and the experience of the property of the party of the pa

artinophysia **am**paikantopikan sanoanian andole

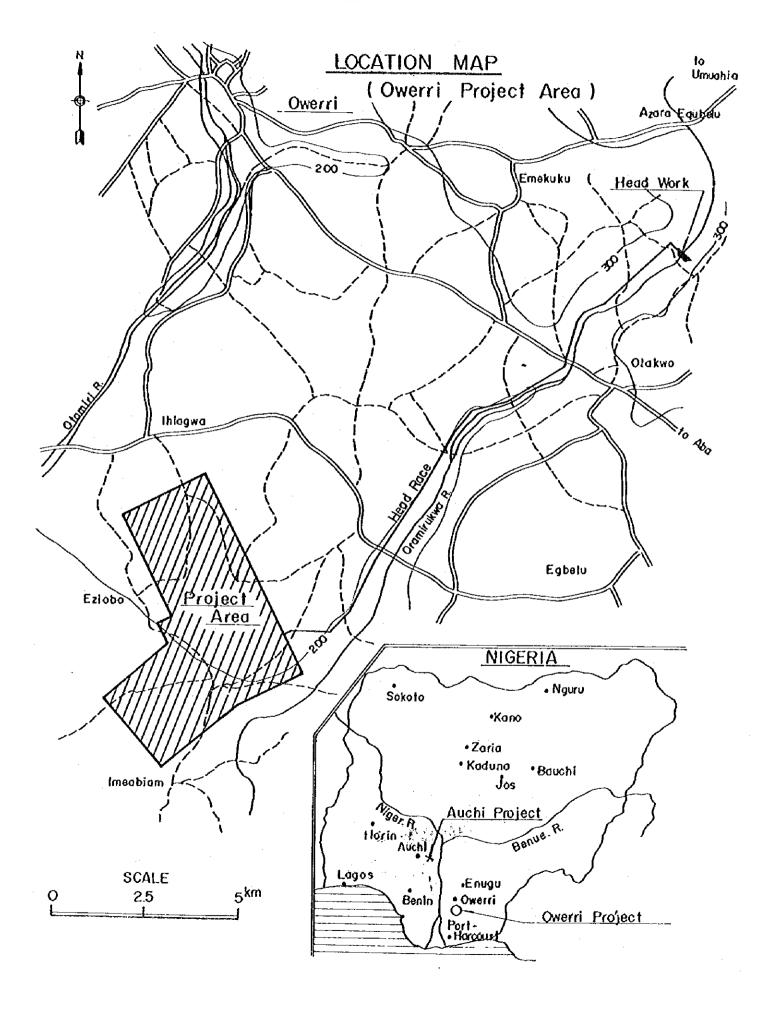
ENTERNA EXAMPLATORINE ENTERNA DE VERTA DE PARTICIO DE ENTERNA DE LA PARTICIO DE ENTERNA DE LA PARTICIO DE ENTE PHYONIE CHESTUN HAMON AND THE ADVENTAGE STATISTICS

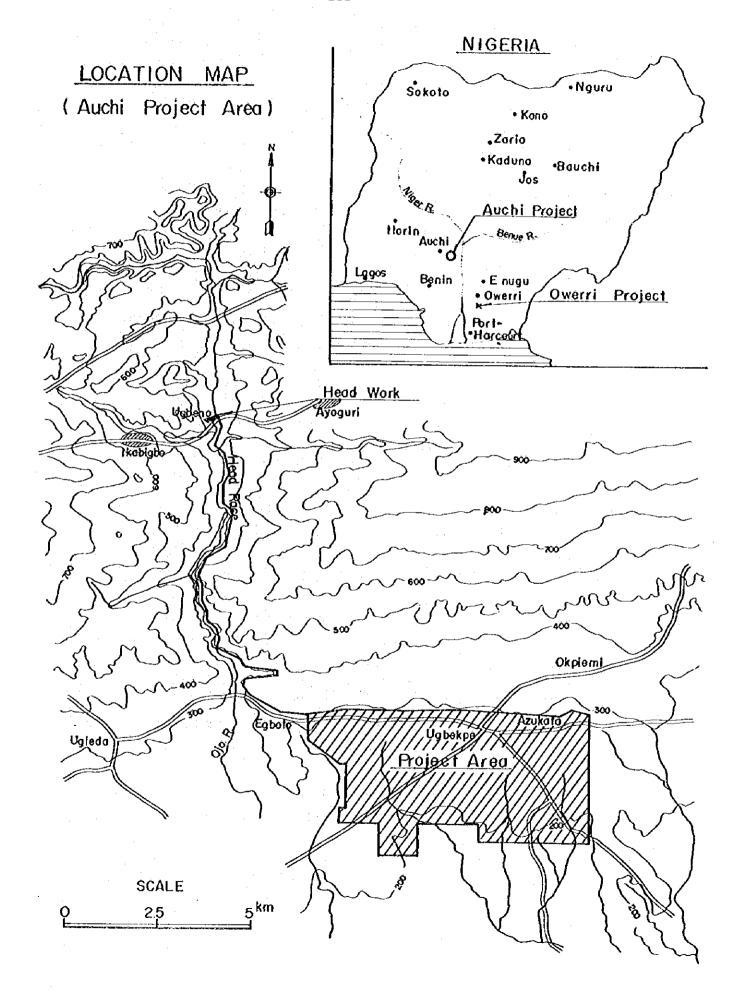
TAY ROLLING SERVING TO THE WANTE

FEDERAL REPUBLIC OF NIGERIA FEDERAL DEPARTMENT OF AGRICULTURE

FEASIBILITY REPORT ON

THE AGRICULTURAL DEVELOPMENT PROJECTS IN IMO AND BENDEL STATES


STUDY REPORT



JUNE 1977

JAPAN INTERNATIONAL COOPERATION AGENCY

国際協力事業団 新 84. 5.14 5.24 登錄No. 04383 AFT

CONTENTS

			Page
1.	METE	OROLOGY	1
	1.1	General	1
	1.2	Meteorology in Overri Area	. 1
		1.2.1 Rainfall	1
	1.3	Meteorology in Auchi Area	3
		1.3.1 Rainfall	3 5
2.	HYDR	OLOGY	17
	2.1	Hydrology of Oramirukwa River	17
		2.1.1 River and Basin 2.1.2 Monthly Mean Discharge 2.1.3 Plood Discharge	17 17 21
	2.2	Hydrology of Orle-Edion River	22
		2.2.1 River and Basin 2.2.2 Monthly Mean Discharge 2.2.3 Flood Discharge	22 23 24
3.	eo ii	AND GEOLOGY	36
٥.			36
	3.1	3.1.1 Introduction 3.1.2 Procedure of Soil Survey 3.1.3 Soil Classification and Main Features of the Major Soils	36 36 37 41
		3.1.4 Land Capability	
	3.2		43 43
		3.2.1 General	43
		3.2.3 Geology in Auchi Area	44
4.	PRE	SENT AGRICULTURAL SETTING	64
	4.1		64
	4.2	Land Use	65
	4.3	Cropping Pattern and Farming Practices	66
	4.4	Agricultural Production	70
	4.5	Farm Economy	71
	4.6	Marketing and Institutions	7 2
-		4.6.1 Marketing and Processing	72 73

•	- v -	
5. A	GRICULTURAL DEVELOPMENT PLAN	80
-	.l General	80
•	.2 Proposed Land Use	80
	.3 Proposed Cropping Pattern	82
	5.3.1 Selection of Crops	82 82
5	.4 Proposed Parming Practices and Operation	83
	5.4.1 General 5.4.2 Proposed Farming Practices	83 84
5	.5 Farm Inputs and Farm Machineries	88
	5.5.1 Farm Inputs	89 90
5	.6 Rice Mill and Storage Pacilities	91
5	.7 Anticipated Yield	91
5	.8 Pilot Scheme	93
	5.8.1 General	93
	5.8.2 Location and Scale of the Pilot Scheme 5.8.3 Scope of Work	93 94
6. I	RRIGATION PLAN	105
6	.1 General	105
6	.2 Irrigation Water Requirement	105
	6.2.1 General	105
	6.2.2 Potential Evapotranspiration	106 107
•	6.2.4 Puddling Water Requirement and Percolation	108
	6.2.5 Effective Rainfall	108
	6.2.6 Diversion Water Requirement	109
6	.3 Headworks	109
	6.3.1 Headworks for Owerri Project	109 110
6	.4 Irrigation Canals and Related Structures	111
	6.4.1 Layout of Irrigation Canals	111
	6.4.2 Preliminary Design of Irrigation Canals	112
	6.4.3 Preliminary Design of Related Structures	113
6	.5 Drainage Canals and Related Structures	115
	6.5.1 Layout of Drainage Canals	115
	6.5.2 Preliminary Design of Drainage Canals 6.5.3 Preliminary Design of Related Structures	115 115
e	6.6 Farm Roads	116
·	6.6.1 Layout of Roads	116
•	6.6.2 Typical Sections of Roads	116
	.7 Layout of Paddy Field	117

	- vi -	
7.	ORGANIZATION AND MANAGEMENT	150
÷	7.1 General	150
	7.2 Project Coordination Committee	150
4	7.3 Project Executing Organization	151
	7.3.1 Owerri Project Office	151 153
	7.4 Agricultural Cooperative	154
8.	IMPLEMENTATION SCHEDULE AND CONSTRUCTION PLAN	168
	8.1 Implementation Schedule	168
	8.2 Construction Plan	169
	8.2.1 General	169
	8.2.2 Construction Plan for Overri Project 8.2.3 Construction Plan for Auchi Project	169 171
	0.2.) Constitution I fan Tof Aucht Hofett III	1,1
9.	COST ESTIMATE	178
	9.1 General	178
	9.2 Project Cost	178
	9.2.1 Construction Cost of Civil Works 9.2.2 Construction Cost of Processing, Storage,	178
	9.2.3 Initial Farm Investment	179 179
	Schedule	179
	9.3 Operation and Maintenance Cost	179
10.	MARKETING, PRICE PROSPECTS AND BENEFIT ESTIMATION	205
	10.1 Market and Price Prospects	205
	10.1.1 Market Prospects of Rice	205 207
	10.2 Estimate of Irrigation Benefit	208
	10.2.1 Estimate of Net Income per Crop	208 208
11.	PROJECT EVALUATION	223
	11.1 Economic Evaluation	223
	11.1.1 General	223
	11.1.2 Economic Project Costs and Benefits	223 224
	11.2 Financial Evaluation	225
	11.2.1 General 11.2.2 Farm Budget Analysis 11.2.2 Farm Budget Analysis	225 225
÷	11.2.3 Profitability of the Estate Farm	226
	11.3 Socio-Economic Impact of the Project	228

	- vii -	
12.	STUDY ON THE DEVELOPMENT SCALE	242
	12.1 The Owerri Project	242
	12.1.1 Introduction 12.1.2 Comparative Study 12.1.3 Conclusion	242 242 243
	12.2 The Auchi Project	244
	12.2.1 Introduction	244 244
	Optimum Plan	246

LIST OF TABLE

No.	Title	Page
Table 1.1	Monthly Mean Rainfall and Numbers of Rainy Days, Owerri Project	6
1.2	Monthly Mean Rainfall and Numbers of Rainy Days, Auchi Project	6
1.3	Data of Other Meteorological Factors, Owerri Project	7
1.4	Data of Other Meteorological Factors, Auchi Project	8
2.1	Monthly Mean Discharge at Azara Egbelu Station	25
2.2	Converted Monthly Mean Discharge of Intake Site	25
2.3	Observed Maximum Flood and Probability of Flood in Nigeria	25
2.4	Observed Maximum Flood and Probability of Flood in Ghana	26
3.1	Results of Soil Analysis (Owerri Area)	45
3.2	Results of Soil Analysis (Auchi Area)	46
3.3	Descriptions on Typical Profile of Loamy Soil Type (1)	47
3.4	Descriptions on Typical Profile of Loamy Soil Type (2)	48
3.5	Descriptions on Typical Profile of Clay Loam Soil Type	49
3.6	Descriptions on Typical Profile of Sandy Loam Soil Type (1)	50
3.7	Descriptions on Typical Profile of Sandy Loam Soil Type (2)	51
3,8	Descriptions on Typical Profile of Sandy Loam Soil Type (3)	52
3.9	Descriptions on Typical Profile of Loamy Soil Type (1)	53
3.10	Descriptions on Typical Profile of Loamy Soil Type (2)	54
3.11	Descriptions on Typical Profile of Lateritic Soil with Plinthite	55
3.12	Descriptions on Typical Profile of	56

		- ix -	
	,		
N	<u>0.</u>	Title	Page
		Becamintions on Trained Brackle at	
1801	e 3.13	Descriptions on Typical Profile of Regosol	57
	4.1	Present Agricultural Production (Overri Project Area)	74
	4.2	Present Agricultural Production (Auchi Project Area)	74
	4.3	Present Typical Farm Budget (Owerri Project Area)	75
	4.4	Present Typical Parm Budget (Auchi Project Area)	76
	5.1	Proposed Land Use	81
	5.2	Proposed Farm Inputs per Ha	89
	5.3	Labour Requirement for the Cultivation of 1.2 ha (Small Holder Area)	95
	5.4	Required Farm Machinery	96
	5.5	Main Features of Rice Mill and Storage Facilities	97
	5.6	Results of Variety Trial in Anambra State	98
	5.7	Rice Production Programe in the Owerri Project Area	99
	5.8	Rice Production Programe in the Auchi Project Area	100
	6.1	Climatic Data at Umudike Station (1976)	118
	6.2	Climatic Data at Umudike Station (1972 - 1976)	119
	6.3	Climatic Data at Auchi Station	120
	6.4	Calculation Sheet for Radiation Method in Owerri Project	121
	6.5	Calculation Sheet for Radiation Method in Auchi Project	122
	6.6	Monthly Effective Rainfall for Paddy in Owerri Project	123
	6.7	Monthly Effective Rainfall for Paddy in Auchi Project	124
	6.8	Irrigation Water Requirement of the Owerri Project	125
	6.9	Irrigation Water Requirement of the Auchi Project	

	 X −	
No.	Title	Page
Table 6.10	Diversion Water Requirement for the Owerri Project	133
6.11	Diversion Water Requirement for the Auchi Project	134
6.12	Design Criteria of Irrigation Canals	135
7.1	Function of the Departments for the Owerri Project Office and the Auchi Project Office	156
7.2	Required Number of Staffs of the Owerri Project Office	158
7.3	Required Number of Staffs of the Auchi Project Office	161
8.1	Workable Days for Construction Works	173
8.2	List of Construction Machinery and	174
8.3	Equipment Features of Major Project Works	174 175
9.1	Construction Cost of Civil Works for Owerri Project	180
9.2	Construction Cost of Civil Works for Auchi Project	183
9.3	Detailed Breakdown of Construction Cost for Owerri Project	
9.4	Detailed Breakdown of Construction Cost for Auchi Project	187
9.5	Procurement Cost of Construction Machinery and Equipment	194
9.6	Construction Cost of Processing, Storage and Office Pacilities, Owerri	195
9.7	Construction Cost of Processing, Storage and Office Pacilities, Auchi	196
9.8	Cost of Rice Mill and Storage Facilities for Owerri Project	197
9.9	Cost of Rice Mill and Storage Facilities for Auchi Project	198
9.10	Initial Farm Investment	199
9.11	Parm Machinery and Equipment of the Owerri Project Area	200
9.12	Parm Machinery and Equipment of	201

. . .

	- xi -	
No.	<u>Title</u>	Page
Table 9.13	Project Cost for Owerri Project	202
9.14	Project Cost for Auchi Project	202
9.15	Annual Disbursement Schedule of Project Cost, Owerri Project	203
9.16	Annual Disbursement Schedule of Project Cost, Auchi Project	203
9.17	Annual Operation and Maintenance Cost	204
10.1	Demand Porecast of Rice	206
10.2	Economic and Financial Farm Gate Price of Pood Crops	209
10.3	Economic and Financial Price of Farm Inputs	210
10.4	Local Market Price of Rice, Bendel State	211
10.5	Local Market Price of Rice, Imo State	211
10.6	Recent Local Price of Rice (Mill Gate Price)	212
10.7	Prices of Other Food Crops	213
10.8	Economic Price of Paddy (Import Substitution)	214
10.9	Economic Price of Maize (Import Substitution)	215
10.10	Net Income per Ha for the Owerri Project	216
10.11	Net Income per Ha for the Auchi Project	217
10.12	Net Income per Crop per Ha (without-Project)	218
10.13	Net Income of Paddy Production per Ha, Direct Sowing (with-Project)	219
10.14	Net Income of Paddy Production per Ha, Transplanting (with-Project)	220
10.15		221
10.16	Estimate of Irrigation Benefit (Auchi Project)	222

No.	-	Title	Page
Table	11.1	Economic Construction Cost of the Owerri Project	230
	11.2	Annual Disbursement of Economic Construction Cost, Overri Project	231
	11.3	Economic Construction Cost of the Auchi Project	230
	11.4	Annual Disbursement of Economic Construction Cost, Auchi Project	232
	11.5	Sensitivity Analysis of the Owerri Project	233
	11,6	Sensitivity Analysis of the Auchi Project	233
	11.7	Typical Parm Budget in the Owerri Project Area (Puture with-Project)	234
	11.8	Typical Parm Budget in the Auchi Project Area (Future with-Project)	235
	11.9	Project Revenue and Cost (Owerri Project)	236
	11.10	Project Revenue and Cost (Auchi Project)	237
	11.11	Cash Plow Statement of the Owerri Project	238
	11.12	Cash Plow Statement of the Auchi Project	239
	12.1	Peatures of Major Project Works, Owerri Project	248
	12.2	Project Cost, Owerri Project	249
	12.3	Economic Construction Cost, Owerri Project	250
	12.4	Peatures of Major Project Works, Auchi Project	251
	12.5	Project Cost, Auchi Project	252
	12.6	Economic Construction Cost, Auchi Project	253
	12.7	Project Cost (Pinancial Cost), Auchi Project	254
	12.8	Annual Disbursement Schedule, Auchi Project	255
	12.9	Economic Construction Cost, Auchi Project	254
	12.10	Typical Farm Budget (Future With-Project), Auchi Project	256
	12.11	Project Revenue and Cost, Auchi Project	257

LIST OF FIGURES

No.	<u>Title</u>	Page
Pig. 1.1	Nigeria: Climatic Zoning	9
1.2	Monthly Mean Rainfall and Numbers of Rainy Days, Owerri Area	9
1.3	Probaility Distribution of the Annual Total Rainfall, Owerri Area	10
1.4	Design Monthly Rainfall, Owerri Area	11
1.5	Probability Distribution of the Daily Rainfall, Owerri Area	12
1.6	Monthly Mean Rainfall and Numbers of Rainy Days, Auchi Area	13
1.7	Probability Distribution of the Annual Total Rainfall, Auchi Area	14
1.8	Design Monthly Rainfall, Auchi Area	15
1.9	Probability Distribution of the Daily Rainfall, Auchi Area	16
2.1	Oramirukwa River Basin	27
2.2	Rating Curve at Azara Egbelu Station, Oramirukwa River	28
2.3	Relation between Discharge and Cumulative Rainfall, Oramirukwa River	29
2.4	Distribution of Rainfall and Discharge	30
2.5	Regional Relation of Peak Flood, Observed Max. Flood	31
2.6	Regional Relation of Peak Flood, 5 Year's Flood	32
2.7	Regional Relation of Peak Flood, 50 Year's Flood	33
2.8	Regional Relation of Peak Flood, 100 Year's Flood	34
2.9	Orle-Edion River Basin	35
3.1 ·	Soil Map of the Owerri Project Area	58
3.2	Soil Map of the Auchi Project Area	59
3.3	Land Capability Map in the Owerri Project Area	60
3.4	Land Capability Map in the Auchi Project Area	61

