AFRICAN DEVELOPMENT BANK

GOVERNMENT OF MAURITIUS

BEAU BASSIN - PORT LOUIS LINK ROAD

CALCULATION NOTE

RETAINING WALL

BRIDGE OF FRONTAGE ROAD

LIBRARY

*SEPTEMBER 1980

Japan International Cooperation Agency

S D F

80-100

CON TO CA	1096
间 584.152.1254	V1391
绿No. U\$32	50F

CONTENTS

- 1. Retaining Wall of Motorway Junction
- 2. Retaining Wall of Main Road
- 3. Frontage Road Bridges

1. Retaining Wall of Motorway Junction

CONTENT

§§ 2
$$H = 7.50$$
. (cantilever type) – f.

§§ 3
$$H = 9.00^{m}$$
 (,)— 1/

§§ 4
$$H = 9.50^m$$
 (,)-35

§§ 5
$$H = 11.10^{m}$$
 (,)-5/

$$\S\S 6 \qquad H = 11.70^{m} \quad () - 12$$

§§ 7
$$H = 12.70^{m}$$
 (counterfort type) - 37

35 1. DESIGN CONDITIONS

& I. DESIGN CONDITIONS

Retaining wall type

cantilever Type Height = 7.5, 9.0, 9.5, 11.1 and 11.7 meters conferfort Type Height = 12.7 m

2. foundation type

Spread footing

- unit weight of reinforced concrete—and soil reinforced concrete 2.41 ton/m³
- 4 bearing capacity

 permissible bearing capacity

 qa = 60 t/m²
- 5 permissible stress of reinforced concrete
 - D Concrete grade 25

specified cube strength at 28 days $25 \, \text{N/mm}^2 = 255 \, \text{kg/cm}^2$ permissible compressive stress $6ca = 85 \, \text{kg/cm}^2$ permissible shear stress $7a = 0.81 \, \text{N/mm}^2 = 8.2 \, \text{kg/cm}^2$ permissible shear in solid slab without shear reinforcement

Permissible shear N/mm 0.23 0.34 0.46 0.63 0.70

Remissible shear N/mm 2.35 3.47 4.69 6.43 7.14

2) Reinforce ment

specified characteristic stress

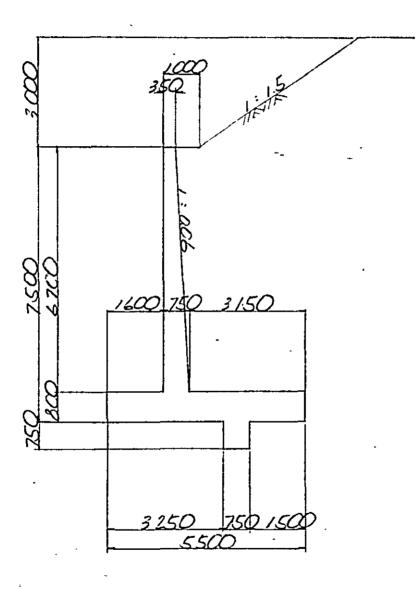
Secure 10 1/mm - 4180 mm

permissible tensile stress

Secure 230 1/mm = 2340 mm

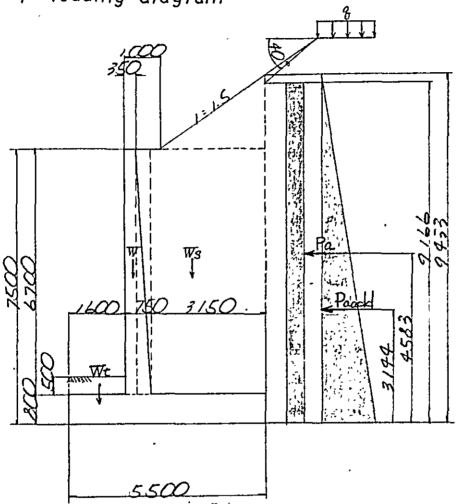
permissible tensile stress

in shera reinforcement


Secure 175 1/mm = 1780 mm

6 Permissible increase in basic working stresses

Load combination	Increase in basic permissible stresses (per cent)
Dead Load + HA Loading	0
Dead Load + HB Loading	25
Dead Load + Wind Load	15
Dead Load + HA Loading + Wind Load	15
Dead Load + HB Loading + Wind Load	30


§§ 2 H = 7.50 m

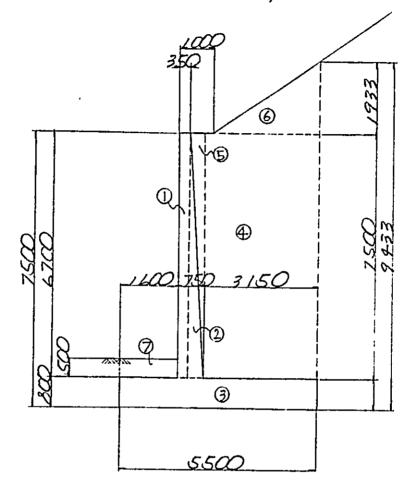
§ I STRUCTURAL FIGURE

§ 2 CALCULATION OF LOAD

2-1 loading diagram

₩ : self weight

Ws : weight of soil

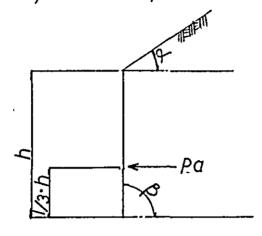

Wt : fill on toe

Ws add: weight of surcharge

Pa : active pressure

Paadd: surcharge

2-2 self weight & weight of soil



		N .(1)	x (m)	N·x (tm)
0	0.35 × 6.70 • 2.41	5.65	1.775	10.03
2	½×6.70×0.40×2.41	3.23	2.083	6.73
3	0.80 × 5.50 × 2.41	10.60	2.75	29.15
4	6.70 × 3.15 × 1.9	40.10	3.925	157.39
(5)	½ × 6.70 × 0.40 × 1.9	2.55	2.217	5.65
6	1/2 × 2.90 × 1.933 × 1.9	5.33	4.533	29.16
7	0.50 * 1.60 * 1.9	1.52	0.80	1.22
Σ.		68.98		234.33

 $e = \frac{B}{2} - \overline{x} = \frac{5.50}{2} - \frac{234.33}{68.98} = -0.647$

2-3 earth pressure

unit weight of soil $\sqrt{s} - 1.9$ angle of internal friction $\phi - 35^{\circ}$

$$K = \left(\frac{\cos\phi}{Q+I}\right)^2$$

$$a = \sqrt{\sin \phi} - 1/2 \tan \lambda \cdot \sin 2\phi$$

$$a - \sqrt{\sin 35^{\circ} - 1/2 \times \tan 0} \times \sin 2 \times 35^{\circ}$$

$$= \sqrt{0.574^{2} - 1/2} \times 0 \times 2 \times 0.574$$

$$= 0.574$$

$$K = \left(\frac{\cos 35^{\circ}}{0.574 + 1}\right)^{2}$$
$$= \left(\frac{0.8/9}{1.574}\right)^{2}$$

$$Pa = \frac{1}{2} \cdot K \cdot \delta s \cdot H^{2}$$

$$= \frac{1}{2} \times 0.27 \times 1.9 \times 9.433^{2} = 22.82^{1/m}$$

$$Y = \frac{1}{3} \times 9.433 = 3.144^{-m}$$

(2) active pressure due to surcharge

under H.A surcharge

$$Q = 1.032 \times 1.9 + 1.02 = 2.98 \text{ t/m}^2$$

$$Q h = Q \cdot K \cdot H$$

$$= 2.98 \times 0.27 \times 9.166 = 7.37 \text{ t/m}$$

$$y = 1/2 \times 9.166 = 4.583^{m}$$

2-4 weight of surcharge

under H.A
$$q = 1.02$$
 m

§ 3 CALCULATION OF STABILITY

	N (t)	(m)	N·x (tm)	H (t)	y (m)	H·Y (tm)
W. Ws . Wt	68.98		-234.33			-
Ws-add		<u></u>	,			
Pa				22.82	3.144	71.75
Pa.add				7.37	4.583	33.78
TOTAL	68.98		-234.33	30.19		105.53

check for eccentric

$$x = \frac{Nx + Hy}{\Sigma N} = \frac{-234.33 + 105.53}{68.98} = 1.87$$

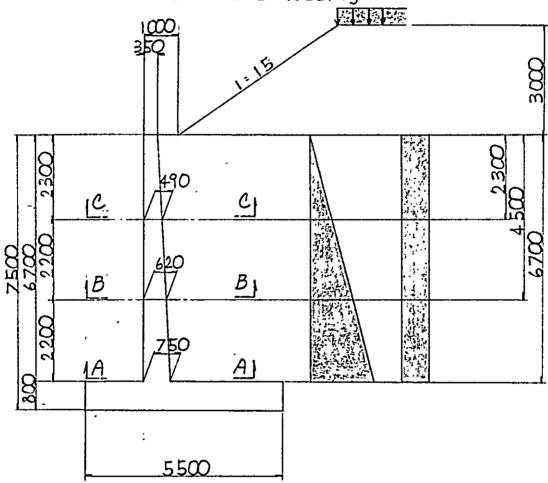
$$e = \frac{B}{2} - x = \frac{5.50}{2} - 1.87 = 0.88$$

$$c.88 < \frac{B}{4} = 0.92$$

2) soil reaction

$$q = \frac{\sum N}{B} (1 \pm \frac{6 \cdot e}{B})$$

$$= \frac{68.98}{5.50} \times (1 \pm \frac{6 \times 0.88}{5.50}) = \begin{bmatrix} 24.58 & \frac{1}{m} \\ 0.50 & \frac{1}{m} \end{bmatrix}$$


3) check for sliding

$$Hu = c \cdot A' + N \tan \phi' \quad c = 0 \quad \tan \phi = 0.6$$

$$\frac{HU}{H} = \frac{68.98 \times 0.6}{30.19} = 1.40 < 1.5$$

§ 4 CALCULATION OF WALL SECTION

4-1 dimension and loading

$$Q = Q_{HA} + \int_{S} \cdot h$$

= 1.02 + 1.9 × 3.00 = 6.72 t/m_{c}^{2}

$$Pa \, add = q \cdot K \cdot H_x$$

= 6.72 × 0.27 × H_x = 1.8144· $H_x^{t/m}$

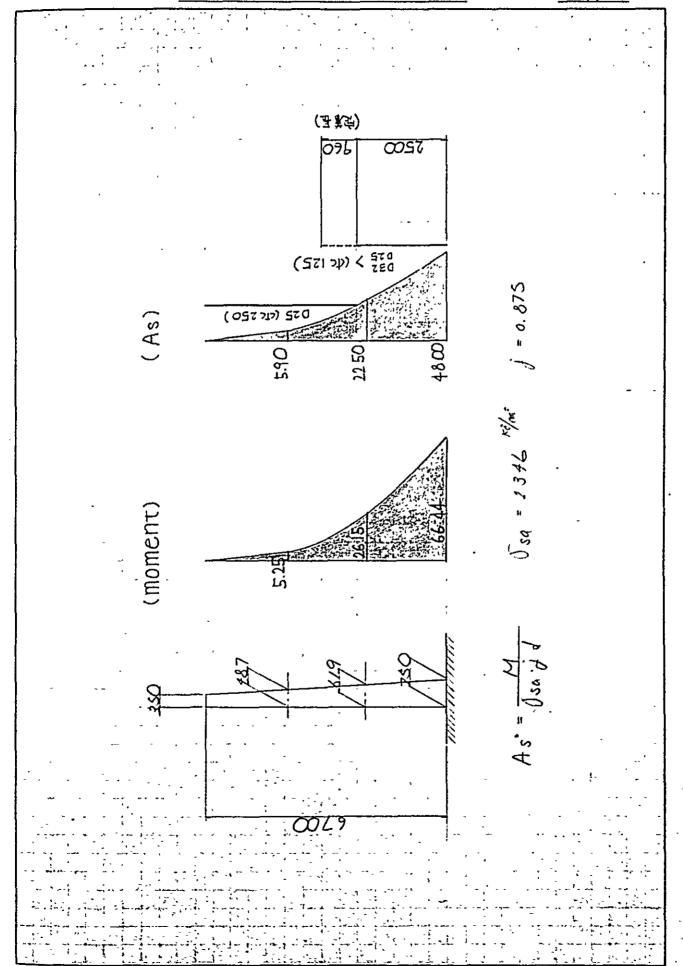
$$Pa = \frac{1}{2} \cdot \xi_{S} \cdot K \cdot Hx^{2}$$

$$= \frac{1}{2} \times 1.9 \times 0.27 \times Hx^{2} = 0.2565 \cdot Hx^{2} \cdot \frac{1}{m}$$

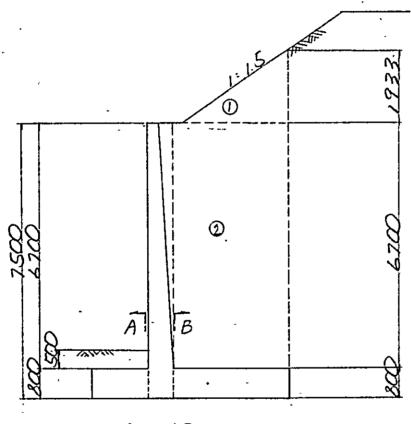
4-2 sectional force of wall section A-A

		H (t)	y (m)	H·Y (t·m)
Pd	0.2565 × 6.70 ²	11.5	2.233	25.70
Pa add	1.8144 * 6.70	12.16	3.35	40.74
TOTAL		23.67		66.44

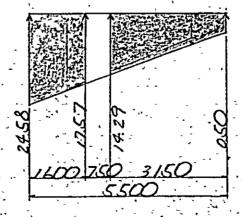
section B-B


		H (t)	y (M)	, H.Y (tm)
Pd	0.2565 + 4.502	5.19	1.50	7.79
Pa add	1.8144 × 4.50	8.16	2.25	18.36
TOTAL		13.35		26.15

section c-c


		Η (τ)	y (M)	H-Y (TM)
Pa	0 2565 × 2.30	0.59	0.767	0.45
Pa add	1.8144 > 2.30	4.17	1.15	4.80
TOTAL		4.76		5.25

4-3 list of stresses 6c.6s.z: working stress.


