FIGURES

FIGURE LIST
 (LISTE DES FIGURES)

1. General Geologic Plan Fig. - 5.1
(Carte Géologique Générale)
2. Project Area Geologic Plan 5 .2
(Carte Géologique du Site)
3. Upper Dam Site Geologic Profile -5.3
(Profil Géologique du Site du Barrage Supérieur)
4. Water Way Alignment Geologic Profile - 5.4
(Profil Géologique des Galeries)
5. Dam and Diversion (Outlet) -8.3(Barrage et Dérivation Provisoire)

- Upsiream Alternative (A) - (Drawdown: 15 m)(- Variante Amont (A) -) (Marnage : 15 m)

6. Plan -8.4(Plan)
7.Waterway Tunnels-8.5(Galeries)
7. Intake and Outlet - 8.6(Prise d'eau amont et Prise d'eau aval)
8. Power House (1-3) -8.7(Centrale (1-3))
9. Power House (2-3) -8.8
(Centrale (2-3))11Power House (3-3)-8.9(Centrale (3-3))

- Downstrean Alternative (A) - (Drawdown: 15 m)(- Variante Aval (A) -) (Marnage : 15 m)12.
Plan 8.10(Plan)

13. Waterway Tunnel and Surge Chamber 8.11
(Galeries et Chambres d'equilibre)
14. Intake and Outlet 8 .12
(Price d'eau amont et Prise d'eau aval)
15. Power House (1-3) 8.13
(Centrale (1-3))
16. Power House (2-3) -8.14
(Centrale (2-3)
17. Power House (3-3) Fig. - 8.15
(Centrale (3-3)- Downstream Alternative (B) - (Drawdown : 20 m)
(- Variante Aval (B) -) (Marnage : 20 m)
18. Intake and Outlet -8.16
(Price d'eau amont et Prise d'eau aval)
19. 225 kV Outdoor Switchyard (1-2) -8.17
(Poste Extérieur de Sectionnement - $225 \mathrm{kV}(1-2)$)
20. 225 kV Outdoor Switchyard (2-2) - 8.18
(Poste Extérieur de Sectionnement - $225 \mathrm{kV}(2-2)$)