No.	<u>Title</u>	<u>Page</u>
Fig. 3.5	Geological Profile of the Intake Site for Owerri	62
3.6	Geological Profile of the Intake Site for Auchi	63
4.1	Land Use Map of the Owerri Project Area	77
4.2	Land Use Map of the Auchi Project Area	78
4.3	Typical Cropping Calendar of the Major Crops (Owerri Project Area)	79
4.4	Typical Cropping Calendar of the Major Crops (Auchi Project Area)	7 9
5.1	Proposed Cropping Pattern (Owerri Project Area)	101
5.2	Proposed Cropping Pattern (Auchi Project Area)	101
5.3	Proposed Farming Practices (Estate Farm)	102
5.4	Proposed Farming Practices (Small Holder)	103
5.5	Flow Chart of Rice Mill	104
6.1	Comparison of Potential Evapotrans- piration at Umudike Station (1976)	136
6.2	Crop Consumptive Unit Graph (ku) (Transplanting)	137
6.3	Crop Consumptive Unit Graph (ku) (Direct Sowing)	138
6.4	Crop Coefficient for Paddy (Transplanting)	139
6.5	Crop Coefficient for Paddy (Direct Sowing)	140
6.6	Classification of Canal Types	141
6.7	Typical Section of Irrigation Canals	142
6.8	Irrigation System Diagram for Owerri Project	143
6.9	Irrigation System Diagram for Auchi Project	144
6.10	Drainage System Diagram for Owerri Project	145
6.11	Drainage System Diagram for Auchi Project	146
6.12	Typical Section of Drains	147

•

	- XV -	
No.	<u>Title</u>	Page
Fig. 6.13	Typical Section of Roads	148
6.14	Typical Layout of Farm Unit	149
7.1	Proposed Organization for Owerri Project	164
7.2	Proposed Organization for Auchi Project	165
7.3	Organization of Agricultural Cooperative for the Owerri Project	166
7.4	Organization of Agricultural Cooperative for the Auchi Project	167
8.1	Implementation Schedule for Owerri Project	176
8.2	Implementation Schedule for Auchi Project	177
11.1	Estimate of IRR, Owerri Project	240
11.2	Estimate of IRR, Auchi Project	241
12.1	Location Map, Owerri Project	258
12.2	Implementation Schedule for Plan I, Owerri Project	259
12.3	Implementation Schedule for Plan II, Owerri Project	260
12.4	Implementation Schedule for Plan III, Owerri Project	261
12.5	Internal Rate of Return for Each Plan, Owerri Project	262
12.6	Location Map, Auchi Project	263
12.7	Implementation Schedule for Plan I, Auchi Project	264
12.8	Implementation Schedule for Plan II, Auchi Project	265
12.9	Implementation Schedule for Plan III, Auchi Project	266
12.10	Implementation Schedule for Plan IV, Auchi Project	267
12.11	Internal Rate of Return for Each Plan, Auchi Project	268
12.12	Proposed Cropping Pattern, Auchi Project	269
12.13	Estimate of IRR, Auchi Project	269

LIST OF DRAWINGS

O1 GENERAL LAYOUT, OWERRI PROJECT 2	270
O2 GENERAL LAYOUT, AUCHI PROJECT 2	271
03 HEAD WORKS, OWERRI PROJECT 2	72
04 HEAD WORKS, AUCHI PROJECT 2	273
05 HEAD RACE (1). OWERRI PROJECT 2	274
O6 HEAD RACE (2), OWERRI PROJECT 2	275
O7 HEAD RACE (3), OWERRI PROJECT 2	276
08 HEAD RACE (1), AUCHI PROJECT 2	277
09 HEAD RACE (2), AUCHI PROJECT 2	278
10 PILOT SCHEME, OWERRI PROJECT 2	279
PILOT SCHEME, AUCHI PROJECT	280

,

ABBREVIATION

km.	Kilometer	m	meter		
cm	centimeter	ŵи	millimeter		
t	ton	kg	kilogramme		
g	gramme	km ²	square kilometer		
_m 2	square meter	ha	hectare		
m ³	cubic meter	kl	kiloliter		
<u>K</u>	liter	m ³ /sec	cubic meter per second		
∦/sec	liter per second	//sec/ha	liter per second per hectare		
t/ha	ton per hectare	// ha	liter per hectare		
kg/ha	kilogramme per hectare	hr(s)	hour(s)		
t/hr	ton per hour	mm/day	millimeter per day		
oc	degree centigrade	В	percent		
El	Elevation above	1b	pound		
	mean sea level	ft.	foot		
PS	Horse power	No(s)	number(s)		
L.S.	Lump Sum	Pig.	Pigure		
US\$	U.S. dollar	IRR	Internal Rate of Return		
N	Naira				
O&M	Operation and Maintenance				
GDP	Gross Domestic Product				
GNP	Gross National Product				
L.G.A	Local Government Area				
FDA	Pederal Department of Agriculture				
MANR	Ministry of Agriculture and Natural Resources				
ADC	Agricultural Development Corporation				
NAB	Nigerian Agricultural Bank				

JICA Japan International Cooperation Agency

PAO Food and Agriculture Organization of the United Nations

IBRD International Bank for Reconstruction and Development

IITA Internal Institute of Tropical Agriculture

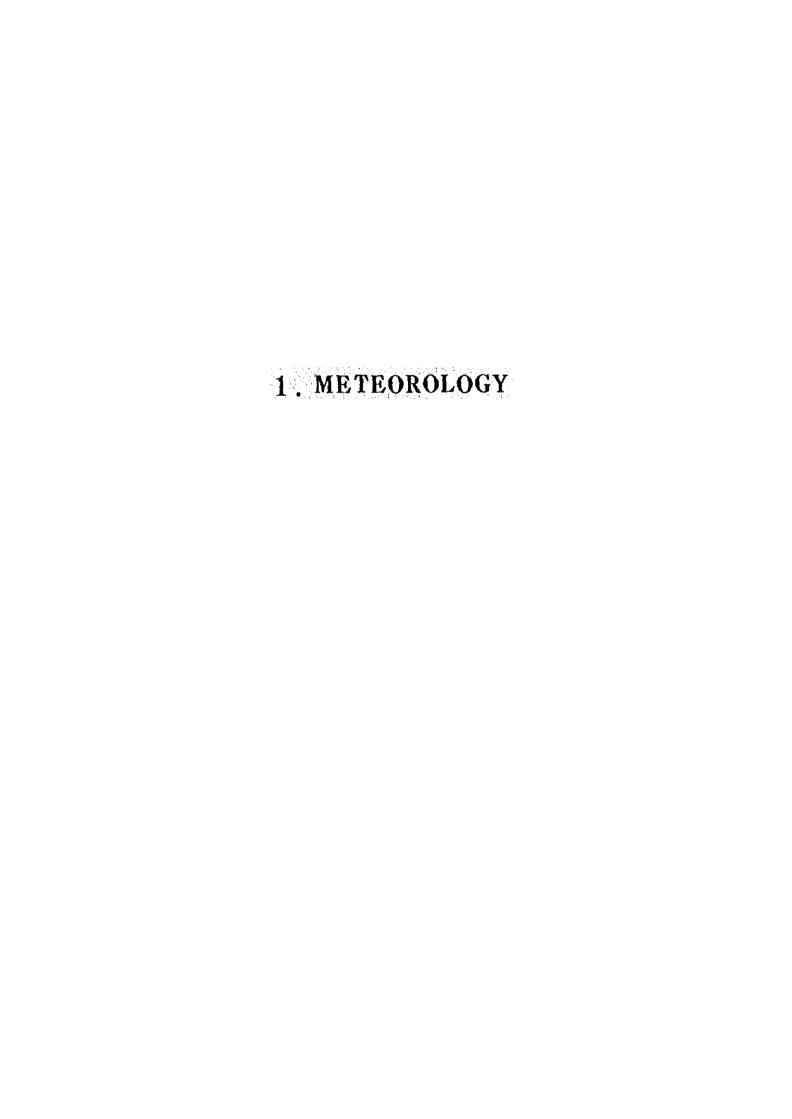
C.I.F. Cost, Insurance and Freight

P.O.B. Free on Board

CONVERSION TABLE OF MEASURES

1 ton = 2,204.6 pounds 1 ha = 2.471 acres

1 m = 39.37 inches $1 \text{ m}^3 = 35.31 \text{ cubic feet}$


= 3.3 feet

1 km = 0.62 mile

CURRENCY EQUIVALENT

N1 = 100 Kobo N1 = US\$1.58

 $N1 = \frac{458}{458}$ US\$1 = N0.63

METEOROLOGY

1.1 General

Nigeria has a tropical climate with year-round high temperatures. The climate is governed mostly by the seasonal winds e.g. (a) the moist south-west wind and (b) the dry north-east Trade and "Hamattan" winds. Under the influence of each of these winds, the year can be divided into the rainy season and the dry season, respectively.

Rainfall comes from the moist south-west wind and hence the climate of Nigeria varies according to the distance from the sea. The whole country is divided into three belts climatologically as shown in Fig. 1.1. Imo State is located in SOUTH BELT and Bendel State, in the transitional zone between SOUTH BELT and MIDDLE BELT, respectively. As shown in the figure, the average annual rainfall at Owerri is about two times as much as that at Auchi. In both Project areas, temperature and relative humidity are quite high with little variation throughout the year.

1.2 Meteorology in Owerri Area

1.2.1 Rainfall

1) Available data and general features of rainfall

In the neighborhood of the Owerri Project area there are four meteorological stations as below.

Meteorological Stations

	[nce	tion		Recorde	d Period
Station	Latitude	Longi tude	El	Daily Rainfall	Monthly Rainfall
Owerri (Meteorological Service)	5 ⁰ 29'N	7°02 ¹E	300 ^{ft} .	1974-1976	1907-1976*
Owerri (A.I.C.E.)/1	5°29'N	7 ⁰ 01'E	230 ^{ft} .	1973-1976	1973-1976
Umudike (Experimental Farm)	5°29'N	7 ⁰ 33'E	400 ^{ft} .	1971-1976	1934-1976*
Okigwi (Meteorological Service)	5 ⁰ 50'N	7°21'E	-	-	1936-1966*

/1 A.I.C.E.: Alvan Ikoku College of Education
/2 x : involves some intermittent periods.

Average monthly rainfalls and numbers of rainy days for these stations are shown in Table 1.1 and Fig. 1.2. As a general trend of seasonal variation, rainfall increases gradually from March, attains to maximum in September, and declines abruptly in November. There exists a short lull in the rainfall usually in August. The rainy season lasts approximately seven months from April to October and the dry season, from November to March.

According to the data at Owerri which covers more than 90% of the Oramirukwa basin in terms of the Thiessen polygon, the annual rainfall ranges from about 1700 mm to about 3200 mm of which about 85% is concentrated in the rainy season. Rainy days average at 140 in a year.

2) Design drought rainfall for irrigation planning

Prequency analysis of the annual total rainfall at Owerri has been made by using the Thomas method. The results are summarized in the following table and illustrated in Fig. 1.3.

Probable Annual Rainfall

Probability (%)	50	20	10	2
Annual Total Rainfall (mm)	2,400	2,100	1,900	1,800

Probability of the drought rainfall for the purpose of the irrigation planning has been decided at 20% or once in five years. The annual total rainfall thus estimated has been distributed to each month in proportion to the average monthly rainfall pattern at Owerri. The results are shown in the following table and Fig. 1.4.

Design Brought Monthly Rainfall for Owerri Project
(Unit: ma)

J	F	M	A	М	J	J	A	s	0	N	D	Total
20	41	105	172	233	262	313	261	364	244	65	20	2,100

3) Design maximum daily rainfall

Since the data of the daily rainfall at Owerri are scanty, the data at Umudike have been used for estimation of the design maximum rainfall.

Probability of the occurrence has been analysed by using also the Thomas method. The results are illustrated in Fig. 1.5 and summarized as below.

Probable Daily Maximum Rainfall

Probability (%)	50	20	10
Daily rainfall (mm/day)	86	100	110

Probability of the daily maximum rainfall has been decided at 20% or once in five years as the basis of drainage planning.

1.2.2 Other Meteorological Pactors

The other meteorological data such as temperature, relative humidity, wind speed, and evaporation are shown in Table 1.3.

Temperature

High atmospheric temperature prevails throughout the year in this area without noticeable seasonal changes. The temperature averages at about 26°C every year. It rises highest in February to about 28°C, whereas it falls lowest in the period from July to August to about 25°C.

Relative Humidity

The relative humidity is rather high with around 80% on an annual average. It is kept rather high in the rainy season during the period from April to November.

Wind Speed

The wind speed is 109 km/day or about 1.3 m/sec on an annual average. As a general tendency, it is high in the rainy season and low in the dry season.

Evaporation

Evaporation has been measured by the Piche evaporimeter at Umudike for five years, whereas the measurement by means of US Weather Bureau Class A pan covered only one year. The annual average Piche evaporation is about 3 mm per day ranging from 3-4 mm per day in the dry season to about 2 mm per day in the rainy season.

1.3 Meteorology in Auchi Area

1.3.1 Rainfall

1) Available data and general features of rainfall
The available rainfall data are as follows.

Meteorological Stations

	Loca	tion		Recorde	d Period
Station	Latitude	Longi tude	E1	Daily Rainfall	Monthly Rainfall
Auchi (Auchi Gov. School)	7 ⁰ 04 אי	6 ⁰ 14 'E	800 ^{ft} .	1961-1976	1961–1976
Irrua (Irrua Gov. Parm)	6 ⁰ 46'N	6°13'E	400 ^{ft.}	1970-1976	1952-1976

Note: All data involve some intermittent periods.

Average monthly rainfalls and numbers of rainy days at these stations are shown in Table 1.2 and Fig. 1.6.

The Irrua station is far from the Auchi Project area. Therefore the data at the Auchi station have been used as the basis of planning. The seasonal rainfall pattern at Auchi is almost the same as that of Owerri. Rainfall begins to increase in March, reaches at its maximum in September intervened also by the short Iull in August, and decreases to its minimum in December or January.

Rainfall during the rainy season of seven months from April to October ranges between 1,500 mm and 1,100 mm occupying about 90% of the annual total. Number of rainy days is 90 on an annual average.

2) Design drought rainfall for irrigation planning

The method used for the estimation is the same as that for the Owerri area. The results are obtained as follows. (Refer to Fig. 1.7 and 1.8)

Probable Annual Rainfall

Probability (%)	50	20	10	2
Annual Total Rainfall	(mm) 1,220	1,050	940	800

Design Drought Monthly Rainfall for Auchi Project (Unit: mm)

J	F	М	A	M	J	J	A	S	0	N	D	Total
5	17	54	117	140	151	153	114	161	115	17	6	1,050

3) Design maximum daily rainfall

The method applied to the Owerri area has also been used for the estimation. The results are summarized below. (Refer to Fig. 1.9)

Probable Daily Maximum Rainfall

Probability (%)	- 50	20	10
Daily Rainfall (mm/day)	90	122	145

1.3.2 Other Meteorological Pactors

No data has been available at the Auchi station concerning the other meteorological factors. Therefore, the data at the neighbouring other stations are cited as shown in Table 1.4.

Temperature

The annual average temperature is about 26°C around the Auchi area. Usually, the temperature is highest in March and lowest in December with about 27°C and 22°C, respectively on the monthly mean basis.

Relative Humidity

The relative humidity around the Auchi area has been measured only one year at Warrake. No reliable data have been accumulated yet, however, in view of the data from Benin Nifor and Lokoja, it is estimated that the relative humidity is about 79% on an annual average ranging from about 75% in the dry season and about 80% in the rainy season.

Sunshine Hours

Also from the data at Benin Nifor and Lokoja, the annual average sunshine hours are estimated at about 6 hours per day around the Auchi area. It varies from 7 hours per day in the dry season to 5 hours per day in the rainy season.

Evaporation

Evaporation data by the Class A pan are available from Warrake for a period of only one year. According to the data, the surface evaporation is about 5 mm per day on an annual average rising to 6 mm per day in the dry season and decreasing to 4 mm per day in the rainy season.

Table 1.1 Monthly Mean Rainfall and Numbers of Rainy Days
Owerri Area

Statio	on	Ј	F	M	Λ	M	J	J	A	s	0	N	D	Total
	<u>/1</u>	23	47	121	198	268	302	360	301	419	281	75	23	2,418
Owerri	/2	2	4	7	12	16	17	19	19	19	17	3	2	137
Umudike	12	19	58	124	236	255	285	271	277	328	257	65	18	2,192
Gmudike	<u>/2</u>	1	4	9	14	16	20	21	23	23	19	5	2	1,57
Okigvi	<u>/1</u>	25	48	83	147	230	255	266	220	311	229	51	15	1,878

Average monthly rainfalls in mm
Owerri station 1907-1962,

1907-1962, 1973-1976

(Meteorological service)

1934-1963, 1972-1976

Umudike station Okigwi station

1936-1966

/2 Average numbers of rainy days in day
Owerri station 1973-1976
Umudike station 1972-1976

Table 1.2 Monthly Mean Rainfall and Numbers of Rainy Days

Auchi Area

Station	J	F	M	A	M	J	J	A	S	0	N	D	Total
Auchi /2	6	20	64	138	164	178	180	134	189	136	20	7	1,236
12	1	2	6	9	9	12	15	12	12	9	2	1	90
Irrua /1	11	20	96	155	196	229	226	195	310	201	30	11	1,694

/1 Average monthly rainfalls in mm

Auchi station

1961-1976

Irrua station

1952-1976

/2 Average numbers of rainy days in day
Auchi station 1961-1976

Data of Other Meteorological Factors, Owerri Area Table 1.3

Item	Jan.	Feb.	Mar.	Apr.	May	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.	Mean
Monthly Mean Temperature in °C - Maximum	32	33	33	32	31	30	53	. 53	59	9	e 6	32	31
Monthly Mean Temperature in °C Mean Mean /1	99	80	27	27	27	56	25	23.	56	56	27	75 9	26
Monthly Mean Temperature in °C - Minimum	50	22	6	22	7.	22	22	22	22	22	55	50	22
Monthly Mean Relative Humidity in $\%$	7	11	27	81	82	%	86	8	% 4	82	81	T.	80
Monthly Mean Sunshine Hours $\frac{1}{\sqrt{1}}$	0. 0.	5.6	. C	ις ∞	5,5	4.6	5.9	2.5	2.7	8.0	4.	ν. φ.	4.
Monthly Mean Wind Speed in km/day	16	114	117	108	18	113	113	132	127	111	87	95	109
Monthly Mean Piche Evaporation in mm $\frac{1}{1}$	4	m	4	iw -	4	4	01	63	71	0	, m	4	М
Monthly Mean Class A Pan Evaporation in mm $\frac{2}{2}$	ы ы	3.2	3.9	3.3	20.00	1.9	7.5	2.0	2.7	3.1	2.3	6.5	2.7

(1972-1976) Station: Umudike Note: /1

Station: Umudike (1976)

