THE UNITED REPUBLIC OF TANZANIA

FEASIBILITY REPORT

ÔŇ

LOWER-MOSHI AGRICULTURAL DEVELOPMENT PROJECT

No. A7

THE UNITED REPUBLIC OF TANZANIA

FEASIBILITY REPORT

LOWER-MOSHI AGRICULTURAL DEVELOPMENT PROJECT

ANNEXES

.

OCTOBER 1980

JAPAN INTERNATIONAL COOPERATION AGENCY

国際協力事業団
受入 月日 '84. 4.17 416
登録No. 03382 AF7

FEASIBILITY REPORT

ON :

THE LOVER-MOSHI AGRICULTURAL DEVELOPMENT PROJECT

ANNEXES

CONTENTS

ANNEX	I	METEOROLOGY AND HYDROLOGY
ANNEX	II	HYDROGEOLOGY
ANNEX	ш	SOIL AND LAND CLASSIFICATIONS
ANNEX	IV	IRRIGATION AND DRAINAGE
ANNEX	V	AGRICULTURE
ANNEX	۷I	AGRICULTURAL ECONOMY
ANNEX	VII	ENGINEÉRING DESIGN
ANNEX	VIII	PROJECT ORGANIZATION, IMPLEMENTATION SCHEDULE AND PROJECT COSTS
ANNEY	TY STATES	PROFECT EVALUATION

an an Arthur an Arthur An Arthur an Arthur An Arthur an Arthur

al geografia National de la second

ABBREVIATIONS

.

					an a						
ART	t	Agricultural Research Insti	tute. Mini:	str	v of Agriculture						
FAO	•	Food and Agriculture Organization of the United Nations									
IDP	:	Integrated Development Plan	, Kilimanja	aro	Region						
JICA	1	Japan International Cooperation Agency									
NAPCO	:	National Agricultural and Food Corporation									
RDD	:	Regional Development Direct	ór								
TANESCO	:	Tanzania Electric Supply Co	mpany								
TPC	ŧ	Tanganyika Planting Company	1 0								
GNP	•	Gross national product	E). :	E	levation						
CUD	:	Grass domastic product	VT.	Ŵ	ater level						
B/C		Bonefit cost ratio	R.C. 1	E	lectric conductivity						
188	:	Internal rate of return	Fig.	Ē	lignre						
LC	•		$N_0(s)$	N	lumber (s)						
D.O	•	nump sum									
Length			Volume	÷ .	 A state state 						
17770	•	milimotor	lit +	้า	iter						
em	•	continator	m3	- -	ubic meter						
m	:	motor	MCM :		illion cubic meter						
un km	:	kilomotor			$(=106 \text{ m}^3)$						
ft	:	feet (-0.3048 m)			(
	•		n an								
Area			Weight								
cm ²	•	square centimeter	៣១ ៖	m	illigrammé						
_m2	-	square meter	р <u>1</u>	g	ramme						
km2	•	square kilometer	kø t	k	ilogrammé						
ha (Ha)	•	hectare $(= 4.047 \text{ acre})$	t t	t	on $(= 1.000 \text{ kg})$						
ac	•	acrè $(= 0.247$ hectare)	e Tol la 22 e T								
uv	•										
Electric	<u> M</u>	<u>easure</u>	Other Mea	sur	es						
v	:	Volt	ppm :	· P	arts per million						
kV	:	kilovolt	* *	P	ercent						
W	:	Watt	HP :	H	(orsepower (1 HP = 0.746 kV)						
к¥	:	kilowatt	°C :	D	egree centigrade						
MW	:	Megawatt	µS/em :	M	licrosiemens per centimeter						
Α.	:	Ampere	m.mhos :	М	lillimohs						
Hz	:	Hertz (cycle)	m/Eq// :	M	lilli equivalent per liter						
kWh	:	kilowatt hour	m ³ /sec :	C	ubic meter per second						
Currency	y a	nd Equivalents as of 1980		 							
TS (She	١٠	Tanzanian Shillings (= US\$0	.122 = ¥30	,6)							
US\$;;	U.S. Dollar $(= TS8.$	$18 = \frac{1}{250}$, ,							
~~*	-				•						

US\$ ¥ : : Japanese Yen

(= TS8.18 = \$250)(= US\$0.004 = TS0.033)

ANNEX I

METEOROLOGY AND HYDROLOGY

FEASIBILITY REPORT

ON

THE LOWER-MOSHI AGRICULTURAL DEVELOPMENT PROJECT

ANNEX I. METEOROLOGY AND HYDROLOGY

<u>CONTENTS</u>

1.	General	n an	<u>'AGE</u>
	Mataana	an taona ang taong sa daga ang taong sa taong s Sa sa taong s	1
4 .			
	2.1 Da	178	1
÷*	2. 2.	1.1 Rainfall data Image: Second	[] []
	2.2 Se	asonsI	-2
5 ()	2.3 Me	teorology of the Lower-Moshi Area	i -3
	2.4 Ra	infall I	-4
	2.	4.1 Rainfall characteristics I	-4
202	2.	4.2 Rainfall intensity	[6
	2.	4.3 Isohyet and areal rainfall 1	[⊣7
111	2.	4.4 Effective rainfall for water balance study I	-7
3.	Hydrolo	$\mathbf{g}\mathbf{y}$	[-10
	3.1 Di	scharge Data	(-10
	3.2 Ch	neck Discharge Méasurément	[-10
· • •	3.	2.1 Nioro river	[-11
4.4.5	3.	2.2 Rau river	[-11
	3.	2.3 Miwaleni springs 1	[-11
	3.	2.4 Himo river 1	[-12
: •	3.3 Es	stimation of Available Discharge	[-12
	3.	3.1 Nioro river	1-12
	3.	3.2 Miwaleni springs	(-13
	3.	3.3 Rau river	[-13
	3.	3.4 Himo river	[-15
	3.	3.5 Mue river 1	[-15
	3.	3.6 Annual runoff coefficient	[-16
	3.4 Fl	.ood	[-17
	3.	4.1 Hydrological data 1	[-17
	3.	4.2 Flood marks 1	[-17]
	3.	4.3 1979's flood on the Rau river 1	[-17
	3.	4.4 Calculation of peak flood discharge]	1-19

LIST OF TABLES

TABLE 1	0.
---------	----

· •

TITLE

ΡÅ	ĠE
-	-

	网络美国美国美国美国美国美国美国美国美国美国美国美国美国美国美国美国美国美国美国
I-1	List of Rainfall Stations
I-2	Average Monthly Rainfall (1)
I3	$- do - (2) \dots I_{-25}$
I-4	Summary of Meteorological Records (1)
	- Moshi Meteorological Station
I-5	+ do - (2)
	- Mivaleni Sub-station -
I-6	= do - do
	- NAFCO Kabe Estate
I-7	- do' -
í	- TPC Langasani $-$
I8	$- d_0 - (5)$
	- Ivamungu A.R.T.
1-9	Correlation among Point Rainfalls
I-10	Areal Rainfall for River Basins
I-11	Calculation of Evapotranspiration
I-12	Areal Evapotranspiration for River Basins
·I-13	List of Gauging Stations
1-14	Recorded Monthly Discharge
I15	Result of Discharge Measurement
1	for the Njoro Springs
I-16	Estimated Discharge for the Nioro River
I-17	Recorded Discharge for the Mivaleni Springs
I-18	Comparison of Discharge Records
I-19	Estimated Discharge for the Ray River
I-20	Estimated Discharge for the Himo River
I-21	Calculation of Discharge at Flood Marks
I-22	Annual Runoff Coefficient
I-23	Sample Calculation of Peak Plood Discharge
I-24	Estimation of Peak Plood Discharge

- ii -

LIST OF FIGURES

FIGURE NO.

TITLE

PAGE

I-1	Availability of Rainfall Records	I50
12	Location of Rainfall Station and Annual Isohyet	I-51
I-3	Meteorology of the Lower-Moshi Area (1)	I-52
1-4	do + (2)	I-53
I5	Monthly Rainfall Distribution	1-54
I-6	Variation of Annual Rainfall (50 years)	1-55
I-7	Comparison of Annual Rainfall	I-56
I-8	Variation of Annual Rainfall with Altitude	I-57
I9	Variation of Monthly Rainfall with Altitude	
	(January - June)	I58
1-10	- do -	
	(July - December)	I59
I-11	Variation of Daily Maximum Rainfall with Altitude	
at sea ta	for Catchment Areas	I-60
I-12	Variation of Daily Maximum Rainfall with Altitude	
	for the Lover-Moshi Area	1-61
I-13	Distribution Pattern of Daily Rainfall	1-62
I-14	Coefficient for Rainfall Intensity Calculation	I-62
I-15	Variation of Catchment Area with Altitude (1)	I-63
1-16	- do - (2)	1-64
I-17	Variation of Land Cover and	
	Evapotranspiration with Altitude	1-65
I-18	Availability of Discharge Record	I-66
1-19	Location of Gauging Station and Watershed Boundary	I-67
I-20	Result of Discharge Measurement	1-68
I-21	Rating Curve for the Njoro River	I-69
I-22	Probable Runoff Pattern	I-70
I-23	Simulation Model	1-71
I24	Simulation Results for River Discharge	I-72
I-25	Flood Mark and Cross Section of Rivers	I-73
1-26	Probable Rainfall at Moshi Meteorological Station	I-74
1-27	Rating Curve for the Kikafu River	I-75
1-28	Hydrograph for the Kikafu River (1)	1-76
1-29	- do - (2)	I-77
1-30	Relation between Rainfall Intensity and	
÷	Time of Concentration	I-78

- iii -

ANNEX I METEOROLOGY AND HYDROLOGY

General

During the survey works in Tanzania, collection of meteorological and hydrological data was made to furnish as ample data as possible to the feasibility study of the Project. Studies were made to collect data mainly to set up the criteria for the planning of the Project which have been used in the relevant parts of the study report. In this Annex-I, the process of the main studies is set forth briefly.

Meteorology 2.

Data 2.1

1.

n sa sa Rainfall data 2.1.1

1. 12 . . ¹. 41.

Rainfall data were collected mainly from the Regional Water Office in Kilimanjaro, Moshi, and from the Ministry of Water, Energy and Minerals, Dar es Salaam. Collected data cover the daily and monthly rainfall data of 35 rainfall stations for the durations graphed in Pigure 1-1. Locations and history of the stations are shown in Figure I-2 and Table I-1. The average, maximum and minimum depth of monthly rainfall are summarized in Tables I-2 and I-3.

2.1.2 Meteorological data

Meteorological data other than rainfall were collected from the East African Meteorological Department, Dar es Salaam, and from other agencies operating meteorological stations.

Pive (5) fully equipped meteorological stations have been operating in and around the Lower-Moshi area. The latest 10 years of data were collected from these stations for study. A list of these stations is as follows.

Name of Station	Operating Organization	Commence- ment Year
1. Moshi Meteorological Station	E.A.M.D.	1932
the Lyamungu ARI	Min. of Agriculture	1971
3. NAFCO Kahe Estate	NAFCO	1966
4. TPC Langasani	TPC	1935
5. Lyamungu ARI	Min. of Agriculture	1935

I - 1

Locations of the above five stations are shown in Figure I-2. Among the above stations, Mivaleni sub-station was used as a key station for agronomic study because it is located almost in the center of the Lower-Moshi area.

2.2 Seasons

de la companya

a material de catal and a constant to the subsection and the subsects The climatic seasons of Tanzania are controlled by the north and south movement of the earth on its axis. The area experiencing greatest heating due to solar energy, refered to as the Heat Trough, also experiences low atmospheric pressure. The movement of the Heat Trough, or low pressure center, follows with a lag of about four to six weeks behind the place of the sun's maximum elevation.

化化学 化分子子体 The sun is approximately overhead in Tanzania in early March and mid-October, so that the Heat Trough can be expected to have maximum effect about early April and mid-November. This trough of low pressure in the region produces a general movement of air mass from the surrounding high pressure belt. The result is a zone of convergence causing vertical upward movement of the air and precipitation. This continues from March to May causing the long rains, and from November to December causing the light rainsly. All a second states and the states of the sta

Meteorology in the Lower-Moshi area is characterized by three seasons; the rainy season from March to May, the dry season from June to October and the light-rainy season from November to February as shown in the following figure.

Item	JAN	PEB	MAR	APR	MAY	JUN	JUL	AUĠ	SEP	<u>0CT</u>	NOV	DEC
	Ligh sea	t rai ason	ny Rai	ny se	ason	가 가 가 가 다 하는 것 다 한 가 다	Dry	seas	on	L	ight- sea	rainy son
н 1910 - А. К. ¹⁹	I	lót se	eason	i Leta		Coó	1 sea:	son		Hot	seas	on
Rainfall, mm	55	46	112	238	92	21	.13	4	17		38	50
Temp., ^O C			· · ·				•		/ 1 − 6 (ε	innual	L::::7(05mm)
Daily max. Mean Daily min.	32.8 25.7 18.5	32,9 26.1 19.2	32.7 26.3 19.8	30.2 25.2 20.1	27.7 23.3 18.8	26.5 21.8 17.0	26.6 21.4 16.1	27.4 21.8 16.1	29.5 23.1 16.7	31.9 25.3 18.5	32,4 25,9 19,4	32.1 25.5 18.8
									<u> </u>	مح مد جونه د		<u> </u>

(Data: Miwaleni Sub-station, 1972-1979 average)

and each off

1/: FAO/UNDP, Survey and Plan for Irrigation Development in the Pasgani and Wami River Basins, Final Report, 1969.

Meteorology of the Lower-Moshi Area 2.3

Monthly average meteorological data obtained from five meteorological stations, is summarized in Tables I-4 to I-8. Data is also shown in Figures I-3 and I-4 in a graphic form. As shown in these figures, the variation of solar radiation is reflected by the movement of the earth on its axis. In general, meteorological items such as temperature, relative humidity and evaporation varies widely under the influence of both solar energy and rainfall depth.

Mean temperature varies from 21°C to 26°C throughout the year with a lag of about one month behind the maximum effect of the sun. The average daily maximum temperature rises above 30°C from October to April. Because of the high altitude over 700 m, the daily minimum tem-perature falls below 22°C even in the hottest season. Daily variation of temperature is over 14°C in January. The absolute maximum and minimum daily temperatures observed at Miwaleni sub-station are 36.5°C and 9.4°C, respectively.

The monthly average of relative humidity at 3 p.m. varies from 43 to 64%. Due to effect of rainfall, the relative humidity increases from March and reaches to its maximum in May. After the rainy season, it decreases gradually. During the short-rain season, the relative humidity is almost constant.

Pan evaporation varies widely throughout the year from 3 mm/day in May to 9 mm/day in January. From October to March, the evaporation seems to be constant in a range from 8 to 9 mm/day.

Winds are light from April to August and moderate from September to March, and predominantly from south to southeast.

1111

1 - 3

. .

Rainfall

2.4

2.4.1 Rainfall characteristics

(1) Seasonal distribution

Monthly distribution patterns of average rainfall for each rainfall station are shown in Figure 1-5. In the Lower-Moshi area, about 50 to 65 % of annual rainfall occur during the rainy season with a horizontal variation as shown below.

Rainfall Distribution in the Lower-Moshi Area

		Annua 1	Seasonal Distribution					
Location	Altitude (m)	Rainfall (mm)	Rainy (%)	Dry (%)	Light-rain (%)			
 Vestern area 1. Moshi Meteo, Sta. 2. NAFCO Kahe Estate 	813 710	878 495	66 61	12 11	22 28			
2. Middle area Miwaleni Sub-sta.	770	705	63	11	26			
3. Eastern area 1. Himó Sisal Estate 2. Kifaru Sisal Estat	810 e 700	805 486	53 49	12 12	35 38			

(2) 50 years' variation of rainfall

Among the rainfall stations in the Lower-Moshi area and river basins relevant to the area, Moshi meteorological station (E1.813 m) and Kilema mission (E1.1,422 m) is a key station for the hydrological study because recorded duration and quality of data are satisfactory. The long-term tendency of annual rainfalls for these two stations is shown in Figure I-6 in the form of annual average and 5-year moving average.

As shown in the figure, the wettest and dryest decades in these 50 years are the 1930s and 1950s, respectively. Average annual rainfall during the latest decade (1970s) seems to be almost on the same level as the 50-year average. However, the figures indicate that there is no obvious periodicity for annual rainfalls.

(3) Correlation among rainfall stations

Correlation of monthly and annual rainfall between representative rainfall stations (such as Moshi meteorological station and Kilema mission station) and other stations are analyzed using a correlation coefficient. Results are shown in Table I-9 and summarized below.

T

, ,			Rainfall Station									
	Rainfall Station		1	2	3			6	7			
1.	Moshi Meteo. Station	n an star Start Start		В	A	B	À	A	A			
2.	Miwaleni Sub-station		В		В	A	A	В	В			
3.	Himo Sisal Estate		A	В		В	В	A	-			
4.	NAFCO Kahe Estate	÷	В	A	В		A	В	-			
5.	TPC Langasani	in a s	Å	A	В	Ă		-	-			
6.	Kilema Mission		A	B	A	В			A			
7.	Lyamungu		Å	В		. .	<u>`</u>	A				

Correlation of Annual Rainfall

Note: A: Correlated with 1 % level of significance B: "with 5 % "

As shown in the above results, the recorded point rainfall in and around the Lower-Moshi area are well correlated each other. Hence, some incomplete records can be supplemented using records obtained from reliable rainfall stations such as Moshi meteorological station and Kilema mission station.

