

JIGA LIBRARY

THE UNITED REPUBLIC OF TANZANIA

FEASIBILITY REPORT ON
 LOWER-MOSHI AGRICULTURAL DEVELOPMENT PROJECT

ANNEXES

OCTOBER 1980

FEASIBILITY REPORT
 ON
 THE LOVER-MOSHI AGRICULTURAL DEVELOPMENT PROJECT

ANNEXES

CONTENTS

ANNEX I	METEOROLOGY AND HYDROLOGY
ANNEX II	HYDROGEOLOGY
ANNEX II I	SOIL AND LAND CLASSIPICATIONS
ANNEX IV	IRRIGATION AND DRAINAGE
ANNEX V	AGRICULTURE
ANNEX VI	AGRICULTURAL ECONOMY
ANNEX VII	ENGINEERING DESIGN
ANNEX VIII	PROJECT ORGANIZATION, IMPIEMENTATION
ANNEX IX	PROEDULE AND PROJECT COSTS

ABBREVIATIONS

V	Volt	ppm	Parts per million
kV	kilovolt	\%	Percent
W	Watt	HP	Horsepower (1 HP = 0.746 kW)
kW	kilowatt	${ }^{\circ} \mathrm{C}$	Degree centigrade
MW	Megawatt	$\mu \mathrm{S} / \mathrm{cm}$	Microsiemens per centimeter
A	Ampere	m.mhos	Millimohs
Hz	: Hertz (cycle)	m. $\mathrm{Eq}^{\text {/ }}$ /	Milli equivalent per liter
kWh	: kilowatt hour	$\mathrm{m}^{3} / \mathrm{sec}$	Cubic meter per second

Currency and Equivalents as of 1980

TS (Shs):	Tanzanian Shillings	$(=U S \$ 0,122= \pm 30,6)$
US	U.S. Dollar	($=$ TS8.18 = - 250)
¥	Japanese Yen	$(=$ US $\$ 0.004=$ TSO.033)

ANNEX I

METEOROLOGY AND HYDROLOGY

FEASIBILITY REPORT

ON
THE LOWER-MOSHI AGRICULTURAL DEVELOPNENT PROJEGT

ANNEX I. METEOROLOGY AND HYDROLOGY

CONTENTS

PAGE

1. General I-1
2. Meteorology I-1
2.1 Data I-1
2.1.1 Rainfall data I-1
2.1.2 Meteorological data I-1
2.2 Seasons I-2
2.3 Meteorology of the Lower-Moshi Area I-3
$2.4^{\text {Rainfall }}$ I-4
2.4.1 Rainfall characteristics I-4
2.4.2 Rainfall intensity I-6
2.4.3 Isohyet and areal rainfall I-7
2.4.4 Effective rainfall for water balance study I-7
3. Hydrology I-10
3.1 Discharge Data I-10
3.2 Check Discharge Measurement I-10
3.2.1 Njoro river I-11
3.2.2 Rau river I-11
3.2.3 Miwaleni springs 1-11
3.2.4 Himo river I-12
3.3 Estimation of Available Discharge I-12
3.3 .1 Njoro river I-12
3.3.2 Miwaleni springs I-13
3.3.3 Rau river I-13
3.3.4 Hino river I-15
3.3.5 Mue river I-15
3.3.6 Annual runoff coefficient I-16
3.4 Flood I-17
3.4.1 Hydrological deta I-17
3.4.2 Flood marks I-17
3.4.3 1979's flood on the Rau river I-17
3.4.4 Calculation of peak flood discharge I-19

LIST OF TABLES

TABLE NO. TITLE PAGE
I-1 List of Rainfall Stations I-23
I-2 Average Monthly Rainfall (1) I-24
I-3 - do - (2) I-25
I-4 Sumary of Meteorological Records (1) - Moshi Meteorological Station - I-26

- do -
(2)
- Mivaleni Sub-station -I-27
I-6
- do -
(3)
- Narco Kahe Estate -

I-28
I-7

- do -
(4)
- TPC Langasani -

I-29

- do -
(5)
- Iyamungu A.R.I.

I-30
I-9 Correlation among Point Rainfalls I-31
I-10 Areal Rainfall for River Basins 12
I-11 Calculation of Evapotranspiration 1 -33
I-12 Areal Evapotranspiration for River Basins I-34
I-13 List of Gauging Stations .. I-35
I-14 Recorded Monthly Discharge .. I-36
1-15 ... Result of Discharge Measurement for the Njoro Springs I-41
I-16 Estimated Discharge for the Njoro River I-42
I-17 Recorded Discharge for the Miwaleni Springs. I-42
1-18 Comparison of Discharge Records I3
I-19 Estimated Discharge for the Rau River I-44

1-21 Calculation of Discharge at Plood Marks I-46

I-23 Sample Calculation of Peak Plood Discharge I-48
I-24 Estimation of Peak Plood Discharge I-49
PIGURE NO. TITLE PAGE
I-1 Availability of Rainfall Records I-50
I-2 Location of Rainfall Station and Annual Isohyet I-51
I-3 Meteorology of the Lower-Moshi Area (1) I-52
1-4 - do - I-53
I-5 Monthly Rainfall Distribution I-54
1-6: Variation of Annual Rainfall (50 years) I-55
I-7 Comparison of Annual Rainfall I-56
I-8 Variation of Annual Rainfall with Altitude I-57
I-9 Variation of Monthly Rainfall with Altitude (January - June) I-58
$1-10$(July - December)I-59
I-11 Variation of Daily Maximum Rainfall with Altitude for Catchment Areas I-60
I-12 Variation of Daily Maximum Rainfall with Altitude for the Lower-Moshi Area I-61
I-13 Distribution Pattern of Daily Rainfall 1-62
I-14 Coefficient for Rainfall Intensity Calculation I-62
1-15 Variation of Catchment Area with Altitude (1) I-63
I-16 - do - (2) I-64
I-17 Variation of Land Cover and
Evapotranspiration with Altitude 1-65
I-18 Availability of Discharge Record I-66
I-19 Location of Gauging Station and Watershed Boundary I-67
I-20 Result of Discharge Measurement I-68
I-21 Rating Curve for the Njoro River I-69
I-22 Probable Runoff Pattern I-70
I-23 Simulation Model 1-71
I-24 Simulation Results for River Discharge I-72
I-25 Flood Mark and Cross Section of Rivers I-73
I-26 Probable Rainfall at Moshi Meteorological Station I-74
1-27. Rating Curve for the Kikafu River I-75
I-28 Hydrograph for the Kikafu River (1) I - 76
I-29 - do - (2) I-77
1-30 Relation between Rainfall Intensity andTime of ConcentrationI-78

METEOROLOGY AND HYDROLOGY

1. General

During the survey works in Tanzania, collection of meteorological and hydrological data was made to furnish as ample data as possible to the feasibility study of the Project. Studies were made to collect data mainly to set up the criteria for the planming of the Project which have been used in the relevant parts of the study report. In this Annex-I, the process of the main studies is set forth briefly.
2. Meteorology
2.1 Data

2.1.1 Rainfall data

Rainfall data were collected mainly from the Regional Water Office in Kilimanjaro, Moshi, and from the Ministry of Water, Energy and Minerals, Dar es Salaam. Collected data cover the daily and monthly rainfall data of 35 rainfall stations for the durations graphed in Pigure l-l Locations and history of the stations are shown in Figure I-2 and Table I-1. The average, maximur and minimum depth of monthly rainfall are summarized in Tables $I-2$ and $I-3$.

2.1 .2 Meteorological data

Meteorological data other than rainfall were collected from the East African Meteorological Department, Dar es Salaam, and from other agencies operating meteorological stations.

Pive (5) fully equipped meteorological stations have been operating in and around the Lower-Moshi area. The latest 10 years of data were collected from these stations for study, A list of these stations is as follows.

Name of Station	Operating Organization	Commencement Year
1. Moshi Meteorological Station	E.A.M.D.	1932
2. Miwaleni Sub-station of the Lyamungu ARI	Minc of Agriculture	1971
3. NAFCO Kahe Estate	NAFCO	1966
4. TPC Langasani	TPC	1935
5. Lyamungu ARI	Min. of Agriculture	1935

Locations of the above five stations are shown in Figure $1-2$. Among the above stations, Miwaleni sub-station was used as a key station for agronomic study because it is located almost in the center of the Lower-Moshi area.

2.2 Seasons

The cliratic seasons of Tanzania are controlled by the north and south movement of the earth on its axis. The area experiencing greatest heating due to solar energy, refored to as the Heat Trough, also experiences low atmospheric pressure. The movement of the Heat Trough, or low pressure center, follows with a lag of about four to six weeks behind the place of the stin's maximum elevation.

The sun is approximately overhead in Tanzania in early March and mid-october, so that the Heat Trough can be expected to have maximum effect about early April and mid-November, This trough of low pressure in the region produces a general movement of air mass from the surrounding high pressure belt. The result is a zone of convergence causing vertical upward movement of the air and precipitation. This continues from March to May causing the long rains, and fron November to December causing the light rainsl/.

Meteorology in the Lower-Moshi area is characterized by three seasons; the rainy season from Maxch to May, the dry season from June to October and the light-rainy season from November to February as show in the following figure.

(Data: Miwaleni Sub-station, 1972-1979 avexage)

1/: FAO/UNDP, Survey and Plan for Irrigation Developnent in the Pasgani and Nami River Basins, Final Report, 1969.

2.3 Meteorology of the Lower-Moshi Area

Monthly average meteorological data obtained from five meteorological stations, is sumarized in Tables $I-4$ to I-8. Data is also show in figures I-3 and I-4 in a graphic form. As shown in these figures, the variation of solar radiation is reflected by the novement of the earth on its axis, In general, meteorological items such as temperature, relative humidity and evaporation varies widely under the influence of both solar energy and rainfall depth.

Mean temperature varies from $2 l^{\circ} \mathrm{C}$ to $26^{\circ} \mathrm{C}$ throughout the year with a lag of about one month behind the maximun effect of the sun. The average daily maximum temperature rises above $30^{\circ} \mathrm{C}$ from 0 ctober to April. Because of the high altitude over 700 m , the daily minimum temperature falls below $22^{\circ} \mathrm{C}$ even in the hottest season. Daily variation of temperature is over $14^{\circ} \mathrm{C}$ in January. The absolute maximum and minimum daily temperatures observed at Miwaleni sub-station are $36.5^{\circ} \mathrm{C}$ and $9.4^{\circ} \mathrm{C}$, respectively.

The monthly average of relative humidity at 3 p.m. varies from 43 to 64%. Due to effect of rainfall, the relative humidity increases from March and reaches to its maximum in May. After the rainy season, it decreases gradually. During the short-rain season, the relative humidity is almost constant.

Pan evaporation varies widely throughout the year from $3 \mathrm{~mm} /$ day in May to $9 \mathrm{~mm} /$ day in January. From october to March, the evaporation seens to be constant in a range from 8 to $9 \mathrm{~mm} / \mathrm{day}$.

Winds are light from April to August and moderate from September to March, and predominantly from south to southeast.

2.4.1 Rainfall characteristies

(1) Seasonal distribution

Monthly distribution patterns of average rainfall for each rainfall station are shom in Figure $1-5$. In the Lover-Moshi area, about 50 to 65% of annual rainfall occur during the rainy season with a horizontal variation as shown below.

Rainfall Distribution in the Lower-Moshi Area

		Annual	Seasonal Distribution		
Location	$\frac{\text { Altitude }}{(\mathrm{m})}$	$\frac{\text { Rainfall }}{(\mathrm{mm})}$	$\frac{\text { Rainy }}{(\%)}$	$\frac{\text { Dry }}{(\%)}$	$\frac{\text { Light-xain }}{(\%)}$
1. Western area					
1. Moshi Meteo. Sta.	813	878	66	12	22
2. NAYCO Kahe Estate	710	495	61	11	28
2. Middle area					
Miwaleni Sub-sta.	770	705	63	11	26
3. Eastern area					
1. Himó Sisal Estate	810	805	53	12	35
2. Kifaru Sisal Estate	700	486	49	12	38

(2) 50 years' variation of rainfall

Among the rainfall stations in the Lower-Moshi area and river basins relevant to the area, Moshi meteorological station (El. 813 m) and Kilema mission (El. $1,422 \mathrm{~m}$) is a key station for the hydrological study because recorded duration and quality of data are satisfactory. The long-term tendency of annual rainfalls for these two stations is shown in Figure $1-6$ in the form of annual average and 5-year moving average.