Data of Other Meteorological Factors, Auchi Area

Item	Jan.	Feb.	Маг.	Apr.	May	May Jun.	Jul	Aug.	Sep.	0ct.	Nov.	Dec.	Me an
Monthly Mean Temperature in °C	23	56	27	26	26	25	24	24	24	25	25	22	25
Monthly Mean Relative Humidity in %	55	64	69	72	80	2.2	8	80	76	81	74	61	72
Monthly Mean Relative Humidity in %	77	80	83	83	% 4	85	88	88	80 80	88	85	83	%
Monthly Mean Relative Humidity in %	61	61	65	72	78	78	82	78	82	81	73	92	74
Monthly Mean Sunshine Hours Benin Nifor	6.1	4.	5.6	0.9	6.1	5.0	2.	3.3	د. 4	4 &	8.9	8.9	4.
Monthly Mean Sunshine Hours Lokaja	7.2		7.4	6-9	7.1	6.1	5.3	ę. .	5.3	9*9	8	%· %•	9.9
Monthly Mean Wind Speed in km/day	∞ ∞	132	112	111	86	99	103	88	2	8	47	49	84
Monthly Mean Class A Pan Evaporation in mm $\frac{2}{2}$	6.2	6.9	7.2	6.9	٠٠ م	4.6	3.7	د. بر	4 O	3.6	4. 5.	4	5.2

(1974-1976) Station : Irrua Note:

/2 (1976) Station: Warrake /3 (1974-1975) Station: Benin Nifor /4 (1974-1975) Station: Lokaja /3 Data Period: 1951-1960, 1971-1975

Fig. 1.1 Nigeria: Climatic Zoning

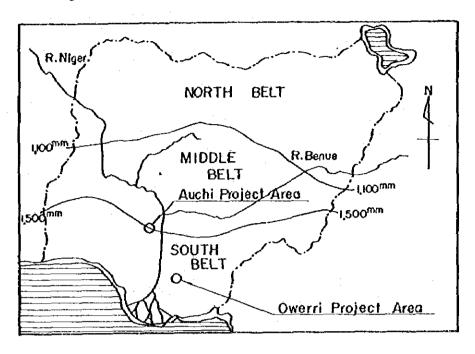


Fig.1.2 Monthly Mean Rainfall and Numbers of Rainy Days, Owerri Area

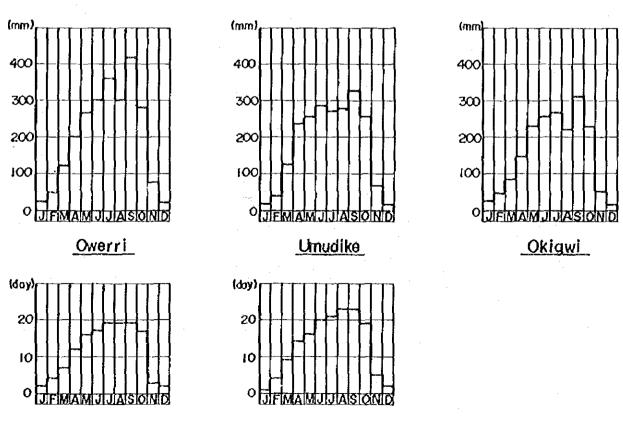
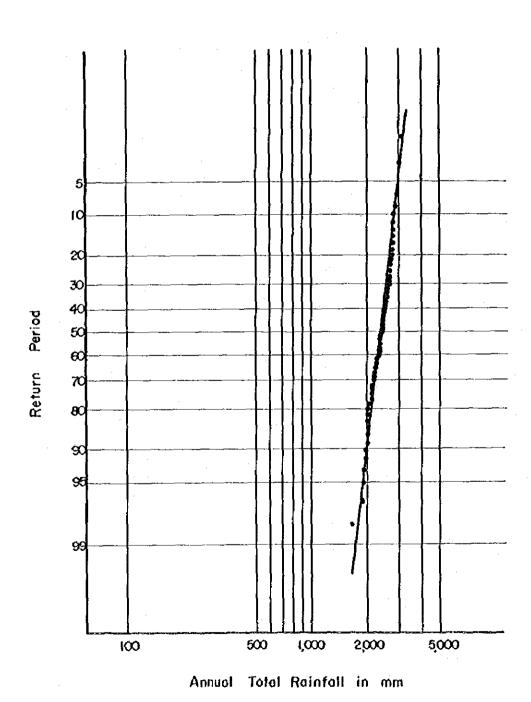



Fig.1.3 Probability Distribution of the Annual Total Rainfall.

Owerri Area.

the first of the first of the second of the

Fig. 1.4 Design Monthly Roinfall, Owerri Area

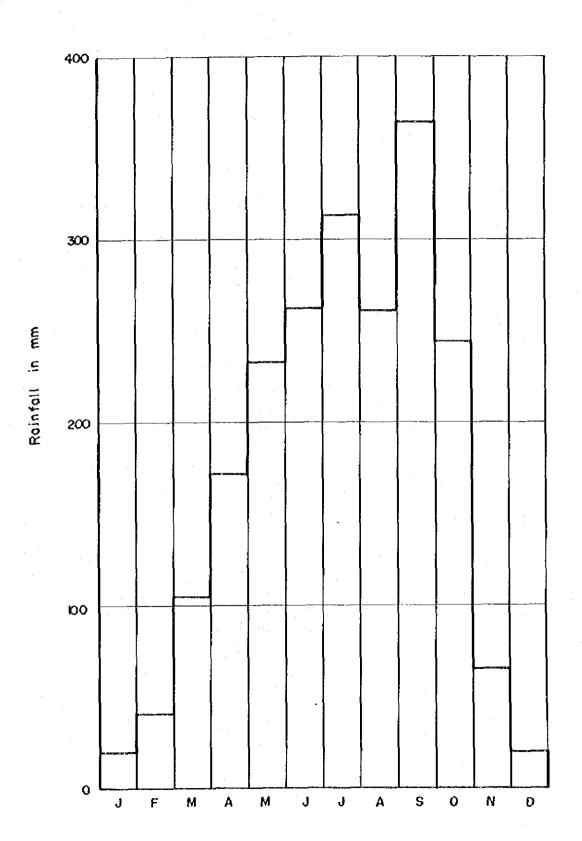


Fig. 1.5 Probability Distribution of the Daily Rainfall, Owerri Area.

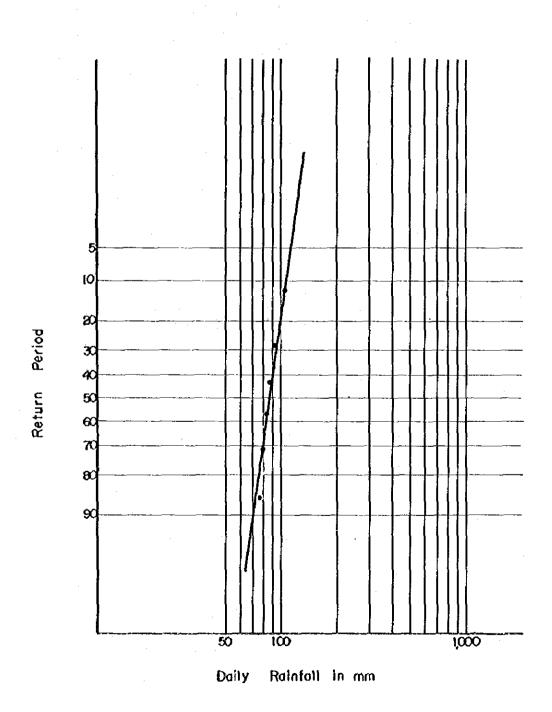
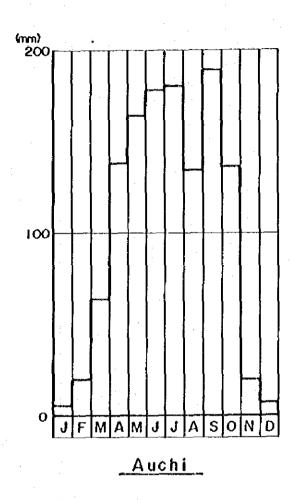
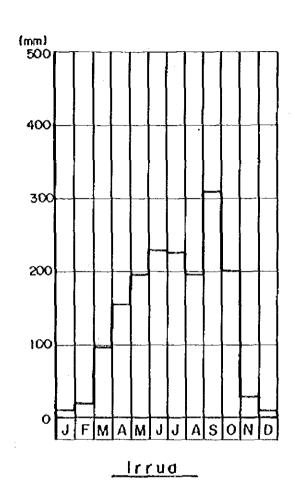




Fig.1.6 Monthly Mean Rainfall and Numbers of Raing Days, Auchi Area

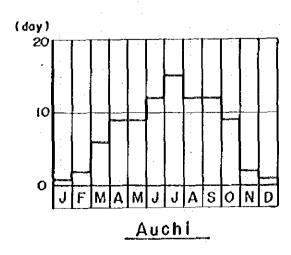


Fig.1.7 Probability Distribution of the Annual Total Rainfall,

Auchi Area.

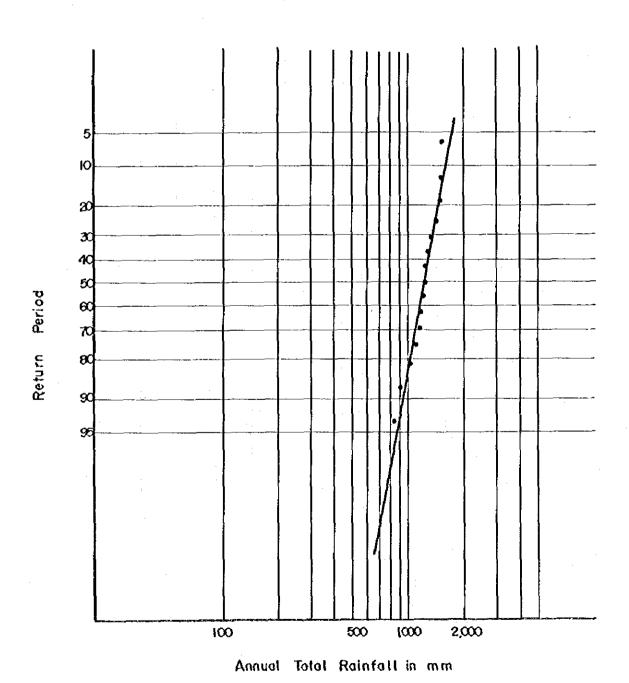


Fig. 1 8 Design Monthly Rainfall, Auchi Area

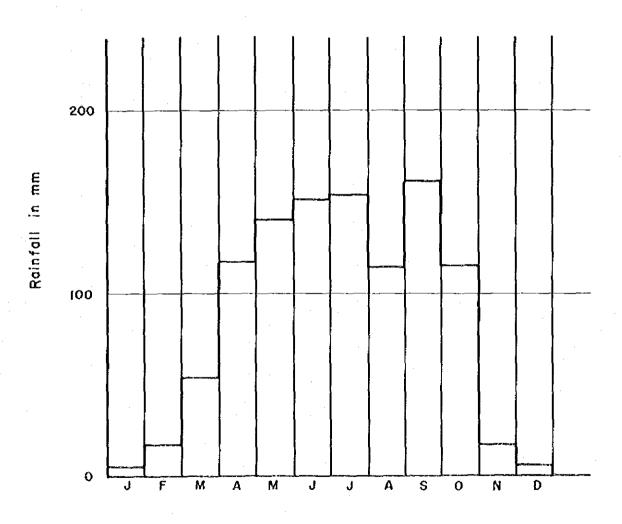
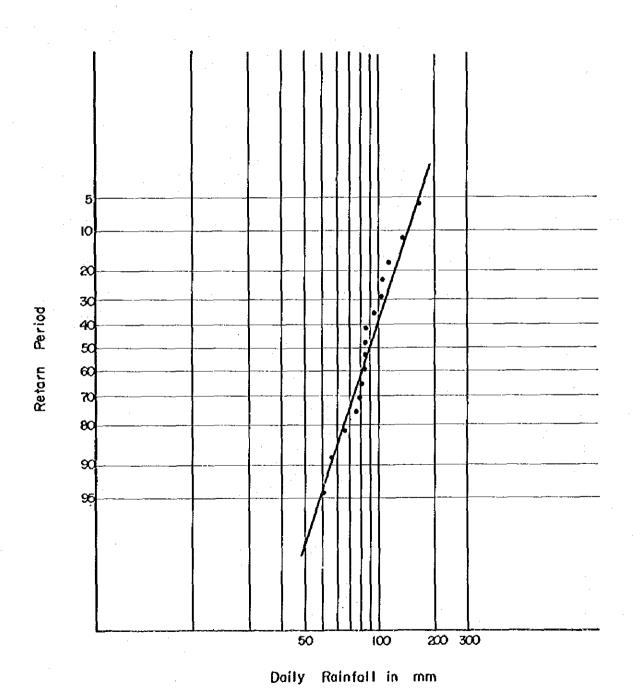
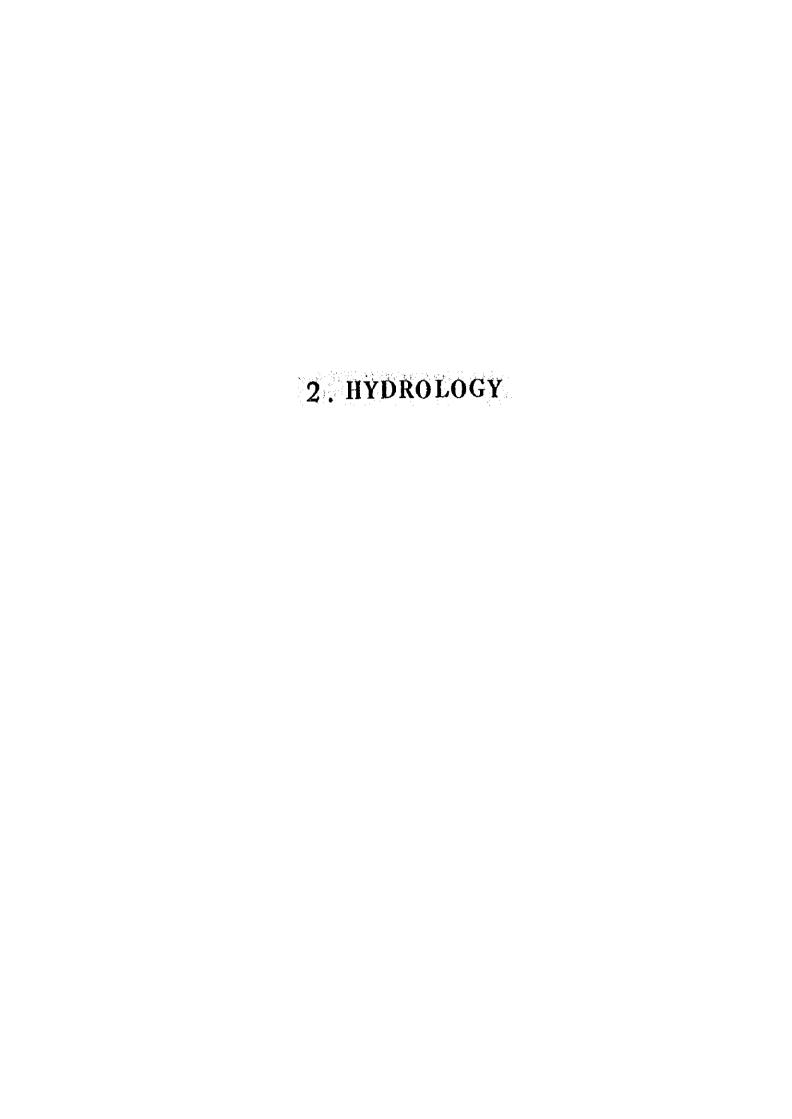




Fig.1.9 Probability Distribution of the Daily Rainfall,

Auchi Area.

2. HYDROLOGY

2.1 Hydrology of Oramirukwa River

2.1.1 River and Basin

The Oramirukwa river, water source of the Owerri Project is originated in the plateau around Okwele (about El 120m), flows to south-ward crossing the Owerri-Umuahia and the Owerri-Aba highways, and pours into the Otamiri river which is one of the tributaries of the Imo river. On the way it is joined by the Okitankwo river immediately after it crosses the Owerri-Umuahia highway. The features of the river course are summarized as follows. (Refer to Fig. 2.1)

- Catchment area : 630km² at the proposed intake site, including catchment area of the Okitankwo river.

- Length : The Oramirukwa river, about 40 km
The Okitankwo river, about 45 km

- Bed slope : About 1:1,000 on an average at the proposed intake site.

- Vegetation : Scrubs.

The water level gauging has been carried out at the crossing point with the Owerri-Umuahia highway (near Azara Egbelu village. Catchment area: 330 km²) since 1973 by MANR, Imo State.

The record shows that the river keeps perennial flow of about 5.0 m³/sec in the rainy season and about 2.5m³/sec in the dry season. In coincidence with the seasonal rainfall pattern, the discharge begins to increase generally in April, attains to peak in October, and decreases to minimum in March. The maximum flood ever happened is reported to be about 150m³/sec according to the information from nearby inhabitants.

2.1.2 Monthly Mean Discharge

1) Observed Discharge

The record of the water level at the Azara Egbelu station has been collected and the river discharge has been measured several times during the present field survey period.

Based upon these actual discharge measurements, the rating curve at the gauging point has been drawn as shown in Fig. 2.2, and the water level record has been converted to the discharge as tabulated in Table 2.1.

2) Annual Run-off Coefficient

Using the specific discharge at the Azara Egbelu station, the discharge of the proposed intake site has been calculated. In the dry season, the Okitankwo river has never been streamed according to the field survey of this stage and the information from nearby inhabitants. The converted discharge of the proposed intake site is shown in Table 2.2.

Based on this converted discharge and the simultaneous rainfalls, the run-off coefficient of the river at the intake site has been calculated as follows.

Period	Rainfall (mm)	Run-off (nm)	Annual run-off coefficient(%)
April, 1973 - March, 1974	2,335	389.7	16.7
April, 1974 - March, 1975	2,397	324.2	13.5
April, 1975 - March, 1976	2,272	330.5	14.5
		Average	14.9

For the sake of comparison, the annual run-off coefficients obtained from the other rivers in Nigeria and Ghana are cited as shown below.

	Catchment	Rainfall	Run-off	Annual run-off	Gauging Period	
River	Area(km²)	(mm)	(mm)	coefficient(%)	From To	
0tamiri	3,100	2,476	646	26	April,1959-March,19) 60
0bina <u>/2</u>	424	1,170	177.6	15.2	April,1973-March,19	9 74
Pra <u>/3</u>	20,746	1,600	288	18	1944-1965	
Tano <u>/3</u>		1,397	154	11	1944-1965	
Ankobra/	1 4,274	1,880	338	18	1944–1965	
Densu <u>/3</u>	1,612	1,473	162	11	1948-1965	
Ayensu <u>/3</u>	7 25	1,575	299	19	1948-1965	

- /1 Cited from Imo River Basin Pre-Feasibility Report, by ENPLAN GROUP, October 1974.
- Cited from Uzo-Uwani Pioneer Irrigation Project, by Nippon Koci, January 1975.
- 23 Cited from Preliminary Report on Comprehensive Development Project of Water Resources in South Western Ghana, by Nippon Koei, January 1967.

Taking these features in view, the annual run-off coefficient of the Oramirukwa river is assumed to be 15%.

3) Estimate of Monthly Mean Discharge in the Design Drought Year

Dry season discharge

The following table shows the cumulative monthly rainfall and the actual discharge of the river in the dry season from November to March during the period when the discharge data are available.