A comparison of annual rainfall between Moshi Meteorological station and other rainfall stations in the Lower-Moshi area was made as shown in Figure I-7. There is a close relation among them as the following ratios indicate.

Station	Ratio
NAFCO Kahe Estate / Moshi Meteo. Sta	ation 0.484
Miwaleni Sub-station / - do -	0.743
Himo Sisal Estate / - do -	0.802

(4) Correlation of rainfall with altitude

医马斯耳氏 化合物分子 医白白

On the southern slope of Mt. Kilimanjaro, rainfall is dominated by the orographic precipitation. In this area, there is a close relation between rainfall amount and altitude.

The relation between altitude and annual rainfalls (average, 10year storm rainfall and 10-year drought rainfall) is shown in Figure I-8. An annual rainfall in altitudes from 1,600 to 1,800 m averages as high as 2,000 mm. This high rainfall belt crosses almost the middle area of watershed of major rivers, and the annual rainfall decreases from this belt upwards and downwards along the slopes of Mt. Kilimanjaro.

The relation between average monthly rainfall and altitude is graphed as shown in Figures I-9 and I-10. These figures are used for estimation of areal rainfall for each river basin as mentioned in section 2.4.3.

I – 5

2.4.2 Rainfall intensity

(1) Daily maximum rainfall

Daily rainfall data are available from many stations in the study area. The absolute maximum daily rainfall is 281 mm which was observed at Kilema mission station in April 1947. The probable daily maximum rainfall for the representative rainfall stations is calculated by using the Gumbel method. The estimated results are summarized below.

					8. K. Z.	
	Alti-	Nos. of	Ret	turn Pe	riod	(years)
Station	tude	Data	2	5	10	20
	(m)	(Nos.)				(mm/day)
Old Moshi Nursery	1,646	25	124	170	200	230
Kilema Mission	1,422	43	118	159	185	210
Lyamungu ARI	1,268	42	117	156	180	205
Moshi Meteo. Station	813	33	94	128	150	172
Miwaleni Sub-station	770	8	72	91	104	116
NAFCO Kahe Estate	710	13	45	62	74	86
		<u> </u>	n an Alina E ann an Alina			

1. 如此的人,最后,你们不能是**能**得到。"

Results are graphed together with altitude as shown in Figure I-11 for catchment areas and in Figure I-12 for the Lower-Moshi area. The former will apply to the calculation of design flood discharge and the latter to the calculation of design drainage requirements.

(2) <u>Rainfall intensity</u>

Hourly rainfall records obtained by an automatic recorder are available from Lyamungu ARI station. In order to estimate the design flood discharge for the Rau, the Mue and seasonal rivers, the relation between daily rainfall and rainfall intensity analyzed using data observed at Lyamungu ARI station.

In general, rainfall intensity can be calculated from daily rainfall data using the following formula.

$$r_t = R_t/t$$

$$R_t = R_{24} \left(\frac{t}{24}\right)^K$$

where; $r_t = Rainfall$ intensity during t hours (mm/hr) $R_t = Rainfall$ during t hours (mm) $R_{24} = Rainfall$ during 24 hours (mm) t = Time in hours K = Coefficient

1 - 6

Among hourly rainfall data collected, consecutive rainfall records with an intensity more than 30 mm/hr are selected and graphed as shown in Figure 1-13. The highest rainfall intensity in a consecutive rainfall generally occurs 2 or 3 hours after the rainfall begins. Then, the ratio of Rt to R24 is plotted against time in hours for each consecutive rainfall as shown in Figure 1-14. Based on the figure, the coefficient value (K) is determined at 1/3.

2.4.3 Isohyet and areal rainfall والارد الأخار

그리고 문을 속을 가다.

(1)Isohyet map

ः हर संच्युते ।'

The isonyet for the average annual rainfall is prepared as shown in Figure 1-2 based on annual rainfall records for each rainfall station and the correlation of rainfall with altitude. In the Lower-Moshi area, the isohyet of 500 mm runs east and west near the southern boundary of the project area. The rainfall increases northward correlating with altitude and reaches 800 mm near the northern boundary of the Lower-Moshi area, or the Moshi-Taveta road. The areal rainfall in the Lower-Moshi area is calculated at 590 mm per year using the isohyetal method.

(2)Areal rainfall for catchment areas

For the purpose to study on water balance for each river basin. areal rainfall is estimated. First, relation between cumulative catchment area and altitude for each river basin is graphed as shown in Figures I-15 and I-16. Next, areal rainfall is estimated applying Pigure 1-9 and I-10 (correlation of monthly rainfall with altitude) to the above figures. Results are summarized in Table I-10.

2.4.4 Effective rainfall for water balance study

te egisetter

Effective rainfall applied to the water balance study for river basins can be defined as:

> (Effective Rainfall) = (Rainfall) - (Evapotranspiration) What References The Refe 1

trans and the transfer of s In order to calculate areal evapotranspiration for each river basin, the following process is adopted.

(i) Preparation of a figure showing ET-Altitude relation (Figure 2-17),

ET

- (ii) -Preparation of figures showing catchment area - Altitude relation (Figure I-15),
- (iii) Calculation of areal ET values in combination with the above figures.

1 - 7

First, process for preparation of a figure on ET-Altitude relation is described below briefly.

(i) Data: Monthly average Meteorological records obtained at Lyamungu ARI station (E1. 1268 m). (see Table I-8)

(ii) Calculation formula:

t

P

c

The Blaney-Criddle equation $\frac{1}{}$ is selected for calculation of potential evapotranspiration based on comparison with pan evaporation records (see Table I-11). The equation is expressed as:

A search

 $ETo = c \cdot \left[p \cdot (0,46t + 8) \right] mm/day$

where,

ETo = potential evapotranspiration for the month considered (mm/day),

- = mean daily temperature over the month considered (°C),
- = mean daily percentage of total annual daytime hours for a given month and latitude,

= adjustment factor which depends on minimum relative humidity, sunshine hours and daytime wind estimates

(iii) Assumptions:

(1) Monthly meteorological characteristics such as minimum relative humidity, sunshine hours and daytime winds for elevated areas are the same as that of Lyamungu ARI station, and (2) Temperature falls at a rate of 0.6° C per 100 m in elevated areas.

(iv) Calculation of ETo:

Based on the above equation and assumptions, potential evapotranspiration can be calculated by the following equations (see Table I-11).

April - September: ETo = 0.117 t + 0.20 mm/day

October - March : $ETo = 0.130 t \pm 0.43 mm/day$

(v) Classification of land cover:

For the purpose of estimating crop factors (kc), land covers on the slope of Mt. Kilimanjaro are classified as follows. (see Figure I-17)

1/ FAO, Crop Water Requirements, Irrigation and Drainage Paper NO.24 (revised), 1977

I - 3

Elevation	Land Use	kc
higher than 2,700 m	Bare land	0.29 - 0.96
lower than 1,800 m	Plantation &	0.85
	Sparse Shurb	

(vi) Calculation of ET:

After determining ETO, monthly ET values can be predicted using the crop coefficient (kc), or antana laga ga

, ang a sa 👘

$ET = kc \cdot ETo$

I - 9

n Maria ang Pangalan ng Pan Pangalan Ng Pan Pangalan ng Pan

(vii) ET-Altitude relation: ter and the second s

Pollowing the above procedure, monthly ET values for areas with different elevation are calculated and then, annual ET values are plotted against altitude as shown in Figure 1-17.

Calculations of areal ET values for each river basin were made in combination with the above ET-Altitude relations. Results are shown in Table I-12. These values will be used for the simulation of river discharge for the Rau and Himo rivers as mentioned in the following chapter and water balance study discussed in Annex II. 물론 전 비가 같아요. 이 지수는 것이.

3. Hydrology

3.1 Discharge Data

The responsibility for the collection and publication of discharge records rests primarily with the Ministry of Water, Energy and Minerals, Dar Es Salaam. Discharge Records from 1955 to 1970 are available in the Hydrological Year Book published every five years by the Ministry. Records of recent ten years were collected as much as possible from the Regional Water Office in Kilimanjaro, Moshi. Collected data cover the daily data and spot data of 21 stations with duration as shown in Figure I-18. All collected data are compiled in the Data Book.

Six gauging stations have been operated in the Lower-Moshi area by the method of daily reading of gauging staffs. In addition, periodical discharge measurement using current meter have been conducted by the Regional Water Office for the purpose to check the rating curves of each gauging station.

The gauging statins in operation in and around the Lower-Moshi area are listed as shown below. The detailed information is summarized in Table I-13. Locations of each station are shown in Figure I-19.

Station number	River 	<u>River</u>	Catchment area (km ³)	Openning year	Measuring
1 DC 3A	Rau	Rau	300	1960	Gauging staff
1 DC 35	R	Njoro	24	1958	11
1 DC 6	Mue	Mue	250	1956	*
1 DC 33	II II	Miwaleni	81	1958	ante de la transformación de la compañía de la comp
1 DC 11A	Himo	Himo	272	1968	11
1 DC 1	Ruvu	Ruvu	2,590	1957	Auto. recorder
1 DC 1	Kikuletwa	Kikuletwa	3,840	1952	$\mathbf{M} = \begin{bmatrix} 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \end{bmatrix}$
1 DD 8A	11	Kikafu	198	1978	ti

The average values for the collected discharge records are summarized in Table 1-14.

3.2 Check Discharge Measurement

Check measurement of discharge of the Rau river system (downstream of the Moshi-Taveta road), the Himo river and the Miwaleni springs were conducted during the field investigation works from January to Pebruary 1980. The main purpose of the measurement was to clarify the difference between actual available discharge and records obtained from each gauging station. Locations of the measuring sites and results of measurement are shown in Figure I-20.

3.2.1 Njoro river

Through discharge measurement, it was clarified that the Njoro river originates from 15 springs, i.e. 11 springs flowing upstream of the gauging station (1 DC 35) and 4 springs stream as shown in Table I-15. Hence, discharge records observed from this station are always less than the total available amount of the Njoro water. The discharge values measured at the downstream site after all spring water joins with the Njoro river were 1.43 times the discharge recorded at this station as shown in Table I-15.

Based on this fact, modification of the collected data will be made in order to estimate total available discharge of the Njoro river.

3.2.2 Rau river

The discharge measured at the upper site (1 DC 5) and the lower site (confluence of the Njoro river) on the Rau river were 90 and 780 lit/sec respectively as shown in Figure I-20. This fact suggests possibility of; (1) existence of underflow water of the Rau river, (2) return flow from adjacent paddy fields, and (3) existence of springs unknown.

During the field investigations, reasons of the above difference could not be confirmed, and accordingly many factors necessary for the modification on the observed data at the gauging stations (1 DC 5) were left unknown.

On the Rau river, many traditional intakes are located irregularly and a considerable amount of available water is taken into traditional furrows. Hence, records obtained from the gauging station, 1 DC 3(A), cannot be used for estimation of amount of available water for the Rau river.

3.2.3 <u>Miwaleni springs</u>

Check discharge measurement for the Miwaleni springs was carried out twice in February 1980. The results of measurement were $4.085 \text{ m}^3/\text{sec}$ on 4th February and $4.067 \text{ m}^3/\text{sec}$ on 12th February, which were not affected by surface runoff by rainfall.

The gauging station, 1 DC 33, is located at the intake facilities for the NAFCO canal, which is located about 1 km downstream from the Miwaleni springs. The gauging station consists of three gauging staffs, i.e. (1) at the inlet of the NAFCO canal, (2) just downstream of the concrete weir and (3) downstream of the coffer dam where the considerable amount of leakage occurs. Trials were made to prepare rating curves for each gauging staff in order to convert gauge readings into discharge. However, reliable results could not be obtained because quality of collected data was poor. Hence, recent data collected from the Regional Water Office were not used for project plannings.

1 - 11

3.2.4 <u>Himo river</u>

On the Himo river, there are two concrete weirs with control gates between two gauging stations, i.e. 1 DC 11 and 1 DC 11A as shown in Figure I-20. On the upstream of 1 DC 11, three traditional intakes exist and divert river water without control. Hence, records obtained from the gauging stations are affected by the diversion discharge of these intakes.

Since there are no records of the amount of diverted discharge for estimation of total available discharge on the Himo river, the discharge records obtained from the gauging station, 1 DC 11, will be used for estimation of expected runoff of the Himo river as a conservative estimate for irrigation use.

3.3 Estimation of Available Discharge

3.3.1 Njoro river (springs)

The Njoro river originates from 15 springs as clarified during the field investigations from January to February 1980. The gauging station, 1 DC 35, has been operated from 1965 at about 6 km upstream from the confluence with the Rau river. The Njoro river has a drainage area of about 24 km², in which the water route is poorly developed. Based on data analysis and interviews of residents, the surface runoff from the drainage basin into the Njoro river can be neglected and hence, the recorded discharge obtained from the gauging station, 1 DC 35, are considered to wholly originate from a group of springs.

The rating curve for the gauging station, 1 DC 35, was prepared using actual measurement data by current meter as shown in Figure 1-21. The gauge reading records (1976-1979) collected from the Regional Water Office were converted into discharge using this rating curve. Data from 1965 to 1975 are available from the Hydrological Year Books in the form of discharge. This discharge data is summarized in Table 1-14(2).

Discharge data in Table I-14(2) covering 15 years from 1965 to date were modified using the conversion rate of 1.43 as mentioned in section 3.2.1. Results are shown in Table I-15, and are used as a base for irrigation planning discussed in Annex V. The average and the probable discharge are summarized as follows and graphed in Figure I-22.

		Ava	<u>ilabl</u> (1	e Dis DC 35	charg :	<u>e of</u> 1965	<u>the N</u> -1979	joro)	River	(Uni	t : m	3/s)
Item	Jan	<u>Peb</u>	Mar	Apr	May	Jun	Jul	Aug	Sep	<u>Oct</u>	Nov	Dec
Average	1.45	1.37	1.36	1.55	1.53	1.56	1.66	1.71	1.70	1.63	1.51	1.50
Probable	Dischar	rge ()	Non-e	xceed	ence)		÷.		· · · ·			1. 1
80 %	1.83	1.68	1.71	1.84	1.85	1.96	2.07	2.11	2.04	2.03	1.84	1.86
50 %	1.39	1,22	1.33	1.51	1.53	1.52	1.60	1.62	1.65	1.57	1.49	1.45
20 %	1.06	1.04	1.04	1,26	1.27	1.20	1.20	1.27	1.31	1.20	1.20	1,13

I = 12

3.3.2 <u>Miwaleni springs</u>

Discharge measurement for the Miwaleni springs have been carried out at the gauging station, 1 DC 33, from 1958 to-date. However, reliable daily records are available for only 5 years from 1966 to 1970. Before 1965, only spot data are available, which were measured for the purpose of confirming the water source for the Kahe Irrigation Project. All collected data are compiled in the Data Book. The monthly discharge data is summarized in Table I-16.

The gauging station, 1 DC 33, has a drainage area of 81 km², and the seasonal runoff enters into the streams or springs during the rainy season as shown in Figure I-22. Since available data are quite limited (as short as 5 years) the lowest monthly records for each month among 5 years data are selected and used for irrigation planning as a conservative estimate.

Available Discharge of the Miwaleni Springs (1 DC 33: 1966-1970)

(Unit: m³/sec)

1/i These values are used for irrigation planning.

3.3.3 Rau river

(1)

Availability of data

Discharge records on the Rau river are available from two gauging sites, i.e. 1 DC 5 at the Moshi-Taveta road and 1 DC 3(A) at Kahe as shown below.

Catchmént <u>Station No.</u> <u>Area</u>	Operation Duration (Years)	Data	Recorded <u>Maximum</u> (m ³ /sec)
1 DC 5 122	1955. 1 - 1959. 6 (4)	Spot data	2.30
1 DC 3 300	1956. 11 - 1959. 10 (3)	Daily data	2.51
1 DC 3A 300	1960. 9 - (20)	Daily data	2.40

The discharge data recorded at Kahe (1 DC 3 or 1 DC 3A) cannot be used for estimation of expected runoff because of effects by existing traditional intakes as mentioned in the previous section. On the other hand, discharge records observed at No. 1 DC 5 station are insufficient because they are spot data measured once a month for four years.

(2) Tank Model simulation

Since discharge records obtained on the Rau river are not usable for estimation of expected runoff, the runoff simulation by use of the Sugawara's reservoir model (or "Tank Model") was conducted applying data obtained from the adjoining watershed (Karanga river).

First, spot data of the Rau river obtained at No.1 DC 5 station are compared with data recorded on the same date from other gauging stations such as 1 DD 3 on the Karanga river, 1 DD 5Å on the Weru Weru river, 1 DD 8 on the Kikafu river and 1 DC 11 on the Himo river as shown in Table I-17. It was found that the runoff pattern of the Karanga river was quite similar to that of the Rau river with a correlation coefficient of 88 %. Hence, Daily records obtained from the Karanga river were used as an adjustment index for runoff simulation by the Tank model.