As shown in the figure, the wettest and dryest decades in these 50 years are the 1930 s and 1950 s, respectively. Average annual rainfall during the latest decade (1970s) seems to be almost on the same level as the 50 -year average. However, the figures indicate that there is no obvious periodicity for annual rainfalls.

(3) Correlation among rainfall stations

Correlation of monthly and annual rainfall between representative rainfall stations (such as Moshi neteorological station and Kilema mission station) and other stations are analyzed using a correlation coefficient. Results are shown in Table I-9 and summarized below.

Correlation of Annual Rainfall

Note: A Correlated with 1 \% level of significance Bi " with 5% "
Rainfall Station

1. Moshi Meteo. Station
2. Miwaleni Sub-station
3. Himo Sisal Estate
4. NafCo Kahe Estate
5. TPC Langasani
6. Kilema Mission
7. Lyamungu

As show in the above results, the recorded point rainfall in and around the Lower-Moshi area are well correlated each other. Hence, some incomplete records can be supplemented using records obtained from reliable rainfall stations such as Moshi meteorological station and Kilema mission station.

A comparison of annual rainfall between Moshi Meteorological station and other rainfall stations in the Lower-Moshi area was made as shown in figure $T-7$. There is a close relation anong them as the following ratios indicate.

(4) Correlation of rainfall with altitude

On the southern slope of Mt. Kilimanjaro, rainfall is dominated by the orographic precipitation. In this area, there is a close relation between rainfall amount and altitude.

The relation between altitude and amual rainfalls (average, $10-$ year storm rainfall and 10 -year drought rainfall) is shown in Figure $1-8$. An annual rainfall in altitudes from 1,600 to $1,800 \mathrm{~m}$ averages as high as $2,000 \mathrm{~mm}$. This high rainfall belt crosses almost the middle area of watershed of major rivers, and the annual rainfall decreases from this belt upwards and downwards along the slopes of Mt. Kilimanjaro.

The relation between average nonthly rainfall and altitude is graphed as shown in Figures $I-9$ and $1-10$. These figures are used for estimation of areal rainfall for each river basin as mentioned in section 2.4.3.

2.4.2 Rainfall intensity

Daily maximum rainfall

Daily cainfall data are available from many stations in the study area. The absolute maximum daily rainfall is 281 min which was observed at Kilema mission station in Apill 1947. The probable daily maximum rainfall for the representativo rainfall stations is calculated by using the Gumbel method. The estimated results are summarized: below.

Results are graphed together with altitude as shown in Figure I-ll for catchmont areas and in Figure $1-12$ for the lower-Moshi area. The former will apply to the calculation of design flood discharge and the latter to the calculation of design drainage requirements.

(2) Rainfall intensity

Hourly rainfall records obtained by an automatic recorder are available from Lyamungu ARI station. In order to estimate the design flood discharge for the Rau, the Mue and seasonal rivers, the relation between daily rainfall and rainfall intensity analyzed using data observed at Lyamungu ARI station.

In general, rainfall intensity can be calculated from daily rainfall data using the following formula.

$$
\begin{aligned}
& \mathbf{r}_{\mathbf{t}}=\mathbf{R}_{\mathbf{t}} / \mathbf{t} \\
& \mathrm{R}_{\mathbf{t}}=\mathbf{R}_{24}\left(\frac{t}{24}\right)^{\mathrm{K}}
\end{aligned}
$$

```
where; \(\quad r_{t}=\) Rainfall intensity during \(t\) hours ( \(\mathrm{mm} / \mathrm{hr}\) )
\(R_{t}=\) Rainfall during \(t\) hours (mim)
\(\mathrm{R}_{24}=\) Rainfall during 24 hours (mm)
\(t\) = Time in hours
\(\mathrm{K}=\) Coefficient
```

Among hourly rainfall data collected, consecutive rainfall records with an intensity more than $30 \mathrm{~mm} / \mathrm{hr}$ are selected and graphed as shown in figure 1-13. The highest rainfall intensity in a consecutive rainfallgenerally occurs 2 or 3 hours after the rainfall begins. Then, the ratio of Rt to R24 is plotted against time in hours for each consecutive rainfall as shown in Figure I-14. Based on the figure, the coefficient value (K) is determined at $1 / 3$.

2.4.3 Isohyet and areal rainfall

(1)

Isohyet map

The isohyet for the average annual rainfall is prepared as shown in Figure $1-2$ based on annual rainfall records for each rainfall station and the correlation of rainfall with altitude. In the LowerMoshi area, the isohyet of 500 mm runs east and west near the southern boundary of the project area. The rainfall increases northward correlating with altitude and reaches 800 mem near the northern boundary of the Lower-Moshi area, or the Moshi-Taveta road. The areal rainfall in the Lower-Moshi area is calculated at 590 min per year using the isohyetal method.

(2) Areal rainfall coe catchment areas

For the purpose to study on water balance for each river basin, areal rainfall is estimated. First, relation between cumulative catchment area and altitude for each river basin is graphed as shown in Figures $1-15$ and $1-16$. Next, areal rainfall is estimated applying Pigure (-9 and $1-10$ (correlation of monthly rainfall with altitude) to the above figures. Results are summarized in Table I-10.

2.4.4 Effective rainfall for water balance study

Effective rainfall applied to the water balance study for river basins can be defined as;
(Effective Rainfall) (Rainfall)- (Evapotranspiration)
Re
R
ET
In order to calculate areal evapotranspiration for each river basin, the following process is adopted.
(i) Preparation of a figure showing ET-Altitude relation (Figure 2-17),
(ii) Preparation of figures showing catchment area - Altitude relation (Figure I-15),
(iii) Calculation of areal ET values in combination with the above figures.

First, process for preparation of figure on ET-Altitude relation is described below briefly.
(i) Data: Monthly average Meteorological records obtained at Lyamungu ARI station (E1. 1268 m). (see Trble I-8)
(ii) Calculation formula:

The Blaney-Criddle equation ${ }^{1 /}$ is selected for calculation of potential evapotranspiration based on comparison with pan evaporation records (see Table I-11). The equation is expressed as:

$$
E T O=c \cdot[p \cdot(0,46 t+8)] \quad \mathrm{mm} / \mathrm{day}
$$

where, $\quad E T o=p o t e n t i a l$ evapotranspiration for the month considered (mm/day),
$t=$ mean daily temperature over the month considered (${ }^{\circ} \mathrm{C}$),
P = mean daily percentage of tatal annual daytime hours for a given month and latitude,
$c \quad=$ adjustment factor which depends on minimum relative humidity, sunshine hours and daytime wind estimates
(iii) Assumptions
(1) Nonthly meteorological characteristies such as minimun relative humidity, sunshine hours and daytime winds for elevated areas are the same as that of Lyamungu ARI station, and (2) Temperature falls at a rate of $0.6^{\circ} \mathrm{C}$ per 100 m in elevated areas.
(iv) Calculation of ETo:

Based on the above equation and assumptions, potential evapotranspiration can be calculated by the following equations (see Table 1-11).

$$
\begin{array}{ll}
\text { April }- \text { Septeraber } ; & \text { ETo }=0.117 t+0.20 \mathrm{~mm} / \mathrm{day} \\
\text { October }- \text { March }: E T o=0.130 t+0.43 \mathrm{~mm} / \mathrm{day}
\end{array}
$$

(v) Classification of land cover:

Por the purpose of estimating crop factors (ke), land covers on the slope of Mt. Kilimanjaro are classified as follows, (see Figare $I-17$)

[^0]| Elevation | Land Use | kc |
| :---: | :--- | :---: |
| higher than $2,700 \mathrm{~m}$ | Bare land | $0.29-0.96$ |
| $2,700-1,800 \mathrm{~m}$ | Porest | 0.85 |
| lower than $1,800 \mathrm{~m}$ | Plantation \& | 0.90 |

(vi) Caloulation of ET:

After determining ETO, monthly ET values can be predicted using the crop coefficient (kc), or

$$
\mathbf{E T}=\mathrm{kc} \cdot \mathbf{E T O}
$$

(vii) ET-Altitude relationt

Following the above procedure, monthly ET values for areas with different elevation are calculated and then, annual ET values are plotted against altitude as shown in Bigure $1-17$.

Galculations of areal ET values for each river basin were made in combination with the above ET-Altitude relations. Results are shown in Table I-12. These values will be used for the simulation of river discharge for the Rau and Himo rivers as mentioned in the following chapter and water balance study discussed in Annex II.

3. Hydrology

3.1 Discharge Data

The responsibility for the collection and publication of discharge records rests primarily with the Ministry of Water, Energy and Minerals, Dar Es Salaam, Discharge Records from 1955 to 1970 are available in the Hydrological Year Book published every five years by the Ministry. Records of recent ten years were collected as much as possible from the Regional Water Office in Kilimanjaro, Moshi. Collected data cover the daily data and spot data of 21 stations with duration as shown in Figure $\mathbf{1 - 1 8}$. All collected data are compiled in the Data Book.

Six gauging stations have been operated in the Lower-Moshi area by the method of daily reading of gauging staffs. In addition, periodical discharge measurement using current meter have been conducted by the Regional Water office for the purpose to check the rating curves of each gauging station.

The gauging statins in operation in and around the Lower-Moshi area are listed as shown below. The detailed information is sumarized in Table $\mathrm{I}-13$. Locations of each station are shown in Figure I-19.

Station number	River system	River	Catchment area $\left(\mathrm{km}^{3}\right)$	Openning \qquad	Measuring method
1 DC 3A	Rau	Rau	300	1960	Gauging stafi
1 DC 35	"	Njoro	24	1958	
1 DC 6	Mue	Mue	250	1956	
1 DC 33	"	Miwalení	81	1958	,
1 DC 11A	Himo	Himo	272	1968	
1 DC 1	Ruvu	Ruvu	2,590	1957	Auto, recorder
$1 . \mathrm{DC} 1$	Kikuletwa	Kikuletwa	3,840	1952	" \because "
1 DD 8A	"	Kikafu	198	1978	\cdots

The average values for the collected discharge records are summarized in Table $1-14$.

3.2 Check Discharge Measurement

Check measurement of discharge of the Rau river system (downstream of the Moshi-Taveta road), the Himo river and the Miwaleni springs were conducted during the field investigation works from January to Pebruary 1980. The main purpose of the measurement was to clarify the difference between actual available discharge and records obtained from each gauging station. Looations of the measuring sitos and results of measurement are shown in Figure. I-20.

3.2 .1 Njoro river

Through discharge measurement, it was clarified that the Njororiver originates from 15 springs, i.e. 11 springs flowing upstream of the gauging station (1 DC 35) and 4 springs stream as shown in Table I-15. Hence, discharge records observed from this station are always less than the total available amount of the Njoro water, The discharge values measured at the downstream site after all spring water joins with the Njoro river were 1.43 times the discharge recorded at this station as shown in Table I-15.

Based on this fact, modification of the collected data will be made in order to estimate total available discharge of the Njoro river.
3.2 .2 Rau river

The discharge measured at the upper site (1 DC 5) and the lower site (confluence of the Njoro river) on the Rau river were 90 and 780 1it/sec respectively as shown in Pigure $1-20$. This fact suggests possibility of; (1) existence of underflow water of the Rau river, (2) return flow from adjacent paddy fields, and (3) existence of springs unknown.

During the field investigations, reasons of the above difference could not be confimed, and accordingly many factors necessary for the modification on the observed data at the gauging stations (1 DC 5) were left unknown.

On the Rau river, many traditional intakes are located irregularly and a oonsiderable amount of available water is taken into traditional furrows. Hence, records obtained from the gauging station, 1 DC 3 (A), cannot be used for estimation of amout of available water for the Rau river.