	November		December		January		February		March	
	<u>R/1</u>	<u>γ/2</u>	_R /1	Q <u>/2</u>	<u>R/1</u>	<u>Q/2</u>	R/1	<u>Q/2</u>	<u>R/1</u>	Q/2
1973/1974	2,182	4.72	2,219	4.03	2,219	3.50	2,249	3.26	2,360	3.12
1974/1975	2,253	4.24	2,253	3,95	2,253	3.75	2,313	3.81	2,397	3.83
1975/1976	1,854	3.94	1,877	2.99	1,877	2.65	2,019	2.82	2,272	3.03

- 1 R: Cumulative monthly mean rainfall from April to this month, in mm
- /2 Q: Monthly mean discharge of this month, in m^3/\sec

Based upon these figures, the relation between the cumulative rainfall and the dry season discharge is shown in Fig. 2.3, which indicates that there exists a district corelation between them and that the dry season discharge can be estimated by multiplying the cumulative rainfall by the ratio obtained from the figure. The dry season discharge under the design drought condition is, therefore, estimated by applying the above ratio to the design drought monthly rainfall. The result of the estimate is summarized as below.

.

Month	R (mm)	Q (m ³ /sec)
November	1,914	3.65
December	1,934	3.15
January	1,954	2,90
Pebruary	1,999	2.75
March	2,100	2.65

Rainy season discharge

The simple estimation method applied to the estimate of the dry season discharge is found to be unapplicable to the estimate of the rainy season discharge owing to the nonexistence of the distinct corelationship between the rainfall and the discharge. Analyses are made from several approaches, and as the result the following method is adopted finally:

- To separate the rainy season discharge into the surface flow and the base flow and to assume that the base flow is kept constant during the rainy season;
- To let the base flow be represented by the discharge in November in view of the actual flow record of the river and;
- To let the total surface flow during the rainy season be distributed to each of the months according to the monthly discharge distribution pattern in the design drought condition.

From Fig. 2.4, the monthly discharge distribution pattern in the design drought condition is assumed to be represented by the one in 1973, and the ratio of the monthly surface discharge to the total surface discharge during the whole rainy season is culculated as follows.

	J	P	M	A	M	J	J	A	S	0	N	D
Q/1	4.14	3.79	3.61	8,00	7.52	9.83	9.43	13.84	13.88	13.59	4.72	4.03
<u>%/2</u>	_			3.28	2.80	5.11	4.71	9.12	9.16	8.87		
$o^{1/3}$	-			7.6	6.5	11.9	10.9	21.2	21.3	20.6		

- /1 Q: Actual discharge in 1973 (m³/sec)
- /2 Q: Discharge excluding baseflow (m³/sec) (Baseflow*: 4.72 m³/sec)
- /3 C: Ratio of monthly surface discharge to total surface discharge in rainy season (%)

On the other hand, the annual total runoff in the design drought year is calculated at: 2,100mm (annual total rainfall) x 15% (runoff coefficient) = 315mm. Total of the base flow in the rainy season and the dry season discharge is estimated at 167.5mm. Balance of 147.5mm corresponds to the total surface flow in the rainy season. It is distributed to each month using the ratio obtained above. The result of the estimate is summarized as follows.

	Apr.	May	Jun.	Jul.	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.
c /1	7.6	6.5	11.9	10.9	21.2	21.3	20.6	-	-	_	-	-
$\delta_{1}\sqrt{5}$	11.2	9.6	17.6	16.1	31.3	31.5	30.4	_	_	_	-	-
Q2 <mark>/3</mark>	2.72	2.26	4.28	3.79	7.36	7.66	7.15	_	-	-		-
QB^{4}	3.65	3.65	3.65	3,65	3.65	3.65	3.65	3.65	3.15	2.90	2.75	2.65
Q 15	6.37	5.91	7.93	7.44	11.01	11.31	10.80	3.65	3.15	2.90	2.75	2.65

- 1 C: Distribution ratio (%)
- /2 01: Calculated surface discharge (mm)
- /3 Q2: Calculated surface discharge (m 3 /sec.)
- /4 QB: Baseflow (m 3 /sec.)
- $\sqrt{5}$ Q: Estimated monthly mean discharge (m³/sec.)

2.1.3 Flood Discharge

No data on flood discharge has been available at the proposed intake site. Therefore, the data of the other rivers are referred as shown in Table 2.3 to 2.4 and Fig. 2.5 to 2.8.

The features of these river basins are considered to be almost the same as those of the Oramirukwa river basin. Based upon these figures, the peak flood discharge at the intake site has been estimated as below.

Probable Peak Flood

Probability (%)	20	2	1
Peak Flood (m ³ /sec).	115	150	160

As stated previously, the maximum flood ever happened is reported to be about 150m³/sec according to the information from nearby inhabitants. It coincides fairly with the peak flood discharge estimated above. Probability of occurrence of the peak flood discharge for the headworks planning has been decided at 2% or once in fifty years.

2.2 Hydrology of Orle-Edion River

2.2.1 River and Basin

The Orle and Edion rivers are originated in the Basement Complex highlands (about El. 600m) in the vicinity of Igara, flow first in a southerly direction for about 55km and 40km respectively, join together near Auchi-Irrua highway, and then run to an easterly direction for about 50km to its confluence with the Niger river near Alegbette. In the downstream reach, it is joined by the Ojo river which is the proposed water source for the Auchi project. Total catchment of the basin is about 2,200km² which is subdivided into the following subcatchments: (Refer to Pig. 2.9)

Total	2,200km ²	
Orle after confluence with Edion:	880km ²	including the Ojo river of 240km ²
Edion river at Orle confluence:	700 km 2	
Orle river at Edion confluence:	620km ²	

The Ojo river has a catchment area corresponding to 27% of the lower catchment of the Orle river after amalgamation of Edion. The length of the river from its origin to the proposed intake site is about 25km and the longitudinal gradient is about 1:100. The catchment area is covered almost by dense forests.

There exists no previous water level gauging in the Orle and Edion basins.

2.2.2 Monthly Mean Discharge

There exists no previous river gauging of the Orle-Edion basin, except rough flow measurements carried out in November, 1975 by the British Appraisal Mission 1. Based upon the measurements and information from local residents, the Mission gives the following estimate:

	Plow in November 1975	Estimated Minimum Flow (March)
Upper Orle River	$1.4 \text{ m}^3/\text{sec}$	$0.6 \text{ m}^3/\text{sec}$
Edion river at Orle confluence	$1.0 \mathrm{m}^3/\mathrm{sec}$	$0.7 \text{ m}^3/\text{sec}$
Lower Orle near Niger	4.0 m ³ /sec	$2.3 \text{ m}^3/\text{sec}$
Obe river (Catchment area 240 km ²)	$0.6 \text{ m}^3/\text{sec}$	0.3 m ³ /sec

During the field survey period of this stage, the discharge of the Ojo river has been measured continuously at the intake site. The record shows that the discharge is about 0.6 m³/sec in the beginning of January, about 0.4 m³/sec in mid-January and about 0.3 m³/sec in the early February. These figures coincide fairly with the previous estimation by the British Mission.

The monthly mean discharge for the purpose of planning has been calculated by applying the same procedure taken for the Oramirukva river. Due to the paucity of data, realistic estimate is hardly possible. There remains much to be clarified based on continuous discharge measurements.

Based on the available data, it is assumed that the minimum monthly discharge in the dry season is 0.6 m³/sec in November and 0.3 m³/sec in March, decreasing constantly during the dry season. As regards the discharge in the rainy season, the design drought rainfall is used, and applying the same distribution ratios as those for the Owerri project, it is estimated as below. The annual total runoff under the design drought condition is 157mm and the surface flow in the rainy season is 69mm.

Refer to "Report of the Orle Basin Appraisal Mission" by Ministry of Overseas Department, England in 1976.

	Apr.	May	Jun.	Jul,	Aug.	Sep.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.
c /1	7.6	6.5	11.9	10.9	21.2	21.3	20.6		-	_	-	_
Q1/2	6.72	5.75	10.53	9.65	18.76	18.85	18.23		-		_	-
Q2/3	0.62	0.52	0.97	0.86	1.68	1.75	1.63	,_	_	_		-
QB/4	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.50	0.43	0.36	0.30
Q /5	1.22	1.12	1.57	1.46	2.28	2.35	2.23	0.60	0.50	0.43	0.36	0.30

/1 C: Distribution ratio (%)

/2 Q1: Calculated surface discharge (mm)

/3 Q2: Calculated surface discharge (m3/sec.)

/4 QB: Baseflow ($m^3/sec.$)

/5 Q: Estimated monthly mean discharge (m3/sec.)

2.2.3 Flood Discharge

No data on flood discharge are available. From the trace of the river bank, the flood ever happened has been estimated to be about 70 m³/sec. On the other hand, from Fig. 2.6 to 2.8, the probable peak flood in other regions are estimated as below.

Probable Peak Flood

Probability (%)	20	2	1
Peak Flood (m ³ /sec)	65	80	90

Based upon these, the peak flood discharge for the planning of the headworks has been decided at 80 $\rm m^3/sec$ or 2% of the occurrence probability.

.

-

Table 2.1 Monthly Mean Discharge at Azara Egbelu Station

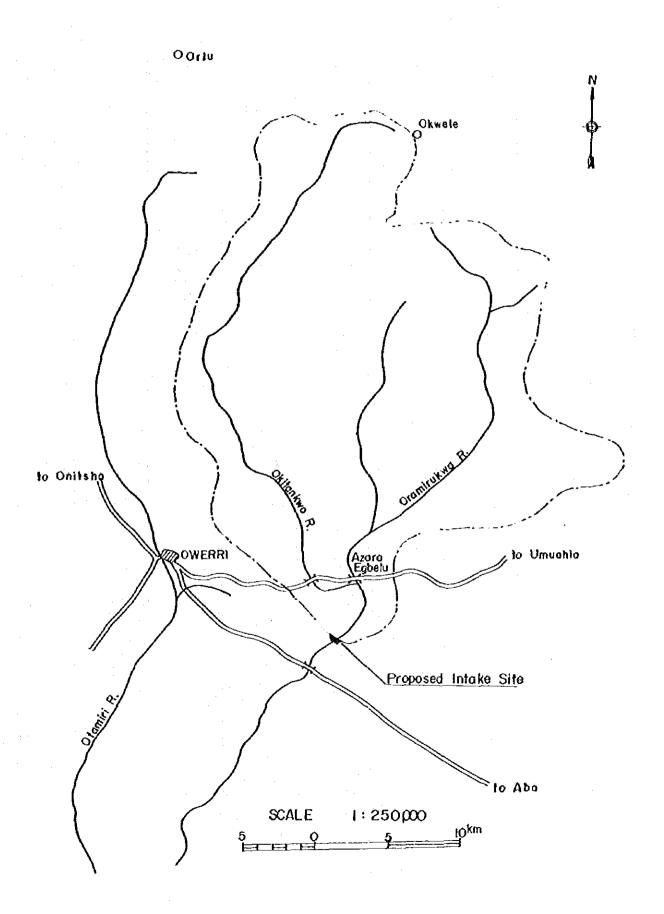
(Unit: m3/sec) J P M A М J J A S 0 N D Year Mean 1973 4.14 3.79 3.61 4.19 3.94 5.15 4.94 7.25 7.27 7.12 4.72 4.03 5.01 1974 3.50 3.26 3.12 3.58 3.95 4.57 4.67 4.43 4.86 4.96 4.24 3.95 4.09 1975 3.75 3.81 3.83 4.00 4.83 4.79 4.17 5.28 5.08 5.84 3.94 2.99 4.36 1976 2.65 2.82 3.03 2.89 3.51 5.16 4.22 3.41 4.43 6.82 4.58 2.90 3.96 Mean 3.51 3.42 3.40 3.67 4.06 4.92 4.50 5.09 5.41 6.19 4.37 3.47 4.36

Catchment Area: 330 km²

Table 2.2 Converted Monthly Mean Discharge of Intake Site

(Unit: m^3/s) Year J P M M J A S J 0 N D 1973 4.14 3.79 3.61 8.00 7.52 9.83 9.43 13.84 13.88 13.59 4.72 4.03 1974 3.50 3.26 3.12 6.83 7.54 8.72 8.92 8.46 9.28 9.47 4.24 3.95 1975 3.75 3.81 3.83 7.64 9.22 9.14 7.96 10.08 9.70 11.15 3.94 2.99 1976 2.65 2.82 3.03 5.52 6.70 9.85 8.06 6.51 8.46 13.02 4.58 2.90

Table 2.3 Observed Maximum Flood and Probability of Flood in Nigeria


River & Station	Catchment area in	Available data	Observed max floor in m ³ /s			le peak in m ³ /s 50	
			111 11 75	n m/s		Years'	Years'
NIGER R	IVER						
Idah	423,000	1955-1975	26,790	Oct. 6 1969	24,500	28,000	30,000
ANAMBRA	RIVER	·					
Ifite- Ogwari	7,800	1964-1974	874	0ct. 15 & 16 1964	870	1,020	1,030
OBINA RI	IVER						
Adani bridge	554	1963-1966	47	Aug. 6 1965	51	71	76

.

Table 2.4 Observed Maximum Flood and Probability of Flood in Ghana

River	Catchment	Available data	0bserved		Probable peak in m³/s		flood
& Station	area in sq. km		max flood in m ³ /s	d Data	5 Years'	50 Years'	100 Years'
TANO RI	VER						
Wiawso	7,407	1957-1965	510	0ct.31 1963	334	595	600
Jomuro	10,334	1956-1965	518	July 3 1959	453	597	612
Alenda Warf	- 15,747	1956-1965	442	July 11 1959	428	484	490
ANKOBRA	RIVER						
Веро	1,127	1955-1964	292	June 20 & 21 1958	170	269	272
Tarkwa	1,194	1955-1964	272	July 31 1963	244	382	388
Preste	a 4,274	1955-1965	446	July 28 1960	396	515	521
PRA RIVI	<u>SR</u>						
Mfensi	1,453	1950-1963	82	Oct. 19 1960	74	110	113
Kade	2,126	1959-1964	283	Aug. 6 & 7 1962	136	150	153
0da	3,287	1955-1964	402	July 2 1961	311	402	408
Mampon	363	1951-1964	68	June 25 1955	53	84	85
Brenasi	2,106	1955-1964	147	0et. 25 1960	116	153	156
Assin- Praso	9,347	1957-1965	668	Oct. 10 1963	651	906	934
Twifu- Praso	20,746	1943-1965	1,331	0ct, 12 & 13 1963	1,019	1,416	1,453
Daboasi	22,758	1954-1965	1,271	Oct. 10 1963	1,104	1,416	1,444
AYENSU I	RIVER						
Oke tsev	725	1960-1965	149	July 25 1960	125	266	272
VOLTA R	VER						
Pwalage	1 56,980	1950~1965	1,982	Sept.16 1962	1,869	2,549	2,568
Senchi	393,913	1936-1958	14,158	1917	8,778	15,574	16,140
AMISA R	VER						
Manso	370	1955-1964	57	June 12 1964	53	74	75
Mankesi	m 1,251	1955-1965	515	June 25 1962	113	224	232
NKWA RIY	<u>ær</u>	•					
0chiso	914	1956-1964	348	July 24 1961	207	374	3,880
Ekotsi	1,445	1959-1964	176	July 24 1961	110	255	263

Fig. 2.1 Oramirukwa River Basin

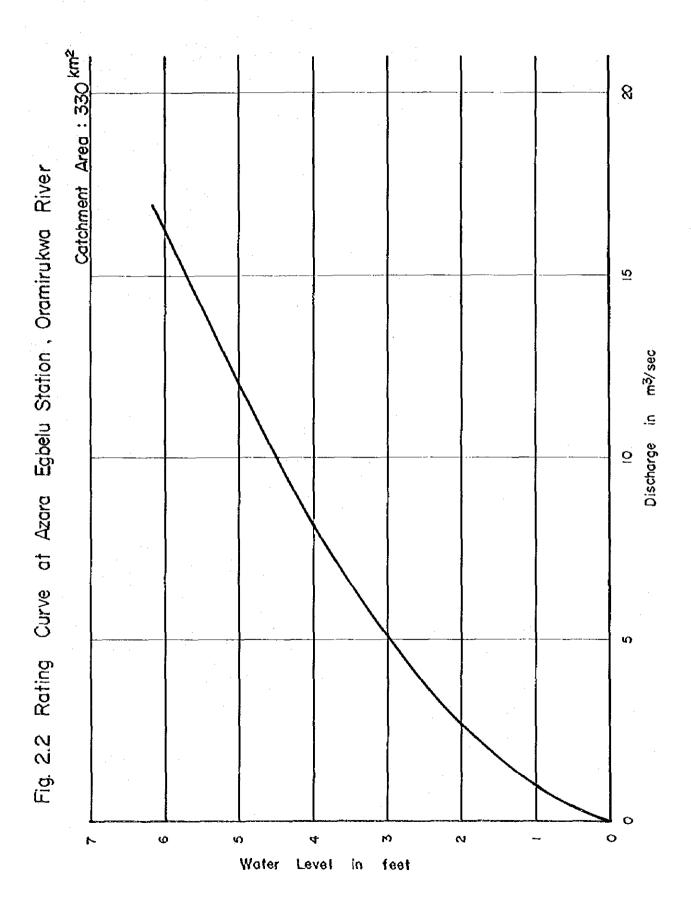


Fig. 2.3 Relation between Discharge and Cumulative Rainfall,
Oramirukwa River.

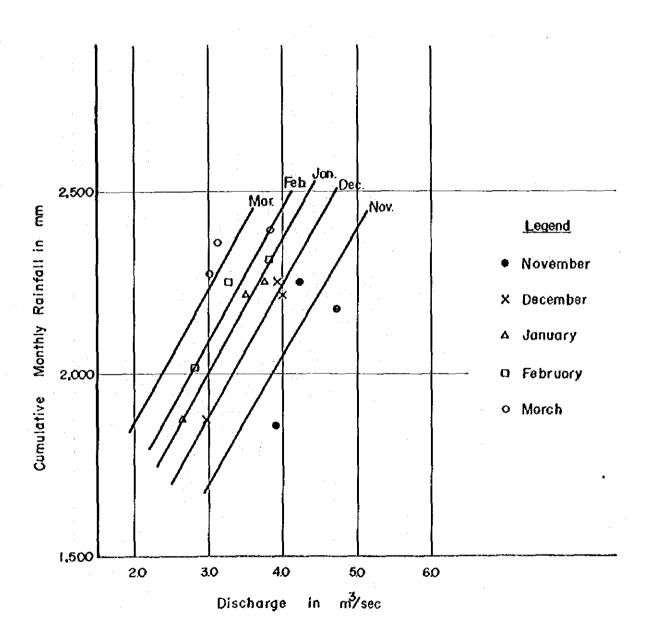
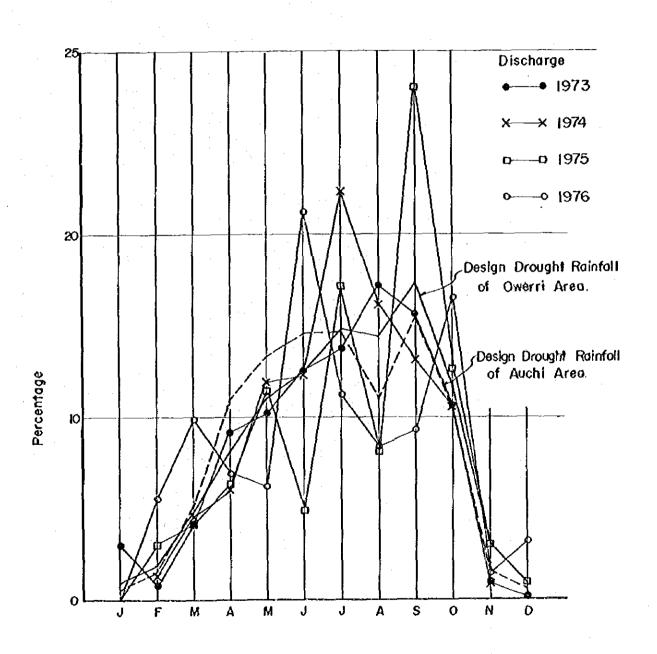



Fig. 2.4 Distributions of Rainfall and Discharge.