1 1 1 1 1

Second, in order to decide coefficients of the Tank (numbers, size and height of orifices on the Tank), daily rainfall and evapotranspiration data are necessary. Among rainfall stations, Lyamungu ARI station is located near the watershed of the Karanga river. The recorded duration and quality of data there are satisfactory for study purposes. Hence, daily rainfall data from this station was used as input data for the simulation. The conversion rates from point rainfall to areal rainfall for the Karanga basin are shown in Figure I-23, which are processed from Table I-10 and monthly average rainfall at the Lyamungu as shown in Table I-2. Monthly evapotranspiration values for the Karanga basin are summarized in Table I-12.

Based on the above preparation, the Tank Model simulation was conducted by the trial and error method using computer. The final model selected is shown in Figure 1-23. Results of simulated runoff using the final model are partially shown in Figure 1-24 in the form of a 5-day average compared with the actual discharge.

(3) Calculation of runoff of the Rau river

Runoff of the Rau river at No.1 DC 5 station is calculated by use of the final model applying daily rainfall data recorded at Moshi meteorological station from 1965 to 1979. The conversion rates from point rainfall to areal rainfall were calculated following the aforementioned procedure. Monthly evapotranspiration used for the calculation are summarized in Table I-12. The estimated daily runoff is summarized into monthly values and is shown in Table I-19. The average and the probable discharges are as shown below. These are graphed in Figure I-22.

	in an Ngara	Ava	ilabl	e Dis (1 DC	charge 5:	e of 19	<u>the R</u> 65 ~	<u>au Ri</u> 1979)	ver	(1154)	3	1000
Item	Jan	Feb	Mar	Apr	<u>May</u>	Jun	Jul	Aug	Sep	<u>0ct</u>	Nov	Dec
Average	0.77	1.05	1.85	3.91	3.67	2.37	1.34	0.83	0.72	0.67	1.06	0.90
Probable D	ischa	rge (1	Von-e:	xceed	ence)							
80 % 50 % 20 %	1.56 0.61 0.23	1.95 0.70 0.25	3.25 1.40 0.60	6.25 3.21 1.60	4.10 3.50 3.00	3.10 2.28 1.66	1,80 1,22 0,81	1.37 0.72 0.38	1.05 0.49 0.23	1.40 0.56 0.22	2.05 0.74 0.26	1.73 0.64 0.23

1 - 14

3.3.4 Himo river

(1) Availability of Data

Daily discharge records on the Himo river are available from two gauging stations, i.e. 1 DC 11 (operated from 1952 to 1959) at the Moshi-Taveta road and 1 DC 11A (operated from 1968 to date) at about 13 km downstream of 1 DC 11. Since the proposed intake sites for the project are located between the above two gauging stations, the records obtained from the upper gauging station, 1 DC 11, are used for the study. Average values of this station are shown in Table I-14.

(2) Tank Model simulation

Runoff simulation for the Himo river was carried out by use of the Tank Model in order to estimate expected runoff for recent years. Daily rainfall data recorded at the Kilema Mission were used as input data because this station is located near the Himo basin and the recorded duration and quality of data are satisfactory. The conversion rates from point rainfall to areal rainfall for the Himo basin are shown in Figure I-23, which are processed from Table I-10 and monthly average rainfall at the Kilema mission station. Monthly evapotranspiration values for the Himo basin are shown in Table I-12.

The final model selected is shown in Figure 1-23. Results of simulated runoff using the final model are shown in Figure I-24 making comparison with the actual discharge. As shown on this figure, adjustment between simulated runoff and actual runoff is satisfactory.

The results of runoff estimation (daily) are summarized into monthly values and are shown in Table I-20. The average and the probable discharge are as shown below. These are graphed in Figure 1-22.

1968-1979)

Available Discharge of the Himo River (1 DC 11:

(Unit: m^3/sec)

Item Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 0.71 1.02 1.32 3.69 3.02 2,66 1.98 1.29 1.09 0.80 0.79 0.79 Average Probable Discharge (Non-exceedence)

80 % 1.04 1.58 2.11 5.70 4.26 3.85 2.90 1.89 1.60 1.21 1.14 1.14 50 % 0.62 0.75 1.10 3.38 2.79 2.40 1.89 1.25 0.93 0.73 0.66 0.65 20 % 0.37 0.35 0.58 1.73 1.86 1.47 1.21 0.82 0.54 0.44 0.38 0.37

3.3.5 Mue river

On the Mue river, the gauging station, 1 DC 6, has been operated at the railway crossing from 1956 to-date. The drainage area at this station is 250 km^2 including the Miwaleni basin (1 DC 33) of 81 km^2 as shown in Figure I-19.

The Mue river is seasonal. Except during rainy seasons, major portions of the river discharge recorded at the gauging station, 1 DC 6, originate from the Miwaleni springs as shown in the following table.

> Comparison of Discharge between Mue and Miwaleni (before construction of the NAFCO Intake)

> > (Unit: m³/sec)

Item	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	<u>Sep</u>	Oct	<u>Nov</u> Dec
A. Mue $\frac{1}{1}$ (1 DC 6)	3.64	3.59	3.62	3.77	7.47	6.12	4.09	3.52	3.56	3,51	3.55 3.55
B. Miwaleni ^{2/} (1 DC 35)	3.34	3.25	3.27	3.16	3.74	3.75	3.26	3.27	3.26		3.25 3.35
C. (A) - (B)	0.30	0.34	0.35	0.61	3.73	2.37	0.83	0.25	0.30	-	0.30 0.20
	3									11.1	1

1/: Daily records from 1958 to 1959

2/: Spot data from 1958 to 1959

(Report No.1, Kahe Irrigation Scheme, 1966 by T.H. Mather)

In addition, annual variation of runoff of the Mue river is remarkably wide during rainy season as shown in Table 1-14. The Mue river, except for the Miwaleni springs, is not a reliable water source for irrigation development. Hence, runoff from the Mue river (excluding the Miwaleni springs) are excluded from irrigation planning.

3.3.6 Annual runoff coefficient

As a summary for estimation mentioned in the previous section, the coefficient for annual runoff is estimated as shown in Table 1-22. The results of estimation are summarized as follows.

Name of	Catchment	Annual Runoff	Coefficient
River	Area	R/P 1/	R/Pe 2/
Himo river	194	0,20	0.31
Mue river	85	1911 and 20,15 and 4	0.24
Seasonal rivers	143	0.15	0.32
Rau river	122	0,28	0.46
Karanga river	211	0.29	0.42
Weru Weru river	141	0.29	0.50
Kikafu river	198	0.55	0.88

Note: 1/ ratio between runoff (R) and areal rainfall (P), 2/ ratio between runoff (R) and effective rainfall (Pe).

Based on the runoff coefficient obtained above, the water balance study is made taking a geohydrological viewpoint into consideration as shown in Annex II.

3.4 Plood

3.4.1 <u>Hydrological</u> data

In order to analize the flood pattern, water level data recorded by an automatic recorder are essential as well as hourly rainfall data. Fortunately, an automatic recorder was established on the Kikafu river (gauging station No. 1 DD 8A) in November 1978, and it recorded many runoff patterns during the rainy season in 1979. In addition, hourly rainfall data are available from Lyamungu ARI station which is located 9 km northeast of the gauging station. These data are used for flood analysis mentioned in section 3.5.4.

3.4.2 Plood marks

ŧ٩.

Flood marks traced by 1979's flood on the Rau and seasonal rivers were surveyed along Moshi-Himo road during field work from January to February 1980. Results of the survey are shown in Figure I-25. Based on the results, magnitude of floods for each section were calculated as shown in Table I-21. Results are summarized as follows.

<u>Name of River</u>	Catchment	Flood	Specific
	<u>Area</u>	<u>Discharge</u>	Discharge
	(km ²)	(m ³ /sec)	(m ³ /sec/km ²)
Rau river	122	168	1.38
Kisiringo river	14	22	1.57
Msaranga river	17	46	2.71

3.4.3

1979's flood on the Rau river

4.1

An extraordinarily large flood occurred on the Rau river in the beginning of April 1979 (hereinafter referred to as the 1979 flood), and farmlands of about 8,700 ha were damaged. According to the flood mark survey, the peak flood discharge at Rau bridge is estimated at 168 m³/sec which is equivalent to 4 to 20 times flow capacity of the Rau river.

Rainfall analyses are made in order to presume probability of the 1979 flood using daily rainfall records observed at Moshi meteorological station which are considered to have a high correlation with the runoff of the Rau river. Results of calculation are shown in Pigure I-26. Based on this figure, probability of storm rainfall observed during the rainy season in 1979 are estimated as follows.

			Probability	
	Date of	Rainfall	òf	Recurrence
Item	Occurrence	Depth	Exceedence	Interval
		(mm)	(%)	(years)
Daily Maximum Rainfall	4 Apr.	147	9.1	11
Consecutive Rainfall			da shqipti tud	11、11、4年3月(19)
2-day	6-7 Apr.	190	8.3	12
3-day	4-6 Apr.	322	2.0	50
5-day	3-7 Apr.	375	2.0	50
Monthly Rainfall				
March	March	127	33.0	3
April	April	710	4.0	, 25
May	May	229	33.0	a 1 - 1 - 1 - 3 -1 - 1 -
Rainy Season Rainfall	MarMay	1,066	3.2	31

Probability of Storm Rainfall in 1979

(Moshi meteorological station)

For the past 30 years, a storm rainfall (daily maximum and 2-day consecutive rainfall) bigger than that in April 1979 was observed as listed below.

Daily Maximum R	ainfall	2-day Consecutive R	ainfall
Date	Depth	Date	Depth
	(mm)	· 由于这些问题。 · 建筑 · 建筑 · 加工 ·	(mm)
27 Apr. 1956	178	27-28 Apr. 1956	198
19 Apr. 1960	158	19-20 Apr. 1960	277
19 Apr. 1970	177	21-22 Apr. 1971	201
(4 Apr. 1979)	(147)	(6-7 Apr. 1979)	(190)
		an 11. Se épit 11. Se bele el 1 de cele de service	

1.1

33.

Storm Rainfall at Moshi Meteo, Station

According to interviews of farmers, the 1979 flood was an extraordinarily large one compared with floods caused by the storm rainfall listed above. In addition, farmers said that the flood water standing or overflowing on the field along the Rau river continued up to mid-April. Accordingly, the 1979 flood is considered to be caused by 3-day to 5-day consecutive storm rainfall. In other words, the 1979 flood is equivalent to the 50-year recurrence interval, of 2% probability of occurrence.

I - 18

3.4.4 Calculation of peak flood discharge

The peak flood discharge for the Rau, the Mue, the Himo and seasonal rivers is estimated by using the Rational formula as shown below.

 $Qp = \frac{1}{3.6} \cdot r_{e} \cdot A$

 $\partial_{2} \mu$

where; Qp = peak flood discharge (m³/sec) re = effective rainfall intensity (mm)A = catchment area (km²)

The effective rainfall intensity using in this formula is estimated based on runoff analysis for the Kikafu river on which water level data from an automatic recorder are available. The procedure for estimation of peak flood discharge is described below.

(1) Analysis of records of the Kikafu river

Water level data obtained from the gauging station, 1 DD 8A, are available from December 1978 to-date. During the rainy season in 1979, several heavy storm rainfalls occured and consequently high water levels were recorded by the automatic recorder at the gauging station, 1 DD 8A.

A rating curve for the above gauging station is prepared based on the discharge record obtained by current meter. Figure I-27 shows the rating curve drawn by use of the least squares method. Water level data can be converted into discharge using this rating curve.

Then, hydrographs at the gauging station are drawn together with hourly rainfall observed at Lyamungu ARI station. Among them, hydrographs which resulted by a heavy consecutive rainfall more than 30 mm deep are selected as shown in Figure I-28 and I-29. They are analyzed as shown below.

Analysis of Hydrograph for the Kikafu River

Gauging station : 1 DD 8A Rainfall station: Lyamungu ARI (93.37/021) Catchment area : 198 km²

			Hydrograph	
	Item	<u> </u>	2	3
1.	Date of record in 1980	4-5 Apr.	30 Apr1 May	7-8 June
2.	Consecutive rainfall (mm)	210.1	32.4	49.0
3.	Peak discharge (m ³ /sec)	253.89	82.82	43.61
4.	Tp; time from start of rise to peak rate (min)	420	300	840
5.	Rainfall within Tp (mm)	177.0	31.8	47.6
6.	Rainfall intensity within Tp (mm/hr)	25.3	6.4	3.4
Ż.	Peak runoff coefficient (%)	18.2	23.4	23.5
8.	Effective rainfall intensity (mm/hr)	4.6	1.5 1997 (1.5 1997 (1.6)	0.8
1.4.1		a se prime de la la	a da terretaria en el comencia de la	

Then, the effective rainfall intensity (r_e) obtained above is plotted on a full-logarithmic section against time from start of rise to peak rate (Tp) as shown in Figure 30. Based on the above r_e - Tp relation and the empirical formula used in Japan, the following equation is prepared and applied to estimation of peak flood discharge.

Then, the peak runoff coefficient (fp) applied to the drainage basin for the Rau and other rivers is determined at 25% as a conservative estimation.

(2) Procedure of estimation of peak flood discharge

The procedure of estimation of peak flood discharge is as follows.

i) Estimation of probable daily rainfall (R24)

Probable daily rainfall for catchment areas are determined by Figure I-11 (= Variation of daily maximum rainfall with altitude for catchment areas) in combination with Figure I-15 and I-16 (= Variation of catchment area with altitude).

ii) Estimation of effective rainfall intensity (r_e)

Rainfall intensity is calculated using the following formula as determined in section 2.4.2.

$$r_{t} = \frac{R_{24}}{t} \cdot \left(\frac{t}{24}\right)^{1/3}$$
 (2)

where;

; $r_t = rainfall$ intensity during t hours (mm/hr) $R_{24} = probable$ daily rainfall (mm)

t = time (hours)

Then, effective rainfall intensity (r_e) can be calculated as follows.

where;

$r_e = effective rainfall intensity (mm/hr)$

fp = peak runoff coefficient

iii) Estimation of peak flood discharge

Por each river basin, the $r_e - T_p$ relation is obtained by the equation (1) and then, the $r_e - t$ relation is obtained by the equation (2) and (3). From these two relations, the re value for each return period is obtained. A sample calculation is shown in Table I-23.

After determining the r_e value, peak flood discharge can be calculated by the rational formula mentioned above.

(3) <u>Results of estimation</u>

Following the procedure mentioned above, the peak flood discharge for each river is obtained as shown in Table I-24, and summarized below.

and a second	(at Moshi-Himo	o road)	(Unit	m ³ /sec	e)
and a start of the second s	Catchment		Return Period		
River	Area	5	10	20	50
	(km2)				
1) Rau river	122	125	159	193	237
2) Mue river	85	86	110	130	158
3) Himo river	194	205	259	312	393
4) Seasonal rivers	(refer to Figure	1-19)			
l. Kisiringo	14 A. 14	21	27	32	40
2. Msaranga	17	26	33	39	49
3. Msangaji	10	14	18	22	27
4. Mola	7.1	11	14	17	21
5. Mlalo	9	15	18	22	27
6. Nanga	21	····· 18 · · ·	38	46	57
7	. 8	12	14	17	21
8. Cholo	29 - 19 9 - 19 9 - 19 - 19 - 19 - 19 - 19 - 19 - 19 -	8	20	23	29
9. –	- 5	8	10	11 J	14
10. Uchira	-24	30	39	47	58
11. Kandalu	4	6	7	9	10
12. Urenza	15	20	25	30	38

Peak Flood Discharge

The above figures are applied to the flood protection planning discussed in Annex VII.

According to the above results, the estimated flood discharge based on flood mark survey is equivalent to the following probability of occurrence. The second seco

Name of River	Catchment	Estimated Plood	Probability of	Return
		(m ³ /sec)	(%)	(years)
Rau river	122	168	7.9	13
Kísiringo river	14	22	14.9	7
Msaranga river	17	46	2.5	40

4.1.5.5.54
	•			•		•		· .		•					•									,									Ta	ЪJ	e	1	-	1
	LLECTED	Daily	years	19	ŝ	ц Ц	4	Ŕ	1	43		Б	20	ł	*	5 5 7	199 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	16	ļ	•	12	1	Ŷ	00	م ا	4	14	I	I	ł	ı	•	1	1 23	Î	ł	1	I
	DATA CO	Monthly	years	27	R	45	4 89	Š	18	\$	44	45	42	ž	¥	32	76	8	50 50	ы Н	24	2	17	00	\$	ÓŢ	44	50	16	50 50	50	19	50	80 50	30	14	12	12
	DORT	Closure					1		1968				1		1976						•	2 - 4 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1			3 3 1 3 2 3 4 3 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	1		1971	1711	1971	1971	1971	1	1	J	1	•	J
	EIS	Opening		1930	1894	1912	1922	1929	1934	1935	1935	1935	1936	1936	1941	1947	1951	1951	1956	1956	1956	-	1963	1972	1261		1966	1945	1945	1945	1945	1945	1960	1960	1960	1966	1968	1968
SNO		A1t.	8	975	813	1,478	1,067	1,422	1,113	1,268	102	753	810	708	1,433	1,646	001	914	1,440	1,676	838	1,830	735	1,660	170	н, 340	710	2,200	2,870	3,810	4,270	4,800	715	698	708	715	206	012
FALL STATI	LOCATION	Long.		37 13'E	8	So	24	30	80	15	19	19	ŝ	26	31	26	ee ee	18	34	27	80 20	27	19	19	27	21	26	31	31	26	26	23	19	19	50	21	55	18
ST OF RAIN		Lat.		3 18 ¹ S	ដ	13	19 19	18	17	, 14 ° .	o M	42	23	စ္တ	17	21	2	50 50	17	87	21	Ч С	58	16	25	15	59	13	10	80	80	05	29		31	29	32	စ္လ
				Masama Estate	Moshi Meteo. Station	Kibosho Mission	Old Moshi School	Kilema Mission	Singa Chini	第二日、11日、1日間の一時に ないである。	T.P.C. Langasani	Kiyuga a a a a a a a a a a a a a a a a a a	Himo Sisal Estate	Kahe Railway Station	Marangu College	Old Moshi Nursery	Kifaru Sisal Estate	Moshi Prison	Lyakirimu Mwika	Kirua Vunjo	W.D. & I.D. Moshi	Kilema Forest Station	T.P.C. Langasani North	Maua Seminary	Miwaleni Sub-station	Uru Estate	NAFCO Kahe Estate	Mt. Kilimanjaro, 1E	- do - 28	- do - 38	- do - 4E	- do - 5E	T.P.C., 2F	T.P.C., Camp 8	T.P.C., Camp 10	T.P.C., D25-Area	T.P.C., 20-Area	T.P.C., H-Area
L L L	REGISTERED	NUMBER		93.37/002	8	500	600	015	018	021	028	620	031	036	949 840	664	072	073	085	086	160	120	122	123	131	140	143	t	l	•	ŧ	l	t.	ł	l	ŧ	t	1
Tebl(· · · · ·				~	ŝ	4	\$	è.		¢	14. 1 .6 1.1. 1.1.	10.		12.	ې ۲	14.	15.		17	18.	19.	20.	21.	22.	3.	24.	52.	26.	27.	58.	29.	30.	31.	32.	33	ż	35.