3.2.3 Miwaleni springs

Check discharge measurement for the Miwaleni springs was carried out twice in Pebruary 1980. The results of measurement were $4.085 \mathrm{~m}^{3} / \mathrm{sec}$ on 4 th Pebruary and $4.067 \mathrm{~m}^{3} / \mathrm{sec}$ on 12 th February, which were not affected by surface runoff by rainfall.

The gauging station, 1 DC 33 , is located at the intake facilities for the NAFCO canal, which is located about 1 km downstream from the Miwaleni springs. The gauging station consists of three gauging staffs, i.e. (1) at the inlet of the NAFCO canal, (2) just downstream of the concrete weir and (3) downstream of the coffer dam where the considerable amount of leakage occurs. Trials were made to prepare rating curves for each gauging staff in order to convert gauge readings into discharge. However, reliable results could not be obtained because quality of collected data mas poor. Hence, recent data collected from the Regional Water office were not used for project plannings.

3.2.4 Himo yiver

On the Himo river, there are two concrete weirs with control gates between two gauging stations, i, e. 1 DC 11^{2} and 1 DC $11 A$ as show in Figure 1-20. On the upstream of 1 DC 11, three, traditional intakes exist and divert river water without control. Hence, records obtained from the gauging stations are affected by the diversion discharge of these intakes.

Since there are no records of the amount of diverted discharge for estimation of total available discharge on the Himo river, the discharge records obtained from the gauging station, 1 DC ll, will be used for estimation of expected runoff of the Himo river as a conservative estimate for irrigation use.

3.3 Estimation of Available Discharge

3.3 .1 Njoro river (springs)

The Njoro river originates from 15 springs as clarified during the field investigations from January to February 1980. The gauging station, 1 DC 35, has been operated from 1965 at about 6 km upstream from the confluence, with the Rau river. The Njoro river has a drainage area of about $24 \mathrm{~km}^{2}$, in which the water route is poorly developed. Based on data analysis and interviews of residents, the surface runoff from the drainage basin into the Njoro river can be neglected and hence, the recorded discharge obtained from the gauging station, 1 DC 35, are considered to wholly originate from a group of springs.

The rating curve for the gauging station, 1 DC 35 , was prepared using actual measurement data by current moter as shom in Figuae $1-21$. The gauge reading records (1976-1979) collected from the Regional Water office were converted into discharge using this rating curve. Data from 1965 to 1975 are available from the Hydrological Year Books in the form of discharge. This discharge data is summarized in Table 1-14(2).

Discharge data in Table $1-14(2)$ covering 15 years from 1965 to date were modified using the conversion rate of 1.43 as mentioned in section 3.2.1. Results are shown in Table $I-15$, and are used as a base for irrigation planning discussed in Annex V. The average and the probable discharge are sumarized as follows and graphed in Figure $1-22$.

Available Discharge of the Njoro River
(1 DC 35: $1965-1979$)

$$
\text { (Unit: } \mathrm{m}^{3} / \mathrm{s} \text {) }
$$

Item	Jan	Yeb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Average	1.45	1.37	1.36	1.55	1.53	1.56	1.66	1.71	1.70	1.63	1.51	1.50
Probable Discharge (Non-exceedence)												
80%	1.83	1.68	1.71	1.84	1.85	1.96	2.07	2.11	2.04	2.03	1.84	1.86
50%	1.39	1.22	1.33	1.51	1.53	1.52	1.60	1.62	1.65	1.57	1.49	1.45
20%	1.06	1.04	1.04	1.26	1.27	1.20	1.20	1.27	1.31	1.20	1.20	1.13

3.3.2 Miwalent springs

Discharge measurement for the Miwaleni spings have been carried out at the gauging station, 1 DC 33, from 1958 to-date. However, reliable daily records are available for only 5 years from 1966 to 1970. Before 1965; only spot data are available, which vere measured for the purpose of confirming the water source for the Kahe Irrigation Project. All collected data are compiled in the Data Book. The monthly discharge data is summarized in Table $1-16$.

The gauging station, 1 DC 33, has a drainage area of $81 \mathrm{~km}^{2}$, and the seasonal runoff enters into the streans or springs during the rainy season as shown in Figure 1-22. Since available data are quite limited (as short as 5 years) the lowest monthly records for each month among 5 years data are selected and used for irrigation planning as a conservative estimate.

Available Discharge of the Miwaleni Springs (1 DC 33: 1966-1970)
(Unit: $\mathrm{m}^{3} / \mathrm{sec}$)

Monthly
Low 1/ $\quad 3.57 \quad 3.543 .593 .723 .87 \quad 3.83 \quad 3.59 \quad 3.543 .51 \quad 3.593 .603 .61$
1/: These values are used for irrigation planning.
3.3.3 Rau river
(1)

Availability of data

Discharge records on the Rau river are available from two gauging sites, i, e, 1 DC 5 at the Moshi-Taveta road and 1 DC 3 (A) at Kahe as shown below.

Station No.	$\begin{aligned} & \text { Catchment } \\ & \text { Area } \\ & \hline \end{aligned}$	Operation Duration (Years)	Data	Recorded Maximum
				($\mathrm{m}^{3} / \mathrm{sec}$)
1 DC 5	122	1955. 1-1959.6 (4)	Spot data	2.30
1 DC 3	300	1956. 11 - 1959. 10 (3)	Daily data	2.51
1 DC 3A	300	1960. 9-3 (20)	Daily data	2.40

The discharge data recorded at Kahe (1 DC 3 or 1 DC 3A) cannot be used for estimation of expected runoff because of effects by existing traditional intakes as mentioned in the previous section. On the other hand, discharge records observed at No. 1 DC 5 station are insufficient because they are spot data measured once a month for four years.

Since discharge records obtained on the Rau river are not usable for estimation of expected runoff, the runoff simulation by use of the Sugawara's reservoir model (or "Tank Model") was conducted applying data obtained from the adjoining watershed (Karanga river).

First, spot data of the Rau river obtained at No, DC 5 station are compared with data recorded on the same date from other gauging stations such as 1 DD 3 on the Karanga river, 1 DD $5 A$ on the Weru Weru river, 1 DD 8 on the Kikafu river and 1 DC 11 on the Himo river as shown in Table I-17. It was found that the rumoff pattern of the Karanga river was quite similar to that of the Rau river with a correlation coefficient of 88%. Hence, Daily records obtained from the Karanga irver were used as an adjustment index for runoff simulation by the dank model.

Second, in order to decide coefficients of the Tank (numbers, size and height of orifices on the Tank), daily rainfall and evapotranspiration data are necessary. Among rainfall stations, Lyamungu ARI station is located near the watershed of the Karanga river. The recorded duration and quality of data there are satisfactory for study purposes. Hence, daily rainfall data from this station was used as input data for the simulation. The conversion rates from point rainfall to areal rainfall for the Karanga basin are shown in Figure I-23, which are processed from Table $I-10$ and monthly average rainfall at the Lyamungu as shown in Table 1-2. Monthly evapotranspiration values for the Karanga basin are summarized in Table I-12.

Based on the above preparation, the Tank Model simulation was conducted by the trial and exror method using computer. The final model selected is show in Pigure $1-23$. Results of simulated rimoff using the final model are partially shown in Figure $I-24$ in the form of a 5 -day average compared with the actual discharge.

(3)

Calculation of runoff of the Rauriver

Runoff of the Rau river at No. 1 DC 5 station is calculated by use of the final model applying daily rainfall data recorded at Moshi meteorological station from 1965 to 1979. The conversion rates from point rainfall to areal rainfall were caloulated following the aforementioned procedure. Monthly evapotranspiration used for the calculation are summarized in Table $1-12$. The estimated daily runoff is sumarized into monthly values and is shown in Table $1-19$. The average and the probable discharges are as shown below. These are graphed in Figure $\mathrm{I}-22$.
$\frac{\text { Available Discharge of the Rau River }}{(1 \mathrm{DC} 5:}$
(Unit: $\mathrm{m}^{3} / \mathrm{sec}$)

Item	Jan	Feb	Mar	Apr	May				Aug					-
Average	0.77	1.05	1.85	2.91	3.67	2.3		1.	0.	0.72	0.		1.06	0.90

Probable Discharge (Non-exceedence)

| 80 | $\%$ | 1.56 | 1.95 | 3.25 | 6.25 | 4.10 | 3.10 | 1.80 | 1.37 | 1.05 | 1.10 | 2.05 | 1.73 |
| :--- |
| 50% | 0.61 | 0.70 | 1.40 | 3.21 | 3.50 | 2.28 | 1.22 | 0.72 | 0.49 | 0.56 | 0.74 | 0.64 | |
| 20% | 0.23 | 0.25 | 0.60 | 1.60 | 3.00 | 1.66 | 0.81 | 0.38 | 0.23 | 0.22 | 0.26 | 0.23 | |

3.3 .4 Himo river
(1)

Availability of Data

Daily discharge records on the Himo river are available from two gauging stations,i.0, 1 DC 11 (operated from 1952 to 1959) at the Moshi-Taveta road and 1 DC 11A (operated from 1968 to date) at about 13 km domstream of 1 DC 11 . Since the proposed intake sites for the project are located between the above two gauging stations, the records obtained from the upper gauging station, 1 DC11, are used for the study. Average values of this station are show in Table I-14.

Tank Model simulation

Runoff simulation for the Himo river was carried out by use of the Tank Model in order to estimate expected runoff for recent years. Daily rainfall data recorded at the Kilema Mission were used as input data because this station is lodated near the Himo basin and the recorded duration and quality of data are satisfactory. The conversion rates from point rainfall to areal rainfall for the Himo basin are shown in Figure I-23, which are processed from Table $\quad 10$ and monthly average rainfall at the Kilema mission station. Monthly evapotranspixation values for the Himo basin are shown in Table I-12.

The final model selected is shown in Figure 1-23. Results of simulated runoff using the final model are shown in Figure I-24 making comparison with the actual discharge. As shown on this figure, adjustment between simulated runoff and actual runoff is satisfactory.

The results of runoff estimation (daily) are sumarized into monthly values and are shown in Table $I-20$. The average and the probable discharge are as shown below. These are graphed in Figure t-22.

Available Discharge of the Himo River
 (1-DC 11: 1968-1979)

$$
\text { (Unit: } \mathrm{m}^{3} / \mathrm{sec} \text {) }
$$

Item	Jan	Peb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct		Nov		De
Average	0.71	1.02	1.32	3.69	3.02	2.66	1.98	1.29	1.09	0.80		0.79		0.79

Probable Discharge (Non-exceedence)

| 80 | $\%$ | 1.04 | 1.58 | 2.11 | 5.70 | 4.26 | 3.85 | 2.90 | 1.89 | 1.60 | 1.21 | 1.14 | 1.14 |
| :--- |
| 50% | 0.62 | 0.75 | 1.10 | 3.38 | 2.79 | 2.40 | 1.89 | 1.25 | 0.93 | 0.73 | 0.66 | 0.65 | |
| 20% | 0.37 | 0.35 | 0.58 | 1.73 | 1.86 | 1.47 | 1.21 | 0.82 | 0.54 | 0.44 | 0.38 | 0.37 | |

3.3 .5 Mue river

On the Mue river, the gauging station, 1 DC 6, has been operated at the rallway crossing from 1956 to date. The drainage area at this station is $250 \mathrm{~km}^{2}$ including the Miwaleni basin (1 DC 33) of $81 \mathrm{~km}^{2}$ as shown in figure I-19.

The Mue river is seasonal. Except during rainy seasons, major portions of the river discharge recorded at the gatuging station, 1 DC 6, originate from the Niwaleni springs as shown in the following table.

