REPORT

ON

THE SMALL AND MEDIUM SCALE INDUSTRIES PROJECT IN GHANA

MARCH 1964

OVERSEAS TECHNICAL COOPERATION AGENCY OF JAPAN

調查統計課

国際協力事	士团
受入 月日 84.5.16	512
	69
登録No. 04790	KE

PREFACE

At the request of the Government of Republic of Ghana, it was undertaken by the Government of Japan to conduct the basic field survey necessary for the development project of the Ghanaian small and medium scale enterprises, giving the executing commission to the Overseas Technical Cooperation Agency in Tokyo.

The Overseas Technical Cooperation Agency (OTCA) realized that the Ghanaian project for the minor enterprises would assume considerable industrial importance in utilizing the domestic producing material into the products for itself, and organized a survey team which consisted of the members with exerpt knowledge in such respective fields as plywood, porcelain and earthenwares, paper and pulp, vegetable fiber (rush) utilization, nail and wire, and toy. Mr. Kentaro Kon, director of the Toyoo Plywood Co., was appointed leader of the team.

The team started from Tokyo on the 14th of November, 1963 to Ghana, where it stayed for about one month. During the period, the survey team members carried out the diligent specialized studies, discussed the project to chase the feasibility, made the field investigations as best as possible, and gathered the available data necessary for the development of the projects.

The Government of Ghana rendered much valuable assistance and cooperation to the survey team so that the survey could result in a considerable success and its results be represented in this survey report.

The OTCA was established in July 1962 by the Government of Japan as the executing organization for the overseas technical cooperation on governmental basis. Since then, it has been exerting the best efforts to live up with the purpose of its establishment, receiving the trainees from abroad, and despatching its technical experts or conducting preliminary survey for development projects.

Now that the survey has been successfully carried out, it should be more than appreciated if this survey report should make contributions to facilitating the progress of the Ghanaian development projects for minor industries, so that the friendly relationship as well as technical ties might be more fastened between Ghana and Japan. Lastly, our hearfelt thanks hereby should be expressed to the officials and personnels of the Government of Ghana who gave their ungrudging kindness and assistance to the survey team.

(Mila 1 auto

Shinichi Shibusawa

Director General

Overseas Technical Cooperation Agency

Lastly, our hearfelt thanks hereby should be expressed to the officials and personnels of the Government of Ghana who gave their ungrudging kindness and assistance to the survey team.

Shinichi Shibusawa

Director General

Overseas Technical Cooperation Agency

TABLE OF CONTENTS

	Page
\Pr	face
A	Introduction 1
B,	Project of Pulp & Paper Manufacture 12
C.	Project for the Establishment of Porcelain and Earthenware Factory
D,	Project for the Establishment of Plywood Factory
E.	Production Project for Iron Wire, Iron Nail and Galvanized Iron Wire
F.	Construction Project for Toy Factory
G.	Construction Project of Mattress Factory to use Rush as Material

•

-

A. INTRODUCTION

A-1. Circumustantial Background Let to Despatch of Survey Team.

In March, 1964, on the occasion when the Ghanaian Economic Commission Group led by the Minister of Agriculture paid a visit to Japan, it officially requested that a survey team should be despatched to Ghana by the Government of Japan for conducting the field survey on the Ghanaian project for the minor enterprises. The nation's project aims at the development of its small and medium scale industries which should cover the whole process to yield certain products out of its rich forestal and other resources or materials, ranging 18 categories of industry.

The preliminary study was made on the proposed 18 items of industry, among which were (1) paper and cardboard paper, (2) footware (made of rubber, plastic material and leather), (3) sugar, (4) glassware, (5) plywood and chip-board, (6) porcelain and earthenware, (7) electrical appliances (assembly work of TV-set, heater, refrigerator, etc.), (8) nail and wire, (9) plastic material (forming process). Further studies selected several items for the Government of Japan to finally acquire a possible outlook for sending its field survey team.

Consequently, the notice to the effect was sent to the Government of Ghana at the beginning of July, inquiring for the desirable items to which heavy priority should be preferrably given in its project among the listed categories of industry.

The Ghanaian government gave the reply through Japanese embassy in Accra on the 23rd of September, and requested the Japanese survey team to be despatched for those 6 categories of industries such as (1) paper and pulp, (2) plywood, (3) porcelain and earthenware, (4) vegetable fiber utilization, (5) nail and wire, and (6) toys.

A-2. Composition of Survey Team.

Assigned subject	Name
Plywood	Kentaro Kon
Vegetable fiber	Hiroshi Ito
Toy	Kinichiro Shimizu
Porcelain and earthenware	Ryozo Naito
Nail and Wire	Masumi Sato
Pulp and Paper	Shigeru Ohashi

- 1 -

A-3. Scope of Survey,

Entering into the details of the scopes of the 6-industries, the survey was carried out to investigate the following target subjects:-

(1) Survey for the possible utilization of the existing materials resources in Ghana.

Qualification of available materials, their distribution status, consonomical utilization from a transportation standpoint included, etc... Further, the test pieces of materials shall be brought to Japan for the closer testing and experiments, if necessary.

- (2) Availability of the necessary intermediate materials.
- (3) Preestimate of the future demand.
- (4) Investigation for the present status of the relative industries.
- (5) Investigation for the labour market.

(6) Equipment planning.

According to the above subjects, the survey should be conducted to make out the flow charts of required process, the outline equipment planning and finally the estimate of the costs for individual categories of industry.

At this moment of compiling the report, however, it must be admitted that some parts of the initial purpose could have not been achieved due to the circumstantial difficulties, and that there are many investigation subjects to be still pursued for completion.

A-4. Outline of the survey results.

The survey results for the individual categories of industry are outlined as follows:-

(1) Paper and pulp.

In Ghana there is not a paper mill that can give the processing treatment on the material pulp. An existing paper factory, located in Takoradi city famous for the wood shipping port, is only making the corrugated cardboard box, packing bag, and toilet paper roll out of the imported material finished paper. The factory's output is called 5,000 tons for a year, and nothing of its products but the toilet paper is the direct consumable goods for the everyday life.

The demand for paper in Ghana chiefly consists of the use for newspaper, printing and writing paper, packing paper, board paper.

_ 2 _ .

Among them, the printing and writing paper are mostly used in the governmental publication, textbook, office forms and writing paper, and notebook. Therefore, the greater part of the consumption comes from the governmental and industrial used under the present circumustances.

On the other hand, the higher the peoples' living standard arises, the more demand would be expected to be increasing sharply. The rapid modernization of the country, now under way, would no doubt bring about the drastic increase of the paper consumption and demand accordingly.

The southwest part of Ghana is covered by the forestal zone, which is equivalent to approximately one-third of the whole area of Ghanaian territory. Therefore, it is naturally induced that a pulp paper factory should be considered to be constructed near the district utilizing the rich resources at hand, and the blueprint of the Planning Commission of the Ghanaian government disclosed that the pulp paper factory was planned and that the construction site is prearranged to be at Asankrangwa (by the Tano river). However, its early materialization of the construction should be difficult. For it turned out that the construction at least at the interior of the district would not possibly be carried out because of the reasons pointed out in the report. Meanwhile, the utilization office of Agricultural Ministry at Takoradi has a mind to designate Bepose as a construction site nearby Tokoradi along the Pula river, a distribution center of material woods.

Another construction project of a paper mill is separately under consideration, which is to utilize the bagasse as the material for paper. Favoured by its location and available at the cheaper cost prices than the wood pulp, the project is very prospective to be materialized.

The cheap availability of the bagasse material will slide into the fuel cost estimate at the same time. Besides being free from the material transportation charges, the neighbourhood of Akuse seems to satisfy the conditions suitable for factory site. Presently the sugar refinery is in operation so that the existing services for electricity and water supply may be easily extended for the use of the new paper factory. Furthermore, being near Accra, the transportation of the products for marketing is very convenient as well

- 3 -

as the auxiliary materials purchases.

The subjects items inquired for in the investigation are shown as follows:-

I. Supply and Consumption of paper in Ghana.

- (1) Import of paper and cardboard.
- (2) Domestic production and domestic consumption.
- II. Observations on the Pulp and Paper Manufacturing plan formed by Ghanaian Government.
 - (1) Production capacity
 - (2) Raw Material
 - a) Bagasse
 - b) Wood pulp
 - (3) M_ill site
- III. Our Recommendable plan for the Manufacture of Pulp and Paper from Bagasse
 - (1) Outline
 - (2) Flow sheet.
 - (3) Recommendable layout for the factory.

IV. The Cost of the Bagasse Pulp and Paper Mill.

- (1) Initial Cost.
 - a) Plant Cost
 - b) Building cost
- (2) Operation Cost.
 - a) Raw material cost
 - b) Labours cost
 - c) Overhead cost

V. Profit estimated and Saving amount of Foreign Currency.

- (1) Annual profit estimated
- (2) Saving amount of Roreign Currency.

The study in this regard has revealed that the proposed paper mill should have the capacity of 50 tons per day as the optimum size of production, and that the required investment should amount to $\pounds 2,109,960-0-0$ in total. According to the project when worked as intended originally, the annual profit is 15% against the invested mOney, achieving a saving of 70% in the outflow of the foreign currency.

(2) Porcelain and earthenware.

In Ghana there is not a modernized factory of ceramic manufacture. The native people make the pottery and a few earthenware products in the ancient traditional manner, so the imported goods have to be used for most of daily use ceramic necessities or construction earthen materials.

Therefore, the establishment of the ceramic industry should be of a great improvement to the peoples' living standard and to the development of the country at the same time. The industry would not probably bring in a substantial economic effect unless the main materials such as clay, feldpar and quartz could be available as the natural products of Ghana. Accordingly, the initial target investigation subject was to set to locate the material distribution condition in Ghana. The field survey was carried out for an area ranging 2,500 miles over the land where included Accra, Kumasi, Tamale, Bolgatanga, Navrongo, Dunkwa, Takoradi, Nauli, Cape Coast, Mouri, Saltpond, Akosombo and Atianvi, etc., while the necessary test pieces of materials were gathered for further examinations. As the result, it was discovered that there existed good quantities of superior kaoline deposits in the district neighbouring the Saltpond by-pass.

The feldspar material are rich in the pegmatite dykes scattered almost all over the land of Chana, and the quartz are also available in many places. Especially, it was recognized that the superior quartz had been left unused in quantities at the gold producing center at Dunkwa. As for the main materials, the survey results were very satisfactory for the development of the ceramic industry.

For the ceramic industry to be established, important is to secure the water supply resources and electricity service. According to the Geological Survey of Ghana, there is a rich underground currency available in the south coastal area. As regards the electricity, it is scheduled that a magnificient scale of hydro-power plant, now under construction at Akosombo, should be expectedly completed in 1967.

Furthermore, the fundamental industries would be soon under way to the rapid development so as to upbring and enhance the country's industrial level. In keeping up with the exploitation to

- 5 -

chase the development, the minor industries including the ceramics should make a progress, resulting in the direct profit given to the peoples' live.

Those listed below are the investigation subjects probed in the survey:-

I. Market conditions of porcelain and earthenwares.

II. Distribution conditions of ceramic materials.

III. Production plan of porcelain and other ceramic wares.

IV. Manufacturing process, requipments and their prices.

V. Slection of the suitable factory site.

VI. Estimates of various costs and charges.

- (1) Construction cost.
- (2) Material cost.
- (3) Labour cost.
- (4) Indirect cost.
- (5) Total cost.

VII. Annual profit.

VIII. Conclusion.

The survey Came to a general conclusion that: (1) the main materials could be available with the home-producing ones, (2) the production scale would be set to £180,000-0-0 output for a year, suitable for the anticipatory demand, and (3) the factory construction location would be selected in the west coastal area. The required amount of investment is estimated approximately £125,835-0-0. The profit ratio for a year is about 13% over the invested amount, enabling a saving of so much as £54,165-0-0 in the outflow of the foreign currency for a year.

(3) Plywood:

Ghana which has long been known as a timber exporting country, emerged into the world's timber market after World War II when her rich forest resources which are available in many different species came to be recognized by European countries. Export of Ghana's round and sawn timbers to Europe has ever since been on the steady uptrend, contributing in a large measure to the country's foreign

- 6 -

currency acquisition.

It goes without saying, however, that from the viewpoint of upholding balanced economy which is of utter importance to every developing nation like Ghana, it is preferable if the wood materials are exported not in round or sawn timbers but in processed wooden articles since they would sell at higher prices and earn more export income. Measures to this end are therefore urged to be taken in order that the present inflow of foreign made plywoods be prevented and the outflow of Ghana's foreign currency reserve may be checked.

The present plan for the construction of a plywood factory has been drawn up with the objective of materializing the above suggestion.

Plywood boards required for the construction of schools, hospitals, hotels and apartment houses in Ghana are all imported from abroad at present. It may be worth mentioning here that the investigations of this time have revealed that the proposed plywood factory will turn out sufficient veneer products to meet with such increasing domestic demand. The investigations also lead to the conviction that the factory will be capable of producing sufficient quantities of plywood boards that would serve as an important export item of the country.

The following are the major items dealt with in this report.

- I. Demand and Supply Situation.
- II. Kinds, quality and colouration of veneer plywood boards available on the market.
- III. Quality Test.
- IV. Froject for Establishing a New Plywood Factory.

IV-1 Construction Site.

IV-2 Factory Layout and Flow Sheet.

- IV-3 Cost of Factory Facilities, and Workers.
- IV-4 Monthly Production Cost.
- IV-5 Estimated Annual Profit.

IV-6 Conclusion

Brief description of the proposed factory is as follows.

Monthly production of 237,000 sheets $(4' \times 8' \times 4 \text{ mm})$ has been drawn up on the basis of the low cost and abundance of the wood materials as well as of the expected expansion of the domestic

- 7 -

demand and the increase in foreign currency acquision by export. The factory is suggested to be constructed either in Takoradi or Tema. The total investment required for the construction is estimated at £177,120 which may appear an exceedingly large amount. However, since the annual profit rate against the total investment amount is expected to reach as high as 46% and the yearly foreign currency saving as much as £1,148,000, the proposed project would not only be commercially practicable but would also positively contribute to Ghana's economy.

(4) Wire and Nail

There are two nail-making factories in Ghana and the present self-supply rate of nail is a little exceeding 50% for the demand. On the other hand, with the increase of the expansion of the investment on the building and other construction, the demand is sharply rising, and it has come up to the stage that a third factory of the same scale as those existing should be needed not so far in the future. It is why the project should be expected to expedite in materializing itself.

No material wire for nail has not yet produced in Ghana, but all imported. Besides being the materials for nail manufacture, the demand for the wire would come out from the used such as binding, construction and fence materials.

Consequently, if all these demand were satisfied by the home products, it should make an unlimitted contribution to the Ghanaian industrialization and the saving of the outflow of foreign currency as well.

The steel rod required as material for wire could not be produced by the steel works now under construction in Tema. Therefore, it should be a drawbackmto this project that the material steel rod must be still imported form abroad.

The investigation subject which have done in the survey are given:-

I. Market situation of iron wire.

II. Production Programme.

III. Factory layout

IV. Flow sheet and manufacturing process

- 8 -

- V. Specifications of equipment recommended.
- VI. Construction site.
- VII. Construction cost.
- VIII. Production cost
- IX. Profit calculation.

X. Conclusion.

According to the survey results, the most desirous is the production scheme for 9,600 tons of annual wire output. The necessary investment for both galvanized steel wire and nail factories would reach at £121,310-0-0. The expected profit ratio would be 130.6% over the investment for a year, achieving a saving of 32.3% in the foreign currency. From the profitability and foreign currency saving standpoints, the project should be of a profound economical significance to be materialized as early as possible.

(5) Toy

At present the Ghanaian children for the most part are not so favoured with the toy. Even the children dwelling in the city districts could not afford to enjoy the toy. The department stores in large cities are merchandizing the imported toys indeed, but they only deal with the children of foreign residents or those of a very small upper class. The spread of the toy is thus confined to a narrow circle, and it is chiefly because the prices of toys are too expensive for the people, compared to their income standard.

Toys are made of wood, fiber and tin plate, among which the homeproducing wood and fiber are quite available for the toy-manufacture. Consequently, if a rich labour and low-priced material were given, it would be surely possible for the Chanaian for themselves to produce the toys by far cheaper than the imported ones.

In developing the project, the educational toys should be taken into consideration to be included in the production scheme. Recently scientific education has been emphasized in the preliminary and middle school education. Side by side with theoretical teaching, the scientific models are being used to produce a good practical effect. No such method is employed in the Chanaian schools presently, but not so far in the future the demand for this purpose should arise in

- 9 -

quantities. The scientific education would play an important role in driving the industrialization in Ghana.

The survey covered the following investigation subjects:-

- I. Consumption status of toy in Ghana.
- II. Production Programme of toy.
- III. Draft plan by Japan for toy factory construction.
- IV. Estimate for toy factory.
- V. Profit
- VI. Conclusion.

According to the survey results, it is possible to realize the toy production equivalent to £126,000-0-0 for a year against the invested £94,530-0-0. Namely, the profit ration over the investment is 32%, and, meanwhile, a saving of £74,264-0-0 in the foreign currency outflow will be estimated to be effected.

The skillful technicians for press working and metal printing should become needed in the course of the development of the project. In this regard, Japan is willing to extend its assistance in fostering the required technicians.

(6) Utilization of natural rush in Ghana.

Generally in Ghana, the mattress made of vegetable fibers is in a wide use for the daily life, besides the ordinary bed. These mattress are at present imported from Hong Kong, or Japan, or other countries. On the other hand, Ghana is rich in the natural rush which is very akin to that cultivated rush in Japan. The survey was therefore focused on probing the possiblities to utilize the wild rush.

As a result of the testing of the Ghanaian rush on the weaving machine in Japan, the product was proved to be enough marketable in many respects.

Furthermore, it is quite feasible for the Japanese cultivated rush to be transplanted into G_h and where the favourite climate will make the rapid growth of rush. There is a very bright prospect over the possiblity that Ghana could make itself as one of the main rush export countries. At the present, the wild rush grows in plenty along the understreams of the Volta river, and the available quantity should amount to £240,000-0-0 through £250,000-0-0, as converted into finished products. The growing period is about

- 10 -

three or four months, bringing on three crops a year. The fact only assure that the abundant material rush should be available for the utilization project.

The survey in Ghana covered the following investigation subjects:-

I. Recent supply-demand status of mattress in Ghana.

II. Study on the production project of mattress.

III. Draft Plan by Japan for mattress factory consutrction.

IV. Estimate for mattress factory construction.

V. Conclusion.

According to the survey results, it is most proper to start with the production scale of 18,000 sheets $(45" \times 90")$ for a month. The production can be ensured, backed by the presently available wild rush growth.

The required capital amounts to £169,150-0-0, producing a profit ratio of 28% against the investment. The outflow of the foreign currency could be saved about £70,180-0-0. The development of the rush utilization project should made a great contribution to the Ghanaian national economy as a whole. B. PROJECT OF PULP & PAPER MANUFACTURE

The content of our Report is as follows;

I. Supply and Consumption of Paper in Ghana

(1) Import of paper and paperboard

- (2) Domestic production and domestic consumption
- II. Observations on the Pulp & Paper Manufacturing Planformed by Ghana Government
 - (1) Production capacity
 - (2) Raw materials
 - a. Bagasse
 - b. Wood
 - (3) Mill site

III. Our Recommendable Plan for the Manufacture of Pulp & Paper

- from Bagasse
- (1) Outline
- (2) Flow Sheet
- (3) Layout

IV. The Cost of the Bagasse Pulp & Paper Mill

- (1) Initial cost
 - a, Plant cost
 - b. Building cost
- (2) Operating cost
 - a. Raw materials cost
 - b. Labours cost
 - c. Overhead cost

V. Profit estimated and Saving amout of Foreign Currency

- (1) Annual profit estimated
- (2) Saving amount of Foreign Currency

I. Supply and Consumption of Paper in Ghana

(1) Import of Paper and Paperboard

			OU A N'TLT'V	Cwt		VALUE	E &G	•
Commodity	1960	1961	1962	1963(JanJun.) 1960	Jun.) 1960	1961	1962	1963(JanJun.
News-print paper	80,906	65,316	83,979	33,828	215,490	188,094	233,442	118,029
Printing & Writ- ing paper	28,689	43,873	31,532	45,888	177,302	225,675	277,222	222,664
Common Packing and Wrapping paper	5,301	12,386	8,323	020 ⁴ ET	37,968	55,236	53 , 753	61,855
Paperboard	17,245	19,716	12,386	18,605	63,450	131,863	83,529	90,143
Fiberboard and Building Board	11,809	60 , 805	35,723	18,987	26,826	112,006	95,092	54,275
Other Faper and Paperboard	12,688	8,885	4,681	8,801	123,187	57,242	39,162	77,787
TOTAL	156,638	210,981	176,450	137,159	644,223	770,116	782,200	624,753

- 13 -

20 cwt = 1 ton

1 & G = 1,008 yen

.

(2) Domestic Production and domestic Consumption

There is no paper mill in Ghana except a small toilet paper manufacturing factory; and Ghana does not re-export paper and paperboard.

Therefore, domestic consumption of paper is almost equal to the import quantity of that.

The import statistics of Paper and Paperboard above refered shows that Ghana has a great demand for Newsprint paper and Printing & Writing paper. The demand will be greater year by year because Ghana has put the great emphasis on education.

II. Observations on the Pulp & Paper Manufacturing Plan formed by Ghana Government

(1) Production Capacity

Proposed production capacity is 50 tons per day/24 hrs. -yearly 15,000 tons. The quantity of 15,000 tons per year is much more than the consumption of Newsprint paper (4,200 tons) and Printing & Writing paper (1,600 tons) in 1962. It is about three times as larger as the consumption. But the paper consumption in Ghana has been very speedily increased as shown in Table I.

year	1957/158	158/159	159/160	160/101	' 61/¤62	average
Newsprint paper	60%	8%	59%	-20%	24%	26%
Printing & Writing paper	23%	5%	71%	90%	-28%	32%
Total of Paper & Paper board	40%	15,%	62%	35%	-16%	23%

Table I. Increasing rate of the paper consumption in Ghana (1957 - '62)

It seems to be very difficult task to estimate the paper consumption in Ghana in 1968 when the proposed paer mill shall be start.

Under unfavourable circumstances in the future, the paper consumption in 1968 might be under 10,000 tons. (Table II.). On the contrary, under favourable circumstances, it might be over 15,000 tons. (Table III)

year	1963	1964	1965	1966	1967	1968
		(1	lewsprin	t Paper)		
increasing rate	10%	9%	8%	7%	6%	5%
consumption (tons)	4,620	5,035	5,437	5,817	6,166	6,474
		· (1	Printing	& Writing	g Paper)	
increasing rate	15%	14%	13%	12%	11%	10%
consumption (tons)	1,805	2,057	2,324	2,602	2,888	3,176

Table II.Anticipater consumption of Newsprint paper and
and Printing & Writing paper (unfavourable)

Table III.Anticipated consumption of Newsprint paper and
Printing & Writing Paper (favourable)

year	1963	1964	1965	1966	1967	1968	
Newsprint paper consumption (tons)	5,040	6,048	7,257	8,708	1.0,,449	12,538	increasing rate 20% each year
Printing & Writ- ing paper consumption	1962	2,452	3,065	3,831	4,788	5,985	increasing rate 25% each year

In every point of view, we regard the production capacity of 15,000 tons per year as appropriate if the initial production is 9,000 tons of Newsprint paper and 6,000 tons of Printing & Writing paper.

- 15 - 1

2,

Table IV, is our recommendable plan for the initial production capacity of the proposed pulp & paper mill. At the same time, the plant has to be prepared for the expansion of production because a rapid industrial growth is expected in Ghana.

	tons/day(24hrs.)	tons/month(25days)	tons/year(300days)
Newsprint paper	30	750	9,000
Printing & Writ- ing paper	20	500	6,000
Total	50	1,250	15,000

Table IV. Production capacity

Note: The mill is to be operated in three shifts of eight hours. (3) (8)

(2) Raw Material

a) <u>Bagasse</u>

Sugar Cane Bagasse is to be used as the main raw material for the proposed pulp & paper manufacture, though Sugar Cane has been not yet produced in Ghana. According to the Ghana plan, the Bagasse required for the pulp & paper mill is supplied from the Sugar Plant that is to be constructed at Akuse in 1964-66 and fully operated in 1968. For the purpose of supplying the necessary quantity of Sugar Cane to the Sugar Plant, Ghana Government is going to plant sugar cane in the area of 8,000 acres near-by Akuse.

The official schedule of Sugar Cane supply, Sugar production and the quantity of Bagasse available for the pulp & paper mill are below given.