6ca,6sa,7a: Permissible stress. C-C B - BA - A5.25 66.44 26.15 N 4.76 23.67 13.35 1∞ 100 100 b 55 h 68 42 7 D32 D25 6 125 D32>@125 D25@250 51.80 51.80 19.64 D20 & 250 D20@ 250 020 0 250 12.56 12.56 12.56 0 2.98 14.37 8.64 1.13 2.43 3.48 n.P 0.1413 0.1143 0.070 C 5.58 5.17 6.90. S 9.90 10.8 15.88 1.16 1.13 1.14 <u>0</u>; 45 80 21 1049 2133 709 <u>65</u> 2.8 1.3. 3.4 83 83 83 Oca · 2346 2346 2346 3.47 3.47

- § 5 CALCULATION OF FOOTING SECTION
 - 5 I dimenston and loading

A. I

5-2 sectional force of footing

section A - A

		S (t)	(m) _x	$S \cdot x$ (tm)
W	1.60 × 0.80 × 2.41	3.08	0.80	2.46
Wt	1.60 × 0.50 × 1.9	1.52	0.80	1.22
q	-½×(24.58+17.57) × 1.60	- 33.72	0.844	-28.46
TOTAL		-29.12		- 24 78

section B-B

			S	(m) 	S·x (t m)
W		3.15 × 0.80 × 2.4 \	6:07	1.575	9.56
W 5	(1)	1/2 × 2.90 × 1.933 × 1.9	5.33	2.183	11.64
	(2)	3.15 × 6.70 × 1.90	40.10	1.575	63.16
· q		1/2×(14.29+0.50)×3.15	- 23.29	1.085	-25.27
TOTAL :			28.2		59.09

5-3 list of stresses 6c.6s.z: working stress.

			6ca,6sa,7	a: Perm	issible st	ress.
					,	- -
	A-A	B - B				
M	24.78	59.09			,	
N						
S	29.12	28.21				
b	ıω	100		 		
h.	70	70]
ď	10	10				
As	D20 x8 125 D16 20.6	D32 yac125 D20 44.72				
As'				,		
ta				4		
M'bd*	5.06	12.06		-	·	
Sba	4.16	4.03		,		1
n.P	0.0441	0.0958				
C	8.53	6.43				
S	24.78	11.83				
Z	1.09	1.13				
೧೦	43	78	•	;		
<u>6s</u>	1880	2139				
7	Z 7	4.0		-		
Oca	83	83		· ·	2	
6sa	2346	2346				
78	1.2.35	7.2.35				

check for stirrups

$$\frac{3h}{b \cdot d} = \frac{29.12 \times 10^{3}}{100 \times 70} = 1.09 - 4.53 = 7a = 2.35$$

$$S_{k} = I_{0} \times b \times d \times \frac{1}{z}$$

$$= 2.35 \times 100 \times 70 \times \frac{1}{1.09} = 15.092$$

$$S_{h} = (29.12 - 15.09) \times 10^{3} = 14.03 \times 10^{3}$$

$$k_{g}$$

$$reg. \Delta \omega = \frac{14.03 \times 10^3 \times 30}{1780 \times 70} \times 1.09 = 3.68$$

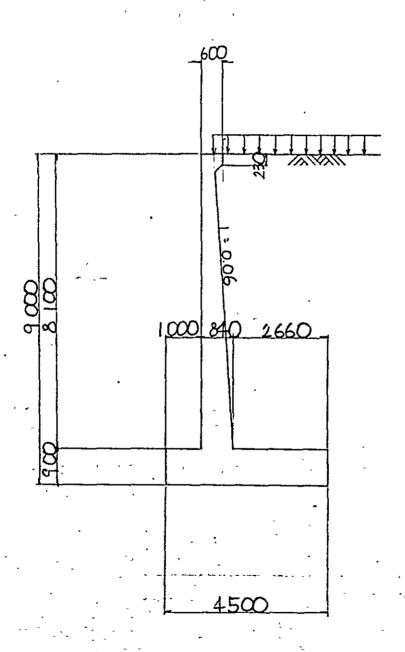
check for stirrups

$$\frac{5h}{b \cdot d} \times \tilde{z}$$

$$= \frac{28.21 \times 10^{3}}{100 \times 70} \times 1.13 - 4.55 \times T_{a} = 2.35$$

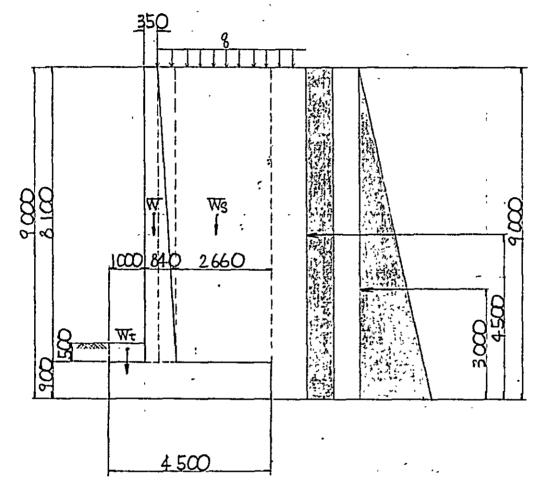
reg.
$$Aw = \frac{Sh' * a}{SSO - d}$$
, Z (cm²)

$$S_{c} = T_{0} \times b \times d \times \frac{1}{Z}$$


$$= 2.35 \times 100 \times 70 \times \frac{1}{1.13} = 14560$$

$$Sh' = (26.21 - 14.56) \times 10^{3} = 13.65 \times 10^{3} \text{ kg}$$

reg.
$$A_W = \frac{/3.65 \times 10^3 \times 30}{1780 \times 70} \times 1.13 = 3.7/cm^2$$


§§ 3
$$H = 9 \, \infty^{-m}$$

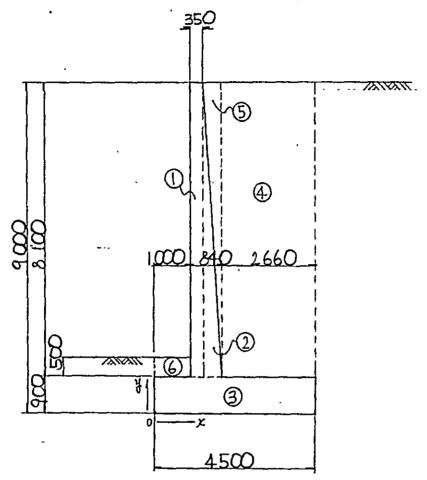
§ 1. STRUCTURAL FIGURE

§ 2 CALCULATION OF LOAD

2-1 loading diagram

W : self weight

Ws : weight of soil

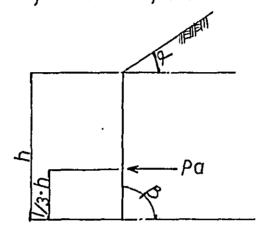

Wt : fill on toe

Ws add: weight of surcharge

Pa : active pressure

Pa add: surcharge

2-2 self weight & weight of soil



		N (1)	x (m)	(tm) N·x
Θ	0.35 × 8.10 × 2.41	6.83	1.175	8.03
2	1/2×049×810×24	4.78	1.513	7.23
3	0.90 * 4.50 * 2.41	9.76	2.25	21.96
4	2.66 × 8.10 × 1.9	40.94	-3.17	129.78
⑤	1/2 × 0.49 × 8.10 × 1.9	3.77	1.677	6.32
6	0.50 × 1.00 × 1.9	0.95	0.50	0.48
		- • • • • • • •		\$ - 5 J
Σ	A STATE OF THE STA	67.03		173.80

 $e^{\frac{B}{124} - \frac{1}{x}} = \frac{450}{211173.80} = -0.343.$

2-3 earth pressure

unit weight of soil $\sqrt{s} - 1.9$ angle of internal friction $\phi - 35^{\circ}$

$$K = \left(\frac{\cos \phi}{\alpha + I}\right)^2$$

$$a = \sqrt{\sin \phi} - \frac{1}{2} \tan \phi + \sin \phi$$

$$a - \sqrt{\sin 35^{\circ} - 1/2 \times \tan 0} \times \sin 2 \times 35^{\circ}$$

$$=\sqrt{0.574^2-1/2}\times 0\times 2\times 0.574$$

$$= 0.574$$

$$K = \left(\frac{\cos 35^{\circ}}{0.574 + 1}\right)^{2}$$

$$=\left(\frac{0.8/9}{1.574}\right)^2$$

(1) active pressure

$$Pa = \frac{1}{2} \cdot K \cdot \delta s \cdot H^{2}$$

$$= \frac{1}{2} \times 0.27 \times 1.9 \times 9.00^{2} = 20.78^{\frac{1}{m}}$$

$$y = \frac{1}{3} \times 9.00^{-\frac{1}{2}} = 3.00^{-\frac{m}{2}}$$

(2) active pressure due to surcharge

under H.A surcharge

$$Q = 1.02 \, f/m^2$$

$$q_h = q \cdot K \cdot H$$

= 1.02 × 0.27 × 9.00 = 2.48

$$y = 1/2 \times 9.00 = 4.50^{m}$$

2-4 weight of surcharge.

under H.A.
$$q = 1.02 \frac{1}{m^2}$$

 $x = 3.15$

§ 3 CALCULATION OF STABILITY

	N (t)	(m) X	N·x (tm)	H (t)	y (m)	H∙Y ^(tm)
W. Ws , Wr	67.03		-173.80			
Ws-add	3.2	2.925	9.39			
Pa				20.78	3.00	62.34
Pa.add				2.48	4.50	11.16
TOTAL	70.24		-183.19	23.26		73.50

1) check for eccentric

$$x = \frac{Nx + Hy}{\Sigma N} = \frac{-183.19 + 73.5}{70.24} = 1.56$$

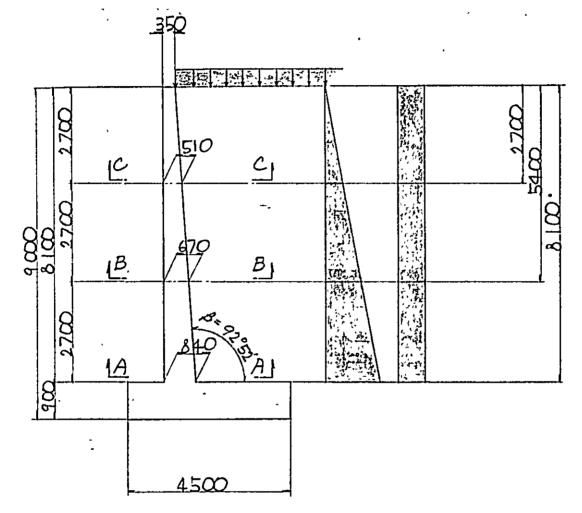
$$e = \frac{B}{2} - x = \frac{4.50}{2} - 1.56 = 0.69$$

$$\frac{B}{6} = 0.75^{M}$$

2) soil reaction

$$q = \frac{\sum N}{B} (1 \pm \frac{6 \cdot e}{B})$$

$$= \frac{70.24}{4.50} \times (1 \pm \frac{6 \times 0.69}{4.50}) = \begin{bmatrix} 29.97 \\ 1.25 \end{bmatrix}$$


3) check for sliding

$$Hu = c \cdot A' + N \cdot \tan \phi' \qquad c = 0.6$$

$$F = \frac{Hu}{H} = \frac{70.24 \times 0.6}{23.26} = 1.81 > 1.5$$

§ 4 CALCULATION OF WALL SECTION

4 - I dimension and loading

$$K = \left[\frac{\sin(\beta - \phi)}{(a+i)\sin\beta}\right]^2 \frac{1}{\sin^2\beta} \qquad a = \sqrt{\frac{\sin\phi\sin(\phi - \lambda)}{\sin\beta\sin(\beta - \lambda)}}$$

$$a = \sqrt{\frac{\sin 35^{\circ} \sin (35^{\circ} - 0)}{\sin 4^{\circ} \sin (42^{\circ} 52^{\prime} - 0)}} = 0.574$$

$$K = \left(\frac{\sin(92^{\circ}52' - 35^{\circ})}{(0.574 + 1)\sin 92^{\circ}52'}\right)^{2} \times \frac{1}{\sin^{2}92^{\circ}52'} = 0.29$$

 $PaH = \frac{1}{2} \cdot K \cdot \delta s \cdot H^2 \cdot \cos(\beta - 90^\circ) = \frac{1}{2} \times 0.29 \times 1.9 \times H^2 \times 0.9987 = 0.2751 H^2$

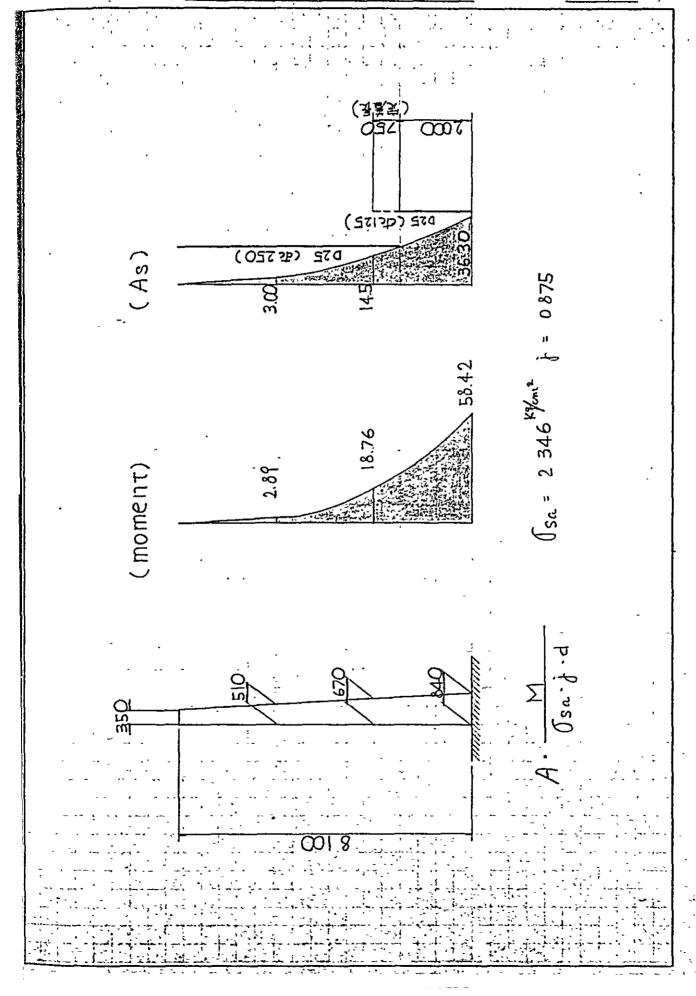
Pa add H = 9. K. H. cos(B - 90°) = 1.02 × 0.29 × H × 0.9987 = 0.2954 H

4-2 sectional force of wal section A-A

		H (t)	y (m)	H.Y (t·m)
Pa	0.2751 × 8.10 ²	18.05	2.70	48.74
Pa add	0.2954 × 8.10	2.39	4.05	9.68
TOTAL		20.44		58.42

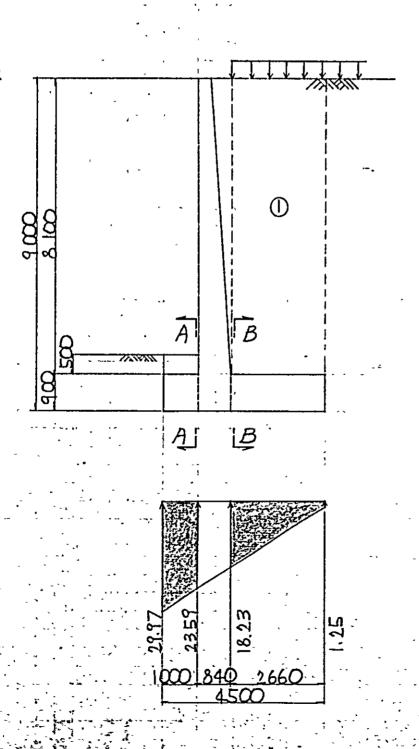
section B-B

		H (t)	y (M)	$H.y^{(tm)}$
Pa	0.2751 × 540	8.02	1.80	14.44
Pa add	0.2954 × 5.40	1-60	2.70	4.32·
TOTAL		9.62		18.76


section c-c

		H (t)	y (M)	H.Y (tin)
Pa	0.275 × 2.70	2.01	0.90	1.81
Pa add	0.2954 ×2.70	0.80	1.35	1.08
TOTAL		2.81	-	2.89

4-3 list of stresses 6c.6s.z: working stress.