Tabteau 5-1 LISTE DES TROUS DE FORAGE

Hole No.	Location	$\|$Co-ordination X X	Top Elevation (m)	Length of Hole (m)	Direction of Hole	Thickness of Overburden (m)	El. of Bedrock Surface (m)	Length of Cosing Pipe (m)	Core Recovery (\%)	Diometer of Hole (mm)	Rock Type of Bed Rock	Commenced Completed	Remarks
SB-1	Dam, left bonk.	X 87,028.9 $Y 78,642.17$	420.77	35.0	Vertical					$\cdots \times\left(0^{(n) 350 m)}\right.$		$\frac{24-J a n .-1975}{27-F e b .-"}$	
SB-2	Oom, river bed.	$\begin{array}{\|l\|} \hline \times 87,10806 \\ \mathrm{Y} 78642.00 \\ \hline \end{array}$	393.00	35.0	do.					N $\times(0 \mathrm{~m} \sim 350 \mathrm{~m}$)		$\frac{6-\text { Feb- }}{1-M o r .-}$	
S8-3	Dom, right bank.	$\begin{array}{\|l\|} \hline x 87,268.78 \\ \mathrm{y} \quad 78,643.46 \\ \hline \end{array}$	422.82	35.0	do.					$\mathrm{NX}\left(\mathrm{O}^{\mathrm{m}}-35.0 \mathrm{~m}\right)$		$\frac{12-\text { Apr - }}{8 \text {-May- }}$	
SB-4	Oom, right bank.	$\begin{array}{\|l\|} \hline \times 87,184.80 \\ \times \gamma 88,759.93 \\ \hline \end{array}$	419.61	35.0	da					NX ($\mathrm{O}^{\mathrm{m}} \sim 350 \mathrm{~m}$)		$\begin{aligned} & 2-\text { Mor. - " } \\ & \text { 4-APr - " } \end{aligned}$	
SB-5	Dom, river bed.	$\begin{array}{\|l\|} \hline X 87,103.80 \\ Y \\ Y \end{array} 8,736.94 \left\lvert\, \begin{aligned} & \\ & \hline \end{aligned}\right.$	393.99	35.0	do.					NX(0m~350m)		$\frac{16-\mathrm{Mor}-\quad "}{6-\mathrm{Apr}-\quad "}$	
SB-7	Dam, left bonk.	$\begin{array}{\|l\|} \hline \times 87,015.88 \\ \gamma \\ \hline \end{array} 8,543.96$	407.54	30.0	do					NX(0m~30.0m)		$\begin{aligned} & 23-\text { Nov- } 1974 \\ & 19 \text { - Dec. } \end{aligned}$	
SB-8	Intake. (ieft bank)	$\begin{array}{\|l\|} \hline x \\ \mathrm{Y} \\ \hline \end{array} 78,642.94 .70 \mid$	404.94	35.0	do.					$N \times 10^{m} \sim 350 \mathrm{~m}$		$\frac{29-D e c .-}{27-\tan -1975}$	
			Sub-total	240.0									
SU- 1	Lower reservai sidelout let)	$\begin{array}{\|l\|} \hline \\ \hline \end{array} 86,022,03$	298.57	70.0	Vertical					NX $0^{2 n-4865 m}$ BX14865ra700m		$\begin{array}{\|l\|} \hline 27 \text {-Nov- } 1974 \\ 13 \text {-Feb- } 1975 \\ \hline \end{array}$	
SU- 2	Lower reservoir sideloutlet)		339.79	38.5	do.					$\begin{array}{\|c} N \times\left(0^{m} \sim 385^{m}\right) \\ (m, \end{array}$		$\frac{25-J o n-\quad "}{11 \text {-Mar-_" }}$	
SU-4	Lower reservoir side(outlet)	$\begin{array}{\|l\|} \hline \\ Y \\ Y \\ \hline \end{array} 9,546.5161$	310.22	100.0	do.							$\frac{15-\text { Mar- } 1975}{16-\text { Jun. }-\quad "}$	
SU-5	Lower reservoii sidedwater woy)	$\begin{array}{r} x 86,319.87 \\ Y \quad 79,400.52 \end{array}$	330.00	100.0	do.					NX(10m $\sim 100.0 \mathrm{~m})$			
SU-6	Lower reserwoir sidewoter woy)	$\begin{aligned} & x \quad 86,413.12 \\ & \times 79,26043 \end{aligned}$	350.14	125.0	do.					NXOM~1222m) BX(1222m.125m)		$\begin{array}{r} 6-\text { Jun- - " } \\ 19-\text { Aug- } \end{array}$	
SU-7	Lower reservoir sidelponerhouse	$\left\{\begin{array}{l} x \quad 86,502.77 \\ \gamma \quad 79,125.87 \end{array}\right.$	380.24	75.0	do.					NX $\times 10 \mathrm{~m} \sim 75.0 \mathrm{~m})$		$\begin{array}{r} 1-\text { Jul- " } \\ \hline 14 \text {-Aug- " } \end{array}$	
			Total	748.5									