			(tons/year)
YEAR	SUGAR	SUGAR CANE to be supplied	BAGASSE (dry) to be come from
1966	8,000	80,000	16,000
1967	16,000	160,000	32,000
1968	24,000 (full operation)	240,000	48,000

Production schedule of the Sugar Plant

The proposed pulp & paper mill of 50 tons per day capacity required the under given quantity of raw material Bagasse.

	tons/day	tons/month	tons/year
Paper Production	50	1,250	15,000
Bagasse requisition (yield: 34%)	150	3,750	45,000
Bagasse requisition (yield: 60%)	85	2,125	25,500

Remark: Pulp yield of Bagasse is 33-35% under the general process here to fore in use in the pulp & paper industry.

The yield is increased to 40-60% by means of our patented process.

We can not coduct the pulp & paper making test of Bagassed grown in Ghana because it is not yet available. But Bagasse pulp has been approved the quality all over the world. Table ans Sample Paper under given are that we have performed the pulp & paper making test using the Bagasse grown in Cuba.

With making good quality paper from Bagasse, there is not trouble, we believe, in case of Ghana also. In the result, the problem of raw material for the proposed pulp & paper mill would be completely resolved in 1967-68, if the project of the Sugar Plant worked well.

·····		
Freeness	oSR	50
Density		0.713
Bursting factor		4,15
Breaking length	km	5,89
Elongation	%	1,68
Tear factor		68.3
Folding endurance	time	170

Quality Table of Bagasse Bleached Paper

Sample: Bagasse Bleached Paper

b) Wood

In our stay in Ghana, we have made several times a short tour of inspection in the wooded regions because we had been informed that Ghana Government was planning the use of woods for the raw material of paper pulp. By the way, it was at near the end of our survey schedule when Ghana Government decleared to us the use of Bagasse as the main raw material of paper pulp.

The wooded land in Ghana covers an area of 31,800 squares miles, of which 2900 squares miles is a Rain Forest Zone; 3250

squares miles is Transition Zone; 25,600 squares miles is a Moist Semi-Decidous Forest Zone. In the Moist Semi-Deciduous Forest zone, about 300 squares miles is being lost every year owing to cultivation, lumbering, fire and especially cutting for Cocoa plantation. At present the forest region of 16,000 squares miles is available for resources of wood, of which 5,800 squares miles is the Reversed Forest now where man keeps off.

The most remarkable feature of the resources of wood in Ghana is a wide variety of the species of trees growing ia a forest region. Over 300 species of trees have been reported in Ghana. The representatives of them are Red Wood=Gaboon(26.8%) and WaWa(42.5%).

We selected 51 species of woods in Ghana and brought them into Japan. A pulp & paper making test has been already performed on WAWA in our laboratory. (Refer to attached "TEST REPORT") "TEST REPORT" approves WAWA available for the raw material of paper pulp.

But there are not a few difficulties in using these woods for the proposed pulp & paper mill.

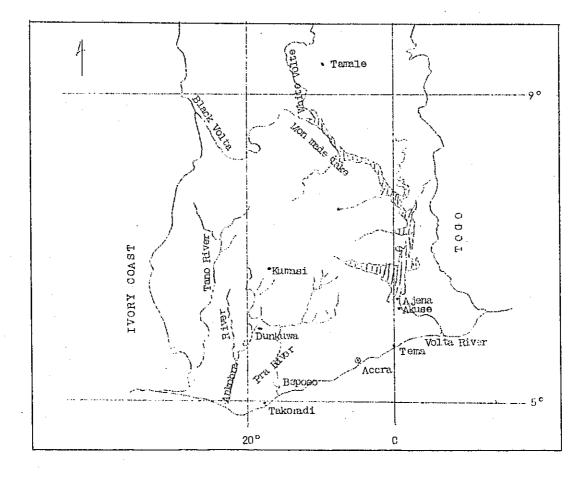
Some important difficulties of them are in the following points;

- 1) to select and collect some proper wood among many other woods.
- 2) to transport the wood to the mill from the forest region.
- 3) to get proper woods at economical price and to employ workers in the forest region.
- to supply enough industrial power- electric, mill water and etc. - to the pulp & paper mill.

If any plan of pulp & paper mill using raw material wood should be realized in Ghana under such a unfavourable condition as abovementioned, we would suggest that Beposo City might be fit for the site of the mill. The city is near Takoradi where a harber has opened, and along the Pra River. They can transport woods by rail and can manufacture Wood Pulp from two or three similar kind of woods.

In conclusion, more carefull study and consideration have to be done on the plan of a pulp and paper mill using wood as the main raw material.

- 19 -


(3) Mill Site

The proposed mill site is near the above-mentioned Sugar Plant in Akuse. It lies in 35 miles to the biggest harber Tema and 45 miles to Capital City Accra. About the site, there is no obstacle to supply electric power and mill water, because Akuse is along the Volta River and the Volta Power Plant (in Ajena) is 18 miles up the river.

In near the future, a central industrial area is to be laid out here by Ghana Government.

Recently the combinate of sugar plant with paper plant has been planed by many countries and the good results have been expected. We can find such a example in South America, East Asia, Middle East and Arab.

On this point of view, the proposed mill site is the fittest for the Bagasse Pulp & Paper Mill.

- 20 -

III. Our Recommendable Plan for the Manufacture of Pulp & Paper from Bagasse

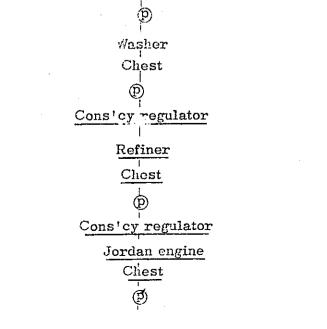
(1) Outline

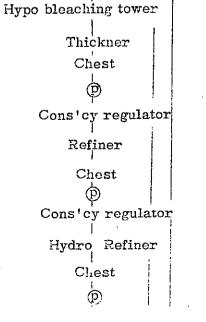
Name of the Plant: A complete Pulp & Paper Manufacturing Flant from Bagasse

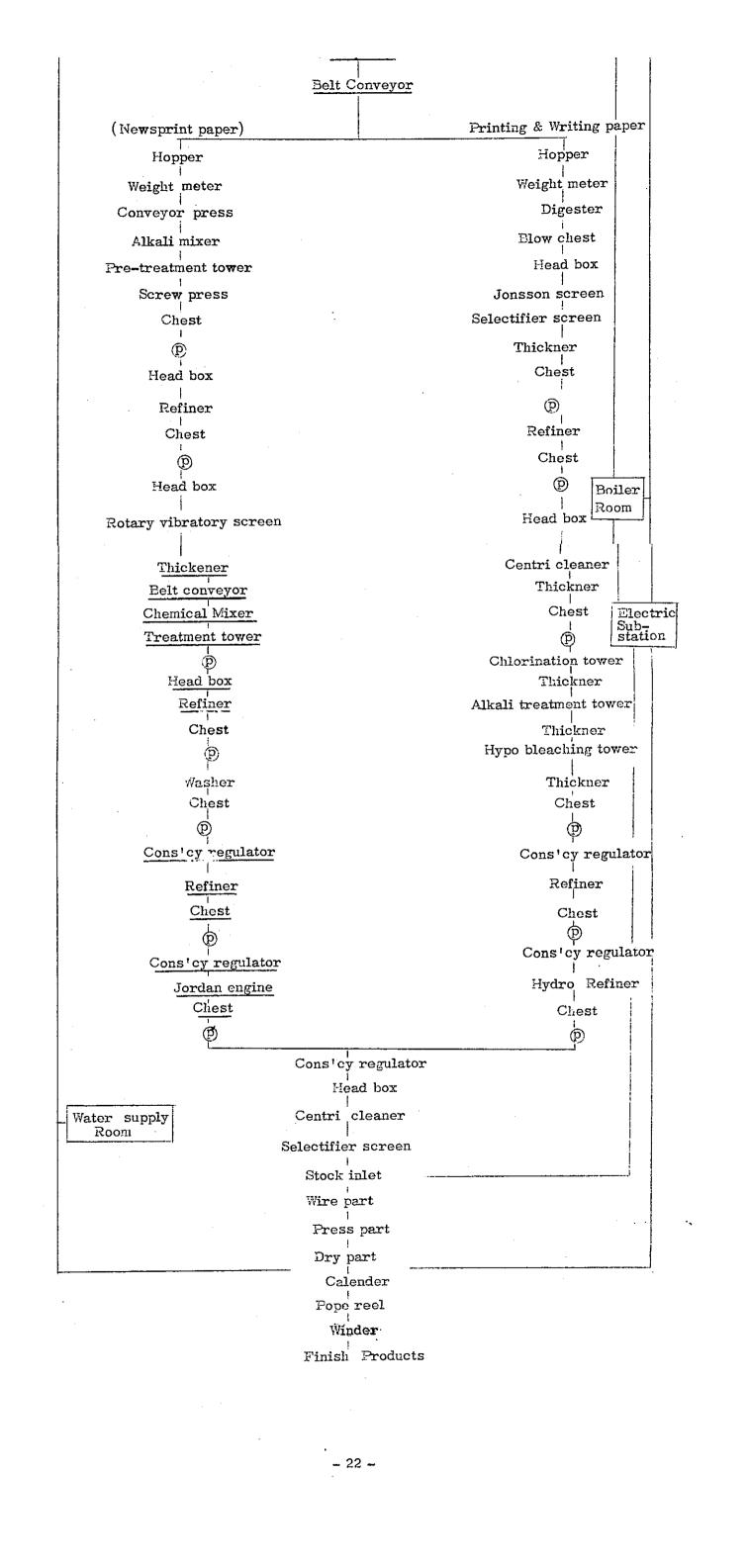
without recovery system

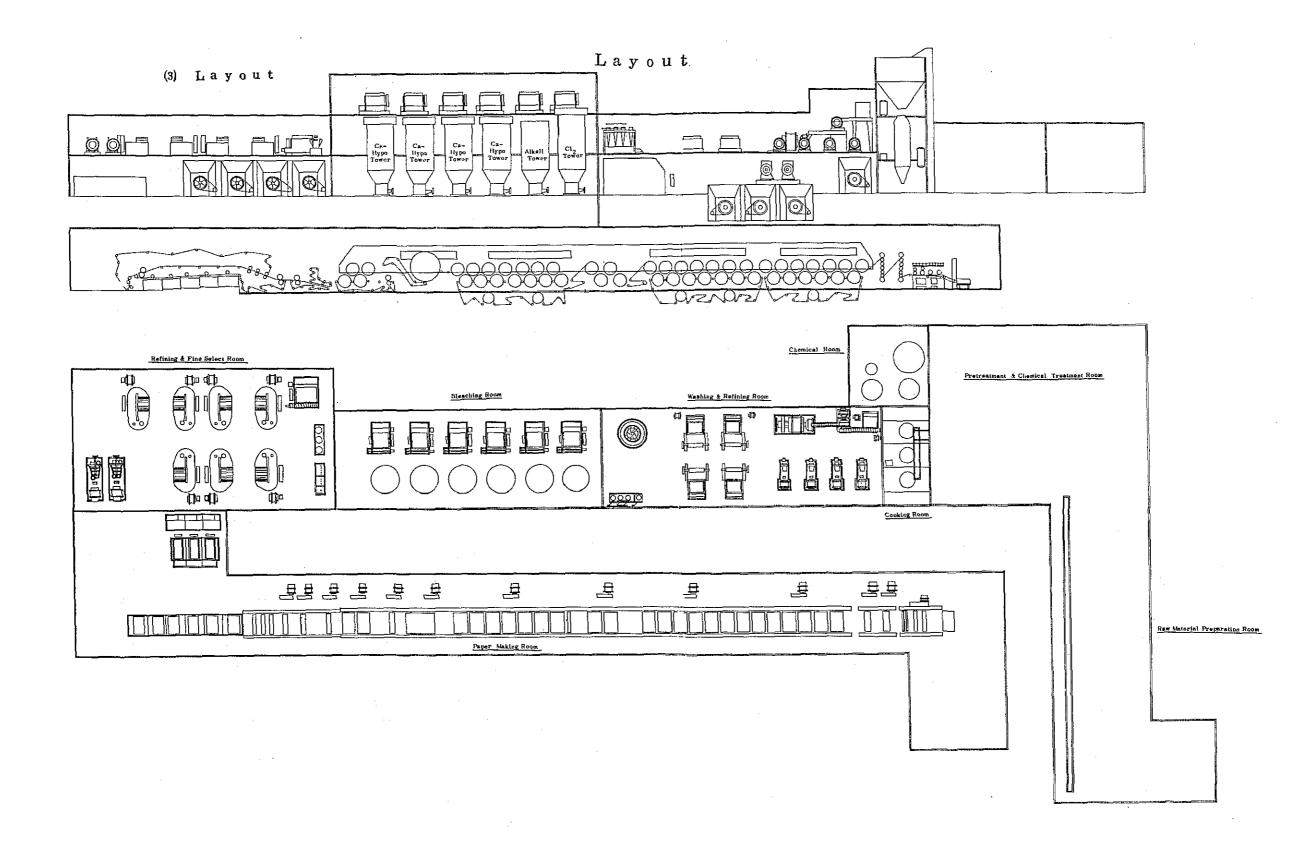
Finish Froducts	Raw Material	Frocess	Capacity for pulping	Capacity for Paper making	Yield
Newsprint Paper	Bagasse	Patented Okuno Process	50 tons/day	50 tons/day/24hrs.	40%
Printing & Writ- ing Paper	Lagasse	Soda Process	50 tons/day	15,000 tons/year/300days	33% 35%

- 21 -


Remark:


- Specifications of the plant shall be given as ordered by customer.
- The production rate of Newsprint paper to Printing & Writing paper is at customer's will on demand for each paper every month. ک
 - At present, the rate of Nawsprint 3 : 2 Printing & Writing is appropriate. The plant is prepared the production capacity to increase up to 100 tons/day -Newsprint 50 tons and Printing & Writing 50 tons by one more set of four drinear paper machine and small expansion of Raw Material Preparation Room. ŝ


(2) Flow Sheet


FLOW SHEET

Baled Bagasse Strage for Feed conveyor Bagasse Crusher Hammer mill Belt conveyor Rotary screen Duster Belt Conveyor 1 Chip silo Belt Conveyor Printing & Writing paper (Newsprint paper) T. Hopper Hopper ļ Weight meter Weight meter 1 Digester Conveyor press Blow chest Alkali mixer Head box Pre-treatment tower ţ Screw press Jonsson screen Selectifier screen Chest 1 Thickner Ð 4 Chest Head box ł 1 P Refiner 1 Refiner Chest 1 i Chest Ð Ð Head box Boiler 1 Room Rotary vibratory screen Head box Centri cleaner Thickener Thickner Belt conveyor Chest Chemical Mixer Electric Sub-station ł Treatment tower Ð Þ Chlorination tower Head box Thickner Refiner Alkali treatment tower ĩ Chest Thickner

(1) Initial Cost

a) <u>Plant cost</u>

· · · · · · · · · · · · · · · · · · ·	(£)
A, Raw Material Preparation Room	37,000
B. Pretreatment Room	116,000
C. Chemical Treatment Room	95,000
D. Cooking Room	61,000
E. Washing & Refining Room	147,000
F. Bleaching & Fine Select Room	145,000
G. Refining Room (for Newsprint Dept.)	84,000
G', Refining Room (for P, & W, Dept.)	100,000
H. Paper Making Room	441,000
I. Boiler Room	126,000
J. Electric Sub-station	47,000
K. Water Supply Room	51,000
L. Electric Wiring	40,000
M. Piping	63,000
Sub-total	1,553,000
N. Freight & Shipping Charge	310,000
GRAND TOTAL	£ 1,863,600

- 23 -

		Building Area (Acre)	Unt Cost/Acré (£)	Cost (£)
A.	Factory	2.650	120,000	318,000
в.	Storage	0.330	40,000	13,200
с.	Office	0.033	120,000	3,960,

* Initial Cost = a)Plant Cost + b)Building Cost = £2,198,760.-

Remark:

- This estimate is rough one, and the full particulars and the final estimate shall be given as ordered by customer.
- (2) Laboratory, Electrolysis, Repair shop and Finishing equipment are excluded from this estimated cost. The rough estimate of these equipments are as follows;

	()	
Laboratory equipment	(£)	10,500
Electrolysis equipment		210,000
Finishing equipment		74,000
Repair shop		52,000

(3) Freight and shipping charges of the building materials are excluded in this estimated cost because some of them will be in home supplied.

- 24 -

(2) Operating Cost

a) Raw Material Cost

Name of Material Cost	Q'ty/year (ton)	Unit price	/ton	Total Amoun
Bagasse:	36,000	-		-
Chemicals: Liquid chlorine Sodium Hydroxide Bleaching powder Sodium Silicate Hydrogen Peroxide Sulphur dioxide China clay Rosin Size Alum cake	360.0 2,100.0 240.0 531.6 240.0 102.0 1,320.0 213.0 426.0	(Jap. Ye 30,000 31,000 25,000 12,000 95,000 80,000 15,000 90,000 15,000	1 6 2 1 1 9 1 9	(Jap, Yen 0,800,000 5,100,000 6,000,000 6,379,200 2,800,000 8,160,000 9,800,000 9,170,000 5,390,000
Sub-total Ch	emicals:			54,599,200 ,300/)
Mill Water:	7,500,000.0	-		_
Fuel expense: (Heavy Oil)	13,500.0	£31,3/3	£42	0,680,-/-
Electricity expense:	7,500,000 KWH	£-/3.5	£10	9,375,-/-
GRAND TOTAL			£69	3,355-/-

Remark:

- (1) The price of Chemicals is of Japanese market price Ghana has not imported such a good.
- (2) The price of Fuel oil and Electricity is of market price in Ghana at present.
- (3) The mill water is not city water but by self-supply waterworks.

- 25 -

	Number of Person	Wages & Salary(month) 1 month requirement $(\pounds/person)$ (£)	l month requirement (f)	Amount (year) (£)
Head Engineer	-	300	300	3,600
Chief Engineer	ŝ	35	105	1,260
Horeman	27	25	675	8,100
Workers	180	15	2,700	32,400
Chief Officer	m	125	375	4,500
Officers	12	12	144	1,728
TOTAL	226	512	4,299	£51,588

Salary and expense of despatched Japanese consultant and engineers

are excluded from this estimated cost.

Remark:

.

•

b) Labour Cost

- 26 -

c) Overhead Cost

1) Depreciation	(yearly
Plant & Equipment (Plant Cost x 12%)	£223,632
Building	
(Building Cost x 4.5%)	£15,082
Sub-total	€238,714
2) Maintenance & Repair (Plant Cost x 1%)	£18,636
3) Miscellaneous Cost & Expense (Annual Sales income x 80% x 3%)	£ 32,256
TOTAL	£289,606

.

* Operating Cost = a) Raw Material Cost + b) Labour Cost +
c) Overhead Cost = £1,034,549

.

V. Profit Estimated and Saving Amount of Foreign Currency

(1) Annual Profit Estimated

a. Sales Income

Article	Annual Production (Ton)	Unit Price (£/ton)	Total Amount (£)
Newsprint Paper	9,000	56	504,000
Printing & Writ- ing Paper	6,000	140	840,000
TOTAL	15,000		£1,344,000

b. Annual Profit

Annual Profit = Annual Sales Amount - Total Operating Cost

= 1,344,000 - 1,034,549 $= \pounds 309,451$

c. Percentage of Profit

Percentage of Profit = Annual Profit /Annual Sales Proceed = 310,000/1,344,000 = 23.0%

d. Unit Cost and Unit Profit

Profit per ton = $310,000/15,000 = \pounds 20.6$ Production Cost per ton = $1,034,549/15,000 = \pounds 69.0$

(2) Saving Amount of Foreign Currency

Saving Percentage = $(1 - \frac{A}{B}) \times 100 = (1 - 0.299) \times 100$ = 70.1%

A: Depreciation of Plant + Cost of Raw Material imported B: Import Price of Finish Products x Annual Production

- 28 -

TEST REPORT

of

Pulp & Paper Making from Broad Leafed Tree grown in

Ghana

Outline of the Test:

WAWA (Triplochiton scleroxylon) was selected among broad leafed reast trees grown in Ghana for the subject of our test. Of the wood, wood analysing test, pulp making test, paper making test and quality test of the sample paper sheet were conducted. In consideration of the test result, suitability and adaptability of the wood for a raw material of paper pulp was discussed.

• <u> </u>		
Density		0.39
Fiber length	mm	0.91
Fiber width		11,6
Fiber ratio length:width		78.5
Total cellulose	%	52.3
Lingnin	%	33.2
Pentosan	%	12.9
Extracts by Ether	%	0.1
Extracts by Hot water	%	7.9
Extracts by 1% NaOH	%	15.1

I. Characteristics of WAWA wood

Test method; TAPPI Standard and JIS (Japan Industrial Standard)

II. Pulp Making Test:

(1) Cooking Process

Two cooking process were adapted for the WAWA pulp making test.

a. Kraft Process	Pulp for middle or high grade print- ing & writing paper (bleached) and wrapping paper (unbleached)
b. Semi Chemical Process	Pulp for middle grade printing & writing paper (bleached), envelop paper (unbleached), corrugate medium and liner board (unbleached).

(2) Treatment

Chipping and Cooking:-

WAWA wood was chipped in 1/2 - 2"/3 long chips with laboratory type small chipper.

The chips were cooked under two comperative cooking conditions to each process; that is to say, quantity of chemical additives was varied under a definite temperature (Max. 170° C), time (total time 4hrs. at Kraft, 3.5hrs. at S C P) and pressure (Max. 8.0 kg/cm² at Kraft, 9.0 kg/cm² at S C P). Chemical liquor was heated up to 60 - 70° C and sent to digester. The liquor quantity in the digester was 5.5 - 5.7 times more than the weight of the chips.

Washing and Cleaning:-

After blowing off, the pulping materials were washed by 100 mesh wire and screened with 8"/1,000 Flat Screen. (Kraft process) Then, pulp yield was measured. In case of S C P process; the pulping materials were, after blowing off, treated by Disc-refiner and screened by the same Flat Screen. Then the pulp yield was measured also.

Based on the value of chlorine absorbency, Freeness of each pulp was measured. In sheet, brightness of each pulp was measured.

- 30 - -

(3) Test Table of WAWA Pulp Making Test

ĸ

•

ж

Cooking Process		KRAF	ΎТ	SC	Ъ
Test No.		1842	1847	1852	1857
Chip weight (B.D.)	g	700	700	700	700
Moisture of chip	%	12,6	12,6	12.6	12,6
Added NaOH INa ₂ O)	%	6.30(15.0)	5.35(12.75)		
Added $Na_2^S (Na_2^O)$	%	19,45(5,0)	16.5(4.25)		
Sulphidity	%	25.0	25.0		
Added Na_2SO_3	%			19.8	16.0
Added Na ₂ CO ₃	%			4.5	4.0
Liquor ratio		5.5	5.5	5.6	5.7
Maximum temperature	°C	170	170	170	170
Time to Max. temp.	min.	90	90	90	90
Time at Max, temp.	min.	150	150	120	120
Total time	hrs.	4.0	4.0	3.5	3.5
Pulp weight	g	274	298	457	473
Yield of pulp	%	40.6	44.0	65.1	67.7
Cl ₂ Absorbency at ^o C	%	3.5	3.9	14,2	15.5
Brightness of pulp (hunter)	%	25.6	24.5	31.6	27.5
		4 . :		1	!

III. Pulp Bleaching Test

	III. Pulp Bleach	ing Test			
		bleaching test (Chlorine the fore-going $\#$ 1842 K			ium Hypo)
	Test Table:			÷	
Stage	Treatment agent	Added chemicals % (to pulp quantity)	Temp. (^o C)	Time (min.)	Stuff con- sistency(%
1st	Chlorine	Cl ₂ equivalent to 0 ⁰ C Cl ₂ absorbency X 120%	10	60	5.0
2nd	Alkali	Na OH 2.0%	60	60	7.0
3rd	Hypochlorite	Ca-Hypo 2.0% (as available chi NaOH 1.0% (for pH control)	1	180	7.0
Finish	Acid	Solution Bath keeping pH 4 by SO ₂ addition	10	60	3.0
Bright	iess of the bleach	pulp: 77.6%	<u> </u>		
Yield c	of the pulp for blea	aching: 84.2%			
					•
		•			•
		- 32			

IV. Paper Quality Test

After cooking and bleaching test, each of WAWA pulps was beated up to 50°SR by laboratory type beater under the same beating condition, and sample paper sheets were made. Of the sample papers, quality test was conducted.