6ca,6sa,7a: Permissible stress.

			Oai,Osa, E	, u . , re-	11112011	716 31	1622.
	A - A	B-B	C-C				
<u>M_</u>	58.42	18.76	2.89				
N_							
S	20.44	9.62	2.8				·
þ	100	ıω	100				
h_	77	60	44			•	
ď	7	フ	7				
As_	D25@125 39.28	D25 @ 250 19.64	D25 & 250 19.64			•	
As'	D12@ 250 4.52	D12 @ 250 4 52	012 6250 452				
	0	0	0				
M'bd' Sbd	9.85	5.2	1.49				
S/bd	2.65	1.60	0.64				
n.P	0.0765	0.049	0.067			·	
С	6.75	7.91	7.02				
S.	14.59	22.32	16.60				
Z	1.12	1.10	1.12				
<u>6c</u>	67	41	10				
6s	2157	1745	372				•
7	3.0	1.8	0.7		.		
<u> Gca</u>	83	83	83				
<u>Gsa</u>	2346	2346	2346				
Za	3.47	2.35	2,35	· 		·	

§ 5 CALCULATION OF FOOTING SECTION

5-1 dimension and loading

5-2 sectional force of footing

section A - A

		S (t)	(m) X	S·x (tm)
W	090 ×1.00 × 2.41	2.17	0.50	1.09
Wt	0.50 × 1.00 × 1.9	0.95	0.50	0.4-8
q	1/2 × (23,59+29.97) × 1.00	-26.78	0.52	-13.93
TOTAL	<u> </u>	- 23,66		-12.36

section B-B

• .		S	(m) X	S·x
W	0.90 × 2.66 × 2.41	5.77	1.33	7.67
Ws O	8.10 × 2.66 × 1.9	40.94	1.33	54.45
Ws add	1.02 × 2.66	2.71	1.33	3.60
q	1/2 × (1.25 + 18.23) × 2.66	-25.91	0.944	-24.46
TOTAL		23.51		41.26

5-3 list of stresses 6c.6s.7: working stress.

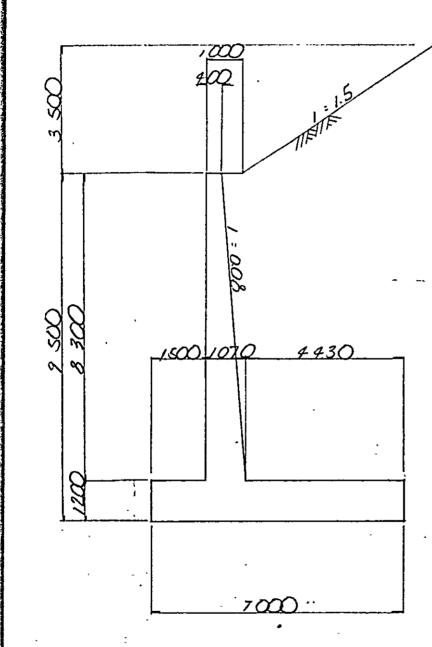
6ca,6sa,7a: Permissible stress.

	· · · · · · · · · · · · · · · · · · ·		Ocu,Osu, c	A PETITI	ssinie su	<u></u>
						
	A - A	B-B				
M	12.36	41.26				
N						
S	23.66	23.51				
<u>b</u>	100	100			·	
h_	80	80				
d'_	10	10				
As	DI6 C 125 16.08	D20 @ 125 25.12				
As'						
1					٠	
M' bd°	1.93	6.45			-	
Spd	2.96	2.94		•		
n.P	0.015	0.0471				
<u>C</u>	13.28	8.23				
<u>s</u>	70.26	23.28				
Z	1.06	1.10				
<u>oc</u>	26	54			•	
6s -	2035	225	-		-	
7.	3.1	3.2	-		** ,	
бса	83	83			•	
Gsa .	2346	2346		-		
Za	2.35	2.35			-	

Check for stirrups.

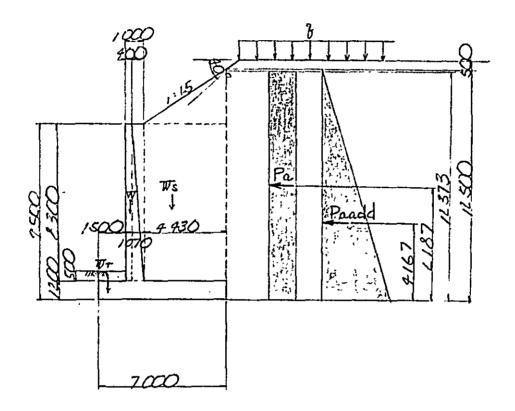
Sect A-A
$$T = \frac{S}{b \cdot d} \cdot Z = \frac{23.bb \times 10^{2}}{100 \times 80} \times 1.06 = 3.13 \frac{k_{0}^{2}/cm^{2}}{100 \times 80} < T_{0} = 2.35 \frac{k_{0}^{2}/cm^{2}}{100 \times 80} < T_{0$$

$$Sc = Ta \cdot b \cdot d \cdot \sqrt{z} = 2.35 \times 100 \times 80 \times 100 \times 100 = 17.74 \times 10^3 \times 100 \times 100 \times 100 = 17.74 \times 10^3 \times 100 \times 100 \times 100 \times 100 = 17.74 \times 10^3 \times 100 \times$$


$$S' = (23.66 - 17.74) \times 10^{2} = 5.92 \times 10^{3}$$
 kg

$$As = 2.01 \times 2 = 4.02$$
 > Reg $Av = 2.64$

Sect B-B


§§ 4. $H = 9.50^{m}$

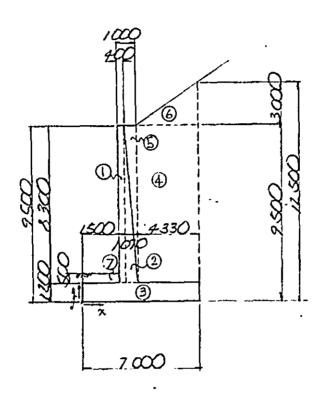
§ I STRUCTURAL FIGURE

§ 2. CALCULATION OF LOAD

2-1 loading diagram

W : self weight

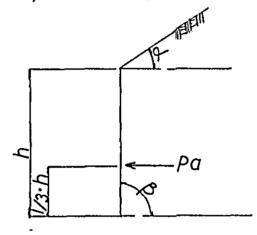
Ws : weight of soil


· Wt : fill on toe

Ws add: weight of surcharge

Pà : active pressure

Paadd: surcharge


2-2 self weight ₰ weight of soil

		N (t)	(m) ⁽	N·x (tm)
0	0.40.8:40 × 2.41	8.10	1.700	13.77
2	1/2 × 0.67 = 8.40 × 2.41	6.78	2./23	14.39
	7.00 × 1.10 × 1.41	18.56	3.500	64 96
	4.43 × 3.40 × 1.9	66 98	4.785	320.50
_	1/2 = 0.67 × 8.40 × 1.9	5.06	2.347	11.88
	1/2 × 4.50 × 3.00 × 1.9	12:15	s.500	66.83
	0.50 × 1.50 × 1.9	1:35	0.750	1:01
Σ		118:98		493.34

2-3 earth pressure

unit weight of soil $\int s - 1.9$ angle of internal friction $\phi - 35^{\circ}$

$$K - \left(\frac{\cos \phi}{a+1}\right)^2$$

$$a - \sqrt{\sin \phi} - \frac{1}{2} \tan \lambda \sin 2\phi$$

$$a - \sqrt{\sin 35^{\circ} - 1/2 \times \tan 0} \times \sin 2 \times 35^{\circ}$$

$$= \sqrt{0574^{2} - 1/2} \times 0 \times 2 \times 0574$$

$$= 0.574$$

$$K = \left(\frac{\cos 35^{\circ}}{0.574 + 1}\right)^{2}$$

$$= \left(\frac{0.819}{1.574}\right)^{2}$$

$$= 60.27$$

(1) active pressure

$$Pa = \frac{1}{2} \cdot K \cdot \delta_{s} \cdot H^{2}$$

$$= \frac{1}{2} \times 0.27 \times 1.9 \times 12.50^{2} = 37.97^{1/m}$$

$$y = \frac{1}{3} \times 12.50^{2} = 4.167^{m}$$

(2) active pressure due to surcharge

under H.A surcharge

$$Q = 1.02 + 0.50 \times 1.9 = 1.95 + \frac{1}{m^2}$$

$$Q_h = Q \cdot K \cdot H$$

$$= 1.95 \times 0.27 \times 12.373 = 3.51$$

$$Y = \frac{1}{2} \times 12.373 = 6.187$$

2-4 weight of surcharge

under H.A
$$q = 1.02^{-\frac{1}{m^2}}$$

§ 3 CALCULATION OF STABILITY

	N (1)	(m) X	N-x (tm)	(t) H	y (m)	H•Y (tm)
W. Ws . Wr	118.98		493 34		e	
Ws-acid					-	
Pa				<i>37. 97</i>	4.167	158.22
Pa-add	-			6.51	6.187	40.18
TOTAL	118.98		- 493.34			198.50

1) check for eccentric

$$x = \frac{Nx + Hy}{\Sigma N} = \frac{-493.34 + 198.50}{118.98} = 1.48$$

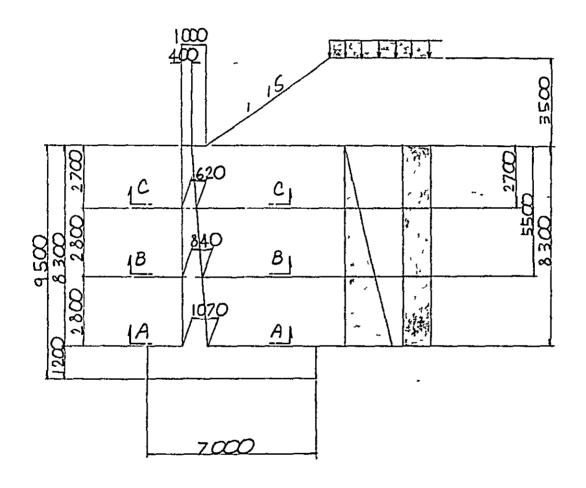
$$e = \frac{B}{2} - x = \frac{7.00}{2} - 1.98 = 1.02$$

2) soil reaction

$$Q = \frac{\sum N}{B} (1 \pm \frac{6 \cdot e}{B}).$$

$$= \frac{11898}{7.00} \times (1 \pm \frac{6 \times 1.02}{7.00}) = \begin{bmatrix} 31.86 \cdot \frac{1}{m} \\ 1.19 \cdot \frac{1}{m} \end{bmatrix}$$

< B = 1.16 m


3) check for sliding

$$Hu = c \cdot A' + N \tan \phi'$$
 $c - 0$ $\tan \phi = 0.6$

$$F = \frac{Hu}{H} = \frac{118.98 \times 0.6}{14.98} = 1.60 \times 1.5$$

§ 4 CALCULATION OF WALL SECTION

4 - I dimension and loading

$$Q = Q_{HA} + V_{S} h$$

= 102 + 19 × 350 = 767 t/m^{2}

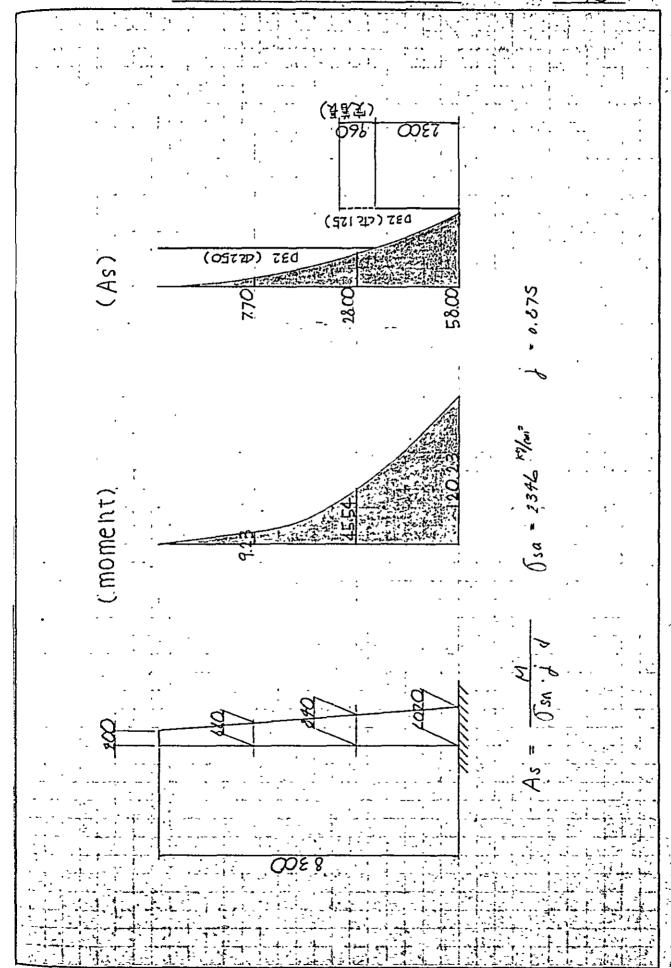
$$Pa add = q \cdot K \cdot Hx$$

$$= 7.67 \times 0.27 \times Hx = 2.071 \cdot Hx^{t/m}$$

4-2 sectional force of wall section A-A

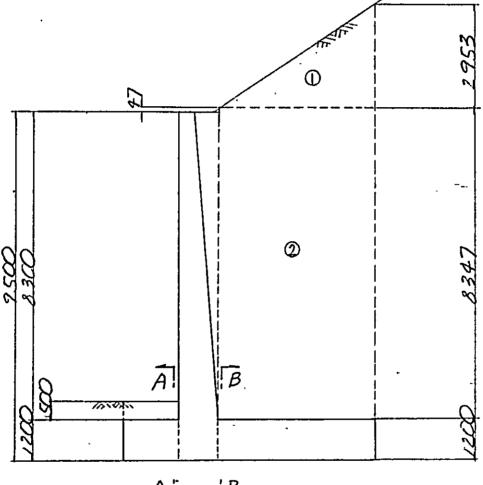
		$H^{(t)}$	y (m)	H·Y (t·m)
P_d	0,2565 × 8.302	17.67	2.767	48.89
Pa add	2.071 * 8.30	17.19	4.15	71.34
TOTAL		34.86		120.23

section B-B

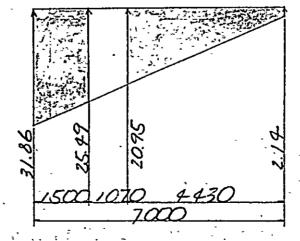

		H (t)	y (M)	H.Y (tm)
Pa	0.2565 * 5.50	7.76	1.833	14.22
Pa add	2.071 × 5.50	11:39	2.750	31.32
TOTAL		19.15		45.54

section c-c

		H (t)	y (M)	H-Y ⁽ ነበን)
Pa	0.2565×270^{2}	1.87	0.90	1.68
Pa adá	2.071 × 2.70	5.59	1.35	7.55
TOTAL	·	7.46		9.23


	, ,			
4-3	list of stresses	6c.6s.2:	working	stress .