Comparison of Discharge betwoen Mue and Miwaloni
(before construction of the NAFCO Intake)

$$
\text { (Unit: } \left.m^{3} / \mathrm{sec}\right)
$$

$\frac{\text { Item }}{\text { Jan Feb Mar Apr May Jun Jul Aug Sep Oet Nov Dec }}$
. Mue 1 $3.643 .59 \quad 3.623 .77 \quad 7.47 \quad 6.12 .4 .09 \quad 3.52 \quad 3.563 .51 \quad 3.55 \quad 3.55$
(1 DC 6)
B. Miwaleni ${ }^{2 / 3} 343.25 \quad 3.27 \quad 3.163 .743 .75 \quad 3.26 \quad 3.27 \quad 3.26 \quad-\quad 3.25 \quad 3.35$
(1 DC 35)
C. (A) (B) $0.300 .340 .350 .613 .732 .370 .830 .250 .30 \quad 0.300 .20$

1/: Daily records from 1958 to 1959
2/: Spot data from 1958 to 1959
(Report No.1, Kahe Irrigation Scheme, 1966 by T,H, Mather)

In addition, annual variation of runof of the Mue river is remarkably wide duxing rainy season as shown in Table I-14. The Mue river, except for the Miwaleni springs, is not a reliable water source for irrigation development. Hence, runoff from the Mue river (excluding the Miwaleni springs) are excluded from irrigation planning.

3.3.6 Annual runoff coefficient

As a sumary for estimation mentioned the previous section, the coefficient for annual runoff is estimated as shown in table $1-22$. The results of estimation are summarized as follows.

Name of	Catchment	Annual Runoff Coefficient	
River	Area	$\frac{R / T}{} 1 /$	$R / P e 27$
Himo river	194	0.20	0.31
Mue river	85	0.15	0.24
Seasonal rivers	143	0.15	0.32
Rau river	122	0.28	0.46
Karanga river	211	0.29	0.42
WeruWeru river	141	0.29	0.50
Kikafu river	198	0.55	0.88

Note: $1 /$ ratio between runoff (R) and areal rainfall (P); 2/ ratio between runoff (R) and effective rainfall (Pe).

Based on the runoff coefficient obtained above, the water balance study is made taking a geohydrological viewpoint into consideration as shown in Annex II.

3.4.1 Hydrological data

In order to analize the flood pattern, water level data recorded by an automatio recorder are essential as well as hourly rainfall data. Portunately, an automatic recorder was established on the Xikafu river (gauging station No. 1. DD 8A) in November 1978, and it recorded many runoff patterns during the rainy season in 1979. In addition, hourly rainfall data are available from lyamungu ARI station which is located 9 km northeast of the gauging station. These data are used for flood analysis mentioned in section 3.5.4.

3.4.2 Plood narks

Plood marks traced by 1979's flood on the Rau and seasonal rivers vere surveyed along Moshi-Himo road during field work from January to February 1980. Results of the survey are shown in Figure 1-25. Based on the results, magnitude of floods for each section were calculated as shown in Table I-21. Results are sumarized as follows.

Name of River	$\begin{aligned} & \text { Catchment } \\ & \frac{\text { Area }}{\left(\mathrm{km}^{2}\right)} \end{aligned}$	$\begin{gathered} \text { Flood } \\ \frac{\text { Discharge }}{\left(\mathrm{m}^{3} / \mathrm{sec}\right)} \end{gathered}$	$\begin{gathered} \text { Specific } \\ \text { Discharge } \\ \left(\mathrm{m}^{3} / \mathrm{sec}^{2} / \mathrm{km}^{2}\right) \end{gathered}$
Rau river	122	168	1.38
Kisiringo river	14	22	1.57
Msaranga river	17	46	2.71

$3.4 .3 \quad 1979^{\prime}$ s flood on the Rau river

An extraordinarily large flood occurred on the Rau river in the beginning of April 1979 (hereinafter referred to as the 1979 flood), and farmlands of about 8,700 ha were damaged. According to the flood mark survey, the peak flood discharge at Rau bridge is estimated at $168 \mathrm{~m} / \mathrm{sec}$ which is equivalent to 4 to 20 times flow capacity of the Rau river.

Rainfall analyses are nade in order to presume probability of the 1979 flood using daily rainfall records observed at Moshi meteorological station which are considered to have a bigh correlation with the runof of the Rau river. Results of calculation are shown in Figure I-26. Based on this figure, probability of storm rainfall observed during the rainy season in 1979 are estimated as follows.

Probability of Storm Rainfall in 1979
(Moshi meteorological station)

Item	Date of Occurrence	$\begin{aligned} & \text { Rainfall } \\ & \text { Depth } \end{aligned}$	Probability of Exceedence	Recurrence Interval
		(mm)	- (\%)	(years)
Daily Maximum Rainfall	4 Apr.	147	9.1	11
Consecutive Raimfall				
2-day	6-7 Apr.	190	8.3	12
3-day	4-6 Apr.	322	2.0	50
5-day	3-7 Apr.	375	2.0	50
Monthly Rainfall				
March	March	127	33.0	3
April	April	710	4.0	25
May	May	229	33.0	3
Rainy Season Rainfall	Mar. -May	1,066	3.2	31

Ror the past 30 years, a storm rainfall (daily maximum and 2-day consecutive rainfall) bigger than that in April 1979 was observed as listed below.

Storm Rainfall at Moshi Meteo, Station

Daily Maximum Rainfall		2-day Consecutive Rainfall	
Date	Depth	Date	Depth
	(frm)		(mm)
27 Apr. 1956	178	27-28 Apr. 1956	198
19 Apr : 1960	158	19-20 Apr 1960	277
19 Apr 1970	177	21-22 Apr. 1971	201
(4 Apr. 1979)	(147)	(6-7 Apr. 1979)	(190)

According to interviews of farmers, the 1979 flood was an extraordinarily large one compared with floods caused by the storm rainfall listed above. In addition, farmers said that the flood water standing. or overflowing on the field along the Rau river continued up to mid-April. Accordingly, the 1979 flood is considered to be caused by 3 -day to 5-day consecutive storm rainfall. In other words, the 1979 flood is equivalent to the 50-year recurrence interval, of 2% probability of occurrence.

3.4.4 Calculation of peak flood discharge

The peak flood discharge for the Rau, the Mue, the Himo and seasonal rivers is estimated by using the Rational formula as shown below.

$$
\begin{aligned}
& Q_{p}=\frac{1}{3.6} \cdot r_{e} A \\
& \text { where, } \quad \begin{aligned}
\text { Qp } & =\text { peak flood discharge }\left(n^{3} / \mathrm{sec}\right) \\
r e & =\text { effective rainfall intensity (mm) } \\
A & =\text { catchment area }\left(\mathrm{km}^{2}\right)
\end{aligned}
\end{aligned}
$$

The effective rainfall intensity using in this formula is estimated based on lunoff analysis for the kikafu river on which water level data from an automatic recorder are available. The procedure for estimation of peak flood discharge is described below.

(1) Analysis of records of the Kikafu river

Water level data obtained from the gauging station, 1 DD 8A, are available from December 1978 to-date. During the rainy season in 1979, several heavy storm rainfalls occured and consequently high water levels were recorded by the automatic recorder at the gauging station, 1 DD 8A.

A rating curve for the above gauging station is prepared based on the discharge record obtained by current meter, Figure I-27 shows the rating curve drawn by use of the least squares method. Water level data can be converted into discharge using this rating curve.

Then, hydrographs at the gauging station are drawn together with hourly rainfall observed at Lyamungu ARI station. Among them, hydrographs which resulted by a heavy consecutive rainfall more than 30 mm deep are selected as show in Figure I-28 and I-29. They are analyzed as show below.

Analysis of Hydrograph for the Kikafu River
 Gauging station: 1 DD 8A
 Rainfall stations Lyamungu ARI (93.37/021)
 Catchment area: $198 \mathrm{~km}^{2}$

Then, the effective rainfall intensity (re) obtained above is plotted on full-logarithmic section against time from start of rise to peak rate (T) as shown in Figure 30 . Based on the above r_{e} - Tp relation and the empirical formula used in Japan, the following equation is prepared and applied to estimation of peak flood discharge.

$$
\begin{equation*}
T p=240 \cdot \mathbf{r e}^{-0.38} \cdot A^{0.22} \tag{1}
\end{equation*}
$$

whexe: $T p=$ time from start of rise to peak rate (min)

$$
\mathbf{r}_{\mathrm{e}}=\text { effective rainfall intensity }(\mathrm{m} / \mathrm{hr})
$$

$$
A=\text { catchment area }\left(\mathrm{km}^{2}\right)
$$

Then, the peak runof coefficient (fp) applied to the drainage basin for the Rau and other rivers is determined at 25% as a conservative estimation.
(2) Procedure of estimation of peak flood discharge

The procedure of estimation of peak flood discharge is as follows.

i) Estimation of probable daily rainfall (R_{24})

Probable daily rainfall for catchment areas are determined by Pigure I-11 (= Variation of daily maximum rainfall with altitude for catchment areas) in combination with Pigure I-15 and I-16 (= Variation of catchment area with altitude).
ii) Estimation of effective rainfall intensity (r_{e})

Rainfall intensity is calculated using the following formula as determined in section 2.4.2.

$$
\begin{equation*}
r_{t}=\frac{R_{24}}{t} \cdot\left(\frac{t}{24}\right)^{1 / 3} \tag{2}
\end{equation*}
$$

where; $\quad r_{t}=$ rainfall intensity during t hours (nra/hr)
$R_{24}=$ probable daily rainfall (ma)
$t=$ time (hours)
Then, effective rainfall intensity (r_{e}) can be calculated as follows.

$$
\mathbf{r}_{\mathbf{e}}=\mathbf{f}_{\mathbf{p}} \cdot \mathbf{r}_{\mathbf{t}}=0.25 \cdot \mathbf{r}_{t} \ldots \ldots \ldots \ldots(3)
$$

where;
$r_{e}=$ effective rainfall intensity ($\mathrm{mm} / \mathrm{hr}$)
$f_{p}=$ peak runoff coefficient
iii) Estimation of peak fiood discharge

For each river basin, the $r_{e}-T p$ relation is obtained by the equation (1) and then, the $r_{e}-t$ relation is obtained by the equation (2) and (3). From these two relations, the re value for each return period is obtained: A sample calculation is shown in Table I-23.

After determining the r_{e} value, peak flood discharge can be calculated by the rational formula mentioned above.

(3) Results of estimation

Pollowing the procedure mentioned above, the peak flood discharge for each river is obtained as shown in Table I-24, and summarized below.

The above figures are applied to the flood protection planning discussed in Annex Vil.

According to the above results, the estimated flood discharge based on flood mark survey is equivalent to the following probability of occurrence.

Name of River	Catchment \qquad	$\begin{gathered} \text { Estimated } \\ \text { Plood } \\ \text { Discharge } \\ \left(\mathrm{m}^{3} / \mathrm{sec}\right) \end{gathered}$	$\begin{aligned} & \text { Probability } \\ & \text { of } \\ & \frac{\text { Ocurrence }}{(\%)} \end{aligned}$	Return Period (years)
Rau river	122	168	7.9	13
Kisiringo river	14	22	14.9	7
Msaranga river	17	46	2.5	40

No.	$\begin{aligned} & \text { REGISTERTED } \\ & \text { NUMBER } \end{aligned}$	NAME OF STATION
1.	93.37/002	Masama Estate
2.	004	Moshi Meteo. Station
3.	005	Kibosho Mission
4.	009	Old Moshi School
5.	015	Kilema Mission
6.	018	Singa Chini
7.	021	Lyamungu:
8.	028	T.P.C. Langasami
9.	029	Kiyungi
10.	031	Himo Sisal Estate
11.	036	Kahe Railway Station
12.	046	Marangu College
13.	064 :	Old Moshi Nursery
14.	072	Kifaru Sisal Estate
15.	073	Moshi Prison
16.	085	Lyakirimu Mwika
17.	086	Kirua Vunjo
18.	092	W.D. \& I.D. Moshi
19.	120	Kilema Forest Station
20.	222	T.P.C. Langasani North
21.	123	Maua Seminary
22.	131	Miwaleni Sub-station
23.	140	Uru Estate
24.	243	NaFCO Kahe Estate
25.	-	Mt. Kilimanjaro, IE
26.	-	- do - 2F
27.	-	- $20-3 \mathrm{~L}$
28.	-	- do - 4E
29.	-	- do- 5E
30.	-	T.P.C., 2F
31.	-	T.P.C., Camp 8
32.	-	T.P.C., Camp 10
33.	-	T.P.C., D25-Area
34.	-	T.P.C., 20-Area
35.	-	T.P.C., H-Area