Table [-2

AVERAGE MONTHLY RAINPALL (1)

						(a. 194) 194	.†	·	••					(Unit:	na•}
Station (Kegistered No		Jan	¥sþ	Yar	Åpr	Нау	Jun	5. 19 5. 39 5.	Åug	Sep	Oct	Nov	Dec	Angual Tetal Max, Min.	Avail- able Nos. of Tre
Masana Estate (93.37/002)	Ave. Háx. Hín.	65 234 0	58 138 0	110 464 0	373 895 107	297 1005 46	77 254 1	48 216 0	28 122 0	27 190 0	33 136 0	86 475 0	58 161 0	1260 1005 0	25
Moshi Netea. Station (93.37/004)	Ave. Max. Min.	41 166 0	51 113 0	109 360 3	302 752 49	166 404 41	29 108 0	16 93 0	13 62 0	16 155 0	32 259 0	54 425 0	49 213 0	878 752 0	50
Libosho Mission (93.37/005)	Ave. Naz. Min.	88 497 0	64 236 0	133 376 13	507 1204 69	478 958 59	180 397 0	104 239 29	58 171 T	34 271 0	35 200 0	95 663 0	86 363 4	1862 1204 0	45
013 Koshi School (93.37/009)	Ave. Max. Min.	56 235 0	47 156 0	136 332 10	376 776 73	256 544 10	65 250 0	34 235 0	2) 81 0	21 183 0	44 209 0	80 605 0	12 299 0	1210 776 0	48
Kilema Mission (93.37/015)	Ave. Max. Min.	87 442 0	98 426 0	223 664 0	483 1094 122	313 584 60	108 420 0	64 181 0	66 268 0	53 276 0	88 413 0	169 447 3	110 466 1	1862 1094 0	50
Sings Chini (93.37/018)	Ave. Max. Min.	28 167 0	52 147 0	92 224 8	373 762 56	254 451 60	46 131 0	29 65 10	14 38 0	13 34 0	22 62 0	93 266 0	48 183 0	1064 162 0	18
Lyssungu (93.37/021)	Ave. Max. Min.	51 211 1	65 246 4	112 374 4	530 1034 156	423 901 114	113 288 9	61 152 7	36 110 4	33 198 0	39 175 0	96 708 4	.15 260 6	1634 1034 0	44
1.P.C. Langessni (93.37/028)	Ave. Max. Min.	38 153 0	35 154 Ö	69 347 0	142 419 29	61 197 0	6 28 0	8 71 0	5 26 0	9 69 0	19 95 0	45 239 0	36 110 0	473 419 Ō	42
Kiyungi (93.37/029)	Ave. Max. Min.	36 191 0	45 178 0	88 232 0	237 542 13	129 348 26	17 102 0	7 60 0	11 70 0	14 119 0	27 157 0	35 302 0	48 254 0	694 542 0	45
Hino Sisnì Estata (93.37/031)	Ave. Max. Min.	52 181	61 260 0	116 355 0	199 415 53	114 468 7	23 119 0	13 60 0	17 76 0	11 81 0	29 169 0	101 423 0	91 331 0	805 421 0	42
Tabe Railway Station (93.37/036)	Ave. Max. Mio.	25 130 0	25 125 0	54 199 0	116 364 0	74 221 0	7 61 0	6 63 0	7 53 0	8 98 0	13 91 0	27 161 0	36 154 0	398 364 0	34
Marangu College (93.37/046)	Ave. Max. Min.	73 277 0	95 242 7	227 523 7	395 790 185	258 510 66	82 304 0	64 185 0	53 181 0	43 237 0	97 490 0	183 761 5	107 390 0	1677 790 0	34
01d Hoshi Nursery (93.37/064)	Ate. Max. Min.	78 229 0	90 243 10	212 510 6	579 1096 85	370 680 164	149 732 14	92 202 21	56 126 15)2 125 0	73 307 0	123 526 19	109 120 28	1963 1096 0	33
Kifaru Sisal Estate (93.37/072)	Ave. Max. Min.	40 315 0	23 137 0	54 184 0	110 325 14	76 190 24	16 82 0	9 90 0	4 23 0	9 32 0	21 71 0	69 245 6	55 172 0	486 325 0	15
Noshi Prison (93.37/073)	Ave. Max, Min,	35 171 0	39 108 0	82 233 0	284 749 14	130 252 28	29 101 0	10 55 0	8 62 0	14 66 0	33 176 0	72 512 0	51 181 0	787 749 0	29
Lyakirimu Nvika (93.37/085)	Ave. Max, Min,	132 381 0	83 285 0	237 429 15)97 76) 121	182 412 39	61 219 1	65 160 23	60 127 8	46 163 0	79 207 2	196 381 18	12) 457 23	1661 763 0	30
Kirua Vunja (93.37/086)	Ave. Max. Min.	119 246	135 382 13	298 818 88	570 1048 275	392 984 153	100 264 10	118 265 25	64 167 12	53 214 0	208 1151 0	234 699 20	143 359 20	2434 1151 0	15 15
W.D. & X.D. Moshi (G3.37/091)	Ave. Max. Min.	56 204 0	47 176 3	98 247 9	300 760 42	132 356 41	33 90 0	20 92 0	13 60 0	14 83 0	37 273 0	58 244 5	45 158 1	853 760 0	24 24

								· .	•		:			- 	·
ble I-3			•	AV	ERAGE	MON	тнгл	RAIN	FALL	(2)	2			· .	
Station Wgistered N	(0.)	Jen	Peb	Har	Apr	Мау	Jun	Jul	Åug	Sep	Oct	Not	Doc	(Unit: Annual Tetal Max. Min.	no) Avail able Nos. of Tre
Forest (/)20)	Are. Max. Min.	80 155 11	142 301 60	186 325 86	618 3263 170	247 343 158	187 388 80	149 305 68	62 118 15	74 177 12	75 165 18	115 156 40	90 123 70	2025 1263 11	. 7
langesani /122)	Ave. Max. Min.	43 198 0	33 103 0	104 374 3	199 483 23	86 284 19	12 56 0	8 48 0	5 26 0	13 45 0	27 142 0	48 271 0	46 199 0	624 483 0	37
4ničsry /123)	Ave. Max. Min.	97 150 25	106 204 41	157 261 50	568 989 316	298 634 162	129 234 44	82 130 17	51 86 23	71 152 6	8) 224 12	152 465 31	87 171 26	1881 989 6	8
ni ation /131)	Ave. Max. Min.	55 181 1	46 127 9	112 347 4	238 368 125	92 230 36	21 54 1	13 52 0	6 30 0	17 61 0	17 94 0	38 80 14	50 159 12	705 368 0	9
tate /140)	Ave. Max. Min.	56 139 3	57 111 12	145 261 39	526 919 311	376 670 235	141 238 30	81 175 30	54 115 15	35 84 . 3	43 252 0	106 401 10	69 220 13	1689 919 0	10
Kahe /143)	Ave. Max. Min.	37 114 0	31 66 3	68 247 0	159 364 16	77 186 14	15 54 0	5 37 0	7 21 0	12 44 0	14 60 0	32 184 0)8 129 0	495 364 0	14
limanjarë	Ave. Max. Min.	90 255 4	115 330 28	196 406 48	247 765 46	186 386 48	120 245 34	84 219 13	80 163 28	61 243 4	91 445 14	95 260 27	69 179 14	1434 765 4	20
liminjaro	Ave. Max, Min.	91 261 3	23 1125 155	152 613 42	167 499 55	120 270 36	90 186 26	68 178 27	57 125 26	41 114 3	57 134 11	76 147 25	54 185 13	1095 613 3	16
isanjaro	Ave. Max. Min.	43 217 2	48 209 2	86 376 7	96 267 28	70 153 16	37 95 5	26 96 2	23 82 1	16 63 0	29 115 0	50 119 8	2) 116 5	547 376 0	20
i Banjaro	Ave. Max. Nic.	15 54 - 0	19 78 0	30 189 0	35 127 3	21 78 0	11 56 0	5 38 0	5 74 0	5 48 Ô	8 41 Ó	28 57 0	9 81 0	181 189 0	20
imenjaro	Ave. Max. Nin.	36 275 0	40 118 0	60 330 0	122 811 0	52 249 0	14 65 0	5 57 0	7 104 0	5 55 0	12 64 0	22 73 0	16 181 0	391 811 0	20
27	Ave. Hax. Min.	34 165 0	25 81 0	87 246 4	179 392 32	68 215 16	7 35 0	5 21 0	3 23 0	12 54 0	21 93 0	43 139 0	37 113 0	521 392 0	20
Camp 8	Ave. Mex. Min.	36 117 0	21 52 0	80 245 9	145 337 29	47 235 2	5 33 0	5 29 0	2 17 0	11 50 0	16 64 0	37 149 0	27 74 3	452 337 0	20
Camp 20	Ave. Max. Min.	39 167 0	21 74 0	82 306 0	104 392 20	60 181 17	8 38 0	6 28 0	3 15 0	12 49 0	20 77 0	51 183 0	35 111 0	441 392 0	20
H-Area	Ates. Max. Mín,	42 139 0	37 65 0	90 222 0	200 392 30	77 159 17	6 20 0	5 28 0	4 15 0	10 49 0	12 77 0	46 183 Ó	35 92 0	564 192 0	12
20-Ares	Ave. Max. Min.	42 183 0	27 85 1	88 282 24	182 375 24	79 233 16	12 33 0	4 29 0	4 17 0	14 48 0	17 49 0	35 110 0	40 127 0	544 375 0	12
-25	Ave. Max. Min,	47 192 0	28 110 0	92 347 4	209 402 36	82 216 18	13 40 0	7 25 0	8 26 0	14 52 0	26 65 0	.33 125 0	39 144 2	598 402 0	14
-25		Max. Min. Ave. Max. Min.	Max. 183 Min. O Ave. 47 Max. 192 Min. O	Max. 183 85 Min. 0 1 Ave. 47 28 Max. 192 110 Min. 0 0	Max. 183 85 282 Min. 0 1 24 Ave. 47 28 92 Max. 192 110 347 Min. 0 0 4	Max. 183 85 282 375 Min. 0 1 24 24 Ave. 47 28 92 209 Max. 192 110 347 402 Min. 0 0 4 36	Max. 183 85 282 375 233 Min. 0 1 24 24 16 Ave. 47 28 92 209 82 Max. 192 110 347 402 216 Min. 0 0 4 36 18	Max. 183 65 282 375 233 33 Min. 0 1 24 24 16 0 Ave. 47 28 92 209 82 13 Max. 192 110 347 402 216 40 Min. 0 0 4 36 18 0	Max. 183 65 282 375 213 33 29 Min. 0 1 24 24 16 0 0 Ave. 47 28 92 209 82 13 7 Max. 192 110 347 402 216 40 25 Min. 0 0 4 36 18 0 0	Max. 183 65 282 375 235 33 29 17 Min. 0 1 24 24 16 0 0 0 Ave. 47 28 92 209 82 13 7 8 Max. 192 110 347 402 216 40 25 26 Min. 0 0 4 36 18 0 0 0	Max. 183 85 282 375 233 33 29 17 48 Min. 0 1 24 24 16 0 0 0 0 Ave. 47 28 92 209 82 13 7 8 14 Max. 192 110 347 402 216 40 25 26 52 Min. 0 0 4 36 18 0 0 0 0	Max. 183 85 282 375 233 33 29 17 48 49 Min. 0 1 24 24 16 0 0 0 0 0 Ave. 47 28 92 209 82 13 7 8 14 26 Max. 192 110 347 402 216 40 25 26 52 65 Min. 0 0 4 36 18 0 0 0 0	Max. 183 85 282 375 233 33 29 17 48 49 110 Min. 0 1 24 24 16 0 0 0 0 0 0 0 0 Ave. 47 28 92 209 82 13 7 8 14 26 33 Max. 192 110 347 402 216 40 25 26 52 65 123 Min. 0 0 4 36 18 0 0 0 0 0	Max. 183 85 282 375 233 33 29 17 48 49 110 127 Min. 0 1 24 24 16 0 14 16 13 19 144 14	Max. 183 85 282 375 233 33 29 17 48 49 110 127 375 Min. 0 1 24 24 16 0

· · ·	TAL/ ERAGE	29.2	17.6	23.4	- LL	48	63	248	· ·	1.32	6.97		927	Tablo I - 4
813	DEC AV	31.7	18.0	24.9	72	45	59	7.6 2,		1.43	8.9	· · ·	41	
, Alt.	AON	31.2	17.8	24.5	73	37	55	8•3	3 - 	1.86	7.9		23	
. 37°20		30.6	17.2	23.9	72	38	55	8.0	•	1.80 ⁻	8.4		15	
r Long	⊂ SEP	28.3	16.2	22.3	78	44	61	6.7		1.49	7.0		16	
t. 3 ² 21	AUG	26.2	16.0	21.1	80	47	2	4	5 4.5 - 13 - 13 - 14 - 14 - 14 - 14	0.93	2 2		6	
1) <u>100</u> La 7/ <u>004</u>) rs)	Ъ	25 • 5 2	16.4	21.0	81	23	67	4	lable -	0.75	5.3	lable -	19	
CORDS (sal Stat : 93.3 (10 yea	Ning	25.2	17.4	21.3	80	59	20	3.6	ot Avai	0.75	4.	ot Avai	56	 φ² + 2φ²/₂ δ² + φ²/₂ δ² + φ²/₂ φ²/₂ φ²/₂ φ²/₂ φ²/₂
FICAL RE Prologic Number 1979	MAY	26.7	18.6	22.7	86	63	75	3.7		0.81	2.5	Ä I	126	1
EOROLOC <u>in Meteo</u> ristered 1970 t	APR	28.7	19.5	24.1	8	59	72	5.0		1.12	6.3		411	
I OF MET I: Most (Reg	MAR	32.0	18.3	25-2	75	45	09	7.7		1.62	7.2		611	1 (12) 2 (12) 2 2 (12
SUMMARN Statior Feriod	FEB	32.1	18.3	25.2	12	43	58	2.6		1.62	8 8 8		39	
	JAN	31-9	17.6	24.8	13	42	28	7.6		1.62	6.8		ŝ	
	WELI	1. Daily Max. Temperature ([°] C)	2. Daily Min. Temperature (°C)	3. Daily Mean Temperature (°C)	4. Relative Humidity at 9 am (%)	1 5. Relative Humidity at 3 pm (%)	6. Mean Relative Humidity (%)	7. Pan Evaporation (mm/day)	8. Piche Evaporation (mm/day)	9. Mean Wind Speed (m/sec)	10. Sunshine Hours (hrs/day)	11. Radiation (cal/cm ² /day)	12. Monthly Rainfall (mm/month)	

Table I-5		SUMMARY	OF MET	EOROLOG.	ICAL RE	CORDS (S)	-		·		· · ·	
		Station	: <u>Miwa</u> (Reg	leni-Sul istered)-stati Number	<u> </u>	3°25' 7/131)	, Long.	37.027	, Alt.	170 m		18 martine a construction
	2	Period	Eron	1972 to	5 1979	(8 year	s)		:				
	JAN	FEB	MAR	APR	MAT	NDL	JUL	AUG	SEP	OCT	AON	DEC	TOTAL/ AVERAGE
1. Daily Max. Temperature (°C)	32.8	32.9	32.7	30.2	27.7	26.5	26.6	27.4	29.5	31.9	32.4	32.1	30_2
2. Daily Min. Temperature (°C)	18.5	19.2	19.8	20.1	18.8	17.0	16.1	16.1	16.7	18.5	19.4	18.8	18-3
3. Daily Mean Temperature (°C)	25.7	26.1	26.3	25.2	23.3	21.8	21.4	21.8	23.1	25.3	25.9	25.5	24.3
4. Relative Humidity at 9 am (%)	73	73	76	80	82	80	80	62	76	7	17	72	76
5. Relative Humidity at 3 pm (%)	44	44	47	56	6	59	26	52	47	4	4 W	45 5	20
6. Mean Relative Humidity (%)	59	59	62	88	73	10	68	66	62	57	57	59	63
7. Pan Evaporation (mm/day)					N I	ot Avail	lable -						
8. Piche Evaporation (mm/day)	0.6	8.6	8 4	4 4	3.0	3.5	4 	5.2	6.2	8.0	8.1	8°-5	2,320
9. Mean Wind Speed (m/sec)					년 1	t Avail	able -						
 Sunshine Hours (hrs/day) 		:			Ň.	t Avail	able -	- '		•			
l. Radiation (cal/cm ² /day)	551	551	534	493	438	402	402	460	523	581	570	578	507
2. Monthly Rainfall (mm/month)	55	46	112	238	92	21	13	9	17	17	38	50	705