	4		6ca,6sa,7	a: Permi	ssible si	ress.
	,		,	*		
	A - A	B - B	c-c			
M	120.23	45.54	9.23			
N			`			
S	34.86	19.15	7.46			
b	ıω	100	100			
h	ıω	77	55			
ď	7	7	7			
As	D32 @125 64.32	032 @ 250 32.16	032 @ 250 32.16			
As'	D12 @ 250 4.52	DI2 @ 250 4.52	DI2 @ 250 452			
1/4	. 0	0	. 0			
M'/bd°	12.02	7.68	3.05			
Sha	3.49	2.49	1.36		•	
n.P	0.0965	0.0649	0.0877			·
С	6.27	7. 25	6.40			
S	11.70	17.66	12.82			
Z	1.13	1.11	1.13	,		
<u>oc</u>	75	56	20	·		
6s	2111	2034	586	; , <i>*</i>		
7	3.4	2.8	1.5	7		,
Oca	83	83	83		,	- 1
6sa	2346	2346	2346			
Za	3.47	3.47	3:47_			



§ 5 CALCULATION OF FOOTING SECTION

5 - 1 dimension and loading

Ai B

5-2 sectional force of footing

section A - A

		S (t)	(m) X	S-x (tm)
W	1.10 - 1.50 - 2.41	3.98	0.75	2.99
Wt	0.50 × 1.50 × 1.9	1.43	0.75 .	1.07
q	1/2 × (25.49 + 31.86) , 1.50	- 43.01	0.778	- 33,46
TOTAL		37.6O		29.40

section B-B

		·	S (t)	(m) X	S·x
W	,	1.10 * 4.43 * 2.41	11.74	2.215	26.∞
W S	0	1/2×4.43×2.953× 1.9	12.43	3.023	37.58
" 3	2	4.43 × 8.447 × 1.9	71.10	2.215	157.49
q		½×(2.14+20.95)×4.43	-51.14	1.614	- 82.54
TOTAL		•	44.13		138.53

5-3 list of stresses 6.6s.z: working stress.

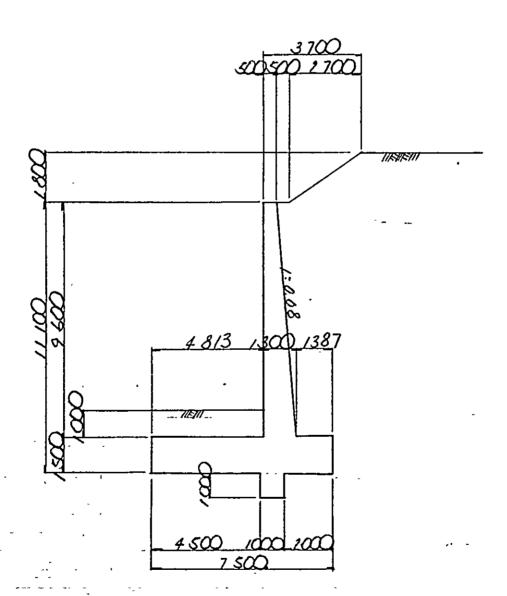
6ca,6sa,7a: Permissible stress. B - BA - A138.53 29.40 37.60 44.13 100 100 b 110 110 10 10 DI6 > de 125 20.60 D32 @ 125 <u>As</u> 64.32 2.43 11.45 S Sba 3.42 4.0 n.P 0.0268 0.0877 10.42 C 6.63 S 40.18 1286 1.07 1.13 25 76 **DC** -1464 2208 <u>6s</u> ±-4.0 3.4 83. 83 2346 2346 ઉsa ∶ 2.35

Check for stirrups

Sect. A-A.

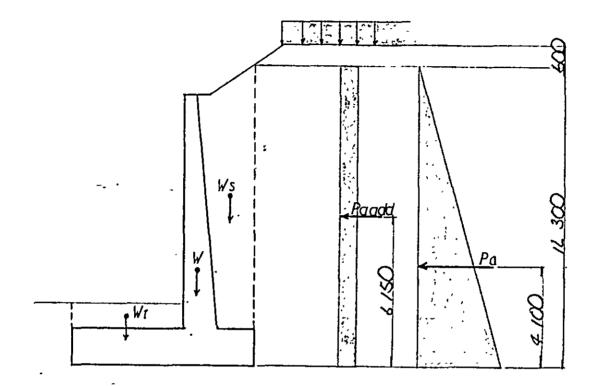
$$T = \frac{S}{b \cdot d} \cdot Z = \frac{37.60 \times 10^3}{100 \times 110} \times 1.07 = 3.66 \frac{k_3/c_{n_1}^2}{c_{n_1}^2} < T_0 = 2.35 \frac{k_3/c_{n_2}^2}{c_{n_1}^2}$$

Reg Av =
$$\frac{S' \times A}{G_{5a} \cdot d} \times Z = \frac{13.44 \times 10^3 \times 50}{1780 \times 110} \times 1.07 = 3.67^{cm^2}$$


Sect. B-B.

$$T = \frac{S}{b \cdot d} Z = \frac{44.13 \times 10^{3}}{100 \times 110} \times 1.13 = 4.53 \times 10^{10} < 3.47 \times 10^{10}$$

$$5' = (44.13 - 33.78) \times 10^3 = 10.35 \times 10^3$$


§§ 5 $H = 11.10^{m}$

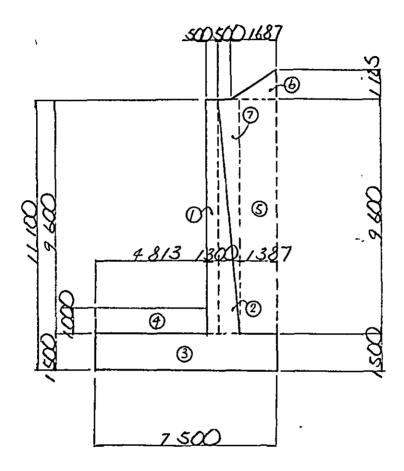
§ 1. STRUCTURAL FIGURE

\$ 2. CALCULATION OF LOAD

2-1 loading diagram

W : self weight

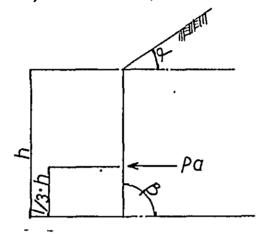
Ws : weight of soil


Wt : fill on toe

Ws add: weight of surcharge

Pa : active pressure

Paadd: surcharge:


2-2 self weight & weight of soil

<u> </u>		, (t)	(m)	(tm)
_		Ν	<u> </u>	N·x_
\bigcirc	0.50×7.60×2.41	11.57	5.063	<i>58</i> ,57
(2)	1/2 × 0.80 × 9.60 × 2.41	9.15	5.580	51.64
	7.50 × 1.50 × 2.41	27.11	3.750	101.67
Ø	4.813 × 1.00 × 1.9	9.14	2. 407	22.01
⑤	1.387 × 9.60 × 1.9	15.30	6.807	172.21
0	1/2 × 1.687 × 1.125 × 1.9	1.80	6.938	12.59
0	1/2 × 0.80 × 9.60 × 1.9	7.30	5.846	42.65
Σ		91.47	-	461 34

2-3 earth pressure

unit weight of soil fs = 1.9 angle of internal friction $fine - 35^\circ$

$$K = \left(\frac{\cos \phi}{Q + I}\right)^2$$

$$a = \sqrt{\sin \phi} - 1/2 \tan \lambda \cdot \sin 2\phi$$

$$a - \sqrt{\sin 35^{\circ 2} - 1/2 \times \tan 0} \times \sin 2 \times 35^{\circ}$$

$$= \sqrt{0.573^{2} - 1/2} \times 0 \times 2 \times 0.9396$$

$$= 0.573$$

$$K = \left(\frac{\cos 35^{\circ}}{0.573 + 1}\right)^{2}$$
$$= \left(\frac{0.819}{0.573 + 1}\right)^{2}$$

$$= -0.27/$$

(/) active pressure

$$Pa = \frac{1}{2} \cdot K \cdot \delta_{s} \cdot H^{2}$$

$$= \frac{1}{2} \times 0.271 \times 1.9 \times 12.30^{2} = 38.95^{1/m}$$

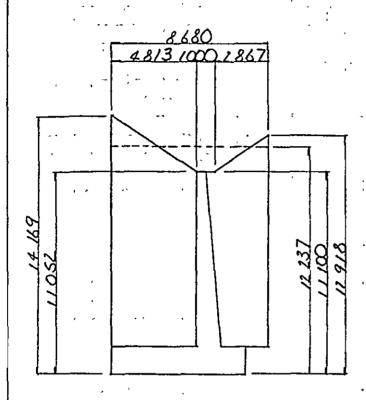
$$y = \frac{1}{3} \times 12.30 = 4.100^{m}$$

(2) active pressure due to surcharge

under H.A surcharge

$$Q = 0.60 \times 1.9 + 1.02 = 1.16^{\frac{t}{m}^2}$$

$$Q h = Q \cdot K \cdot H$$


$$= 1.16 \times 0.27/ \times 12.30 = 3.87^{\frac{t}{m}}$$

$$Y = \frac{1}{2} \times 12.30 = 6.150^{\frac{t}{m}}$$

2-4 weight of surcharge

under H.A
$$q = 1.02$$
 m

2-5 active pressure of longitudinal direction

 $h' = \frac{\frac{1}{2} \times (11.052 + 14.169) \times 4.813 + 11.100 \times 1.00 + \frac{1}{2} \times (11.100 + 12.918) \times 2.867}{8.680}$

= 12.237 4

 $Pa = \frac{1}{2} \times 1.9 \times 0.27 \times 12.237^2$

= 38.41 */1

H = 38.41 × 12.237 × 43

= 156.67

§ 3 CALCULATION OF STABILITY

	N (t)	(m) X	N·x (tm)	H (t)	y (m)	H•y (tm)
W. Ws . Wt	91.47		461.34			
Ws-add						<u> </u>
Ра				<i>38.9</i> 5	4.100	159.70
Pa-add				3.87	6.150	23.80
TOTAL	91.47		461.34	42.82		183.50

1) check for eccentric

$$x = \frac{Nx + Hy}{\Sigma N} = \frac{f6/.34 - 183.50}{9/.47} = 3.04$$

$$e = -\frac{B}{2} - x = \frac{7.500}{2} - 3.04 = 0.71$$

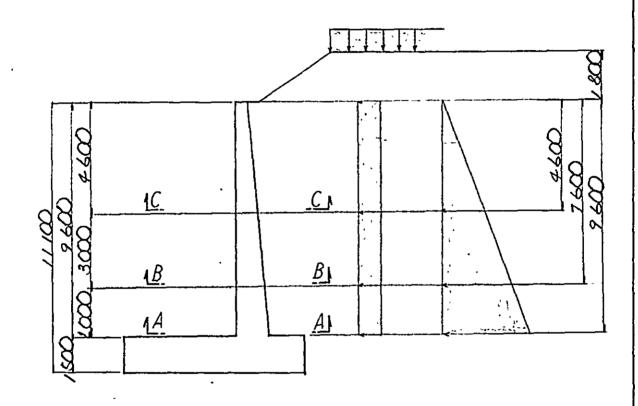
2) soil reaction

reaction
$$\langle \frac{B}{6} = 1,25^{\text{m}}$$

$$q = \frac{\sum N}{B} (1 \pm \frac{6 \cdot e}{B}) \pm \frac{6 \cdot M}{L^2}$$

$$= \frac{91.47}{7.50} \times (1 \pm \frac{6 \times 0.71}{7.50}) \pm \frac{6 \times 156.67}{11.50^2}$$

3) check for sliding


$$= \begin{cases} 26.23^{-7/m^2} < 60.00 \end{cases}$$

$$Hu = c \cdot A' + N \tan \phi'$$
 $c - 0$ $\tan \phi = 0.6$

$$F = \frac{Hu}{H} = \frac{91.47 \times 0.6}{12.82} = 1.18 < 1.5$$

§ 4 CALCULATION OF WALL SECTION

4-1 dimension and loading

$$Q = Q_{HA} + \sqrt{s \cdot h}$$

= 1.02 + 1.9 × 1.80 = 3.49 t/m_{c}^{2}

$$Pa add = Q \cdot K \cdot H_X$$

$$= 3.49 \times 0.27 \times H_X = 0.941 \cdot H_X^{1/m}$$

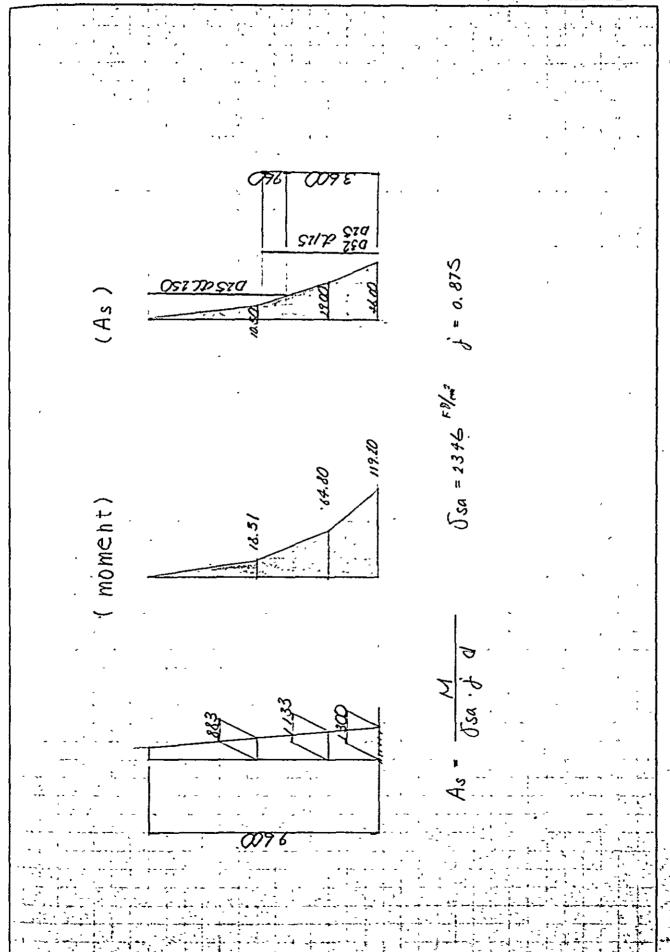
$$Pa = \frac{1}{2} \cdot x \cdot x \cdot Hx^{2}$$

$$= \frac{1}{2} \times 1.9 \times 0.27 \times Hx^{2} = 0.257 \cdot Hx^{2} \cdot \frac{t}{m}$$