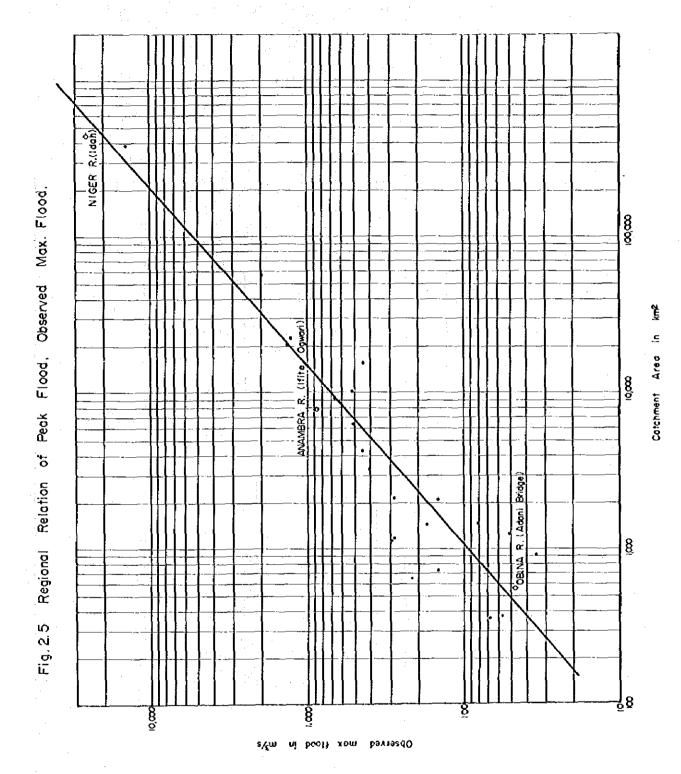


Fig. 2.6 Regional Relation of Peak Flood 5 Years' Flood.

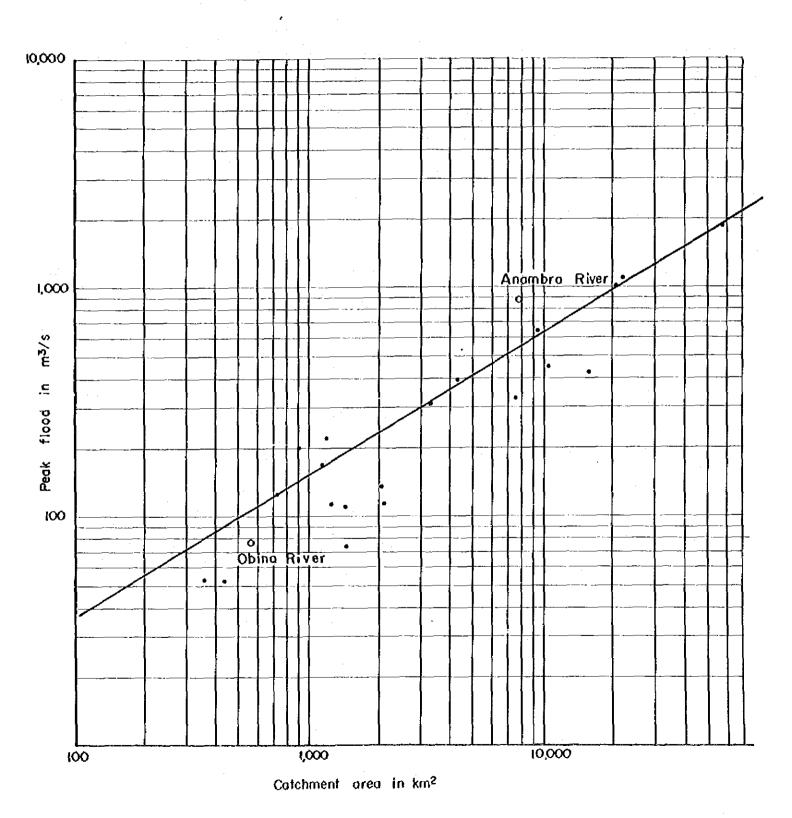


Fig. 2.7 Regional Relation of Peak Flood 50 Years' Flood.

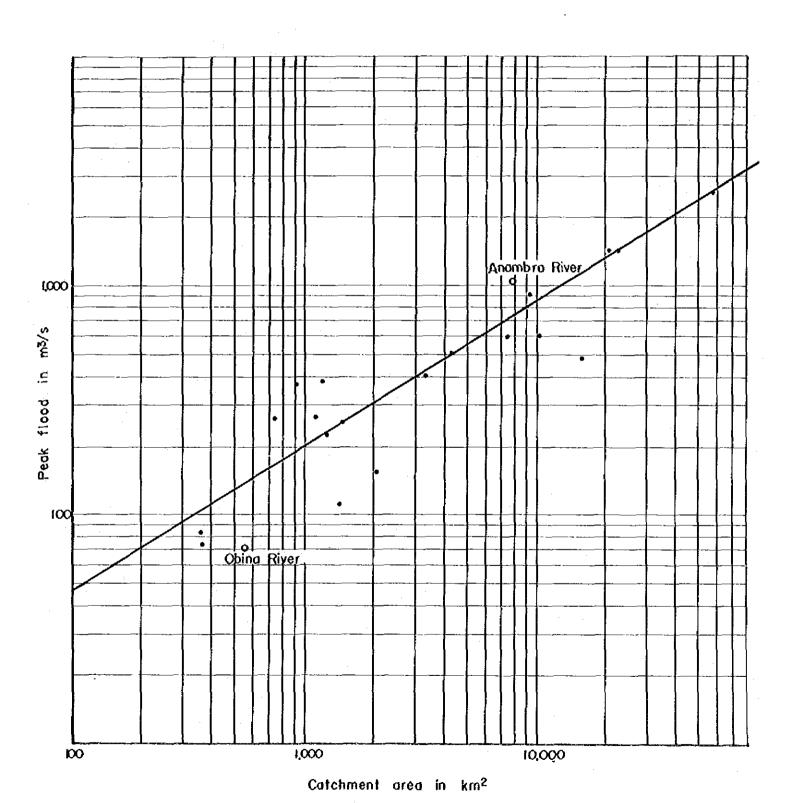


Fig. 2.8 Regional Relation of Peak Flood.

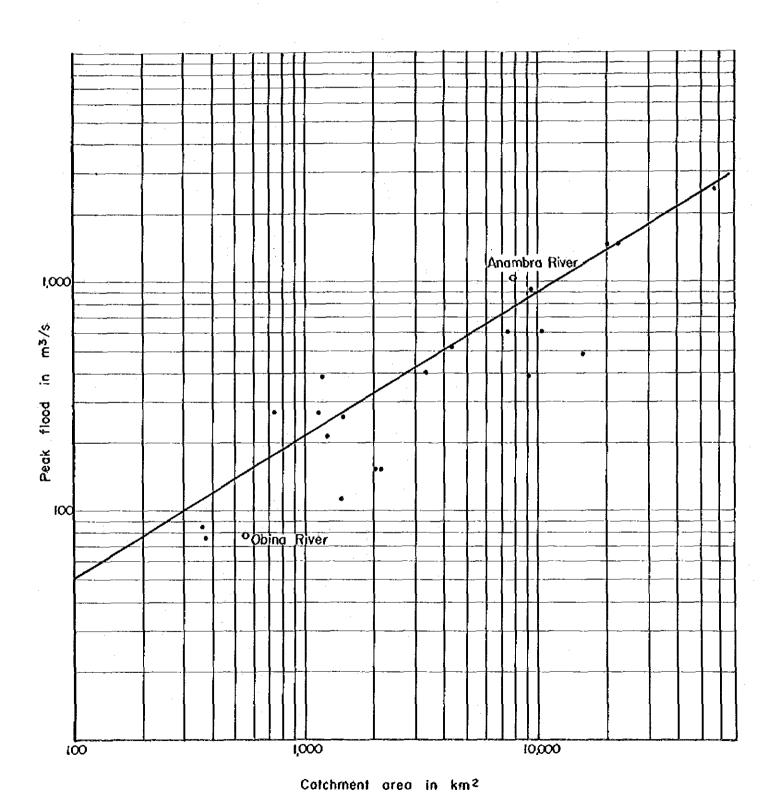
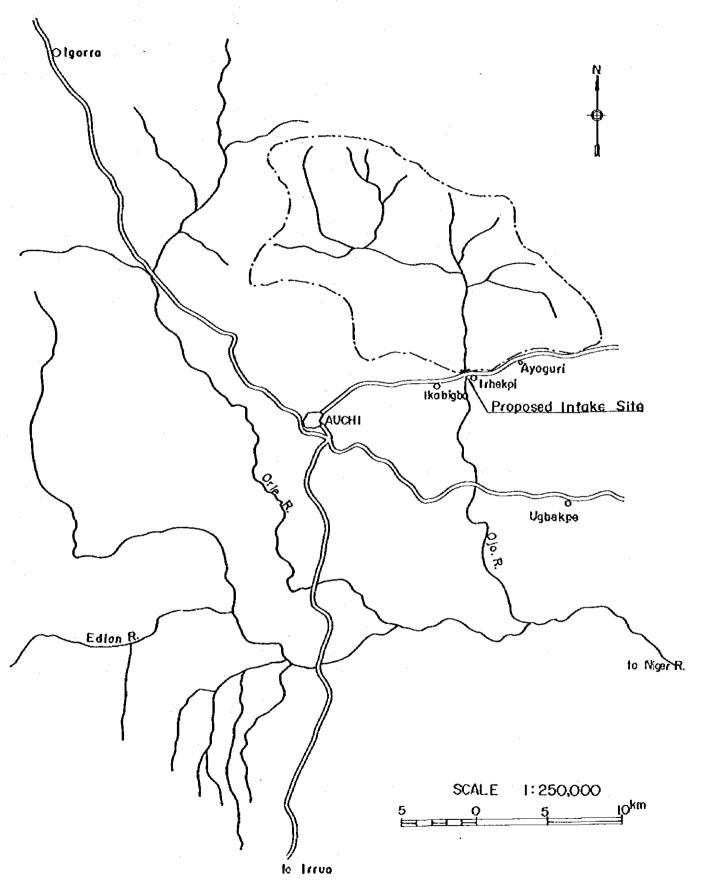
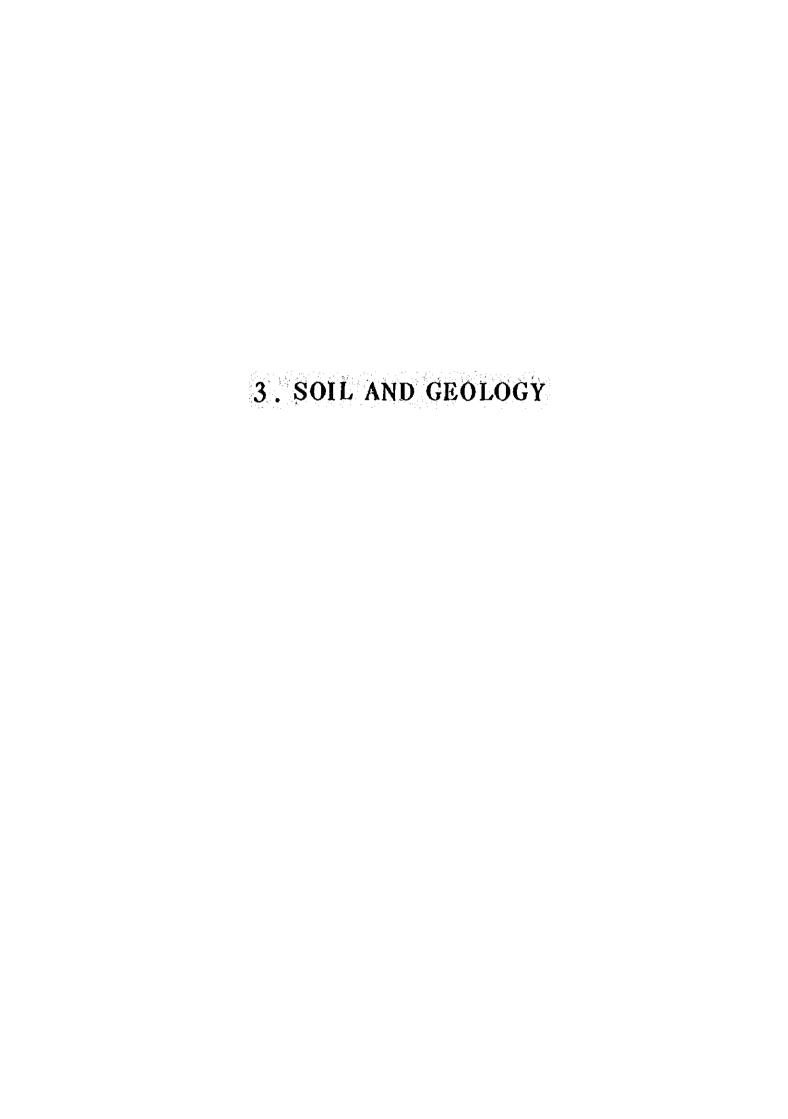




Fig. 2.9 Orle - Edion River Basin

3. SOIL AND GEOLOGY

3.1 Soil and Land Capability

3.1.1 Introduction

The soil study in Nigeria has been carried out on a large scale by D'Hoore, J.L. and other soil scientists as follows.

- (1) D'Hoore, J.L: Soil Map of Africa 1 to 5,000,000, Explanatory Monograph, C.C.T.A: Lagos, 1964.
- (2) Soil Survey Unit of Ministry of Agriculture (Commission for Technical Co-operation in Africa) Eastern Nigeria: Eastern Nigeria Soils with a scale of 1: 2,000,000, 1963.
- (3) E.N. Mgbemena: Some soil of the coastal sand area of eastern Nigeria. Soil Survey Bulletin No. 1 Soil Survey Unit, Federal Department of Agriculture, UMUDIKE, 1975.
- (4) E.N. Mgbemena: Report on the advisory soil survey at NKALAGU/EZILLO State Farm.
 Soil Survey Bulletin No. 2. Soil Survey Unit Federal Department of Agriculture, UMUDIKE, 1975.

They have established a C.C.T.A system of classification for Nigeria. Their survey covers the soils in the Bendel state and Imo state, however, it does not sufficiently reach to our project areas. For this reason, the soil survey of this present survey aims at identifying major soil groups and their distribution and at examining the adaptability of each soil for the proposed irrigated rice development project, refering to the said soil maps. This chapter presents the procedure of the survey, descriptions on the main features of the major soils, and new soil maps and land capability maps.

3.1.2 Procedure of Soil Survey

The field survey was carried out over the area of about 4,600 ha of the Owerri Project and about 6,000 ha of the Auchi Project areas by using the topography map of 1/50,000 scale. The soil profiles were observed in pits dug at the rate of one per 250 ha and described according to the standards defined in the Soil Survey Mannual of the United States Department of Agriculture. Some of them were modified, however, in compliance with recent experiences of soil study in Japan. The pits were dug to a depth of about one meter.

33 pits were dug out and 10 soil samples were taken in total from the representative soil horizons.

These soil samples were sent to the Nigeria University of Nsukka to be analized. The items checked at the analysis were PH value, total carbon, nitrogen, cation exchange capacity, exchangeable base (Ca, Kg, K, Na), available P₂O₅, particle size distribution analysis, specific gravity. The results are shown in Table 3.1 and 3.2, respectively.

3.1.3 Soil Classification and Main Peatures of the Major Soils

Most soils prevalent in the project area have much been weathered through lateritic soil formation process under tropical climatic condition, topographical condition, parent materials, and vegetation.

In the light of the morphological characteristics and the results of laboratory tests, soils in the Auchi area are classified into four great soil groups, namely, latosols, Lateritic Soils with plinthite, Alluvial Soils, and Regosols. On the other hand, soils in the Owerri area is classified into Latosols of the great soil group, only.

Latosols of the Auchi area are further divided into two Soil Types, Loamy Soil Type and Clay Loam Soil Type.
On the other hand, Latosols of the Overri area are divided into two Soil Types, namely, Sandy Loam Soil Type and Loamy Soil Type.

Latosols (Auchi Area)

The Latosols mainly extend over the northern part of the surveyed area, topographically, on the mild hilly region.

Total area of the Latosols is 4,230 ha equivalent to 68.6% of the surveyed area.

The horizon sequence of the Latosols soil is Al/A3/Bl/B2, in general.

These soil have characteristic of dark color (7.5 YR 4/6 to 2.5Y 4/6) in surface soil and are red color (10R 4/6 to 10R 3/6) in subsoil. The structure of the A horizon is granular structure or weakly developed crumb structure. The B horizon has weakly developed subangular blocky structure and the structure becomes coarse blockly according to the soil depth. The texture of the soil is clay loam to loamy throughout the profile.

As far as chemical and physical properties are concerned, PH values range between 5.5 and 6.7 for H₂O and between 4.2 and 6.7 for N-KCl solution. But the PH values show low values in the B horizon of the soils. Cation exchange capacity shows about 12 milligrams equivalent per 100 grams of soils throughout the profile. The exchangeable base content is so low that base saturation degree shows low degree and its value decreases with depth.

The humus content is relatively low and shows 0.6% to 1.3% of the surface soil. The specific gravity shows 2.3 to 2.6 throughout the profile.

Latosols of the Auchi area are further divided into two Soil Types, Loamy Soil Type and Loamy and Clay Loam Soil Type depending on texture throughout the profile. The permeability of soil is different for each of these types.

The soils of Loamy Soil Type group cover an area of 3,970 ha equivalent to 64.4% of the total surveyed area of the Auchi area.

A typical profile of Loamy Soil Type observed at Egboto and Ugbekpe is shown in Table 3.3 and 3.4.

The soils of Clay Loam Soil Type group cover an area 260 ha equivalent to 4.2% of the surveyed area of the Auchi area.

A typical profile of Clay Loam Soil Type observed at Ugbekpe is described in Table 3.5.

Latosols (Owerri area)

Soils of the Owerri area extend over quite gently sloping land on the coastal plain. The coastal plain sands of parent material is formed of a group of grey gritty clays and coarse, angular and pebbly, current-bedded sands. They are the youngest bed.

Soils of the Owerri area is classified into Latosols of great soil group, only. Total area of the Latosols is 4,600 ha equivalent to 100% of the surveyed area of the Owerri area.

The sequence of these soil is Al/A3/B1/B2, in general. A horizon (surface soil) is dark reddish brown to dull reddish brown (5YR 3/3 to 2.5YR 4/4). The structure of A horizon is weakly developed granular structure to crumb structure. The color of B horizon (subsoil) is reddish brown (5YR 4/6 to 5YR 4/8), in general. The structure of B horizon (subsoil) is weakly developed granular structure or subangular blocky structure.