$\begin{aligned} & \text { Pit } \\ & \text { No. } \end{aligned}$	Top Elevation (m)	Oepth (m)	Locotion		Remorks	Abbreviotions
D 5	435.38	2.50	South of upper reservoir, saddle port	Is. ond wet MLr. clay$\quad 1.5$ wet ML . $\int_{2.5 \mathrm{~m}}^{\text {with cole-nodules }}$	$\mathrm{T}_{\mathrm{s}}=0.2 \mathrm{~m}$	Ts. Topsoil L. Limestone
D 6	433.72	1.45	do.	Is. ond i Wet ML. \quad with catcite veins otong kints Cloy 0.65	Ts: $=0.2^{m}$	ML. Morl ML.S. Morly limestone
H1		5.00	Upper reservoir, intake site	Ts ond bik. cloy ILight brincloy MLS.rubble i Hord gry MLS rubble with rubble 1,2 with colc-port 2.6	Ts. $=0.3 \mathrm{~m}$	SLS. Sandy limestone MLY. marly
H2		5.00	do.		Ts. $=0.3 \mathrm{~m}$	frgs. frogments Yel., yel. yellow
H3		5.70	do.		Ts. $=0.3 \mathrm{~m}$	Brn, bra. brown Gry, gry grey
H4		5.90	do.		$\mathrm{T}_{\mathrm{s}}=0.3 \mathrm{~m}$	Blk.,blk. block Wht.,wht. white
H5		6.30	do.		Ts. $=0.3 \mathrm{~m}$	co. colluvial
H6		6.80	do.		Ts. $=0.3 \mathrm{~m}$	
H 7		4.80	do.	Ts ond stightly or moderotelyweolhered LS.Atternotion of hord layer ond soft loyer	$\mathrm{Ts}=0.1 \mathrm{~m}$	
H 8		4.00	do.		Ts. $=0.1 \mathrm{~m}$	
H9		3.80	do.	Ts. ond bik. cloy with rubble $\left.\quad \begin{array}{c}\text { i- Weother mis. } \\ 26 \text { with slip plone }\end{array}\right]_{3.8 \mathrm{~m}}$	$\mathrm{Ts}=0.1 \mathrm{~m}$	
H 10		2.00	do.	$\begin{array}{\|l\|l} \begin{array}{l} \text { Ts. ond tight brn."slide* } \\ \text { cloy } \end{array} & 2.0 \mathrm{~m} \\ \hline \end{array}$	Ts $=0.2 \mathrm{~m}$	
H 11		2.80	do.	Ts. ond clay LLight bracioy with lots of with with woble og shellfigs (Hellix)	Ts. $=0.4 \mathrm{~m}$	
H 12		3.50	do.		$T s=0.4 \mathrm{~m}$	
H 13		2.80	do.	$\begin{array}{\|l\|l\|l} \begin{array}{l} \text { Ts. ond "slide" } \\ \text { clayey Mry } \\ \text { clatide" ctoy } \end{array} & & \\ \hline \end{array}$	Ts. $=0.3 \mathrm{~m}$	
H 14		3.00	do.		$\mathrm{r}_{\mathrm{s}}=0.3 \mathrm{~m}$	
H15		4.00	do.		Ts. $=0.4 \mathrm{~m}$	
K 1		0.70	Upper dom site, right bank	$\begin{array}{\|l\|l\|l\|l\|} \hline \text { Is. and } & 1 & \text { weothered } \\ \text { substrotum } & \text { O. } 7 \mathrm{~m} \\ \hline \end{array}$	Ts. $=0.2 \mathrm{~m}$	
K 2	420.20	2.70	do.		Ts $=0.3 \mathrm{~m}$	
K 3	420.18	1.50	do.	Ts. ond orgonic Weothered substrotum, cloyey ctay with rubble 1.4 1.5 m	$T_{s}=0.3{ }^{\text {m }}$	
K 4	428.63	0.60	do.		Ts $=0.3 \mathrm{~m}$	
K 5	429.08	1.90	do.		Ts. $=0.3{ }^{\text {m }}$	
K 6	429.81	2.30	do.	Is. and ctoy with rubble cloy rich in lower port	$T_{s}=0.3 \mathrm{~m}$	
L 1		4.90	Lower reservoir out let site	Ts.ond compact Wheatheres MLS. weothered sutstrotum generolly glauconitic sondstone 4.9 m	$T s=0.3{ }^{\text {m }}$	
12		5.00	do.			
13		2.00	do.			

$11-1=1$
 $1+1+1+1+1+1+1+1$
Tr,
Profile B-B

KASSEB PUMPEO STORAGE PROJECT
water way alignment
geologic profile

NO. WATERWAY TUNNEL TYPICAL SECTION PENSTOCK
no. 1 waterway tunnel longitudinal section

NO. 2 WATERWAY tunnel tongitudinal section

PENSTOCK
NO 2 WATERWAY TUNNEL TYIPICAL SECTION
Type C Type D
Type A Type B

EL. 262.50

EL. 258.00

EL. 253.50

 KASSE8 PUMFEO STORRGE PROUECI

POWER HOUSE (3-3) - Up stream Atrestotive (A) (Drawdown, 15 m)

Figure 8 - 9	August 1978

EL. 258.50

EL. 249.50

 \qquad

\＄

4

6
（40

43454
K2 ${ }^{2}$ ，

，

4 $4=4 \mathrm{y}$
 4

23 4

 5
，
，

新

教
紋絃

4