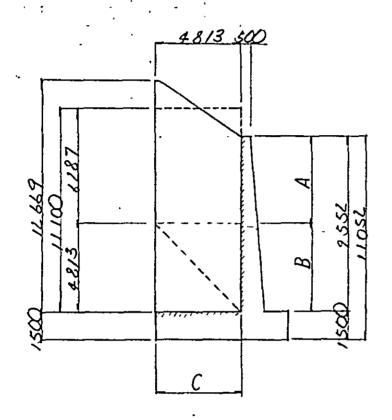
4-2 sectional force of wal section A-A

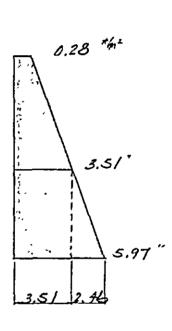
		H (t)	y (m)	H·Y (t·m)
Pd	0.942 × 9.60	9.04	4.800	43.41
Pa add	0.157 × 9.60 ²	23.68	3.200	75.79
TOTAL		32.72		11910

section B-B


		H (t)	y (M)	H.Y (tm)
Pa ·	0.992 × 7.60	7.16	3.800	17.20
Pa add	0.257 × 7.602	14.84	1.53 3	37.60
TOTAL		22.00		64.80

section c-c


		Η (τ)	y (M)	H.Y (UN)
Pa	0.992 × 4.60	<i>4.33</i>	2.300	9,97
Pa add	0.257 × 4.60°	5.44	1.633	8.34
TOTAL		9.77		18.31


4 - 3 list of stresses 6c.6s.z: working stress.

	·	<u> </u>	6ca,6sa,7	a: Permi	ssible str	ess .
			·			
	A - A	B - B	c - c			
М	119.10	64.80	18.31			
N						
S	32.72	22.00	9.77			
<u>b</u>	100	100	100			
<u>h</u>	123	104	80	·		
ď	7	7	7			
As	D32 025 de 125 51.80	032 ti 125 51.80	D25 etc 150 19.64			
As'	012 di 250 4.52	, 	>			
†⁄d	0	0	0	·		
M'bd'	7.88	5.99	2.86	· · · · · · · · · · · · · · · · · · ·		
S/bd	2.66	2.12	1.22			•
n-P	0.0407	0.0747	0.0368			
<u></u>	7.29	6.85	8.87			
S	17.52	14.93	19.72			·
Z ·	1.11	1.12	1.09			
<u>oc</u>	57	- 41	25			
6s	2070	1341	1263			
7	2.9	2.3	1.3			
<u> Cca</u>	83		-			*.
6sa	2364	1012				<u>~</u>
Za-	3.47	3.47.	2.35			*-

.4-4 dimension and loading

$$\hat{\sigma}_{1} = 1.02 \times 0.27$$
 = 0.28 $\frac{\pi}{n^2}$

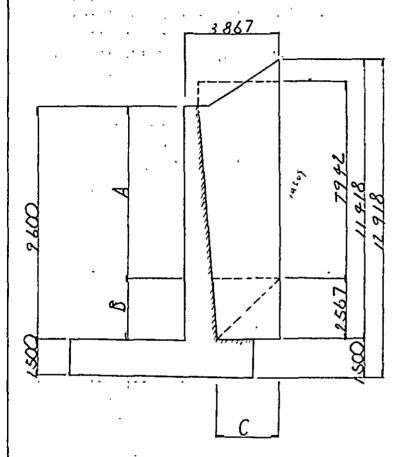
$$g_2 = 1.9 \times 0.27 \times 6.287 + 0.28 = 3.51$$

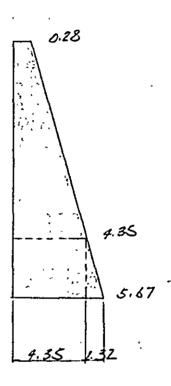
4-5 sectional force of wall

$$MA = \frac{1}{2} \times 3.51 \times 4.813^2 = 40.65$$

$$SA = 3.51 \times 4.813$$
 = 16.89

$$MB = \frac{\frac{1}{2} \times (3.5/ + 5.97)}{2} \times (4.8/3 \times \frac{1}{2})^2 = 13.73$$


$$Mc = (\frac{3.51}{2} + \frac{2.46}{6}) \times (4.8/3 \times 1/2) = 12.54$$


$$Sc = (3.5/ + \frac{2.46}{2}) \times 4.8/3 \times \frac{1}{2} = 11.4/$$

4-6 list of stresses 6c.6s.7: working stress.

6ca,6sa,7a: Permissible stress. <u>B</u> - B A - A C-C M 12.54 13.73 40,65 16.89 11.41 11.4-1 b 100 100 100 h 53 **3** <u>3</u> 7 020£c250 D20 Lc 250 D25 dc 125 As 12.56 39.28 12.56 016 etc 250 D12 dc 150 As' 4.52 8.04 0 0 0 M' bd° 4.89 4.46 14.47 Sba 2.15 2.15 3.19 n.P 0.1112 0.0355 0.0355 5,91 8.15 8.95 <u>S</u> 10.13 30.49 30.49 Z 1.09 1.15 1.09 81 **O**c 44 40 1236 2221 Os_ 2041 3,4 2.4 2.4 Oca 83_ 2346 Osa. 3.*4.*7. 2.4 2.4

dimension and loading

$$\hat{g}_2 = 1.9 \times 7.942 \times 0.27 + 0.28 =$$

$$f_{3.} = 1.9 \times 10.509 \times 0.27 + 0.28 = 5.67$$

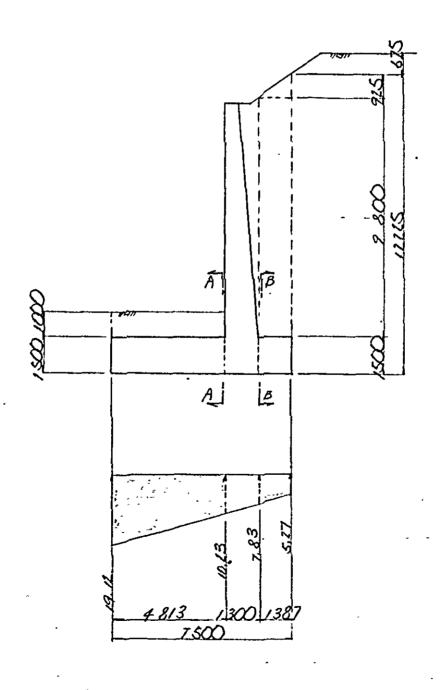
4-8 sectional force of wall

$$MA = \frac{1}{2} \times 4.35 \times 2.967^{2}$$

$$M_B = \frac{\frac{1}{2} \times (4.35 + 5.67)}{2} \times (2.967 \times \frac{1}{2})^2$$

$$S_B = \frac{1}{2} \times (4.35 + 5.67) \times (2.967 \times \frac{1}{2})$$

$$M_c = \left(\frac{4.35}{2} + \frac{1.32}{6}\right) \times \left(1.967 \times \frac{1}{2}\right)^2$$


$$Sc = (4.35 + \frac{1.32}{2}) \times 2.967 \times \frac{1}{2}$$

4-9 list of stresses 6c.6s.z: working stress.

6ca,6sa,7a: Permissible stress. B - B C - CM 19.15 5.51 5.27 12.91 7.43 7. *4*3 b 100 h 43 d'1 020 IC125 016 tc 250 As 25.12 8.04 DP #C250 <u>A</u>s' 4.52 . 0 0 M' bd° 10.37 1.98 2.85 3.00 1.72 1.73 0.0280 0.0180 n.P 0.0876 C 6.38 9.87 9.87 S 12.84 38 90 38.90 1.19 1.09 1.09 28 29 66 **O**C 1642 1995 1717 ି s 7 1.9 1.9 3.4 83 Oca : 2346 Osa. 3.47 2.4 2.4

§ 5 CALCULATION OF FOOTING SECTION

5 - I dimenston and loading

5-2 sectional force of footing

section A - A

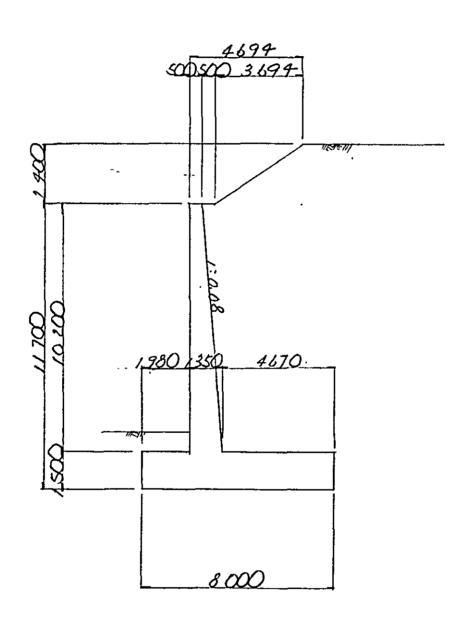
		S (t)	(m) X	$S \cdot x$ (tm)
W	4.813 × 1.50 × 2.41	17.40	2.407	41.88
Wt	4.813 × 1.00 × 1.9	9.14	2. 407	22.01
q	1/2×(10,13 + 19,12)× 4.813	- 70.63	2.649	-187.12
TOTAL		- 44.09		- 123.23

section B - B

			S (1)	(m) <u>X</u>	$S \cdot x \stackrel{(t,m)}{\cdot}$
W	·	1.387 × 1.50 × 2.41	5.01	0.694	3.48
¦√ s	0	1.387 × 9.80 × 1.9	25.83	0.694	17.93
	(2)	1/2 × 1.387 × 0.925 × 1.9	1.22	0.925	1.13
q	· · · · · ·	1/2×(7.83+5.27)×1.387	- 9.09	0.648	- 5,89
TOT	AL_		22.97		16.65

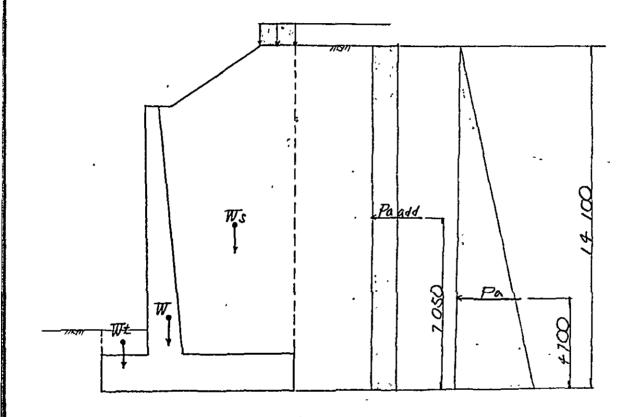
,		•		i		
5 - 3	- list of s	stresses		•		
			6ca,6sa,7c	a: Permi:	ssible str	ess
.	, <u>.</u>	i	·			
	A - A	B - B				
М	123.23	16.65				
N					•	,
S	44.09	22.97	,			
<u>b</u>	100	>				
h	190	>				
d'	10	>				
As	031 de 115 015 de 115 51.80	D10 dc125 25,12 026 dc 150				
As'	016 de 150 804	026 dl 150 19.84			•	
It d	0	0				
M'bd° S	6.28	1.36				
Sod	3,15	1.84				
n-P	0.0555	0.0086				
C -	7.60	15.86				
S	19.89	121,36				
7	1.11	1.06	, .	· · · · · · · · · · · · · · · · · · ·		
೧୯	48	22				
6s	1872	23/1		\		
7-	3.4	1.7		-		
Oca	33	83		., ', -		
6sa	2.316	13.46		<u> </u>		
70	2.35	2.35				

Check for stirrups


Sect . A-A

$$Z = \frac{S}{b \cdot d} \times Z = \frac{44.09 \times 10^{3}}{100 \times 140} \times 1.11 = 3.50^{\frac{69}{cm^{2}}} > Z_{a} = 2.35$$

Reg Av =
$$\frac{s' \times \alpha}{6sa \cdot d} \times Z = \frac{14.45 \times 10^3 \times 50}{1780 \times 140} \times 1.11 = 3.2$$


§§ 6 H=11.70 m

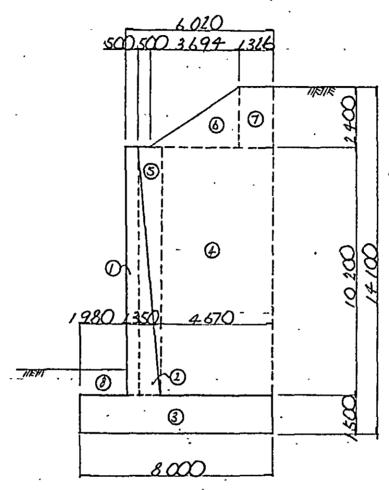
§ 1. STRUCTURAL FIGURE

\$ 2. CALCULATION OF LOAD

2-1 loading diagram

W : self weight

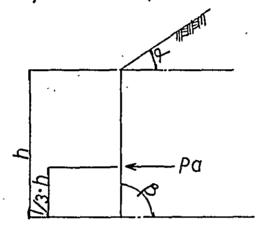
Ws : weight of soil


Wt : fill on toe

Ws add: weight of surcharge

PA : active pressure

PA add: surcharge


2-2 self weight & weight of soil

		N (t)	x (m)	N•x
0	0.50 × 10.20 × 2.41	12.19	2.230	27.41
2	1/2×0.82 × 10.20 × 2.41	. 10.08	2,753	17.75
	8.00 ×1.50 × 2.41	18.92	4.000	115.68
4	-	91.09	5:650	514.66
③	1/2 × 0.82 × 10.20 × 1.9	7.95	3.027	24.06
(12×3.694×2.40×1.9	8 42	5:443	45.83
	1.326 × 2.40 × 1.9	6.05	1.337	11:39
3	1.98 × 1.00 × 1.9		· 0:990 ·	3:72
Ź.,		-188:56		803.00

2-3 earth pressure

unit weight of soil $\sqrt{s} = 1.9$ angle of internal friction $\phi = 35^{\circ}$

$$K = \left(\frac{\cos\phi}{\alpha+1}\right)^2$$

$$a = \sqrt{\sin \phi} - 1/2 \tan \lambda \cdot \sin 2\phi$$

$$a - \sqrt{\sin 35^{\circ z} - 1/2 \times \tan 0} \times \sin 2 \times 35^{\circ}$$

$$-\sqrt{0.574} - \frac{1}{2} \times 0 \times 2 \times 0.9397$$

$$K = \left(\frac{\cos 35^{\circ}}{0.574 + 1}\right)^{2}$$

$$= \left(\frac{-0.819}{7/574}\right)^2$$

(1) active pressure

$$Pa = \frac{1}{2} \cdot K \cdot \delta s \cdot H^{2}$$

$$= \frac{1}{2} \times 0.27 \times 1.9 \times 14.10^{2} = 50.99^{1/m}$$

$$y = \frac{1}{3} \times 14.10 = 4.700$$

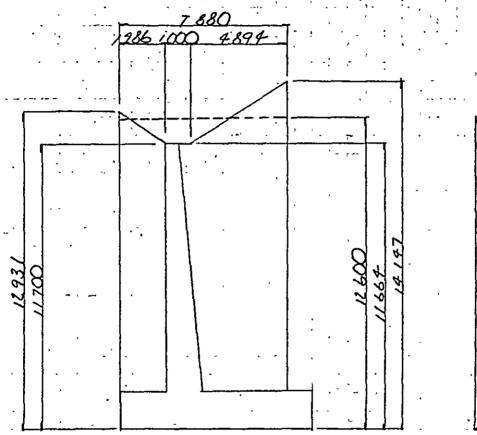
(2) active pressure due to surcharge

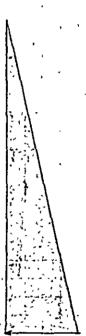
under H.A surcharge

$$q = 1.02 \, t/m^2$$

$$q_h = q \cdot K \cdot H$$

= 1.02 × 0.27 × 14.10 = 3.88 $\frac{1}{m}$


$$y = 1/2 \times 14.10 = 7.050^{m}$$


2-4 weight of surcharge

under H.A
$$q = 1.02 \frac{1}{m^2}$$

$$x = 1.326^{m}$$

2-5 active pressure of longitudinal direction.