Table I-3
AVERAGE MONTHLY RAINPALL (2)

OTAL/

业 $\stackrel{\text { co }}{\underset{\sim}{\circ}}$

Table I-5

ITEM	Period		$\begin{aligned} & \text { Miwaleni Sub-station Lat. } 3^{\circ} 25 \\ & \text { (Registered Number: } 93.37 / 131 \text {) } \\ & \text { From } 1972 \text { to } 1979 \text { (} 8 \text { years) } \end{aligned}$					Long		$\text { Alt, } 770 \mathrm{~m}$			TOTAL/ AVERAGE
	JAN	FEB	MAR	APR	MAY	JUN	$\pi / 2$	AUG	SEP	OCI	NOV	DEC	
1. Daily Max. Temperature (${ }^{\circ} \mathrm{C}$)	32.8	32.9	32.7	30.2	27.7	26.5	26.6	27.4	29.5	31.9	32.4	32.1	30.2
2. Daily Min. Temperature (${ }^{\circ} \mathrm{C}$)	18.5	19.2	19.8	20.1	18.8	17.0	16.1	16.1	16.7	18.5	29.4	18.8	18.3
3. Daily Mean Temperature (${ }^{\circ} \mathrm{C}$)	25.7	26.2	26.3	25.2	23.3	21.8	21.4	21.8	23.1	25.3	25.9	25.5	24.3
4. Relative Eumidity at 9 am (\%)	73	73	76	80	82	80	80	79	76	71	72	72	76
5. Relative Humidity at 3 pm (\%)	44	44	47	56	64	59	56	52	47.	43	43	45	50
6. Mean Relative Humidity (\%)	59	59	62	68	73	70	68	66	62	57	57	59	63
7. Pan Evaporation (mm/day)						Not Avai	lable -						
8. Piche Evaporation (mm/day)	9.0	8.6	8.4	4.4	3.0	3.5	4.1	5.2	6.2	8.0	8.2	8.5	2,320
9. Mean Wind Speed ($\mathrm{m} / \mathrm{sec}$)						Not Avai	lable -						
10. Sunshine Hours (hrs/day)						Vot Avai	lable -						
11. Radiation ($\mathrm{cal} / \mathrm{cm}^{2} / \mathrm{day}$)	551	551	534	493	438	402	402	460	523	581	570	578	507
12. Monthly Rainfail (mm/month)	55	46	132	238	92	21	13	6	17	17	38	50	705

Table I-6.

Table I - 7

Tablo 1 - 8

Table I-8	SUMMARY OF METEOROLOGICAL RECORDS (5)							Lat. $3^{\circ} 14^{\prime}$, Long. $37^{\circ} 15^{\prime}$, Alt. $1,250 \mathrm{~m}$					
	Station: $\frac{\text { Lvamungu A.R.I. }}{(\text { Registered Number: } 93.37 / 021)}$Period: From 1970 to 1979 (20 years)												
	JaN	PEB	MAR	APR	MAY	Jon	π	AUG	SEP	OCT	Nov	DEC	$\begin{aligned} & \text { TOMAL/ } \\ & \text { ATERAGE } \end{aligned}$
1. Daily Max. Temperature (${ }^{\circ} \mathrm{C}$)	27.1	27.4	27.0	24.3	22.2	20.8	20.5	21.3	23.5	25.6	26.4	26.7	24.4
2. Daily Min. Temperature (${ }^{\circ} \mathrm{C}$)	13.2	13.4	14.0	15.1	14.5	13.2	12.3	11.3	12.2	12.3	13.3	23.6	13.2
3. Daily Mean Temperature (${ }^{\circ} \mathrm{C}$)	20.2	20.4	20.5	19.8	18.3	17.0	16.4	16.6	17.8	19.0	19.8	20.2	18.8
4. Relative Humidity at 9 am (\%)	76	76	82	91	91	88	88	87	83	78	79	78	83
5. Relative Humidity at $3 \mathrm{pm}(\%)$	56	58	59	72	74	70	66	62	57	53	58	58	62
6. Mean Relative Humidity (\%)	66	67	70	82	83	79	77	75	70	66	69	68	73
7. Pan Evaporation (mm/day)	3.6	3.7	3.4	2.6	1.4	2.7	2.9	2.3	2.9	3.8	3.4	3.3	1,002
8. Piche Evaporation (mm/day)					- No	t Avai	lable -						
9. Mean Wind Speed ($/ \mathrm{sec}$)	0.92	0.94	0.90	0.80	0.84	0.81	0.83	0.87	0.99	2.17	0.98	0.92	0.91
10. Sunshine Hours (brs/day)	7.6	7.6	6.9	4.5	3.4	3.3	3.8	4.7	6.0	7.0	6.9	7.3	5.8
12. Raciation ($\mathrm{cal} / \mathrm{cm}^{2} /$ aay $)$	467	461	440	293	241	226	250	302	386	452	416	446	365
12. Monthly Rainfall (mmonth)	71	67	125	555	353	108	55	33	28	41	80	76	1,592

CORRELATION AMONG POINT RAINFALLS
NOILVI
-GENS
TVANKV
$<\quad 0$
m
-
$4<$
< $4<\infty$
A $\begin{gathered}\text { A } \\ \text { A }\end{gathered}$
A: correlated with 1% significant level
B: " with 5%
C: without correlation (5% significant level)
C: without correlation (5 \% significant level)
Nos. MONTRLY CORRELATION

+1
+1

$\geqslant<$
4
4
\oplus
《 \& \& $<$
a ∞

 Table $1-9$

IMO
$(1$ DC 11)
194
62
85
135
263
180
107
79
42
45
50
70
61
1,179

AREAL RAINFALL FOR RIVER BASINS

Table I-lo
Gram
Gauging Station No.
Catchment Area (km^{2})
Areal Rainfall (mm)
Jan.
Feb.
Mar.
Apr.
May
June
July
Aug.
Sep.
Oct.
Nov.
Dec.
Annual

Table I-11

CALCULATION OP EVAPOTRANSPIRATION

Blaney - Crridle Pormula ${ }^{1 /}$

$$
\mathrm{ETO}=\mathrm{C} \cdot[\mathrm{p} \cdot(0.46 \mathrm{t}+8)] \quad \mathrm{mm} / \mathrm{day}
$$

$$
\text { where, } \begin{aligned}
\text { ETO }= & \text { potential evapotranspiration for the month considered } \\
& \text { (molday), } \\
= & \text { mean daily temperature over the month considered }\left({ }^{\circ} G\right), \\
t= & \text { mean daily percentage of total annual daytime hours } \\
& \text { ror a given month and latitude, } \\
\mathrm{c}= & \text { adjustment factor which depends on minimum relative } \\
& \text { humidity, sunshine hours and daytime wind estimates }
\end{aligned}
$$

(1) Calculation of ETO at the Lyamungu ARI
(Meteorological data is shown in Table 1-8.) Unit: mm/day

Formula	J	F	M	A	M	J	J	A	S	0	N	D
class A pan	2.9	3.0	2.7	1.3	1.1	1.4	1.5	1.8	2.3	3.0	2.7	2.6
Blaney-Criddle	3.1	3.1	3.1	2.5	2.3	2.2	2.1	2.1	2.3	2.9	3.0	3.1
Penman	4.4	4.6	4.5	3.5	2.9	2.6	2.9	3.3	3.8	4.2	4.3	4.3

Note: Pan coefficient $=0.8$
(2) Relation between ETo and $t \quad$ (Station = Lyamungu)

ITEM	J	F	M	A	M	J	J	A	S	0	N	D
P	0.277	0.277	0.277	0.270	0.270	0.270	0.270	0.270	0.270	0.277	0.277	0.277
N	12.2	12.2	12.1	12.0	12.0	11.9	11.9	12.0	12.0	12.2	12.2	12.3
n	7.	7.6	6.9	4.5	3.4	3.3	3.8	4.7	6.0	7.0	6.9	7.3
n / N	0.62	0.62	0.57	0.38	0.28	0.28	0.32	0.39	0.50	0.57	0.57	0.59
RH min	56	58	59	72	74	70	66	62	57	53	58	58
Prediction Curve No.												
	$V I$	VI	VI	IX	- IX	IX	IX	IX	IX	VI	VI	VI

| April-September | $\mathbf{f}=0.127 \mathbf{t}+2.22$ |
| ---: | :--- | ---: | :--- |
| October - March | $f=0.124 \mathbf{t}+2.16$ |

ETo

$$
\begin{array}{ll}
\text { April - September } & \text { ETO }=0.117 t+0.20 \\
\text { October }- \text { March } & \text { ETO }=0.130 t+0.43
\end{array}
$$

1/: FAO Irrigation and Drainage Paper, No. 24 (revised), 1977

Table I-12		AREAL EVAB	RANSPIRAT	FOR RIVE	ASINS		
ITEM	KIKAFU	WERU WERU	KARANGA	RAU	SEASONAL RIVERS	MUE	HTMO
Gauging Station No.	(1 DD 8A)	(1 DD 5A)	(1 DD 3)	(2.DC 5)	-Moshi-Ta	road-	(1 DC 11)
Catchment Area (km^{2})	198	141	211	122	143	85	194
Areal Evapotranspirat							
Jan.	52	49	44	58	70	44	44
Feb.	46	43	39	52	62	41	41
Mar.	58	55	49	65	78	49	49
Apr.	47	45	40	53	64	40	40
May	39	37	33	44	53	33	33
June	32	30	27	36	43	28	28
July	31	29	26	34	42	26	26
Aug.	31.	29	26	34	41	26	26
Sep.	36	33	30	40	48	32	32
Oct.	45	42	38	50	60	38	38
Nor.	50	47	42	55	67	42	42
Dec.	55	51	46	60	73	46	46
Anoual	522	490	440	580	700	445	- 445

LIST Of gavging stations

HISTORY	
Opening	CloSure
1956.11	1959.10
1960.9	-
1955.1	1959.6
1958.1	-
1956.11	1958.9
1952.8	1959.6
1953.5	1958.10
1954.9	-
1968.11	-
1958.1	1959.9
1952.11	-
1968.11	-
1957.11	1959.8
1952.8	1956.2
1965.1	-
1955.12	1959.10
1952.4	1963.1
1953.11	1963.5
1957.10	-

[^1]NAME OF

STATYON
NUMBER

$$
\begin{aligned}
& \text { 空 } \\
& \text { 复 }
\end{aligned}
$$

MEASURING
METHOD

$\frac{\text { Y DIS．}}{\text { Min．}}$
0.06

8
0
0
:---

－

IST OM
莡：$=:$

Table I-14 (1)
RECORDED MONTHLI DISCHARGE

12 R	JAN	PEB	HR8	APA	M1	JUN	JLL	100	SEP	Oct	MOY	DEC
1956	\cdots											
1857	0.23	0.46	0.24	0.58	1.92	1.82	1.59	1.13	0.90	0.76	0.32	0.19
1958	0.60	0.55	0.74	0.75	1.71	2.13	2.16	1.51	1.16	0.76 1.04	0.85 0.95	1.02 0.74
1959	0.71	0.67	0.44	0.65	0.77	0.15	0.21	0.19	0.24	0.21	0.95	0.74
Mgen	0.51	0.56	0.47	0.66	1.49	1.37	1.32	0.94	0.77	0.67	0.71	0.65

IEAR	SNN	PEB	Mur	APR	YaI	Jus	JL	NuO	SEP	Oct	NOY	DEC
1968	$=$	-	-	-	-	-	-	-	-	-	\checkmark	2.46
1969	1.24	1.19	1.20	0.73	1.07	0.81	0.36	0.14	0.25	0.25	0.21	0.21
1970	0.19	0.34	-		-	1.56	1.56	1.06	0.77	0.63	0.21	0.22
1971	-1	\bigcirc	-	-	-	1.	2.56	1.0	0.71	0.63	0.54	0.46
1972	0.13	$\because-$	0.07	0.82	1.34	1.77	1.15	0.58	-	0.46	0.33	0.28
1973	0.31	0.37	0.14	-	1.34	0.95	0.72	0.45	0.21	0.62	0.93	0.92
1974	0.68	0.64	0.53	-	1.59	0.93	1.96	0.4	0.50	0.21	0.98	0.92
1975	0.04	0.07	0.08	0.02	0.22	0.04	0.05	0.06	0.01	0.38		
1976	-	-	-	\cdots	0.06	0.10	0.02	0.00	0.00	0.02	0.01	0.02
KENN	0.43	0.52	0.56	0.52	0.94	0.88	0.83	0.46	0.35	0.37	0.35	0.41

