t}$ has been achieved for a short period.

- 1334 -

On the presumption of stable operation for a long period, this F/S adopts 270 Nm^3/t .

4. Others

(1) Comments submitted by Counterparts

Except the following, they are incorporated in the Report.

Layout of LF, dust collecting system for LF and Junction points

Casting yard will be extended by one span to provide space for repair and handling of roof and lance of LF and ferro-alloys. In addition, a dust collecting system for fine dust occurring at the LF and junction points of DRI transportation will be installed. The construction cost therefor is about US\$1.9 million.

(2) Local procurement

(a) Domestic raw material ore

Request had been made to ANSDK for information about domestic raw material ore in Egypt, but it was said that it is difficult to provide such information. Therefore the F/S team had to use the information it obtained by itself, namely "Survey of World Iron Ore Resources" prepared by United Nations.

According to the data, in Egypt there are three ores in Aswan, Bahariya and Eastern Desert with estimated reserves of (20-158) x 10^6 tons, 195 x 10^6 tons and 80 x 10^6 tons, respectively.

Use of those iron ores in the DR plant, if possible, is very desirable for saving of foreign currencies and promotion of domestic industries. But according to the above data, iron content of the above ores is 47% Fe, 49-59% Fe and 43% Fe, respectively, and the iron content is much lower than the raw material (65-68% Fe) usually used in DR plant, and use of the above ores as it is does not bring any merits to ANSDK.

(b) Local fabrication and installation

This is incorporated in Chapter 8 of the Report.

- 1336 -

ANNEX VII Recent trend of natural gas prices

Export price of natural gas from producing countries in the Middle East is showing a declining trend. For example, export price of LNG to Europe from Algeria, the biggest gas producer in the Middle East, was US\$3.81/Million BTU at the beginning of 1986, but dropped to US1.30 \times 1.95/Million$ BTU at the beginning of 1987. The price includes liquefaction cost. (The price is of FOB in both cases and CIF price is assumed to be about one dollar higher.)

In general, natural gas price is determined on the basis of thermal equivalent with crude oil price, but recently the price seems to be lowered to the marginal cost to cope with the market condition.

The price of industrial gas in major oil producing countries (for DR plant) in the world is estimated as follows:

Qatar	US\$ ∿0.3/M	S\$ ~0.3/Million BTU		
Venezuela	0.300.4	¹¹		
Saudi Arabia	0.5			
Indonesia	0.7	_ " _		
Trinidad & Tobag	o 1.0	_"_		
Nigeria	0.7			

And the gas sent by Iran to Kuwait through pipeline is US\$1.0/Million BTU on FOB basis.

For more information, please refer to MEED dated on March 21, 1987.

46 MEED 21 MARCH 1987

ENERGY MONITOR

Natural gas production increases

Production Output of gas from the Middle East's 10 principal producers in 1986 rose by more than 7 per cent, to 115,950 million cubic metres. The 10 accounted for 1.3 per cent of world production, which rose by only 1-2 per cent, to sn estimated 18,000 million cubic metres.

Algeia is the region's largest producer. Its 1986 production of 36,100 million cubic metres was unchanged from 1985, suggesting that protracted discussions about price with European consumers did not lead to a loss of export volumes. Saudi Arabia increased its gas production by 20 per cent in 1986. Unlike most of the region's other producers — with the notable exception of Algeria — all the kingdom's gas is associated with oil. The ise in production in 1986 reliacts the kingdom's 50 per cent increase in oil output, to 4.8 million barrets a day.

Iran has the region's largest reserves; they could last up to 600 years at 1985 production rates. Marketed output in 1986 was 15,200 million cubic metres -- 4 per cent more than in 1985.