With regard to chemical and physical properties, soils of this group have PH values ranging between 4.1 and 5.0 for H₂O and between 3.5 and 3.9 for N-KCl solution throughout the profile. But PH shows lower values, where the CaO content is low. The PH values are lower than that of Latosols of the Auchi area. The cation exchange capacity is very low ranging from 7.8 to 19.0 milliequivalent per 100 grams of soil. The base saturation degree shows less than 10%, where the exchangeable base shows very low values. The humus content on the surface soil (A horizon) is about 2.0% which decreases in proportion to depth. The specific gravity shows about 2.4.

These Latosols are further divided into two soil types, Sandy Loam Soil Type and Loamy Soil Type according to the texture of the profile.

The soils of the Loamy Soil Type extend over mainly central part between the Otamiri river and the Oramirukwa river.

Total area of Sandy Loam Soil Type is 2,300 ha or 50% of the total surveyed area of the Owerri area.

The typical profile of these Latosols, Sandy Loam Soil Type observed at Obeke, Eziobo and Ihiagwa is described in Table 3.6, 3.7 and 3.8.

On the other hand, total area of Loamy Soil Type is 2,300 ha equivalent to 50% of the total surveyed area of the Owerri area.

The typical profile of Loamy Soil Type observed at Okolochi and Umuikeo is described in Table 3.9 and 3.10.

Latosols of both project areas are classified into Oxisol Orthox according to 7th approximation of U.S.D.A.

Most of these soils are used at present for shifting farming and forest. The effective solum of these soils is very deep.

In the light of soil features, latosols are suitable for the irrigated rice development agriculture under the proper farming practices including application of chemical fertilizers and manure, especially, proper application of nitrogen and phosphate fertilizers, proper irrigation and drainage system.

Lateritic Soil with Plinthite

Lateritic Soil with Plinthite is formed in the lowland in the Auchi area along small streams which have high groundwater table in the wet season.

One of the most important factors in the formation of these soils is the seasonal saturation with water. Due to the poor water absorbing capacity as a consequence of the sandiness and shallowness of the soil, the soils are saturated with water in the wet season. The conditions are similar to those of pseudo-gley formation, a process which is thought to be transitional stage in plinthite formation.

Lateritic soil with plinthite is classified into Oxisol Aquox according to 7th approximation of U.S.D.A.

The soils of this group cover an area of 1,440 ha, equivalent to 23.4% of the total surveyed area of the Auchi area.

The horizon sequence of this soils is Al/A3/Bg/Cim. in general.

The thickness of A horizon is about 40cm. A horizon is brown to orange (7.5YR4/3 to 7.5YR6/6). The structure of A horizon is medium developed to crumb or subangular blocky structure. The B horizon

has medium developed subangular blocky structure. The B horizon which has iron mottling is bright brown (7.5YR 5/8) clay. Also many manganese concretions are found in this horizon. The C horizon is plinthite horizon due to iron and manganese concretion.

With regard to chemical and physical properties, soil of this group have PH value between 7.2 and 5.3 for H₂O and between 3.7 and 6.5 for N-KCl throughout the soil profile. All horizon shows high value of 7.2 for H₂O and 6.5 for N-KCl only. The cation exchange capacity throughout the profile shows between 17.4 and 25.4 milligram equivalent per 100 grams of soils. The base saturation degree shows low value between 12 and 28%. The humus content of A horizon shows about 2.5% and its value decreases with depth. The specific gravity is between 2.25 and 2.39.

In the light of these soil features, Lateritic Soil with Plinthite have no agricultural potentiality for the irrigated rice development agriculture.

A typical profile of Lateritic Soil with plinthite observed at Ugbekpe in the Auchi area is described in Table 3.11.

Alluvial Soil

The soils of this group extend over the low land in the Auchi area below about EL 60m and formed of fluvial deposits along the river. In general, Alluvial Soil extending over the southern part of the surveyed area has developed from alluviums overlying sandy material.

Alluvial Soils is classified into Entisol Pluvent according to 7th approximation of U.S.D.A.

Generally this soil is in mature with no morphological characteristics. The sequence of this soil is Al-1/Al-2/C.

The thickness of A horizon is about 20cm in general. A horizon (surface soil) is brownish black to reddish gray (10YR 3/2 to 2.5YR 4/1). The soil texture is sandy throughout the profile. The structure is weakly developed consisting of granular structure throughout the profile.

As far as chemical and physical properties are concerned, the PH values range between 5.5 and 6.4 in H₂O and between 4.4 and 5.9 in N-KCl solution. The content of humus is relatively low and shows about 1% for the surface soil. Cation exchange capacity shows between 13.9 and 15.4 milligram equivalent per 100 grams of soils. The base saturation degree shows medium degree of about 30% for surface soil and its value decreases with depth. The specific gravity shows between 2.30 and 2.62.

This soil is featured by high infiltration and high permeability owing to sandy texture throughout the profile.

In the light of soil features, Alluvial Soil is moderately suitable to the irrigated rice development agriculture under the proper farming practices including application of chemical fertilizers and manure, proper irrigation and drainage system, and provisions of proper counter measures against high infiltration and high permeability.

The typical profile of this Alluvial Soil is shown in Table 3.12.

Regosol

Regosol is observed to exist on the bank of the Ojo river in the Auchi area. Regosol is classified into Inceptisol Ochrept according to 7th Approximation of U.S.D.A. The soils of this group cover an area of 490 ha, equivalent to 8.0% of the total surveyed area of the Auchi area.

The horizon sequence of this soil is Al-1/Al-2/Cl/C2, in general.

The thickness of A horizon is about 30cm. C horizon is formed of gravel material of Mesozoic (Upper cretaceous) sand stone. A horizon is dull brown to bright reddish brown (7.5YR 5/4 5YR 5/6). The structure of A horizon (surface) is weakly developed to subangular blocky structure. C horizon is non texture and structureless, consisting only of gravel horizon.

Owing to these features, Regosol has no agricultural potentiability for the irrigated rice development agriculture. The typical profile of this Regosol is described in Table 3.13.

3.1.4 Land Capability

Based on the result of the soil survey and topography survey, the land in the project area is classified into four classes, namely, I, II, III and IV in accordance with modified classification of the standard of the Ministry of Agriculture and Forestry in Japan.

Class I. Very Suitable for Irrigated Rice Parming

Land that is suitable for rice paddy without the necessity of special development for management practices. This soil has no special limitations or hazards. This land extends over the area of Latosols of the Auchi area and latosol Sandy Loam Soil Type of the Owerri area. The land of this class occupies 4,230 ha or 68.8% of the surveyed area of Auchi and 2,300 ha or 50% of the surveyed area of Owerri.

Class II. Suitable for Irrigated Rice Farming

Land is suitable for rice paddy with the application of simple but special development and management practices.

•

This has moderate hazards and limitations.
This land develops over the area of Latosols, Sandy Loam Soil Type of the Owerri area occupying 2,300 ha or 50% of the surveyed area.

Class III, Moderately Suitable for Irrigated Rice Farming

Land that is suitable for rice paddy but needs application of special development and management practices. This land is liable to servere hazards and limitations. The land of this class extends over the area of Alluvial Soil. This land is excluded from the project area.

Class IV. Unsuitable for Irrigated Rice Parming

Land that is of limited or questionable suitability for paddy because of very severe hazards, limitations and quite difficult special management practices. This land extends over the area of lateritie Soil with plinthite and Regosol. The land of this class occupies 1,930 ha or 31.4% of the surveyed area of the Auchi area.

3.2 Geology

3.2.1 General

Amidst the stable shield of Paleozoic to Pre-Cambrian metamorphic rocks in the middle-southern part of Nigeria, develops two belts of Cretaceous sedimentary facies, i.e. the Benue Trough trending northeast to southwest nearly along the Benue river and the Middle Niger Basin trending northwest to southeast along the River Niger in the part upstream from the confluence of the Benue river. These two belts join in the north of Enugu and stretch south toward the coastal plain developing around the downstream Niger river. The Cretaceous formations, consisting of sandstones and shales, mildly dip southwards being covered in the southern area by thick Tertiary deposits, i.e. the Imo Shale Group, the Bende Ameki Group where sand predominates, and the Coastal Plain Sand, in chronological order and in the order of distribution of the exposures from north to south.

3.2.2 Geology in the Owerri Area

The Owerri Project area is situated among the extensive zone of the Coastal Plain Sands, which are composed of reddish brown unconsolidated sandy loam of Oligocene-Pleistocene. Permeability of the sandy loam is estimated to be within the order of 10^{-4} in cm/sec. In the proposed intake weir site on the Oramirukwa river, a wide marshy alluvial bed with about 180 m of width is formed in a flat valley. The alluvial deposits consists of, from the surface downwards, (1) 1.35 m thick grey soft mud, (2) 0.6 m thick grey dense sandy loam and (3) underlying sand which is dense and coarser to the lower part. The sandy loam in the item (2) is deemed to have enough strength for foundation of low earth embankment. The sand in (3) at about 2 m of depth will be usable as foundation for the low concrete structure, in which the expected allowable bearing strength is estimated approximately 8 ton/m2. On the other hand, the sand being highly pervious, a protective measure against leakage such as blanket work is necessary. However, the existing coverings of less pervious sandy loam and mud are deemed to have fairly good blanket effect if rise of water level is kept within only a few meters. Care should be taken not to disturb those coverings in the course of construction Generally it should be noticed that high damming-up will imply abrupt increase of cost because the problem of foundation stability and leakage becomes so severe that far deeper foundation will have to be looked for. The geological profile of the intake weir site is illustrated in Fig. 3.5.

3.2.3 Geology in the Auchi Area

The Auchi Project area is situated on an east-west trending belt of the upper Cretaceous Coal Measures, which are composed of thick cross-bedded sandstones and shales. On the northern boundary about 7 km north from Auchi, these sedimentary rocks are terminated abutting on the exposures of quartzbiotite schists, gneiss and granites of the Basement Complex. On the other hand, those sedimentary rocks are covered by the Tertiary Imo Shale Group in the area more than 7 km south from Auchi. The proposed intake weir site on the Ojo river is located in the shale zone of the upper Cretaceous Coal Measures. Pepth of foundation rock is approximately 1 to 1.5 m under the river bed and within 4 m on the slopes on both banks. Stiff clay, which is the product from weathering of shale, existing on the right slope covered by thin talus and the sandy loam on the left slope can be used as foundation of a low earth embankment, with about 1.5 m of excavation. Concrete structure should be placed on the foundation rock. The sandy loam on the left bank is deemed usable for embankment material. The geological profile of the intake weir site is illustrated in Fig. 3.6.

Table 3.1 Results of Soil Analysis (Owerri Area)

			Ä	Mechanical Analy	Analysis		祝		ORG	ORG. Matter			χ	ាងសន្ទមង	Exchangeable Bases	9.2		
Description	Origin	Specific Gravity	% Clay	Silt	F.S.	ر.s.	о ² я	KCl	K. O	S.O.M.	K N	Na me	K ne	ag ag	. Mg ag	295 296 8	SAI.	Mg P/hectare
OWERRI NO.	2 - 1	2.43.	OT.	4	80	99	5.0	3.6	1.20	2.07	.116	.13	01.	6.0	4.0	14.7	71	94.6
=	61	2.34	75	61	8	99	4.3	3.9	9.	1.14	990.	38	12	0.1	4.0	11.5	m	143.4
£	n	2.48	97	4	19	79	8.	3.9	£5.	.57	.035	.13	80.	0.2	4.0	7.00	t ~	168.8
:	4	2.43	81	73	8	9	4,00	3.9	.27	.47	.028	7.	90.	0.2	0.2	6.6	6	129.4
±	۲ ۱ ۳	2.43	ន	9	87	99	4.	3.7	1.1	1.91	102	.13	01.	2.0	0.5	13.1	σ	159.0
5 5	ä	2.40	4.	\$	13	79	4	જુ	8	1-19	990.	14	80	٥ ک	4.0	14.9	90	168.8
:	m	2.54	20	£4	8	58	4 8.	3.9	54	.72	.042	12	90	6.0	4.0	14.8	ß	168.8
£	4	2,36	8	9	16	\$\$	4.5	ى ھ	.27	47	.031	.14	.10	6.0	0.2	12.3	œ	134.0
OWERRI NO	7 - 1	2.38	92	8	18	62	φ.	9.9	1.20	2.07	111.	.15	ż	3.5	0.0	0.61	2	104.4
£	N	2.30	14	69	. 21	3	4.3	ب ش	.75	1.29	.07	.16	£1.	0.7	0.5	15.9	6	204.0
±	es	2,45	8	4	71	\$	4.7	ج. دن	99.	1.14	.053	.15	.12	0.5	6.5	13.5	.0	5.66
OWERRI NO	ri 6	4.4	Þ	9	97	22	4.	3.6	78.	1.50	.118	.15	.12	9.0	0.1	12.6	∞.	164.2
r	61	2.69	27	4	61	65	4.3	8.	5.	.93	.053	.14	e.	9.0	0.1	18.7	ť	139.3
£	ų	4.2	18	63	71	63	4.6	3.8	.36	.62	.038	.16	.12	0.5	ŧ	,	1	154.3
:	4	4.	8	63	1.5	63	4.7	φ. φ.	.24	₹.	.028	.20	ੜ.	0.5	0.2	10.2	ដ	114.5
OWERRI NO	12 - 21	2.48	10	9	7,	8	4.2	es si	8.	7,45	.067	.15	8	0.5	0.1	16.3	ь	154.3
±	61	2.51	77	69	22	62	٠. د.	3.7	69.	1.19	.062	.17	or.	0.5	0.3	14.9	-1	129.4
± ±	n	2.53	37	£9	57	67	4.6	8.0	.36	0.62	.93	.14	8	4.0	4.0	11.1	9	159.0
£	4	2.53	ន	13	3.8	\$	4.5	3.8	.30	.52	.032	115	8	9.0	0.5	10.9	٥	238.9

Table 3.2 Results of Soil Analysis (Auchi Area)

Market M				Ä	Mechanical Analy	Analysis	נע	H¢	İ	ORG.	ORG. Matter			Ĕ	Exchangeable Bases	te Base	n .		
NO 10 - 1 2.59 2 2 5 46 6.4 5.9 6.4 7.9 6.45 7.9 6.45 7.9 6.45 7.9 6.45 7.9 6.45 7.9 6.7 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.2 6.1 6.1 6.1 7.5 6.1 7.2 6.1 7.2 6.1 7.2 6.1 7.2 6.1 7.2 6.1 7.2 6.2 7.2 6.2 7.2 <th>Description</th> <th>Origin</th> <th>Specific Gravity</th> <th>•</th> <th>5314.</th> <th>15.55 S. 55</th> <th>C. 8.</th> <th>H20</th> <th>KCL</th> <th>K O</th> <th>%.0 W.0</th> <th>86 X</th> <th>Na me</th> <th>те</th> <th>C. ne</th> <th>Mg Be</th> <th>. es</th> <th>% SAT.</th> <th>Kg P/hectare</th>	Description	Origin	Specific Gravity	•	5314.	15.55 S. 55	C. 8.	H20	KCL	K O	%.0 W.0	86 X	Na me	те	C. ne	Mg Be	. es	% SAT.	Kg P/hectare
""" """ """ """ """ """ """ """ """" <td>į</td> <td>1</td> <td>2.59</td> <td>и</td> <td>4</td> <td>8</td> <td>46</td> <td>6.4</td> <td>5.9</td> <td>0.54</td> <td>66.</td> <td>.061</td> <td>01.0</td> <td>.16</td> <td>3.0</td> <td>1.6</td> <td>15.4</td> <td>32</td> <td>0.50</td>	į	1	2.59	и	4	8	46	6. 4	5.9	0.54	66.	.061	01.0	.16	3.0	1.6	15.4	32	0.50
NO 13 2.30 2.5 6.4 6.5 6.4 6.1 6.4 6.1 6.4 6.1 6.4 6.1 6.4 6.1 6.4 6.1		63	2,62	71	71	55	4,	5.5	4.5	8.	52	.018	.07	90.	4.0	0.2	10.9	۲	49.7
W0 13 - 1 2.60 10 2 64 24 6.7 6.1 42 6.7 6.1 42 6.7 6.1 42 6.7 6.1 42 6.7 6.1 42 6.7 6.2 5.6 13 6.7 6.9 13 6.7 6.9		m	9.30	RI	~3	22	4	5.5	4.	.15	.26	.012	s.	ક	0.3	0.5	13.9	٠,	14.9
" 1 2 51 51 5.6 3.3 57 0.46 0.9 0.8 1.9 1.9 1.0 2 51 5.6 5.7 4.4 1.24 0.41 0.42 <td>NO</td> <td></td> <td>2.60</td> <td>ខ្ម</td> <td>. 44</td> <td>64</td> <td>24</td> <td>6.7</td> <td>6.1</td> <td>4.5</td> <td>.72</td> <td>060.</td> <td>.16</td> <td>.27</td> <td>4.</td> <td>7.1</td> <td>13.7</td> <td>22</td> <td>139.3</td>	NO		2.60	ខ្ម	. 44	64	24	6.7	6.1	4.5	.72	060.	.16	.27	4.	7.1	13.7	22	139.3
" 1 2.66 34 6 34 6 4.4 .24 .41 .041 .041 .041 .041 .041 .041 .041 .041 .041 .041 .041 .041 .041 .041 .041 .042 .042 .043 .043 .043 .043 .043 .044 .043 .043 .044 .043 .043 .044 .044 .043 .043 .044 .044 .043 .044 .045 .044 .044 .044 .045 .044 .045 .044 .044 .045 .044 .045 .044 .045 .044 .045 .044 .045 .044 .045 .044 .045 .044 .045 .044 .045 .044 .045 .044 .045 .044 .045 .044 .045 .044 .045 .044 .044 .044 .045 .044 .044 .044 .045 .044 .044 .044		14	2.55	OI OI	~	15	37	6.3	5.6	.33	.57	9. 846	6.	8.	1.9	1.9	\$101	38	114.5
" 4 2.46 32 6 5.5 4.0 - - - - - - - - - 0.0 10.4 0.0 10.4 0.0 - - - - - 0.0 10.4 0.0 - - - - 0.0 10.4 0.0 - - - - 0.0 10.4 0.0 - - - - - 0.0 10.7 0.0 - - - - 0.0 0.0 0.0 -		m	2.60	¥	9	7,	55	5.7	4.	,24	4.	2.	80.	8.	1.5	7.7	12.1	22	139.3
" 15 - 1 2.36 12 43 5.8 5.2 .60 1.031 .064 .12 .15 .11 " 12 2.5 44 45 5.9 5.1 .05 .17 .051 .17 .10 .17 .10 .17 .11 .10 .11 .11 .12		4	2.46	25	•	32	8	5.5	4.	,	t	,	60.	80.	7.4	6.0	11.6	77	154.3
" 2 2.53 10 2 44 45 5.9 5.1 .35 .37 .027 .17 .10 .10 .10 22 44 44 5.9 5.1 .35 .36 .30 .36 .30 .37 .36 .37 .36 .31 .35 .31 .35 .31 .35 .31 .31 .32 .31 .32 .31 .31 .32 .31 .31 .32 .31 .32 .31 .32 .31 .32 .31 .32 .31 .32 .31 .32 .31 .32 .31 .32 .31 .32 .31 .32			2.36	77	€	45	\$	ار مۇ	5.2	9.	1.03!	490.	172	.15	.7	ניל	12.1	ķ	154.3
" 4 5 6 4.4 15 6.6 6.4 15 6.4 15 6.4 15 6.4 15 6.4 15 6.4 15 6.4 15 6.4 15 6.4 15		~	2.53	ន	~1	4	4	6.5	5.1	.33	.53	.027	.17	.10	7.0	0.1	5.5	77	114.5
" 4 2.41 38 10 27 5.5 4.2 1.8 0.1 0.25 1.1 0.25 1.1 0.25 1.1 0.25 1.1 1.0 0.2 1.1 0.2 0.1 0.1 0.1 0.2 0.1 0.2 0.1 0.2 0.1 0.2 0.1 0.2 0.1 0.2 0.1 0.2 0.1 0.2 0.1 0.2 0.1 0.2		r	2.35	36	ន្ត	35	. 92	5.6	₹. ₹	.15	.26	.045	12.	ផ	0.1	0	12.7	16	104.4
NO 18 - 1 2.54 12 0 48 40 6.1 5.6 1.14 1.97 .078 .14 .17 .17 .17 .17 2.0 1.11 1.14 1.97 .14 .17 .17 .17 .18 .18 .18 .18 .18 .18 .18 .18 .18 .18 .18 .18 .18 .18 .19 .18 .19 .18 .19 .18 .19 .18 .19		4	2.41	38	음	27	22	5	4,2	81.	46.	.025	.15	.12	8.0	1.0	15.6	ដ	104.4
" 2 2.38 20 8 34 38 4.8 3.8 4.4 4.1 6.34 6.9			2.54	ផ្ក	0	8	04	6.1	5.6	1,14	1.97	.078	4. 4.	17.	2.0	1.1	17.3	8	104.4
" 3 2.40 24 8 37 31 4.8 3.9 .15 .26 .32 .14 .30 .31 .30 .30 .30 .30 .30 .30 .30 .30 .30 .30		64	2.38	80	90	X	82	4 %	8.	.24	4.	460.	60.	8	0.1	0.5	11.4	16	49.7
" 4 2.30 36 6 30 26 5.0 4.3 .18 .31 .032 .15 .08 0.9 0.9 0.9 NO 19 - 1 2.39 26 20 37 17 7.2 6.5 1.50 2.59 .137 .22 .58 3.5 2.6 " 2 2.39 32 18 38 12 5.3 3.7 .33 .57 .083 .18 .13 0.5 1.3 " 3 2.36 34 28 41 7 5.5 3.9 .24 .41 .042 .13 0.3 2.1 " 4 2.25 30 12 28 30 5.5 3.9 .18 .31 .03 .23 .12 .05 2.1		0	2,40	\$	æ	37	Ę	8.	3.9	.15	.26	.032	41.	110	0.2	7.0	30,8	я 1	154.3
NO 19 - 1 2.39 26 20 37 17 7.2 6.5 1.50 2.59 .137 .22 .58 3.5 2.6 " 2 2.39 32 18 38 12 5.3 3.7 .33 .57 .083 .18 .12 0.5 1.3 " 3 2.36 34 28 41 7 5.5 3.9 .24 .41 .042 .21 .13 0.3 2.1 " 4 2.25 30 12 28 30 5.5 3.9 .18 .31 .031 .23 .12 0.5 2.1		ব	2.30	፠	9	8	56	5.0	4. C.	87	£.	.032	.15	80.	6.0	6.0	15.7	ដ	179.2
" 2 2.39 32 18 38 12 5.3 3.7 .33 .57 .083 .18 .12 0.5 1.3		19 - 1	2.39	56	20	37	17	7 2	6.5	1.50	2.59	.137	25	58	3.5	5.6	25.0	58	228.6
" 3 2.36 34 28 41 7 5.5 3.9 .24 .41 .042 .21 .13 0.3 2.1 " 4 2.25 30 12 28 30 5.5 3.9 .18 .31 .031 .23 .12 0.5 2.1		81	2.39	32	87	38	77	5.3	3.7	£.	.57.	.083	.18	.12	0.5	1.3	18.0	77	124.3
" 4 2.25 30 12 28 30 5.5 3.9 .18 .31 .031 .23 .12 0.5 2.1		£	2.36	¥	28	4.	۲-	5.5	6.6	.24	4.	,042	.21	£1.	0.3	2.1	18.2	13	139.3
		4	2.25	30	13	88	8	S. 55	3.9	.18	.31	.031	.23	77.	0.5	2.1	17.4	7.7	143.4