Rivert Noro Geuging Station: LD 35

TRAR	JaN	FEB	MAR	APR	MaI	JUN	NOL	AUS	SEP	07	NOY	DEC
1965	1.44	1.29	1.22	1.44	1.22	1.19	1.18	1.18	1.18	1.12		
1966	1.02	0.97	0.99	1.04	0.99	1.03	1.16	1.28		1.12	1.10	1.07
1967	0.91	0.76	0.69	0.79	0.93	0.92	1.03	1.20	1.29 1.37	1.21	1.10	1.04
1968	1.34	1.23	1.25	1.40	1.37	1.65	1.83 1.83	1.20 1.93	1.37 1.85	1.53 1.74	1.50 1.68	1.44 1.80
1989	1.53	1.44	1.38	1.26	1.37	1.23	1.19	1.20	1.15	1.17	1.12	1.80 1.05
1970	1.00	0.98	1,06	1.16	1.09	1.27	1.37	1.38	1.25	1.14	0.94	0.83
1911	0.27	0.58	0.68	1.31	1.14	1.36	1.73	1.73	1.57	1.50	0.94	1.57
1972	1.22	1.88	1.22	1.22	2.40	(1.46)	1.52	1.47	1.36	1.12	(1.16)	1.04
1973	1.00	(0.99)	1.00 0.65	0.97	1.17	1.01	(1.93)	0.95	0.93	0.62	0.81	0.88
1974	0.81	0.79	0.65	0.90	0.90	0.88	0.90	0.90	0.93	0.93	0.91	0.89
1975	0.82 0.50	0.75 0.49	0.76 0.46	1.04 0.61	0.97 0.60	0.88	0.78	0.82	0.89	0.90	0.80	0.78
1977	0.47	0.49 0.49	0.56	0.61 0.73	0.60 0.70	0.50 0.68	0.50 0.56	0.47 0.60	0.51	0.51	0.48	0.47
1978	0.66	0.66	0.71	0.71	0.67	0.73	0.76	0.80	0.86	0.93	0.87	0.92
1979	0.87	0.74	0.82	1.06	1.04	0.96	1.00	0.80	0.86	0.93	0.87	0.92
MEAN	0.92	0.94	0.89	1.04	1.10	1.05	1.16	1.14	1.16	1.11	1.03	1.06

Rivert Kul Gauging Stations 1 DC 6

IER	J 4 H	YR	\% 48	$A R$	MaI	JN	JuL	416	SEP	0 C	NOY	DEC
1956	-	-	-									
1937	3.46	3.71	3.54	3.79	8.36	4.62	3.79	3.47	3.43	3.40	3.41 3.71	3.44 4.60
1958	3.70	3.63	3.72	3.79	10.74	8.71	4.57	3.36	3.43	3.31	3.71 3.55	3.60
2959	3.58	3.54	3.51	3.75	4.20	3.52	3.60	3.48	3.62	3.51	3.5	3.55
1968	-	-	-	-	-	-						
1969	4.31	4.02	4.12	3.94	3.82	3.78	3.82	3.85	3.73	3.78	3.66	5.08
1970	3.89	3.91	-	0	8.31	3.87	3.92	3.70	3.73 3.69	3.78 3.69	3.66	3.63 3.28
1971	3.70	3.42	2.86	7.35	13.65	8.68	4.06	3.02	3.13	2.61	2.45	2.37
1972	1.74 4.17	2.10	2.55 2.45	4.23	8.20	5.90	4.05	3.63	3.05	2.20	3.91	3.19
1974	1.11 3.11	3.92 2.94	2.45 2.83	-	6.39	3.28 4.82	3.59 5.53	3.42	3.21	3.22	3.18	2.97
1975	-	-	2	3.52	3.53	3.38	3.36 3.26	3.19	3.65 3.28	3.67 3.09	2.71	2.55
REAN	3.52	3.47	3.20	4.34	7.47	5.06	4.02	3.48	3.43	3.24	3.35	3.47

Table I-14(3) RECORDED NONTHLY DISCHARGE

Riveri Scko Gauging Stetion: 1 DC 30 .

IEAR	JAN	F68	MAR	APR	K41	JUN	JUL	AlO_{6}	SEP	OCT	NOY	DEC
1968		0.25										
1969	0.23	0.28	0.35	0.40	0.39	0.41	0.47	0.47	0.50	0.59	0.54	0.53
1970	0.71	0.69	-	\cdots	0.35	0.23	0.28	0.35	0.42	0.32	0.52	0.71
1971	0.71	0.53.	0.72	0.79	2.16	0.18	0.30	0.51	0.49	0.48	0.33	0.71 0.56
1972	0.57	0.54	0.65	0.56	0.48	0.46	0.31	0.57	0.51	0.61	0.74	0.77
1973	0.68	0.84	0.89	-	-	0.72	0.64	0.80	0.99	2.16	1.11	1.09
MEAN	0.58	0.52	0.65	0.58	0.84	0.09	0.40	0.54	0.58	0.67	0.65	0.73

Rivers Miveleni Spring Gaugiog Station: 1 DC 33

IEAR	JAN	FEB	MAR	APR	MaI	תN	JUL	100	S8P	01	NOT	Dex
1985			-								:	
1966	4.22	4.18	4.12	4.37	4.96	3.83						4.19 3.61
1967	3.57	3.54	3.59	3.72	4.11	4.83	3.59 3.70	3.54 3.72	3.51 3.70	3.60 3.65	3.60 3.68	3.61
1968	3.62	3.58	3.72	4.93	4.91	4.74	3.94	3.72 3.72	3.53	3.65 3.59	3.68 3.62	3.65 3.70
1969	3.73	3.79	3.86	3.97	3.97	3.91	3.92	3.91	3.94	4.01	4.02	3.70 4.31
1970	4.17	3.93	4.14	5.72	5.30	4.41	4.05	3.88	3.86	4.10	4.01	3.96
MEAN	3.86	3.80	3.89	4.54	4.65	4.22	3.78	3.75	3.71	3.79	3.79	3.90

IRAR	Rivers Bixo					Gauging Stationt LDC 11						
	JPN	FKB	MAR	APR	May	JuN	Jut	100	SEP	Oct	NOY	DSO
1952	-	-	-	-	-	-						
1953	0.44	0.33	0.41	1.41	4.05	3.01	1.47					0.51
1954	.	0.3	0.41	9.38	4.05	3.01	1.47	-	1.36	1.24	2.19	-
1955	-	-	-	-	-	-	-	-			-	
1956	-	-	0.93	2.07	1.89	1.99	-				-	
1957			0.9	4.76	5.29	3.30	1.73	1.18				
1958	1.48	1.17	1.13	2.80	12.35	9.32	4.39	2.55	1.75			4.31 0.89
1959	0.73	0.64	0.66	1.44	2.81	1.82	1.64	1.85 1.76	1.65 1.62	1.14 1.13	0.84	0.89
MOAN	0.88	0.71	0.78	3.64	5.28	3.88	2.31	1.83	1.58	1.17	1.32	1.90

IEAR	JAN	FE8	MAR	APR	MaI	JUN	JUL	A 10	SEP	0 CT	NOY	DEC
1968	-	-	-									
1969	2.68	2.89	2.29	2.20	3.21	2.55	0.83	0.66				10.59
1970	1.13	1.49	5.38	13.55	6.40	2.56	1.06	0.66	0.48	0.54	0.46	0.91
1972	0.07	0.14	0.12	7.56	13.82	4.83	2.62	0.4 1.61	0.39 0.91	0.26 0.33	0.21	0.27
1972	0.20	-	0.01	0.76	6.73	5.19	2.62 1.82	1.61 0.71	0.91 0.47	0.33	0.07	0.10
1973	2.78	2.48	1.41	2.05	4.69	1.92	0.87	0.50	0.47		5.87	3.37
1974	0.12	0.04	0.04	8.52	9.35	6.07	0.87 9.18	0.50 5.70	0.22 2.97	0.14 1.80	0.12	0.10
1975	0.29	0.05	0.84	4.13	2.21	1.64	0.98	0.78	0.60	1.80 0.36	1.97	0.52
MEAN	0.92	1.18	1.44	5.54	6.63	3.39	2.48	1.48	0.86	0.57	1.42	2.27

Rivor Rum Oquing station 1001

1848	J44	F8B	Mas	AFR	M1	Jus	J	AUS	SEP	007	NOY	DSC
1951	-	-	-	-	-							
1958	9.73	11.22	11.56	14.67	34.45	30.43	20.10	14.49		10.07	10.28	16.34
1959	8.88	9.01	9.46	12.18	14.54	10.93	12.15	14.48	11.13	10.07 10.05	9.55	9.40
1960	8.16	8.04	7.69	29.17	26.61	16.24	11.92	10.32	11.58	10.05 8.61	8.98	8.04
1961	6.57	6.33	6.12	7.53	7.88	6.80	1.36	7.24	7.29	8.89	32.54	7.49 41.62
1962	39.35	22.64	13.91	13.88	20.38	14.18	11.10	10.62	7.89 9.80	8.84	82.04	41.62 9.95
1963 1964	13.79 14.89	10.79 10.48	11.51 11.06	19.64 30.66	34.08 39.53	21.36 25.82	18.77 16.71	14.52	12.03	10.60	8.04 14.49	9.93 22.20
1965	14.89 15.53	10.48 10.91	11.06 9.57	30.66 14.36	39.53 13.41	25.82 12.64	16.71 11.96	14.85 12.45	12.94 11.10	11.77 12.14	10.78	12.30
HSAN	14.61	11.18	10.11	17.76	23.86	17.30	13.79	12,12	10.58	10.12	12.74	15.92

River: Ruru. Gaging Stationi pDC. 24

IEA:	Jon	\therefore PEB	MAR	AP8	MAI	JUX	JuL	100	S8P	$0 \subset T$	NOY	DEC
1955	9.35	6.17	5.15	7.59	6.69	6.69	6.41	6.81	5.97			
1966	6.18	6.19	8.66	13.88	10.28	8.71	6.95	6.81	5.97 5.27	6.86	6.98 4.49	7.93 4.39
1967	- 3.95	3.59	3.42	8.02	12.89	9.39	7.15	7.12	7.27	4.72 5.90	4.49 5.68	4.39 7.63
1968	4.88	3.94	13.88	49.76	29.25	17.16	11.12	8.82	6.82	5.74	7.96	15.44
1969	6.84	6.60	8.18	10.03	10.31	7.45	6.78	7.61	3.91	5.93	6.71	8.03
1970	6.10	8.40	6.76	19.96	12.58	8.14	6.78	6.28	5.62	4.31	5.18	6.52
1971.	6.87	7.27	6	6.78	11.47	11.23	8.20	7.57	S.62	6.28	4.83	6.28
1972	5.11	8.26	6.34	5.87	8.44	7.31	6.69	6.41	5.94	6.75	9.81	10.22
1973	5.14	7.08	-	11.67	10.14	6.36	7.06	6.23	5.61	5.08	7.63	7.06
1974	5.14	4.17		-	5.76	5.52	5.46	5.77	5.91 .	4.48	4.48	4.91
1975	5.13 3.73	3.97 3.62	4.50 3.95	10.39	8.57	4.69	2.75	2.85	3.12	3.34	4.61	5.08
		3.62	3.95	-		-	-	-	-	-	-	\cdots
geid	5.75	5.77	6.76	14.40	11.49	8.42	6.24	6.50	5.76	5.40	6.18	7.59