Iran uses all its production locally, and llares as much again. Prospects for a revival of exports improved in August 1986, when Oil Minister Gholamreza Aqazadeh visited Moscow. Discussions included a possible resumption of gas supplies along the 10,000 million-cubic-metre-ayear IGAT-1 pipeline, disused since the February 1979 revolution. Aqazadeh later sald supplies could start in mid-1987. Price Natural gas prices weakened in 1986, thanks to the abrupt fail in the oil price. The time lag of up to three months between oil and gas price movements means the gas price has yet to recover fully. The low prices increased competition between producers and fuels. As a result, Algeria was obliged to renegoliate contracts with its clients in flaty. France, Belolum and Spain.

recover taily. The low phase increased competition between producers and fuels. As a result, Algeria was obliged to renegoliate contracts with its clients in italy, France, Belgium and Spain. The price weakness led to the introduction of more flexible formulas, notably linkages with crude oil netback yields and spot prices. The intrafuel competition aroused by low oil prices was most visible in the US, where utilities in 1986 switched from gas to cheaply priced heavy fuel oil.

Reserves and consumption Compared with the region's oil reserves, gas reserves are modest. Middle East and North African producers possess almost 28 per cent of the world total; nearly half the total liss in fran, which has 13.3 million million cubic metres of gas. At present rates of consumption, the region's reserves with last more than 100 years. About 85 per cent of world gas production is

About 85 per cent of world gas production is consumed locally, because export costs are prohibility. This is why so much gas is flared if there is no local use for it. In 1975, flaringaccounted for 60 per cent of the natural gas produced by the Organisation of Arab Petroleum Exporting Countries (OAPEC), figures from the Kuwait-based organisation show.

Consumption rates have increased sharply since 1975 because of increased industrialisa-

Here and the second second

Gas prices for selected Middle East producers, 1986-87

Producer Cilent		Gas	\$/million BTUs				
	e - 199	1986 Q1	02	03	04	1987 Q1	
Abu Dhabl	Tokyo Electric Power						
	Company (Japan)	LNG	4.85	na	3.60	na	па
Algeria	SNAM (Italy)	Natural ²	3.49	2.80	na	2.0	ла
	Gaz de France	LNG ³	3.81	3.07	2.32	1.95	na
	Distrigaz (Belgium)	LNG	3.81	na	2.32	1.95	1.30-1.40
	Enagas (Spain)	LNG	3.81	3.18	2.32	1.95	1.95
Iraq	Kuwait	Natural ⁴	1.00	1.00	1.00	1.00	па

¹ cll pilce; based from September 1986 on netback yields. Price fell in October 1986 to \$3.18 a million BTUs

⁴ Price is fob Tunislan border. Estimated cil price in Italy in first-quarter 1986 was \$4.30-4.50 a million Billish thermal units (BTUs). Price from September 1986 is understood to be based on spot prices of crudes in a three-year agreement between SNAM and Algeria's Sonatrach ⁹ LNG prices are fob Algeria. Sonatrach renegotiated price with Gaz de France, Distrigaz and

Enagaz from April 1986, These are at present based on netback yields. From the beginning of 1987, Sonatrach Is Involcing the three companies at \$2.12 a million BTUs. Negotiations are under way that will lead to a price retroactive to 1 January

⁴ Estimate; fob price

Source: Cedigaz, Paris

tion and the development of gas re-injection techniques. In 1984 — the most recent year for which ligures are available — only 15.7 per cent of total OAPEC production was flared. The highest rate was in Saudi Arabia, which flared 51 per cent of production.