I - 27

Table I - 5

		Station:	NAFCC (Regi	Kahe F stered	Sstate Number:	Lat. 3° 93.37	30', Lt /143)	ng - 37'	261, Al	t. 708-	E.		
		Feriod :	From	1970 to) 6261 0	10 year	() ()		-: -			ţ.	
ITEM	JAN	FEB	MAR	APR	MAY	NUL	JUL	AUG	SEP	ocr	NOV	DEC	TOTAL/ AVERAG
1. Daily Max. Temperature (°C)	31.6	32.7	32.8	30.2	28.2	27.0	26.8	27.3	.0 78 78	30.8	32.0	32.0	30
2. Daily Min. Temperature (°C)	20.3	20.2	20-5	20.7	19.4	17.4	16.7	17.0	17.6	19.0	20.3	20.0	19
3. Daily Mean Temperature (°C)	26.0	26.5	26.7	25.5	23.8	22.2	21.8	22.2	23.2	24.9	26.2	26.0	42
4. Relative Humidity at 9 am (%)	. 87	16	68	89	89	80	80	92	16	92	63	92	8
5. Relative Humidity at 3 pm (%)	4	36	4.	48	52	47	4 1	4	4 1	38	8	4	42
6. Mean Relative Humidity (%)	64	64	65	69	71	68	65	68	66	65	62	66	8
7. Pan Evaporation (mm/day)	5.8	6.1	ۍ ک	4 8	3•9	3.8		3.0	4	5°	6.1	6.0	1,813
8. Piche Evaporation (mm/day)	· .				No No	t Avail	able -	·'	: ·	· ·	:	* . •	***
9. Mean Wind Speed (m/sec)	2.0	1.8	1.6	1.3	1.0	1.0	1 О	1.0	1.0	4	1.8	2.1	r.
10. Sunshine Hours (hrs/day)	8. 4	2. 8	7.7	5.8	5.1	5. 4	5.0	5.2	6.3	7.2	7.3	8.1	¢.
ll. Radiation (cal/cm ² /day)	684	678	714	701	696	697	706	684	714	729	754	764	017
12. Monthly Reinfall (mm/month)	37	31	89	159	77	1 2	Ś	£	12	14	32	38	495

12 56 33 576
12 56 33
12 56
12
15
m .
о С
v
76
187
94
53
59
infall (mm/month)
12. Monthly Rai

SUMMARY OF METEOROLOGICAL RECORDS (5)

Table I-8

Lat. 3[°]14', Long. 37°15', Alt. 1,250 m Registered Number: 93.37/021 Period : From 1970 to 1979 (10 years) Lyamungu A.R.I. Station:

0.91 80 50 TOTAL/ AVERAGE 24.4 13.2 18.8 365 1,002 1,592 \mathbf{S} 8 2 16.0 7.3 13.6 20-2 26.7 3 DEC 446 92 20 80 89 0.98 26.4 **19.8** ц 4 6.9 13-3 NON 416 40 69 8 22 1.17 25.6 19.0 2.0 12.3 ά α SCT 452 စ္ റ്റ് 99 4 0.99 23.5 12.2 17.8 ð N 6.0 员 386 8 2 38 5 0.87 21.3 11.3 16.6 2.3 4 7 AUG 62 75 302 â 84 0.83 - Not Available -ດ ເຊ 16.4 20-5 12.3 <u>с</u>, -Б 250 80 ģ ŝ 2 0.81 17.0 20.8 13.2 ຕ ຕໍ Ц. Ч ß 2 226 89 89 64 108 0.84 3.4 22.2 4.4 14 **.** 5 18.3 MAY 353 ц 44 8 241 0.80 19.8 4 10 24.3 15-1 9 ---APR 293 5 2 8 522 0.90 27.0 14.0 20.5 6**°**9 с 4 MAR ŚŚ 3 2 4 125 0.94 27.4 20.4 7.6 13.4 5-0 FEB 461 76 5 ŝ 67 0.92 27.1 13.2 20.2 7-6 3.6 JAN -92 ý Ś 467 T: Relative Humidity at 3 pm (%) Relative Humidity at 9 am (%) 2. Daily Min. Temperature (°C) 1. Daily Max. Temperature (°C) 3. Daily Mean Temperature (°C) 12. Monthly Rainfall (mm/month) Piche Evaporation (mm/day) 6. Mean Relative Humidity (%) 7. Pan Evaporation (mm/day) 10. Sunshine Hours (hrs/day) 9. Mean Wind Speed (m/sec) 11. Radiation (cal/cm²/day) ITEM 4 . م 8

Table I - 8

						-									· ·
Table L-4		3	TELLAT	CN AN	FUO	TNTO	TINEA	4							
	•	A: C	orrel	ated w	rith l	rs %	gnific	ant le	Tel						
		, i	E 4		rith 5	24 24	±	¢	•	, F			-		
		۲ د	nogrt	t COLI	готата		% S18	DILICS	р т тет	rei)	-				
	0 0 N	5 N 9					MON	THLY C	ORRELA	LION					ANNUAL
Stations	Da	ta	ا بر	É	Я	, A	W	fo	5 5 1	A	ŝ	0	N	P	LATION
Ioshi Meteo. Station / Kiyungi	Ň	6	¥	¥	A	A	A	A	Ą	A	¥	A	¥	A	A
- do - / Miwaleni Sub-stu	ation	00	Å	Ö	A	р	A	¥	A	V	A	വ	ណ	Ö	Ĥ
- do - / NAFCO Kahe Esta	te L	m	μά.	V	¥	ស	A	Y	^с ф, 1	¥	¥	Y	A	P	ф
- do - / Himo Sisal Esta	če S	ው	¥	Ö	¥	A	A	д	Y	¥	Y	മ	A	р	¥
- do - / TPC Langasani	Ň	6	Ā	A	¥	¥	A	¥	ф	¥	Y	ቋ	¥	A	A
- do - / Kilema Mission	Ň	5	ക	Ŕ	¥	Å	A	¥	Ą	Ŕ	A	¥	¥	¥	۲
ilema Mission / Lyamungu ARI	5	ধ	A	o	¥	Ą	ра,	٨	Å	υ	¥,	Ą	Å	¥	A
- do - / Marangu College	й	0	¥	۷	Y	Ą	A	A	۲	¥	¥	¥	¥	¥	Y
- do - / Old Moshi Nursery	6	2	A	U	A	Ą	A	ស្ត	ф	щ	рQ	A	A	ជា	A
- do - / Kibosho Mission	Ň	10	ជា -	Ö	¥.	Ą	¥.	A	¥.	U.	A	A	۲,	A	A
- do - / Old Moshi School	8	2	¥	ይቢ	Ą	ų	A	മ	¥	U,	¥	¥	¥	U	ደ
	-						-	:			i				

÷

AREAL RAINFALL FOR RIVER BASINS

ITEM	KIKAFU	WERU WERU	KARANGA	RAU	RIVERS	MUE	OWIE
auging Station No.	(1 DD 8A)	(1 DD 5A)	(1 DD 3)	(1 DC 2)	(· · ·)		(1 DC 11)
atchment Area (km ²)	198	141	112	122	143	85	194
real Rainfall (mm)							• •
Jan-	72	52	28	67	65	58	62
Feb.	93	78	89	06	ŝ	73	\$0 80
Mar.	156	137	130	149	178	131	135
Apr.	328	297	271	322	317	296	263
May	218	218	190	220	221	203	180
June	119	102	163	117	107	92	107
July	76	50	128	11	53	64	62
. Aug.	50	39	40	45	43	37	42
Sep.	53	37	40	49	41	37	45
Oct.	55	50	46	57	53	47	ß
Nov.	96	89	82	108	92	82	70
Dec.	69	52	56	89	67	61	61
Annuel	1,385	1.201	1.293	1.363	1 320	1 181	1 170

Table I - 10

Blaney - Crridle Pormula

P

Ć

Table I-11

$$ETo = C \cdot \left[p \cdot (0.46t + 8) \right] \quad mm/day$$

where, ETo = potential evapotranspiration for the month considered (mm/day),

- t = mean daily temperature over the month considered (°C),
 - = mean daily percentage of total annual daytime hours for a given month and latitude,
 - = adjustment factor which depends on minimum relative humidity, sunshine hours and daytime wind estimates

(1) Calculation of ETo at the Lyamungu ARI

(Meteorological data is shown in Table I-8.)

Unit: mm/day

<u>Formula</u>	<u> </u>	_ <u>F</u> _	<u>M</u>	<u>A</u>	M	_ <u>J</u>	J	A	S	0	N	D
Class A pan	2.9	3.0	2.7	1.3	1.1	1.4	1.5	1.8	2.3	3.0	2.7	2.6
Blaney-Criddle	3.1	3.1	3.1	2.5	2.3	2.2	2.1	2.1	2.3	2.9	3.0	3.1
Penman	4.4	4.6	4.5	3.5	2.9	2.6	2.9	3.3	3.8	4.2	4.3	4.3

Note: Pan coefficient = 0.8

(2) Relation between ETo and t (Station = Lyamungu)

<u>I TEM</u>	<u>J</u>	F	M	A	M	J	J	A	S	0	N	n
Р	0.277	0.277	0.277	0.270	0.270	0.270	0.270	0.270	0.270	0.277	0.277	0.277
N	12.2	12.2	12.1	12.0	12.0	11.9	11.9	12.0	12.0	12.2	12.2	12.3
n	7.6	7.6	6.9	4.5	3.4	3.3	3.8	4.7	6.0	7.0	6.9	7.3
n/N	0.62	0.62	0.57	0.38	0.28	0.28	0.32	0.39	0.50	0.57	0.57	0.59
RH min	56	58	59	72	74	70	66	62	57	53	58	58
Predic	tion Cu	irve No	•	÷.,	· · ·	· ·						
	14	¥1		IX	··· IX	IX	IX	IX	IX	VI	VI	VI
f		Apri Octo	l - Se ber -	eptembe March	r	f f	= 0.1 = 0.1	27 t + 24 t +	2.22			
ЕТо		Apri Octo	1 – Sø ber –	ptembe March	r	E	To = 0 To = 0	.117 t .130 t	+ 0.2 + 0.4	0 3		

1/: FAO Irrigation and Drainage Paper, No.24 (revised), 1977

21.20

Table I-12		AREAL EVAPO	TRANSFIRATIO	N FOR RIVER	BASINS	•	
ITEM	KIKAPU KIKAPU	WERU WERU	KARANGA	RAU	SEASONAL RIVERS	MUB	OWIH
Gauging Station No.	(1 DD 8A)	(1 DD 5A)	(1 DD 3)	(1 DC 5)	-Moshi-Tave	ta road-	(I DC I)
Catchment Area (km ²)	198	141	LL2	122	143	82 82	194
Areal Evapotranspiratio	(mm) n			· · · ·		' 2	- 1
Jan.	52	49	44	28	20	4 4	44
Feb.	46	43	39	21	6 6	41	41
Mar.	28	55	49	65	78	49	49
Apr.	74	45	64	23	64	40	64
May	39	37	33	44	53	33 23 23	33
June	32	30	27	36	43	58	5 %
July	31	59	26	%	41	26	26
Aug.	31	29	26	34	4 7	26	26
Sep.	36	33	8	40	48	32	32
0ct.	. 45	42	38	20	Ŷ	38	33
Nov.	50	47	42	55	67	42	42
Dec.	55	51	4 6	60	73	46	4 4
Annal	522	490	440	580	700	445	445

	A COLLECTION IS Source		Ъ, ¥.D	В, ч.р.	TB(spot)	E, v o	а. т. р.	YB(spot)	TB(spot)	YR(snot)		TB(enct)				۹ ¢	1	۹ ۴			4 4 4		
2 T	DAT Numbe	2 2	<u>ب</u>	60	4		ŝ	2	9	4			- ۲	- h	- 0) F	- <u>-</u>	i čv	{r		N U) a	ب ز
•	ORY Closure		01-6661	1	1959.6	di avanta 📕 a sampinga	:: • • • •	1958.9	1959.6	1958.10		1	1959 9			1959 8		1956.2		1959 10		1000	
	HIST Opening		TT-026T	9-0-0-1 1-0-1	1955.1		1956.11	1952.8	1953.5	1954.9	1968.11	1958.1	19521	1968 11	1957,11	1952.8	1065.1	1955.12	1952.4	1952 11	1957.10	1054 11	1978.12
	LY DIS. Min. (m ³ /s)	90 C	8.0	o C C	60.0		6	0	0	0.19	0.15	3.52	0.2	Ċ	0.8	2.5	00	1	5.7	0.05	0		
	MEAN DAI Max. (m ³ /s)	u ¢		0 V † V	0	2.91	13-33	H H	1.9	0.37		7.69	41.6	35.9	38.2	10.9	63.6	4.6	246.9	63.4	12.4	328.3	
	MEASURING	یں بن	• • • •		ť	~~ 5		-		±	•	: #		 . E	Auto. R.	G.S.	H	11	Auto. R.	=	*	*	Auto. R.
•	ALTITUDE (m)	703	002		070				783	602	402	716	832	710	670	10L	101	702	200	884	975	995	995
	CATCHMENT AREA (km2)	300			24	† (1 1	200	2	44	26	56	81	194	272	2,590	1,810	1,810	1,800	3,840	211	141	198	198
	STATION NUMBER	1 DC 3	1 DC 3A			2 2 2 2 4 -	۵,0 ۲,2 ۲,4			1 DC 30	1 DC 30A	1 DC 33	L DC LL	1 DC 11A	ч Вс Г	л DC 2	1 DC 2A	1 DC 32	1 00 1	1 00 3	1 DD 5A	1 DD 8	1 DD 8A
	RIVER	Reu			Ninn	Mine V	Cho To	ULCH S WO	CCLLLR CCLLLR	SOKO	-	Miwaleni	Himo		Ruvu	· · · · · · · · · · · · · · · · · · ·	E	*	Kikuletwa	Karanga	Weru Weru	Kikafu	
	WELLSIS	Reu	- 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		μ.	Mine) ±	*	=				ош-н		Ruvu	F _ 1			Kikuletwa			F	: .
	NO		¢,		4	5			- 0	å d	י אַר			7	ដូ:	4	÷ ۲	9		2	19-	2 2	51-

G.S.= Gauging staff, Auto. R. = Automatic water level recorder, XB = Hydrological Year Book published by the Ministry of Water, Energy and Minerals XB = Hydrological Year Book published by the Ministry of Water, Energy a W.D.= Water Department (Regional Water Office) in the Kilimanjaro region spot = spot data

35 ľ -

Table I - 13

MONTHLY
RECORDED

Table I-14 (1)

DISCHARGE (Average value)

ų į					*)	Average	value)								
VER	STATION	RECORD (Year	s) JAN	FEB	MAR	APR	MAY	NUL	JUL	AUG	SEP	oCT	NOV	DEC	I
ч	1 DC 3	1956–59 (4) 0.51	0.56	0.47	0.66	1.49	1.37	1.32	0.94	0.77	0.67	0.71	0.65	
	1 DC 3A .	1968-76 (3) 0.43	0.52	0.56	0.52	0.94	0.88	0.83	0.46	0.35	0.37	0.35	0.41	
010	1 DC 35	1965-79 (1	5) 0.92	0.94	0.89	1.04	1.10	1.05	1.16	1.14	1.16	1.11	1.03	1.06	-
ά.	1 DC 6	1956-75 (1.	2) 3.52	3.47	3.20	4.34	7.47.	5.06	4.02	3.48	3.43	3.24	3.35	3.47	-
ko	1 DC 30A	1968-73 (5) 0.58	0.52	0.65	0.58	0.84	60.0	0.40	0.54	0.58	0.67	0.65	0.73	
weleni	1 DC 33	1965-70 (5) 3.86	3.80	3.89	4.54	4.65	4.22	3.78	3.75	3.71	3.79	3.79	3.90	
0	I DC II	1952-59 (3) 0.88	0.71	0.78	3.64	5.28	3.88	2.31	1.83	1.58	1.17	1.52	1.90	
	I DC 11A	1968-75 (1	3) 0.92	1.18	1.44	5.54	6.63	3-39	2.48	1.48	0.86	0.57	1.42	2.27	
T.	L DC L	1957–65 () 14.61	11.18	11.01	17.76	23.86	17.30	13.79	12.12	10.58	10.12	12.74	15.92	
	1 DC 2A	1965-76 (1:	2) 5.75	5.77	6.76	14.40	11.49	8.42	6.24	6.50	5.76	5.40	6.18	7.59	
kuletwa	1 00 1	1955-76 (2:	2) 15.43	14.47	16.36	43.25	.12-95	35.31	24:93	18.57	14.79	13.91	16.62	17.79	
ranga	1 20 3	1953-59 (7) 0.64	0.94	0.48	4.89	10.74	6 - 53	3.17	1.39	0.42	0.27	0.46	0.72	
ru Weru	1 DD 5A	1958-63 ((5) 1-95	0.96	0.68	1-96	3.54	1.94	1.49	0.73	0.48	0.76	0.22	0.92	
kafu	1 DD 8	1954-63 (1)) 2.66	2.31	1.57	12.42	18.07	7.41	4.75	2.83	1.46	1.46	1.78	2.70	i la fe
												*	а 2011 — М. С. 2011 — М. С.		
			4 27 1				ал 1 1					÷			ŝ,