Table 3.3 Descriptions on Typical Profile of Loamy Soil Type (1)

- a) Profile Number: No.13 (Auchi)
- b) High Category Classification: Latosol, Loamy Soil Type (Probably Oxisol Orthox in revised 7th Approximation)
- c) Date of Examination: 3 Pebruary, 1977
- d) Location: 2 km east from Egboto
- e) Topography and Elevation: Undulated, 95 m
- f) Land Use: Secondary bush
- g) Parent material: Weathering material of Mesozoic (Upper Cretaceous) sand stone and shale
- h) Drainage: Good Drainage

Profile Description

- A₁ 0 10 cm Brown (7.5YR 4/6), loamy; little humus contents; granular structure; many fine roots; non sticky, non plastic; slightly loose; (Hardness 26); boundary diffuse.
- A3 10 24 cm Dull reddish brown (5YR 4/4), loamy; weakly developed granular structure; non sticky, non plastic; (Hardness 29) boundary slightly clear.
- B₁ 24 50 cm Red (10YR 4/6), loamy to clay loam; weakly developed subangular blocky structure; when dry slightly sticky and plastic; (hardness 29); boundary slightly clear.
- B₂ 50 115cm + Red (10R 4/8), leamy to clay leam; weakly developed subangular blocky structure; when dry slightly sticky and plastic; when wet strongly sticky and plastic.

• . . .

ed to the second of the second

Table 3.4 Descriptions on Typical Profile of Loamy Soil Type (2)

- a) Profile Number: No.15 (Auchi)
- b) High Category Classification: Latosol, Loamy Soil Type (Probably Oxisol Orthox in revised 7th Approximation)
- c) Date of Examination: 3 Pebruary, 1977
- d) Location: 1.5 km west from Ugbekpe
- e) Topography and Elevation: Flat, 90 m
- f) Land Use: Secondary bush
- g) Parent Material: Weathering material of Mesozoic (Upper Cretaceous) sand stone and shale
- h) Drainage: Good Drainage

Profile Description

- A₁ 0 15 cm Dull reddish brown (5YR 4/4), loamy; little humus contents; many fine roots; weakly developed crumb structure; slightly loose; non sticky, non plastic; (Hardness 25); boundary diffuse.
- Reddish brown (2.5YR 4/6), loamy; weakly developed granular structure; non sticky, non plastic; (llardness 25); boundary slightly clear.
- B₁ 32 68 cm Red (10YR 4/6), loamy to clay loam; weakly developed subangular blocky structure; slightly sticky and plastic; (Hardness 29); boundary diffuse.
- B₂ 68 110 cm + Dark red (10R 3/6), loamy to clay loam; developed subangular blocky structure; when dry slightly sticky and plastic; when wet strongly sticky and plastic; (Hardness 26).

Table 3.5 Descriptions on Typical Profile of Clay Loam Soil Type

- a) Profile Number: No.18 (Auchi)
- b) High Category Classification: Latosol, Clay Loam Soil Type (Probably Oxisol Orthox in revised 7th Approximation)
- e) Date of Examination: 5 February, 1977
- d) Location: 2.5 km south from Ugbekpe
- e) Topography and Elevation: Flat, 65 m
- f) Land Use: Mariand plantation
- g) Parent Material: Weathering material of Mesozoic (Upper Cretaceous) sand stone and shale
- h) Drainage: Good Drainage

Profile Description

- A₁ 0 13 cm Dark brown (7.5YR 3/3), clay loam; medium humus contents; many fine roots; loose; porous; non sticky, non plastic; (Hardness 15); boundary clear.
- A3 13 30 cm Dull reddish brown (5YR 5/4), clay loam; granular structure; many fine roots; slightly compact; (Hardness 29); boundary slightly clear.
- B₁ 30 50 cm Reddish brown (5YR 4/6), clay loam; weakly developed subangular blocky structure; slightly compact; when dry non sticky and plastic; (Hardness 32); boundary diffuse.
- B₂ 50 110 cm + Reddish brown (2.5YR 4/8), clay loam; developed subangular blocky structure; when wet strongly sticky and plastic; very compact; (Hardness 33).

Table 3.6 Descriptions on Typical Profile of Sandy Loam Soil Type (1)

- a) Profile Number: No.2 (Owerri)
- b) High Category Classification: Latosol, Sandy Loan Soil Type (Probably Oxisol Orthox in revised 7th Approximation)
- c) Date of Examination: 13 January, 1977
- d) Location: 2.5 km south from Obebe
- e) Topography and Elevation: Undulated, 64 m
- f) Land use: Secondary bush
- g) Parent Material: Weathering material of coastal plain sand
- h) Drainage: Good Drainage

Profile Description

- A₁ 0 16 cm Dark reddish brown (5YR 3/3), sandy loam; medium humus contents; weakly developed granular to crumb structure; non sticky, non plastic; many fine roots; loose; (Hardness 10); boundary diffuse.
- A3 16 32 cm Dark reddish brown (5YR 3/4), sandy loam; granular structure; slightly loose; non sticky, non plastic; (Hardness 20); boundary slightly clear.
- B₁ 32 62 cm Reddish brown (5YR 4/6) sandy loam; granular structure; slightly compact; non sticky, non plastic; (Hardness 23); boundary diffuse.
- B₂ 62 135 cm + Reddish brown (5YR 4/8), sandy loam; granular structure; very compact; non sticky, non plastic; (Hardness 30).

Table 3.7 Descriptions on Typical Profile of Sandy Loam Soil Type (2)

- a) Profile Number: No.9 (Overri)
- b) High Category Classification: Latosol, Sandy Loam Soil Type (Probably Oxisol Orthox in revised 7th Approximation)
- c) Date of Examination: 8 January, 1977
- d) Location: 2 km south from Eziobo
- e) Topography and Elevation: Flat. 56 m
- f) Land use: Secondary bush (Main UBUBA Shrub)
- g) Parent Material: Weathering material of coastal plain sand
- h) Drainage: Good Drainage

- A₁ 0 14 cm Dull reddish brown (25YR 4/4), sandy loam; developed granular structure; many fine roots; loose; non sticky, non plastic; (Hardness 16); boundary diffuse.
- A₃ 14 29 cm Bright reddish brown (5YR 5/6), sandy loam; developed granular structure; slightly loose; non sticky, non plastic; (Hardness 14); boundary slightly clear.
- B₁ 29 52 cm Reddish brown (2.5YR 4/6), sandy loam; developed granular structure; medium compact; non sticky, non plastic; (Hardness 22); boundary diffuse.
- B₂ 52 140 cm + Reddish brown (2.5YR 4/8), sandy loam; developed granular structure; non sticky, non plastic; compact; (Hardness 27).

And the second of the second o

i e

Table 3.8 Descriptions on Typical Profile of Sandy Loam Soil Type (3)

- a) Profile Number: No.12 (Owerri)
- b) High Category Classification: Latosol Sandy Loam Soil Type (Probably Oxisol Orthox in revised 7th Approximation)
- c) Date of Examination: 7 January, 1977
- d) Location: 1 km east from Ihiagwa
- e) Topography and Elevation: Flat, 66 m
- f) Land use: Secondary bush
- g) Parent Material: Weathering material of coastal plain sand
- h) Drainage: Good Drainage

- A₁ 0 12 cm Dark reddish brown (5YR 3/3), sandy loam; medium humus contents; weakly developed crumb structure; loose; non sticky, non plastic; (Hardness 8); boundary diffuse.
- A₃ 12 ~ 30 cm Reddish brown (5YR 4/8), sandy loam; developed granular structure; slightly loose; non sticky, non plastic, (Hardness 18); boundary slightly clear.
- B₁ 30 60 cm Reddish brown (2.5YR 4/6), sandy loam; developed granular structure; slightly compact; non sticky, non plastic; (Hardness 27); boundary diffuse.
- B₂ 60 120 cm + Reddish brown (2.5YR 4/8), sandy loam; developed granular structure; compact; when dry non sticky and plastic; (Hardness 27).

Table 3.9 Descriptions on Typical Profile of Loamy Soil Type (1)

- a) Profile Number: No.13 (Owerri)
- b) High Category Classification: Latosol Loamy Soil Type (Probably Oxisol Orthox in revised 7th Approximation)
- c) Date of Examination: 14 January, 1977
- d) Location: 3.5 km east from Okolochi
- e) Topography and Elevation: Flat, 63 m
- f) Land use: Secondary bush
- g) Parent Material: Weathering material of coastal plain sand.
- h) Drainage: Good Drainage

- A₁ 0 16 cm Dark reddish brown (5YR 3/4), loamy, little humus contents; weakly developed crumb structure; slightly loose; non sticky, non plastic; many fine roots; boundary diffuse.
- A3 16 34 cm Reddish brown (5YR 4/6), loamy; weakly developed granular structure; slightly loose; non sticky, non plastic; (Hardness 24); boundary slightly clear.
- B₁ 34 60 cm Bright reddish brown (5YR 5/8), loamy; weakly developed granular structure; slightly compact; non sticky, non plastic; (Hardness 29); boundary diffuse.
- B₂ 60 150 cm + Reddish brown (2.5YR 4/6), loamy; developed granular structure; non sticky, non plastic; slightly compact; (Hardness 28).

tional and a second of the sec

Table 3.10 Descriptions on Typical Profile of Loamy Soil Type (2)

- a) Profile Number: No.7 (Owerri)
- b) High Category Classification: Latosol Loamy Soil Type (Probably Oxisol Orthox in revised 7th Approximation)
- c) Date of Examination: 8 January, 1977
- d) Location: 4 km west from Umuskea
- e) Topography and Elevation: Flat, 54 m
- f) Land use: Secondary bush
- g) Parent material Weathering material of coast plain sand
- h) Drainage: Good Drainage

- A₁ 0 13 cm Dark reddish brown (5YR 3/3), sandy loam; medium humus contents; granular structure; many fine roots; loose; non sticky, non plastic; (Hardness 10); boundary diffuse.
- A₃ 13 28 cm Dark reddish brown (5YR 3/4), sandy loam; granular structure; slightly loose; non sticky, non plastic; (Hardness 12); boundary slightly clear.
- B₁ 28 56 cm Reddish brown (2.5YR 4/6), sandy loam to loam; granular structure; slightly compact; non sticky, non plastic; (Hardness 25); boundary diffuse.
- B₂ 56 120 cm + Dark reddish brown (2.5YR 3/6), sandy loam to loamy; weakly developed subangular blocky structure; slightly sticky and plastic; compact.

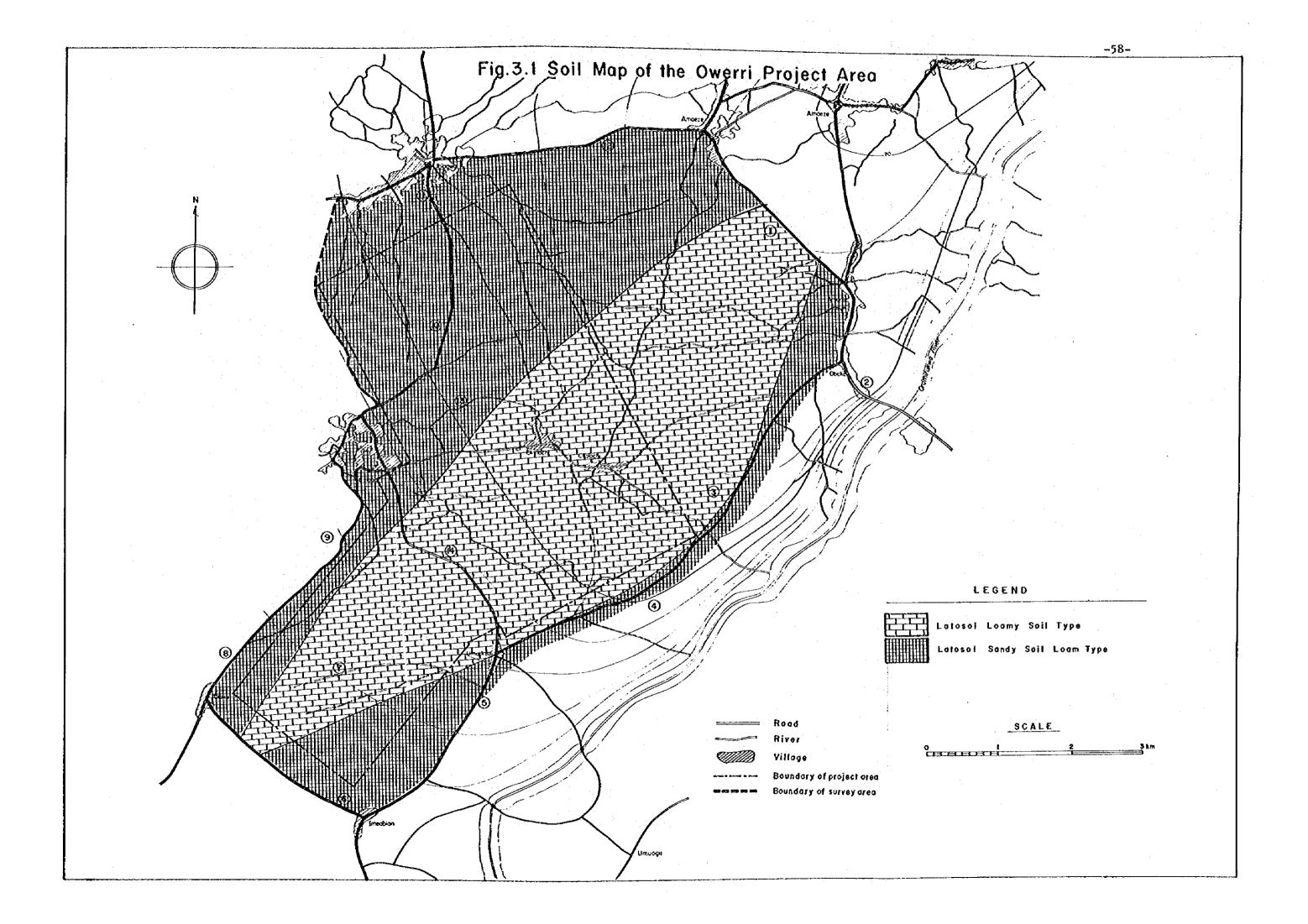
.