		<u> </u>			
Test No.	······	1842	1847	1852	1857
Freeness	osr	48	47	51	50
Substance	g/m ²	63.5	63.2	64.5	63.5
Thickness	mm	0.085	0.090	0.105	0.116
Density	g/cm ³	0,74	0.70	0.61	0.54
Bursting factor		5.55	7.48	4.10	3.03
Breaking length	km	7.59	8.34	6.71	5.56
Elongation	%	3.0	2.8	2.5	1.9
Tear factor		73.4	118.7	63.5	57.9
Folding endurance	times	227	637	64	28
(MIT 1.0 kg)		10.9	13.3	13.3	15.3
Stiffness (Gurley)	mg				

Test Table

Remark: #1842 is of the sample paper made from Bleached pulp.

V. Conclusion

(1) Kraft Process

Unbleached WAWA pulp(#1847) made by this process is available for the manufacture of Bag Paper, and Bleached WAWA pulp (#1842) is good for Writing and Printing Paper.

(2) Semi Chemical Process

#1852 WAWA pulp made by this process is available for the manufacture of Wrapping and Envelope Paper, and #1857 pulp is good for Corrugate medium and Liner board.

C. PROJECT FOR THE ESTABLISHMENT OF PORCELAIN AND EARTHENWARE FACTORY

I. MARKET CONDITIONS OF PORCELAIN AND EARTHENWARES

Ghana covers an area of 237,875 km² that is almost two-thirds of that of Japan. The southern half part of the country is bristled with the tropic woods; and the northern half is an extremely dry plain when comes the dry season. Geologically, it forms a comparatively flat land with hills of easy grades for the most parts. The highest mountain in it is even about 900 m high above the sea level. As a whole, Ghana maintains the teritory of highly effective area. Backed by such a favourable land, she is concentrating her efforts to exploit the nation's strength. The special emphasis is given to her industrialization projects. Under the remarkable progress are the electrical power resources development plan of akosombo, the industrial site marking-up plan of Tema, and the city planning and road constructions at various parts of the country. With the progress of the land developments as abovementioned, the national living standard is being elevated all the time. However, as far as the ceramic manufactures are concerned, there is no factory even to meet the local demand for porcelain and earthenwares. Only one government management factory is established for the red bricks, with the capacity of 750,000 pieces a month. Under the present circumstances, the rest of the demands has to be fulfilled by the imported goods. The importing status of these porcelain and other ceramic materials as of the first half-year of 1963 (January to June) is shown in the following table.

Item	Q'ty (ton)	Amount (£G)
Household ware of porcelain china or other ceramic materials	207.5	29,385
Ornament of porcelain china or other ceramic material	27.5	1,571
Unglazed setts flags tiles	1,350.0	13,594
Glazed setts flags tiles	402.2	61,542
Laboratory and Industrial Ceramic wares	6.3	7,695
Roofing tiles, chimney pots, etc.	192.8	23,171
Piping condits guttering	40.9	3,076
Water filters	21.8	3,526

TABLE 1. Importing Status of Porcelain and Other Ceramic Materials, January to June 1963.

According to the analytic study on the results of the market survey for the qualities, designs and selling prices, these imported porcelain and other ceramic wares can be divided into two kinds: porcelain ware and ironstone ware. Entering into detail, the porcelain wares are mostly meant for the tablewares or utensils to be used by a small number of expensive hotels and restaurants. Among the small balance of the imported porcelain wares are the flower-vases, the ornamental miniatures of animals and toys. The everday table wares and utensils are mostly of the ironstone wares. Their qualities would for the most part belong to the middle class or the inferior. Their decorations are chiefly made of simple patterns and line drawings. Few high-quality goods are on the market. On the other hand, the selling prices of the ceramic manufactures are considered to be rather high, as shown in the Table 2.

	the Ma	rket in Ghana		
Kind	Tea Set (6 persons)	Ornaments	Salad Bowl	Dinner Set (31 pieces)
Porcelain ware	£2 – 5	20 - 30 S.	15 – 18 S.	£22 - 40
Ironstone ware	18 - 20 5.	2 – 15 S.	5 - 7 S.	220 - 2 3

TABLE 2. Exaples of Selling Prices of Porcelain Wares

and Other Ceramic materials Appearing on

As the national living standard is enhanced and the industrialization plan is developed, the demands for the ceramic products would have to be on the steady increase. For example, the more demands will rise for the tablewares and ernaments of everyday life, the sanitary wares and tiles for city housing and plant construction plans, the ceramic materials for the electric-power development and other industrial purposes. The national projects are well under way to substantiate the original aims of the development. In addition, as conclusive from the past data of the import ceramics (Table 3), it can be on the safe assumption that the demand should still largely increase in the future.

Judging from the fact that the development plan is making headway without a hitch, and from the prospect over the future Chana's political situation, it would be advantageous to take up the ceramic industry for the purpose of satisfying not only domestic demand but that from the west Africa or even all Africa. In the light of this view, the prospect over ceramic industry in Chana will be very bright and promising.

	195	8	19	59	19	60
ITEM	Q'ty (ton)	Amount (£G)	Q'ty (ton)	Amount (£G)	Q'ty (ton)	Amount (£G)
Table ware		89,698	ورود مربط کمپ تفلغ غلبی	103,781		119,067
Bricks, tiles, pipes etc.	2,025.2	95,521	2,246.4	147,355	2,294.4	214,647

TABLE 3.	Transional Status of Quantity of	
	Imported Porcelain and Other Ceramic Materials	

II. DISTRIBUTION CONDITIONS OF CERAMIC MATERIALS

As evident in the history, Ghana is rich in the mineral resources. However, the survey has been conducted to make clear the distribution conditions of the ceramic materials, being started from Accra to Navrongo, a city nearby the northern border, through the coastline. The investigation has revealed that the country is favoured with the materials necessary for the ceramic manufactures such as kaoline or china clay, feldspar, Quartz, limestone and dolomite, etc.

To be specific, the Saltpond district in the central region is proved rich in the extremely excellent kaoline. According to the Geological Survey of Ghana; Bulletin No.29, the estimated amount of the kaoline deposits is about 560,000 ton at the present productive locations. Furthermore, the four more deposits with almost same potential output as in Saltpond had been recognized to be available in the neighbouring areas. The feldspar material can be available from the existing pegmatite dykes interspersed throughout the country. Especially, the feldspar produced in the pegmatite mines at the Mouri district of the central region will belong to the orthoclase which is characteristic of the superior quality. The test results of these kaoline and feldspar are partly shown as in the following Table 4.

TABLE4 CHEMICAL COMPOSITION (%) OF KACLINE AND FELDSPAR

Kine	Prodtcing place	sio	АД2≎03	բ θ₂ Ο ₃	Cao	Mgo	Tio2	Na ₂ O	К <u>2</u> О	Igiose	TOtal	Remarks
KaOline (raw)	Saltpond	63,91	2 3,5 0	0,3 8	0.05	0.1 1	Tr	0,0 8	0,29	9,25	97.57	Fireresistance ·SK32+
kaoline (washed)	Saltpond	5 1.1 2	33,43	0.5 8	0.05	0.09	Tr	0.11	0.29	1 3.0 3	98.70	Fire-realstance SK36+
Feldepar	Mouri	64.98	17.44	0.2 5	0.07	0, 1 7	Tr	3.7 1	-9,85	0.8 5	97.32	

Quartz is found here and there in the country, and especially is known that the extremely superior quality quartz can be available as a by-product of the gold-extraction along the river-basin of the Ofin in the Dunkwa district. However, nothing of the quartz has been utilized at present, left stacking up for the length of several kilometers. The estimated amount of the stacked-up quartz is reportedly reaching 600,000 tons. If this quartz is made use of, no excavation is needed, so that a great deal of economy should be brought about in manufacturing the porcelain and ceramic wares.

As for the lime-stone, there would probably be almost unlimited resources available in the country, as described in the Geological Survey of Ghana; Bulletin No. 23. The survey conducted this time has only made sure the fact. No investigation could be made for the dolomite resources, but the Geological Survey reported that a good amount of dolomite should be output in the Buipe district by the Black Volta River in the northern region.

After all, it would be quite possible that the almost all the materials necessary for the ceramic manufacturing should be prepared from the domestic resources. However, the haoline only appears to be a little qualified. Attributable to its origin, the kaoline would belong to the primary and residual clay and is short in its plasticity. To supplement the plasticity, it is considered necessary that ball clay should be imported from any other country.

III. PRODUCTION PLAN OF PORCELAIN AND OTHER CERAMIC WARES

According to the materials used, the ceramic wares are divided into three categories, that is, porcelain, earthenware and stoneware. Further, changing with the use, there can be many kinds set up: (1) Everyday items or tablewares such as plate, cup, saucer, pot, etc., (2) construction materials such as sanitary ware, tile, pipe, etc., and (3) industrial materials such as insulator, chemical porcelain, etc.. Besides being different in materials and used, there is a wide range of difference in their manufacturing process, easy or difficult, or complicate or simple. Therefore, it can hardly be expected that line of facilities provided should accomodate all the manufacturing processes for any required product. In a country like G_hana where no ceramic factory exists, it is not so proctical to plan any highly technical manufacture at the beginning. No matter how large demand is expected locally, it would be even uneconomical chiefly because it would take a long time to acquire the technical skillfullness, and no immediate effect would be brought about in the development. From this point of view, the market conditions are taken into consideration to work out the feasible construction plan of the suitable ceramic factory in Ghana. The manufacturing item is selected to be the tableware of stoneware, the manufacturing technic of which will be comperatively easy to acquire. The recommended production plan is outlined as follows:

DECISION OF ANNUAL OUTPUT

The recommendable annual output should be dependent upon the quantitative demand. Moreover, the effective output of the ceramic manufacturing is closely related with the size of the firing kiln used.

Concerning the demand, the fact should be taken into account that the ceramic products have been imported amounting to 700 through 900 tons annually. A future growth of demand may be anticipated to add the figures, so that a proper amount of annual output may be set around more than 1,000 tons.

With the cinsiderations paid to the productivity inclusive of thermal efficiency and working efficiency and etc., it should be pointed out that the tunnel kiln with effective capacity of 60m x 0.7m x 1.2m would be most suitable for the proposed production. size. The firing is desirously to be completed within 35 or 40 hours. On the other hand, the size of the kiln used can direct the width of the platform car which transfer the products for firing. The width of platform car is 0.65m, and the length is accordingly about 1 meter. The effective area per car is 1.0m x 0.65m. Consequently, the tunnel kiln can accomodate 60 platform cars at all time, provided the length of the car is determined to be 1m. In order to complete the firing for the products on one platform car in 35 through 40 hours, each car should be sent into the tunnel kiln at the regular interval of 40 minutes, sending out one each at the same time. In this way, the finished products will be obtained at the rate of 36-car amount per hours.

- 40 -

Each platform car can load approximately 400 or 450 pieces of tablewares. The 36-car amount will mean 14,400 or 16,200 peices of them. And, the annual output can be given as 5,256,000 or 5,913,000 pieces. Of the tablewares, there are many kinds such as plate, cup, saucer, soup dish and so forth, but the average weight per piece would be somewhere around 200 g. The annual output weight can be given about 1,051 or 1,182 tons accordingly. In addition to the anticipatory demand already calculated, this would lead to a conclusion that the best suitable annual production wuantity should be 1,100 tons or 540 million pieces for one year.

With this target figures of production, to be attained in 5 years, the production plan has been worked out as shown in the Table 5.

In the first year, the production amount is made out to be lowered, as this period is designated for the technical training. The technical training will be given by the Japanese engineers who consist of a chief engineer, a raw material and preparation engineer, a forming engineer, a firing engineer, and a decorating engineer, making a total of 5 technical personnels. During the year, the manufacture of saggers will be carried out in preparation for the full operation of the facilities. From the second year, the yield will be gradually increased so as to achieve the target production amount in the fifth year. TABLE 5: FRODUCTION FLAN OF TABLEWARES OF STONEWARE

•

			IORE ATELION	MONTELY PRODUCTION AMOUNT (PCS.)	T (PCS.)	
	Item	1st year	2nd year	3rd year	4th year	5th year
	Flate (7", S", 9" dia. 3 kinds)	180 ,000 x 40 % = 72,000	180,000 x 70% = 126,000	180,000 ≭ 80% = 144,000	180,000 x 90% = 162,000	180,000 ± 100% = 180,000
	Cup	70,000 x 40% = 28,000	70,000 x 70% = 49,000	70,000 x 80% = 56,000	70,000 x 90% = 63,000	70,000 ± 100% = 70,000
- 42	Saucer	70,000 x 40% = 23,009	70, 700 x 70% = 49,000	70,000 ≭ 80% = 56,000	70,000 x 90% = 63,000	70,000 ± 100% = 70,000
eer.	Salad Bowl	20,000 x 40% = 8,000	$20,000 \times 70\%$ = 14,000	20,000	20,000 x 90% = 18,000	20,000 ± 100% = 20.000
	Sour Disk	60,000 x 40% = 24,000	$60,000 \times 70\%$ = 42,000	60,000 ± 80% = 48,000	60,000 x 90% = 54,000	60,000 ± 100% = 60,000
	Suger Dowl	30,000 x 40% = 12,000	30,000 x 70% = 21,000	$30,000 \times 80\%$ = 24,000	30,000 x 90% = 27,000	30,000 ± 100% = 30,000
	uot.	20,000 × 40% = 8,000	23,000 x 70% = 14,000	20,000 ± 80% = 15,000	20,000 x 90% = 18,000	20,000 ± 100% = 20,000
	Total:	180,000	315,000	360, 200	405,000	450,000

IV. MANUFACTURING PROCESS, EQUIPMENTS AND THEIR PRICES

The ironstone wares beling to the fine earthenware of feldspar quality in the larger classification. Compared to the other kinds of earthenware, it contains the more quantities of feldspar and kaoline in the body, and accordingly more white and tightened. It could be said to be a well qualified earthenware. An example of the preparation for the body and glaze of the ironstone wares is given as follows:-

Body: Firing temperature at SK7 of

Kaoline	42%
Quartz	32
Feldspar	11
Ball clay	14
Lime stone	1

Glaze: Firing temperature at SK3a

Firt	46%
Quartz	19
Feldspar	9
Lime stone	7
Kaoline	6
Zircon	8
\mathbb{Z} inc oxide	5

Seger formula:

0.03K20		a
0.18Na_0	_	2.80SiO2
0.18Na ₂ O 0.43CaO	0.22A1203	0.32B ₂ O ₃
0.36ZnO/		0.23Zr02

Of the materials which are tansported from the various producing centers, the clayey one like kaoline should be treated in the washing process. The stony materials should be washed away from the sticking dirts and dust, and placed to the crusher. Then, the roughly broken stones should be applied in the edge runner, reduced to powders.

After the exact measurements of each component material according to the specific proportion of the desired preparation, the measured materials should be processed together with spherulite and water in the ball mill for certain time. The ball mill will effect fine pulverization and through mixing, giving what is called slip. The slip is conveyed to the agitation tank in which the slip should be incessantly stirred all through the treatment, and while agitated, the processed slip is piped out to the filter press where the contained water is extracted to produce the body with the moisture content of about 24 or 26%.

The forming of the body is carried out by means of a jigger or a slip casting. The formed articles, after adequate drying, should be buiscuit-fired at SK6a - SK8 $(1,200 - 1,250^{\circ}C)$.

Next, the glaze is applied on the surface, and the glost firing is carried out at the temperature of SKIa -SK3a (1,100 - 1,140°C). In case a decoration is needed, the decoration firing is further conducted at the temperature of about $300^{\circ}C$.

The required manufacturing process and the arrangement of the equipments are illustrated in the flow chert (Fig. 1) and the outlined layout (Fig. 2) respectively.

The specification and prices of the necessary equipments are as follows.

A. MATERIAL PREPARATORY SECTION

Kind of Machinery Equipment Q'ty Price 1, Jaw crusher with motor and one spare 1 set £670 of jaw : abt. 500 kgs.- 1,000 kgs./hr :10" x 5" Capacity Feed opening Material of Jaw : Manganese steel Fixed Jaw Plate : Approx. 300 x 275 x 32 m/m 11 Moving Jaw plate : 340 x 240 x 32 m/m U. Fly wheel : 860 x 72 m/m : 27.5 R.P.M. Motor : 3.7KW - 4P G.W. 1250 kgs. Meas't 96 cft. 2, Edge Runner with motor and accessories 1 set 1,160 Roller size : i50 mm x 100 mm : abt.1,000 kgs./hr. (18 R.P.M.) Capacity Motor :7.5KW - 6P • • • G/W : 6,000 kgs. H,P : 350 cft. 1 set 250 3, Bucket conveyor with motor and accessories : 150 mm x 100 mm Bucket size Bucket Nox. : 26 :0.75KW - 4P Motor G/W : 330 kgs. M/T : 60 cft. 1 set 70 4. Portable Platform scale with drop lever : 500 kgs. Capacity : 25 kgs. x 200 grs. Draduation 500 1 set 5, Elevator and Guided Rail :600 kgs. Capacity :2.2KW-4P Motor G/W:1,000 kgs. M/T: 216 cft. 6, Three drum type Ball mill with lining stone, 3 sets 7,440 grinding stone and motor (3 drums) :1,000 kgs. x 9 Capacity :11KW-6P Motor :6,000 kgs. x 9 (54,000 kgs.) G/₩ : 400 cft. x 9 (3,600 cft.)M/T

7,	Agitator (Round type) and accessories	for slip mixing with motor	3 sets	615
	Size of Tank R.P.M. Motor G/W M/T	: 4,500 mm. dia. x 4,500 mm. : 14 - 20 : 2.2 KW - 4P x 3 : 550 kgs. x 3 (1,650 kgs.) : 100 cft. x 3 (300 cft.)		
8,	Potary Sieve (Double and motor and access	type) with absorbing pump ories	2 sets	340
	Motor G/W M/T	: 0.75KW - 4P x 2 : 120 kgs. x 2 (240 kgs.) : 30 cft. x 2 (60 cft.)		
9,	Magnet Separator with filter plate and curre A.C. to D. C.	h rectifier and stainless steel nt failure alarm to transform	2 sets	480
	Capacity Size of filter plate G/W	: 609W x 2 : 17.3/4" x 25.5/8" x 21.5/8" : 240 kgs. Meas't. 60 cft.		
10,	Diaphragm pump with	motor	2 sets	680
	Capacity	: abt. 1,800 1./hr. (in case o water		
 		: Single action : 3"ø : 6"	,	
	Motor G/W 2,000 kgs. N	: 2.2 KW - 4P x 2		
11,	Filter Press with nyl	on sheet and accessories	2 sets	4,860
	Nos. of room Working pressure Required time per	: abt. 28"\$ x 1.1/2" : 85 pcs. x 2 : 100 to 150 lbs./inch ² charge : abt.2-2.5 hr. : 2 sets of screen plate cock e		
12,	· · · ·	hine with motor, starter,	1 set	960
	Capacity	elay : Bronze : 16 - 18 : 7.1/2HP-6P		

13,	Pipes and fitting		1 set	392
	G/W M/T	: 1,500 kgs. : 120 cft.		
В.	FORMING SECTION			
1,	Semi Automatic Jigge	ŗ	6 sets	£3,540
	Composition Motor M/T	: 2 arms : 0.75KW : abt. 40 cft. x 6 (240 cft.)		
2,	Hand Operative type and accessories	Machine Jigger with motor	16 sets	2,640
	Composition Forming Jigger Tatara Jigger Motor G/W M/T	: 4 arms in one set : 1 : 1 : 1 (0.4 KW - 4P) x 16 : 350 kgs. x 16 (5,600 kgs.) : 60 cft. x 16 (960 cft.)		
3,	Automatic Dryer with	n motor 3 rooms 1 unit	1 unit	3,400
		: 6' x 1.1/2' : 0.375!??? : 4 hrs.		
4.	Finishing Jigger with (Four arms in one	motor and accessories	6 sets	1,090
	Motor G/W M/T	: 0.4KW-4P : 500 kgs. x 6 (3,000 kgs.) : 100 cft. x 6 (600 cft.)		
5,	Shelf Transfer Car		5 sets	460
	G/W M/T	: 110 kgs. x 5 (550 kgs.) : 30 cft. x 5 (150 cft.)		
6,	<u>Press for casting sli</u>	p	2 sets	366
	G/W M/T	: 500 kgs. x 2 (1,000 kgs.) : 200 cft. x 2 (400 cft.)		
7,	Agitator for casting	slip (Two-in-one)	1 set	120
	Motor G/W M/T	: 0.75KW - 4P : 250 kgs. : 50 cft.		
		- 47 -		

8,	Duct for Drying Fur	nace	3 sets	759
	Dia. of Duct Length of Duct G/W M/T	: 380 mm : 20 m x 3 : 600 kgs. x 3 (1800 kgs.) : 100 cft. x 3 (300 cft.)		
9,	Blower for Drying H	Turnace	3 sets	426
	Motor G/W M/T	: 3,710W - 4P x 3 : 300 kgs. x 3 (900 kgs.) : 45 cft. x (135 cft.)		
10,	Sagger Pin Forming accessories	Machine with motor and	1 set	105
	Motor G/W M/T	: 0.4KW - 4P : 200 kgs. : 20 cft.		
c.	BISCUIT FIRING S	ECTION		
Bu	iscuit Firing Tunnel	Kiln	1 unit	
	length pacity	: 60 m : abt. 450,000 pcs. per month		
Eff	ective Area	: 700mm x 1,200 mm (width) (height)		
1,	Fuel Transfer Equi	pment		
	Dia. 25m/m pum Dia. 25m/m Oil S Relief Pressure Motor	Strainer	2 sets 2 sets 2 sets	
2,	Oil Control meter, and By-pass	Dia. 25m/m with strainer	1 unit	
3,	40 mm, dia. Cil Bur seamless tube and b	mer with strainer Micro-cock, urner-foot	10 units	
	Capacity	: 4 - 20 1./hr.		
4,	100 mm. Dia. Turbo accessories	Blower with motor and	2 sets	•
	Capacity Motor	: 750 m/m Hg. 13m ³ /minute : 3.7KW - 4P		
5,	260 m/m Dia. Blowi		2 sets	
	Capacity Motor	: 54 m ³ /minute : 3.7KW - 4P		
6,	260 m/m Dia. Exhau	st Fan	2 sets	
	Motor	: 5.5KW - 4P - 48 -		

7,	Pipes f	or Exhaust Fan, Blowing Fand and Oil transfer	1	unit
8,	Kiln Ra	nils, (inner line, Outer line and traverse pointed plts, Nuts, Joint and sleepers	1	un i t
9,		eales iron plate	1	unit
	A11	length : 110m		
10,	<u>Kiln Tr</u>	ansfer-Car	3	units
11,	Kiln Ca	ars	75	units
12,	Oil Pu	sher with motor and accessories	1	set
	Mote	or $: 0.4 \text{KW} - 4 \text{P x } 2$		
13,	Under	Kiln Car, Duct and Dumper	1	set
14,	Steel F	itting and other Steel accessories	1	set
15,	Kiln Re	einforced Materials	1	set
16,	Kiln D	oor	2	sets
17,	Meters		1	unit
	(1) (2) (3) (4) (5) (6) (7) G/W	5 point system Pyrometer PtRh. Pyrometer AlCr. Pyrometer Wires 12 points Record Meter with record panel Draft gauge Alarm Bell : apt. 4,500 kgs. (C1-C16)	10 10 60 1 2	sets sets sets m. set sets sets
	M/T	: abt. 2,500 cft. (C1-C16)		
18,	<u>Kiln M</u>	aterials		
	(1)	Fire Brick (Usual shape) SK34 : 4,000 pcs. SK32 : 6,000 pcs. Sk30 : 29,000 pcs.		
	(2)	Fire Brick (Special shape)SK34: 20 tonsSK32: 7.2 tonsSK30: 25,tons		
	(3)	Insolating Brick B-1 : 15,000 pcs.		
·	(4)	Kiln Car-Brick SM30 : 52 tons		
	(5)	Fire Mortar SK35 : 2,000 kgs. SK34 : 3,500 kgs. SK30 : 27,000 kgs. B-1 : 4 tons G/W : 290 tons M/T : 4,870 cft.		