Table I-14 (

Table I-14(2) <u>RECORDED MONTHLY DISCHARGE</u>

ali ang sant ang sant			R	iver: <u>R</u>	<u>ey</u>	Gaugi	ng Stati	ont 1DC	2			
TEAR	JAN	YEB	MAR	APR	HAT	JUN		4113	\$FD	007	1002	D D D D
1056				- 			~~ <u>~~</u>		0.04	VUX		
1920	6.23	64	0.34							- <u>1</u> , -, .	0.31	0,19
1958	0.60	0.55	0.74	0.75	1.92	1.02	1.59	1.13	0.90	0.76	0.86	1.02
1959	0.71	0.67	0.44	0.65	0.77	0.15	0.21	- 1+21 - 0 10	1.10	1.04	0,95	0.74
								V.19	V.24	V.21	• •	-
MEAN	0.51	0.56	0.47	0.66	1.49	1.37	1.32	0.94	0.77	0.67	0.71	0.65
			• • • • • • • • • • • •	<u></u>								
·· •.	S 4 1	1.84.14	Ri	veri Ra	u G	lugino Si	Intion: 1	1 153 24			54 1	
W.D.A.D.			Num					L. <u>Kv. 24</u>				
1044	JAN	FED	FAX	APR	RAT	JUN	JUL	<u>AUG</u>	SEP	001	NOV	DEC
1968			-	-	· . •	-	-	; <u>+</u>	-	· -	-	1.46
1070	0.10	4-17	1.20	0.73	1.07	0.81	0.36	0.14	0.25	0.25	Ò.21	0.21
1971		V. 34	12 - 1			1.50	1.56	1.06	0.77	0.63	0.54	0.46
1972	0.13	sti⊑e s	0.07	0.82	1.14	1 77	1 15	in	••		-	
1973	0.31	0.37	0.44		1.34	0.45	0.72	0.20 21.0	0.21	0.40	0,33	0.28
1974	0.68	0.64	0.53	_	1.59	0.93	1.96	··-	0.50	0.02	0.00	0.92
1975	0.04	0.07	0.08	0.02	0.22	0.04	0.05	0.06	0.01	0.21 A 12	v.vo	0.01
1976	-			-	0.06	0.10	0.02	0.00	0.00	0.02	0.01	0.02
MELN		<u>مُ مَ </u>	A 56	0 82	<u> </u>	<u> </u>				· · · · ·		
	····			0.52	0.94	U.88	0.83	0.46	0.35	0.37	0.35	0,41
											<u></u>	
		л 2 Л. 1 — Л	8	iver: N	iero	Geneine	Statton		•			
	in the second	A set of				oauging	JURGION .	· <u>• • · ·</u>	2	•		
TEAR	JAN	PEB	MAR	APR	XAT	JUN	JUL	AUG	SEP	007	NOY	DEC
1965	1.44	1.29	1.22	1.44	1.22	1,19	1.18	1.18	3.18	1 15	1.16	1.07
1966	1.02	0.97	0.99	1.04	0.99	1.03	1.16	1.26	1.20	1.22	1.10	1.07
1967	0.91	0.76	0.69	0.79	0.93	0.92	1.03	1.20	1.37	1.53	1,10	1.04
1968	1.34	1.23	1.25	1.40	1.37	1.65	1.83	1.93	1.85	1.74	1.68	1.20
1969	1.53	1.44	1.38	1.25	1.37	1.23	1.19	1.20	1.15	1.17	1.12	1.05
1970	1.00	0,98	1.06	1.16	1.09	1.27	1.37	1.38	1,25	1.14	0.94	0.81
19/1	0.27	0.58	0.68	1.31	1.14	1.36	1.73	1.71	1.57	1.50	0.96	1.57
1974	1122	10 00	1.22	1,22	2.40	· (1.46) ·	1.52	1.47	1.36	1.12	(1.16)	1.04
1974	0.81	0.70	0 KS	0.97	1.17	1,01	(1,93)	0.96	0.93	0.62	0.81	0.88
1975	0.82	0.75	0.76	3 04	0,90	V.88 Å 49	0.90	0.90	0.93	0.93	0.91	0.89
1976	0.50	0.49	0.46	0.61	0.91	0.00	0.78	0.82	0.89	0.90	0.80	0.78
1977	0.47	0.49	0.50	0.71	0.00	0.50	0.50	0.47	0.51	0.51	0.48	0.47
1978	0.66	0.66	0.71	0.71	0.67	0.00	0,70	0.00	0.06	- -	-	-
1979	0.87	0.74	0.82	1.06	1.04	0.96	1.00	-	-	-	-	0.92
MEAN	0.92	0.94	0.89	1.04	1 10	1.05						
								1.(4	1.10	1.11	1.03	1.06
						· ·			· · · ·			
			. ³ . R .	iver: K	<u>и</u> .	Gaugi	ng Stati	on: <u>1 DC</u>	6	•		
TEAP	8124	FALP	Ster	م نه و ا	· · · · =			4 <u>.</u> .		_	All and	•
_ <u>+</u>	<u> </u>	<u> 788</u>	ANN	AIR	<u>kut</u>	JUN	JUL	A06	SEP	OCT	NOV	DEC
1956	- 	- ·			•	-	-	-	-	-	3.47	3.44
1958	3 74	2.47	5.54	3.79	8,36	4.62	3.79	3.47	3.43	3.40	3.71	4.60
1959	3.58	3, 54	7.51	3.19	10.74	8.71	4.57	3.56	3.49	3,51	3.55	3.55
1069	2 4 3 U		7172	2+12	7.20	3.32	J .60	3.45	3.62	-	•	
1969	4 27	1 65		-	-		-	_	-	-	-	5.08
1970	1 00	4.02 3 A1	4,12	3.94	3.82	3.78	3.82	3.85	3.73	3.78	3.66	3.63
1971	1.70	1 43	2 44		8,31	3.87	3.92	3.70	3.69	3.69	3.45	3.28
1972	1.74	2,10	6.00 2.86	1.35	13.65	8,58	4.06	3.02	3.13	2.61	2.45	2.37
1973	4.17	3.02	2.44	7123	0,20	3.90	4.05	3.63	3.05	2.20	3.91	3.19
1974	3.11	2,94	2.83	-	6.10	7,20	3133 8 84	3.42	3.21	3.22	3,18	2.91
1975		-	-	3.52	3.53	3.38	3.26	3.19	3.05 3.28	3.67 3.09	2.77	2.55
100.11							·		·			
KEAN	3.52	3.47	3.20	4.34	7.47	5.06	4.02	3.48	3.43	3.24	3.35	3.47

Table I-14(3) <u>RECORDED MONTHLY DISCHARGE</u>

TEAR	JAN	FEB	MAR	APR	XAT	JUN	JUL	AUG	SEP	001	NOY	
1968	-	Ó.25	<u>-</u>	_	- <u>-</u> -	-		_	_		er Aran Aran	-
1969	0.23	0.28	0.35	0.40	Ô.39	0.41	0.47	0.47	0.50	0.59	0.54	ċċ
1970	0.71	0.69		-	0.35	0.23	0.28	0.35	0.42	0.52	0.52	Č
1971	0.71	0.53	0.71	0.79	2.16	0.48	0.30	0.51	0.49	0.48	Q.33	Ċ
1972	0,57	0,54	0.65	0.56	0.48	0.46	0.33	0.57	0.51	0.61	0.74	Ċ
1973	0.68	0.84	0.89	-	-	0.72	0.64	0.80	0.99	1.16	1.11	1
MEAN	0.58	0.52	0.65	0,58	0.84	0.09	0.40	0.54	0.58	0.67		

			Ri	vert <u>H</u> i	ivaleni S	pring	Gaugio	g Statio	n: <u>1 DC</u>	33	11	العربين ا
TEAR	JAN	FEB	MAR	APR	HAT	JIN	JUL	AUÓ	SEP	001	NOT	DEC
1965	-			-	-	-	- K N () () 	_	-	1. 1. 1.	n Agrif Net e S	4.19
1965	4.22 3.57	4.18	4.12	4.37	4.96	3.83	3.59	3.54	3.51	3.60	3.60	3.61
1968 1969	3.62	3.58	3.72	4.93	4.91	4.74	3.94	3.72	3.53	3.59	3.62	3.70
1970	4.17	3.93	4.14	5.72	5.30	4.41	4.05	3.88	3.86	4.10	4.02 4.01	4.31
MEAN	3.86	3.80	3.89	4.54	4.65	4,22	3.78	3.75	3.71	3.79	3.79	3.90
			:	••••••	m² 44'6	••••						
			Ri	rers <u>Bi</u>	<u>PO</u>	Gauging	g Statio	n: <u>1 DC :</u>	<u>u</u> :			·
TRAR	TIN	67670	MID	4700		*****						

F 1	Bino		Gauging	Stations	1	ΪÚ
			A PARTICE	012011	- k -	. P.N.

IEAR	JAN	FEB	MAR	APR	HAY	JUN	JUL	AUG	SEP	ÓĊT	NOV	DEC
1952	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -		<u>, 1</u>	1. j. j.				11				
1953	0.44	0.33	0.41	1.41	4.05	3.01	1.47	-	1 26	1 24	2 3 6	0.51
1954	· -	1 - -	· •	9.38	-	-		_		1.44	¢.19	-
1955	- ·	÷	. ; - j	-	<u> </u>		-	-				100 I
1950	· - .) -	0.93	2.07	1.89	1.99	-	-	-	-		i 📮 🔤
1059	3 49	1 17	-	4.76	5.29	3.30	1.73	1.18	-	-	. - .,	4.31
1959	0.73	1,11	1.13	2,80	12,35	9.32	4.39	2.55	1.75	1.14	0.84	0.89
	·			1.44	6.01	1.80	1.64	1.76	1.62	1.13		-
MEAN	0.88	0.71	0.78	3.64	5.28	3.88	2.31	1.83	1.58	1.17	1.52	1.90
											0.4%. 	
							1	~	1.14	$(-1,-1)^{*}$	1910	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
	5 A.									î al N	2 -	·

• •			Ri	ver: <u>H</u>	<u>[mo</u>	Gaugin	g Statio	n: <u>1 DC</u>	<u>)]</u>	5 6 6 5 6 6 5		
TEAR	JAN	FEB	HAR	APR	MIT	JUN	JUL	AUG	SEP	OCT	NOV	DEC
1968 1969 1970 1971 1972 1973 1974 1975	2.68 1.13 0.07 0.20 1.78 0.12 0.29	2.89 1.49 0.14 - 2.48 0.04 0.05	2,29 5,38 0,12 0,01 1,41 0,04 0,84	2.20 13.55 7.56 0.76 2.05 8.52 4.13	3.21 6.40 13.82 6.73 4.69 9.35 2.21	1.55 2.56 4.83 5.19 1.92 6.07 1.64	- 0.83 1.06 2.62 1.82 0.87 9.18 0.98	0.66 0.43 1.61 0.71 0.50 5.70 0.78	- 0.48 0.39 0.91 0.47 0.22 2.97 0.60	0.54 0.26 0.33 0.14 1.80 0.36	0.46 0.21 0.07 5.87 0.12 1.97 1.22	10.59 0.91 0.27 0.10 3.37 0.10 0.52
MEAN	0.92	1.18	1.44	5.54	6.63	3.39	2.48	1 48	0.96		·····	

3.39

2.48

1.48

0.86

0.57

1.42

2.27

1.1 1.1

i S J.

Table I-14(4) <u>RECORDED MONTHLY DISCHARGE</u>

· · · ·						, APASTO	1		4 .			
IEAR	JAN	FEB	XAR	AIR	HAT	JUN	JUL	100	SEP	001	NOV	DEC
1957 1958 1959 1960 1961 1962 1963 1964 1965	9.73 8.88 8.16 6.57 39.35 13.79 14.89 15.53	11.22 9.01 8.04 6.33 22.64 10.79 10.48 10.91	11,56 9,46 7,69 6,12 13,91 11,51 11,06 9,57	14.67 12.18 29.17 7.53 13.86 19.64 30.66 14.36	34.45 14.54 26.61 7.88 20.38 34.08 39.53 13.41	30.43 10.93 16.24 6.80 14.18 21.36 25.82 12.64	20.10 12.35 11.92 7.36 11.10 18.77 16.77 11.96	14.49 12.41 10.32 7.24 10.62 14.52 14.83 12.45	11.13 11.51 8.84 7.29 9.80 12.03 12.94 11.10	10.07 10.05 8.61 8.94 8.75 10.60 11.77 12.14	10.28 9.55 7.98 8.54 32.24 8.04 14.49 10.78	16.34 9.40 8.04 7.49 41.62 9.95 22.20 12.30
MBAN	14.61	11,18	10.11	17.76	23.86	17.30	13.79	12,12	10.58	10.12	12.74	15.92

Rivers Buvu Gaustine Statte

ter for to the River: <u>Ruru</u> Gauging Station: <u>1 DC 24</u>

			3.4 Control 1997	and the second			18 A.S. 19	1.1				
TEAR	JAN	PEB	MAR	APR	HAT	JUN	JUL	AUG	SEP	ост	NOY	DEC
1965	9.35	6.17	5.15	7.59	6.69	6.69	6.41	6.81	5 67	6 86	6 69	7.03
1966	6.18	6.19	8.66	13.88	10.28	8.71	6 05	6.00	5.71	4 74	0,70	1.93
1967	3.95	3.59	3.42	8.02	12.89	0.10	7.15	7.13	7 47	5.00	4.47	4.39
1968	4.88	3.94	13.88	49.76	29.25	17 16	11 12	0 0 1	1-11	5.90	2.00	1.03
1969	-6.84	6.60	- 8.18	10.01	10.11	7 46	6 79	0.02	0.02	2.14	1.90	15.44
1970	6.10	8.40	6.76	10.06	10.51	9.14	6.70	6.0I	5.91	5.95	0.71	8.03
1971	6.87	7.27	-	6 78	11 47	11 03	0.10	0.20	3.65	4.31	5.18	6.52
1972	5.21	8 26	6 4	4 67	6 44		8,20	7.57		6.28	4.83	6.28
1073		7 09	0.34	1.07	0.44	1.31	0.69	6.41	5.94	6.75	9.81	10.22
1074	< 14	1.00	, * +	11.01	10.14	0.30	7.06	6.23	5.61	5.08	7.63	7.06
1076	2117		_		> 78	5.52	5.46	5.77	5.91	4.48	4.48	4,91
1076	2.12	3.99	4.50	10.39	8.57	4.69	2.75	2.85	3,12	3.34	4.61	5.08
1970	3.73	3.62	3.95	-	-	-	-	-	-	-	-	-
HEAN	5.75	5.77	6.76	14.40	11.49	8.42	6.24	6.50	5.76	5.40	6.18	7.59
		· • • • • • • • • • • • • • • • • • • •			÷		·					

River: <u>Kikuletva</u> Gauging Station: <u>1 DD 1</u>

		1		CAL100					:			
TEAR	JAN	PSB	MAR	APR	MAT	JUN	JUL	AUG	SEP	OCT	NOY	DEC
and the second	÷ 1.			1 Back					·			
1955				: 🗕	_ '			· 🕳	· · · _		9.82	11.26
1956	15.38	13.36	13.27	22.57	39.14	26.95	16.09	13.98	13.19	11.17	11.21	11.11
1957	13.69	14.09	10,52	30,08	91.82	14.04	22.07	16.47	12.88	11.89	21 39	30.06
1958	14.78	18.92	16.84	27.26	58.80	51.57	26.36	17.94	13.40	11.62	11 77	14 55
1959	12.08	11,88	12.41	28.63	36.27	16.68	18.19	16.24	12.73	12.06		24133
1960	14.94	12.15		47.93	77.81	16.19	25.29	19.58	16.20	21 20	10 67	10 62
1961	9.89	10.04	9.90	15.56	13.72	10.10	11.86	11.54	11.13	18 21	10, 91	10103
1962	-	- - -	_								10.08	1.
1963	12.88	10.84	13.26	49.56	69.89	32.51	27.17	16.34	12 01	10 70	10.00	27 00
1964	23.46	12.72	18.84	100.81	QQ. 28	48 00	27 17	20.09	17.06	16 64	23.39	21.90
1965	19.97	13.21	12.90	42.20	15.04	10.58	12 31	10.70	10.90	12.04	19,33	10,30
1965	11.93	13.35	22.79	61.79	59.57	42 52	37 12	12,57	11.13	12,00	19.47	14,12
1967	10.42	10.61	10.64	21.64	64.59	10 07	20.01	14.71	14 40	10.40	12.34	11.45
1968	10.74	14.19	31.54	70 11	80 50	71 84	38 61	27.10	19 33	19,17	29.40	22.20
1969	20.10	25.50	24 00	20 41	19 14	11.04	30,71	20.04	10,23	13.70	20.44	50.59
1970	16.66	14 79	18.00	59 70	66 74	20.00	10.09	19.10	11.13	12:01	17-19	13.09
1971	14.10	****	10177	J7.10	00,34	20.00	19.00	13.70	12.74	11.00	11,08	11.98
1972	16 61	-	10 60	26.05		40.21	31,98	27.30	17.59	-	32.18	-
1971	- 28 37	10 49	20.00	30.05	50.02	41.75	26.78	19.30	18.92		32.18	-
1074	10 10	17.40		59.04	69.10	34,32	29.09	20.08	12,84	12.35	14.09	13.05
1075	15 50	12.21	12.72	(4.32	42.05	31.02	33.75	25.12	15.43	14.57	14.96	14.52
1076	17.79	21.19	14.01	36.80	45.26	32.22	30.53	20.31	15.56	14.37	14.63	15.52
1710	14.00	14.80	16,70	22.40	34.89	29.46	20,24	12,96	14.35	-	. ~	
MEAN	15.43	14.47	16.36	43.25	56.71	35.31	24.93	18,57	14.79	13.91	16.62	17.79

Table I-14(5)

RECORDED MONTHLY DISCHARGE

1.1. . .