River: Eikuletra Geuging Stations 1 ph

18AR	JAN	PEB	MA8	APR	MHI	JUN	JUL	AU0	SEP	OCT	NOY	DEC
1955											9.82	
1956	15.38	13.36	13.27	22.57	39.14	26.95	16.09	13.98	13.19	11.17	9.82 11.23	11.26
1957	13.69	14.09	10.52	30.08	91.82	14.04	22.07	16.47	12.88	11.89	21.39	30.96
1958	14.78	18.92	16.84	27.26	58.80	51.57	26.36	17.94	13.40	11.62	11.77	14.55
1959	12.08	11.88	12.42	28.63	36.27	16.68	18.39	16.24	12.73	12.06	1 H	14.58
1960	14.94	12.15	6	47.93	77.81	16.59	25.29	19.58	16.29	21.20	10.97	10.63
1951	9.89	10.04	9.90	15.56	13.72	10.10	13.86	11.54	11.13	18.33		10.63
1982	-	10.	-	-		10.20	13.86	+	1.13	18.33	10.08	14.11
1963	12.88	10.84	13.26	49.58	69.89	32.53	27.17	16.34	12.91	10.79	23.58	27.90
1964 1965	23.46 19.97	12.72	18.84	100.81	99.28	48.90	27.37	20.98	17.06	15.64	14.55	16.30
1965 1966	19.97 11.93	13.21 13.35	12.90 22.79	42.20	35.04 59.53	19.58	13.31	12.34	10.89	12.66	19.47	14.12
1967	10.42	10.61	22.69 10.64	61.79 21.64	59.53 64.58	42.5	27.28 30.01	14.57	11.13	10.40	12.34	12.45
1988	10.74	14.19	31.54	79.31	80.59	73.84	38.51	28.04	24.49 18.23	19.77	29.46 26.44	22.20 50.59
1989	20.10	25.59	24.00	20.41	38.34	28.88	21.41	19.76	14.13	15.07	26.44 15.19	S0.59 13.09
1970	16.66	14.79	18.99	59.70	66.34	28.86	19.08	13.76	12.74	11.00	11.08	11.98
1971	14.10	-	1	${ }^{-}$		46.21	31.98	27.30	17.59	-	32.18	1.
1972	16.61	:	20.60	36.05	56.02	41.75	26.78	19.30	18.92	-	32.18	-
1973	28.37	19.48	13.74	44.64	68.16	34.55	29.09	20.08	12.84	12.35	14.09	13.05
1974	12.30	13.27	12.72	74.32	42.05	31.02	33.75	25,12	15.43	14.57	14.96	14.52
1975 1976	15.59	27.19	14.84	36.80	45.26	32.22	30.53	20.31	15.56	14.37	14.63	15.52
1976	14.68	14.80	16.70	22.40	34.89	29.46	20.24	12.96	14.35	-	-	-
MEAN	15.43	14.47	16.36	43.25	56.71	35.31	24.93	18.57	14.79	13.91	16.62	17.79

Table I-14(5)
RECORDED MONTHLY DISCHARGE

Rivert Karanga Gaging Station: 1 DO 3

IEAR	Jon	P88	Mar	AFR	Mat	JN	N®	100	SEP	OCT	- YO	DEC
1953	-	-	-	-	-	$-$		-		-	0.58	$0: 60$
1954	0.44	0.48	0.26	6.55	8.94	6.31	1.70	0.70	0.06	0.05	0.21	0.19
1955	0.60	1.28	0.39	4.64	11.15	7.05	5,25	1.9)	0.23	0.20	0.18	0.36
1956	0.92	0.72	0.56	4.48	11.65	8.58	2.48	1.44	0.49	0.33	0.33	0.25
1957	1.09	1.59	0.48	5.47	17.51	6.80	3.65	1.61	0.58	0.36	1.17	2.34
1958	0.49	1.32	0.86	2.42	10.90	8.99	3.72	1.86	0.58	0.35	0.28	0.58
1959	0.29	0.25	0.30	5.80	4.28	1.42	2.23	0.77	0.59	0.33	-	
MEAN	0.64	0.94	0.48	4.89	10.74	6.53	3.17	1.39	0.42	0.21	0.46	0.72

River: Yeruyexu. Gaging Station: 1 DD 51

IEAR	JAN	26B	MAR	APR	MA1	JUN	JUL	$\triangle \cup$	SEPP	OCT	NOP	DEC
1958	0.81	0.95	0.76	1.89	3.75	3.22	1.74	0.83	0.58	0.13	0.17	0.79
1959	0.27	0.30	0.23	3.02	2.57	0.72	0.69	0.43	0.25	0.14	0.12	0.7
1960	-	-	0.44	\bigcirc	6.19	2.67	1.71	0.62	0.21	0.38	0.34	0.36
1961	-	0.20	-	0.88	1.65	0.16	-	0.51	0.54	2.90	-	
1962	5.22	2.40	1.30	2.06	-	2.91	1.81	1.28	0.83	0.27	0.23	1.62
1963	1.51	\cdots	,	2.0	-	2.9	1.81	1.2	0.83	-. 27	0.23	1.62
hean	1.95	0.96	0.68	1.96	3.54	1.94	1.49	0.73	0.48	0.76	0.22	0.92

River: Gikafu Geuging Station: 1 DD 8

IEAR	JAN	PEP	MuR	Am	M	JN	ת	AUG	SEP	Oct	NOY	DEC
1954	-	-	-	-	-	-	-	-			1.56	1.94
1955	1.03	-	1.78	8.15	13.63	9.06	6.75	3.26	1.41	0.97	1.16	1.94
1956	3.06	2.90	2.27	15.81	14.73	11.45	3.66	2.26	1.36	1.14 .	1.51	1.66
1957	1.28	2.23	2.45	29.22	53.77	8.87	. 5.57	2.59	1.76	1.18	5.72	7.72
1958	2.58	2.67	1.75	5.64	16.75	13.39	5.21	4.58	1.61	0.97	0.78	2.01
1959	0.93	0.80	1.11	11.42	8.18	2.91	3.47	2.12	1.15	0.74	0.52	2.01
1960	-	-	0.92	12.41	16.63	2.	3.96	2.04	1.03	1.23 '	1.24	1.30°
1961	0.45	0.39	0.38	--	2.83	0.68	-	-	1.65	4.30	.	
1962	9.27	4.85	-	4.28	-	5.49	4.61	3.07	1.70	1.15	-	
1963	-	-.	1.86	--	-	-	-	3.0			,	
MEAN	2.66	2.31	1.57	12.42	18.07	7.41	4.75	2.83	1.46	1.46	1.73	2.70

Table I-15 RESULT OP DISCHARGE MEASUREMENT FOR THE NJORO SPRINGS

The ratio of discharge:

$$
\begin{aligned}
& \text { Ratio }=\frac{\text { Discharge for all springs }}{\text { Discharge at } 1 \text { DC } 35}=\frac{1.616}{1.127}=1.434 \\
&=1.43
\end{aligned}
$$

Note: Springs in the list are in order from upstrean to downstream of the Njoro river.
(Unit: $\mathrm{m}^{3} / \mathrm{s}$)

YEAR	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
1965	2.06	1.84	1.74	2.06	1.74	1.70	1.69	1.69	1.69	1.60	1.57	1.53
1966	1.46	1.39	1.42	1.49	1.42	1.47	1.66	1.77	1.84	1.73	1.57	1.49
1967	1.30	1.09	0.99	1.13	1.33	1.32	1.47	1.72	1.96	2.19	2.15	2.06
1968	1.92	1.76	1.79	2.00	1.95	2.36	2.62	2.76	2.64	2.49	2.40	2.57
1969	2.19	2.06	1.97	1.80	1.96	1.76	1.70	1.72	1.64	1.67	1.60	1.50
1970	$1.43,1.40,1.52,1.66,1.56$ 1.82						1.96	1.97	1.79	1.63	1.34	
1971 1972	$1.43{ }^{3}$		$1.43^{3} 1.77$		$1.63,1.96$		2.47	2.47	2.25	2.27	1.37	1.72
1972	1.74 1.43	1.42	1.4	1.74	$1.77{ }^{-}$		2.	2	1.94	1.60	1.66	1.49
1974	1.16	1.13	0.93	1.43	1.29	1.26	1.29	1.29	1.33	1.33	1.30	1.27
1975	1.17	1.07	1.09	1.49	1.39	1.26	1.12	1.17	1.27	1.29	1.14	1.16
1976	0.97	0.96	0.87		1.09	0.93				0.93	1.14	2.16
1977	0.87	0.90	0.921	1.23	. 19	. 17		1.67	1.66			$.893 /$
1978	1.17	1.19	1.13	$1.22{ }^{1}$	1.14^{1}	. 243	1.39	1.40	1.52	1.62	1.53	1.63
1979	1.52	1.32	1.44	1.82	1.79	-	-	-				

Average $1.451 .37 \quad 1.36 \quad 1.55 \therefore 1.531 .56 \quad 1.66 \quad 1.71 \quad 1.70 \quad 1.631 .51 \quad 1.50$

Note, 1/: discharge estimated by exclusion of short period high flow in daily records.
2/: discharge obtained by spot discharge measurements.
3/: discharge adjusted to the ground water recharge pattern obtained by means of Sugawara's reservoir model.

YEAR	JAN	FEB	MAR	APr	MA	JUN	JUL	AUG	SEP	OCT	NOV	DEC
1966	4.22	4.18	4.12	4.37	1.96	3.83	3.59	3.54	3.51	3.60	3.60	1
1967	3.57	3.54	3.59	3.72	4.11	4.23	3.70	3.72	3.70	3.65	3.68	3.65
1968	3.62	3.58	3.72	4.93	4.91	4.74	3.94	3.72	3.53	3.59	3.62	3.70
1969	3.73	3.79	3.86	3.97	3.97	3.91	3.92	3.91	3.94	4.01	4.02	4.31
1970	4.17	3.93	4.14	5.72	5.30	4.41	4.05	3.88	3.86	4.10	4.01	3.96
Average	3.86	3.80	3.89	4.54	4.65	4.22	3.84	3.75	3.71	3.79	3.79	3.85
Monthly Lowest	3.57	3.54	3.59	3.72	3.97	3.83	3.59	3.54	3.51	3.59	3.60	3.61

Note: Monthly lowest values are used for irrigation planning.

(Unit: $\mathrm{m}^{3} / \mathrm{s}$)

	JAN	EB	AR					AUG	SEP	OCT	NOV	DEC
1960	3.15	0.66	0.59	7.5	4.52	2.98	0.98	0.33	0.18	0.24	0.21	0.12
61	0.10	0.08	0.08	0.55	0.7	0.19	0.7	0.49	1.33	1.40	11.16	5.92
1962	4.91	1.8	0.8	28	. 2	. 23	. 99	0.61	0.25	0.20	0.18	0.47
1963	0.87	0.5	1.67	0	4	. 0	. 51	0.7	0.23	0.18	1.92	4.39
	1.52					2.67	,	0.5	0.31	0.2	0.23	0.21
1965	1.56	0.23	0.38	3.32	. 08	0.8	0.23	0.2	0.16	0.22	2	0.69
1966	0.15	0.13	4.54	4.53	3.37	2.46	1.18	0.40	0.18	0.16		0.13
67	0.10	1.52	0.22	1.22	4.25	3.26	2.34	1.38	. 0	2.26	5	0.91
68	0.19	0.73	2.16	5.20	3.78	3.12	. 90	1.46	0.54	0.3	1	2.44
96	0.44	1.1	1.24	0.78	2.	1.95	1.00		0.67	1.22	0.69	
1970	1.51	1.07	1.58	5.03	3.32	1.43	0.65	. 2	0.21	0.19	0.16	. 13
	13	. 4	0.7	4.72	. 7	. 6	1.75	0.82	0.22	0.16	0.13	42
1972	0.23	. 3	2.14	. 85	3.91	. 3	. 0	. 56	1.0	2.55	5.36	2.16
1973	3.20	2.7	1.5	7	. 8	. 70	. 96	. 34	0.23	0.22	0.20	0.21
1974		0	.			2.	2.06	0.67	0.1	0.16	0.14	
	0.21	0.10	6.02	7.04	3.75	2.02	1.58	0.89	1.25	0.27	0.17	0.15
76	0.13	2.02	0.87	1.36	2.68	2.47	1.14	0.54	0.19	0.13	0.13	0.17
1977	0.21	0.45	1.87	5.94	4.24	1.67	0.68	1.26	0.42	1.42	2.68	1.33
1978	1.61	1.01	2.63	3.60	3.69	3.16	1.95	0.92	0.33	0.22	1.44	3.8
979	1.7	. 6		5.41	4	. 0	1.57	1	0.99	0.5	0.2	0.23