D. GLOST FIRING SECTION

Clost firing tunnel kiln complete with the necessary equipments

Glost Firing Tunne	1 unit	
All length Effective Area	: 40 m. : 700 mm. x 1,200 mm.	
1, Oil Control Me	ter with strainer & By-pass	1 set
Dia,	: 25 m/m	
2, <u>40 m/m Dia. Oi</u> Seamless tube	1 Burner w/strainer micro cock, and Burner foot	8 sets
3, <u>100 mm. Dia.</u>	Turbo Blower with motor	2 sets
Capacity Motor	: 750 m/m Hg.13m.3/minute : 3.777W 4P x 2	
4, Blowing Fan w	vith motor	2 sets
Dia. Capacity Motor	: 260 m/m : 54 m/minute : 3.7KW - 4P x 2	
5, Exhaust Fan v	rith motor	2 sets
Dia. Motor	: 260 m/m : 5.510W - 4P x 2	u.
6, Kiln Rail (Inne	er Rail, Outer Rail and traverse)	1 set
with bolt, nu	ut, joint and sleeper	
7, Sand seal Iron	: 250 m. length Plate with Joint	1 set
8, Trans-Car		2 sets
9, Kiln Car		60 sets
10, Oil Pusher wi	th motor	1 set
Motor	: 0,4KW x 2	
11, Under Kiln Ca	ar Duct with Dumper	1 set
12, Steel Fittings	and other accessories	1 set
13, Kiln Reinford	ed Iron Materials	1 set
14, Pipes for Oil Exhaust Fan	Transfer and Blowing and	1 set
15, Kiln Door		2 sets

16,	Meters		1	unit
	(2) Pt-RH Pyr (3) Al-Cr Pyr (4) Wire	ometer stem Pyrometer e	10 10 60 1 2	pcs. pcs. pcs. m. set sets
	G/W M/T	: abt. 40 tons (El-El6) : abt. 2,400 cft. (El-El6)	}	
17,	Kiln Materials			
	(1) Fire Brick SK34 SK32	(Usual shape) : 4,000 pcs. : 5,000 vcs.		

	• • • • • • • • • • • • • • • • • • • •
SK30	: 2,700 pcs.
(2) Fire Br	ick (Special shape)
SK34	: 20 tons
SK32	: 7.5 tons
SK30	: 17 tons
(3) Kiln Ca	r Brick
abt. 46	tons
(4) Fire mo	otor
SK35	: 2,000 kgs.
SK34	: 3,500 kgs.
SK32	: 2,500 kgs.
SK30	: 20,000 kgs.
(5) Adiabat	ic Bricks
B-1	:15,000 pcs.
(6) Adiabat	ic Mortar
B1	: 13 tons
G/W	: 260 tons
M/T	: 4,680 cft.

Total: £18,112

E. DECORATING SECTION

1, Electric Decoration Kiln, Squ, type

4 sets £3,600

: 1,800 pcs./one charge (in case of 9" plate
W.2'x L.10' x D2'8") : 13,200 kgs. : 960 cft.

F. GLAZE MAKING SECTION

1,	Three drum type Ball grinding stone and mo	Mill with lining stone,	1 set	<i>£</i> 2,480
	Capacity Motor G/W M/T	: 1,000 kgs. x 3 : 11KW06F x 1 : 6,000 kgs. x 3 (18,000 kgs.) : 400 cft. x 3 (1,200 cft.)	I	
2,	Rotary Sieve (single t	ype) with Fump	1 set	130
	Motor G/W M/T	: 0.4KW-4P : 150 kgs. : 20 cft.		
3,		h rectifier and stainless steel nt failure alarm to transform	1 set	240
	Capacity Size of magnetic se C/W Meas't	: 600W eparator : 17.3/4" x 25.5/8" x 21.5/8' : 120 kgs. : 30 cft.	1	
4,	<u>Claze Agitator with m</u>	notor & accessories	1 set	200
	Size of tank R. P.M. Motor G/W M/T	: 3,000 mm. dia. 3,000 mm. depth : 14-20 : 2.2KW-4P : 350 kgs. : 75 cft.		
G.	SAGGER MAKING SE	CTION		
1,	Edge Runner with Mo	tor	1 set	£820
	Roller dia. R. P.M. Capacity Motor G/W M/T	: 1,200 mm x 300 mm : 20 : 550 kgs./per hr. : 3.7KW-4P : 4,000 kgs. : 300 cft.		·
2,	Bucket Conveyor wit	h motor	1 set	235
	Motor G/W M/T	: 150 mm x 100 mm : 26 : 0.75%W-4P : 330 kgs. : 60 cft.		

3,	Pug Machine with mot	or	1 set	760
·	,	: 2,000 kgs./per hour : 3.7 KW-4P : 3,000 kgs. : 200 cft.		100
4,	Friction Press with r	notor	1 set	760
	Motor	: 1,000 kgs./per hour : 3.7KW-4P : 3,000 kgs. : 250 cft.		
5,	Steel mould for Frict (Cups & Bowls, Plate	ion Press es and Pots)	10 sets	1,120
	G/W M/T	: 10 kgs. x 10 (100 kgs.) : 170 cft. x 10 (1,700 cft.)		
Н.	MOULD MAKING SEC	TION		
1,	Vacuum type Bubble- Pump	Eliminater with Motor and	1 set	£177
		: 0.4 KW-4P : 200 kgs. : 35 cft.		
2,	Table-jigger		1 unit	81
	18" dia. 10"	: 2 pcs. : 4"		
I.	LABORATORY SECT	YON		
1,	Pot Mill with motor		1 set	£220
	Nos. of Pot Mills 250mm dia. 125mm dia. R. P. M. Motor C/W M/T	: 3 pcs. : 5 pcs. : 50 : 1.5FW-4P : 350 kgs. : 50 cft.		
2,	<u>Auto-Grave</u>		1 set	173
	G/W M/T	: 150 kgs. : 30 cft.		
3,	Electric Firing Fur	nace for testing with voltage	1 set	502
	Capacity G/W M/T	: 20KW : 500 kgs. :100 cft.		

4, <u>Agitating Machine for raw material with mortar and</u> 1 set <u>motor</u> 38

Nos. of Mortars	:10" dia. 2 pcs.
Motor	:0.427V-4P
G/W M/T	: 50 kgs.
M/T	: 20 cft.

J. OTHER TOODS

1 unit

1, Mould Case

···	Full Plate	10" dia.	10 sets
		9"	10 "
		7"	10 "
	Bowl	10"	5 "
		9"	5 "
	Soup Plate	10"	10 "
	-	9"	10 "
		711	10 "
	Curry cup	4.1/2"	10 "
	U 1	5"	10 "
		5.1/2"	10 "
		6"	5 "
		6.1/2"	5 "
		.7"	5 " 5 "
		811	5 "
	Tea Cup	A type	10 "
		в ^й	10 "
		С "	10 "
	Saucer	11 A	10 "
		<u> </u>	10 "
		<u></u> " C "	10 1
	Tea Pot	5 ¹¹	3 " 3 "
	100 100	4"	3 "
		311.	3 "
•	Milk Pot	Medium	3 "
	11.1111 1 00	Small	3 "
	Sugar Pot	Medium	3 "
	MaCer - of	Small	3 11
			Total: 2536

2, Drying conveyor with motor

1 set £1,052

.

All length	: 30 m.
Belt width	: 600 mm.
Motor	: 0.75EW-4P
C/V/	: 3,000 kgs.
M/T	: 300 cft.

V. SELECTION OF THE SUITABLE FACTORY SITE

All the ceramic wares are made of the earth and quarrying materials which weigh a good heavy weight. It is therefore desirous for the factory to be constructed at the place of traffic convenience for the material transportation. The most favourable construction site should be pointed out to be in the neighbouring area of the material producing centers. From this standpoint, the area situated between Cape Coast and Saltpord in the central region should be recommended as the most suitable construction site for the reason why the area is rich in kaoline and feldspar produces, both of which are indispensable for the ceramic manufacturing.

Besides the conveniences for the material transportation, the ceramic manufacturing should require the other important condition that the firing kilns should stay free from the humidity caused by the ground moisture. In order to prevent the vapour emitted in the kilns, and ensure the good firing condition, the enough precaution should be made to avoid the moisture coming from under the foundation ground. From the technical point of view, the proposed construction site should be located on an elevated land where the underground water level is low.

Common with the requisite for the site of any kind of factory, the traffic conveniences are also required for the deliveries of the subsidiary materials and the finished products. Taking into account the supply of the industrial electric power and water, and the available working population, the site will be confined to the neighbourhood of a city.

As the result of the considerations given to the abovementioned, the proposed construction site would be designated as the best suitable to be somewhere along the Saltpond by-pass.

VI. ESTIMATES OF VARIOUS COSTS AND CHARGES

(1) Construction Cost

The chief construction in this plan will be made for the factory, material warehouse, product warehouse and office building. The unit price of each construction was estimated made reference to the survey of the C.N.C.C. (Chana National Costruction

- 55 -

Corporation) and to the instances prevailing in Japan. The estimated construction costs are shown as follows:

Construction	Unit (£)	Amount (f)
Factory	25	104,400
Material Warehouse	6	360
Product Warehouse	8	960
Office Building	30	5,400
	Total:	£111,120

The blueprint of the factory is as shown as in Fig. 2, and the arrangement of the four main buildings is as in Fig. 3.

(2) Material Cost

This plan is to achieve the production amount per year of 1,100 tons as concluded in the 3rd chapter, and the necessary amount of raw materials should be about 1,200 tons, which are increased by 10% on the intended production amount. In the meantime, as the preparations of the body and glaze are shown in the 4th chapter of this report, the necessary amount of their materials can be easily calculated.

The following coefficient figures are to be used to calculate the estimated costs:

- 1. Wage is 10^s for an 8-hour day.
- 2. Hire of 19-ton for truck is 120⁵ for a day.
- 3. Hire of vehicle for collecting materials is 120⁵ for a day.
- 4. Hire of a rock drill for digging materials is 60^{5} for a day.
- 5. According to the test, the effective componet of the kaoline is measured 44%. With a transportation truck, a collecting vehicle and two man-powers, the transportation of the kaoline
 - needs 23 days.
- 6. In quarrying the feldspar, three rock drills and three manpowers being used, 8 tlays are required in total. With a transportation truck, a collecting vehicle and three mancovers, the transportation of the feldspar needs 4 days in total.

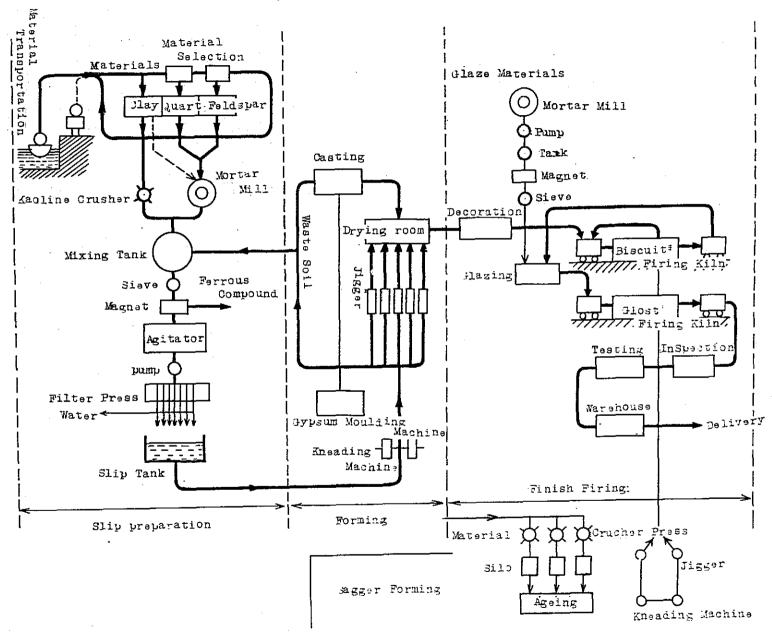
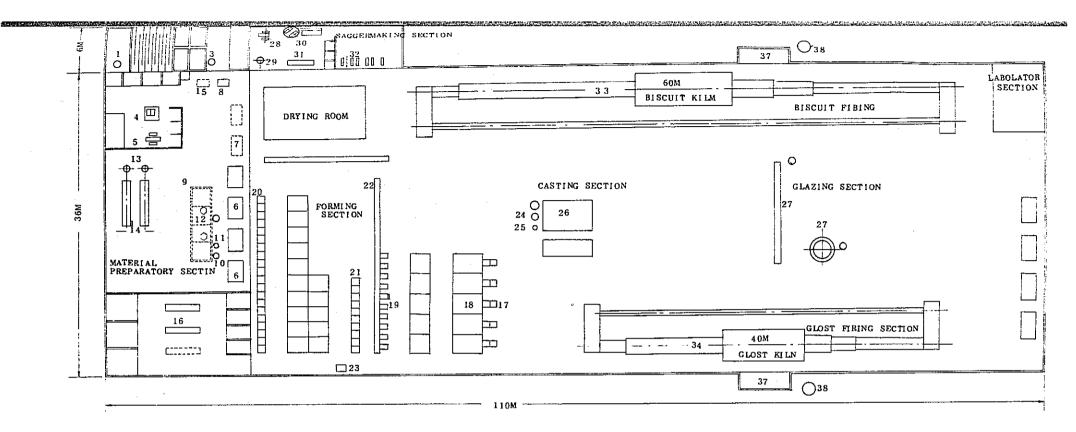



Fig 1

		,			
NO.	DISCRIPTION	QTY	NQ.	DISCRIPTION	QTY
1	DISINTEGLATER	1	21	MACHINE JIGGER	0
2	TURBIN PUMP	1	22	BELT CONVEYER	2
3	DIAPHRAGM PUMP	1	23	EXHUST FAN	1
4	ROLL CRUSHER	I	24	MIXING AGITATER	2
5	JAW CRUSHER	1	25	DIAPHRAGM PUMP	1
6	BALL MILL 2000K	4	26	SLIP CASTING MACHINE	1
7	• 1000K	1	27	GLAZE CONVEYER	2
8	• 100K	1	28	JAW CRUSHER	1
9	MIXING AGITATER	4	29	VERTICAL PUG MILL	1
10	DIAPHRAGM PUMP	2	30	EDGE RUNNER	I
11	MAGNETIC SEPARATER	1	31	HORIZONTAL PUG MILL	1
12	SIEVE	2	32	FRICTION PRESS	3
13	DI APHRAGM PUMP	2	33	BISCUIT KILN	1
14	FILTER PRESS	2	34	GLOST KILN	i
15	ELEVATER	1	35	DECORATION KILN	4
16	DE-AIRING AUGER MACHINE	2	36	LABORATORY EQUIPMENT	1
17	AUTOMATIC JIGGER	10	37	FIRING EQUIPMENT	2
18	AUTOMATIC DRYER	10	38	MAIN OIL TANK	2
19	MACHINE JIGGER	18			
20	MACHINE JIGOER	20			

IM MNH

FIG 2 IRONSTONE WARE MFG. PLANT

SCALE 1/300

UNIT METER

INCREASE PLAN

[]]]]

Fig. 3 Arrangement of four main buildings

. Factory building .

. Product Warehouse Office Building

Material Warehouse

-

Unit meter Scale:1/500

- 7. The stacked-up quartz described in the 2nd chapter will be used, and no quarrying is required. With four transportation trucks, collecting vahicle and two man-powers, the transportation of the quartz needs 10 days.
- 8. In quarrying the lime-stone, three rock drills and four manpowers being used, one day is required. Two transporation trucks and 10 man-powers being used, one day is required to transport this material.
- 9. Concerning the raw materials and subsidary materials which are planed to be imported, the current import/export market prices in Japan arcrefrenced to as the standards.
- 10. The prices of water and electric power are those which are currently prevailed in Ghana.

Based on the abovementioned coefficient figures, the individual unit prices were set up to give the material costs as follows:-

	Item		Mining Q't y	Unit Price (Tronsport tation Cost		Amount (£)	Remarks
	Kaoline	504	∞ ty 0	12	4 1 ICC	303	
4	Feldspar	132	13	8		73	
Body	Quartz	384	0	16		307	
PA	Ball Clay	168	منا ماہ ہے	18	400	2,671	Imported
	Lime-stone	12	19	28		28	
i	Frit	90		18	700	3,222	Imported
	Quartz	34	0	16	المد منه الله	27	_
	Feldspar	17	13	8	-	18	
eze	Lime-stone	1.3	19	28		31	
Glaze	Kaoline	11	0	12		7	
	Zircon	15		18	2000	1,513	Imported
	Zinc White	9		18	3,200	1,448	Imported
ter	Kaoline (lower grade	e 26	0	12		16	
Sagger	Ball Clay (lower grad	e) 22		18	300	350	Imported
	Shamotto	52		18	160	463	Imported
Subsidary Materials	Fuel (Crude Oil	gallon 364,000		108/1,000 gallon	630/1,00 gallon	⁰ 13,431	Imported
	Gypsum	50	جد عد من	18	120	345	Imported
	Water	gallon 1,200,000		4		240	
Subs	Elec- tricity	420,000KWH 200KVA	2.5	l /KWH + £12/	KVA	6,775	

(3) Labour Cost

The production size planned in this report will require about 280 personnels including the manager. The making-up of the members will be given as follows:

Manager	No. of Personnel		
Plant Superientendent	1		
Manager of Manufacturing Technics	1		
Office Member			
Office Superintendent	1		
General Affairs	5		
Personnel	1		
Accounting	1		
Commodity	1		
Procurement	1		
Sales Promotion	5		
Technical Member			
Material Preparatory	2		
Forming	3		
Moulding	1		
Firing	2		
Decoration	1		
Packing & Inspection	. 1		
Testing	2		
Labour	1		
Factory Worker			
Material Preparatory	22		
Forming	44		
Moulding	17		
Glazing	23		
Drying	5		
Firing	25		
Decoration	40		
Packing & Inspection	36		
Sarger	12		
Testing	15		
Labour	12		
- 58 -	-		

- 58 -

The survey on the labour market in Ghana let out that the avarage wage (per month) should be reasonable for the indivifual mambers of this making-up:-

Manager:	£300
Office Superintendeng:	125
Office Worker:	10
Technical Personnel:	35
Factory Worker:	15

Based on the abovementioned avarage wages, the total labour cost is calculated as follows:-

Manager:	$\pounds 300 \ge 2 \ge 12 \text{ months} = \pounds 7,200$
Office Worker:	$(\pounds 125 \text{ x}.1 \text{ x}.12 \text{ m/s}) + (\pounds 10 \text{ x} 16 \text{ x} 12 \text{ m/s})$ = $\pounds 3,420$
Technical Personnel:	$\&35 \times 13 \times 12 \text{ m/s} = \&5,460$
Factory Worker:	\pounds 15 x 251 x 12 m/s = \pounds 45,180
	Total: $\pounds 61,260$

(4) Indirect Cost

Depreciati	ion	cost:	
-			

. . .

Equipments:	$\&82,930 \ge 12\% = \&9,942$
Building:	$\pounds111,120 \ge 4.5\% = \pounds5,000$
Vehicle:	£3,200 x 53.6% = £1,715

4 vehicles should be maintained to handle the delivery of the products. Unit Price per vehicle: £800.

Repairing Cost:		£4,500
Administrative	Charges:	12,150
	Total:	£33,307

(5) Total Cost

Raw Material Co	st:	£31,268
Pay and Wage:		61,260
Indirect Cost:		33,307
	Total	£125,835

VII. ANNUAL PROFIT

As references are made to the ruling rates of wage in Chana, the nation's living standard and further to the market prices of the imported goods shown in Table 2, the cost price of the product on exfactory basis might be moderate to set at 8^S per dozen pieces on the avarage. This unit price will give the total amount of the expected annual profit as follows:-

Annual output:	450,000 doz.
Annual Sales Value:	£180,000
Total Cost:	£125, 835
Annual Profit:	(Annuel Sales Value) - (Total Cost) = £54,165
Profit per piece:	Annual Profit/Annual Cutput = 0.12 ⁸
Cost per piece:	Annual Cost/Annual Output = 0.56 ⁸
Profit Rate:	Annual Profit/Annual Sales Value x 100 = 30%

VIII. CONCLUSION

In consequence of the thorough study made to the respective results of the site investigation for the ceramic industry in G_hana, the survey team came to the conclusion that, inasmuch as both required material availability and the prospective future demand are concerned, the planned production should be quite feasible to start in Ghana under the present conditions.

Among the porcelain and earthenwares, there are many kinds of article, but in this plan taken up are the only ordinary tablewares to be used in the everyday life. However, it will be also possible to manufacture the other kinds of porcelain and earthenwares, sanitary wares, tile or earthen pipes on an almost same production scale as regards the investment amount and the available materials, provided a little modifications should be made in relation to the equipments and the processing technics.

Peculiar to the ceramic industry, it will be rather difficult that the full automation should be achieved. There are still many points of processing left for the manual skillfullness. Keeping up with the development of the planned project on the ceramic manufacture, it is suggested, or recommended that the education and training of the Ghanaian technical personnels should be carried out by the Japanese engineers so that the firm establishment of ceramic industry could be attained in Ghana.

- 60 -

D. PROJECT FOR THE ESTABLISHMENT OF A PLYWOOD FACTORY IN GHANA

I. Demand and Supply Situation.

.

Demand and supply situation of veneer products in Ghana during the past few years is given below together with the relevant data tabulated.

• •

	Production of Veneer Plywood Boards & Veneer Sheets									
	• .	Quantity: in 1,000 CFT Value : in £1,000								
	(√eneer Sheets)									
		(1959)		(1960)		(1961)		(1962)		
		<u>Q'ty</u>	Value	<u>Q'ty</u>	Value	<u>Q'ty</u>	Value	<u>Q'ty</u>	Value	
L .	Ξ xport	18,13	32,05	19.06	39.20	34.56	30.51	30.88	41.99	
	Process- ing at home	2,94	5,91	8,37	15,94	12.39	23,60	12,10	23.50	
	Stock	2.18	4,40	1.33	2.52	0.81	1.52	0.25	0.48	
	TOTAL:	23.25	48.36	28.76	57.67	47.76	55.64	43.23	65.97	

(Veneer Flywood Boards)

	(1959)		(1960)		(1961	F)	(1962)	
	Q'ty	Value	Q'ty	Value	Q' ty	Value	Q'ty	Value
Export	148.29	278.24	151.13	311.34	145.41	291.99	435.06	769.54
Domestic demand	57.75	120.21	99.10	207.46	129.35	270,79	108,99	288.12
Process- ing at home	2.13	8.36	7,44	14,80	7.19	14.30	10.34	20,58
Stock	0.76	2.98	1.89	3,76	12,27	24.27	43.35	82.76
TOTAL:	207.41	409.79	255.78	529,84	294.22	601.35	597.74	1,161.00

As is clear from the above table, export of both veneer sheets and veneer ply wood boards has been on the steady upward tendency. Comparison of export volume of veneer plywood boards in 1962 with that in 1960 indicates a remarkable and rapid increase achieved during two

- 61 -

short years.

On the other hand, however, it was revealed that veneer plywood boards are still being imported. But the importation of plywood boards is expected to be gradually confined to specific items and eventually be eliminated. Given below are import statistics by country of veneer plywood boards, veneer sheets, and plywood and veneer panels during 1962.

(Veneer plywood boards and veneer sheets)

Country	<u>Q'ty (CFT)</u>	Value (\hat{x})
UK	21	388
Canada	102	129
Norway	1,344	957
TOTAL:	<u>1,467</u>	1,474

(Plywood and veneer panels)

Country	<u>Q'ty (CFT)</u>	<u>Value (£</u>)
UK	2,039	265
Nigeria	5,013	2,650
French Equatorial Africa	23,119	29,568
Israel	47,550	46,200
Japan	2,192	833
USA	334	127
TOTAL:	80,247	79,643

Import of these items is noticed to be declining recently with Israel remaining as the only major exporting country.

Production data tabulated above also indicate that there has been a sharp increase in the domestic demand both for veneer plywood boards and veneer sheets, which jumped by about 4 - 5 times during 1959 - 1962 period. Since the consumption of veneer products is anticipated to further increase as the country's extensive construction plan is put into practice in the future, it is desired that efforts be directed to enhancing the domestic production

II. Kinds, quality and colouration of veneer plywood boards available on the market.

Plywood boards available on the market are predominantly those

of the size 4' x 8', glued with the completely waterproof adhesives. Thickness of this kind of boards ranges from 1/4 mm to 4 mm for ordinary uses. For specific purposes, however, boards of 4 mm, 5 mm, 6 mm, 9 mm, 12 mm and 15 mm are also offered. Selling price of the 3 ply board, size 4' x 8' x 4 mm, made from the Mahogany material, is Sh. 16 per sheet. Most of these boards are of fine quality with no overlaps and comparatively little knots, pitch pocket or cracks.

With regard to the polishing finish, it was noted that sanders are utilized in G_h ana. It appeared that the use of scrapers for this purpose is practised only in Japan. It was reported during the investigation that sanders are sufficient to perform the polishing finish since the sanded boards have to be painted before using.