				_								
TEAR	JAN	PEB	MAR	AFR	HAT	JUN	JUL	ÂUO	SEP	100	NÓY	DSC
1953	- <u>-</u>	-		21	· _ ·	4	- -	÷.			0.58	0.60
1954	0.44	0.48	0.26	6.55	8.94	6.31	1.70	Ŏ.70	0.06	0.05	0.21	0.19
1955	0,60	1.28	0.39	4.64	11.15	7.05	\$ 25	3.91	0.23	0.20	0.18	0.36
1956	0.92	0.72	0.56	4.48	11.65	8.58	2.48	1.44	0.49	0.33	0.11	0.25
1957	1.09	1.59	0.48	5.47	17.51	6.80	1.65	1.61	0.58	0.36	1.17	2.34
1958	0.49	1.32	0.86	2.42	10.90	8.99	1.72	1.86	0.58	0.15	0.28	0.58
1959	0.29	0.25	0.30	5.80	4.28	1.42	2.23	0.77	0.59	0.33		-
KEAN	Ö.64	0.94	0.48	4.89	10.74	6.53	3.17	1.39	0.42	0.27	0.46	0.72
					· · · · · · · · · · · · · · · · · · ·							

River: Karanga Gauging Station: 1 DD 3

River: Very Very Gauging Station: 1 DD 54

						2 M - 2 - 2					- -	1. A A A A A A A A A A A A A A A A A A A
TEAR	JAN	PEB	MAR	APR	HAT	JUN	JUL	AUG	SEP	OCT	NOV	DEC
1958	0.81	0.95	0.76	1.89	3.75	3.22	1.74	0.83	0.58	0.11	0.17	0.79
1959	0.27	0.30	0,23	3.02	2.57	0.72	0.69	0.43	0.25	0.14	0.12	
1960	<u> </u>	. <u>-</u>	0.44	1 1 L 🛓	6.19	2.67	1.71	0.62	0.21	0.38	0.34	0.36
1961	1 <u>-</u>	0.20	-	0.88	1.65	0.16		0.51	0.54	2.90	4	
1962	5.22	2.40	1.30	2.06	1 - F 🔔 🗌	2.91	1.81	1.28	0.81	0.27	0.23	1.62
1963	1, 51	· · · 🛥	-	- <u></u>	10 <u>-</u> 1	<u></u>				_		
		1.1		· · · ·	11 - A. A.		1.5.5	1.4	1997 Barry	이 같은 사람이 있다.	1.220	1 (1 () () () () () () () () (
					· · · · · ·						<u> </u>	<u> </u>
MEAN	1.95	0.96	0.68	1.96	3.54	1.94	1.40	0.73	0.48	0.76	6 33	0.02
· · · · · · · · · · · · · · · · · · ·								VIII	V. 10	v. IV	V.22	V.74
· · .											- 	

j.

			Ri	River: <u>Kikafu</u>			Gauging Station: 1 DD 8				and a second s	
TEAR	JAN	FEB	MAR	AFR	MAT	JUN	ராட	AUG	SEP	001	NOY	DEC
1954 1955 1956 1957 1958 1959 1960 1961 1962 1963	1.03 3.06 1.28 2.58 0.93 - 0.45 9.27	- 2.90 2.23 2.67 0.80 - 0.39 4.85	1.78 2.27 2.45 1.75 1.11 0.92 0.38 1.86	8.15 15.81 29.22 5.64 11.42 12.41 4.28	13.63 14.73 53.77 16.75 8.18 16.63 2.83	9.06 11.43 8.87 13.39 2.91 - 0.68 5.49	6.75 3.66 5.57 5.21 3.47 3.96 4.61	3.16 2.26 2.59 4.58 2.12 2.04 3.07	1.41 1.36 1.76 1.61 1.15 1.03 1.65 1.70	0.97 1.14 1.18 0.97 0.74 1.23 4.30 1.15	1.56 1.16 1.51 5.72 0.78 0.52 1.24	1.94 1.58 1.66 7.72 2.01 1.30 -
MEAN	2.66	2.31	1.57	12.42	18.07	7.41	4.75	2.83	1.46	1.46	1.78	2.70
		· · · · · · · · · · · · · · · · · · ·							· · · · · ·	1 1		

NO.	NAME OF SPRING	DISCHARGE	DATE
		(m ³ /sec)	
1	Njoro	0.169	25 Jan. 1980
2	Big Dobi	0.220	
3	Dobi	0.061	n n
4		0.091	. н
5	Small Dobi	0.106	17
6	-	0.055	24 Jan. 1980
7	na an an taona taon ang banang karang ka Karang karang karang Karang karang	0.091	Đ
8		0.052	н. Н
9	Lower Tanari	0.084	H .
10	_	0.038 (Sub.	-total) ^и
11 .	Forest N.S.	0,160 1,	.127 "
		Gauging Station	1 DC 35
12		0.105	24 Jan. 1980
13	an a	0.066	"
14	Kaloleni	0.182	23 Jan. 1980
15	Rau Forest	0.136	31 Jan. 1980
	Tota]	1.616	

Table 1-15 RESULT OF DISCHARGE MEASUREMENT FOR THE NJORO SPRINGS

The ratio of discharge:

Ratio	<u>— Discharge for all springs</u> Discharge at 1 DC 35	=	$\frac{1.616}{1.127}$	-	1.434
				÷	1.43

Note:

· · · · *

: Springs in the list are in order from upstream to downstream of the Njoro river.

·				• •			1 1	, 1		(Unit:	m /s	5)
YEAR	<u>JAN</u>	FEB	MAR	APR	MAY	JUN	<u>JUL</u>	AUG	<u>SEP</u>	OCT	<u>NOV</u>	DEC
1965	2.06	1.84	1.74	2.06	1.74	1.70	1.69	1.69	1.69	1.60	1.57	1.53
1966	1.46	1.39	1.42	1.49	1.42	1.47	1.66	1.77	1,84	1.73	1.57	1.49
1967	1.30	1.09	0.99	1.13	1.33	1.32	1.47	1.72	1,96	2.19	2,15	2.06
1968	1.92	1.76	1.79	2.00	1.95	2.36	2.62	2.76	2.64	2.49	2.40	2.57
1969	2.19	2.06	1.97	1,80	1,96	1.76	1.70	1.72	1.64	1.67	1.60	1,50
1970	1.43.	,1.40	1.52	,1.66	1.56	1.82	1.96	1.97	1.79	1.63	1 34	ับก่
1971	1.43	1.32	$\frac{1}{1.43}$	1.77-	1.63	1.96	2.47	2.47	2.25	2.07	1.27	1 72
1972	1.74	1.73-	1.74	1.74	1.77-	2.09	2.17	2.10	1 94	1.60	1.66	1.40
1973	1.43	1.42	1.43	1.39	1.67	1.44	1.39	1.37	1.33	0.89	1.16	1.26
1974	1.16	1.13	0.93	1.43	1.29	1.26	1.29	1.29	1.33	1.33	1.30	1.20
1075	1 17	1 07	1 00	1 40	1 10	3 04						
1976	0 07		0.87	1.49	1.00	1,20	1.12	1.17	1.27	1.29	1.14	1.16
1977	0.87	0.90	0.02	1.101	$\frac{109}{101}$	22.95	0.90	10.89	$\binom{0.94}{1}$	$\binom{0.93}{5.3}$	$/^{0.90}_{2}$	10.893/
1978	1.17	1.10	1 12	$\frac{1}{1}$	/:12	$\frac{111}{3}$	1.45	1.0/~~		1.54	1.49=	1.29
1979	1.52	1.32	1.44	1.82	1+14	1,24-	1.38	1.40	1,92	1.62	1.53	1.63
		1.92	****	1.02	1.17		. –	- 		••• (*) 12		· - .
											· · · · · · · · · · · · · · · · · · ·	
Average	1.45	1.37	1.36	1.55	1.53	1.56	1.66	1.71	1.70	1.63	1.51	1.50
											••••••••••••••••••••••••••••••••••••••	<u>-</u>
Note.	<u>1</u> /:	disc in d	harge o aily re	estima cords	ted by	exclus	sion of	f shor	t perio	od higl	h flow	
	<u>2</u> /:	disc	harge d	obtaine	d by a	spot di	scharg	yé mèas	suremen	nts.		
	<u>3</u> /:	disc obta	harge a ined by	udjuste 7 means	d to to to to so to s	the gro igawara	und wa 's res	ater re servoii	echarge model) patte	ern	
					1. 	-						÷ .
			· · · ·						ang anas	+ 3 - 1	: .	
Table]	[-17		REC	CORDED	DISCH	ARGE FO	DR THE	MIWAL	ENI SP	RINGS		· . ·
			,									
				-			·	e Alton 👔			an ing ba	

YEAR	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOY	DEC
1966 1967 1968 1969 1970	4.22 3.57 3.62 3.73 4.17	4.18 3.54 3.58 3.79 3.93	4.12 3.59 3.72 3.86 4.14	4.37 3.72 4.93 3.97 5.72	4.96 4.11 4.91 3.97 5.30	3.83 4.23 4.74 3.91 4.41	3.59 3.70 3.94 3.92 4.05	3.54 3.72 3.72 3.91 3.88	3.51 3.70 3.53 3.94 3.86	3.60 3.65 3.59 4.01 4.10	3.60 3.68 3.62 4.02 4.01	3.61 3.65 3.70 4.31 3.96
Average	3.86	3.80	3.89	4.54	4.65	4.22	3.84	3.75	3.71	3.79	3.79	3.85
Monthly Lovest	3.57	3.54	3.59	3.72	3.97	3.83	3.59	3.54	3.51	3.59	3.60	3.61

Note: Monthly lowest values are used for irrigation planning.

Table I-18 COMPARISON OF DISCHARGE RECORDS

<u> </u>	RAU	KARANGA	VERU WERU	KIKAFU	HIMO
Gauging Station	1 DC 5	1 DD 3	1 DD 5A	1 DD 8	1 DC 11
Catchment Area (km ²)	122	211	141	198	194
Discharge (m ³ /sec)					
Daté			all e baard. Te Frankrige as de		
8 Jan. 1955	0.09	0,12		1.27	12.04
25 Mar. 1955	0.33	0.19		2.97	0.72
29 Aug. 1955	0.76	0.60	_	1.91	2.14
9 Nov. 1955	0.20	0.19		1.50	0.90
30 Jan. 1956	0.49	1.28	s	2.58	0.74
29 Mar. 1956	0.31	0.66	-	2.40	0.83
30 July 1956	1.66	1.86		2.58	
26 Nov. 1956	0.19	0.28	·	1.38	<u> </u>
3 Jan. 1957	0.11	0.19		2.07	·
21 Féb. 1957	0.16	0.51	1 <u>-</u> 1	1.91	:
9 Apr. 1957	0.17	0.51	-	2.97	7.39
25 June 1957	3.34	5.06	-	7.27	1.91
11 Sep. 1957	0.47	0.71	<u>-</u>	1.77	-
9 Oct. 1957	0.21	0.42	-	1.16	-
9 Dec, 1957	0.59	3.20		11.21	6.94
12 Mar. 1958	0.40	0.71	0.65	1.63	0.98
1 Apr. 1958	0.72	1.28	0.91	2.58	1.28
17 Oct. 1958	0.17	0.28	0.13	0.97	1.17
14 Mar. 1959	0.04	0.28	0	0.73	0.55
3 Apr. 1959	0.08	0.28	0.22	1.50	0.66
verage Specific					

I ~ 43

(Unit: m^3/s)

		10.00			승규가	te de l	1997 (C) 1997 (C)	· · · ·	an an an		· · •.	• •	
YEAR	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	<u>SEP</u>	<u>0CT</u>	NOV	DEC	
1060	3 15	D 66	0.50	7 54	1 52	2 08	0.98	0.33	0.18	0.24	0.21	0.12	
1061	0.10	0.00	0.02	0.55	0 77	0 10	0.72	0.49	1.33	1:40	11.16	5.92	
1062	4 03	1 29	0.00	0,77	2 22	1 23	0.00	0.61	0.25	0.20	0.18	0.47	
1902	0 07	1,00	1 67	2.20	2.26	2 07	1 51	0.74	0.23	0.18	1 92	4.39	
1963	1.52	0.25	5.15	8.54	6.41	2.67	1.09	0.51	0.31	0.26	0.23	0.21	
1065	1.56	0.23	0.38	3 32	2.08	0.85	0.23	0.22	0.16	0.22	1.32	0.69	
1066	0.15	0.27	A 54	1 53	3.37	2 46	1.18	0.40	0.18	0.16	0.15	0.13	
1067	0.10	1 53	0 22	1 22	4.25	3.26	2.34	1 18	4.09	2.26	2.15	0.91	
1068	0.10	0.71	2 16	5.20	3.78	1.12	1.90	1.46	0.54	0.30	0.84	2.44	
1969	0.44	1.13	1.24	0.78	2.98	1.95	1.00	1.63	0.67	1.22	0.69	0.45	
1970	1.51	1.07	1.58	5.03	3.32	1.43	0.65	0.24	0.21	0.19	0.16	0.13	
1971	0.13	0.46	0.71	4.72	4.76	2.60	1.75	0.82	0.22	0.16	0.13	0.42	
1972	0.23	1.34	2.14	2.85	3.91	2.34	1.04	0,56	1.08	2.55	5.36	2.16	
1973	3.20	2.70	1.52	1.72	3.87	1.70	0.96	0.34	0.23	0,22	0.20	0.21	
1974	0.14	0.12	0.17	5,89	4.12	2.44	2.06	0.67	0.19	0.16	0.14	0,20	
1975	0.21	0.10	6.02	7.04	3.75	2,02	1.58	0.89	1.25	0.27	0.17	0,15	
1976	0,13	2.02	0.87	1.36	2.68	2.47	1.14	0.54	0.19	0.13	0:13	0.17	
1977	0.21	0.45	1.87	5.94	4.24	1.67	0,68	1.26	0.42	1.42	2.68	1.33	
1978	1.61	1.01	2.63	3.60	3.69	3.16	1.95	0.92	0.33	0.22	1.44	3.88	
1979	1.79	2.69	1.74	5.41	4.29	4.07	1.57	1.15	0.99	0,54	0.28	0.23	
						· · · · · · · · · · · · · · · · · · ·			<u></u>		e tari	: 	_
Average	1.01	0.96	1.81	4.03	3.62	2.23	1.22	0.76	0,65	0.62	1.48	1.23	
											<u>11. 5. 11</u> 5		
						in de la composition de la composition La composition de la c	н м.	т.		e ve sa e	4 (1) (1) (1)	<i>i</i> .	
								•.			$(1+\frac{1}{2})^{\frac{1}{2}} (X_{1})$	1.	