 $h' = \frac{\frac{1}{2} \times (12.931 + 11.700) \times 1.986 + 11.700 \times 1.00 + \frac{1}{2} \times (11.664 + 14.197) \times 4.894}{7.880}$

= 12.60 ***

Pa = 1/2 × 1.9 × 0.27 × 12.60

= 10.72

M = 90.72 * 12.600 × 1/3.

171.02

§ 3 CALCULATION OF STABILITY

		N (t)	(m) x	N-x (t m)	H (t)	y (m)	H·Y (tm)
W	.Ws .Wt	168.56		803.50			
W	's∙acid	1,35	7. 339	9.91			
P	° a				50.99	4.700	239.65
F	a add				3.88	7.050	17,35
	TOTAL	169.91		8/3.4/	54.87		267.∞

1) check for eccentric

$$x = \frac{Nx + Hy}{\Sigma N} = \frac{8/3.41 - 267.00}{169.91} = 3.2/6$$

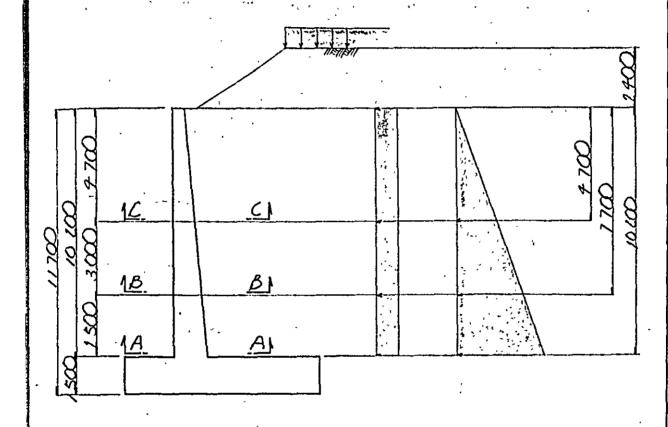
$$e = \frac{B}{2} - x = \frac{8.00}{2} - 3.2/6 = 0.784$$
if reaction $\frac{B}{A} = 1.33^{-10}$

2) soil reaction

$$Q = \frac{\sum N}{B} (/ \pm \frac{6 \cdot e}{B}) \pm \frac{6 M}{L^{2}}$$

$$= \frac{169.91}{8.00} \times (/ \pm \frac{6 \times 0.784}{8.00}) \pm \frac{6 \times 171.02}{11.00^{2}}$$

3) check for sliding


$$= \begin{cases} \frac{42.21}{2.27} < 60.00 \end{cases}^{\frac{4}{2}}$$

$$Hu = c \cdot A' + N \tan \phi \qquad c - 0 \qquad \tan \phi = 0.6$$

$$F = \frac{HU}{H} = \frac{189.91 \times 0.6}{57.87} = 1.86$$
 > 1.5

§ 4 CALCULATION OF WALL SECTION

4 - I dimension and loading

$$Q = Q_{HA} + \int_{S} \cdot h$$

= 1.02 + 1.9 × 1.40 = 5.58 t/m_{c}^{2}

Pa add =
$$q \cdot K : Hx$$

= $s.58 \times 0.27 \times Hx$ = $1.51 \cdot Hx^{t/m}$.

$$Pa = \frac{1}{2} \cdot \{s \cdot K \cdot Hx^2 = 0.257 \cdot Hx^2 \}_m$$

4-2 sectional force of wal section A-A

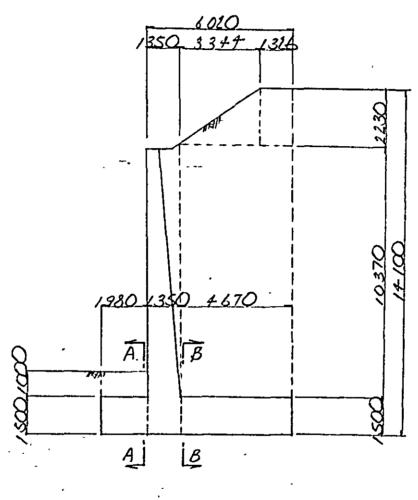
	· · ·	$H^{(t)}$	y (m)	H.Y (t·m)
Pa	0.257 × 10.200	26.7 4	3. 4 0 0	90.92
Pa add	1.51 × 10.200	15.40	_\$./@	7854
TOTAL	,	42.14		169.46

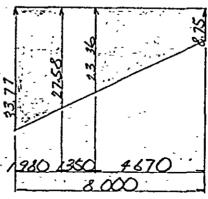
section B-B

		$H^{(t)}$	y (m)	·H·Y (t·m)
Pα	0.257 × 7.70 ²	15.24	2.567	39.11
Pa add	1.51 × 7.70	11.63	3.850	44.76
TOTAL		26.87		83.87

section c-c

		<i>Η</i> ^(τ)	y (M)	H.Y (tm)
Pd	0.257 × 4.70	5,68	1.567	8.90
Pa add	1.51 × 4.70	7.10	2.350	. 16.89
TOTAL		_12:78		15.59


4-3 list of stresses 6c.6s.7: working stress.


6ca,6sa,7a: Permissible stress. C-C B - B M 169.46 83.87 25.59 26.87 12.78 12.19 b 100 100 100 h 128 82 107 7 032 L 125 032 tc 140 D32 JL 125 As 14.32 69.32 41.08 D12 dc 250 4.52 0 0 M'bd° 3.81 10.34 *7. 33* Sba 3.29 2.5/ 1.56 n.P 0.0754 0.0751 0.0902 <u>C</u> 6.85 6.12 6.80 <u>Ş</u> 14.84 12.48 15.80 Z 1.12 1.13 1.12 26 +7 90 7/_ 1371 6s 2296 847 2.8 3.3 · 33 Oca 2346 Gsa∙ ∽ -3.47 3.47 3.47

				P	ne 83	
		300 1840	51			
		5117275		2		
(As)	057 FF 78.00 Vi	3	64.49		•	
			9.16 19/m²	7346		
(moment)	25.59	485.87		8		-
			Σ	p. p. a.		-
		3		As		
		07.07				
		41.2144.144	marted lists			が製

§ 5 CALCULATION OF FOOTING SECTION

5 - I dimenston and loading

5-2 sectional force of footing

section A = A

,		S (t)	(m)	$S \cdot x^{(tm)}$
W	1.98 × 1.50 × 2.41	7.16	0.990	7.09
Wt	1.98 × 1.00 × 1.9	3.76	0.990	3.72
q	1/2×(33,77+27.58)× 1.98	- 60.74	1.043	- 62.13
TOTAL		49.82		5/.32

section B-B.

		•		
		S (1)	· (m)	$S \cdot x$
W	4.67 × 1.50 × 1.41	-16.88	2. 33S	39.41
Ws O	4.67 × 10.37 × 1.9	92.0/	2. 335	214.84
2	1.326 × 2.23 × 1.9	5.62	4.007	22.52
	1/2 × 3.344 × 2.23 × 1.9	7.08	2.129	15.78
Ws add	1.02 × 1.326	1.35	4.007	5,41
9,	-/2.×(23.36 + 8.75)×4.67	- 74.98	1.981.	- 148:54
<u> </u>		47.96		149:42

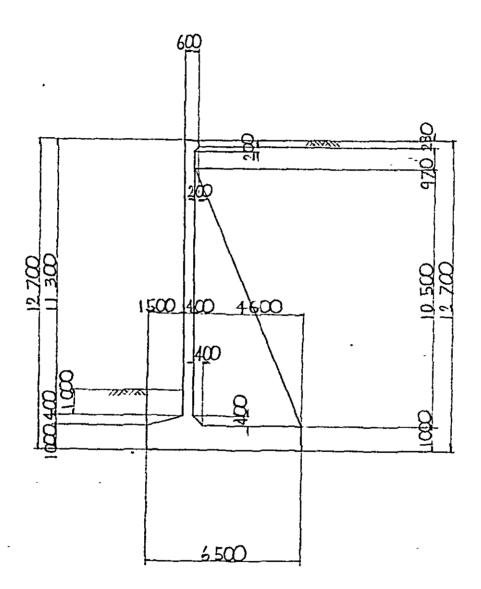
5-3' list of stresses 6c.6s.7: working stress.

6ca,6sa.Za: Permissible stress.

	,		$v\alpha, v\alpha, c$	<u>u. Penn</u>	ssidie sti	<u>622 · </u>
	A - A	B - B				
М	51.32	149, 42				
N						
S	49.82	+7.96				
b	/@_					
h	140				·	
ď_	/0					
As_	020 tc 125 15,11	032 > di 125 51.80				
As'	D 25 21 250	12.56				
1/4	0	0				
M'ba*	2.62	7.62				
∑6a	3.56	3,43				
n.P	0.0269	0.0555				
C	9.65	7. 48				
S	39.78	19.81				
Z	1.08	1.11	,			
<u>6</u>	25	57				
Os'	1563	2 266		·		`
7	<u>3.</u> 5	3.4		<u> </u>		
'Oca	83	83				
6sa	2396					
70	2,35	3.47		<u> </u>	*. × .	,

Check for stirrups

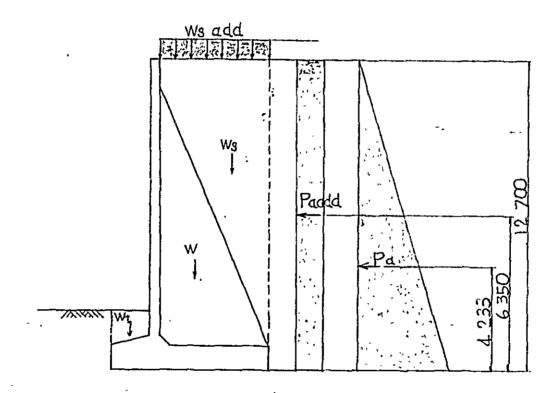
Sect. A-A


$$T = \frac{S}{b \cdot d} \times Z = \frac{49.82 \times 10^3}{100 \times 140} \times 1.08 = 3.84 \frac{k_0^3/m^2}{100 \times 140} > T_0 = 2.35$$

$$5' = (49.82 - 31.36) \times 10^3 = 18.46 \times 10^2$$

Reg.
$$Av = \frac{S' \times Q}{6sa \cdot d} Z = \frac{18.46 \times 10^3 \times 50}{1780 \times 190} \times 1.08 = 4.0$$
 cm²

§§ 7 $H = 12.70^{m}$


§ I STRUCTURAL FIGURE

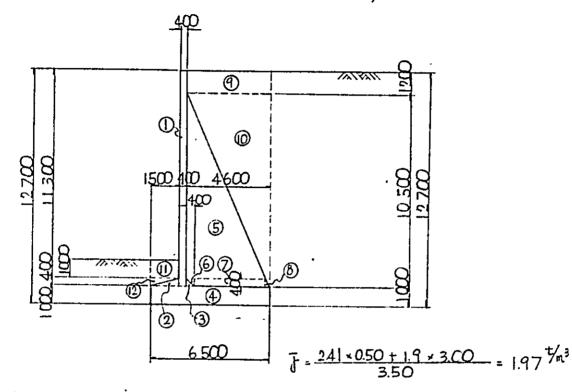
buttress span 1 = 350 m

\$ 2 CALCULATION OF LOAD

2-1 loading diagram

W : self weight

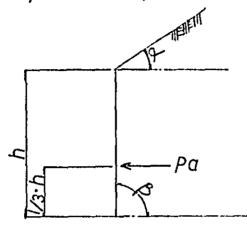
Ws : weight of soil


Wt : fill on toe

Ws add: weight of surcharge

Pa : active pressure

Paadd: surcharge


2-2 self weight and weight of soil

		· N (t)	(m) X	(tm) N·x
	0.40 × 11.70 × 3.50 × 2.4 l	39.48	1.70	67.12
(2)	1/2 × 040 × 1.50 × 2.41	0.72	1.∞	0.72
<u>(3)</u>	1/2 × 0.40 × 0.40 × 2.41	0.19	2.033	0.39
(4)	6.50 × 1.00 × 3.50 × 2.41	54.83	3.25	178,20
<u>(5)</u>	1/2 × 4.425 × 10.10 × 3.50 × 1.97	154 08	3.435	515,22
6	グ×0.40×0.40×3.50×1.97	0.55	2.167	1.19
\bigcirc	4.025 × 0.40 × 3.50 × 1.97	11.10	4.313	47.87
(8)	1/2 × 0.40 × 0.175 × 3.5 × 1.97	0.24	6.383	1.53
(9)	4.60 × 1.20 × 3.50 × 1.90	36.71	4.20	154, 18
(0)	1/2 · 4.60 × 10.50 · 3.50 × 1.9	160.60	4.967	797.70
(1)	1.00 - 1.50 - 3.50 + 1.9	9.98	0.75	7.49
(12)	1/2 × 1.50 × 0.40 × 3.50 × 1.9	2.00	0.57	1.14
Σ	- , -	470.48		1 772.75