It is suggested that more care be exercised for the colour scheme in assorting veneer sheets by means of the slicer. If studies are made for selecting colours or combination of colours which are more appealing to the customers, the finished products would not only present better appearance but also sell at higher prices. Further, if plywood boards are produced in more diversified kinds by improved surface processing, export to Europe will undoubtedly increase to a large extent.

About 40 different kinds of woods are generally known as materials for veneer plywood boards. Of these 40 kinds, the following are most well known as export timbers.

Walnut, Mahogany, Obeche, Agba, Niangon, Iroko, Iople,

Opepe, Makore, Edinam, and Idigbo.

It may as well be recommended to utilize the above materials for different purposes in manufacturing plywood boards, e.g., Mahogany for core veneer and Abeche or Wawa or surface veneer.

III. Quality Test

Although the quality of the veneer plywood boards depends considerably on its materials, the most decisive factor that determines the quality is the glue. Adhesion test conducted on the glues used for the Ghanaian plywood boards, given below in detal, proved that they are of satisfactory quality.

The test was performed in strict compliance with so called JAS Method (Japan Agricultural and Forestry Standard Method) which in substance is identical with the CS Method of the United States. The main chemical component of the glue was found to be urea or phenol both of which provide perfect water-proof property.

(Photo #1 at the end of this report: A test piece cut on one side before testing)

The test, called "Repetitive Boiling Test," is the latest and most effective method to determine the interrelation between the glue and the veneer. The test is conducted in the following order:

> Test piece is cut on one side as shown in Photo #1. If the test piece consits of five or more veneers, the required . number of 3 ply test pieces is prepared by peeling off the · unnecessary voncers in such a way as each glued surface in the original test piece is contained in one of the 3 ply test pieces. Test pieces thus prepared are cut on one side and soaked in the boiling water. After 4 hours of soaking, they are taken out and dried at $60^{\circ}C_{-}^{+}3^{\circ}C$ for 20 hours, soaked again for 4 hours in the boiling water, left soaked in the water until the water temperature drops to the ambinet temperature. Adhesion test is then conducted on the wet test pieces that are taken out of the water. Adhesive power is determined by measuring the tensile load imposed upon the test piece at the moment of its breaking which is caused by the tension excercised at the load speed of 1,320 lbs. or less per minute in two opposite directions, i.e., in the direction of both ends of the test piece.

As a result of the above boiling and adhesion test, it was revealed that the C_{h} anaian plywood boards possess the adhesive power exceeding the specified standard of 110 lbs/inch².

(Photo #2 at the end of this report: Test piece broken after sustaining the tensile load imposed by the adhesion test)

The adhesive power of the test piece is computed by the formula given below. However, in the event where the ratio of the thickness of the surface voneer against that of core veneer exceeds 1.5,

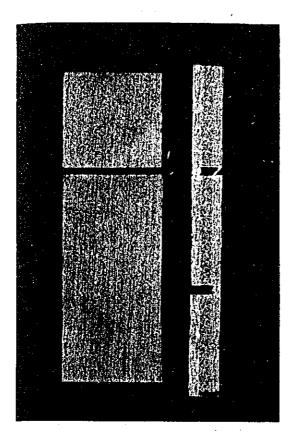
- 64 -

the adhesive power computed by the said formula must be multiplied by the index appearing in the list below in accordance with the thickness ratio.

Adhesive power $(lbs/inch^2) = \frac{P}{b \ x \ h}$

p - maximum tensile load imposed by the adhesion test.

b - Width of the glued surface (inch)


h - Length of the glued surface (inch)

,	Thickr	ess	Index		
More	than 1	•5 S	below	2.0	1.1
ti	2	2.0	17	2.5	1.2
11	2	2,5	tt	3.0	1.3
t	. 3	3.0	11	3.5	1.4
1'	n 3	9.5	11	4.0	1.5
1	۱ <u>.</u> ۷	4.0	11	4.5	1.7
1	<u>ا</u> ۱	4.5	1	/	2.0

The following figures of adhesive power of the Ghanaian veneer plywood boards have been computed on the basis of the above-mentioned method.

Test piece	Adhesive Power (lbs/inch)	Breakage (%)
4 mm	206	80
(3 ply)	199	10
	249	80
	177	90
18 mm	156	80
(5 ply)	184	5
	191	80
	170	5
	113	70

The fact that the maximum tensile load exercised on each of the above test pieces registered more than 110 lbs. shows explicitly that the adhesive power of the glue used for the Ghanaian plywood boards amply meets the specified standard. This fact also serves to evidence that the materials are of excellent quality.

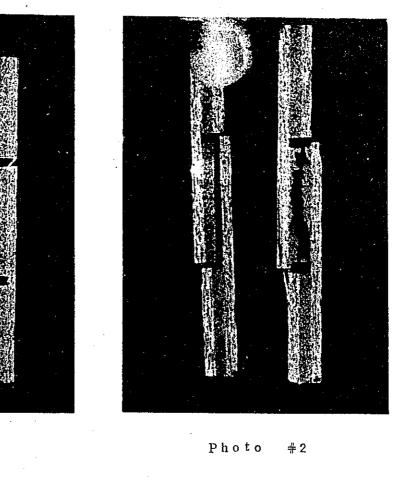


Photo #1

. . .

- 66 -

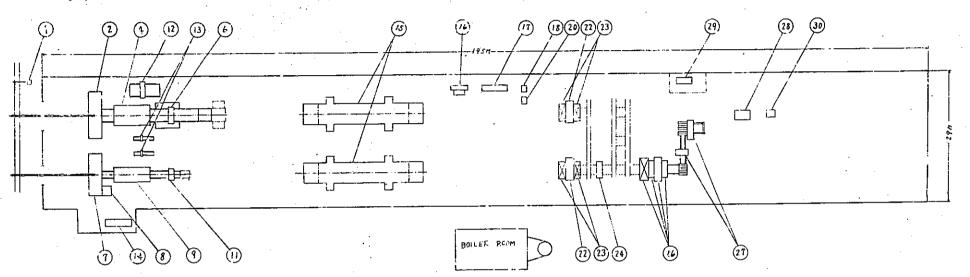
•

IV. Project for Establishing a New Plywood Factory.

Plans for establishing a new plywood factory, given in detail in the following sections, have been drawn up in due consideration of the present demand. & supply situation relative to the demestic production, export and import, as well as of the outlook for the future production pattern of veneer products. It is considered most appropriate for the proposed factory to have the monthly productive capacity of 100,000 ft³, i.e., 237,000 sheets in terms of size 4' x 8' x 4 mm.

IV-1 Construction Site.

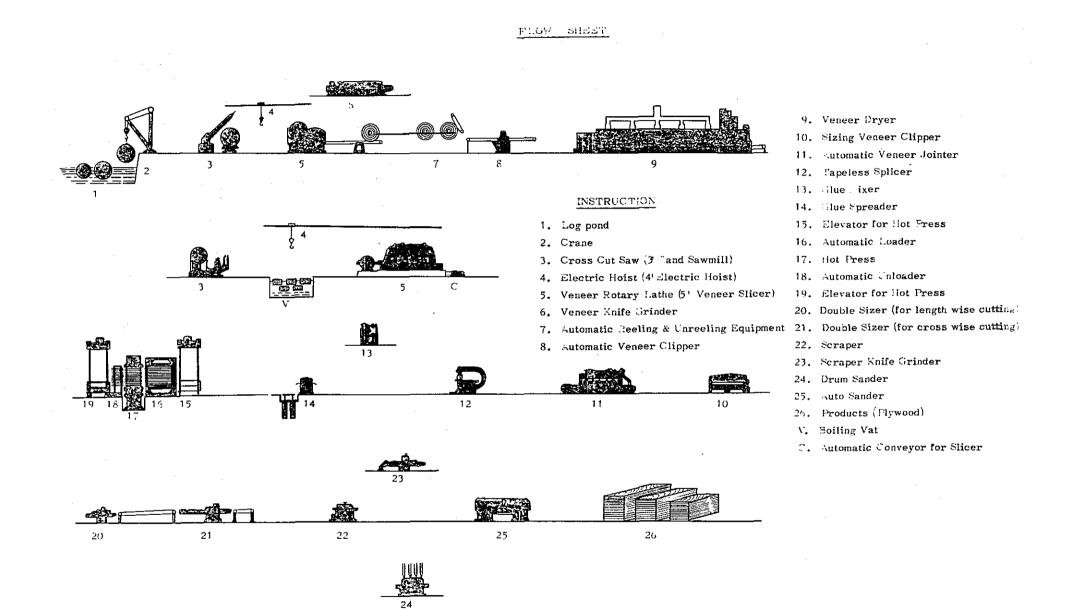
The proposed factory is recommended to be constructed either in Takoradi or Tema. The former has the advantage of being an old established timber distributing centre where no difficulties will be encountered in the recruitment of workers as it is located within the labour market area. The city is further locationally favoured for both export and domestic sales. The latter, Tema city, is a new developing industrial city with a vast power supply source of Volta Dam available in its proximity. The area required for the construction of the factory can be easily secured in Tema. Further, being located close to Accra, inland transportation routes can readily be availed of by the city. Considering the future export of plywood boards, Tema may be recommended as the construction site of second choice.


In so far as the communication facilities are concerned, Kumasi city, the supply centre of wood materials, is equally accessible to the above two cities. The distance between Kumasi and the two cities are also about the same. However, preference may be given to Takoradi if one considers the advantages that it offers by being a timber distributing centre where there are established government offices and organisations of timber dealers. Nevertheless, the first preference will have to be given to Tema if the plywood industry is ever to be developed to such an extent as would be capable of producing processed articles of plywood and commodities that require the techniques of the chemical industry.

IV - 2 Factory Layout and Flow Sheet

The factory layout and Flow Sheet are as follows.

- 67 --


This LA: OUT shows the principal ananonement to Basic Main Machineries and Equipment not including Supplementary and Awill. Equipment.

ILEN	NAME OF MACHINE	1164	NAME OF MAJHINE
1	POND AND DECK SAW	16	DRY VENEER SIZING CL.PPER
2	VENEER ROTARY LATHE	17	VENEER JOINTER
3	WARD LEONAD CONTROL SYSTEM	18	TAPING MACHINE
4	VELEER. REELING AND UN REELING	19	TAPA SS SPLICER
5	AUTOMATIC REELING SYNCPRONIZER	20	PATCHINA L'ACHINE
6	VENEER AUTO CLIPPER	21	GLUE MIXER
7	VENEER ROTARY LATHE	22	GLUE SPREADER
8	POLE CHANGE MOTE	23	X LIFTS
9	VENEER REELING AND UNREELING	24	COLD FRESS
10	SEMI-AUTUMATIC REELING SYNCHRONIZER	25	TURN BUCKLES
11	VENEER AUTO CLIPPER	26	ELEVENIR LOADER HOTPRESS AND UNLOD, VA
12	MANKEL GREEN VENEER CLIPPER	27	DOUBLE JAWS
13	MANAL GREEN VENEER CLIPPER	28	SERAPER
14	VEHEER SNIFE GRINDER	29	SCRAPER KNIFE GRINDER
15	VENIEER ROLIER DRYER	30	WIDE BELT SANDER

LAYOUT OF VENEER PLANT

NOTE:

IV - 3 Cost of Factory Facilities, and Workers

Details of the factory facilities and workers required for the monthly output of 100,000 ft^3 of veneer plywood boards are tabulated at the end of this section.

Cost of machines and equipment for the proposed factory amounts to £350,000, and that of the factory building and other items £300,000, totalling £650,000.

Supposing that the depreciation of the above takes 10 years, the yearly and monthly depreciation amount would be as follows.

Item	Amount	. Yearly Depreciation <u>Amount</u>	Monthly Depreciation Amount
Machines & equipment	£477,120	€47,712	
Factory bldg. & other items	£300,000	£30,000	
Total	£777,120	£77,712	£6,476
Interest (4% per annum)		£19,428	€1,619

Remarks: Details of factory building and other items

Factory building	@Sh.40/ft ²	2.5 acres	£210 , 000
Warehouse	@Sh.23/ft ²	500 acres	
Boiling tank for wood material with a Crane			£20,000
Indoor road con- struction for factory building			£20,000
Office			£12,000
Office fixtures including air conditioners			£13,000
Electric wiring works & water works			£25,000
	'n	TOTAL:	£300,000

Machines & Equipment, and Workers

Required for Veneer and Plywood

Factory with the Monthly Productive

Capacity of 100,000 CFT.

				worker		
Section	Model	Nomenclature	No.	Machine	Total	Remarks
Wood material		be taken out e log pond)			3	
		Chain saw	1	1	1	
Rotary lathing	V24-DH	High speed rotary lathe (9')	2	6	12	
	V24-DH	" (51)	1	3	3	
	V92-D	Veneer knife grinder	1	2	2	
Clipping	V43-D	Automatic clipper (91)	4	4	16	
	۰.	" (5')	1	4	4	
	V40-D	Manual clipper (9')	2	4	8	
- ·	V40-D	Manual clipper (5)	4	4	16	
Drying	S40-B	Roller dryer	2	7	42	(3 shift system)
Prepa- ration	V40-B	Dry veneer sizing clipper	1. 	2	2	
•	W02-B	Veneer jointer	1	3	3	
	W -1 1	Taping machine	2	2	4	
	cc	Splicer	2	2	4	
		Patching machine	1	2	2	
		Small circular saw	6	1	6	
		ion of core veneer reparation of veneer	s)		12	
	(Assor	tment of veneers)			6	
Gluing	X02	Glue mixer	3	1	3	
	W23	Glue spreader	2	5	10	
	P10	Cold press	2	2	4	
	(Separ	ation of veneers)			4	
	(Mendi	ng of veneers)			6	
Hot press		Hot press	2	3	12	(2 sh ift system)
Finish-	W30-CD	Double sizer	1	5	5	
ing	W41	Scraper	2	2	4	
		Scraper knife grinder	1	1	1	

				Worker		
Section	Model	Nomenclature	<u>No.</u>	machine	Total	Rmarks
		Chip saw	1	1	1	
	WS-D	Deluxe Sander	1	2	2	
Despatch- ing	(Inspe & sto	ction, despatching, rage)			15	
Supplemen tary		Tester	1	1	1	
		For lift	2	1	2	
		Shreader	4	2	8	
		Boiler (5 t.)	2	2	12	(3 shift system
		Waste veneer conveyor	1	1	1	
		Electric work			5	
TOTA	<u>L:</u>				242	

Price list of machines and equipment, quoted at CIF Tema, is given at the end of this report.

Species	CFT
Avodire	35
Candolel (Omu)	31
Chenchen	34
Edinam	35
Emeri (Indigbo)	37
Danta	28
Guare	30
Kokrodua (Afroromosia)	25
Mahogany	40
Makore (Bake)	35
Mansonia	31
Nyakom (Niangon)	32

Conversion into CFT from 1 ton of Ghanaian Wood Materials in Logs

Species	CFT
Obeche (Wawa)	50
Opepe (Kusia)	25
Sapele	33
Utile	35

IV - 4 Monthly Production Cost.

Sh.10 x 237,000 (4' x 8' x 4 mm) = \pounds 118,500			
$\pounds118,500 \ge 5\% = \pounds5,925$			
$(\pounds 2/10 \text{ ft}^3) \ge 200,000 \text{ ft}^3 = \pounds 40,000$			
0.6 pence x 7,580,000 $ft^2 = \pounds 18,950$			
wer, water, heavy oil, etc):			
Sh.1.9 x 7,580,000 $ft^2 \approx \pounds 6,822$			
$\pounds 25 \ge 242 \text{ workers}$ $) = \pounds 410$			
$\pounds30 \ge 12 \text{ staff-members}$) = $\pounds6,410$			
clusive):			
7 pence x 7,580,000 $ft^2 = f2,274$			

IV - 5 Estimated Annual Profit

Monthly production cost:	Wood material	£40,000
• •	Glue	£18,950
	Wages	£6,410
	Miscellaneous	£6,822
	Depreciation	£6 ,47 6
	Interest	£1,619
	(Sub-total)	(£80,277)
	Sales expenditure	£5 , 925
	Packing cost	£2,274
	Cost price for sale	£8,199
	TOTAL:	£88,476

Monthly proceeds and profit:

Proceeds	£118,500
Cost & expenses	<u>- £88,476</u>
Profit	£30,024

Accordingly, the annual profit against the total investment of $\pounds777,120$ is estimated at: $\pounds30,024 \ge 12$ months = $\pounds360,288$ which constitutes about 46% of the investment amount.

In the above calculation of the production cost, it was assumed that the monthly consumption of the wood material would amount to $200,000 \text{ ft}^3$. If, however, wood materials of superior quality are utilized, the monthly consumption will be reduced to about 143,000 ft³ which costs £28,600 provided that the cost per cubic foot is £2. A monthly margin of £11,400 will therefore be accrued from utilizing materials of superior quality.

IV - 6 Conclusion.

As described above, plywood factory with the monthly productive capacity of 100,000 ft³ is expected to earn an annual profit of £360,288 which accounts for nearly 46% of the total investment amount of £777,120. This high profit rate is justifiably explained by the fact that a) while the cost of wood materials constitutes a large portion in the production cost of veneer products, an abundance of woods suitable for veneer products is available at cheap prices in Ghana, b) worker's wages are substantially low as compared with those in Japan, and c) the prevailing market prices of veneer products in Ghana upon which the above calculation is based, is relatively high.

Though it is foreseeable that the market price will drop in some measure as the veneer products turned out by the proposed factory are put on the market in the future, there will be no difficulties in maintaining the annual profit rate of 20%. The proposed productive capacity of 100,000 ft³ will amply meet with the domestic demand which has been, and will be increasing for the housing construction in which huge amounts of money are being invested.

It is anticipated that the export of veneer products to adjacent countries will lead to the acquisition of substantial amounts of foreign currencies. The foreign currency saving rate by the proposed project is, as formulated below, as high as 81%, or $\pounds1,148,000$ in value. There is no doubt that the establishment of the proposed plywood factory will contribute in a great measure to the balanced economic development of Ghana.

- 72 -

Annual foreign currency saving amount:

ProductionDepreciation of
machines & equipmentCost of im-
port materials= £1,148,000

Annual foreign currency saving rate:

Depreciation Cost of import 1 - (machines & equipment) + materials Production cost = 81%

PRICE LIST OF MACHINES & EQUIPMENT

DELIVERY TIME Within eight(8) months after contracted, DELIVERY PLACE CIF Tema

	Machine			PRICE (Stg. £, CIF	Tema)
Item	Туре	Description	Q'ty	Unit price	Amount
		I. BASIC MACHINERIES AND EQUIPMENT:			
1		POND AND DECK SAW 1,900mm (neary 6'-3")	1 set		480-0-0
		Provided with a super char cutter with max. cutting length available 1,900mm driven by motor 7.5KW 1 set and complete with stan dard accessories.			
2	V24-DH	"HEAVY DUTY" VENEER ROTARY LATHE	2 sets	19,153-0-0	38,306-0-0
		Heavy duty main frames are mounted on the rigidly constructed bed frame and both main spindles of 150m in diameter ate efficiently controlled by HYDRAULIO MECHANISM. Provided with complete set of PE- NUMATIC CONTROL SYSTEM, wich fuctions fo quick release of pressure bar, center spur knife,	nm C r		
6		 changing of thickness gea and for quick forwarding and backwarding of knife carriage. Length of knife : 2,740 Max. log dia. to be pee ed : 1,600mm Peeling performance is a rable from 0.05mm to 9.9 in 149 kinds of thickness. The main spindles of 1500 in diameter are made of s 	fnm 1- ssu- Omm nm		

Item	n Machine Description Q'ty	PRICE (Stg. £, CH	r Tema)	
	Туре		Uit price	Amount
		iron and are set with Taper Roller Bearings and Bushings which are helpful to prevent ad- justably the frictional wear that may occur dur- ing the long time spindle's rovolution. Equipped with auxil, mo- tors 7.5KW 2 sets, 3.7KW, 1.5KW and 200 W 1 set each.		
3		MAIN DRIVE FOR VENEER ROTARY LATHE ARRANGE WITH WARD LEONARD CONTROL SYSTEM 2 sets	8,015-0-0	16,030-0-0
		Capable to be infinetely variable log speed from 20 to 160 r.p.m. by means of AC.DC. Control System powered by output 75KW(DC) generated by 110KW(AC). Complete with Compensator, Electric Controllers and standard accessories.		
4	V60	VENEER REELING AND UNREELING SYSTEM WITH REEL CIRCULA - TION SYSTEM2 sets (DOUBLE DECK SYSTEM) -2,740mm x 1,200mm x 8,000mm (9'-0" x 4'-0" x 26'- 4")	6,098-0-0	12,196-0-0
•		Capable to reel veneers up to 1,200mm in dia- meter and 2,740mm in width. Reeling speed can be synchronized with peeling speed of Veneer Lathe in stepless by means of DC motor 3KW 1 set, quoted as below. Veneer fully reeled up by reeling system is transfered to unreeling system which is equipped with tow(2) unreeling		

Item	Machine Type	Description	Q'ty	PRICE (Stg. £, C	E NF Tema)
	iype		~ • • • • •	Unit price	Amount
		devices at the separat double positions where the veneers are cut to required width by auto veneer clippers, prov ed with the electric dr arranged with motors 5 1 set, 0.75KW 4 sets, 200W 3 sets and standa accessories.	the id- ives 5.5KW		
5		AUTOMATIC DEELING SYNCH RONIZER WITH VENEER SPEED COMI FROM LATHE		2,122-0-0	4,244-0-
		Arranged with the spe lly designed "DC" Mot System provided with Generator, Rotary Co roller, Resister and Control Panel.	or D.C.		
6 - a	V43-D	VENEER AUTO, CLIP: IDEALLY MECHANIZE FOR RUNNING-CUT SYSTEM -2,740mm - (9'-0")	D	3,772-0-0	7,544-0-
		Capable to cut veneer automatically in regul size and also in option size only by pushing a button switch, functio by Pneumatic Control System. Specially equ pped with Veneer Tipy (lift conveyor) with mo 200W 1 set. Complete with electric drives arranged with motors 7.5KW and 2.2KW 1 so each, control panels a standard accessories.	ar nal ned ni- ole otor		
Ъ		INCLINED CONVEYOR FOR AUTO CLIPPER .	2 sets	1,772-0-	7,544-0-
7	V24-DH	"HEAVY DUTY" VENE ROTARY LATHE -1,500mmL. x 1,600 (5'-0" x 5'-3")	1 set		17,915-0-

Ttom	Machine		<u></u>	PRICE (Stg. £, CIF	' Tema)
Item	Туре	Description	Q'ty	Unit price	Amount
		Heaby duty main frame are mounted on the rig ly constructed bed fra and both main spindles of 150mm in diameter efficiently controlled HYDRAULIC MECHAN Proveded with comple set of PNEUMATIC CO ROL SYSTEM, which functions for quick re lease of pressure bar center spur knife, chaing of thickness gear, and for quick forward and backwarding of kn carriage.	gid- me are by VISM. te ONT- - , ang-		
		Length of knife: 1,5 Max, dia. of logs to peeled : 1,600mmD.	be		
		Peeling performance assurable from 0.05m to 9.90mm in 149 kind of thickness. The ma spindles of 150mm in meter are made of ste iron and are set with Taper Roller Bearing and Bushings which a helpful to prevent adj ably the frictional we that may occur during the long time spindle revolution. Equipped with auxil. motors 7. 2 sets, 3.7KW, 1.5K 0.75KE and 200W 1 s each.	am dia- dia- eel gs ure just- ear g d .5KW W, iet		
8		MAIN DRIVE FOR VEI ROTARY LATHE ARR WITH POLE CHANGE MOTOR Provided with POLE CHANGE MOTOR 371 1 set with 4- stepped	ANGED 1 set KW		2,117-0-(
		variable speed of 30- 60-90 r.p.m. which easily controlled by	-45-		

Item	Machine	Description	Ó.	PRICE (Stg. £,CIF	Tema)
110111	Туре	Description	Q'ty	Unit price	Amount
		POLE CHANGER. Complete with magnet switches and standard accessories.			
9	V60	VENEER REELING AND UNREELING SYSTEM WITH REEL CIRCULATIO SYSTEM	1 set nD.		3,712-0-0
		Capable to reel veneers up to 1,000mm in diame- ter and 1,500mm in wid Reeling speed is synchr nized with peeling speed of Veneer Lathe in step less variable speed, by means of Reeling Speed Synchronizing System as quoted in the below item. Provided with electric drives arranged with motors 3.7KW, 0.75KW 200V/1 set each, 400W 2 sets and standard accessories.	- th. 		
10		SEMI-AUTOMATIC REEN ING SYNCHRONIZER WI VENNER SPEED COMIN FROM LATHE Arranged with the spec ally designed "V.S. Motor System" Provide with necessary electric wirings and parts.	TH G 1 set i-		578~0-0
\$ 1	V43-D	VENEER AUTO CLIPPE IDEALLY MECMANIZED FOR RUNNING-CUT SYSTEM) . 1 set		3,270-0-0
		Capable to cut veneers automatically in regula size and also in optina size only by pushing a button switch, function by Pneumatic Control	r 1		