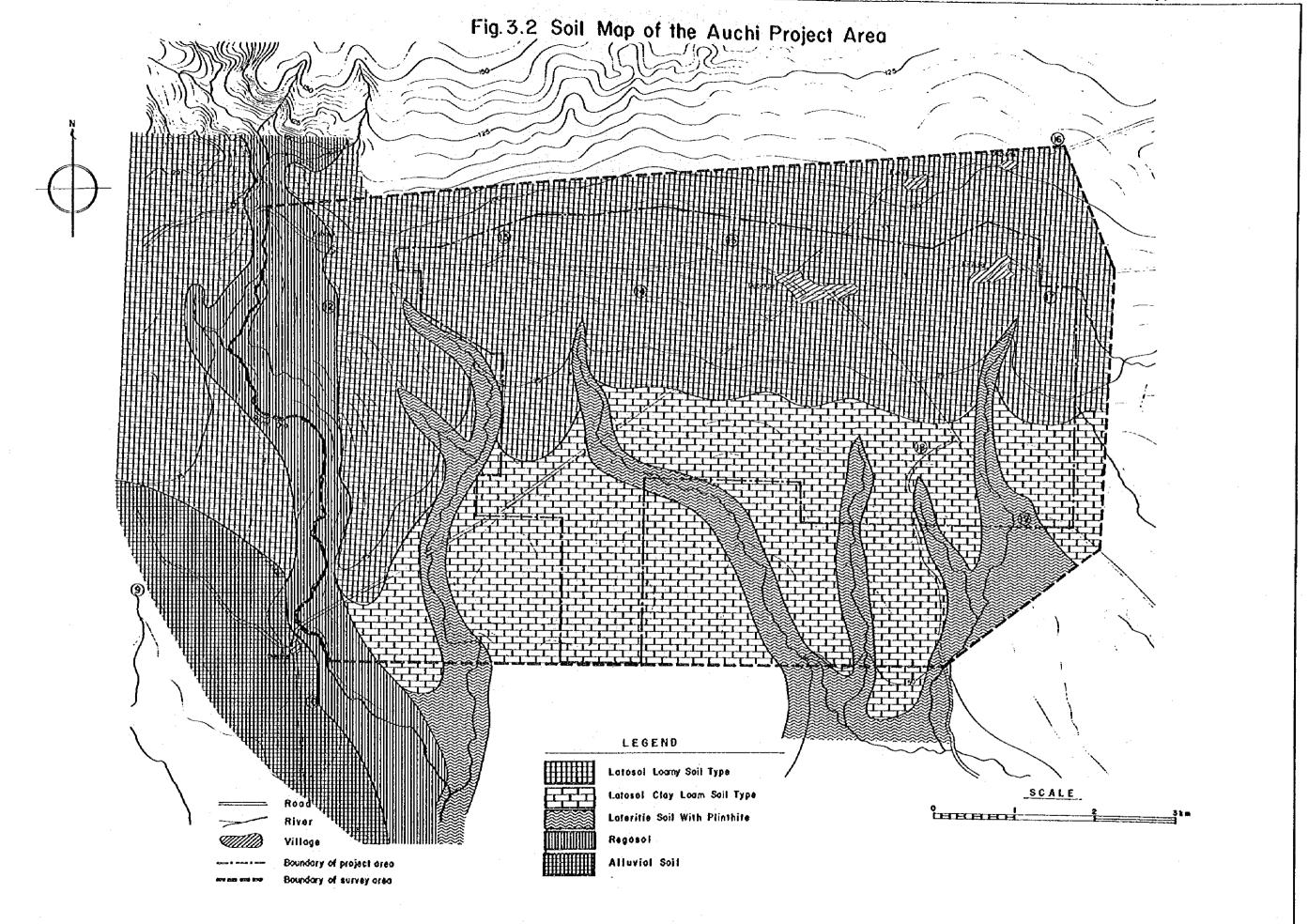
Table 3.11 Descriptions on Typical Profile of Lateritic Soil with Plinthite

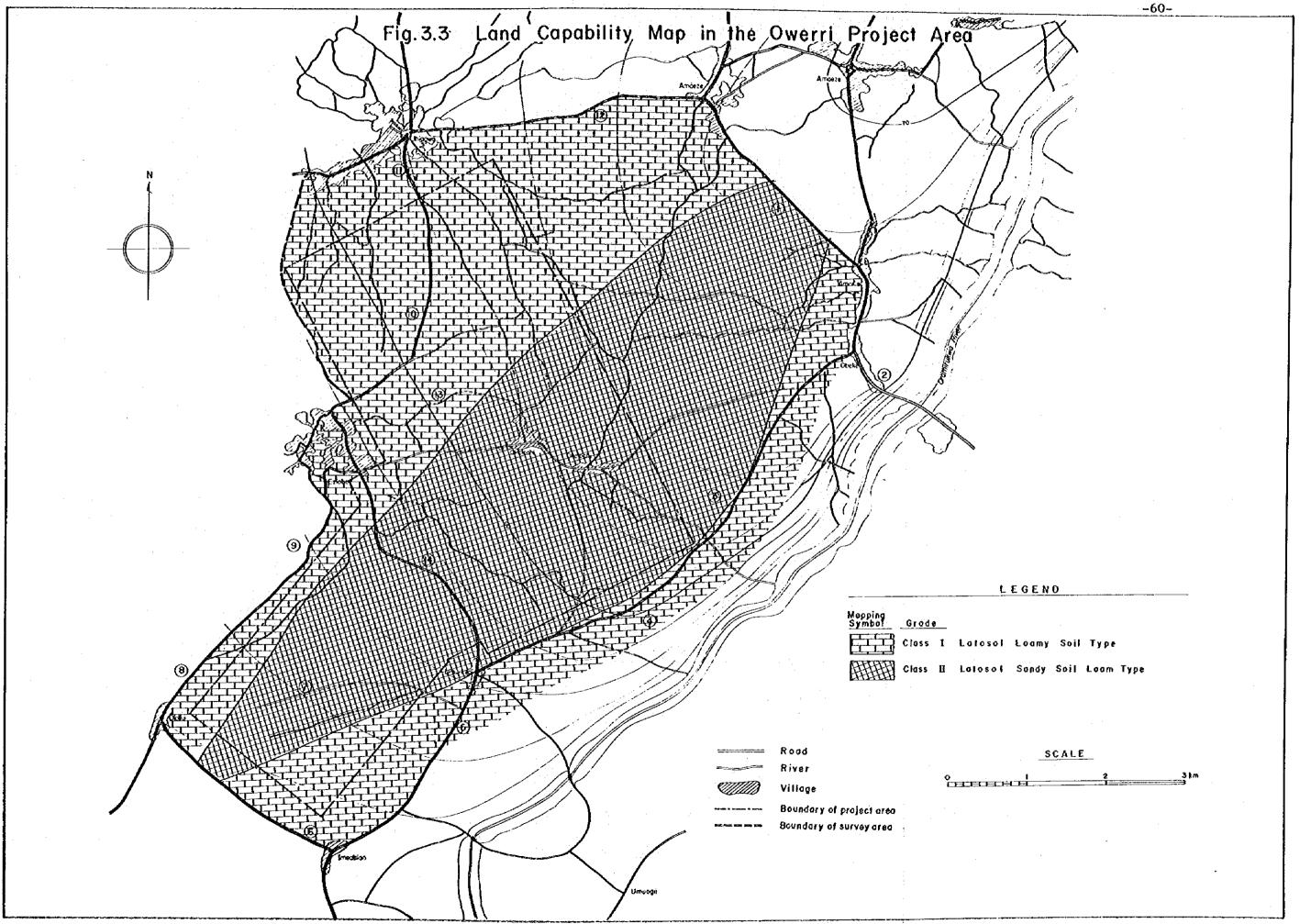
- a) Profile Number: No.19 (Auchi)
- b) High Category Classification: Lateritic Soil with Plinthite (Probably Oxisol Aquox in revised 7th Approximation)
- c) Date of Examination: 6 February, 1977
- d) Location: 3.25 km south from Ugbekpe
- e) Topography and Elevation: Plat, 60 m
- f) Land use: Secondary bush
- g) Parent Material: Weathering material of Mesozoic (Upper Creataceous) sand stone and shale
- g) Drainge: Good Drainage

- A₁ O 15 cm Brown (7.5YR 4/3), clay loam to clay; developed crumb structure; many fine roots; slightly compact; when wet strongly sticky and plastics (Hardness 33); boundary diffuse.
- A₃ 15 42 cm Orenge (7.5YR 6/6), clay; weakly developed subangular blocky structure; developed mottles (iron and manganese); medium sticky and plastic; (Hardness 31); boundary diffuse.
- B 42 80 cm Dull brown (7.5YR 6/3), clay; gleisation; strongly developed mottles (bright brown 7.5YR 5/8, iron and manganese); developed subangular blocky structure; medium sticky and plastic; (Hardness 28); boundary sharply clear.
- C_{im}80 120cm + Dull reddish brown (2.5YR 4/4); plinthite horizon

<u>Table 3.12</u> Descriptions on Typical Profile of Alluvial Soil


- a) Profile Number: No.10 (Auchi)
- b) High Category Classification: Alluvial Soil (Probably Entisol Pluvent in revised 7th Approximation)
- c) Date of Examination: 5 January, 1977
- d) Location: 1 km east from Odame
- e) Topography and Elevation: Flat, 60 m
- f) Land use: Secondary bush, Compared of apare grass (Gumba, Enphatoevm)
- g) Parent Material: Recent alluvial deposits (sand)
- h) Drainage: Good Drainage when dry season


- A₁₋₁ 0 11 cm Brownish black (10YR 2/3), sandy; medium humus content; granular structure; non sticky, non plastic; very loose; many fine roots; (Hardness 14); boundary diffuse.
- A₁₋₂ 11 24 cm Reddish gray (2.5YR 4/1), sandy; little humus content; granular structure; very loose; non sticky, non plastic; (Hardness 17); boundary diffuse.
- C 24 100 cm + Grayish yellow brown (10YR 6/2), sandy; granular structure; weakly developed iron mottles; (Hardness 15)


Table 3.13 Descriptions on Typical Profile of Regosol

- a) Profile Number: No.12 (Auchi)
- b) High Category Classification: Regosol
 (Probably Inceptisol Ochrept in revised 7th Approximation)
- c) Date of Examination: 2 February, 1977
- e) Topography and Elevation: Flat to undulated. 95 m
- f) Land use: Secondary bush but under cocoa plantation
- g) Parent Material: Mesozoic (Upper Cretaceous) sand stone and shale
- h) Drainage: Good Drainage

- A₁₋₁ 0 17 cm Dull brown (7.5YR 5/4), loamy; weakly developed subangular blocky structure; many fine roots; non sticky, non plastic; (Hardness 19); boundary diffuse.
- A₁₋₂ 17 32 cm Bright reddish brown (5YR 5/6), loamy, weakly developed subangular blocky structure; non sticky, non plastic (Hardness 177; boundary clear.
- C₁ 32 72 cm Orange (5YR 6/6), gravel horizon; non texture, structureless; gravel of sand stone (diameter 5 6 cm); Very compact: (Hardness 27 cm); boundary no clear
- C₂72 120 cm + Orange (5YR 6/8), gravel horizon; gravel of sand stone (diameter 2 5 cm); very hard; (Hardness 28).

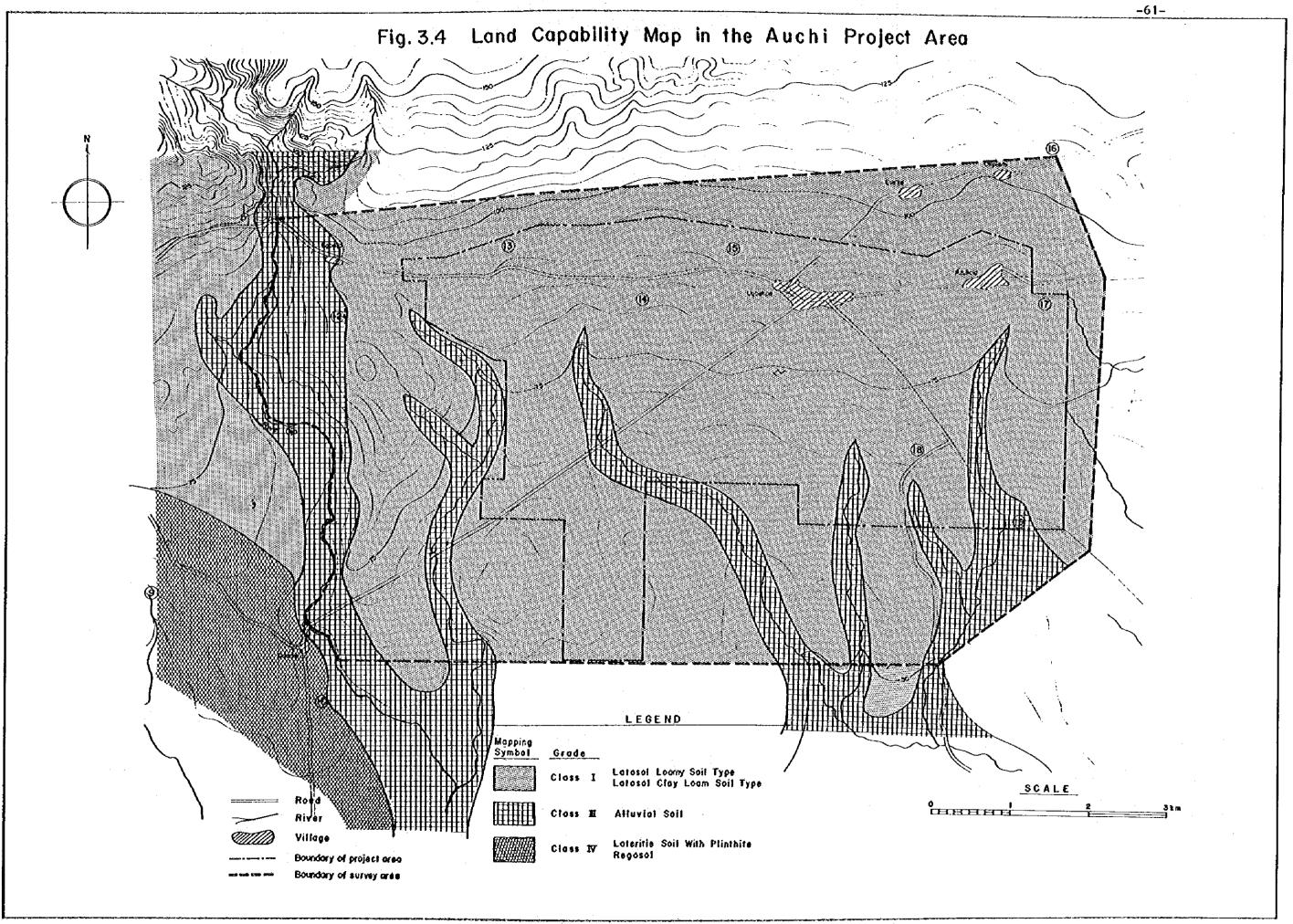
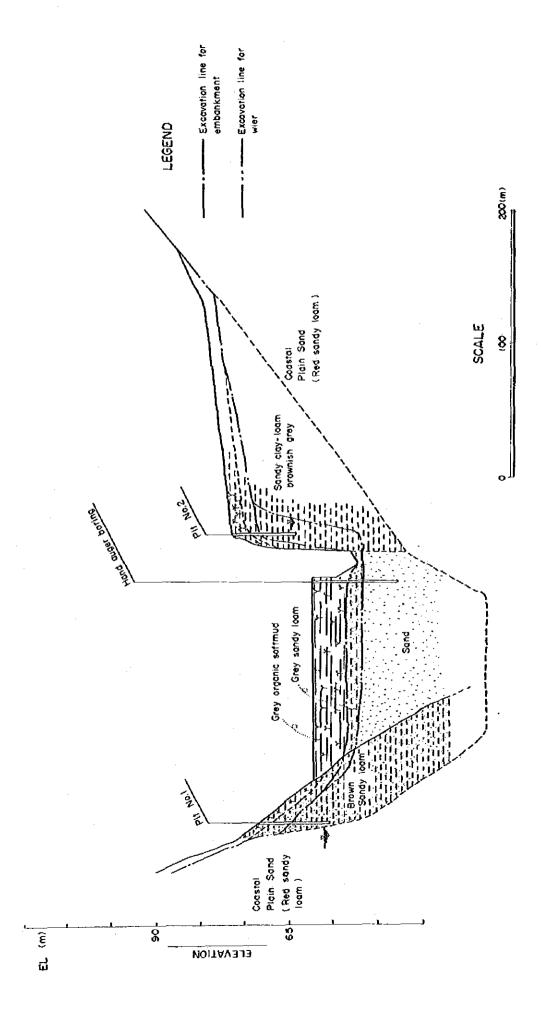



Fig.3.5 Geological Profile of the Intake Site for Owerri

Excavation line for embanxment, Rock surface, excavation line for concrete structure to be lower than this line. Tolus deposit Soft clay or loam Sandy clay sondy loam, stiff in lower part SCALE က<u>ြ</u> (၅) 95 ELEVATION

Fig. 3.6 Geological Profile of the Intake Site for Auchi

4. PRESE	NT AGRI	CULTURA	AL SETTI	NG.

4. PRESENT AGRICULTURAL SETTING

4.1 Socio-Economic Background

The Overri Project area is located in the south-western corner of the Imo State about 10 km south of Overri, capital city of the State. The project area covers the land of about 2,600 ha extending south-west between the Oramirukwa river and Otamiri river. To the north of the area Federal highway A-6 runs from Overri to Aba and further to Port-Harcourt. Near the southern boundary of the area, there exists state border with the adjacent state of Rivers State.

The Owerri Project area is relatively densely populated area. The population including 6 villages in the project or adjacent to project is about 6,400 with its population density of 250 per km². Agriculture is the mainstay of the local economy and about 90% of the working population is estimated to be engaged in agricultural production.

With respect to land tenure system, most of the land are held by the community or the kindred and privately owned land is quite limited. According to the farm survey conducted during our recent survey, about 70% of the land is owned by the kindred and around 20% by the community while residual some 10% is held by private. The land is allocated to member farmers every season depending on their capabilities. Average farm size in the Owerri Project area is about 1.0 ha. Their farm lands are generally fragmented and different plots are widely scattered.

The Auchi Project area is situated in the northern part of the Bendel State about 20 km east of Auchi, capital city of the Estsako Local Government Area of the State. From the Benin City, capital of the State, the project area is located with the distance of about 70 km. The project area covers the land of about 2,850 ha situated in the east bank of the Ojo river, one of the tributaries of the Orle river. The area is relatively flat bounded by the hilly plateau to the north and lowland inundated annually by the flood of the Orle river to the south. In the northern part of the area, there runs a provincial road from west to east connecting Auchi to Agnebode with a distance of 45 km.

The area is sparsely polulated compared with the Owerri Project area. Total population of the area is about 2,000 with the population density of 70 per km². The population is centered around the northern area along the provincial road and there is no residential quarters in the south. As in case of the Owerri Project area, most of the working population are engaged in agriculture.

All the land in the Auchi Project area is held by the community excepting very limited area of private holding for farmers' living quarters. Allocation of the land for agricultural production is made each crop season by the community. The size of the allocated land is determined depending on their capacities. Average farm size is relatively large and about 1.5 ha of the land is cultivated by one farm family. Land fragmentation is the characteristic of the land tenure system in the area and the distance from one plot to one plot for one-farmer can be 3 to 4 km.

4.2 Land Use

The present land use in the Owerri and the Auchi Project areas is estimated on the basis of aerophotos and field survey. Results of the survey are summarized into the following table and Fig. 4.1 to Fig. 4.2.

	<u>Owerri</u>	Owerri Project Area		Auchi Project Area	
Land Categories	Area (ha)	Proportion (%)	Area (ha)	Proportion (%)	
1) Village, roads and other non- agricultural land	30 d	1	30	1	
2) Cultivated land	720	28	220	10	
3) Scrub and grassland	1,460	56	660	21	
4) Light forest	390	15	1,940	68	
Total	2,600	100	2,850	100	

Owerri Project Area

The Owerri Project area is well developed area in terms of agricultural production with its favourable topographical condition and abundant working population. In the area, about 84% is allocated for the land for shifting cultivation, 15% is allocated for light forest and the residual 1% is allocated for non-agricultural land such as villages and roads.

The light forest area surrounds the villages and is located around Okolochi village and east part of Eziobo village. The forest consists of mainly palm tree supplemented by rubber and other citrus trees. The density of the forest is not so high.