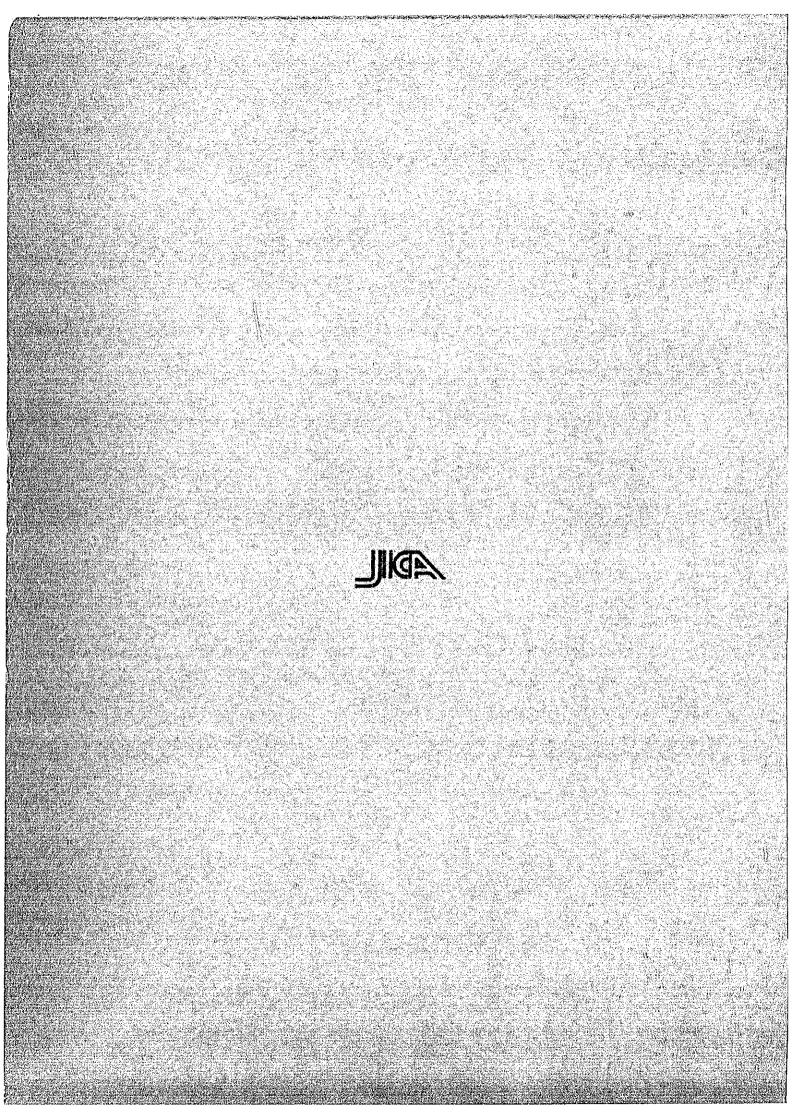
Outlook The discovery rate for natural gas reserves is likely to slow as oil field development is curtailed. One recent exception has been North Yemen, where the opening of the Marib/ Jawf basin has ted to the discovery of gas reserves said to be sufficient for 100 years' locat consumption.

Given the difficulty of exporting natural gas, most growth in demand will be generated domestically. The bulk of the rise in local consumption has comprised increased demand for industrial feedstock, followed by wider use of fuel gas. OAPEC estimates that its members will account for 5.2 per cent of world demand by 1995, compared with 3.5 per cent in 1985.

and the second in all on the she wanted

Middle East natural gas production, 1985-86¹

('00	0 million cubic metres)
	1986	1985
Abu Dhabi	10.19	9.67
Algeria	36.10	36.47
Bahrain	5.28	4.54
Dubal	2.30	2.13
Egypt	5.46	4.93
Iran	15.20	14.60
Irag	1.32	0.85
Kuwait	4.90	4.20
Libya	5.40 ²	5.20
Qalar	5 60²	5.41
Saudi Arabla	24.00 ²	20.28
World total	1,800.0 ²	1,770.0


 ¹ marketed output; excludes volumes flared and reinjected, and refining losses
 ² Provisional

Source: Cedigaz, Paris

Middle East proven natural gas reserves, end 1985

	million million cubic metres	production ratio
		(years)
Abu Dhabi	0.6	88
Algeria	3.0	66
Bahrain	0.2	47
Dubal	0.1	100+
Egypt	0.2	43
Iran	13.3	100+
Iraq	0.8	100+
Kuwalt	0.9	100+
Libya	0.6	100+
Qalar	4.2	100+
Saudi Arabla	3.4	100+

Source: BP Statistical Review of World Energy, 1986