Item	Machine	e Description	Q'ty	PRICE (Stg. £, CIF Tema)		
	Type		~ 0	Unit price	Amount	
		System. Complete wi electric drives arran with motors 7.5KW an 2.2KW 1 set each, co rol panels and standa accessories.	ged d nt-			
12	V40-D	MANUAL UREEN VEN CLIPPER -2,740mm- (9'-0")		1,285-0-0	2,570-0-0	
		Capable to cut veneer the desired size by m al operation accordin to the crank mechanis driven by motor 1.5K 1 set. Complete with standard accessories	anu- g sm, W			
		Length of knife : 2,740mm (9'-0")				
13	V40-D	MANUAL GREEN VEN CLIPPER -1,500mm- (5'-0")	4 sets	1,050-0-0	4,200-0-0	
	× .	Capable to cut venee: the desired size by m al operation accordin to the crank mechani driven by motor 0.75 1 set. Complete with standard accessories	nanu- ng sm, KW			
		Length of knife : 1,500mm	··.			
14	V92-D	"WET SYSTEM" PREC VENEER KNIFE GRIN -2,800mm- (9'-3")	DER 1 set		3,077-0-0	
		A compact grinding carriage is mounted the rigid frame bed a driven by 1.5KW mot with speed reducer t make smooth travers	or o			
		mate shooth travers motion of the said carriage. Provided with a grinding whee directly driven by motor 3.7KW 1 set a	1			

Item	Machine Description Q'ty		tyr	PRICE (Stg. £, CIF	Tema)
	Туре	X	-y	Unit price	Amount
		a special Lapping attachment powered by motor 0.75KW 1 set. Complete with a gear pump for cooling driven by motor 400 W 1 set and standard accessories.			
		Max. ginding dimen- sion: 2,800mm Grinding speed: 9,750mm/min./60C. 7,920mm/min./50C.			
15	S40-B	"LONGITUDINAL CIRCU- LATION SYSTEM" VE - NEER ROLLER DRYER 2 -4,570mmW. x 4D. x 12S (15'-0")	sets	33,273-0-0	66,546-0-0
		Complete with "high efficient" Heating sec- tions equipped with com- plete set of feeding rollers and steaming pipes, Feeding section, Cooling section with Forcedcooler and stan- dard accessories. Nos. & Size of drying			
		sections: Feeding section: 1(1,840mm) Heating section : 12(1,600mm per section) Cooling section : 1(2,489mm)			
		Total length of dryer : 23,529mm Total width of dryer : 7,470mm Total height of dryer : 4,690mm			
		Hourly drying capacity:- In condition of steam pressure 8 kgs/sq.cm initial moisture con- ten 70-75%, final conten 7-8%, under normal stomospheric or equal wood species			

Item	Machine	Description	Q'ty	PRICE (Stg. £, CIF	' Tema)
	Туре		×2 0.9	Unit price	Amount
		1,560 sheets of 4' x 8' x 0.85mm veneer or 434 sheets of 4' x 8' x 2.4mm veneer			
		Stem consumption : 2,570 kgs/hr. Allowance : If higher stem pressure applied in drying, assurable more drying capacity accordingly.			
		Provided with electric drives arranged with motors 22KW 2 sets, 11KW, 7.5KW and 1.5KW 1 set each.) { 		
16	V42-B	DRY VENEER SIZING CLIPPER -2,740mm- (9'-0")	1 set		1,162-0-0
		This machine is helpful arrange regularly the narrow sized veneers for the better utilization. Complete with electric motor 1.5KW 1 set and standard accessories.	1		
		Length of knife : 2,740mm (9'-0")			
17	WO2-B	"TRAVELLING CUTTER HEAD SYSTEM" VENEED JOINTER -2740mm x 50mmTh (9'-0" x 0'-2")		3,	3,330-0-0
		Provided with 2 sets of travelling cutter heads which are connected directly to the respecti 2.2KW motors and are driven by means of rigi super chain powered by motor 1.5KW 1 set, clamping apparatus wit special motor 1.5KW 1 set and all automatic	ve d		

Item	Machine	Description	Q'ty	PRICE (Stg. £, CIF	Tema)
	Туре		~ • 5	Unit price	Amount
		Complete with the independent and portable attachment CUTTER GRINDER driven by motor 400W 1 set for grinding the cutter blades of cutter heads and standard accesson Max. cutting size: 2,740mmL. x 50mmTh. Feeding speed of cu- tter heads: 9,140mm/min. (60C.) or 7,620m min. (50C.)	ries.		
18	W11	TAPING MACHINE -1,370mm- (4'-6") Complete with electrimotor 1.5KW 1 set an	c d	802-0-0	1,602-0-0
		stepless speed change Feeding speed is assuble from 4,600mm to 18,200mm per minute in stepless and depth of frame is 1,370mm. Attached with stan- dard accessories.			
19	CC	TAPELESS SPLICER. -1,040mm- (3'-5") Complete with driving motor 1.5KW 1 set an standard accessories Splicing capacity in veneer thickness: 0.5mm - 6.0mm Frame opening : 1,040mm	d	3,005-0-0	6,010-0-0
20		PATCHING MACHINE, MANUAL OPERATED Type : PP	1 set		385-0-0
		Consisting of four ki of vessel type punche in accordance with th size of defects. Su- pplied with 4 sets of cutter and foundation bolts.	es, ne 		

Item	Machine Type	Description	Q'ty	PRICE (Stg. £, CIF	Tema)
				Unit price	Amount
21	XO2	GLUE MIXER Capable to mix glue 2 Litre. Complete with motor 2.2KW 1 set an standard accessories	10 d	390-0-0	1,170-0-0
22	W23	"FOUR ROLL SYSTEM PRECISION GLUE SPREADER	2 sets ally ha- st co- s, n ith 1. s	3,960-0-0	7,920-0-0
		Cluing speed : 60m or 80m/mir (2-stepped vari ble speed)			
23		X LIFTS FOR THE ABOVE	. 4 sets	707-0-0	2,828-0-0
24	P10	-Capacity : 2 tons- "POWERFUL" COLD FRESS -2,590mm x 1,380m (8'-6" x 4'-6")		4,415-0-0	8,830-0-0
	7	Complete with "high efficient" and "powe Hyd. Pump driven by motor 7.5KW 1 set, Changing cock value	y		

Thomas	Machine			PRICE (Stg. £, CIF	Tema)
Item	Туре	Description	Q'ty	Unit price	Amount
		<pre>with operating lever for oil pressure 1 se and standard accesso ries. Size of table : 2,590mm x 1,38 Max. opening betwe upper and middle tables : 1,220mm Ram & cylinder : 180mm dia. x 8 pc. Specific working pre ssure on plywood of 2,540mm x 1,300mm in case of max. hyd pressure 250 kgs/ sq.cm. : 15.4 kgs/sq.cm Total pressure: 508 tons</pre>	Omm en		
25	а.	TURN BUCKLES FOR ABOVE COLD PRESS		5-9-0	2,180-0-0
	b.	I BEAMS FOR ABOVE COLD PRESS		3-19-0	1,900-0-0
26	a.13	"WIRE SYSTEM" ELE TOR FOR SUTO. LOA DAR Complete with drivin motor 2.2KW 1 set a standard accessorie Size of table : for 8'x 4' plywo	AD- . 2 sets ng nd s.	2,015-0-0	4,030-0-0
	b.L10	"STATIONARY TYPE AUTOMATIC LOADER Complete with drivin motor 7.5KW and 5. 1 set each and stand accessories. Nos. of deck: 20	" ? 2 sets 9g 5KW	6,695-0-0	13,390-0-0
	c. P20	AUTOMATIC HOT PRESS	. 2 sets m	17,065-0-0	34,130-0-0

Item	Machine Type	Llocomintion () Lt	PRICE (Stg. £, CIF	Tema)
	- 5 1		Unit price	Amount
		Provided with "swivel- jointed-pipes" for each hot platen, high effici- ent and powerful Hyd. Pumping System driven by motors 45KW 1 set and 7.5KW 1 set, all automatic Controller for pressing time, pressure and tempera- ture, provided with temperature control valve 1 set and stand- ard accessories.		
		Size of hot platen : 2,700 x 1,380 x 38mm Nos. of hot platens : 21 pcs. (20 ops.) Daylight of each open- ing : 90mm Ram & cylinder : 390mm dia. x 2 pcs. Specific workingg pressure on hot platen in case of hyd. test pressure 250 kgs/sq.cm. : 16.2 kgs/sq.cm. Total pressure : 600 tons Closing time : 35 sec.		
	d.U10	ELEVATING UNLOAD - ER 2 sets Practically designed to convey just pressed plywood out to next process automatically. Just pressed plywood is pushed out by each end of Loader's loading trays and unloated onto each deck of this Un- loader, which is going down and then belt con- veyor. Complete with electric motor 3.7KW 1 set and standard accessories.	3,248-0-0	6,496-0-0

Item	Machine	b)o nominti au	Oltra	PRICE (Stg. £, CIF	Tema)
	Туре		Q'ty	Unit price	Amount
	e,	UNLOADING CONVEY)R 2 sets	1,097-0-0	2,194-0-0
		Complete with driving motor 0.75KW 1 set an specially equipped with tipple device driven b electric motor 0.75KW and standard accessor	nd Sh Y V		
27	a.W30- DC	"HIGH SPEED" HEAVY DUTY DOUBLE SAWS	1 pair		5,045-0-0
	-	Specially designed for high speed trimming of panels. Consisting of the length-wise cut ting (First Saw) and the cross-wise cuttin (Second Saw), with cutting speed 12 to 36 M/min., Equipped wit electric motors 3.7KV x 4 sets, 2.2KW x 2 sets and 0.75KW x 2 sets a standard accessories	g h w ets and		5,015-0-0
	b,	CHIP SAW FOR ABOVI 14 " dia.	E 6 pcs.	41-0-0	24600
	с.	CHIP SAW GRINDER	1 set		857-0-0
		Specification : Available dia. of set to be ground : 100mm - 405mm Dia. of grinding wheel : 150mm Rev. of ginding wheel : 3,000 r.p.m 6,000 r.p.m	./50C./S.		
		Power req'd : for grinding whe 0.25KW for cooling pum 40W for lightening de 60W	p :		
	d.	GRINDING WHEEL (DIAMONG) FOR AVOVE	. 2 pc.	128-0-0	256-0-0

Item	Machine	Machine Description Q'ty	PRICE (Stg. £, CIF	Tema)
			Unit price	Amount
28	W41	"HEAVY DUTY" PANEL SCRAPER WITH SUPER CHAIN DRIVE SYSTEM 2 sets -1,385mm- (4'-7")	4,920-0-0	9,840-0-0
		Furnished with the powerful frame const- ruction and specially designed to make strong and accurate scrate scraping per- formance for plywood panels by means of super chain drive sys- tem powered by 11KW motor 1 set. Table lifting is controlled by motor 0.75KW 1 set and feeding speed is changed in 2-steps by gear change. Length of knife : 1,385mm Feeding speed : 27.4m - 36.8m/min. (2-stepped variable)		
29	W91-B	"SUPER CHAIN FEED SYSTEM" PRECISION SCRAPER KNIFE GRINDER 1 set -1,385mm- (4'-7")		1,402-0-0
		Provided with 2 pcs. of grinding wheels mounted on the grinding carriage, each of which is directly driven by motor 200W respectively. The travel of the carriage is effected by means of the super chain feed system driven by 0.75KW		
		motor with reduction gear, functioned by electro- magnetic system. Com- plete with standard accessories. Max. grinding dimen- sion: 1,385mm Rev. of grinding wheels:		

-87-

Item	Machine	Description Q'ty	PRICE (Stg. £, CIF	' Tema)
	Туре	× ty	Unit price	Amount
30	WS-D	"R. P. P" DELUXE SANDER (HEAVY DUTY TYPE) 1 set Specification & accesso- ries: Max. working width: 1,220mm/min. $(4'-0")$ Range of working thick- ness: 2.7 - 25M/min. Feed speed : 25-92M/min. Abrasive belt speed : 1,300M/min. Abrasive belt size : 1,310mm x 2,500mm (4'-4" x 8'-3") Automatic control air pressure : 6-7 kg s/sq.cm. Electric motors : for 1st head belt driving : 37KW x 4P : 1 set for 2nd head belt driving : 30KW x 4P : 1 set for 3rd head belt driging : 22KW x 4P : 1 set for feeding : 3.7KW x 4P : 1 set for feeding : 3.7KW x 4P : 1 set		13,830-0-0
		0.75KW x 4P : 1 set Air compressor with 15KW motor 1 set : 1 set Electric control panel : 1 set Operating box : 1 set Dust collecting hoods : 1 set Standard tool box : 1 set Foundation bolt : 1 set Automatic feed conveyor : 1 set Contact platen : 1 set		
31		Automatic Panel Conveying System for 4' x 8' line, as		

	Machine			PRICI (Stg. £, CIF	
Item	Туре	Description	Q'ty	Unit price	Amount
		arranged between the fo cooling conveyor (includ and the position of disch ging side on Deluxe San	led) har-	plete	14,143-0-0
		Sub-Total (I)		CIF Tema St	g. £328,007-0-0
		II. SUPPLEMENTARY	EQUIPME	INT	
1		Electric Hoist 5 tons capacity Moterized lifting and travelling in single speed.	2 sets	1,187-0-0	2,374-0-0
2		MONO-RAIL FOR THE ABOVE HOIST Complete with trolley wirings, supporters, insulators and stoppe: for wirings.	2 sets	54 5- 0-0	1,090-0-0
		Overall length : 20m (10m/pc.)			
3		ELECTRIC HOIST 3 tons capacity Motorized lifting and tragelling in single speed.	1 set		565-0-0
4		MONO-RAIL FO THE ABOVE HOIST Complete with trolley wirings, supporters, insulators and stoppe for worings. Overall length : 20m (10m/pc.)			545-0-0
5		FREE TRUCK 3m x 1m	40 sets	68-0-0	2,720-0-0

.

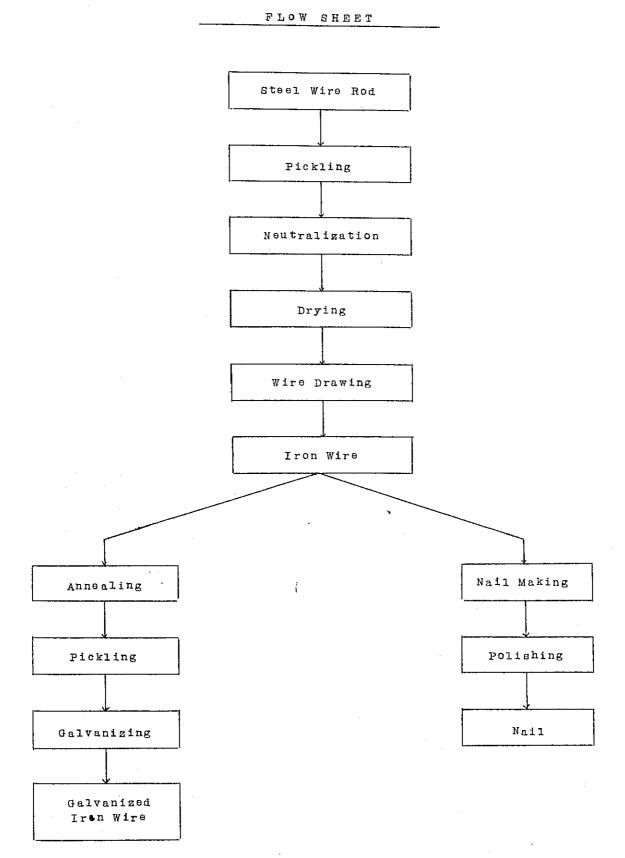
-89-

Item	Machine	Machine Description (Q't y	PRICE (Stg. £, CIF Tema)	
	1350			Unit price	Amount
6		RACK ROLLER CON-	120 pcs.	68 -0-0	2,720-0-0
7		Width : 5" Pitch of roll : 6" Length of conveyor : 5'-0"/pc.			
7		"KETT" MOISTURE METER	3 sets	77-0-0	231-0-0
8		SHEAR TESTING MACHINE	1 set		638-0-0
		500 kgs capacity Complete with 400W motor 1 set and stand accessories,	ard		
9		SHREDDER (300 cub.f hr. capacity)	t/ 4 sets	2,142-0-0	8,568-0-0
		With Electric Drive (22KW) and standard acce- ssories.			
10		"CORE VENEER" CIRCULAR SAW	6 sets	428-0-0	2,568-0-0
11		FORK LIFT, 3 TONS	2 sets	2,828-0-0	5,656-0-0
12	, ,	VENEER WASTE CON VEYORS			8,572-0-0
13		DUST COLLECTOR	1 lot		9,428-0-0
14		BOILER, with capa- city 5 tons	. 2 sets	26,000-0-0	52,000-0-0
		Max. allowable work ing pressure : 12 kgs/sq.cm. Actual evaporation :			
		Normal 5,000 k Max. 6,000 kgs Heating surface : 176m ²			
		Including : 1. Step grate with feeder 1 2. Brick setting	set		
		$\frac{\text{materials } 1}{-90-}$	set	1	

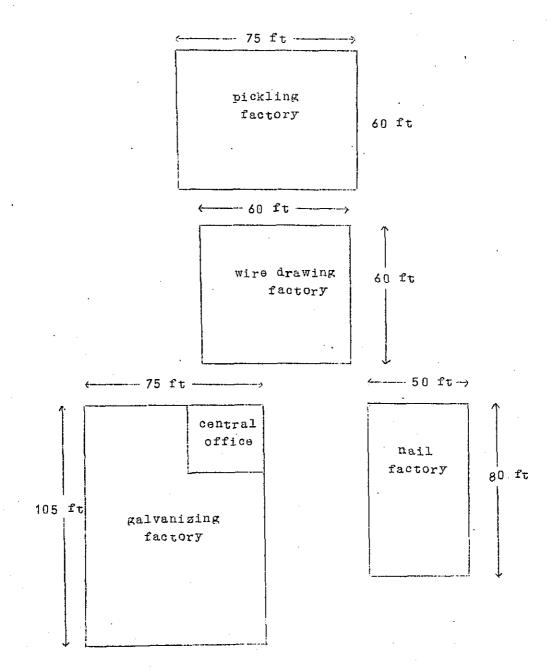
Item	Machine	Escription Q'ty	Ottor	PRICE (Stg. £, CIF Tema)	
	Туре	scription	Q'ty	Unit price	Amount
		3. Mechanical soo			
		blower 1 se	· •	:	
		4. Automatic feed			
		regulator 1 se 5. Feed water pur			
		driven by motor			
		້ 1 ຣ∈			
		driven by stear			
		1 se			
		6. Piping material for boiler room			
		7. Steam header			
		1 se			
		8. Induced draft fa			
		9. Steel stack with			
		guy wire 1 se			
	1	0. Brick material			
		for breaching			
		1 56	•		
	1	1. Flue gas duct			
		insulating matr als 1 se			
		12. Feed water me			
		1 s			
		13. Spare parts ar			
		tools 1 so 14. Control box &	1		
	1	Electric wiring			
		1 s	-		<u>.</u>
		15. I _n sulating mar	teri-		
		als and tools			
		1 s	et		
	No	t including :			
		1. Pipings of outs	ahis		
		Boiler room			
		2. Water saftener	.		
		3. Drain tank			
		4. Foundation and			
		Building mater5. Ordinary red b			
		6. Cement			
		7. Lime			
		8. River sand			
		9. Water supply t	ank		
15	1	ping Materials from	n İ		1
12	B	oiler room to Hot	Complete	•	
		resses & Dryers	1 set		6,480-0-
		-91			······

 Item	Machine Type	Description	Q'ty	PRICE (Stg. £, CIF Tema)	
				Unit price	Amount
16		Electric wirings of in- side factory	Complete 1 set		12,960-0-0
		Sub-Total (II)	····	CIF Tema <u>Stg.</u> i	117,395-0-0
	<u>. 11</u>	I. WORK SHIO MACHINE	RY & TO(DLS	
1		Production High Speed Lathe -450mm x 1,250mm-	1 set		2,928-0-0
2		Shaper -600mm-	1 set		1,741-0-0
3	• •	Milling Machine : Working surface : 1,350mm x 310mm Londitudinal travel : 710mm			5,854-0-0
4		Welder (Selearc D.C. welder)	1 set		330-0-0
5		Floor Type Grinder : Overall height : approx : 991mm Floor space : approx : 320mm x 380mm	1 set		102-0-0
6		Light Radial Drilling Machine	1 set		2,587-0-0
		Max. distance, columr to spindle	1		
7		Tools	1 set	2,132-0-0	
		Sub-Total (III)		CIF Tema Stg.	£15,674-0-0
ł	_ <u></u>		 		<u> </u>

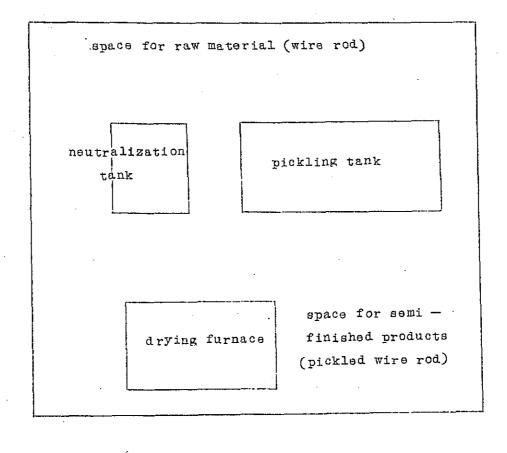
•


Item	Machine Type	Description Q'ty	PRICE (Stg. £, CIF Tema)	
			Unit price	Amount
		IV. TOOLS FOR INSTALLATION OF PLYWOOD PLANT		
		Tools for installation of Veneer & Plywood Machinery 1 lot		700-0-0
		Tools for installation of Piping & Boiler 1 lot		2,060-0-0
* <u></u>		Sub-Total (IV)	CIF Tema Stg.	£2.,760-0-0
		V. EXPENSES AND CHARGES FOR SENDING TECHNICIANS FOR MACHINERY AND BOILER INSTELLATION		
1		For : Basic Machineries and Equipment :		4,428-0-0
		 Nos. of technicians required : 4 mens 		
		 Period of Service : 6 months Total salaries due techni- cians : Stg. £8,568-0-0 (@£357-0-0/man/month) 		
		4. Total outfit allowance : Stg .£288-0-0 (@£72-0-0/man)		
2		For : Boiler Equipment P		
		1. Nos. of technicians re- quired : 2 men		
		2. Period of Service : 6 months		
		3. Total salaries due techni- cians : Stg.£4,284-0-0 (@£357-0-0/man/month)		
		4. Total out fit allowande : Stg.£144-0-0 (@£72-0-0/man)	Š,	

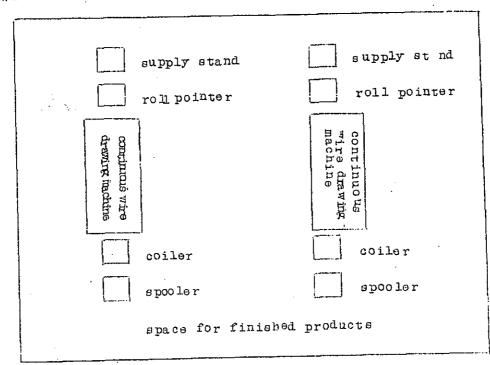
•


Item ^N	Machine Type	Description	Qʻty	PRICI (Stg. £, CIF		
	туре	•		Unit price	Amount	
	PROVISION	<u>:</u>				
	A) Hours	of work : Employmen basis of eig hours a we	ght (8) hours	ians shall be a a day, vorty-	on the eight(48)	
B) Period of Employment : Employment of Technicians for machinery and boiler installation shall be for period of six(6) months after completion of the machinery foundation works which shall be made by the local arrangement.					all be pletion hich	
C) Payment : Prior to departure, the Employer shall make available to the Technicians a credit for Starling Pounds 'Thirteen Thousands Two Hundreds Eight For Only (Stg. £13,284-0-0 to cover the above quoted expenses and charges					for 13,284-0-0)	
D) The above mentioned expenses and charges do not include the flying charges (with return), boarding and lodging charges and other required expenses which shall be for account of the Employer.					ng and expenses	
	E) Other	provision shall be se this contra		upon the reali	zation of	
	Sub-T	otal (V)	C	CIF Tema Stg.	.€,13 ,28 4 - 0-0	
	Grand	-Total Item (I), (II),		· .		
		(IV), (V)) 	CIF Tema Stg	<u>.£477,120-0-0</u>	
Rema	rks :					
1) The above quoted machines and equipment are principally arranged with the electirc driven system based on 220V. and 60C.						
2)	2) The quoted prices are based on the present price factors of the raw materials, and therefore, in case the present factors are changed, we shall request you to adjust the quotation prices accordingly.					
3)	 The quoted machineries and equipment shall be final by the maker's inspection. 					