$\begin{array}{llllllllllllllllllll}\text { Average } & 1.01 & 0.96 & 1.81 & 4.03 & 3.62 & 2.23 & 1.22 & 0.76 & 0.65 & 0.62 & 1.48 & 1.23\end{array}$

$$
\text { (Unit: } m^{3} / \mathrm{s} \text {) }
$$

| YEAR | JAN | EEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | OCT | NOV | DEC | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1968 | 0.41 | 0.42 | 0.97 | 2.46 | 3.56 | 5.46 | 2.32 | 1.66 | 0.98 | 0.65 | 1.06 | 2.46 | |
| 1969 | 0.84 | 2.56 | 2.59 | 1.56 | 1.53 | 1.07 | 1.27 | 1.06 | 0.76 | 1.28 | 1.28 | 0.94 | |
| 1970 | 0.85 | 1.20 | 3.15 | 7.43 | 4.77 | 3.65 | 2.82 | 1.57 | 1.13 | 0.73 | 0.59 | 0.47 | |
| 1971 | 0.94 | 0.88 | 0.45 | 7.69 | 5.58 | 3.67 | 2.36 | 1.83 | 1.07 | 0.57 | 0.48 | 0.46 | |
| 1972 | 0.52 | 0.75 | 0.77 | 1.68 | 2.51 | 3.28 | 2.05 | 1.38 | 1.37 | 1.38 | 2.05 | 1.51 | |
| 1973 | 2.00 | 1.28 | 1.12 | 1.44 | 1.84 | 1.36 | 0.96 | 0.76 | 0.44 | 0.39 | 0.35 | 0.33 | |
| 1974 | 0.29 | 0.26 | 0.24 | 4.78 | 3.57 | 3.43 | 3.92 | 1.94 | 1.10 | 0.51 | 0.58 | 0.35 | |
| 1975 | 0.42 | 0.36 | 0.95 | 2.19 | 1.73 | 1.19 | 1.94 | 1.22 | 2.07 | 1.08 | 0.43 | 0.38 | |
| 1976 | 0.56 | 0.64 | 1.48 | 2.82 | 2.04 | 1.76 | 1.10 | 0.59 | 0.81 | 0.73 | 0.35 | 0.29 | |
| 1977 | 0.29 | 0.30 | 0.65 | 4.40 | 2.61 | 1.35 | 1.18 | 0.88 | 0.52 | 0.43 | 1.01 | 1.03 | |
| 1978 | 0.99 | 0.71 | 1.34 | 3.10 | 2.54 | 2.30 | 1.64 | 0.80 | 0.40 | 0.38 | 0.36 | 0.61 | |
| 1979 | 0.45 | 2.83 | 2.20 | 4.70 | 3.96 | 3.43 | 2.26 | 1.76 | 1.81 | 1.46 | 0.88 | 0.61 | |
| | | | | | | | | | | | | | |

The Magnitude of floods at the flood marks are calculated as follows.
i) Calculation of velocity: The Manning formula is used to determine the velocity.

$$
V=\frac{1}{n} \cdot R^{2 / 3} \cdot i^{1 / 2}
$$

where: $V=$ velocity in $m / s e c$,
$R=$ hydraulic radius in m,
$i=$ slope of the drain in m / m, and
$n=$ coefficient of roughness,

$$
\text { river section: } n=0.04
$$

$$
\text { culvert }: n=0.015
$$

ii) Calculationof discharge:
a) River section, $Q=A \cdot V$
b) Flow area over the road,

$$
\mathbf{Q}=\mathrm{C} \cdot \mathrm{~B} \cdot \mathbf{h}^{3 / 2}
$$

where: $\quad \dot{Q}=$ discharge in $m^{3} / \mathrm{sec}, \quad A=$ flow area in m^{2} $C=$ coefficient of discharge,

$$
\begin{array}{ll}
\text { Kisiringo river, } & C=1.560 \\
\text { Msaranga river, } & C=1.564
\end{array}
$$

$B=$ overflow width in m,
$h=$ overflow depth in m.
iii) Results of calculation:

	Item		$\frac{i}{(\mathrm{~m} / \mathrm{m})}$	$\frac{A}{\left(m^{2}\right)}$	$\frac{V}{(m / s e c)}$	$\frac{Q}{\left(\mathrm{~m}^{3} / \mathrm{sec}\right)}$
(1)	Rau river		0.01	43.2	3.88	168
(2)	Kisiringo river		0.02			
	1) Culvert			2.62	4.58	12
	2) Overflow			(h	1.1)	10
		Total				22
(3)	Msaranga river		0.02			
	1) Culvert			3.93	4.33	17
	2) Overflow			(h	1.5)	29
		Total				46

ANNUAL RUNOFP COEFPICIENT

(at Moshi-Himo road)

				PTH	$\begin{array}{r} \text { RUNO } \\ \text { COEREI } \end{array}$	FP ICIENT
NAME OR RIVER	$\begin{aligned} & \text { CATCH- } \\ & \text { MENT } \\ & \text { AREA } \\ & \left(\mathrm{km}^{2}\right) \end{aligned}$	$\frac{\text { Rainfali }}{(\mathrm{mm})}$	$\begin{aligned} & \text { Evapo- } \\ & \text { transpi } \\ & \text { ration } \\ & (\operatorname{mn}) \end{aligned}$	$\begin{aligned} & \text { Effective }{ }^{3 /} \\ & \frac{\text { Rainfall }}{(m m)} \frac{\text { Runóff }}{(m m)} \end{aligned}$	against Rainfall	against Effective Rainfall
Himo river	194	1,288	444	814 \% 260	0.20	0.31
Mue river	85	1,181	446	735177	0.15	0.24
Seasonal rivers	143	1,320	700	620 . 198	0.15	0.32
Rau river	122	1,498	580	918 422	0.28	0.46
Karanga river	211	1,430	439	991416	0.29	0.42
Weru Weru river	141	1,201	491	710 : 352	0.29	0.50
Kikafu river	198	1,385	522	863 762	0.55	0.88

Note: 1/: refer to Table I-10.
2/t refer to Table I-12.
3/: Effective rainfall = Rainfall - Evapotranspiration.
4/: Runoff is estimated as follows.

1. Rau river: Result of Tank Model Simulation (1965-1979 average) is used
2. Himo river : Result of Tank Model simulation (1968 - 1979) average) is used
3. Mue and
seasonal rivers : Runoff coefficient is calculated using spot discharge data available at the Cholo and the uchira rivers. (1953-1958)
4. Karanga river : Recorded data are used. (1953-1959)
5. Weru Weru river :
"
(1957-1963)
6. Kikafu river :
"
(1954-1963)
Name of river: Rau river
Gauging station $: 1 \mathrm{DC} \mathrm{5}$
Catchment area (A$): 122 \mathrm{~km}^{2}$
(1) Calculation of Daily Maximum Rainfall
i) Elevation of middle point for catchment area

$$
\text { (from Figure } \mathrm{I}-15 \& 16 \text {) } \quad \text { El. } 1,140 \mathrm{~m}
$$

ii) Daily maximum rainfall (R_{24}) (from Pigure l-11)

$$
\frac{\text { Return Period (years) }}{R_{24}(\mathrm{~mm} / \text { day })} \frac{5}{155} \frac{10}{185} \frac{20}{213} \frac{50}{249}
$$

(2) Calculation of Rainfall Intensity

$$
\text { Equation: } r_{t}=\frac{24}{t} \cdot\left(\frac{t}{24}\right)^{1 / 3}, r_{e}=0.25 \cdot r_{t}
$$

	r_{t}				${ }_{\text {re }}$			
	5	10	20	50	5	10	20	50
r_{2}	33.8	40.3	46.4	54.3	8.5	10.1	11.6	13.6
r_{5}	18.4	22.0	25.4	29.6	4.6	5.5	6.3	7.4
r_{10}	11.6	13.9	16.0	18.7	2.9	3.5	4.0	4.7

(3) Plotting

(4) Calculation of Peak Flood Discharge (Op)

Equation: $Q p=\frac{1}{3.6} \cdot r_{e} \cdot A$

Return Pexiod	re	Tp	0
5 years			$\begin{array}{r} \frac{0}{} \frac{\mathrm{ma}}{} \\ 125.4 \end{array}$
10	4.7	380	159
20	5.7	350	193
50	7.0	32	237

Table I-24

1,140
1,140
1,570
1,570
1,265 1,355
1,090 1,070 945
1,310
 in in
ESTIMATION OF PEAK FLOOD DISCHARGE

Table I-24RIVER	ESTIMATION OF PEAK FLOOD DISCHARGE					
	CATCHMENT AREA		EFFECTIVE RAINFALL			
	$\frac{\text { Area }^{1 / 2}}{\left(\mathrm{~km}^{2}\right)}$	$\frac{\text { El.of Center }}{(\text { EI.m) }}$	T-5	$x=10$	$y=20$	$\frac{r=50^{3}}{(\mathrm{~mm})}$
Rau river	122	1,140	3.7	4.7	5.7	7.0
Mue river	85	1,140	3.6	4.6	5.5	6.7
Himo river	194	1,570	3.8	4.8	5.8	7.3
Seasonal rivers						
1. Kisiringo	14	1,265	5.4	6.9	8,3	10.2
2. Msaranga	17	1,355	5.5	6.9	8.3	10.3
3. Msangaji	10	1,090	5.2	6.6	8.0	9.7
4. Mola	7	1,070	5.7	7.1	8.5	10.6
5. Mlalo	9	945	5.8	7.2	8.7	10.7
6. Nanga	21	1,310	3.2	6.5	7.8	9.7
7. -	8	945	5.2	6.4	7.5	9.4
8. Cholo	9	1,310	3.2	7.8	9.3	11.5
$9 .-$	5	925	5.6	6.9	8.2	10.3
10. Uchira	24	1,250	4.6	5.8	7.0	8.7
11. Kandalu	4	945	5.0	6.5	7.7	9.2
12. Urenga	15	2,055	4.8	6.0	7.2	9.0

[^2]Flg. I-1

RAINFALL RECORD

Fig. I-3 METEOROLOGY OF THE. LOWER-MOSHI AREA(I)
Moshi Meteorological Station
(1970-1979)

Miwaleni Sub-station
(1971-1979)

Fig. I-4 METEOROLOGY OF THE LOWER-MOSHI AREA(2)

NAFCO Kahe Estate \{1970-1979\}

T. P. C. Langasani
(1970-1979)

Fig. I-5 MONTHLY RAINFALL. DISTRIBUTION

$$
0,
$$

Moforu Sisol Estote

Fig. $[-6$

Fig. I-7 COMPARISON OF ANNUAL RAINFALL
Batween Moshl Meteorologlcol stallon and Other Ralnfall Stotions

NAFCO Kohe Esloto : All. 710 m . Rollo B/A $=0.484$
Miwaleni Sub-stalion: " 770 m . \quad : $=0.743$ Himo Sisal Estate : " 810 m , " 0.802 Kltemo Mission
1.422 m.

Fig.I- 8 VARIATION OF anNuAL RAINFALL WITH AITITUDE

Fig. I- 9 VARIATION OF MONTHLY RAINFALL WITH ALTITUDE (1)

[^0]: 1/ RAO, Crop Water Requirements, Irrigation and Drainage Paper NO. 24 (revised), 1977

[^1]: G．S．＝Gauging staff，Auto．R．＝Automatic water level recorder，
 WB $=$ Eydrological Iear Book published by the Ministry of Water，Energy and Minerals
 W．D．Water Department（Regional Water Office）in the Kilimanjaro region spot $=$ spot data

[^2]: Elevation of middle point for catchment area (below $2,000 \mathrm{~m}$)