			5 2. 12	Halin a	: 	•	•		•	(មា	nit: 1	n ³ /s)
<u>YEAR</u>	JAN	FEB	MAR	APR	<u>MAY</u>	JUN	TUL	AUG	<u>SEP</u>	<u>0CT</u>	NOV	DEC
1968 1969	0.41 0.84	0.42 2.56	0.97 2.59	2.46 1.56	3.56 1.53	5.46 1.07	2.32 1.27	1.66	0.98 0.76	0.65	1.06	2,46
1970 1971	0.85	1.20	3.15 0.45	7.43	4.77 5.58	3.65 3.67	2.82 2.36	1.57	1.13	0.73	0.59 0.48	0.47 0.46
1972 1973 1974	0.52 2.00 0.29	0.75 1.28 0.26	0.77 1.12 0.24	1.68 1.44 4.78	2.51 1.84 3.57	3.28 1.36 3.43	2,05 0,96 3,92	1.38 0.76 1.94	1.37 0.44	1.38 0.39	2.05	1.51 0.33
1975 1976	0.42	0.36 0.64	0.95 1.48	2.19 2.82	1.73 2.04	1.19 1.76	1.94 1.10	1.22 0.59	2.07 0.81	1.08 0.73	0.43	0.38
1977 1978 1979	0.29 0.99 0.45	0.30 0.71 2.83	0.65 1.34 2.20	4.40 3.10 4.70	2.61 2.54 3.96	1.35 2.30 3.43	1.18 1.64 2.26	0.88 0.80 1.76	0.52	0.43 0.38	1.01	1.03
									¥ 101	1,40	V.08	0.61
Average	0.71	1.02	1.32	3.69	3.02	2.66	1.98	1.29	1.09	0.80	0.79	0.79

CALCULATION OF DISCHARGE AT FLOOD MARKS

1 - F - 1 - 1

و الجو

 $\mathbf{v} \in [\hat{\phi}]$

5.3

The Magnitude of floods at the flood marks are calculated as follows.

i) <u>Calculation of velocity</u>: The Manning formula is used to determine the velocity.

$$V = \frac{1}{n} \cdot R^{2/3} \cdot i^{1/2}$$

culvert : n = 0.015

ii) Calculation of discharge:

- a) River section, $Q = A \cdot Y$
- b) Flow area over the road,

$$0 = C \cdot B \cdot h^{3/2}$$

where: $Q = discharge in m^3/sec$, $A = flow area in m^2$ C = coefficient of discharge,

> Kisiringo river, C = 1.560 Msaranga river, C = 1.564

- B = overflow width in m,
- h = overflow depth in m.

iii) Results of calculation:

	Item		<u>i</u>	A	v	0
		· .	(m/m)	<u>(m²)</u>	(m/sec)	(m ³ /sec)
(1)	Rau river		0.01	43.2	3.88	168
(2)	Kisiringo river		0.02			
	1) Culvert			2.62	4.58	12
	2) Overflow	773 - 1		(h =	1.1)	10
	•	Total				22
(3)	Msaranga river		0.02			
	1) Culvert			3.93	4.33	17
	2) Overflow			(h =	1.5)	29
		Total				46

ANNUAL RUNOPP COEFFICIENT (at Moshi-Himo road)

			D	RUNOFF COEFFICIENT			
NAME OF RIVER	CATCH- MENT <u>AREA</u> (km ²)	Rainfall ¹ /(mm)	Evapo- <u>2</u> transpi- <u>ration</u> (mn)	Effective ³ <u>Rainfall</u> (mm)	/ Runoff (mm)	against <u>Rainfall</u>	against Effective Rainfall
Nimo river	194	1,288	444	844	260	0,20	0.31
Mue river	85	1,181	446	735	177	0.15	0.24
Seasonal rivers	143	1,320	700	620	198	0.15	0.32
Rau river	122	1,498	580	918	422	0,28	0.46
Karanga river	211	1,430	439	991	416	0.29	0.42
Weru Weru river	141	1,201	491	710	352	0.29	0.50
Kikafu river	198	1,385	522	863	762	0.55	0.88

Note: 1/: refer to Table I-10.

2/: refer to Table 1-12.

 $\underline{3}$: Effective rainfall = Rainfall - Evapotranspiration.

4/: Runoff is estimated as follows.

1.	Rau river :	Result of Tank Model Si (1965 - 1979 average) i	mulation s used
2.	Himo river :	Result of Tank Model si (1968 - 1979) average)	mulation is used
3.	Mue and seasonal rivers :	Runoff coefficient is c	alculated using
		spot discharge data ava Cholo and the Uchira ri (1953 - 1958)	ilable at the vers.
4.	Karanga river :	Recorded data are used.	(1953 - 1959)
5.	Weru Weru river :	на на страна на стран Полити на страна на с Полити на страна на с	(1957 - 1963)
6.	Kikafu river :	en e	(1954 - 1963)

		•	1.1	n an Saite an S	n da s	14.2 M				
				Name	e of 1	river		<u>Rau ri</u>	ver	
				Gau	ging s	static	on :	<u>1 DC 5</u>		
		. •	t set i	Cate	chment	area	(A):	122 km	2	. '
(1)	Calculation	of I	aily Max	timum	Rainf	all			·	
	i) Elevati	on of	middle	point	t for	catch	ment a	réa		
	(fr	om Fi	gure I-1	5 & 1	16)			E1. 1.	140 m	
	ii) Daily m	aximu	m rainfa	11 (1	R.) (from	Pionro	<u> </u>	110 14	
					'24'			~ 11)	w	
		urn P	eriod (y	'ears))	5		20	50	-
	^R 24	(mn/	day)	4.4.1.1	1	55	185	213	249	
(2)	<u>Calculation</u>	of R	ainfall	Inter	<u>isity</u>	j.	••	11		
2	Eouati	on:	$r_{1} = \frac{24}{24}$. (_t	1/3 -}	71	- 0.25	r		
	- 1		t t	`24	h,	e	- 0.27	• * t		
				<u> </u>						
		· •		t	· · ·	 	2. j. j 7 1. j 1. j	.	e	200
		<u> </u>	5	<u>10</u>	20	50	5	<u> 10 </u>	<u>20</u>	50
	r ₂		33.8 4	0.3	46.4	54.3	8.5	10.1	11.6	13.6
	^r 5	· · ·	18.4 2	2.0	25.4	29.6	4.6	5.5	6.3	7.4
	<u> </u>		11.6 1	3.9	16.0	18.7	2.9	3.5	4.0	4.7
(3)	Plotting	u tai	10 - 10 - 10 - 10 - 10 - 10 - 10	- #.			d edd	- ¹		
(2)	<u>1100011ng</u>						: · ·			
	1000	$\mathbb{H}\mathbb{H}$				时			HIII	
							╡╡╏┇╡ ╤╺┖┙			
а Тар										
	500			KsN						
	^v p			N I	NH					
. ()	200 200			<u>X N</u> f		t,	- 240		的门	
· .				HIN.						
	EH.			ШЩŔ						
	1	• . 2	3	5	$(x,y) \in \mathcal{F}$	10	20	30	50	
(4)	Calculation	of Pe	ak Flood	Dis	harao	(0~)	re.	(mm/h)	r)	
	Equat	ion:	$O_{\rm D} \sim \frac{1}{2}$		- A	- (Xb)			•	
	Return Por	iod	×P - 3.	6 ' '	e n	L				
	in vuin 191	LUU		re (m	n)	-	np (min.	<u> </u>	p (m3/00	<u>_</u>
	5 yea	rs	. 3	.7	•	4	20	. 12	5.4	с <u>у</u>
	10		4	.7		3	80	15	9	
	20		5	•7		3	50	19	3	
	50		. 7	.0			32	23	7	

:					1					
	CAT	CHMENT AREA		FFECTI	VE RAINF	ALL	GET.	UK FLOOD	DISCHA	RGE
RIVER	Area ¹ (km ²)	<u>El.of Center²/</u> (El.m)		<u>1-10</u>	T==20	<u>T=50</u> ³ /		T=10	<u>1=20</u> (田3	T=50 (sec)
Rau river	122	1,140	3.7	4.7	5.7	0*2	125	159	193	237
Mue river	85	1,140	3.6	4 6	5.5	6.7	85	109	130	158
Himo river	194	1,570	3. 8	4.8	5.8	7.3	205	259	312	393
Seasonal rivers	• . •			 	• •					
1. Kisiringo	14	1,265	5.4	6.9	8,3	10.2	51	27	32	07
2. Msaranga	17	1,355	5.5	6.9	5° 80 10	10.3	26	33	39	4 6 7
3. Msangaji	10	1,090	5.2	6.6	8.0	6.7	14	18	22	27
4. Mola	7	1,070	5.7	- 7	8.5 2	10.6	н Н	14	17	24
5. Mlalo	6	945	00 2	7.2	8.7	10.7	15	18	g	27
6. Nanga	21	1,310	3.1	9	7.8	9.7	18	38	46	57
7.	S	945	5.0	6 4	7.5	9.4	12	44	17	ร
8. Cholo	6	1,310	3.2	7.8	9.3	11.5	00	50	53	39
۰ ٩		915	5.6	6.9	8.2	10.3	8	10	Ч	ч 4
10. Uchira	24	1,150	4.6	5-8	0.7	8.7	30	6 6	47	28
ll. Kandalu	4	945	5.0	6.5	7.7	9.2	9	4	6	р Н
12. Urenga	15	1,055	4.8	6.0	7.2	0.6	50	25	30	88

Fig. I-|

AVAILABILITY OF RAINFALL RECORD

	5	~	រុខ	4	4	ß	$\tilde{\mathbf{\omega}}$	2	4	\$	4	3	3	32	ဖ	2	S	ŝ	27	2	<u>~</u>	တ	o	<u>o</u>	4	ର୍ଷ	φ	8	ģ	<u>_</u>	ର୍ଷ	ର୍ଷ	8	4	NQ
i Z	÷ا الا	įσ	33	-	5	20	1	43	σ,	5	0	i i	Z	ð,	1	9	-	i.	2		ō	ω	σ	4	4	-	1	1	1	1				<u> </u>	1
ľ	20						Τ					_	Т			100		-i-l		8						T	Т	T	T	T					
	$\left \right $	┢				li in						-		319 W	÷.			_	1991		1110			11/1	100	П	Π		Ţ				4	Ţ	
											ŝ,		t	Ň					11					120			Ħ								
	1ª	-				01×10																			19 19 19	╢	╢	\mathbf{H}	╢						1
	F					1116									-	Ś									S.	ÌÌ		1	Ħ						t
								**							-	8	1141		11-20	╢	S I	Ĥ				∦	╂┠	$\left\{ \right\}$	╢	┨				+	4
	20					111		1	2		Ň.		1	Ĭ	_				19.10			Ħ	Ť	100					1				1		İ.
				13		11:11	╢	8			H			4				ð	à.	╂	8	╢	╢								÷		+	-	
:				_			Ì		*	1				Ì		Ì			8	11	ŝ														ĨĨ
	65																8			ł		╢	┟┟		H.	+								<u>8</u>	
	F						100			Ì.	Ì									t) 	Ħ			Ĩ	Ì				Š.			ŝ.		
	┝												1	1							ř.	₩		╢										Н	
									2										Š.		Ħ	Ħ									ŝ.				\mathbf{H}
	2		8				-				ŧ								8	╟╟	⋕					1					Ň		<u>8</u> []		#
100																Ĭ	1		<u></u>			Ħ				t		Ť	ť		H		\square		
4	-														-		-	-	-		╟			-		+	4	ł		8					\prod
ы У	5		刘	1			Ĩ			Ì							П	ΓĽ	Ĩ			Ħ						Ť			Η			╂	╫
	-			-	-												╟	╟┠								1	4			(1) (1)				П	T .
	÷	8													1		t				h			╋				t						╂	\mathbf{H}
ά	2	55		4										Å		8	4	H		- 4- 1				+			-						П	Ħ	\prod
μ			1		ļ					Ì.																1	ľ	1	1	1	╢	╢	╫	╂	╫╢
z	<u>.</u>	<u> </u>	14.33	4	10000	8					1				-		4		-				П				Ţ	Ŧ	1	П		1	П	П	Ш
μ L		*								T			Ń			+	\dagger			-11		╫	╢	\mathbf{H}		+	╀	╞	╀	H	╂	╢	╢	╂╂	╫╢
∀	4				200				t.	ļ				╢	4		_				Ţ		П		Ļ	,	1	1	1			1	П	Π	Ш
									1	t				H	$^{+}$		\parallel			+	\mathbf{H}	╢	╢	╢	╢	H	╢	$\left \right $	╢	╢	╂╋	╢	╂┨	H	╢
						-		8	4	+	ŀ	<u>_</u>		\prod	H					П	Ţ	\prod	1	Ħ	ĮĮ	Ш	П		Ì		Ħ	11	Ħ	Ħ	Ш
	ş				1				t	t	Ľ	Ĩ	Ш	Ħ	Ħ			+	+	╢		╢	\parallel	H	╂	╢	┦┞	╢		╂	╂	╫	╂┨	╂	╫┨
	-	-									ļ.		╢	\prod	\prod					ŦI	П	П	Ħ		#	11	Ħ	Ħ	Ţ	1	Ħ	11	Ħ	Ħ	Ħ
					1.4.2	2 2 2 2		ž					╢	╫	╂╊	╂╂	╢	╂	╂╂	╂╊	┦╏	╁╂	╂╂	╢	Ħ		╂┨	╢	$\left\{ \right\}$	łł	╂┨	╢	ŧŀ	╢	₩
	<u>.</u>	-			2	-				Τ	H	1	╢	Н	П	П	\prod	П	\prod	П	11	Π	Ħ	Ĭİ	11	Ħ	\prod	#	ļļ	Ħ	Ħ	1	Ħ	IT	
					Ř	Ĩ	ÎÏ	Ĩ	ÎÎ		╢	╂╊	Ħ	╂╋	╢	╫	╫	╂╂	╂╂	╫	╢	╂╂	╢	╢	╢	╢	╂╂	╢	╢	╂╂	╂╂	∦	╂╉	╢	+
		-8			Į.	H	\prod	\prod	П	П	П		П	Π	П	#	1	11	11	ļļ	ļļ	ļļ	Ħ	Ħ	Ħ	Ħ	Ĭ	Ħ	#	Ħ	#	Ħ	Ħ	H.	
	1						Ħ	Ħ	Ħ	╂	╢	Ħ	Ħ	╁	╢	╢	╢	╂╂	╂╂	╂╋	╢	╢	╟	╂	╢	╟	╢	H	╂┤	╢	₽	╟	╂		
	3	5			j.	Į	Ц	Ц	Π	Ũ	Π	μ	Π	Π	Π	Ц	П	Π	11	П	Π	I	Į	I	<u>I</u>	ļĮ	ĮĹ	ĮĮ	Ħ	ŢŢ	ţţ,	Ħ	Ħ	I	Ī
N UN	E.	n d N d	50	ŝ	ιč	1 P	6	6	ß	936	936	40	947	95	95.1	956	956	500	6	963	26	2	070	80	5	345	945	245	100	ဖြ	ß	ဖြ	20	908	968
oz	7		╞	1-	1-	1-	-		1-	-	=		-	-		=	-		1-	-	E		-		-	-	-	Ĕ	Ē	1-	<u> -</u>	E	E	_	
											Í	·	ľ			.					·		ľ.					1	-						
NO N	1			1.							S						ĺ		ç	E,		5		e	ω.	w	ů.	ш	μ			\lfloor			
TAT		1 C		_		Ľ		-		a to	Ē		2	e e].	l o		Ē	10	ž		tat		þ	~	ò	ю	4	խ		ω	Η	0	<i>ceo</i>	reo 0
is		50	Įδ	le	õ			San		ц Ц	l S	6	urse	ы Ц	÷	Ϋ́́		10s	۲.	Ē	2	S		ŵ	ę					L		Ĕ	Ň	ž	4
L O	li		1SS	ĬЙ	I SS	ē	_	g		ō	2	0	Ż	ġ	son	Z	0 C	6	Ses	ő	De	ТЗ С	0	a de	0 L					²	Ŭ	Ŭ	Ο	শ	I
ω		1 a 2¦≥		Sol	2	Ö	õu	2		Sis	ē	3	<u>e</u> so	Š	Ĉ	Ē	ß	E	ր	Ę	ŝ	ē	sta	Ŷ	Ê		÷	ь Э	*			N			
AM		Į.	Į§	Σ	ŝ	оğс С	ទី	C) n	ŭ	ê	å	n n	Σ	20	ŝħ	akir	Ś	υ Ö	ů,	μ	g	safe Be	u) ا	ក្ត	Y					0				j	
z	12	įδ	Þ	ð	ž	Š	ć	F	Ę	Ĩ	칭	ž	ð	ž	ŝ	Ľ,	Ž	×	2	F	N.	Ξ	5	₹	₹	:								•	
<u>ي</u>	5	14	5	0	2	ω	1	ģ	δ	_	ý	ģ	বু	Ň	ŝ	S	Ģ		ò	Ċ1	r)		0	n				-		-			-	-	
STER A D D D	č	įβ	б	ŏ	0	0	ö	ö	ര്	ဗီ	ဗ	9	ဗီ	6	\widetilde{o}	80	80	6	∾ 	2	2	n N	4	4	,		,							.	
	2 3																								ł	1	1	1		1	IJ	1	η	4	
	<u>σ</u>			+	5		2	m	თ	0		2	ī	4	S	G	7	8	თ	б		~	m	<u></u> ,		ö		ñ	<u>_</u>		_	1		æł.	
	I		Ľ		-1	-1				_	_1	_1	_[-1						<u>N</u>	2		\mathbf{N}	Ы	<u>ii</u>	Ń	<u>()</u>	N.	Ň	শ	M	n)	<u>m</u> lı	<u>n</u>];	$\dot{\Omega}$

Fig. I-I

: Monthly Rainfall Data Collected

: Daily Reinfall Data Collected

(b) Second and the second sec second sec

I ~ 50

Fig. 1 - 3 METEOROLOGY OF THE LOWER-MOSHI AREA(I)

Miwaleni Sub-station (1971 – 1979)

Fig. 1-4 METEOROLOGY OF THE LOWER-MOSHI AREA(2)

NAFCO Kahe Estate (1970-1979)

T. P. C. Langasani (1970 – 1979)

Fig. I-5 MONTHLY RAINFALL DISTRIBUTION

Fig.I-8 VARIATION OF ANNUAL RAINFALL WITH ALTITUDE