.


.

(1) Building Lay Out

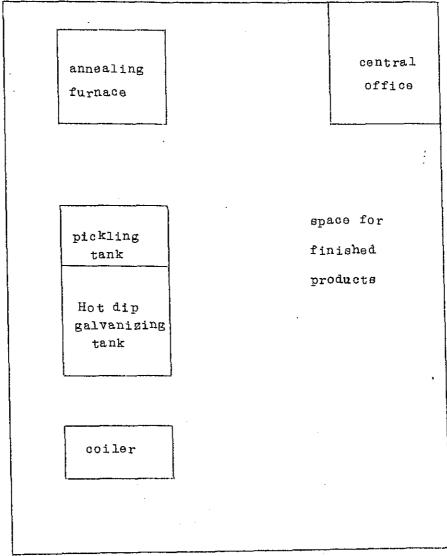


(2) Pickling Factory

(3) Wire drawing Factory

. ••

(4) Nail Factory


,

tool space for raw Material room A D D neilmaking В machine \mathbf{E} (A~₽) Ε С Ε F C F · F ъ a . polishing banel(a~b) space for C đ finishad products packing machine

.

.....

(5) Galvanized Iron Wire Factory

.

.

· · ·

E. PRODUCTION PROJECT FOR IRON WIRE, IRON NAIL AND GALVANIZED IRON WIRE.

I. MARKET SITUATION OF IRON WIRE

Demand for iron wires in Ghana can be broadly classified into two categories; one for consumption as the material for producing secondary products such as wire nets, wire ropes and barbed wires, the other for direct consumption for the purpose of banding and concrete piping. The following review of the present market Situation is given with the stress placed on nails, wire ropes and wire nets which are in the largest demand in Ghana.

(1) Nails.

The productive capacity of the two nail factories now existing in Ghana (Metal Works Corporation and Wire Industries) is 6 - 7 tons and 2 - 3 tons per day respectively (two shift system), which indicates that Ghana's output of nails is approximately 3,000 tons assuming that the number of work-days is 300 days a year.

The annual demand for nails in Ghana exceeds this productive capacity, resulting in the import from abroad as given below:

Year	<u>Q'ty (cwt)</u>	<u>Value (£G)</u>
1961	31,252	120,311
1962	18,011	49,304

Consequently, the annual consumption of nails in Ghana is presumed to amount to about 4,500 tons.

The selling price of nails produced by the above two factories, which averages $\pounds 4-10$ per cwt, is detailed below by size.

Selling Price of Nails in Ghana

Inch x Gauge No.	S./cwt
$1/2 \ge 18$	142
3/4 x 17	102
1 x 16	112
1 x 15	108
1 x 14	106
$1+1/2 \ge 14$	98
1+1/2 x 13	92
2 x 12	88
2 x 11	88

Inch x Gauge No.	S./cwt
2+1/2 x 10	87
3 x 8	86
3 x 9	86
$2+1/2 \ge 7$	85
4 x 7	84
4 x 6	84
5 x 5	82
6 x 4	82

The production list given hereunder will, while providing information on the production by size of nails by Metal Works Corporation (daily output: 6 - 7 tons), make it clear that the consumption of nails in Ghana centers upon gauge #6 - 13 among which Gauge #10 - 12 are most greatly demanded. Nails of Gauge No. below 16 are produced insan extremely small quantity.

Production of Nails by Size (Apr. 1962 - Mar. 1963)

Inch x Gauge No.	Production (cwt)	Sales (cwt)
$1/2 \ge 18$	-	_
3/4 x 16 & 17	: 27	. 27
1 x 15	1,257	1,162
1 x 14	318	287
$1/2 \ge 14$	438	447
1+1/2 x 13	2,609	2,640
1/2 x 12		-
2 x 11	3,776	3,719
2 x 12	4,159	3,556
2+1/2 x 10	4,764	3,352
3 x 4	31	28
3 x 8	4,424	4,259
3 x 9	3,744	3,385
4 x 6	6,341	6,174
4 x 7	2,522	1,583
5 x 5	1,905	2,290
6 x 4	875	812
Total:	37,190	33,721

- 96 --

(2) Wire Nets and Wire Ropes.

Ghana has no factories capable of producing wire nets and wire ropes, and her demand for these products therefore depends solely upon import. Import statistics show that Ghana's annual consumption of wire nets amounts to an estimated figure of slightly less than 2,000 tons, and that of wire cables and ropes about 1,000 tons.

	(Wire !	Vets)	(Wire Ro	(aeqo
Year	Q'ty (cwt)	Value (£G)	Q'ty (cwt)	Value (£G)
1957	21,344	92,305	13,018	130,118
1 958	20,914	109,999	16,589	162,768
1959	26,818	155,829	18,930	189,976
1960	37,524	186,227	20,482	189,359
1961	37,168	197,323	-	-
1962	19,583	120,693		-
1963 (Jan – Jul	22,906 l)	134,669	-	-

Import of Wire Nets and Wire Ropes

From the data hitherto provided, it may be gathered that the annual consumption of iron wire products (nails, wire nets, wire cables and wire ropes) amounts to a total of about 7,500 tons.

An assumption that the consumption of iron wire products increases in future in proportion to the increase rate computed from the past trend of building and construction investment leads to the conclusion that the annual consumption would amount, after five years, to a total of 9,700 tons which equals 129% of the estimated present consumption of 7,500 tons. (See the list below)

Trend of Building and								
	Const	ruction	Invest	ment (1	955 -	1962)		
	(Value in &G Million)							
	1955 1956 1957 1958 1959 1960 1961 1962							
Building Investment	27	30	30	30	36	44	50	53
Construction 12 11 11 12 16 17 20 21 Investment					21			
Total 39 41 41 42 52 61 70 74						74		
Increase 100 105 105 107 133 156 179 189 Rate *								

*Fluctuations in prices disregarded.

```
It = 10.56t + 97.29
```

I = Investment index (1955 = 100).

t = Years starting from 1955.

II. PRODUCTION PROGRAMME

Considering the present market situation and the estimated consumption increase in future, it would be reasonable to set the goal of the annual production of iron wires at 9,600 tons (800 tons per month).

Of the proposed total production of 9,600 tons, 3,000 tons is suggested to be supplied to the existing nail factories, and additional 2,100 tons to a new nail factory proposed to be established to cope with the expected future increase of consumption. The new factory is desired to be capable of outselling and eventually driving out imported nails.

The rest of 4,500 tons is recommended to be processed into galvanized iron wires to be subsequently provided as materials for producing wire nets and wire ropes.

With regard to the new factories suggested to be established for the production of steel wire products, it is suggested that both the nail factory and the galvanized iron wire factory be designed to be constructed within the iron wire factory, whereby more values will be attached to the iron wire factory as an integrated factory and less expenses will be incurred by the transportation of its products.

Demand for wire nets, wire ropes and barbed wires is considered comparatively small with their markets scattered throughout the country. Since no full scale facilities are required to produce these three items, it would be advantageous to establish the manufacturing factories within the consuming areas.

A production programme is tabulated hereunder on the basis of the proposals and suggestions given above.

Primary Product	Secondary Product	Final Product	Remarks
		Iron wires for nails, 3,000 t./year (10 t./day)	To be supplied to existing nail factories
	Nails, 2,100 t./year (7 t./day)	Mails, 2,100 t./year (7 t./day)	To be put on domestic market.
Iron wires, 9,600 t./year (32 t./day)	Galvanized iron wires, 4,500 t./year (15 t./day)	Calvanized iron wires for wire nets, wire ropes & barbed wires, 4,500 t./year (15 t./day)	
Remarks: 1,		on 300 working da	

Production Programme

2 shift system for iron wires and nails, & 3 shift system for galvanized wires.

2. Loss of material caused when processing iron wires into nails (2-3%) and iron wires into galvanized iron wires (0.5%) disregarded.

III. FACTORY LAYOUT

See the attached drawings at the end of this report.

IV. FOW SHEET AND MANUFACTURING PROCESS

(1) Flow Sheet.

See the attached sheet at the end of this report.

(2) Manufacturing Process.

The iron wire rod B.W.G. No. 5 (5.6 mm dia.) is usually utilized for the production of iron wire products. The rod is at first dipped in the pickling tank containing dilute sulphuric acid which removes the scale by dissolution. After it is taken out of the pickling tank, the rod is dipped in the neutralization tank which contains chlcium hydroxide to neutralize the dilute sulphuric acid remaining on it.

The calcium hydroxide serves as lubricant during the wire drawing process. Taken out of the neutralization tank, the rod is dried by the drying furnace. The hot blast from either side of the furnace dries the rod while it is hooked and moves in the furnace.

Then it is processed by the continuous wire drawing machine. The drawing frequency and the diameter of the dies are adjusted according to the desired wire diameter. The proposed drawing machine will have 5 blocks (5 dies), and will be capable of producing wires of B.W.G. #1 (7.6 mm dia.) - B.W.G. #16 (1.6 mm dia.). If wires of larger diameter than B.W.G. #5 are required, the rod will have to be accordingly larger in size.

Nails are made from the iron wires manufactured by the above process. Wires should have the same diameter as the nails to be produced. Iron wire is set in the nail manufacturing machine and processed continuously into nails which are then polished in the polishing barrel thereby cleaning the oily surface. Finishied nails are then packed and shipped out.

Galvanized iron wires are also manufactured from the iron wires of the same diameter as the finished galvanized wires. By passing through the annealing furnace, the iron wire is so annealed as to possess the specified tensile strength and elongation. As the annealing process causes the surface of the wire to be sulphurized, the scale will have to be removed by pickling process before being galvanized. The neutralized wire will then be galvanized by passing continuously through the hot dip galvanizing tank containing fused zinc. The proposed process is designed to have 5 supply stands and 15 coilers so that it may be adjusted for the simulataneous processing of 15 strands.

V. SPECIFICATIONS OF EQUIPMENT RECOMMENDED

(Price in £, CIF Ghana port)

Equipment	Spec. & Capacity	<u>Q'ty</u>	Price
Pickling Equipment	Pickling tank & neutrali- zation tank, 2 t/h.	1 set	£7,000
Drying Furnace	With oil burner, blower, & coil suspension equipment 2 t/h.	1 set	6,000
Continuous Wire Drawing Machine	5 blocks & 5 motors of 30 hr, Max. inlet dia. 0.315 Min. finishing dia. 0.063", 1 t/h.		21,000
Coiler	10 hp	2 sets	3,400
Supply Stand	For coils of 350 lbs, & 660 lbs.	2 sets	240
Roll Painter	5 hr, Max. wire dia. 0.315	' 2 sets	620
Finished Wire Bundling Stand	Dia. of 22", 16" & 12"	6 sets	1,200
Spooler	Take up capacity 2,200 lbs. 0.157", Torque motor: 55 lbsft.	2 sets	3,000
Air Hoist	Capacity 500 kgs.	1 set	1,000
Crane	Capacity 2 tons	1 set	7,000
	Total:		<u>*£50,460</u>

(1) Iron Wire Factory.

(2) Nail Factory.

Equipment	Spec. & Capacity	<u>Q'ty</u>	Price
Nail Making Machine	B.W.G. #22 - 15, 1 hp	2 sets	£1,500
11	B.W.G. #15 - 13, 2 hp	3 sets	6,000
11	B.W.G.# 15 - 10, 3 hp	3 sets	3,600
11	B.W.G. #14 - 8,5 hp	2 sets	3,400
11	B.W.G. #12 - 6,7,5 hp	1 set	2,300

Nail Making Machine	B.W.B. #11 - 4, 10 hr	o 1set	3,000
Polishing Barrel	3,hp	1 set	260
11	Thp	2 sets	600
11	7.5 hp	1 set	370
Nail Polishing Machine	1 hp, 10 casks/hr.	≬ set	270
Cutter Grinder	0.5 hp	1 set	300
		Total:	£21,600

(3) Galvanized Iron Wire Factory.

Equipment	Spec. & Capacity	<u>Q'ty</u>	Erice
Supply Stand	For 350 - 2,200 lbs.	5 se	ts 600
Annealing Furnace	0.7 t/hr.	1 se	t 4,200
Hot Dip Gal- vanizing Tank	15 strands, 0.7 t/hr., with Pickling tank.	1 se	t 6,500
Coiler	For 15 strands	1 se	et 2,500
		Total:	£13,300

VI. CONSTRUCTION SITE

Since the wire rod is not produced by the steel works at Tema, its supply is entirely dependent upon import. The proposed factory is therefore suggested to be set up near the port, i.e., either in Tema or Tacoradi, but with preference justifiably given to Tema from the viewpoint of the future distribution of consuming areas.

VII. CONSTRUCTION COST (Value in £)

- (1) Iron Wire Gactory.
 - a) Building for pickling tank: 4,500 ft² x $\pounds 1-0-0 = \pounds 4,500-0-0$
 - b) Building for wire drawing: 3,600ft² x £2-0-0 = £7,200-0-0 machine

Total: £11.700-0-0

(2) Mail Factory.

Building: 4,000 ft² x &2-0-0 = &3,000-0-0

(3) Galvanized Wire Factory. Building: 7,875 ft² x $\pounds 2 - 0 - 0 = \pounds 15,750 - 0 - 0$

VIII. PRODUCTION COST (Value in £)

(1) Iron Wire Factory.

Material	Unit Consumption	Unit Price	Cost per tom (B.W.G.#12)
Wire rod	1.020 t.	£41-19-0 (B.W.G.#5)	£42-15-10
Sulphuric acit	36 kgs.	D-0-2	0-6-0
Lime powder	2 kgs.	0-0-3	0-0-6
Soap	0.38 kgs.	0-3-0	0-1-2
Fuel	1414/	0-0-7	0~3-2
Grease	,	0-1-3	0-1-3
Dies ^{°g}		0-1-5	0~1-5
Electricity	60 KWH	0-0-4.5	1-2-6
Water	1/0 1/	0-1-0	0-1-0
Labour *		1-9-0	1-9-0
Depreciation **		0-13-8	0138
Indirect cost ***		0-12-0	0-12-0
		Total	£46-12-6

*Labour Cost

Post	Monthly Pay	No.	Cost
Chief Engineer	£300	1	£ 300
Engineer	35	3	105
Foreman	25	4	100
Worker	[°] 15	30	450
Chief Officer	125	1	125
Officer	12	7	84
		~	1 2 01 164

Total: £1,164

Remarks: 1. Labour cost/1 ton iron wire = $\pounds 1, 164 + 800(t.) = \pounds 1-9-0$ 2. Officer will take char of the 3 factories, i.e., iron wire factory, nail factory & galvanized wire factory.

** Depreciation

Unit depreciation for plant & equipment	: Plant & equipment value x 0.12 + annual
	production
	$=$ £50,460 x 0.12 \div 9,600 (tons)
	$= \pounds 0 - 12 - 7$
Unit depreciation	
for building	: Building cost x 0.045 + annual production
	= £11,700 x 0.045 + 9,600 tons
	= £0-1-1

Total: £0-13-3

***Indirect cost includes cost of office work and repair cost.

(2) Nail Factory.

Material	Unit Consumption	Unit Price	Cost per ton (B:W.G: #12)	
Iron wire	1,030 t.	£47-14 3 0	£49 - 2 - 7	
Machine oil		0-2-0	0-2-0	
Tool		0-0-6.	0-0-6	
Saw dust		0-2-0	0-2-0	
Electricity	55 KWH	0-0-4.5	1-0-8	
Packing material		3-10-0	3-10-0	
Labour cost *		3-16-7	3-16-7	
Depreciation **		1-5-15	1-5-15	
Indirect cost ***		1-4-0	1-4-0	
		Te	otal: £60-4-7	
*Labour cost				
Post	Monthly pay	No.	Cost	
Chief engineer	£ 300	1	€ 300	
Engineer	35	2	CT	
Worker	15	20	300	
. · · ·		Total	: <u>£670-0-0</u>	
Remarks: Labor cost/1 ton noil = $f670 + 175 t_{2} = f3-16^{-7}$				

Remarks: Labor cost/1 ton nail = $\pounds 670 + 175$ t. = $\pounds 3-16-7$

(3) Galvanized Iron Wire Factory.

Material	Unit Consumption	Unit Price	Cost per ton (B.W.G.#12)
Iron wire	1.005 t.	£47-14-0	& 47-18-9
Zinc	10.2 kgs,	0-2-0	1-0-5
Lead	3.0 kgs.	0-2-1	0-6-3
Aluminium	0.5 kgs.	0-5-0	0-2-6
Fuel oil	701.	0-0-7	2-0-10
Chloric acid	16 kgs.	0-0-5	0-6-8
Flux	2 kgs.	0-1-3	0-2-6
Water	4 t.	0-1-0	0-4-0
Electricity	23 KWH	0-0-4.5	0-8-8
Labour cost *		2-10-10	2-10-10
Depreciation **		0-10-7	0-10-7
Indirect cost ***		0-18-0	0-18-0

Total: £56-10-0

*Labour cost

Post	Monthly Pay	Nol	Cost
Chief engineer	£ 300	1	£300
Engineer	35	3	105
Foreman	25	4	100
Worker	15	5	450
		Tota	al: £955

Remarks: Labour cost/1 ton gal. iron wire = $\pounds955 + 375 t_{\bullet} = \pounds2-20-10$

**Depreciation	
Unit depreciation for plant & equipment	: $\pounds 13,800 \ge 0.12 + 4,500 = \pounds 0-7-5$
Unit depreciation for building	: $\pounds 15,750 \ge 0.045 + 4,500 = \pounds 9-3-2$
· · · ·	<u>Total:</u> <u>£0-10-7</u>

***Indirect cost includes cost of office work and repair cost.

IX. PROFIT CALCULATION (Value in £)

(1) Iron Wire Factory.

Annual profit = Annual sales - Annual cost = $\pounds 1-1-6 \ge 9,600 \ t. = \pounds 10,320$ Annual sales = Unit price x Production quantity = $\pounds 47-14-0 \ge 9,600 \ t.$ Annual cost = Unit cost x Production quantity = $\pounds 46-12-6 \ge 9,600 \ t.$ Percentage of profit = Annual profit/Annual sales = 2.3%

Remarks: Unit price assumed to equal the import price.

(2) Nail Factory.

Annual profit = Annual sales - Annual cost = $\pounds 27-15-5 \ge 2,100 \ t. = \pounds 58,318-15-0$ Annual sales = Unit price x Production quantity = $\pounds 88-0-0 \ge 2,100 \ t.$ Annual cost = Unit cost x Production quantity = $\pounds 60-4-7 \ge 2,100 \ t.$ Percentage of profit = Annual profit/Annual sales = 31.5%

Remarks: Unit price equals the present ex-factory price.

(3) Galvanized Iron Wire Factory.

Annual profit = Annual sales - Annual cost = £19-17-0 x 4,500 t. = .£89,325 Annual sales = Unit price x Production quantity = £76-7-0 x 4,500 t. Annual cost = Unit cost x Production quantity = £56-10-0 x 4,500 t. Percentage of profit = Annual profit/Annual sales = 26.0%

Remarks: Unit price assumed to equal import price.

X. CONCLUSION

As detailed in the profit calculation above, the percentage of profit expected to be accrued from the proposed iron wire factory, nail factory and galvanized iron wire factory is 2.3%, 31.5% and 26.0% respectively. The low percentage of profit of the iron wire

- 106 -

factory is attributable to the fact that while the selling prices of nails and galvanized iron wires are relatively high when compared with the cost of iron wire material, iron wires cost relatively low as compared with the cost of the steel wire rod.

Another cause of this low percentage is that the existing steel works are capable of producing only round bars of 9 mm. dia. but not the wire rod of 5.5 mm dia, making it imperative to utilize costly imported wire rods for the production of iron wires.

However, the total profit expected to be gained by the three factories combined is to be considered fairly high. Percentage of the annual profit against the total investment of £121,310 is 130.6% which equals £157,963, as calculated below:

> Annual profit/Total fixed investment = $\frac{\pounds 157,963}{\pounds 121,310}$ = 130.6%

If, therefore, the nail factory and the galvanized iron wire factory are established, as suggested, within the iron wire factory for the production of the three items, the proposed plan will be commercially quite practicable.

As expressed by the formula below, the proposed plan also ensures the saving of the country's foreign currency reserve.

Saving rate = Cost of imported + Depreciation of imported materials + Depreciation of imported machines = Sales proceeds (calculated on the basis of import price)

Iron wire factory: 3.9% Nail factory: 47.6% Calvanized iron wire factory: 42.1%

The percentage of profit and the saving rate that could be expected from the three factories leads to the conclusion that the proposed project will contribute a great deal to the economy of Ghana.

F. CONSTRUCTION PROJECT FOR TOY FACTORY.

Introduction

The assigned investigation subject for the reporter was to study the feasibility to construct an all-out toy factory in Ghana, and at the same time to carry out the basic survey on the necessary prerequisites for the development of the toy factory construction project. In order to attain this purpose, the best effort had been exerted to hear of the Ghanaian opinion and requirement. The reporter had had the fruitful discrussions with the concerning parties on the practical development methods several times. The inspection trips were made to Accra and other major cities to see the general industrial facilities available in the country. Further, a wide field survey was carried out to make clear the availability of such materials as wood and bamboo which will be needed for the production of wooden toys. The factory site was also studied in an attempt to select the most favorable location. The supply status of electric power and industrial water was among the survey items.

Concerning the spread or distribution status of toys in Ghana, almost nothing was given to the children or boys of even the town dwellers, while the toy amusements are very familiar with the children of the Western countries and Japan. It seemed that in Ghana the toy was monopolized by only a small number of privileged children. The toy shops could not be counted so many, though large department stores provided the toy quarters. This narrow circle of toy sales was probably caused by the fact that all the toys were imported from abroad and, accordingly, that the prices were too expensive to afford by the peoples' income level at the present.

On the other hand, the Ghanaian children have the stong desire for toy amusements, and the potential demand is extremely large. If the project materialized to enable Ghana to produce toys for itself, the products will be able to sell at half as much as cheap a price, resulting in the rapid spread of toys over the country. What is more prospective with the domestic production, is that Ghana could grow up to be a toy exporting country for the neighbouring states, all of which are now facing the same problem as Ghana.

- 108 -

The educational toy or scientific model should be taken up among the issues of the project. The survey team could not meet with an instance in which any school used the scientific models for the teaching stuff. However, as practised in many other countries, it is regarded as necessary that the education by using the models should be given to make children easily aquainted with science. The progress of the scientific level will be directly connected with the popularized science education.

The lower year boys of primary schools may be given the paper clay to form the shapes of animals or something. Or wooden plates and fine wire or thread may be given to them, out of which the boys can produce baby music instruments, learning by themselves the principle of basic acoustics or resonance. For the upper class boys, the miniatures or models of small electric motor, aeroplane, or radio set or transreceiver may be helpful for their understanding or the composition and working principles. All listed herein are only examples, but many other objects could be pointed out to be suitable for the teaching materials, provided that the illustration and explanation in detail have only to accompany the model set, and that the cheapest price is offered for the educational purpose.

The contents of the surveyed subject are shown as follows:

- I. Consumption Status of Toy in Ghana.
 - (1) Import record of toy.
 - (2) Home production and consumption.
- II. Production Programme.
 - (1) Production capacity.
 - (2) Material.
 - (3) Production start and planned factory site.
- III. Draft Plan by Japan for Toy Factory Construction.
 - (1) General.
 - (2) Flow sheet of manufacture.
 - (a) Metal toy.
 - (b) Woodentoy and Teaching stuff ..
 - (c) Fabric toy.
 - (3) Layout of planned factory.

- 109 -

- IV. Estimate for Toy Factory.
 - (1) Equipments cost.
 - (a) Machinery equipments cost.
 - (b) Building cost.
 - (2) Operation cost.
 - (a) Material cost.
 - (b) Pay and wage.
 - (c) Indirect cost.
 - (3) Total cost.
 - V. Profit.
 - (1) Expected Annual profit.
 - (2) Annual cost.
- VI. Conclusion.

I. CONSUMPTION STATUS OF TOY IN GHANA.

(1) Import Record of Toy.