2-3 earth pressure

unit weight of soil $\int s = 1.9$ angle of internal friction $\phi = 35^{\circ}$

$$K = \left(\frac{\cos\phi}{\alpha+1}\right)^2$$

$$a = \sqrt{\sin \phi - 1/2} \tan \lambda \cdot \sin 2\phi$$

$$a - \sqrt{\sin^2 35^\circ - 1/2 \times \tan 0^\circ \times \sin 2 \times 35^\circ}$$

$$= \sqrt{0.574^2 - 1/2 \times 0} \times 2 \times 0.574$$

$$= 0.574$$

$$K = \left(\frac{\cos 35^{\circ}}{0.574 + 1}\right)^{2}$$
$$= \left(\frac{0.8/9}{1.574}\right)^{2}$$

$$= 0.27$$

(1) active pressure.

$$Pa = \frac{1}{2} \cdot K \cdot \delta_s \cdot H^2$$

$$Pa = \frac{1}{2} \times 0.27 \times 1.9 \times 12.70^2 \times 3.50 = 144.80^{\frac{1}{m}}$$

$$y = \frac{1}{3} \times 12.70 = 4.233$$

(2) active pressure due to surcharge

under H.A surcharge

$$q = 1.02 \frac{t}{m^2}$$

$$q_h = q \cdot K \cdot H$$

= 1.02 × 0.27 × 12.70 · 3.50 = 12.24 $\frac{t}{m}$

$$y = 1/2 \times 1270 = 6.35$$

2-4 weight of surcharge

under H.A
$$q = 1.02 \frac{1}{m^2}$$

$$x = 4.60$$
 m

§ 3 CALCULATION OF STABILITY

	N (t)	· (m)	N·x (tm)	H (t)	y (m)	H∙Y (tm)
W.Ws.Wr	470.48		1 772.75			
Ws-add	4.69	4.20	19.70	`	-	-
Pa	<u></u>			144.80	4.233	612.94
Pa-add	. —		 ;	12.24	6.35	77.72
TOTAL	475.17		1792.45	157.04		690.66

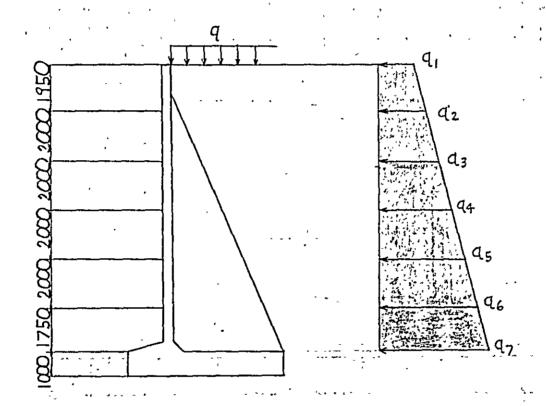
1) check for eccentric

$$x = \frac{Nx - Hy}{\Sigma N} = \frac{1792.45 - 690.66}{475.17} = 2.32$$

$$e = \frac{B}{2} - x = \frac{650}{2} - 2.32 = 0.93$$

2) soil reaction

$$q = \frac{\sum N}{B.L} (1 \pm \frac{6 \cdot e}{B})$$

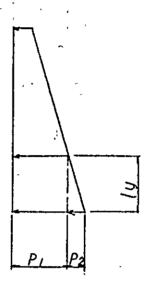

$$= \frac{475.17}{6.50 \times 3.50} \times (1 \pm \frac{6 \times 0.93}{6.50}) = \begin{bmatrix} 38.82 & \frac{1}{m^2} \\ 2.96 & \frac{1}{m^2} \end{bmatrix}$$

3) check for sliding

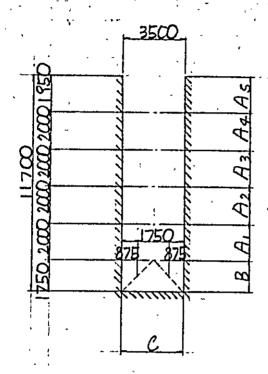
$$Hu = c \cdot A' + N \cdot \tan \phi \qquad c = 0.6$$

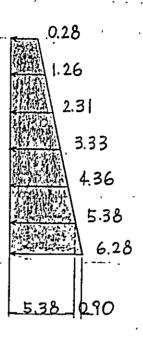
$$F = \frac{Hu}{H} = \frac{475.17 \times 0.6}{157.04} = 1.9 > 1.5$$

§ 4 CALCULATION OF WALL SECTION
4-1 dimension and loading.

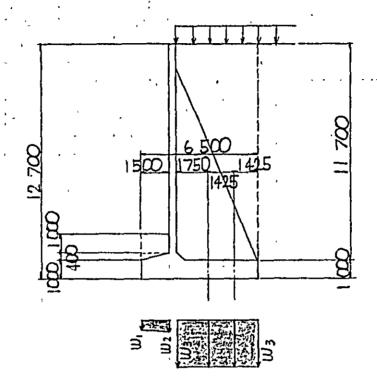

	q ı	92	Ч з	Q'4	9 5	96.	97
HA loading	0.28	1.26	2,3	3.33	4.36	5.38	6.28

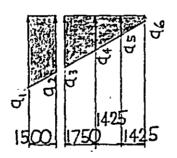
$$q = q \cdot K - 0.27 \cdot q = 0.27 \cdot q$$


$$Qx = K \cdot Xs \cdot Hx + QI = 0.513 \cdot Hx + 0.27 \cdot Q$$


4-2 sectional force of wall

-	A	В	С
(tm) M	$\frac{p \cdot lx^2}{l0}$	$\frac{p \cdot s^2}{6 \cdot lx} (2 \cdot lx + b)$	$\frac{1}{2}(\frac{p_1}{2}+\frac{p_2}{6})ly^2$
(†) S	P·/x 2	P·s	$(P_1 + \frac{P_2}{2})$ ly

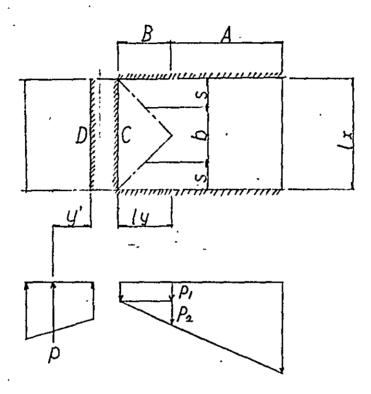

	М .	(tm)	S	(1)
c-c	$\frac{1}{2} \times (\frac{5.38}{2} + \frac{090}{6}) \times 1.75^{\frac{2}{3}}$	4.35	(5.38 + 090) × 1.75	10.20
B-B	5.83 · 0.875 6 × 3.50 (2 · 3.50 + 1.75)	2.13	5.83 × 0.875	5.10
A1 - 1	<u>5.38 · 3.50</u> ² 10	6.59	<u>5.38 × 3.50</u> 2	9.42
A2-2	4.36 × 3.50 ²	5.34	4.36 × 3.5 <i>0</i> 2	7.63
A3-3	333 × 350 ²	4.08	3.33 × 3.50 2	5.83
A4-4	<u>131 · . 350</u> ²	2.83	2.3 × 3.50 2	4.04

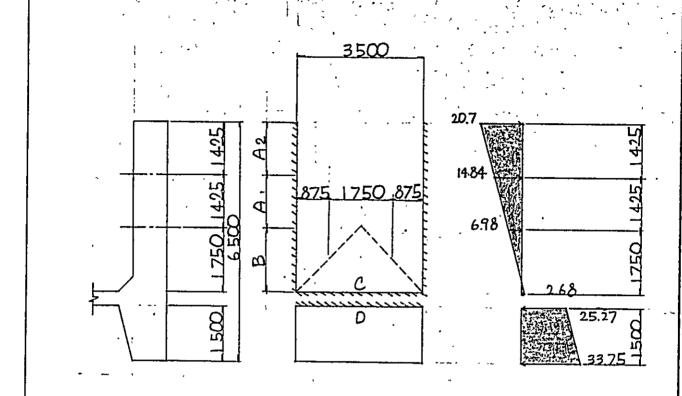

4-3 list of stresses 6c.6s.z: working stress.

6ca,6sa,7a: Permissible stress.

	oa,osa, ca · permissible stress ·						
	· · · · · · · · · · · · · · · · · · ·			<u> </u>			
	C-C	B-B	A_{I-I}	A2-2	A3-3	A4-4	
M	4.35	2.13	6.59	5.34	4.08	2.83	
N							
S	10.20	5.10	9.42	7.63	5.83	4.04	
<u>b</u>	100						
<u>h</u>	33		•			>	
ď_	7						
As	016 @ 250 8.04	DI6@250 204-	D16@125 16.08	016 @ 250 8.04	016 @ 250 8.04	DI6 @ 250 8.04	
As'							
ta	0	D	. 0	0	0	0	
M' bd°	3.99	1.96	6.05	4.90	3.75	2.60	
Sbd	3.09	1.55	2.85	2.31	1.77	1.22	
n-P	0.0365	0.0365	0.0731	0.0365	0.0365	0.0365	
C	9.19	9.19	7.07	9.19	9.19	9.19	
S_	29.72	29.72	15.30	29.72	29 72	29.72	
Z	1.09	1.09	-1.12	1.09	1.09	1.09	
60	37	18	43	45	. 34	24	
6s	1781	* 872	1388	2186	1670	1159	
7	3.4	1.7	3. <u>2</u>	2.5	1.9	1.3	
6ca	83						
6sa	2346		<u> </u>				
Za	3.5		3.47	2.4 -			

S:5 CALCULATION OF FOOTING SECTION
5-1 dimension and loading




$$W_1 = 1.00 \times 2.41 + 1.40 \times 1.9 = 5.07$$
 $W_2 = 1.40 \times 1.00 \times 1.0$

	q	Q 2	9 3	Q 4	Q 5	96
HA loading	38.82	30.54	28.34	18.68	10.82	2.96

5-2 sectional force of footing

	A	В	· C	D
(tm	$\frac{p \cdot l_x^2}{10}$	$\frac{p \cdot s}{6 \cdot lx} (2 \cdot lx + b)$	$\frac{1}{2} \left(\frac{p_1}{2} + \frac{p_2}{6} \right) l_y^2$	p·y'
S	<u>P·lx</u> 2	p·s	$(p, + \frac{p_2}{2})$ ·ly	Þ

	М	(tm)	S	(1)
D-D	44.27 × 1.50 (25.27+2×33.75)	34.79	½ (25.27+33.75) × 1.50	44.27
c – c	$\frac{1}{2} \times \left(\frac{0}{2} + \frac{698}{6} \right) \times 1.75^{2}$	1:78	(0 + 6.98) × 1.75	6.11
B - B	349 · 0875 (2 · 350+1.75)	. 	3.49 × 0.875	3.05
A1 - 1	14.84 · 3.50 ²	18.18	1484 × 3.50 2	25.97
A2 – 2	<u>20.7 × 350²</u>	25.36	20.7 × 3.50 2	36.23
A3 - 3				

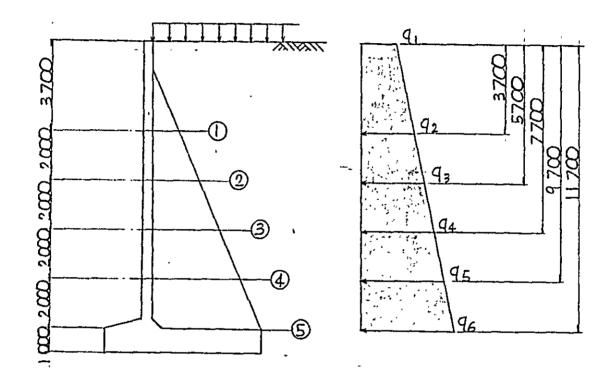
5-3 list of stresses 6c.6s.7: working stress.

6ca,6sa,7a: Permissible stress. C - CD - DB-B A1-1 A2-2 M 34.79 1.78 1.11 18.18 25.36 N S 44.27 6.11 3.05 25.97 36.23 b 100 130 h 90 10 10 D 20@ 125 DI6 @125 D16 @125 DI6 @ 25 D16 @ 125 As 25.12 16.08 16.08 16.08 16.08 <u>A</u>s' 0 0 0 0 0 pd. 2.06 0.14 2.24 0.22 3.13 3.41 0.68 0.34 2.89 4.03 0.029 0.0268 0.0268 n.P 0.0268 0.0268 10.09 10.42 10.42 10.42 10.42 37.15 40.10 40.1 40.1 40.1 1.08 -- 1.07 1.07 1.07 -- 1.07 <u>6c</u> 21 2 23 ' 33 82 1147 132 1350 1883 0.7 0.4 83 Gsa 2346 2.35

Check for stirrups

Sect D-P

$$T = \frac{S}{b \cdot d} \times Z = \frac{44.27 \times 10^{3}}{100 \times 130} \times 1.08 - 3.68 + \frac{100}{100} > T_{0} = 2.35$$

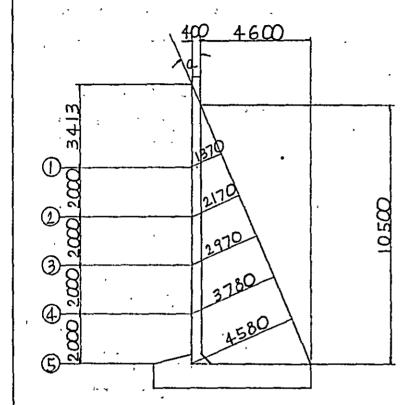

Sect Az-Az

$$T = \frac{\epsilon}{b \cdot d} \times Z = \frac{36.23 \times 10^3}{100 \times 90} \times 1.07 = 9.3 / \frac{\kappa d/cm^2}{2} > \tau_0 = 2.35$$

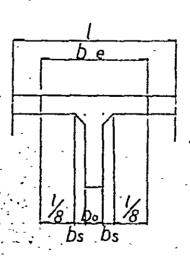
Reg
$$A_{\nu} = \frac{5' \times \alpha}{6sa \cdot d} \times Z = \frac{16.46 \times 10^3 \times Z5}{1780 \times 90} \times 1.07 = 2.75$$

$$Au = 2.0/ \times 2 = 4.02 > Reg Av = 2.75$$

§ 6 CALCULATION OF BUTTRESS SECTION 6-1 dimension and loading



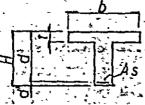
-	91	92	q 3	94	Q 5	q 6_
HA loading	0.96	761	11.20	14.79	18.39	21.98


6-2 sectiona force of buttress

		HA loading			
	, , , , , ,	$H^{(t)}$	y ^(m)	. H-Y (tm)	
11	Pα·	15 .85	1.371	21.73	
22	· Pa	-34.66	2.05	71.05	
33	Pa	60.64	2.723	165.12	
44	Pa	93.85	3.394	318.53	
55	Ра	134.20	4.063	545.25	

6-3 calculation of members

$$tand = \frac{460}{10.50} = 0.438$$



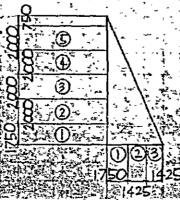
$$be = b_0 + 2(b_s + \frac{1}{8}) = 50 + 2 \times (30... + 44...)$$

6-4 list of stresses \(\int_c \, \lambda_s \, \tau \): \(\text{working stress} \).