1958	£14,316
1959	£34,670
1960	£37 , 132

Import volume since 1961 is unknown, but the increase at a higher rate than before will be presumed.

(2) Home Production and Consumption.

There has not been any toy factory in Ghana. Consequently, the volume of toy consumption has always been almost the same with the imported volums.

The Ghanaian government shows a very enthusiastic support for education, and the scientific model or other educational toys will be needed in quantities. With the large potential demand, the future consumption of toys will be no doubt on the instant increase in Ghana.

II. PRODUCTION PROGRAMME.

(1) Production Capacity.

The demand for toy in Ghana has been sharply increasing year by year. Taking into account of the future increase, a planned production scale will have to be set to about £10,000 of monthly output, making £126,000 annually in total. The production will not only meet the domestic demand, but will cover the anticipatory volume of export to the Western African countries.

(2) Material.

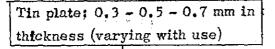
The material stuff for metal toys such as tin plate, printing ink, rubber, plastic goods, etc., are not produced in Ghana, but all must be imported. The wooden material can be prepared in Ghana, for the onying or some few other good quality woods are available at low prices. As for the fabric toy material, the imported texile will be used, but the Ghanaian wooden packing can serve for packing stuff.

(3) Production Start and Planned Factory Site.

It is possible to start production from one year after the contract made for construction. Accra will be the best site for the construction, as given the various favourable conditions to provide such conveniences as electricity, water supply, labour, materials and transportation. Tema will be the next best.

III. DRAFT PLAN BY JAPAN FOR TOY FACTORY CONSTRUCTION.

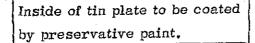
(1) General:


Out of the total production valued in amount, 50%, will be for metal toys, 20% for wooden toys, 15% fabric toys, and 15% for school teaching stuff, which are considered as the most proportionate production. These percentages will be easily controlled to change with the individual requirement increase.

The equipments and facilities in the project are also planned to meet immediately with the change with required items. However, the estimates of the costs are made, based on the enumerated percentage of the production items.

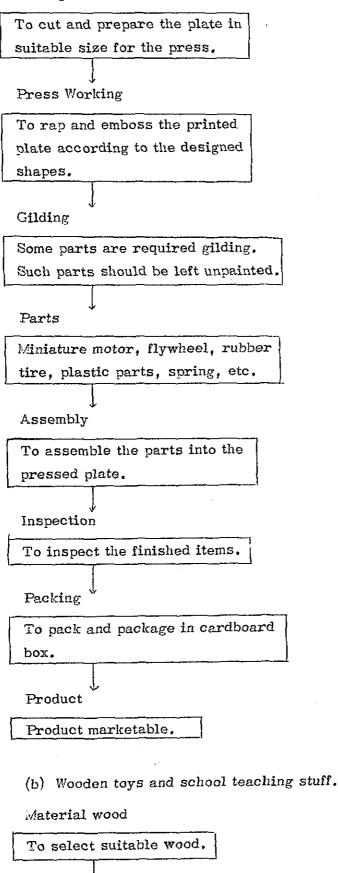
(2) Flow Sheet of Manufacture.

(a) Metal Toy

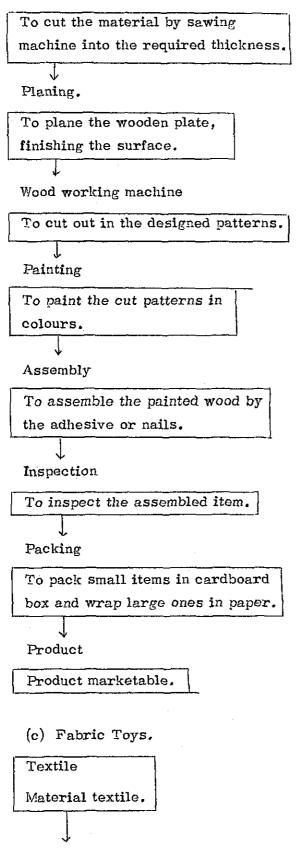

Main Material

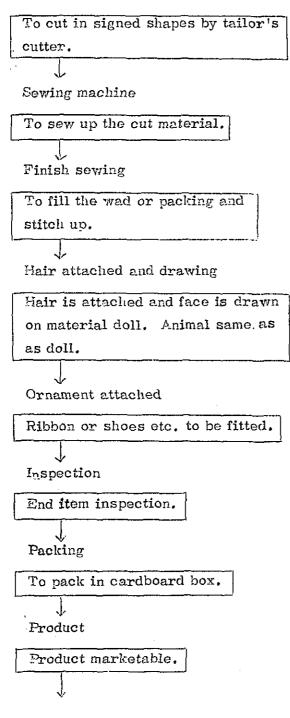
Printing on Tin Plate

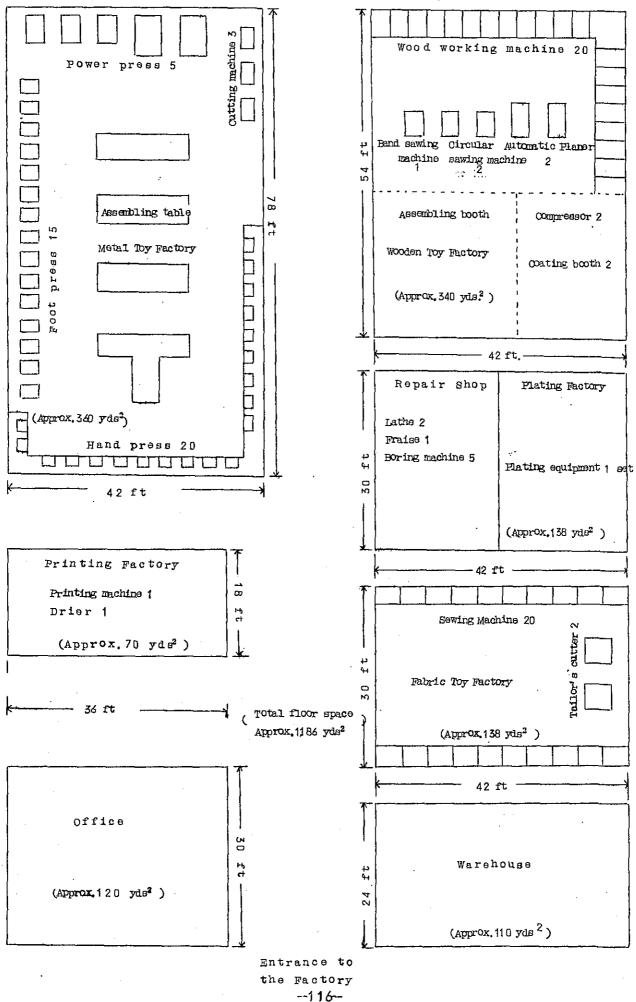
To print in 3 or 4 colours Patterns and designs to be decided Superately suitably for items.


Preservative Painting

Hot Blast Drying


To dry	the pre	servative-coated
plate.		
<u> </u>		


- 113 -


Sawing

- 114 -

Cutting

IV. ESTIMATE FOR TOY FACTORY

(1) Equipment cost.

(a) Machinery equipment cost.

Nomenclature	Unit (£)	Q'ty	НР	Amount
Power press #2	700	2	2	1,400
" #3	310	3	1	620
Foot press 2.5 t.	24	15		360
Hand press 0.6 t.	7.6	20		150
Cutting machine	120	3	$\frac{1}{2} - 1$.360
Lathe 4 ft.	420	1	1	420
" 5 ft,	550	2	1	1,100
Fraise	450	1	1	450
Drilling machine	60	51	$1/4 - \frac{1}{2}$	300
Tin plate printing machine	6,000	1	2	6,000
Hot blast dryer	2".800	1	1	2,800
Glinding equipment	3,400	1 set	1	3,400
Compressor	75	5	<u>1</u> 2	375
Wood working machine	48	20	1/4	960
Band sawing machine	110	1	1	110
Automatic planer	180	2 2	1	360
Circular sawing machine, 1	16 110	2	1	220
Sawing machine	65	20	1/4	1,300
Tailor's cutter	320	2	12	640
Jobber's table, shelf and carrying cart				
Coating booth & others	5,500			5,, 500
Tools	4,800			4,800
Fees for pattern & idea	25,000	5 or 6	kinds	25,000
Packing & Transportation charges of machines	6,000			6;000
Machinery fitting (by Japanese)	4,800	4 per	sons	4,800
Roll turning lathe	35	*5		105
TOTAL:			<u></u>	£67 , 530

The prices includes the charges for machines installation.

(b) Building cost. 10,800 ft² x \pounds 2-11-10 = \pounds 27,000

(2) Operation cost.

(a) Material cost (for a year) Tin plate 200 t.: £68 x 200 = £113,600 Wood 500t.: £20 x 500 = £10,000 Textile 400 yd: £30 x 400 = £12,000 Various kinds
@£30 per yd. Plastic & rubber parts: approx. £4,000 Printing ink, paint & approx. £6,000

Total: £45,600

(b) Pay and wage (for a year)

Chief engineer 3 (each one for metal, wooden and : £3,600 x 3 = £10,800 fabric toy)

Engineer 6 Office worker 5

Factory worker 106

 $\pm \pounds 180 \times 106 = \pounds 19,080$

Total: £33,120

: $\pounds420 \ge 6 = \pounds2,500$

: $\pounds144 \ge 5 = \pounds720$

(c) Indirect cost: £4,800

(d) Total operation cost.
 Material + Pay and wage + indirect cost = £83,520

V. PROFIT

(1) Expected annual profit.

Annual profit: £30,670

Annual output £126,000 Annual cost £95,328(-Annual profit: £30,672

•

(2) Annual cost.

Material cost		£45,600 [·]
Pay and wage		33,120
Indirect cost		4,, 800
Electric power 60,000 KWH (@4.5 pence/KWH)		450
Water	abt.	360
Depreciation of machinery equipment (7 year depreciation)		7,648
Depreciation of building (20 year depreciation)		11,350
	Total:	£95, 328

Expected profit: £126,000 - £95,328 = £30,672

Remarks: The output varies with the production items. In the case of toys, the production item covers a wide range, so the exact output cannot be preestimated. However, judging from the actual examples prevailed in Japan, an average proportion is calculated from the material consumption volume and output, on which the anticipatory output of the project is estimated.

VI. CONCLUSION

When the project works well as intended initially, the investment for amount of £94,530 will bring about an estimated profit of £30,000, and the profit ratio reaches: a approximately 32%. The saving of the foreign currency will be effected as the following formula give, and amount to £74,264 for a year. Consequently, it will be assured that the project will make an enormous contribution to the national economy asswell as the educational progress.

Amount of saved foreign currency = Output - (Depreciation + imported material cost)

= £74,264

In developing the project, the most difficult would be the training of machinists for the press and metal printers. In this respect, Japan will make a positive cooperation with Ghana to expedite the development of the project.

- 119 -

Subject: Test Result of Analysis Test of Ghanaian Onyina.

1. Hardness:

Medium hardness between the pine and the South-American Hardbarsa, best suitable for manufacturing wooden toys and /or education model materials.

2. Strength:

Containing a proper greasiness, hard to break.

- 3. Processing: Not being a hard wood at all, very easy to be processed.
- 4. Painting:

Due to the soft quality, the paint is absorbed more or less. When the undercoating is applied, no trouble occurs.

G. CONSTRUCTION PROJECT OF MATTRESS FACTORY TO USE RUSH AS MATERIAL.

General:

The assigned investigation subject in the survey team was to chase the possible utilization of the natural rush in Ghana. The survey was carried out in the respect of the quality, utilization method and demand status, and it was finally concluded that the construction of the factory should be practical under the present circumstances.

Based on the survey results, the plan of the factory construction is outlined as follows:

1.	Production Capacity:	Monthly 18,000 sheet (40" x 95")
2.	Material:	Ghanaian natural rush
3.	Production Item:	Home-use mattress, shade or sun-blind, luncheon-mattress

The survey report consists of the following contents:-

- I. RECENT SUPPLY-DEMAND STATUS OF MATTRESS IN GHANA.
 - (1) Import record of mattress
 - (2) Domestic production and consumption

II. STUDY ON THE PRODUCTION PROJECT OF MATTRESS.

- (1) Production capacity
- (2) Material
- (3) Production start and planned factory site

III. DRAFT PLAN BY JAPAN FOR MATTRESS FACTORY CONSTRUCTION.

- (1) General
- (2) Flow sheet of manufacture
- (3) Building layout
- IV. ESTIMATE FOR MATTRESS FACTORY CONSTRUCTION.
 - (1) Cost for equipments
 - (2) Cost for operation
 - V. CONCLUSION.

- 121 -

I. RECENT SUPPLY-DEMAND STATUS OF MATTRESS IN GHANA.

(1) Import record of mattress,

The record of the imported mattress for the past three year is given as follows:

1958	£35,717
1959	<i>£€1</i> 7,813
1960	£112,431

(2) Domestic production and consumption.

There is no production factory of mattress in Ghana. Therefore, it will be safe to say that the domestic consumption should be almost equal to the volume of the imported mattress. The recent trend of increasing import, as shown for the past three years, will indicate that the more demand will rise rapidly for mattresses keeping up with the elevation of the people's living standard. The field investigation revealed that in the city districts each home was using 10 or 15 sheets of mattress at present. Judging from the average durability of mattress, it may be necessitated not so far in future that each home be in need for the purchase of two or three sheets of new mattress every year on an average.

II. STUDY ON THE PRODUCTION PROJECT OF MATTRESS.

(1) Production capacity.

Since there is no existing production facilities of mattress, the planned production should meet at least with the want Ghana is facing on the goods. Taking into consideration the present status of local demand, it was concluded upon deliberation together with the Ghanaian government officials that the proper amount of monthly production should be set to 18,000 sheets (rated in sheet of $40" \ge 95"$).

(2) Material.

The Ghanaian government has the mind to utilize the natural bulrush as the material for the project. The fact is, the wild bulrush is rich in the damp ground along the downstreams of the Volta river, and its quality is observed to be excellent for mattress manufacture. The distribution amount is estimated to reach $\pounds 240,000$ to 250,000 converted in the merchandise value. The growing period of the wild bulrush is about three or four months, bringing about the three crops a year. On the premises, the annual output in the sum of £720,000 or 750,000 would be able to be realized in the project. This figure exceeds the consumption amount anticipated in the plan.

Due to the wild growth, the Ghanian bulrush is not so even in the thick ness. This difference in stem diameter of individual bulrush will make a little difficult to do the weaving on machine.

The test pieces of the bulrush was brought back to Japan for quality analysis, which will be given separately in the attached, but the outlined characteristics are: (1) about four times as thick in diameter as the ordinary Japanese produce, and (2) slightly stronger in the tension strength test than the Japanese one.

The thick diameter will emerge in the different appearance and design of the finished product. The fine matting as the Japanese "tatami" mattress could not be produced, but the product would be more like a straw-mat with a little rough weaving. However, from a point of ventilative view, this kind of mattress would be more suitable for the natural climate of Ghana. The mattress made of the thick bulrush would give more comfort to the peoples' living customs and manner in Ghana than the fine woven of Japan.

On the other hand, when Ghana will be on the outlook for the export market of the produced mattress, the Ghanaian bulrush-material mattress might not command a good saleability because of its rough weaving as well as its hardness for dyeing finish. Both of them will badly affect the merchandise appearance or design. In this respect, the Japanese rush is recommended to be transplanted in Ghana. Concerning the feasibility to cultivate the Japanese rush in Ghana, the mass plantation would assuredly be reasoned. The Japanese rush for mattings is originated in the tropical areas with high temperature and much humidity. In fact, the cultivating area of such in Japan is generally limited to its southern part only where is favoured by the hot climate. This indicates that the transplantation of the Japanese rush should be successful, provided that the adequate amount of water and fertilizer be secured. In materializing the transplantation, Japan will extend its ungrudging cooperation of Ghama.

SUPPLEMENTARY:

REPORT ON TEST RESULT OF GHANAIAN BULRUSH

1. Tension fast.

Ghanaian bulrush is on an average about three or four times as thick in diameter as the Japanese one. About five times as strong in the tension strength per one piece of rush in the dried conditions. However, the strength per sectional unit area is observed a little lower than the Japanese one. Consequently, the durability of the product will be not sollong as the Japanese rush mattress, but it would be still strong enough for the mercantile goods.

2. Dyeing test.

The dyeing features are almost same as the Japanese rush, but not so clear in colour in the surface finish, a little dark. In the case of red tint dyeing, the appearance would not be so brilliant as the Japanese rush. No trouble will occur in the blue or black tint dyeing.

3. Weaving test.

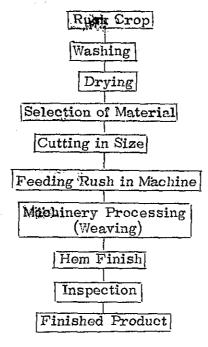
Due to the tickness, many breakage takes place on the machine, resulting in lowering the yield. Further, the diameters of individual rush materials are uneven, influencing badly on the material selection time. These two factors will cause the lower productivity and larger cost charges than in Japan. Meanwhile, the material cost will be by far lower in Ghana, and no influence may be effected in the total production cost. The thickest rush material may be used, divided into two pieces. The halved material will not produce a fine weaving, and the method should not be employed.

(3) Production Start and Planned Factory Site.

The existing growth of the Ghanaian bulrush can be immediately cropped, so upon the completion of the planned factory, the material is available for the production start. The construction of factory and the equipments installation will be able to be completed within one year after the contract. the construction site is recommended to locate somwhere arount the Tema Port along the downstream of the Volta river. The place should stand near the abundant rush growth area as well as the consumption market.

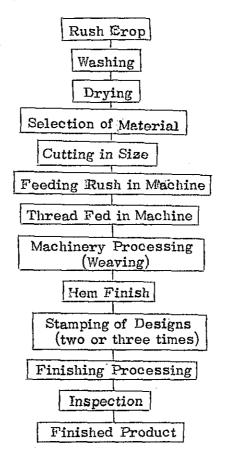
III. DRAFT PLAN BY JAPAN FOR MATTRESS FACTORY CONSTRUCTION.

(1) General.


The monthly production will be 18,000 sheets (in $40" \ge 95"$ sheet) and the production items consist of the following:

- 2. Floral design mattress..... 40%
- 3. Scenery design mattress 20%
- 4. Natural-object design mattress ... 20%

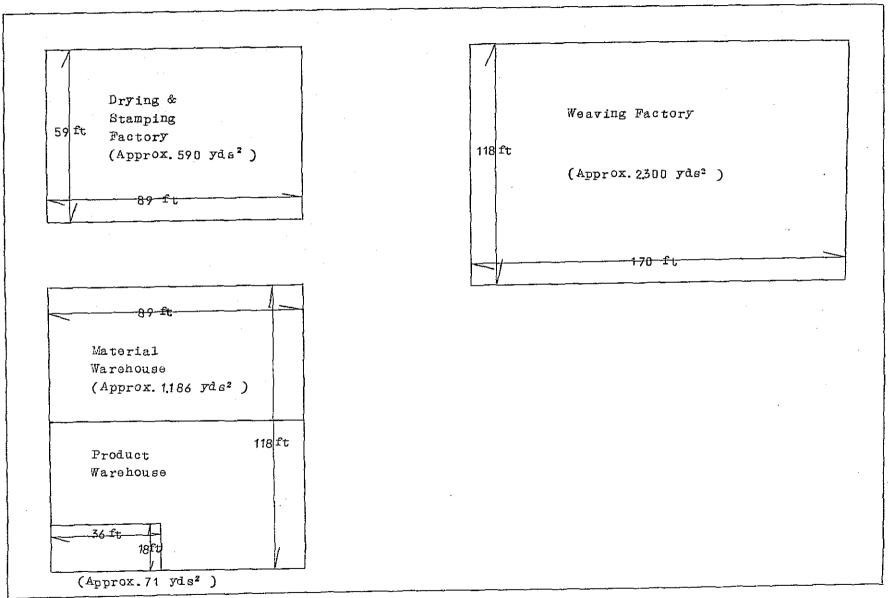
The planned percentage of production item could be easily controlled and rearranged, if needed.


🖗 (2) Flow Sheet of Manufacture

1. Solid colour mattress:

2. Floral design mattress

- Scenery design mattress, same in manufacturing flow as the floral design mattress.
- 4. Natural-object design mattress, same in manufactring flow as the floral design mattress,
- (3) Building Layout.


As per attached drawing.

IV. ESTIMATE FOR MATTRESS FACTORY CONSTRUCTION.

(1) Cost for Equipment.

The estimate for the equipments and building cost will be shown as per attached table. The annual depreciation amount is made out as follows:-

(3) Building Iayout

•

Depreciation for machinery equipments: $\pounds 92,650 + 7$ (years) = $\pounds 13,235$ Depreciation for building: $\pounds 76,500 \div 20$ (year) = $\pounds 3,825$

Total: annual depreciation amount: £17,060

Nomenclature	Q	ty	Unit	Amount
(Machinery)			:	
Weaving Machine for Thick Rush	15	units	£750	€11,250
Weaving Machine for Fine Rush	15	11	750	11,250
Finishing Machine (Large)	7	11	220	1,540
Finishing Machine (Small)	阁	11	220	1,760
Sheath Removing Machine	6	11	130	780
Automatic Conveyor	15	m.	55	2,970
Boiler	1	unit	28.µ500	28,500
Blasting Machine (Large)	1	11	450	450
Forming Tools	1	set	13,800	13,800
Switch Board	1	unit	1,700	1,700
Wiring	1	set	1,300	1,300
Auxiliary jigs and tools	1	set	6,800	65800
Kn itting Thread (6+months.stock)	•			2,300
Knitting Thread (for Japanese rus) 6-months stock)	h;			3,500
Pattern Impression Materials (with tools)	. 1	set		3,850
Working Table	30	sets	30	900
			Total:	£92,650

TABLE: REQ. VIRED EQUIPMENTS AND ESTIMATE

** Prices including freight and installation charges.

(Building)

		Total:	£76,500
Warehouse abt.10,500 ft ²	1 ⁿ	70	21,000
Factory, abt. 20, 300 ft ²	1 1	75	43,500
Factory, abt. 5,250 ft ²	1 bldg.	£80	£12,000

** Prices including charges for concrete working.

- (2) Cost for Operation (for One Year)
 - (a) Material cost £3,960
 Reeds: £250 x 12 (m/s) = ¥3,000
 Thread: £50 x 12 (m/s) = £600
 Dye stuff: £30 x 12 (m/s) =£360
 - (b) Pay and Wage £15,480
 Chief engineer: £350 x 12 (m/s) x 1 (person) = £4,200
 Engineer: £30 x 12 (m/s) x 3 (person) = £1,080
 Clerk: £20 x 12 (m/s) x 5 (person) = £1,200
 Worker: £15 x 12 (m/s) x 50 (person) = £9,000
 - (c) Electricity and Water £2,190
 Electricity: 7,500 KWH x 12 m/s x 5 pence = £750
 Water: 30,000 gallon x 12 m/s x 4/1,000 shilling = £1.440
 - (d) Other expenses: $\pounds 200 \ge 12 \text{ m/s} = \pounds 2,400$

(e) Grand Total: £24,030

Remarks: The cost of material rush only covers the expense (chiefly charges wage) required for the transportation from the cropped place to the factory.

V. SALES PROFIT.

(1) Estimated Annual Cost Charges.

Operation cost:	£24,030		
Depreciation:	17,060		
Total:	£41,090		

Remarks: The operation cost in the project appears very low, almost as low as one-third of that required in Japan. It is caused by the low-expensed material available from the feral growth.

(2) Expected annual profit.

(a) Annual Proceed.

18,000 sheets x 12 m/s x 12 shilling = \$87,840

Remarks: The unit selling price is regarded same as the imported mattress from Japan (CIF price plus import duty).

(b) Annual Expenses: £41,090
(c) Expected Annual Profit: £87,840 ~ £41,090 = £46,750

VI. CONCLUSION

The construction project of mattress factory, when working as intended, will make a great contribution to the progress of Ghanaian national economy. Against the invested amount of £16,150, the annual profit is expected to be £46,750, producing 28% of profit ratio. The saving of foreign currency, as given by the following formula, will reach £70,180.

Saved amount of foreign currency = Annual output - (Depreciation + imported material cost)

The required materials are for the most part available from the domestic producing ones, providing the favourable condition with the project to be materialized. It is therefore trusted that the project should be in the interest of the elevation of people's living standard, while achieving a saving of large sum in foreign currency outflow.

An important requirement in developing the construction project is to carry up with the transplantation project of the Japanese rush into Ghana, so that Ghana can produce high quality mattresses to grow into a powerful exporting country itself of a full range of mattress goods.