σca, σsa, ζα: Permissible stress.

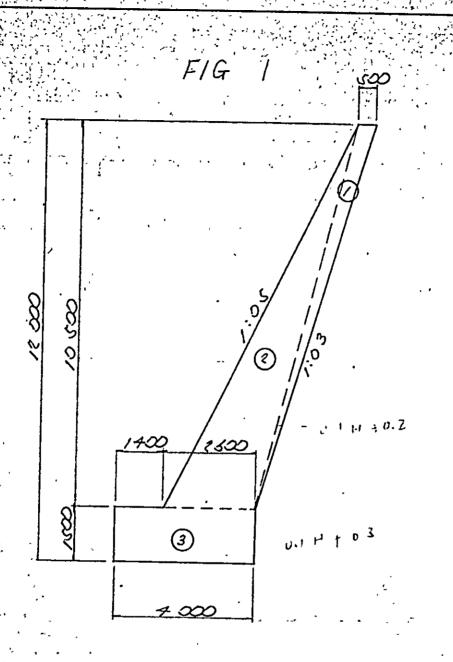
[
	,	1-1	2-2	3-3	44	5-5
М	t m	21.73	71.05	165.12	318.53	545.25
S	t	15.85	34.66	60.64	93.85	134.20
<u>b</u> -	č'm	148:				
11	,	40				<u>-</u>
d	•	127	207	287	363	443
A s	C <i>m</i> ²	2-032	4- D32	4 - 032	4 > 032	4 > 032
7 3		16.08	32.16	32.16	48.24	64.32
P		0.0006	0.0008	0.0006	0.0007	0.007
1/d		0.32	0.19	0.14	0.11	0.09
K		0.181	0.150	0.126	0.138	0.145
j .		1.196	0.962	0.959	0.957	0.961
0 s	kg∕ ∕cṁ	889	1109	1866	1901	1990
(c	5	13	13	18	20	22
7	, , ,	2.50	3.35	4.23	- 5.17	6.06
J sa .	*	2346		· .	· · · · · · · · · · · · · · · · · · ·	
Cca	, \$	83		;		
7 a	~ 6	8.2				

(1) wall and buttress


$$As = \frac{S}{\int Sa} (Cm^2)$$

		S (1)	(Cm²) Às	As'	(Cm1)
	i-l	5.10	2.17	DI6 & 250	8.04
section -	2-2	9.4-2	4.02	and and a	
3601/0//	3 -3	7.63	3.25		?
•	4-4	5.83	2.49		1
	5 — 5	4.04	1.72	٧	, _v

2) footing and buttress.


$$As = \frac{S}{OSO} \quad (cm^2)$$

1.8		$S^{(t)}$	(Cm) As	A s	(Cm²)
	1.1	3.05	1.30	DI6 #250	8.04
section	2 2	25.97	11.07	DI6 de 125	16.08
	3 3	36.23	15.44	016 ctc 125	16.08

2. Retaining Wall of Main Road

•

	* *			•	• -	••
AREA	JUNIT WEIGHT	WEIGHT	χ.	7	WX	Wy
1 2.625	12.3	6.04	5.067	avoo	30 30	5/34
3 13.800	Salar Francisco	3/.40	4017	<i>v. ထ</i>	126 13	
3 6,000		1380	1.000	0.750	27.60	26.05
计		V1.24			184.33	218.69

10 - 18433 61.24 3 3 59.7 SUR CHANGE

SUR CHANGE 1.65 t/m2

CONVERTED HEIGHT BY SURCHARGE

 $h = \frac{8}{100} = \frac{1.66}{2.00} = 0.83^{m}$

EARTH PRESSURE

PH = 1/2. KH . H2

Pr = 1/2 · Kv · H2

PH - 1/2 x 0.28 x 12.832 = 23.05

Pv = 1/2 x 0 x 12 83 = 0

STABILITY

	V	Н	х	y	Y X	НЪ
WALL	51.24		3 497		18431	
ENRTH FRESSURE		13.05		4.750		109.49
TOTAL	51.24	23.05			18431	109 49

STABILITY FOR TURN OVER

ZVX-EHY 1843/-109.49 = 1.460

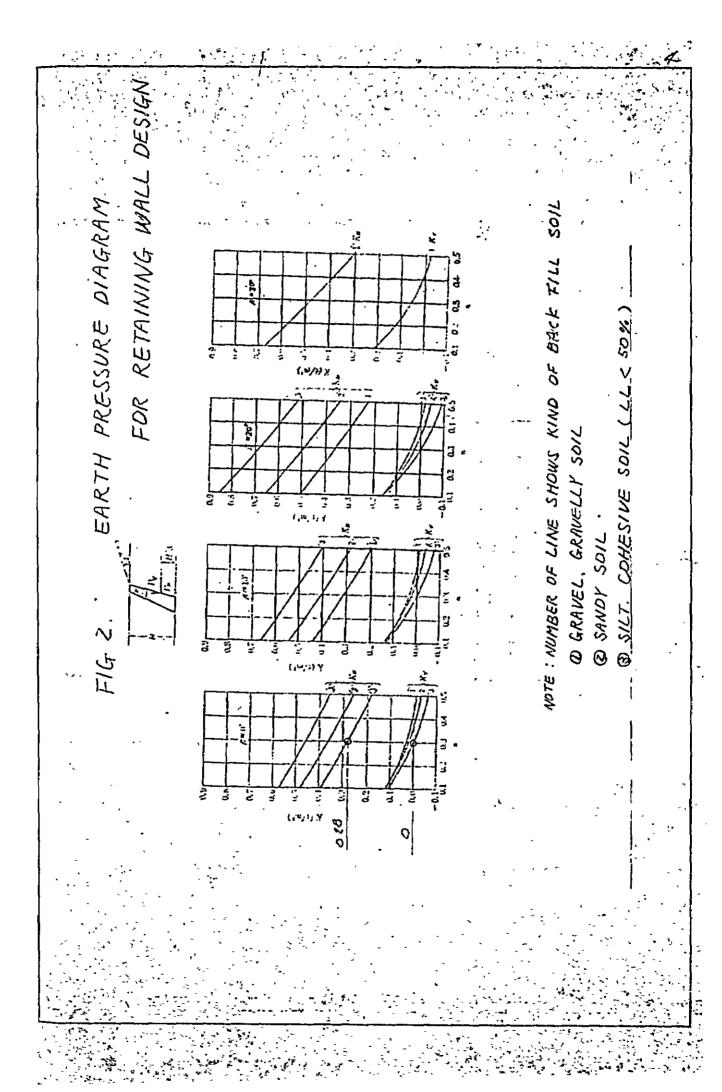
スパラノサムンタノヨーノヨヨージを定している。

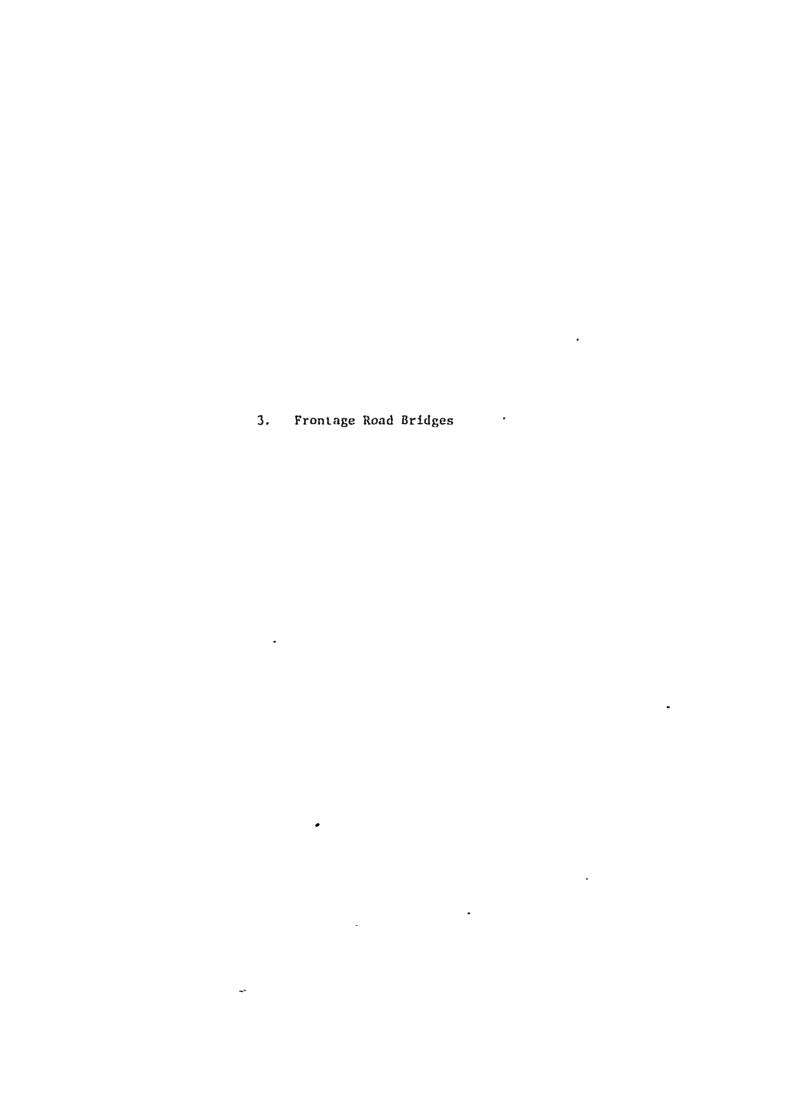
STABILITY FOR BEARING

$$e_1 = \frac{B}{2} - \chi_1 = \frac{400}{2} - 146 = 0.54$$

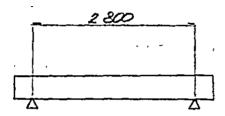
$$\begin{cases} 8 \max \end{cases} = \frac{EV}{B} \left(1 \pm \frac{6e_1}{B} \right) \\ = \frac{51.24}{400} \left(1 \pm \frac{6 \times 0.54}{400} \right) \end{cases}$$

Brax = 23.19 4/m2.


8 min · 2 43 t/m?


STABILITY FOR SLIDING

Hu = V tampB


= \$1.24 × 10.6 = 30.74

F = 30.74 23.07 = 1.33 > 1.3 安定している

DESIGN OF SLAB

Q. BENDING MOMENT BY LIVE LOAD (T-LOAD)

LENGTH OF BRIDGE L ≤ 10 M

LIVE LOAD: T-ZO (BRIDGE DESIGN MANUAL

OF JAPANESE ROAD ASSOCIATION)

Me = $1.8L + 0.5 \, \text{t}$ (INCLUDING INPACT) Me = $(1.8L + 0.5) \times 0.7$ = $(1.8 \times 2.80 + 0.5) \times 0.7 = 3.878 \, \text{t.m/M}$

- b. BENDING MOMENT BY DEAD LOAD

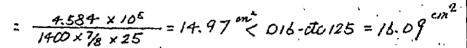
 Md = 1/8 w.l.

 = 1/8 × (0.30 × 2.4) × 2.802 = 0.706 t. MA
- C. COMPOSITE STRESS

 M = Me + Md

 = 3.878 + 0.706 = 4.584 to MA

 SEAR FORCE

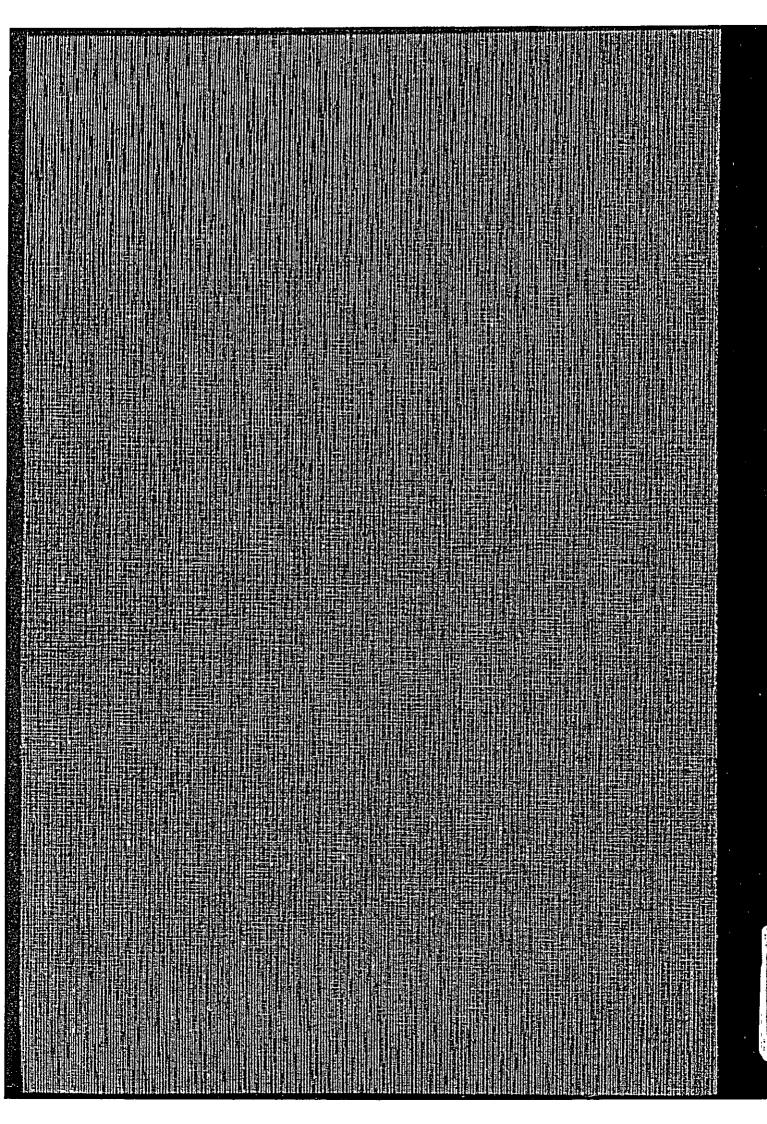

 BEARING FORCE (PER 50 cm)

 R = Re + Rd

 $= 5.6 (1+1.3) + 1/2 \times 0.30$ $\times 2.4 \times 2.80 \times 0.50$ = 7.784

d. SECTION FORCE

AREA OF STEEL BAR - As



PERMISSIBLE STRESS OF REINFORCEMENT

650 = 1400 19/001

$$\gamma = \frac{s}{b \cdot j \cdot d}$$

$$= \frac{7.784 \times 10^3}{50 \times \frac{7}{8} \times 25} = 7.12 \frac{19}{00} \angle Ta = 9^{16}/m^2$$

